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ABSTRACT
Cumulative toxicity from weekly paclitaxel (myalgia, peripheral neuropathy, 

fatigue) compromises long-term administration. Preclinical data suggest that the 
burden of critically short telomeres (< 3 kilobases, CSTs), but not average telomere 
length by itself, accounts for limited tissue renewal and turnover capacity. The impact 
of this parameter (which can be modified with different therapies) in chemotherapy-
derived toxicity has not been studied. 

Blood from 115 treatment-naive patients from a clinical trial in early HER2-
negative breast cancer that received weekly paclitaxel (80 mg/m2 for 12 weeks) 
either alone or in combination with nintedanib and from 85 healthy controls was 
prospectively obtained and individual CSTs and average telomere lenght were 
determined by HT Q-FISH (high-throughput quantitative FISH). Toxicity was graded 
according to NCI common toxicity criteria for adverse events (NCI CTCAE V.4.0). The 
variable under study was “number of toxic episodes” during the 12 weeks of therapy. 
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INTRODUCTION

Weekly paclitaxel is a commonly administered 
cancer chemotherapy regimen in breast cancer and other 
malignancies due to its efficacy and tolerability both 
in early and advanced disease [1, 2]. Toxicities include 
peripheral sensory neuropathy, fatigue and myalgia. Less 
frequently, nausea, vomiting, anemia, neutropenia and 
mucositis/diarrhea are observed [1, 2]. It is not unusual 
to withold or interrupt paclitaxel because of non-tolerable 
neuropathy, fatigue or myalgia while patients are still 
experiencing clinical benefit, due to cumulative dose 
and interaction with previously administered neurotoxic 
drugs, which may affect the overall efficacy of the drug. 
Early detection of those patients at high risk of developing 
toxic complications, as well as understanding the 
physiopathology behind the toxicity, may help to perform 
personalized treatment decisions and develop supportive 
care alternatives. 

Telomere shortening is observed in aging human and 
most eukaryotes, and it is related to the limited proliferative 
capacity of tissues such as those targeted by chemotherapy 
[3, 4]. Aging is associated with higher toxicity of cancer 
chemotherapy agents even when adjusting by the existing 
comorbidities that are observed in older patients [5, 6]. The 
ultimate physiological changes and causes underlying the 
phenotype of “aging” are not fully understood but involve 
nine hallmarks, reviewed elsewhere [7]. One of those 
hallmarks is telomere attrition. Telomeres shorter than 3 
kilobases (critically short telomeres, CSTs) can’t be repaired 
by any of the known DNA-repair mechanisms, leading to a 
chronic DNA-repair response causing apoptosis [8, 9], which 
seems to be a major cause of limited tissue regenerative 
capacity. Average telomere length has been reported to 
associete with chemotherapy toxicity, but the degree of 
relationship is unclear [10, 11]. We and others have proposed 
that the percentage of CSTs, rather than average telomere 
length, is a more accurate determinant of the “biological 
age” and global cell and tissue dysfunction [12, 13].  
Until recently, determining the percentage of critically 
short telomeres had a low throughput using the available 
techniques. We have recently solved this by developing 
an automated high-throughput quantitative telomere 
FISH platform (HT Q-FISH)[14]. Thus, we propose that, 

by using CSTs, a population more vulnerable to the side 
effects of paclitaxel might be detected early and it could be 
a target for potentially “resetting” to a fitter phenotype in 
the future. Telomere parameters, according to preclinical 
and clinical data, are modifiable through telomerase 
activation or danazol [15–18]. This feature is in contrast 
with the genetic polymorphisms associated with paclitaxel 
toxicity in previous studies [reviewed elsewhere [19],  
that would complicate potential interventions.

We sought to study the value of CSTs in predicting 
toxicity in treatment-naive patients exposed to weekly 
paclitaxel in a controlled setting: a randomized  clinical trial 
(CNIO-BR-003/GEICAM-2010/10) with accurate toxicity 
monitoring and grading according to the NCI common 
toxicity criteria for adverse events (NCI-CTCAE) V.4.0[20]. 

RESULTS

Patients and controls: clinical characteristics, 
telomere length, efficacy and toxicity data

From July 2012 to November 2013, 130 patients 
were recruited in 15 sites in the CNIO-BR-003/GEICAM 
2010/10 trial (NCT 01484080). Of those, 115 patients 
(88.5%) participated in the telomere sub-study and had an 
adequate sample for analysis. There were not significant 
clinical or demographic differences between the patients 
that were valid for analysis and the patients that did not 
participate in the telomere substudy (13 because of not 
signing informed consent or having an inadequate sample 
and 2 because of screening failure and lack of toxicity data 
availability) (Table 1). 

The age and ECOG performance status of the 
healthy volunteers (two variables potentially related with 
toxicity) were not statistically different to the patients in 
the trial (Table 1). 

The percentage of CSTs in the study patients was 
17.4% and the average telomere length was 9.85 Kb. In 
the healthy volunteers cohort, the percentage of CSTs was 
20.5% and the average telomere length was 9.49 Kb. The 
comparison between the CSTs observed the study patients 
versus the healthy controls was statistically significant 
(p = 0.004), whereas the comparison of average telomere 
length between both populations was not (p = 0.92). HT 

The percentage of CSTs ranged from 6.5%–49.4% and was directly associated with 
the number of toxic events (R2 = 0.333; P < 0.001). According to a linear regression 
model, each 18% increase in the percentage of CSTs was associated to one additional toxic 
episode during the paclitaxel cycles; this effect was independent of the age or treatment 
arm. Patients in the upper quartile (> 21.9% CSTs) had 2-fold higher number of neuropathy 
(P = 0.04) or fatigue (P = 0.019) episodes and >3-fold higher number of myalgia episodes 
(P = 0.005). The average telomere length was unrelated to the incidence of side effects.

The percentage of CSTs, but not the average telomere size, is associated with weekly 
paclitaxel-derived toxicity.
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Q-FISH examples are shown in Figure 1. In control patients, 
both the percentage of CSTs and the average telomere 
showed a good correlation with age. The percentage of 
CSTs increased with age (R2 = 0.552; P < 0.001) whereas 
average telomere length decreased with age (R2 = –0.574;  
P < 0.001). A similar pattern was found in the cancer 
patients, although the intensities of the correlations were less 
marked (R2 = 0.156 and P = 0.104 for CSTs, and R2 = –0.204  
and P = 0.033 for average telomere length). The dot plots 
are shown in Figure 2. 

The efficacy and toxicity data of paclitaxel in the 
study are reported in detail elsewhere [20]. Briefly, the 
pathologic complete response (pCR) rate was 13.1% in the 
experimental arm and 11.3% in the standard arm (P = 0.61),  
with a trend towards a higher pCR in the hormone-
receptor positive population in the experimental arm [20]. 
Treatment-related toxicity was similar among the two 
arms with the exception of neurotoxicity, with an increase 
in the incidence of this parameter in the standard arm [20]. 
The paclitaxel-related toxicities under study in this report 
(peripheral neuropathy, myalgia and fatigue) are described 
in Table 2. None of them reached grade 3/4; thus, the 

analysis is limited to grade 1 and 2, which are, in turn, the 
most frequent toxic events with this drug [1, 2].

Relationship between telomere parameters, 
toxicity and response

Patients with a high percentage of CSTs were more 
likely to experience paclitaxel-related toxicity than those 
with lower percentage of CSTs. The individual percentage 
of CSTs ranged, among the 115 patients, from 6.5% to 
49.4%. The 75th percentile was 21.9%. Twenty-nine 
patients (25% of the 115) had greater than 21.9% of CSTs.

There was a statistically significant correlation 
between the percentage of CSTs and the number of 
toxic episodes derived from paclitaxel administration 
(Pearson´s R2 = 0.333, P < 0.001; Figure 3A). When 
adjusted by age and treatment arm, the linear regression 
model suggests a quantitative relationship between the 
percentage of CSTs and the incidence of toxic episodes 
(B coefficient for percentage of short telomeres = 0.055,  
P = 0.046; the interpretation of this coefficient value 
would be that per each 18% increase in the percentage of 

Table 1: Demographic and clinical characteristics of patients and controls

Characteristic

Clinical trial patients Controls P value*

Participated 
in telomere 
substudy
 (N = 115; 

88.5%)

Did not participate in 
telomere substudy
 (N = 15; 11.5%)

All Patients
(N = 130) N = 85

Age (median, 
range) 47.5 (30.6–81.4) 48.9 (32.7–72.3) 47.6 (30.6–81.4) 44.8 (20.0–82.9) 0.90

ECOG PS 
     0
     1

113 (98.3%)
2 (1.7%)

15 (100%)
0 (0%)

128 (98.5%)
2 (1.5%)

85 (100%)
0 (0%)

0.91

Study arm
     Exp.
     Std.

57 (49.5%)
58 (50.5%)

8 (53.3%)
7 (46.7%)

65 (50%)
65 (50%) N/A N/A

cT
      T2
      T3
      T4

84 (73.0%)
29 (25.2%)
2 (1.7%)

10 (66.6%)
3 (20.0%)
2 (14.3%)

94 (72.3%)
32 (24.6%)
4 (3.0%)

N/A N/A

cN
      N0
      N1
      N2
      N3

57 (49.5%)
52 (45.2%)
5 (4.3%)
1 (0.8%)

7 (46.6%)
6 (40.0%)
2 (13.3%)

0 (0%)

64 (49.2%)
58 (44.6%)
7 (5.3%)
1 (0.8%)

N/A N/A

Hormonal 
receptors
      Positive
      Negative

90 (77.5%)
25 (22.3%)

12 (80.0%)
3 (20.0%)

102 (75.1%)
28 (21.9%)

N/A N/A

*P value: comparisons made between controls and 115 patients valid for analysis.
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Table 2: Paclitaxel-derived toxicities in the two study arms
Arm A (paclitaxel plus 

nintedanib) Arm B (paclitaxel) P value 

Grade 1 or 2
Neuropathy (average, range) 0.6 (0–3) 1.1 (0–4) 0.023
Myalgia (average, range) 0.3 (0–3) 0.35 (0–3) 0.689
Fatigue (average, range) 1.4 (0–4) 1.6 (0–4) 0.38

Arm A (paclitaxel plus 
nintedanib) Arm B (paclitaxel) P value 

Grade 3 or 4
Neuropathy (average, range) 0 (0–0) 0 (0–0) N/A
Myalgia (average, range) 0 (0–0) 0 (0–0) N/A
Fatigue (average, range) 0 (0–0) 0 (0–0) N/A

Figure 1: (A) HT Q-FISH: pictures from a patient with most telomeres below 3KB (left) and a patient with most telomeres 
above 3 KB (right) . (B) Histograms depicting the telomere determinations from patients shown in (A). Each bar represents the number 
of telomeres determined within 2 telomere lengths in 0.5 kilobase-increments per sample. The number of telomeres measured per sample 
is greater than 60000.
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CSTs a patient would experience 1 more paclitaxel-related 
events along a 12 weeks-treatment course regardless of 
the age and treatment arm; the B coefficient for age was 
borderline significant-1 additional toxic event per each 
27 years-increment but in this case, because of the lack 
of significance, it can not be stated that the increased 
toxicity would be independent of the status of the telomere 
variable and treatment arm; P = 0.069). 

The patients in the upper quartile (i.e., highest 
percentage of critically short telomeres) had a significantly 
higher incidence of grade 1/2 myalgia (P = 0.005), grade 1/2  
peripheral neuropathy (P = 0.04), grade 1/2 fatigue (P = 
0.019) or any grade 1/2 toxic events related with paclitaxel 
(P < 0.001). The number of toxic events split by belonging 
to the upper quartile of critically short telomeres or not is 
shown in Table 3. 

The individual average telomere length ranged from 
5.5 to 15.7 Kb. The 25th percentile was 8.0Kb. We did 
not find a statistically significant correlation between the 
individual average telomere length and the number of toxic 
episodes (Pearson´s R2 = 0.15; P = 0.100; Figure 3B).  
The linear regression predicting the number of toxic 
episodes according to the average telomere length and age 
preserved a borderline statistically significant association 
with age (1 additional toxic event per each 25.6 years-

increment; B = 0.039, P = 0.05), but not with average 
telomere length (B = –0.077, P = 0.338). The patients in 
the lower quartile (average telomere length short) showed 
some trend towards association with paclitaxel-derived 
toxicity, but none of the associations was statistically 
significant (Table 3).

Because of the lower incidence of neuropathy in 
the experimental arm, we also adjusted the model by 
receiving or not nintedanib. The impact of being allocated 
to the experimental or standard arm. The 25th, 50th, and 
75th percentile of the CSTs were very similar between 
the experimental (11.2%, 15.6% and 21%) and standard 
(11.4%, 16.8% and 24.2%) arms (P = 0.91); thus it is not 
likely that the observed differences in neuropathy were 
observed because of different CSTs distribution between 
arms. The multivariate analysis (adjusted by CSTs, 
age, and treatment arm) shows a borderline statistically 
significant trend towards toxicity protection in the standard 
arm (B coefficient = 0.68; P = 0.10; the interpretation 
would be that regardless of the CSTs status and age, a 
patient would have a non-statistically significant decrease 
in the risk of paclitaxel-derived toxicity if he/she received 
nintedanib as well).

We also explored the univariate relationship between 
“numerical age” and the incidence of toxicity. Age was not 

Figure 2: Correlations between telomeric parameters and age in controls (A, B) and patients (C, D). The charts in the left (A, 
C) correspond to the correlation between critically short telomeres and age, whereas the charts in the right (B, D) depict the correlation 
between the individual average telomere length and age. 
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an individual predictor of toxicity (Table 1). The 29 patiets 
with an age above the upper quartile (patients above 56.06 
years-old) had a similar number of paclitaxel-related side 
effects (average N = 3.26 episodes) than those patients 
with younger ages (patients below 56.06 years, 86 patients; 
average N = 3.25 episodes; P = 0.981). When the side 
effects were analyzed by class [myalgia (0.67 versus 0.89 
episodes for older versus younger; P = 0.365), neuropathy 
(0.90 versus 0.84 episodes for older versus younger;  
P = 0.79); or  fatigue (1.52 versus 1.65 episodes for older 
versus younger; P = 0.65)] no significant differences were 
found either.

None of the main toxic events related with nintedanib 
(transaminase elevation, hypertension, hand-foot syndrome 
or diarrhea) [22] correlated with the percentage of short 
telomeres nor the average telomere length, although 
the incidende of these events in our series was low [20]. 
Telomeric status was no associated with tumor response 
either: according to the Symmnans and Pusztai classification 
for pCR [23], 14.3% of the patients with CSTs in the upper 
quartile experienced a response of 0 or 1, compared with 
16.2% of the remaning patients (P = 0.93).

DISCUSSION

Both the increasing number of cancer survivors and 
the prolonged survival of patients with advanced disease 
have lead to an increasing number of patients with chronic 

and sometimes irreversible toxicities. Weekly paclitaxel 
is one of the most commonly administered cytotoxic 
agents in many different cancer types and it is related with 
several toxicities that can both limit its use and have a 
chronic impact in the patient´s quality of life, despite its 
high activity [24]. Thus, it is highly prioritary to define 
whether there are factors associated with cummulative 
toxicity observed with this treatment regimen and 
understand its physiopathology, and to develop potential 
solutions in the patients most likely to have their paclitaxel 
dosing interrupted because of toxicity. This latter point is 
important, since other studies investigating potential factors 
involved in paclitaxel toxicity [reviewed elsewhere [19] 
focused in non-modifiable genetic traits.

We present the data from a molecular sub-study 
that determined telomere length in the CNIO-BR-003/
GEICAM-10/10 clinical trial, in which early HER2-
negative breast cancer patients received single-agent 
weekly paclitaxel (standard arm) or weekly paclitaxel 
plus nintedanib.  We report that the load of CSTs, but 
not average telomere length, predict an almost two-fold 
incidence of the side effects most commonly associated 
to paclitaxel.

Telomere fitness is associated with the ability of the 
stem cells to repopulate tissues (“tissue regeneration”), 
what would make the recovery of toxicities a longer and 
more complicated process, and ultimately, more evident for 
the patients and clinicians. However, preclinical research 

Table 3: Average number of cycles where paclitaxel-derived grade 1/2 toxicites were registered 
according to the percentage of short telomeres or average telomere length

Average (range) G1/2 episodes

Toxicity type Patients with critically short telomeres 
(N = 29)*

Patients without critically 
short telomeres (N = 86)**

P value 
(T-test)

Any 4.0 (0–9) 2.2 (0–7) < 0.001
Myalgia 0.6 (0–3) 0.17 (0–3) 0.005
Peripheral neuropathy 1.2 (0–4) 0.7 (0–3) 0.04
Fatigue 2.2 (0–4) 1.4 (0–4) 0.019

Patients with average short telomere 
length (N = 29)***

Patients with average long 
telomere length (N = 86)****

Any 3.3 (0–9) 2.5 (0–7) 0.100
Myalgia 0.21 (0.3) 0.30 (0–3) 0.55
Peripheral neuropathy 0.57 (0–4) 0.4 (0–3) 0.135
Fatigue 1.9 (0–4) 1.3 (0–4) 0.163

*Patients with critically short telomeres: patients in whom > 21.9% of their telomeres were shorter than 3 Kb. 
**Patients without critically short telomeres: patients in whom < 21.9% of their telomeres were shorter than 3 Kb. 
***Patients with average short telomeres: in this case, the quartile of patients is selected on the basis of the telomere length 
distribution. One quartile is still 29 patients (25% of 115 patients); however, the 29 patients defined by the upper quartile of 
critically short telomeres are not the same patients as those 29 (one quartile) defined by average short telomeres. The cut-off 
point for average long vs. short telomeres is 8 Kb.
****Patients with average long telomeres: patients whose average telomere length is > 8 Kb. Similarly to the previous 
paragraph, these patients are not the same as those 86 patients defined by having few critically short telomeres.
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suggests that it is the burden of CSTs, and not the individual 
average telomere length, what represents a limiting factor 
for maintaining tissue homeostasis [8, 9, 12, 13]. Thus, 
not surprisingly, the associations between telomere length 
and chemoterapy-related toxicity are unclear [10, 11]. We 
did not find associations between the individual average 
telomere length and toxicity (Table 3, Figure 3B). 

The determination of CSTs in a high throughput and 
accurate manner represented an important challenge due 
to various factors, reviewed elsewhere [12]. We developed 
an automated, high-throughput technique to overcome the 
existing limitations (HT Q FISH)[14], and we explored 

the association of this parameter with paclitaxel-derived 
toxicity in parallel with the average telomere length. 
The patients with the highest percentage of critically 
short telomeres were almost two-fold more likely to 
experience fatigue, myalgia and neuropathy (Table 3). 
The total number of toxic episodes was correlated with the 
percentage of critically short telomeres (Figure 3A). This 
correlation was independent of the age effect, as evidenced 
by the linear regression model. While age has been 
traditionally associated with toxicity from chemotherapy 
in breast cancer [5, 25], “age” is a complex phenotypical 
trait that translates many underlying biological factors, one 

Figure 3: Correlations between the percentage of criticaly short telomeres. (A) or individual average telomere length (B) and 
number of toxic events.
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of which is telomere attrition [7]. As our understanding 
of the aging phenotype advances, we will be able to 
finely pinpoint the relative influence of each of the 
underlying biological factors (which, in turn, represent 
the “biological age”). Telomere attrition seems to be one 
major contributor to the aging phenotype, but, at least in 
the case of toxicity prediction, it seems to overperfom the 
“numerical” patient age. Not surprisingly, the correlation 
between the status of telomeres and the numerical age is, 
at best, modest (Figure 2A–2D). As it can be appreciated 
in this figure, patients/healthy volunteers with the same 
numerical age can differ up to three-fold in the percentage 
of critically short telomeres or in the average telomere 
length. Previous studies, reviewed elsewhere [5], show 
an association between age and taxane-derived toxicity 
in breast cancer; however, those studies required large 
number of patients to show the association. Numerical 
age, by itself, was unable to predict toxicity in our study, 
as opposed to CSTs, suggesting that CSTs is a variable 
that more accurately reflects the true biological age than 
the numerical age. Cancer incidence seems to increase 
with age; however, the relationship with telomere length 
is less clear  [26–34]. In case the incidence was higher 
in patients with short telomeres, it could as well imply 
that cancer patients will be more prone to toxicity than 
the general population. However, our results suggest an 
even fitter telomere status for the patients than the control 
subjects (statistically significant smaller percentage of 
critically short telomeres). A similar observation was 
made by Svenson and colleagues, who detected significant 
differences between breast cancer patients and control 
subjects in telomere length, favoring the former [35]. 
Despite telomerase activity in cancer cells, cancer cell 
telomeres are usually shorter than in the corresponding 
normal tissue [36]. Taken together, these data suggest a 
complex relationship between telomere fitness, numerical 
age and cancer/toxicity development. Fitter telomeres 
would favor cancer development and protect from 
chemotherapy-derived toxicity; the role of telomere 
fitness in cancer cells and response to treatment reminds 
to be elucidated. Finally,  besides age, several genetic and 
environmental factors influence telomere shortening; our 
control and study populations might have had different 
exposure to such factors what would account for the 
observed differences, but those data were not gathered in 
our study [37, 38]. All these scenarios should be carefully 
assessed in independent studies. 

The strengths of this study are that it was a 
prospectively, pre-planned study and that a high percentage 
(88.5%) of the trial participants donated a blood sample 
for telomere determinations. Toxicity data were recorded 
within a clinical trial according to NCI CTC AE criteria. In 
addition, this study was performed in chemotherapy-naive 
patients and the patients received only one cytotoxic agent; 
other studies have found associations with paclitaxel 

toxicity but in many cases the patients received previous 
and/or concurrent chemotherapy agents that can confound 
the interpretations of the studies [19]. HT Q-FISH is a 
robust and reproducible technique. The limitations are, 
the relatively low number of patients enrolled, the semi-
quantitative nature of toxicity-reporting methods, and that 
the linear relationship between critically short telomeres 
and number of toxic events was not adjusted by the total 
paclitaxel dose, but it is unlikely that this factor played 
a role since the patients enrolled in the study received 
greater than 90% of the planned dose-intensity in all cases 
[20]. In addition, it is not possible to estimate whether the 
relationship between critically short telomeres and toxicity 
would be maintained with severe toxicity as well, since 
we did not observe grade 3 or 4 paclitaxel-related side 
effects. In any case, it is very common to have to interrupt 
chronic paclitaxel administration because of chronic, non-
tolerable grade 2 toxicity (fatigue, neuropathy), since the 
incidence of grade 3/4 events is low.  Finally, there may 
be potentially confounding effects of nintedanib, as the 
imbalance in the incidence of neurotoxicity across the trial 
arms could affect the interpretation of the trial results, but 
according to the multivariate linear regression model, 
the impact of the percentage of critically short telomeres 
was independent of the study arm.  In any case, our 
study aimed to assess the association between CSTs and 
paclitaxel-related toxicity and thus the results would be 
applicable only to patients receiving single-agent paclitael. 
Whether and why nintedanib protects from neuropathy 
requieres confirmation and further research. 

This is the first study that performs both telomeric 
determinations in parallel. Our results, together with the 
preclinical evidence, might suggest that the percentage of 
critically short telomeres, but not average telomere length 
could be used as a toxicity predictive factor. Telomere 
attrition is a hallmark of aging [7], but recent preclinical 
observations suggest that it could be a modifiable 
characteristic. Several genetic approaches have been 
succesfully used in in vivo models [15–17]. Also, male 
sex hormones up-regulate telomerase enzymatic activity 
[39], what was used in an in vivo model of telomerase 
dysfunction to improve the hematologic function [40]. 
This latter approach has been used in a clinical trial as 
well, where patients with telomere diseases received the 
synthetic steroid drug danazol; this intervention led to 
telomere elongation [18]. Danazol up-regulates TERT 
expression through an estrogen-responsive element 
in the gene promoter [39, 41]. Before conducting an 
intervention trial wiht danazol in breast cancer patients 
receiving taxanes aimed to elongate telomeres in healthy 
tissues target for toxicity, potential effects of danazol in 
the cancer cells interfering with chemotherapy efficacy 
should be studies and taken into account. Although we 
did not find associations between telomeric condition and 
treatment efficacy, what could suggest that the effects of 
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an intervention like danazol could be beneficial regarding 
toxicity without compromising efficacy, this point must be 
validated prospectively. Thus, measuring the percentage of 
short telomeres to those patients that are going to receive 
chemotherapy might help undertaking personalized 
treatment decisions. 

MATERIALS AND METHODS

Patients, controls and samples

The CNIO-BR-003/GEICAM-10/10 clinical trial 
randomized 130 early HER2-negative breast cancer 
patients to neoadjuvant weekly paclitaxel (80 mg/m2) 
for twelve courses before surgery or the same schedule 
plus nintedanib, administered at 150 mg/bid. Patients 
signing informed consent for the telomere ancillary study 
were drawn a 7.5-ml peripheral blood sample during the 
trial screening phase, prior to administration of the first 
treatment dose. Briefly, the inclusion criteria included 
female, ≥ 18 year-old patients with histopathologically 
proven HER2-negative resectable breast cancer larger than 
20 mm on its longer diameter, without previous diagnosis 
of cancer or chemotherapy treatment. Patients with serious 
comorbidities, or ECOG 2 or higher were excluded as well. 
Patients were evaluated every 2 weeks and toxicity was 
clinically assessed according to the NCI-CTC-AE V.4.0. 
For control purposes, blood samples from a cohort of 85 
female volunteers without previous history of cancer were 
included in the study. 

The CNIO-BR-003-GEICAM/2010-10 trial was 
registered at Clinicaltrials.gov (NCT01484080). All 
study procedures were conducted in accordance with 
the Declaration of Helsinki and Good Clinical Practice 
standards. Institutional review board approval was 
obtained from all participating hospitals and CNIO. 

Telomere length

Samples were collected in CPT tubes (BD 
Bioscience), which maintain peripheral-blood mononuclear 
cells (PBMCs) viability for up to 48 hours at room 
temperature. The samples were shipped to CNIO within < 24  
hours and PBMCs were isolated and frozen until analysis, 
according to manufacturer instructions. High-throughput 
quantitative fluorescence in situ hybridization (HT Q-FISH) 
with automated fluorescence microscopy was performed as 
previously described[14]. Briefly, PBMCs were counted and 
plated (80 000–100 000 cells/well) in clear-bottomed black-
well 96-well plates. DAPI (4',6-diamino-2-phenylindole) 
was used for nucleus staining and a fluorescent peptide 
nucleic acid (PNA) Cy3 probe against telomeric repeats was 
used for telomere detection. Telomere length values were 
analyzed using individual telomere spots. Fluorescence 
intensities were converted into Kb using L5178-R, L5178-S 

and CCRF-CEM cells as calibration standards, which have 
stable telomere lengths of 79.7 Kb, 10.3Kb and 7.5 kb, 
respectively [21]. Samples were analyzed in duplicate, or 
triplicate in the case of calibration standards. A telomere 
length < 3 Kb was defined as critically short [8, 9]. The 
load of short telomeres was estimated as the percentage of 
short telomeres (number of short telomeres divided by total 
number of measured telomeres) in each participant. Average 
telomere length was calculated for each patient by adding the 
length (in Kb) of each measured telomere and dividing that 
value by the number of measured telomeres. 

Toxicity

The variable under study was “number of toxic 
episodes”. One toxic episode was defined as the registration 
of grade 1 to 5 toxicity (according to NCI-CTC-AE V.4.0) 
at any moment of one three weeks-cycle. Since most of the 
adverse events that were observed in the trial were grade 1 
or 2, for analytic purposes the toxic episodes were defined 
as “mild” when the grade was 1 or 2, and severe when the 
grade was 3 to 5. The pre-planned analysis included the three 
most common toxicities registered with weekly paclitaxel 
(myalgia, peripheral neuropathy and fatigue), although an 
exploratory analysis was performed with the less frequent 
toxicities related to paclitaxel or those related to nintedanib 
as well [2, 22].  

Statistical considerations

T-tests were used to compare average values in 
independent groups, whereas Z-tests were used to compare 
percentages. Correlations between variables were explored 
with the Pearson’s test. A linear regression model was used 
in order to explore the influence of telomere length or the 
percentage of critically short telomeres in the number of 
observed toxic events (from 0 to 12) during the 4 cycles, 
adjusted by age and treatment arm. The pathologic 
complete response (pCR) categories were compared with 
the Chi-square according to the CSTs status. All analyses 
were performed with the SPSS v.19 software.

Abbreviations

CSTs: critically short telomeres, HT Q-FISH: high-
throughput quantitative telomere FISH, NCI CTC AE 
V.4.0: NCI common toxicity criteria for adverse events 
V.4.0, PBMCs: peripheral-blood mononuclear cells, 
DAPI: 4',6-diamino-2-phenylindole, PNA: peptide nucleic 
acid, pCR: pathologic complete response.
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