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Abstract
Background—Mammographic density adjusted for age and body mass index (BMI) is a
heritable marker of breast cancer susceptibility. Little is known about the biological mechanisms
underlying the association between mammographic density and breast cancer risk. We examined
whether common low-penetrance breast cancer susceptibility variants contribute to inter-
individual differences in mammographic density measures.

Methods—We established an international consortium (DENSNP) of 19 studies from 10
countries, comprising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of
common breast cancer susceptibility variants in 14 independent loci and mammographic density
measures. Dense and non-dense areas, and percent density, were measured using interactive-
thresholding techniques. Mixed linear models were used to assess the association between genetic
variants and the square roots of mammographic density measures adjusted for study, age, case
status, body mass index (BMI) and menopausal status.

Results—Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was
positively associated with both adjusted dense area (p=0.00005) and adjusted percent density
(p=0.001) whereas the A-allele of rs10483813 in RAD51L1 was inversely associated with
adjusted percent density (p=0.003), but not with adjusted dense area (p=0.07).

Conclusion—We identified two common breast cancer susceptibility variants associated with
mammographic measures of radio-dense tissue in the breast gland.
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Impact—We examined the association of 14 established breast cancer susceptibility loci with
mammographic density phenotypes within a large genetic consortium and identified two breast
cancer susceptibility variants, LSP1-rs3817198 and RAD51L1-rs10483813, associated with
mammographic measures and in the same direction as the breast cancer association.

Keywords
breast density; breast cancer; genetics; biomarkers; mammography

Introduction
Genetic factors play a major role in the pathogenesis of breast cancer (1-3). Recent multi-
stage genome-wide association studies (GWAS) and candidate gene studies conducted by
several groups, including the Breast Cancer Association Consortium (BCAC), have
successfully identified and replicated associations between over 18 single nucleotide
polymorphisms (SNPs) and risk of breast cancer in Caucasians (4-9).

Mammographic density, which reflects variations in the amounts of fat, stromal and
epithelial tissues in the breast, is one of the strongest risk factors for breast cancer with risk
being 4-6 fold higher for women in the highest relative to lowest density categories after
adjusting for age and body mass index (BMI) (10, 11). The biology underlying the
mammographic density and breast cancer association is essentially unknown, but twin and
family studies suggest that additive genetic factors explain ~60% of variance in the density
measures (12, 13). This raises the question of whether breast cancer susceptibility variants
identified to date are associated with mammographic density measures. This could lead to
new insights into the etiology of breast cancer by revealing the biological reasons for these
associations with breast cancer risk (14).

Five studies have examined the association of breast cancer susceptibility SNPs with age
and BMI adjusted measures of mammographic density (14-18). The most consistent finding
was an association between [lymphocyte-specific protein-1, LSP-1]-rs3817198 and adjusted
dense area and percent density, in the same direction as the association with breast cancer.
The association was observed overall by Odefrey et al (17) but only in specific subgroups by
others: in premenopausal women (14), current users of postmenopausal hormones (PMH),
(15) or ER+/PR+ cases only (16). Other nominally significant reported SNP-density
associations consistent with the association of these SNPs with breast cancer risk include
associations of TOX3-rs12443621 (14, 15) and rs4666451 (14) with adjusted percent
density, in pre-menopausal women only, and rs13281615 at 8q24 with both adjusted percent
density and dense area (17). The largest study to date, a meta-analysis of five GWAS of
mammographic density involving 4877 women with and without breast cancer, identified a
genome-wide significant association between ZNF365- rs10995190, a known breast cancer
susceptibility SNP, and adjusted percent density as well as weak evidence of possible
associations with ESR1-rs2046210 (p=0.005) and LSP1-rs3817198 (p=0.04) (18).

Only one previous study (17), however, examined the SNP associations with the
components that comprise the percent density phenotype, namely dense area and non-dense
area. Dense area has been hypothesized to be the more relevant density phenotype for
understanding the etiology of mammographic density (19) as tumors have been shown to
arise within the radiodense tissue (20). Whether these SNPs influence dense and/or non-
dense area could help to interpret the mechanism by which the loci influence density and
possibly cancer.

We established an international collaboration - the DENSNP consortium - of studies with
data on established breast cancer susceptibility variants and quantitative density measures
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from film mammography to conduct analyses of breast cancer susceptibility SNPs in
relation to the three density phenotypes. This paper reports the findings for 15 breast cancer
SNPs at 14 loci, identified through 2009 when the DENSNP consortium was established.

Materials and Methods
Study samples

The DENSNP consortium comprises 19 studies from Europe, North America and Australia
with the present analyses restricted to Caucasian women. Individual studies, their design and
sample sizes are described in Supplemental Table 1. Covariate data, including age,
reproductive variables and exogenous hormone use, were obtained through self-
administered postal questionnaires (12 studies), in-person interviews (six studies) or
telephone interviews (one study) (Supplemental Table 2). Participants’ weights, heights and
hence BMIs were measured by trained staff (10 studies) and self-reported (nine studies). For
eight studies, there was an average six months or less between mammography and collection
of participant information; for 18, the average was three years or less

Each study obtained informed consent and relevant ethics and institutional approvals. Only
anonymised data were made available to the DENSNP consortium.

Digitization and density measures
All studies obtained film mammograms - either the mediolateral oblique (MLO) (7 studies)
or cranio-caudal (CC) (12 studies) views - for participants, including breast cancer cases
and/or non-cases, except PNS which digitized copies of digital mammograms (Supplemental
Table 3). For cases, the film from the unaffected contralateral breast taken at the time of
cancer diagnosis was used, except for three nested case-control studies for which images
obtained prior to diagnosis were used (two studies used average measurements of the both
breasts; one study used only the right breast). For non-cases, both breasts (averaged), left or
right only, or the side that corresponded to the matched case was chosen.

As a requirement for entry, participating studies contributed percent density, dense area and
non-dense area measures for cases and/or non-cases using one of two similar semi-
automated methods that rely on the interactive threshold technique, Cumulus (21) and
Madena (22) softwares. Both require an interactive selection of two grayscale thresholds in
the image of a digitized mammogram by a trained observer. One threshold separates the
breast from the background and the other classifies the breast tissue into dense and non-
dense areas, from which percent density (100×dense area/total breast area) and absolute
measures of dense and non-dense areas are automatically generated. Images were
anonymised and readers were blind to the genotype, case status (if applicable) and risk
factor data.

Genotyping and quality control
SNPs confirmed to be associated with breast cancer susceptibility in the 14 regions (loci) of
the genes FGFR2, LSP1, MAP3K1, TOX3, SLC4A7/NEK10, COX11, CASP8, TGFB1,
RAD51L1, ESR1, MRPS30/FGF10 and positions 8q24.21, 2q35 and 1p11.2 were measured
(Figure 1). These loci were identified by GWAS (4-7) except CASP8 and TGFB1 which
were identified using the candidate gene approach (8). For the CASP8 locus there were
alternate SNPs (rs1045485 and rs17468277) available in strong linkage disequilibrium or
LD (r2=0.98). The rs1045485 SNP was used if available; if not rs17468277 was used. For
the 2275 women with genotypes for both SNPs, these were concordant for all but 9 samples,
so were used interchangeably. Two SNPs were also available for each of the RAD51L1
(rs10483813 and rs999737) and MRPS30/FGF10 (rs4415048 and rs10941679) loci. The
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SNPs in MRPS30/FGF10 were not in strong disequilibrium (r2<0.6 in our dataset) and are
reported separately. Rs10483813 and rs999737 (RAD51L1) were in high LD (r2=0.98 in our
dataset), but studies had either genotyped both SNPs, or only rs10483813; thus, we only
report results for rs10483813 for which we had a larger sample size.

Genotyping was performed on various platforms by the individual studies (Supplemental
Table 4). Quality control was conducted at the study level; all SNP call rates were >90%,
with few (10 SNPs from five studies) <95%. Three SNPs (from three studies) with Hardy
Weinberg Equilibrium p-values<0.001 were excluded. The number of SNPs genotyped by
each study varied from all 14 (four studies) to only two (two studies), with a median of 10
per study.

Statistical methods
Study-specific data were checked to ensure that the coding and scaling of each variable were
similar across studies. For the AMTDSS, one twin was selected at random from the 563
monozygous pairs. Examination of the distributions of residuals of density phenotypes
adjusted for age, BMI, and menopausal status showed that a square root transformation of
all density variables gave a good approximation to a normal distribution and this was used in
all analyses.

A test of the null hypothesis of no association between any of the tested SNPs and a given
mammographic measure was performed using Fisher’s method (23). As individual-level
data were available from all studies, primary analyses used a mixed model approach that
included per-study random effects to capture study-specific differences. When applicable, a
repeated measures adjustment within families assuming a compound symmetry correlation
structure was used to account for familial correlation. Models were adjusted for the fixed
effects of age (continuous), BMI (1/BMI, was used as it provided a better fit), case status
and menopausal status (pre- and peri- combined vs. post, with the latter defined as no
menstruation for 12 or more months, not due to pregnancy). A missing category was
included, when applicable. Primary analyses considered SNP associations as additive
genetic effects, by defining an ordinal covariate as the number of copies of the minor allele
carried by the study subjects and fitted a linear association. The resulting estimate of the per-
allele effect is reported as the “additive estimate” in the tables. Estimates of the adjusted
mean mammographic density measures and their 95% confidence intervals (95% CI),
corresponding to the observed genotypes of each variant, were derived by back-
transformation from the square-root to the original scale. Additional analyses were
performed within subsets of women defined by menopause categories (pre- and
perimenopausal combined vs. postmenopausal), BMI (< vs. ≥ median of 25 kg/m2), PMH
(ever vs. never use), and case status to assess whether SNP–density phenotype associations
were modified by these variables.

Between-study heterogeneity was tested by fitting study-by-genotype interactions. Analyses
were performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC). Two sided p-values
were calculated. A Bonferroni adjustment to account for multiple testing was applied to
define the threshold for statistical significance as p≤0.003 (=0.05/14 loci).

Results
There were 5,110 breast cancer cases and 11,785 non-cases of self-reported Caucasian race/
ethnicity with available density phenotypes, risk factors and at least one of the 15 SNPs
considered [Table 1]. The number of participants varied by SNP with the most
comprehensive information for 2q35 (n=13,254), CASP8 (n=12,816) and FGFR2
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(n=12,680), and least information for TGFB1 (n=3,099), RAD51L1 (n=7,610) and ESR1
(n=8,274).

The majority of the participants were aged ≥40 years (98%) and postmenopausal (77%), and
approximately half of those aged ≥55 reported ever using PMH (48%) [Table 1]. In all, 44%
of participants had a BMI<25 kg/m2 [Table 1]. A small proportion was nulliparous (11%),
precluding subgroup analyses by parity. The associations between these variables and the
three density phenotypes are shown in Table 2, and were similar to those reported in the
literature.

The results from our primary analyses of the 15 SNPs in 14 breast cancer loci with the three
density phenotypes are shown in Figure 1 and described in Supplemental Tables 5a-c.
Pictured are the parameter estimates from the mixed linear models corresponding to each
genotype. There was strong evidence against the null hypothesis that none of the SNPs were
associated with both the dense area (p<0.001) and percent density measures (p=0.001), but
not with the non-dense area measure (p=0.5). This suggests that at least one of the 14 breast
loci is associated with the density or dense area measures.

The strongest associations were seen with rs3817198 (LSP1) and the dense area (p=0.00005)
and percent density (p=0.001) phenotypes with little evidence for between-study
heterogeneity [Figure 2]. The adjusted mean dense area was 23.7cm2 for T/T carriers,
25.1cm2 for T/C carriers and 26.0cm2 for C/C carriers (Supplemental Table 5a-b). The
adjusted mean percent density for T/T carriers was 19.4% compared to 20.1% for T/C and
20.5% for C/C carriers, respectively. These associations were consistent across studies
[Figure 2] and persisted after exclusion of studies that had previously reported on LSP1 and
density, namely NHS, AMDTSS, LIFE, MEC, EPIC-Norfolk I and SASBAC(14-18) (e.g.
p=0.004 for dense area). There was also evidence of an inverse association between
rs10483813 (RAD51L1) and adjusted percent density (p=0.003), but not with adjusted dense
area (p=0.07) [Figure 1]. These associations were consistent across studies [Figure 2] with
the adjusted mean percent density for T/T genotype being 21.1%, compared to 20.5% for T/
A and 19.0% for A/A.

There were nominal associations of adjusted percent density and dense area with rs2046210
(ESR1), rs1045485/rs17468277 (CASP8), rs4973768 (SLC4A7/NEK10) and rs3803662
(TOX3) [Supplemental Tables 5a-b] which were in the direction of the published
corresponding breast cancer associations but not statistically significant after taking into
account multiple testing [Figure 1]. None of the investigated SNPs were associated with
non-dense area [Figure 1; Supplemental Table 5c].

The genetic associations above did not diminish after further adjustment for parity or view
(data not shown) and, in general, did not appear to differ by case status, BMI, menopausal
status, or PMH use [Supplemental Tables 6a-c] but the study had low power to examine
interactions.

We also examined the association of these SNPs with breast cancer risk before and after
adjustment for the density measures by pooling data from studies that recruited both cases
and non-cases [identified in Supplemental Table 1]. Using 3,175 cases and 6,504 non-cases
from eight studies, the per C-allele odds ratio (OR) for rs3817198 (LSP1) was 1.04 (95% CI
0.97, 1.12) without adjustment for either density measure. When including dense area as a
covariate, the OR was 1.03 (95% CI 0.96, 1.10), and after adjustment for percent density
instead, the OR was 1.02 (95% CI 0.95, 1.11). Similarly, using 2,765 cases and 3,022 non-
cases from four studies, the per A-allele OR for rs10483813 (RAD51L1) was 0.92 (95% CI
0.84, 1.00) without adjustment for either density measure, 0.93 (95% CI 0.85, 1.01) after
adjustment for dense area, and 0.94 (95% CI 0.86, 1.03) after adjustment for percent density.
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Discussion
There is wide inter-individual variability in mammographic density measures, but known
epidemiologic risk factors account for only 20-30% variability in percent density (13, 24,
25). We hypothesized that common low-penetrance breast cancer susceptibility variants
contribute to the remaining inter-individual differences in the density phenotypes and
examined this within a large international consortium (DENSNP). Here, we report the first
findings from this collaborative effort and identify associations between adjusted measures
of density and two breast cancer susceptibility SNPs, rs3817198 (LSP1) and rs10483813
(RAD51L1), which were in the same direction as the corresponding SNP associations with
cancer risk.

The most marked association with density was with rs3817198 (LSP1). We also confirmed
this association using the 10 studies that had not previously published on the LSP1 variant
and density association, providing consistent evidence for this mammographic density locus.
The mechanisms through which this SNP (or more likely the causal allele(s) it tags) may
affect density and cancer risk are unclear. The LSP1 gene encodes an intracellular F-actin
binding protein, which is expressed in lymphocytes, neutrophils, and endothelium and might
regulate neutrophil motility, adhesion to fibrinogen matrix proteins, and transendothelial
migration (26).

The SNP rs3817198 in RAD51L1, a gene on chromosome 14q24.1 involved in the double-
strand DNA-repair and homologous-recombination pathway, may also be associated with
the adjusted density measures, although the evidence is less compelling than for rs3817198
(LSP1). The biological mechanisms underlying the possible association of this variant with
density and cancer risk are unknown. RAD51L1 interacts with RAD51, and a SNP in the
5’UTR of RAD51 has been found to be associated with breast cancer risk for BRCA2
mutation carriers (27). However, mutations in BRCA1 and BRCA2 have not been found to
be associated with the density phenotypes (28, 29).

Several breast cancer GWAS have consistently identified polymorphisms in intron 2 of
fibroblast growth factor receptor 2 (FGFR2), with each copy of the T allele of rs2981582
being associated with about a 26% increased breast cancer risk (30). Our study had 90%
power to detect an average difference in percent density of less than 1% between
homozygote carriers and non-carriers of this SNP, if such a difference truly exists, and
therefore the lack of finding an association suggests that density is unlikely to mediate the
association between FGFR2 and breast cancer risk. Similar considerations apply to SNPs in
several other breast cancer loci, including TOX3-rs3803662, 2q35-rs13387042 and
MAP3K1-rs889312. These loci are likely to contribute independently of density to risk
prediction. In fact, when we added LSP1-rs3817198 and RAD51L1- rs10483813 to a risk
model with age, BMI, menopause, study and percent density the inclusion of these two
SNPS did not affect the AUC whereas the addition of the remaining 12 SNPs increased the
AUC from 0.62 to 0.65 (p<0.001).

Previous studies were based on smaller sample sizes (ranging from 578 (16) to 4,877 (18)),
which could have precluded the detection of small effects. Our study is the largest conducted
so far with sample sizes greater than 6,000 for all but one SNP and greater than 10,000 for
all but 5 SNPs. We had over 90% power to detect per-allele differences in adjusted percent
density of 1% or less for all but three SNPs (rs17468277, rs10483813 and rs4415084), and
even for these SNPs, we were similarly powered to detect per-allele differences of less than
2%. However, limited power precluded a more detailed examination of interactions with
BMI (e.g. differential SNP effects in BMI-defined quartiles) and PMH use (e.g. different
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SNP effects by type of PMH, recency of use). The study also had low power to assess the
mediation of the SNP and breast cancer associations by density.

The mammographic density readings were performed in different sets of films (e.g. left,
right or both breasts; CC or MLO views), but it is unlikely that this may have affected
substantially our findings because there is a high correlation between a woman’s density
measurements taken from the various breast-view combinations(31). For cases, both pre-
diagnostic films and films from the unaffected breast at the time of diagnosis, but prior to
treatment, were used - an approach used by others (10); furthermore, our findings were not
modified by case status. One small study (PNS) used digitized copies of digital
mammograms, but its exclusion did not affect the results shown here. Although
mammographic density readings were not standardized, all studies used a similar
interactive-threshold approach and had very high within- and between-observer repeatability
(typically >90%) (32). Also, all analyses were adjusted for study hence minimizing the
impact of any between-study differences on density measurements which would have likely
reduced our power to detect real associations. Reassuringly, we were able to reproduce the
well-established influences of age, BMI, parity, menopausal status and PMH on density
phenotypes within each one of the participating studies as well as in joint analyses.

Our findings suggest that two of 14 well-established breast cancer loci may contribute to the
large between-woman differences in risk-predicting density phenotypes, consistent with
estimates of 5-10% genetic overlap between this biomarker and breast cancer (33). The two
common variants in LSP1 and RAD51L1 explained 0.2% (combined, 0.1% for each) of the
variance in adjusted percent density and dense area, although the overall contribution could
be larger if the true causal variants are more strongly associated with density than the
tagging SNPs we examined here. At the individual level, these SNPs were associated with a
0.6% absolute increase in percent density per allele for LSP1 and 0.8% absolute decrease in
percent density per allele for RAD51L1. These magnitudes can be compared with, for
example, the change in density measures of 1% decrease per year of ageing (34), 2%
increase with use of PMH and 2% decrease over the menopausal transition (35). Our
findings are consistent with the hypothesis that mammographic density is likely a polygenic
trait, influenced by many common low-penetrance variants, and/or rarer variants with larger
effects which cannot be identified through current GWAS. Identification of such variants,
and clarification of their role and function, is likely to improve our understanding of the
biology of mammographic density and how this phenotype is associated with breast cancer
risk.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Associations of common breast cancer susceptibility variants with adjusted percent
mammographic density, dense area and non dense area
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Figure 2.
Study specific associations of rs3817198-LSP1 and rs10483813-RAD51L1 with adjusted
percent mammographic density and dense area.
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Table 2

Mammographic Density Measurements by Known Breast Cancer Risk Factors, Mammographic View, and
Case Status at Time of Mammography

Risk Factor Categories N (%) PD (%) Mean (CI) Dense Area (cm2) Mean (CI) Non-Dense Area (cm2) Mean (CI)

Age (years)*

 < 40 366 (2.2%) 34.2 (30.3, 38.3) 36.8 (31.9, 42.1) 75.1 (66.8, 83.8)

 40-49 2794 (16.5%) 28.2 (25.3, 31.4) 33.0 (29.1, 37.1) 89.7 (82.9, 96.8)

 50-59 6486 (38.4%) 20.3 (17.9, 22.9) 26.4 (23.0, 30.0) 112.2 (104.8, 119.8)

 60-69 5670 (33.6%) 14.9 (12.8, 17.2) 21.3 (18.2, 24.6) 130.2 (122.2, 138.4)

 ≥ 70 1579 (9.3%) 13.0 (11.0, 15.2) 17.3 (14.5, 20.4) 143.0 (134.1, 152.3)

 p-value <0.001 <0.001 <0.001

BMI (kg/m2)†

 < 25 7355 (44.1%) 25.8 (23.2, 28.6) 27.0 (23.6, 30.7) 82.9 (77.1, 89.0)

 ≥ 25 9334 (55.9%) 14.8 (12.8, 16.9) 23.3 (20.1, 26.7) 144.3 (136.6, 152.3)

 p-value <0.001 <0.001 <0.001

Menopausal status‡

 Pre-or peri menopausal 3690 (22.2%) 21.5 (19.1, 24.1) 27.1 (23.6, 30.8) 113.5 (106.4, 120.9)

 Post-menopausal 12964 (77.8%) 18.4 (16.2, 20.7) 24.1 (20.9, 27.5) 116.3 (109.3, 123.5)

 p-value <0.001 <0.001 0.05

PMH use (at ages≥55)‡

 Never 4800 (48.6%) 14.6 (12.5, 16.9) 20.2 (16.7, 23.9) 129.1 (120.4, 138.2)

 Ever 5067 (51.4%) 17.8 (15.5, 20.4) 23.6 (19.9, 27.7) 122.7 (114.2, 131.6)

 p-value <0.001 <0.001 <0.001

Parityc

 Nulliparous 1781 (10.7%) 22.6 (20.1, 25.2) 29.0 (25.4, 32.9) 109.2 (102.2, 116.4)

 Parous 14808 (89.3%) 18.7 (16.5, 21.0) 24.3 (21.1, 27.7) 116.7 (109.8, 123.8)

 p-value <0.001 <0.001 <0.001

Mammographic View‡

 CC 6051 (35.8%) 17.7 (14.2, 21.5) 25.1 (19.7, 31.1) 122.4 (111.1, 134.2)

 MLO 10844 (64.2%) 20.1 (17.3, 23.2) 24.8 (20.6, 29.4) 111.5 (103.2, 120.2)

 p-value 0.3 0.9 0.1

Case status§

 BC case 4530 (37.8%) 24.5 (20.8, 28.4) 30.0 (24.1, 36.4) 108.2 (95.6, 121.5)

 Non-case 7439 (62.2%) 19.3 (16.0, 22.8) 24.2 (19.0, 30.1) 117.9 (104.9, 131.7)

 p-value <0.001 <0.001 <0.001

BC=breast cancer; BMI=body mass index; CC=cranio-caudal; MLO= medio-lateral oblique; PMH=postmenopausal hormones

*
Adjusted for study

†
Adjusted for study and age

‡
Adjusted for study, age and BMI

§
Restricted to 9 studies that recruited both cases and non-cases and adjusted for study, age and BMI
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