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Abstract

The chromosome of Streptococcus pneumoniae is organized into topological domains based on its transcriptional response

to DNA relaxation: Up-regulated (UP), down-regulated (DOWN), nonregulated (NR), and AT-rich. In the present work, NR

genes found to have highly conserved chromosomal locations (17% of the genome) were categorized as members of

position-conserved nonregulated (pcNR) domains, while NR genes with a variable position (36% of the genome) were

classified as members of position-variable nonregulated (pvNR) domains. On average, pcNR domains showed high transcrip-

tion rates, optimized codon usage, and were found to contain only a small number of RUP/BOX/SPLICE repeats. They were

also poor in exogenous genes but enriched in leading strand genes that code for proteins involved in primary metabolism

with central roles within the interactome. In contrast, pvNR genes coding for cell wall proteins, paralogs, virulence factors and

immunogenic candidates for protein-based vaccines were found to be overrepresented. DOWN domains were enriched in

genes essential for infection. Many UP and DOWN domain genes were seen to be activated during different stages of

competence, whereas pcNR genes tended to be repressed until the competence was switched off. Pneumococcal genes

appear to be subject to a topology-driven selection pressure that defines the chromosomal location of genes involved in

metabolism, virulence and competence. The pcNR domains are interleaved between UP and DOWN domains according to a

pattern that suggests the existence of macrodomain entities. The term “topogenomics” is here proposed to describe the

study of the topological rules of genomes and their relationship with physiology.
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Introduction

The availability of a number of genomic sequences per species

and genome-scale data (transcriptomics, interactomics, and

metabolomics) ushered the postgenomic age. The answers

to biological questions beyond those that can be provided

by individual gene analysis can now be sought through the

use of different technologies till now used only in an indepen-

dent fashion. One such question is how chromosomes are

topologically organized.

The bacterial chromosome is compacted by three orders of

magnitude(HolmesandCozzarelli2000);thisallowsgenomesof

typically 1–10Mb (with all genetic instructions to sustain life) to

be accommodated within cells just 1–2mm long. Chromosome

topology depends on DNA supercoiling that must be able to

show homeostatic responses to challenges such as osmotic

stress, growth phase-dependent changes, topoisomerases-

targeting drugs, and even circadian cycles (Woelfle et al. 2007).

Supercoiling dynamics must therefore be precisely managed.

Chromosome topology is controlled by a four-tier system.

The first tier involves the action of DNA topoisomerases, such

as gyrase, topoisomerase I (Topo I) and topoisomerase IV

(Topo IV), which actively regulate the degree of supercoiling

by introducing or removing DNA turns (Champoux 2001). The

second involves a number of nucleoid-associated proteins

(NAPs) (Wang et al. 2013) that together form a functional

network that maintains the topology of the DNA via its bend-

ing, wrapping, or bridging (Dorman 2013). In addition, NAPs

regulate transcription by constraining supercoils. The third tier

involves the local curvature of the DNA affecting the transcrip-

tion of key genes, such as promoters that regulates genes
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coding for topoisomerases (Balas et al. 1998). Finally, the

fourth involves the organization of the chromosome into do-

mains with intrinsic topological behavior (Ferrándiz et al.

2010, 2016; Higgins et al. 1996; Postow et al. 2004; Sinden

and Pettijohn 1981; Worcel and Burgi 1972). These control

layers are in permanent crosstalk, providing the required dy-

namics and precision of chromosome supercoiling.

The complex feedback control over the chromosome archi-

tecture has, however, prevented a reasonable understanding

of how its topology is reached (Wright et al. 2007).

Differences in gene pool, genome size, NAPs, topoisomerases,

and AT content make the topological rules governing the

chromosome of an organism difficult to extrapolate beyond

the limits of its genus. For example, three levels of intradomain

hierarchy—macro, middle, and micro—have been reported

for chromosomal domains in Escherichia coli but the�40

NAPs, 5 Mb genome and ~50% AT content of this bacterium

may be very different in others, making extrapolations risky.

In Streptococcus pneumoniae, changes in DNA supercoiling

imposed by treatment with sublethal doses of GyrB and Topo I

inhibitors have revealed topology-reactive domains (Ferrándiz

et al. 2010, 2014, 2016). Indeed, the topology of this bacte-

rium’s chromosome involves transcriptional gene clusters that

showconcertedreactionstotherelaxationcausedbynovobiocin

(NOV),which targetsGyrB (Ferrándizetal.2010).Togetherwith

GyrA, GyrB makes up gyrase, the only enzyme able to introduce

negative supercoils (Gellert et al. 1976). Four types of domains,

defined by their expression behavior in response to NOV have

been identified: Up-regulated (UP), down-regulated (DOWN),

nonregulated (NR),andflanking (Ferrándizetal.2010).Flanking

domainsareadjacenttoDOWNdomains; theyareespeciallyAT-

rich and encode nonessential functions, and were suggested to

havearoleasstructuralDNA. It ispossiblethatpromptrelaxation

due to their high AT content reduces transcription in nearby

regions under conditions of topological stress.

The genus Streptococcus contains some of the most impor-

tant human and anthropozoonotic pathogens, including

S. pneumoniae, Streptococcus pyogenes, and Streptococcus

suis. All of these carry a number of virulence factors such as

adhesins, anti-phagocytic capsules, and toxins. The chromo-

somes of these species are of similar size and AT content, so

they may share topological features. In addition, most, if not

all, streptococcal species harbor competence systems respon-

sible for the acquisition of foreign DNA (Johnsborg et al.

2007). S. pneumoniae has an open pangenome with every

new strain sequenced adding new genes (Donati et al. 2010).

It is reasonable to suppose that the long-term permanence of

any novel genetic material is only secure if the changes in the

topological order maintain the supercoiling balance. New,

horizontally acquired virulence factors need to be placed in

appropriate topological areas to be properly transcribed and

functionally efficient.

Given the above, it is of interest to understand the relation-

ships between chromosomal topology, central physiology and

pathobiology of streptococci. The present work, which involved

a comprehensive computational genomic analysis, reveals

genes coding for most core biosynthetic proteins in S. pneumo-

niae that fall into a novel type of domain nonreactive to DNA

relaxation. Such domains are here named position-conserved

nonregulated (pcNR) domains. However, genes coding for viru-

lence factors are more common in the remaining position-vari-

able NR (pvNR) zones. These findings suggest the existence of a

pressure that selects against the perturbation of supercoiling in

areas where metabolic and virulence factors genes are found.

Materials and Methods

Calculation of the Normalized Location Dispersion Index

HomologsbetweenspecieswerefoundusingGet_Homologues

software (Contreras-MoreiraandVinuesa2013), employing the

default parameters. For S. pneumoniae R6 genes with homo-

logues in at least 10 species, the distance to the origin was cal-

culated in degrees (ranging from 0� to 180�) in the 10 genomes

and the average calculated. The location dispersion index (LDI)

was defined as the standard deviation of these averages. For R6

genes with homologues in more than 10 species, only the 10

specieswiththemostsimilarhomologs, intermsofBLASTscores,

were taken into account in LDI calculations. When these rough

LDI valuesweremappedaccording to theirdistance to theorigin

(usingawindowof11genesandastepof10genes),andthetop

20% was selected, a strong correlation was seen between

LDI and distance to origin. This relationship followed a two-

order polynomial adjustment: y = �2E�5x2+0.039x +4.38,

r2=0.73 (supplementary fig. S1, Supplementary Material

online). The rough LDI values were therefore normalized via

their division by this baseline to render the final normalized LDI

(nLDI) values. An nLDI value of 1 denotes the average genome

value. pcNR zones were considered as those containing�25

contiguous genes in which�44% of those genes showed nor-

malized nLDI values�1 (�2 test P� 0.01, the null hypothesis is:

The cluster contains 29% of genes with nLDI< 1, like the aver-

age of the genome), and which in addition were not included in

clusters affected by NOV treatment.

Data Acquisition

Genomic information was obtained from NCBI resources (NCBI

Resource Coordinators 2016). Transcriptional units predicted

with Price algorithm (Price et al. 2005) were downloaded

from http://www.microbesonline.org. A transcriptional unit

was considered included in a pcNR domain if the cluster con-

tained�50%of itsgenes.Atranscriptionalunitwasconsidered

as positionally conserved if�50% of its genes showed nLDI

values<1. Paralogs were obtainedusing BLAST employingcut-

offs of�60% identity over�80% of the protein length. Gene

ontology data were obtained from GO webpage (The Gene

Ontology Consortium 2015). Lateral-transferred genes were

downloaded from the horizontal gene transfer (HGT)-DB
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(Garcı́a-Vallve et al. 2000). Essential genes were identified by a

former study involving transposon insertion libraries (van

Opijnen and Camilli 2012). BOX, RUP, and SPRITE repeats

were annotated using the software provided by Croucher

et al. (2011). The condon adaptation index (CAI) of a gene

was calculated using the algorithm of Sharp and Li (1987)

with optimal codon usage of genes encoding ribosomal pro-

teins for S. pneumoniae (Martı́n-Galiano et al. 2004). Protein–

protein interactions (PPIs)weredownloadedfromSTRINGdata-

base (Szklarczyk et al. 2015) applying a score threshold�0.7.

Virulence factors were downloaded from VFDB (Chen et al.

2012). Signature-tagged mutagenesis (STM) data were ob-

tained from the original papers in which they appeared (Chen

etal. 2008;Molzenetal. 2011).ANTIGENome informationwas

acquired from the original manuscript (Giefing et al. 2008).

Results

Position-Conserved Nonregulated Domains: A Novel Type
of Topological Domain

Investigations were made into whether the genes present in S.

pneumoniae R6 topological domains, and their relative posi-

tions, were conserved across other strains of the same species.

Finding this to be the case would be indicative of a selective

pressure for maintaining the location of these genes in partic-

ular positions. A nLDI, normalized Location Dispersion Index,

value was calculated. This parameter quantifies the position

deviation of a given gene with respect to the replication origin

and relative to its homologues in several genomes, and was

further normalized by distance to origin (See Material and

Methods). Genes showing nLDI values<1 tend to locate in

stable positions on genomes regardless other biases imposed

by the distance to origin of the genomic area they occupy.

Therefore, a low nLDI value is suggestive of selective pressure

operating on the gene to maintain a given position. The nLDI

values across S. pneumoniae genomes were very small, because

synteny is highly conserved in this species. Therefore, the nLDI

was recalculatedconsidering representative strainsof25species

of the Streptococcus genus (supplementary table S1,

Supplementary Material online) considering that gene order is

relatively conserved within this taxon as happens with

Gammaproteobacteria (Sobetzko et al. 2012). It was assumed

that chromosomal topology would be also roughly conserved

across all these species because they share a substantial amount

oftheirgenepools (LefebureandStanhope2007),similarly,tight

genome length ranges (1.8–2.4 Mb), and a similar AT content

(56–64%). A total of 1216 genes coding proteins in S. pneumo-

niae R6, with homologs in�10 species, were considered in the

analysis. The calculated nLDI values showed discriminatory dif-

ferences. A total of 571 genes (28.0%) had nLDI values<1.

Several genes from UP and DOWN domains were found to

be present in most streptococci and in comparable positions

(nLDI<1), and probably constitute the cores of the topolog-

ical-reactive domains. In fact, the lowest nLDI values, that is,

highest position conservation, was calculated for 40 genes

around the origin, indicating this zone is extremely conserved

in topological terms. Moreover, seven clusters with conserved

positions (average nLDI: 0.880, 340 genes, 16.6% of the
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FIG. 1.—Location comparison of NOV-reactive and pcNR domains. Dots indicate nLDI values of S. pneumoniae R6 genes in the whole Streptococcus

genus. Gene indexing start from the replication origin.
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genome) were detected for NR genes, here referred to as

pcNR (fig. 1). The remaining NR genes (average nLDI: 1.620,

731 genes, 35.8% of the genome) were termed pvNR. The

analysis was repeated at the level of transcriptional units, con-

sidering operons and monocistronic genes as atomic units.

Among 957 transcriptional units, 157 were located in pcNR

clusters. The occurrence of transcriptional units with nLDI< 1

values in pcNR clusters was 55.4% (ranging 48–80% per clus-

ter), ~2.5-fold higher than in the remaining genome, 22.7%

(P= 2�10�23, �2 test). Interestingly, pcNR domains were lo-

cated symmetrically at regular intervals (~200, 400, and 800

kb) from the replication origin. In addition, they were inter-

leaved between UP, DOWN, and pvNR domains, suggesting a

potential higher-order macrostructural unit above the domain

level. The former flanking group was widened to all those AT-

rich zones and renamed as “AT-rich” domains. This accounted

for 13 clusters (209 ORFs, table 1) containing�10 genes. Of

these genes,�75% had�62%AT and the whole AT-rich

domain had on average %AT� 64% (�2 P< 0.001, consider-

ing that only 29.3% of the S. pneumoniae R6 genes

have�62%AT). Any other remaining section in the genome

withhighATcontentwereprevalentlyassignedtoUPorDOWN

domains or did not fulfil the required criteria. It is important to

mentionthatpcNRclusters4and5areveryclosetooneanother

and may in fact be one, although split by a AT-rich domain.

HGT is a primary source of evolution in prokaryotes, but

introduction of new genetic material at random may perturb

chromosomal topology. In S. pneumoniae R6, up to 12.1% of

the genome is considered HGT-acquired (http://genomes.urv.

cat/HGT-DB/). However, only 2.3% (P = 2�10�9; �2 test,

compared with the remaining genome) of DOWN and 2.1%

(P= 2�10�9) of pcNR genes were so-acquired (fig. 2). Thus,

genes of the pcNR domains contribute to the conserved meta-

bolic core, which has been present in the genome because

speciation. In contrast, a large amount of genes (66.5%) in

AT-rich domains (P< 1�10�100 ) were predicted to have

been acquired by HGT. These data support the idea that AT-

rich domains probably act as structural (Ferrándiz et al. 2010) or

parasitic DNA, which agrees with their low transcriptional level

and annotated functions (Ferrándiz et al. 2010, 2014, 2016).

pcNR Domains are Enriched in Genes Involved with
Central Metabolism

A substantial fraction of pcNR genes were found to encode

proteins with important roles in central metabolism (table 2).

Analyses of several genetic features were performed in pcNR

domains and compared with the results for the remaining

topological classes. The number of pcNR genes in the lagging

strand was 15.6% (P = 0.03; �2 analysis), significantly lower

than the average in the remaining S. pneumoniae genome

(22.3%). A total of 87.9% of pcNR genes encoded proteins

containing Pfam domains, a value higher than that recorded

for the average of the remaining genome (79.4%,

P = 2� 10�4) and for those in AT-rich domains (63.6%,

P = 2� 10�12). The genes of the pcNR domains also had

few paralogs (arising through recent gene duplication)

(P = 0.04), unlike those of the pvNR zones (P = 1�10�4).

Accordingly, the fraction of essential pcNR genes was notably

higher than those seen for UP, pvNR, and AT-rich domain

genes (fig. 3).

The mRNA levels for each gene in exponential growth cul-

tures not subjected to topological stress were estimated by

RNA-Seq. These data were recorded in a previous study per-

formed at our laboratory (Ferrándiz et al. 2016) and are avail-

able at the Gene Expression Omnibus repository (http://www.

ncbi.nlm.nih.gov/geo) via accession number GSE77748. Reads

were normalized by gene size (kb) using the reads per kilobase

per million mapped reads (RPKM) (Mortazavi et al. 2008). The

genes of pcNR domains showed high transcription levels

(P = 7�10�28, two-tailed Student’s t-test, compared with

Table 1

Statistical Measures of AT-Rich Domains

AT-Rich Domain Spr Begin Spr End Number of Genes Number of Genes %AT>62 % Genes %AT>62 Average %AT P-Value

ATr-1 104 120 17 13 76.5 67.0 2 � 10�5

ATr-2 223 231 9 9 100.0 65.6 3 � 10�6

ATr-3 274 284 11 11 100.0 66.6 3 � 10�7

ATr-4 348 360 13 10 76.9 64.1 2 � 10�4

ATr-5 491 506 16 12 75.0 64.7 6 � 10�5

ATr-6 599 611 13 10 76.9 64.7 2 � 10�4

ATr-7 933 972 40 38 95.0 68.0 7 � 10�20

ATr-8 1188 1210 23 22 95.6 66.1 3 � 10�12

ATr-9 1280 1293 14 12 85.7 67.7 3 � 10�6

ATr-10 1614 1630 17 13 76.5 64.6 2 � 10�5

ATr-11 1639 1651 13 12 92.3 67.7 6 � 10�7

ATr-12 1762 1774 13 10 76.9 67.0 2 � 10�4

ATr-13 1965 1974 10 10 100.0 65.5 9 � 10�7

NOTE.—The P-value was calculated by �2 test.
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the data from the other four domain classes) being, for in-

stance, 3.2 times the number of transcripts recorded for pvNR

genes. Although this was particularly noticeable in pcNR1 and

pcNR2 domains, most pcNR clusters also produced larger

mRNA amounts than adjacent domains (fig. 4). This indicates

that strong transcription of pcNR genes is a generic pattern. In

contrast, the RPKM values for the AT-rich genes were low

(P = 4�10�5) 2.9 times below the pvNR gene average. In

fact, 74% AT-rich genes had RPKM<1,000.

The abundance of transcription-repressive short repeats in

different domains could be a factor indicating gene expression

level. Three kinds of repeat elements—BOX, RUP, and

SPRITE—have been described in S. pneumoniae, all associated

with repressive control of expression (Croucher et al. 2011). A

total of 58 BOX, 61 RUP, and 18 SPRITE elements were de-

tected either within R6 coding sequences or near (within

200 bp) their start codons. They were evenly distributed over

the R6 chromosome. The exceptions were the pcNR domains,

which contained roughly half each kind of repeat compared

with the remaining genome (combined P = 2�10�3; �2 test)

whereas the pvNR domains contained 1.4-fold more repeats

(combined P = 7�10�3) (fig. 5). Short repeats had an AT con-

tent of 61%, 69% and 68%, respectively, although AT-rich

zones are not specially enriched in them. Despite no associa-

tion being found between gene function and presence of

short repeats when no topological criteria were applied

(Croucher et al. 2011), the pcNR areas showed low tolerance

to such elements.

Two additional parameters were calculated to assess the

potential protein abundance and the relevance of the coding

genes. The first one, the codon adaptation index, CAI, quan-

tifies the occurrence of efficient isocodons for translation

Table 2

pcNR Domains, Statistical Measures, and Mean Functions

pcNR

Domain

Spr

Begin

Spr

End

Number

of Genesa

Number of

Genes nLDI<1a

% Genes

nLDI<1a

P-valuea Median

nLDI

Mean Functions

pcNR1 182 216 35 (5) 32 (4) 91.4 (80.0) 6 � 10�17(2 � 10�3) 0.669 Translation

pcNR2 362 415 54 (29) 39 (18) 72.2 (62.1) 4 � 10�13(4 � 10�7) 0.679 Fatty acid biosynthesis, translation, branched-amino

acid biosynthesis

pcNR3 726 774 49 (22) 22 (11) 44.9 (50.0) 8 � 10�3(2 � 10�3) 0.978 Diverse

pcNR4 1153 1177 25 (14) 15 (9) 60.0 (64.3) 4 � 10�4(2 � 10�4) 0.948 Diverse (Pyrimidine biosynthesis)

pcNR5 1215 1277 63 (25) 28 (12) 44.4 (48.0) 3 � 10�3(3 � 10�3) 0.872 Shikimate pathway, N-acetyl-glucosamine

metabolism

pcNR6 1577 1611 35 (24) 31 (13) 52.5 (54.2) 6 � 10�7(8 � 10�4) 0.798 DNA replication, RNA metabolism, aromatic amino

acid biosynthesis

pcNR7 1793 1870 77 (38) 44 (20) 57.1 (52.6) 1 � 10�8(1 � 10�5) 0.650 Competence, translation, sugar metabolism and

transport

NOTE.—The P-value was calculated by �2 test.
aNumbers in brackets correspond to data from transcriptional units.
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elongation in the gene sequence. CAIs are related with the

translation rate and mRNA levels (Martı́n-Galiano et al. 2004),

and, consequently, to the amount of protein produced. The

second one, the PPIs indicates the number of predicted func-

tional relationships of a given protein with other polypeptides

and, therefore, denote the connectivity of a protein within the

protein network. PPIs provide a rough estimate of the impor-

tance of the protein in cell physiology, because the protein

network is very sensitive to the removal of highly connected

nodes (Jeong et al. 2001). The average values for CAI and PPIs

for S. pneumoniae were 0.346 ± 0.120 and 29.5 ± 37.1,

respectively. Genes in pcNR domains showed a distribution

shifted toward higher CAIs (P = 5� 10�6; two-tailed t-test)

and PPIs 1.6 times higher than those of the remaining

genome (P = 2�10�13). These results may be biased by

pcNR1, which is composed by genes of ribosomal proteins.

However, the PPIs for genes in the pcNR domains were very

different, even in low CAI ranges (<0.3 and 0.3–0.4, with

P = 0.008 and 1�10�6, respectively) (fig. 6). These results

reinforce the notion that genes in pcNR domains are more

involved in the central metabolic network than those in

pvNR domains, irrespective of their abundance. In stark
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contrast, AT-rich genes appear to play little or no role in the

central metabolic network; their PPIs reached roughly one third

of the average of the remaining genome (P = 1�10�15).

Overall, data suggest that function, expression, essentiality

and stability of the genomic position are connected issues as

previously claimed for Dickeya dadantii and Escherichia coli

(Jiang et al. 2015; Sobetzko et al. 2012).

pcNR Genes Are Not Commonly Involved in Pathogenesis

The relationship between virulence and chromosomal topol-

ogy was examined via the inspection of three kinds of gene.

First, genuine virulence factors were examined. The pvNR do-

mains produced more of these factors than the remaining

genome (P = 2� 10�11; �2 test) (fig. 7A). In contrast, pcNR

and UP zones produced relatively few (P = 3�10�2 and

FIG. 6.—Number of PPIs vs CAI in different domain types. Dark/light bar colors within charts were used simply for reasons of clarity.
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5� 10�3, respectively); only about a quarter of the number

recorded for the pvNR domains were thus involved. Second,

genes contributing to infection, as determined by STM (Hensel

et al. 1995), were evaluated. For this, the results of experi-

ments on intranasal colonization, meningitis and otitis media

were considered. Many DOWN genes have been deemed es-

sential (P = 5�10�3; �2 test) in animal models (fig. 7B) ac-

cording to these studies. pcNR genes were again less involved

(P = 4�10�2), indicating that these genes are more important

under physiological than under virulence conditions. Third,

genes coding for proteins triggering an immunogenic re-

sponse in humans that might be used in protein-based sero-

type-independent vaccination, were evaluated. The

pneumococcal ANTIGENome—the whole set of proteins

quantitatively inducing the production of antibodies—has

been determined for the TIGR4 strain using patient antisera

(Giefing et al. 2008). A total of 81 equivalent genes were

found present in the R6 strain. These represent the data

from 325 positive screens and a total of 5,887

ANTIGENome hits (fig. 7C). The pvNR domains contained

the genes encoding 11 out of the 12 proteins most immuno-

genic (showing�109 hits) and globally accounted for 85.4%

of all ANTIGENome hits. Thus, pvNR returned>6-fold the

number of hits than any other domain class, even when

normalized in proportion to the number of genes

(P =<1�10�100; �2 test).

Cellular location is another important factor in protein func-

tion (The Gene Ontology Consortium 2015). The pvNR do-

mains contained more genes coding for extracellular proteins

or proteins anchored in the cell wall (P = 2�10�3; �2 test),

and the pcNR domains contained fewer (P = 1�10�2) (fig.

8A). In addition, the UP domains were enriched in multi-trans-

membrane protein-coding genes (P = 7�10�5) (fig. 8B).

Lastly, competence was inspected. When competent,

pneumococcus is able to acquire exogenous DNA, including

antibiotic-resistance genes, and recombine it into its

0.00

0.01

0.02

0.03

0.04

0.05

0.06

UP DOWN pcNR pvNR AT-rich

seneg rotcaf ecneluriv fo ycneuqerF

Domain class

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

UP DOWN pcNR pvNR AT-rich

sene g 
MTS fo ytc neuqe rF

Domain class

A  

C  

B  

Number of proteins Number of screens Number of hits 

UP 

DOWN 

pcNR 

pvNR 

AT-rich 

………………………………………......................... 

*** 

** * 

………………………….…………….......................... 

** 

* 

* 

*** 

*** 

*** 

*** *** *** 
*** 

81 325 5887 

* 

FIG. 7.—Relationship between topological domains and pathogenesis, infection and immunogenicity. (A) Virulence factors. (B) Essential genes

for infection by STM. (C) ANTIGENome hits. The dashed lines indicate the genome average. Statistical significance: *P� 0.05; **P� 0.01;

***P � 0.001 Asterisks indicate significant gene increments (in black) or decrements (in purple) according to domain type respect to the remaining

genome average.

Bridging Chromosomal Architecture and Pathophysiology GBE

Genome Biol. Evol. 9(2):350–361. doi:10.1093/gbe/evw299 Advance Access publication February 1, 2017 357

Deleted Text: Chi-square
Deleted Text: Figure 
Deleted Text:  -- 
Deleted Text:  -- 
Deleted Text: Figure 
Deleted Text: &thinsp;
Deleted Text: Chi-square
Deleted Text: Chi-square
Deleted Text: Figure 
Deleted Text: Figure 


chromosome. Global transcriptome time-course analysis in

the presence of the competence-stimulator peptide revealed

four kinds of genes to be responsible for this property: Early,

late, delayed, and repressed (Peterson et al. 2004). Distinct

topological classes were enriched with respect each compe-

tence stage (fig. 9). UP domain genes provided a substantial

amount of early and delayed genes compared with the rest of

the genome (P = 5�10�4 and 3� 10�28, respectively; �2

test) whereas DOWN genes dominated the late stage

(P = 1�10�9), and pcNR genes the repressed (P = 1�10�11).

Discussion

Following the division of the pneumococcal chromosome into

four types of topological domains (UP, DOWN, NR, and

flanking) (Ferrándiz et al. 2010), the present results split the

NR class into two new ones: pcNR and pvNR, and span the

Flanking group to more peaks and called them AT-rich. The

transcription of pcNR domains is unaltered by DNA relax-

ation and show low tolerance to changes in chromosomal

location.

Gene expression is particularly high in pcNR domains, fa-

vored by an efficient codon usage and scarce repeat elements,

the stable secondary structures of which reduces expression

levels in nearby genes. Another important feature is that pcNR

proteins have more PPIs, playing key roles in the interactome.

It would be expected that evolutionary constraints forced the

tropism of pcNR genes for topologically secure areas to main-

tain the constant provision of these central proteins, even

under challenging conditions of supercoiling. It has been
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demonstrated that changes in the location of genes can lead

to alterations in the cellular physiology (Gerganova et al.

2015), which in the case of central metabolic genes, would

be devastating for the cell.

Because S. pneumoniae is a major human pathogen, its

pathobiology was re-evaluated through the lens of topoge-

nomics. S. pneumoniae carries specific virulence factors. Most

of these, together with the outer proteins, are encoded in

pvNR zones. These areas are also enriched in immunogenic

determinants representing the top 12 proteins triggering an

antibody response in patients. Moreover, the pvNR domains

harbor more paralogs, with double to many times more the

number of genes beginning to show new functional settings,

compared with the genome average. As revealed by STM,

DOWN domains are enriched in genes encoding determinants

for surveillance under pathogenic conditions. In contrast,

pcNR zones show diminished numbers of virulence factors,

STM genes and paralogs, and encode fewer cell wall/extracel-

lular proteins. Together the present data indicate that, pcNR

domains assure a constant expression of housekeeping genes

whereas pvNR domains are related to the adaptation to infec-

tion. The specific virulence potential in S. pneumoniae lies in

these pvNR, and not in the AT-rich domains despite its high

HGT content. AT-rich domains may therefore constitute a

source of structural or parasitic DNA.

Several intricate intersections between decreased supercoil-

ing and competence were also found. Competence involves

transient transcription changes of ~10% genome keeping to

an orchestrated timing (Peterson et al. 2004). Beyond the ac-

quisition of exogenous DNA, competence is related to a stress-

resistance condition defined as the X-state (Claverys et al.

2006). Early and delayed competence genes are mainly lo-

cated in UP domains, compatible with a stress situation.

DOWN gene overexpression appears later. In contrast, repres-

sion affects many pcNR genes, indicating that, during the X-

state, the chromosomal topology is perturbed at a potentially

threatening level. This explains why growth is slowed during

the narrow window of competence (Oggioni et al. 2004) and

why several mechanisms have been acquired, including small

untranslated RNAs and proteases, to actively terminate the X-

state and promptly recover the initial topological situation

(Echenique et al. 2000; Cassone et al. 2012).

Taking all these data together, a global topology theory can

be envisaged in which gene positioning is far from random.

Genes positively regulated by relaxation (UP genes) would be

those whose expression is favored by topological stress.

DOWN genes seem to be more “well-being” genes, highly

expressed under favorable conditions but less so during times

of topological stress. AT-rich domains accommodate large

amounts of little-expressed foreign DNA with atypically high

AT content, and which may sense a topological stress and

modify supercoiling in the area to reduce transcription of ad-

jacent genes, preferentially those in DOWN domains. The

chromosome supercoiling structure may act as a multi-

sensor with homeostatic capacity, adapted to react to a

myriad of unfavorable conditions. Housekeeping genes

show tropism for “topologically-secure” pcNR areas and

thus ensure their constant strong expression.

The pcNR domains are located symmetrically around 200,

400, and 800 ORFs on both sides of the replication origin.

While UP, DOWN and pcNR domains are arranged regularly

over the chromosome, no precise pattern is clear at present.

Difficulties in finding such a pattern may arise from the exis-

tence of longitudinal (distance to replication origin), circular

(the existence of macrodomains) and adaptive forces operat-

ing to yield the definite topological landscape. In this light, the
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first UP domain and the fourth DOWN domains are associated

to the Ori and Ter areas, probably adapted to DNA replication.

However, the remaining domains appear dispersed inter-

leaved between others, following a cyclical arrangement

likely related to transcription and, probably, the functioning

of the interactome. The reduced dissemination of the tran-

scripts, which dictates a protein concentration gradient into

the cell cytoplasm, suggests a certain chromosome-centric or-

ganization of the cytoplasm’s protein content (Montero et al.

2010). Topology domains may then facilitate the interaction

of their products, which in the case of the pcNR genes would

constitute the central core of the network. In such a scenario,

chromosome topology would be connected to the structure

of the PPI network.

In conclusion, topological genomics—topogenomics—con-

stitutes an alternative paradigm of genome analysis. The

genome architecture plays an important role in the pathobi-

ology and evolution of the primary human pathogen S. pneu-

moniae, and probably of other pathogens.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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