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Abstract

Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infec-

tions with the larval stages of the cestode parasites Echinococcus granulosus and E. multi-

locularis, respectively. Both diseases are progressive and chronic, and often fatal if left

unattended for E. multilocularis. As a treatment approach, chemotherapy against these

orphan and neglected diseases has been available for more than 40 years. However, drug

options were limited to the benzimidazoles albendazole and mebendazole, the only chemi-

cal compounds currently licensed for treatment in humans. To compensate this therapeutic

shortfall, new treatment alternatives are urgently needed, including the identification, devel-

opment, and assessment of novel compound classes and drug targets. Here is presented a

thorough overview of the range of compounds that have been tested against E. granulosus

and E. multilocularis in recent years, including in vitro and in vivo data on their mode of

action, dosage, administration regimen, therapeutic outcomes, and associated clinical

symptoms. Drugs covered included albendazole, mebendazole, and other members of the

benzimidazole family and their derivatives, including improved formulations and combined

therapies with other biocidal agents. Chemically synthetized molecules previously known to

be effective against other infectious and non-infectious conditions such as anti-virals, antibi-

otics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their

increasing relevance, natural occurring compounds derived from plant and fungal extracts

are also discussed. Special attention has been paid to the recent application of genomic sci-

ence on drug discovery and clinical medicine, particularly through the identification of small

inhibitor molecules tackling key metabolic enzymes or signalling pathways.
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Author summary

Human cystic and alveolar echinococcosis (CE and AE), caused by the larval stages of the

helminths Echinococcus granulosus and E. multilocularis, respectively, are progressive and

chronic diseases affecting more than 1 million people worldwide. Both are considered

orphan and neglected diseases by the World Health Organization. As a treatment

approach, chemotherapy is limited to the use of benzimidazoles, drugs that stop parasite

growth but do not kill the parasite. To compensate this therapeutic shortfall, new treat-

ment alternatives are urgently needed. Here, we present the state-of-the-art regarding the

alternative compounds and new formulations of benzimidazoles assayed against these dis-

eases until now. Some of these new and modified compounds, either alone or in combina-

tion, could represent a step forward in the treatment of CE and AE. Unfortunately, few

compounds have reached clinical trials stage in humans and, when assayed, the design of

these studies has not allowed evidence-based conclusions. Thus, there is still an urgent

need for defining new compounds or improved formulations of those already assayed,

and also for a careful design of clinical protocols that could lead to the draw of a broad

international consensus on the use of a defined drug, or a combination of drugs, for the

effective treatment of CE and AE.

Introduction

Human cystic and alveolar echinococcosis (CE and AE) are chronic diseases caused by the lar-

val stages of the cestodes Echinococcus granulosus sensu lato (s.l.) and E. multilocularis, respec-

tively. Both parasites can develop in humans after ingestion of the infective eggs of the parasite

shed in the faeces of canid definitive hosts. The oncospheres released from the eggs in the

intestine penetrate the gut wall and enter the blood vessels, reaching different organs, mainly

liver and lungs, in which they develop into the asexual cystic stage. In AE proliferative metaces-

tode vesicles intermingle with host connective tissue and immune cells and grow steadily and

in an infiltrative manner resembling that of cancer progression, while CE single or multiple

cyst growth is slow and the living parasite tissue remains enclosed by the external laminated

and adventitial layers, resulting in a fluid-filled spherical shaped lesion [1,2].

Treatment options for AE are few, with surgery reserved for early stages of the infection

when lesions can be completely resected and there are not distant metastases, followed by pro-

phylactic anti-parasite drug treatment. Savage treatment may be attempted in advanced cases

by major palliative surgery or even liver transplantation, whereas in inoperable cases treatment

relies on prolonged administration of benzimidazole drugs. For CE four treatment options

have been suggested based on the WHO classification of cyst stages as seen in imaging-based

techniques: percutaneous interventions [Percutaneous-Aspiration-Injection and Re-Aspira-

tion (PAIR) and its modifications, percutaneous evacuation (PEVAC), Modified Catheteriza-

tion Technique (MoCaT), and Dilatable Multi-Function Trocar (DMFT)], surgery,

chemotherapy, and a watch-and-wait approach. For the first two options, pre- and post-treat-

ment and peri-interventional treatment with anti-parasitic drugs is also used [3].

As a rule of thumb, the ideal agent for the chemotherapeutic treatment of CE and AE

should comply with as many as possible of the following features: it should be selectively toxic

against the parasite (but not the host), and endowed with a favorable pharmacokinetics

enabling good solubility, absorption, and stability to reach the target site at a concentration

sufficient to trigger an effective response at the tissue and intra-cystic levels. A parasitocidal,
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rather than a parasitostatic effect is also highly desirable, together with a lack of undesirable

clinical effects.

Currently available drugs against CE and AE in clinical settings are mainly limited to benz-

imidazoles (BMZ), and more specifically to albendazole and alternatively mebendazole when

albendazole is not well tolerated. BMZ, either alone or in combination with other adjuvantive

scolicidal compounds, are also used to prevent recurrence due to protoscoleces spillage follow-

ing surgery or percutaneous treatment in CE [4].

Although efficacy of BMZ has been proved against CE and AE, this relies in several vari-

ables. In CE, efficacy of BMZ varies depending on number, size, type, and localization of cysts

that probably influence the penetration of drugs, thus the bioavailability of the compound

inside the cyst, and on the age of the patient [5], while the optimal dosage and duration of

treatment have never been formally assessed in randomized clinical trials. For AE, long-term

BMZ therapy improves the survival rate in non-radically operated patients and prevent recur-

rences after radical surgery compared to untreated patients [3]. Nevertheless, several studies

support the idea that BMZ exert a parasitostatic rather than a parasitocidal effect, particularly

against E. multilocularis lesions, and thus recurrence rates are frequently reported after treat-

ment interruption [5,6].

Alternative drugs and several natural compounds previously known to be effective against

different infectious and non-infectious diseases have been also tested in in vitro and in vivo
models of the Echinococcus species complex, but only few have reached clinical use [7]. None

of them have been specifically designed for the treatment of CE and AE (e.g. the protein kinase

inhibitors experimentally assessed against CE or AE have been previously used in cancer treat-

ment as targeted therapy), mainly because the development of orphan drugs for these

neglected diseases is of very limited interest to the pharmaceutical industry. Similarly, a group

of 400 representative compounds active against malaria, called the “Malaria box”, have also

been tested against a variety of disease pathogens [8]. Preliminary studies have demonstrated

tha some Malaria box compounds have consistent activity against helminths including Brugia
malayi, Trichuris trichiura, Ancylostoma ceylanicum, and Echinococcus [8,9], and may repre-

sent candidate molecules to advance Echinococcus drug development research.

In the following sections we summarize the methods used to assess drug efficacy against CE

and AE. We also present an overview of the different compounds that have been tested against

E. granulosus and E. multilocularis protoscoleces and cysts/vesicles, including data on their

mode of action when available, dosage, and therapeutic outcomes.

Methods to assess drug effects and efficacy against CE and AE

In human infections, established E. granulosus cysts (or metacestodes) can develop and reach

the mature, fertile state. Protoscoleces are then produced from the germinative layer inside the

cyst. Spillage of viable protoscoleces after spontaneous or traumatic cyst rupture or during sur-

gical intervention can give rise to new cysts (recurrence). Drugs against CE have been tested

both against the metacestode and against the protoscoleces. In AE patients the metacestode

usually does not produce protoscoleces, and the majority of the studies carried out to assess

the therapeutic efficacy of drugs against AE have been done in the larval stage of the parasite.

However, some authors have also tested defined drugs against E. multilocularis protoscoleces

isolated from in vivo metacestodes obtained in the murine model [10]. For both CE and AE,

activity of the compounds can be assayed in vitro and in vivo, although the number of agents

reaching human clinical trial has been very limited. Lately, drugs have also been tested in vitro
against stem cells derived from the germinative layer of the metacestode [11,12], both for CE

and AE. Measurement of drug activity against protoscoleces is mainly directed towards the
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identification of effective compounds to reduce the risk of CE recurrence after surgery. The

parasitocidal effect of drugs against protoscoleces can be measured in vitro using simple proce-

dures involving vital staining with eosin or other vital dyes [13]. Some authors combine this

vital staining with the investigation of the ultra-structural changes originated after drug expo-

sure as seen in electron microscopy [14], the measurement of indirect markers of parasite

damage including nucleosomal fragmentation and apoptosis-related enzyme activities in

treated protoscoleces [14], and, in few cases, the assessment of cyst formation capacity of in
vitro treated protoscoleces after intraperitoneal injection into rodents, compared with non-

treated parasites [15]. A novel movement-based assay has been recently developed for in vitro-

drug screening using E. multilocularis protoscoleces cultured in microwell plates. Morphologi-

cal effects caused by the active compounds tested are then directly measured and quantified by

image analysis [10]. Assays against protoscoleces can also be done after the intra-cyst inocula-

tion of the drug to test its scolicidal activity [16], and by the administration of the drug to

rodent models shortly before or after intraperitoneal infection with viable protoscoleces to

mimic accidental spillage in the peritoneal cavity during a surgical intervention [17].

In general, drug testing against protoscoleces in any of those modalities is of advantage to

translate the results mainly to avoid secondary CE in patients. As we mention hereinafter, a

number of drugs and compounds have shown good protoscolicidal activity. Thus, drugs

against the metacestode are much more urgently needed.

Drug activity can be measured in vitro against both E. granulosus s.l. and E. multilocularis
metacestodes maintained in culture, although E. multilocularis is the preferred experimental

model due to the relative simplicity in obtaining parasite material from experimentally

infected mice and the feasibility of maintaining and multiplying in vitro cultured vesicles of

the parasite compared to E. granulosus cysts (Fig 1) [5,18]. However, the in vitro vesicular

model has some limitations regarding the extrapolation of the in vitro effects to the in vivo sce-

nario. First, assessment of total loss of parasite viability after treatment (parasitocidal effect) is

difficult. This has been most frequently approached by the study of macroscopic alterations

(e.g., shrinking of cysts or detachment of the germinative layer) [19], microscopical changes in

the germinative layer (destruction of the cells in the layer) [20], or leaking of parasite-derived

compounds to the culture medium and subsequent assessment of their associated enzyme (e.g.

alkaline phosphatase, phosphoglucoisomerase) activity [5,21,22]. Although these assays corre-

late well with parasite damage, parasitocidal activity could only be totally proven after inocula-

tion of the treated parasitic material into a rodent model, or, alternatively, re-culturing the

material in vitro in order to prove the lack of parasite growth. Second, the development of the

cysts in primary infections in natural hosts (after oral infection with parasite eggs) differs from

the development of the cysts in vitro, both for CE and AE. For CE, cyst growth usually leads to

the formation of the external laminated and adventitial layers of variable thickness [23]. In AE

patients, cysts grow forming a stromatous mass [23]. In both cases, access of drugs to the living

parasite cells is more limited than in the in vitro conditions. In addition, because cells growing

in vitro are not the exact dissociated replicates of their in vivo counterparts, in vitro models do

not take into consideration the potentially synergistic antiparasitic effect of the host’s immune

system, which may, at least partially, explain some of the outcomes observed in in vivo models.

Nevertheless, the in vitro vesicular model has shown to be very valuable for the high-through-

put screening of compounds, specially applying defined assays that show to correlate well with

the loss of parasite activity, e.g. the measurement of phosphoglucoisomerase (PGI) activity in

the culture medium after drug exposure, avoiding the unnecessary use of experimental animals

[24]. Nevertheless, concentration range of drugs tested in vitro should consider that bioavil-

ability in vivo, both in plasma and intra-cyst, can be three to ten-fold lower than in the in vitro
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systems (e.g., see “Albendazole” section). Additionally, toxicological and adverse effects should

be taken into account when high-dose in vitro studies are to be translated to in vivo conditions.

Similar limitations, although less pronounced, are found in the in vivo rodent models.

These are usually based on the experimentally-induced development of the parasite after intra-

peritoneal injection of viable protoscoleces (for E. granulosus) or micro-cyst (for E. multilocu-
laris) into rodents (secondary infection) [5]. Development of the parasite within the peritoneal

cavity resembles more accurately the situation of a recurrence in CE natural hosts than that of

a primary infection. However, this approach has some limitations when attempting to recreate

a natural (usually primary liver) infection in the natural host of E. multilocularis. It should also

be noted that intraperitoneal rodent models may be hampered by variations in the efficacy of

systemic drug treatments. Differences in cyst location (e.g., intraperitoneal vs. intraparenchy-

matous) may have important consequences in terms of parasite’s exposure and achievable tis-

sue concentration of the drug. Additionally, the elected time point after infection to start the

drug treatment is of importance for the outcome of the treatment [25]. In few cases, the treat-

ment has been done directly in naturally infected animals for CE, such as sheep [26]. The in
vivo models have been also used to assess parasite viability after in vitro treatment [27]. Assess-

ment of parasite damage after treatment in in vivo models has been usually done by estimating

the mean cyst number and, more frequently, the mean biomass weight of cysts developed in

infected, treated rodents compared with those figures from infected, non-treated animals [13].

Occasionally, drug-induced cyst damage and scolicidal activity has been assessed macro- and

microscopically in in vivo models [28]. When only cyst weight differences are found, cysticidal

activity cannot be guaranteed and instead a parasitostatic effect could be attributed to the

tested drug.

Of special importance is the assessment of drug effectiveness against the stem cells of the

parasite in AE, since the uncontrolled growth of the metacestode and the growing foci distant

from the primary lesion are presumably propitiated by the stem cells present in the germina-

tive layer of E. multilocularis [29]. The recent availability of the genome and transcriptome

Fig 1. Mouse experimentally infected with Echinococcus granulosus sensu stricto. Cysts of E. granulosus in the

peritoneal cavity of an infected mouse. Image credit: Dr. Gulay Vural, Namik Kemal University, Turkey.

https://doi.org/10.1371/journal.pntd.0006422.g001
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data for both E. granulosus and E. multilocularis is also of importance for the definition of new

drugs that could target defined parasite-specific molecules [11,30,31].

Very few drugs have reached trials in patients. The best characterized drugs are BMZ,

which have been use both against CE and AE for many years. Lately, recommendations on the

use of BMZ for the stage-specific treatment of CE and AE patients have been produced [3].

Nevertheless, evidence-based data supporting specific dosage and duration of BMZ treatment,

either for the prevention of recurrence in CE due to protoscoleces spillage or for the fully effec-

tive elimination of the parasite, are not available to date. For other drugs different from BMZ,

assessment of treatment efficacy in patients has been usually done retrospectively (e.g., for pra-

ziquantel) [32], and in a low number of patients with heterogeneous clinical pictures and man-

agement, precluding the extraction of sound conclusions and hampering the generalization of

the obtained results [3].

Benzimidazoles

General features. Initially proposed as anthelmintic agents against gastrointestinal para-

sites of domestic animals in 1961 [33], benzimidazole-carbamate compounds (BMZ) are het-

erocyclic aromatic organic molecules now widely used in human and veterinary medicine.

Members of this large chemical family have demonstrated an extensive therapeutic activity as

anti-parasitic (including anthelmintic), anti-bacterial, anti-cancer, anti-fungal, anti-inflamma-

tory, anti-HIV, anti-oxidant, anti-tubercular, and anti-diabetic agents [34]. The generic mech-

anism of action of BMZ is based on the interference with the assembly and disassembly of the

cytoskeletal protein tubulin into microtubule polymers and subsequent inhibition of microtu-

bule-mediated cellular processes, including cell division. BMZ also interfere with mechanisms

of glucose uptake by the larval stage of the parasite, leading to glycogen depletion and subse-

quent degenerative changes in the mitochondria and the endoplasmic reticulum [35,36]. Addi-

tionally, an early study has reported mebendazole as inhibitor of the mitochondrial fumarate

reductase [37], an enzyme involved in the anaerobic respiration metabolism of helminthes

that has been recently postulated as a potential target for chemotherapy [38].

BMZ are extensively metabolized in mammals following administration. Typically, the par-

ent compound is short lived and has poor water solubility, a feature with important implica-

tions in the rate and extent of absorption and associated therapeutic efficacy. The primary

metabolites, which are generally more soluble than the parent compound, are usually results

from oxidative and hydrolytic processes and may be found in plasma, tissue and excreta.

Detection of metabolites in urine and faeces may be indicative of poor bioavailability, which is

highly influenced by a number of factors including formulation, solubility, and dosage used.

Among BMZ derivatives, albendazole and mebendazole are the only drugs currently

licensed for the treatment of human CE and AE [3,39]. Importantly, a large meta-analysis

study based on case series from six research centres in five countries comprising 711 treated

CE patients have cast doubts on overoptimistic expectations of the overall efficacy of BMZ

[40]. Thus, although BMZ therapy was particularly suited for the treatment of small, active

cysts (diameter < 6 cm), multi-vesicular, multi-septated, and transitional cysts responded

poorly to BMZ and were associated to a high rate of relapses [40]. Other factors known to

influence the outcome of the treatment were the age of the patient (BMZ were more effective

in younger than in older patients), and the organ affected (e.g. bone cysts were less susceptible

to BMZ than hepatic or pulmonary cysts) [5]. Therefore, it is now widely accepted that chemo-

therapy with albendazole and mebendazole exhibits a parasitostatic rather than a parasitocidal

effect, as demonstrated by the elevated recurrent rates frequently observed after interruption

of therapy [7]. Although these drugs are generally well tolerated, their target is the parasite
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tubulin, a conserved molecule very similar in humans, whose undesirable targeting is most

probably the cause of adverse reactions. Hepatotoxicity, alopecia, gastrointestinal disturbances,

thrombocytopenia, and severe leukopenia have been reported and may require stopping the

prescribed treatment [4]. Albendazole and mebendazole may also induce embryotoxic or tera-

togenic effects [41]. Taking together these facts have prompted the search of new compounds

and formulations with enhanced activity against both CE and AE [7,42,43]. Therefore, a num-

ber of other BMZ analogs including fenbendazole, flubendazole, oxfendazole, and triclabenda-

zole have been evaluated in recent years both in in vitro studies and in vivo experimental

animal models with different results (see below). Less frequently, studies to increase BMZ bio-

availability while avoding a rise in adverse effects have been done (see below).

Relevant in vitro and in vivo data concerning the chemotherapeutic efficacy of BMZ and

their derivatives for the treatment of CE and AE reported in the literature from 2008 to date

have been comprehensively reviewed and summarized in Table 1. For information published

before this period, the interested reader is referred to a number of excellent review articles in

the subject [4–6,42–45].

Mebendazole. Mebendazole (MBZ) (S1 Fig, compound 1) is a highly effective, broad-

spectrum anthelmintic widely used for the treatment of nematodal, cestodal, and even proto-

zoan infections. After its commercialization in 1970, MBZ was the first BMZ agent found to

have a lethal effect on E. granulosus metacestodes in infected patients [46].

Because MBZ is insoluble in water, the drug is poorly available for the treatment of systemic

infection such as human CE and AE. The small fraction (1% to 5%) of MBZ absorbed at intes-

tinal level reaches the liver through the hepatic artery and the hepatic portal vein, where is

mostly (86%) metabolized to 2-amino-5(6)[a-hydroxybenzyl]benzimidazole. Secondary

metabolites include 2-amino-5(6)-benzoylbenzimidazole (13%), methyl-5(6) [a-hydroxyben-

zyl]benzimidazole carbamate (<1%), and methyl 5(6)-benzoylbenzimidazole carbamate

(<1%). All these compounds were thought to be largely inactive [47]. In a group of 12 CE

patients orally treated with 10 mg�kg-1�day-1 MBZ, elimination half-lives ranged from 3–9 h,

the time to peak plasma concentration after dosing ranged from 1.5–7 h, and the peak plasma

concentrations ranged from 17 to 500 ng�mL-1. Additionally, MBZ concentrations in tissue

and cyst material at surgery ranged from 60 to 207 ng�g-1 wet weight [48]. As a consequence of

its poor solubility and bioavailability, MBZ plasma levels are highly variable among patients, as

demonstrated in a number of studies [48–51]. Not surprisingly, a direct correlation between

the clinical outcome and the MBZ plasma concentration has also been reported in both CE

and AE patients [50].

Current recommended dosage of MBZ for the chemotherapeutical treatment of both

human CE and AE is 40–50 mg-1�kg-1�day-1 orally in three divided doses during meals [3]. In

AE patients MBZ should be administered for at least 2 years after radical surgery, or continu-

ously in inoperable cases, as well as for patients who have undergone incomplete resection or

liver transplantation [52]. Long-term MBZ therapy is generally well tolerated, having been

used for more than 20 years in some patients [53]. However, mild to serious adverse reactions

have been described in 5% to 40% of treated CE or AE patients [54–57]. Reported undesirable

side effects included gastrointestinal distress, hair loss, neutropenia, anaphylactic reactions,

glomerulonephritis, vertigo, headache, psychic conspicuousness, haematotoxic effects, and

abnormal levels of serum transaminases [48,58], with most of these reactions having occurred

during the first month of treatment.

Although MBZ during pregnancy hast not been associated with a significantly higher likeli-

hood of developing congenital abnormalities [59], a proper benefit-risk assessment must be

conducted when considering treating pregnant or potentially pregnant women, especially in
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Table 1. Characteristics of benzimidazole compounds, including their metabolites and solubility-improved formulations, as monotherapy for the treatment of cys-

tic and alveolar echinococcosis based on the published literature from 2008 to date.

Compound Disease Assay setting Dosage Treatment Efficacy assessment Reference

In
vitro

In
vivo

In patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%) Toxicity

Albendazole CE Yes Yesb — 10 nmol�mL-1 (in
vitro)

N/A (in
vitro)

30 days (in
vitro)

PSC Yes (77, in
vitro)

N/S [13]

5 mg�kg-1 (in vivo)e 6 months(in
vivo)

25 days (in
vivo)

No (14, in
vivo)

— Yesb — 50 mg�kg-1,e 4 months 45 days Cysts Yes (14) N/S [28]

— Yesb — 150 mg�kg-1�day-1,i At infection 10 days Cysts Yes (100) N/S [88]

— Yesb — 300 mg�kg-1�day-1,i 8 months 20 days Cysts Yes (98) N/S [88]

— Yesb — 300 mg�kg-1�day-1,i 8 months 20 days Cysts Yes (95) N/S [89]

— Yesb — 25 mg�kg-1,e At infection 30 days Cysts Yes (89) N/S [27]

— Yesb — 25 mg�kg-1,e 4 months 30 days Cysts Yes (98) N/S [27]

— Yesc — 2%g N/A Single dose Cysts Yes (100) N/S [90]

— Yesd — 8.5 mg�kg-1,e N/A 55 days Cysts Yes (97) N/S [91]

— — Yes (1) 800 mg�day-1,e Peri-

operative

15 months None No (—) N/S [156]

— — Yes (27) 10–15 mg�kg-1�day-1,e Variable 3 months Cysts Yes (26–34) None [80]

— — Yes (1) 15 mg�kg-1�day-1,e At diagnosis 5 months Cysts Yes (100) N/S [217]

— — Yes (26) 10 mg�kg-1�day-1,e Peri-

operative

1 week Cysts Yes (100) Yes [92]

— — Yes (101) 12–15 mg�kg-1�day-1,e Peri-

operative

<1–24

months

Cysts Yes (95) Mild [79]

— — Yes (48) 15 mg�kg-1�day-1,e Pre-

operative

4 weeks N/S N/S None [77]

AE Yes Yesb — 40 μM (in vitro) N/A (in
vitro)

12 days (in
vitro)

Cysts Yes (N/S, in
vitro)

None [95]

200 mg�kg-1�day-1 (in
vivo)e

8 weeks (in
vivo)

6 weeks (in
vivo)

Yes (48, in
vivo)

Yes Yesb — 20 μM (in vitro) N/A (in
vitro)

5–10 days

(in vitro)

Cysts No (—, in
vitro)

N/S [96]

200 mg�kg-1�day-1 (in
vivo)e

6 weeks (in
vivo)

6 weeks (in
vivo)

Yes (36, in
vivo)

— Yesb — 200 mg�kg-1�day-1,e 6 weeks 8 weeks Cysts Yes (NS) N/S [97]

— Yesb — 200 mg�kg-1�day-1,e,f 6 weeks 4–6 weeks Cysts Yes (36–84) N/S [98]

— — Yes (8) 10–15 mg�kg-1�day-1,e Variable 6–120

months

Cysts Yes (38) Severe [78]

— — Yes (1) N/S At diagnosis 48 months None No (—) Severe [99]

— — Yes (1) N/S At diagnosis 4 months None No (—) N/S [100]

Albendazole L CE Yes Yesb — 10 μg�mL-1 (in vitro) N/A (in
vitro)

20 days (in
vitro)

Cysts No (20, in
vitro)

N/S [101]

75 mg�kg-1 (in vivo)e 6 weeks (in
vivo)

4 months (in
vivo)

Yes (85, in
vivo)

AE — — Yes (4) 10 mg�kg-1�day-1.e Variable 6–120

months

Cysts Yes (75) Mild [78]

Albendazole SD CE — Yesb — 25 mg�kg-1,e At infection 30 days Cysts Yes (72) N/S [27]

— Yesb — 25 mg�kg-1,e 4 months 30 days Cysts Yes (91) N/S [27]

Albendazole CM AE — Yesb — 150 mg�kg-1 2 days-1,e 12 weeks 12 weeks Cysts Yes (95) N/S [103]

Albendazole LNC CE — Yesb — 5 mg�kg-1�day-1.e,j 5 months 30 days Cysts Yes (91e,

88j)

N/S [102]

(Continued)
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Table 1. (Continued)

Compound Disease Assay setting Dosage Treatment Efficacy assessment Reference

In
vitro

In
vivo

In patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%) Toxicity

Albendazole sulfoxide CE Yes — — 50 μg�mL-1 N/A 5 min. PSC Yes (98) N/A [73]

Yes — — 10 nmol�mL-1 N/A 30 days PSC Yes (50) N/A [13]

Yes — — 800 μg�mL-1 N/A 10 days PSC Yes (100) N/A [190]

— Yesb — 0.5 mg�kg-1�day-1,h 8 months 15 days Cysts Yes (~50) N/S [105]

Yes — — 200 μg�mL-1 N/A 30 min PSC Yes (100) N/A [104]

AE Yes — — 1 μg�mL-1 N/A 30 days PSC Yes (100) N/A [19]

Albendazole sulfoxide

SLN

CE — Yesb — 0.5 mg�kg-1�day-1,h 8 months 15 days Cysts Yes (~37) N/S [105]

Albendazole sulfoxide

PGLA-PEG

CE Yes — — 200 μg�mL-1 N/A 5 min PSC Yes (100) N/A [104]

Albendazole sulfone CE Yes — — 50 μg�mL-1 N/A 5 min. PSC Yes (97) N/A [73]

Fenbendazole AE Yes Yesb — 20 μM (in vitro) N/A (in
vitro)

5–10 days

(in vitro)

Cysts No (—, in
vitro)

N/S [96]

200 mg�kg-1 day-1(in
vivo)e

6 weeks (in
vivo)

6 weeks (in
vivo)

Yes (55, in
vivo)

Flubendazole CE Yes — — 10 μg�mL-1 N/S 24 days PSC Yes (78) N/A [112]

Yes — — 10 nmol�mL-1 N/S 30 days PSC Yes (99) N/A [13]

Yes — — 10 μg�mL-1 8 months 12 days Cysts Yes (N/S) N/A [112]

— Yesb — 5 mg�kg-1,e 6 months 25 days Cysts Yes (90) N/S [13]

— Yesd — 10 mg�kg-1,e N/A 55 days Cysts Yes (82) N/S [91]

Flubendazole solution CE — Yesb — 5 mg�kg-1,e 3 months 25 days Cysts Yes (90) N/S [113]

— Yesb — 5 mg�kg-1,e At infection 15 days Cysts Yes (77) N/S [114]

Flubendazole

suspension

CE — Yesb — 5 mg�kg-1,e 3 months 25 days Cysts Yes (23) N/S [113]

— Yesb — 5 mg�kg-1,e At infection 15 days Cysts Yes (84) N/S [114]

Mebendazole OP CE — Yesb — 25 mg�kg-1,e 8 months 14 days Cysts Yes (49–85) N/S [68]

Oxfendazole AE Yes — — 20 μM N/A 5–10 days None No (—) N/A [96]

CE — Yesd — 30 mg�kg-1,e N/A 11 weeks Cysts Yes (50–92) None [26]

AE — Yesd — 60 mg�kg-1,e N/A 4 weeks Cysts Yes (17–40) None [108]

Triclabendazole AE Yes — — 20 μg�mL-1 N/A 12 days Cysts Yes (100) N/A [120]

Triclabendazole

sulfoxide

AE Yes — — 20 μg�mL-1 N/A 15 days Cysts Yes (100) N/A [120]

L: Liposomal; N/A: Not applicable; N/S: Not specified; OP: Oil preparation; PSC: Protoscoleces; SD: Solid dispersion; SLN: Solid lipid nanoparticles; CM: chitosan

microspheres; LNC: lipid nanocapsules.
a Defined as a significant reduction of the parasite weight, burden or the viability of the any form of the larval stage of the parasite, including protoscoleces or cysts.
b Experimental infection in mice.
c Experimental infection in rabbit.
d Natural infection in sheep.
e Oral or intragastric administration.
f Intraperitoneal administration.
g Intrathoracic administration.
h Intramuscular administration.
i Administration route not specified.
j Subcutaneous administration.

https://doi.org/10.1371/journal.pntd.0006422.t001

Progress in the pharmacological treatment of human CE and AE

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006422 April 20, 2018 9 / 48

https://doi.org/10.1371/journal.pntd.0006422.t001
https://doi.org/10.1371/journal.pntd.0006422


the first trimester. The same considerations should be taken into account with children youn-

ger than six years.

During the last three decades, a wealth amount of information has been generated on the

efficacy of MBZ therapy for the treatment of human CE and AE. Overall, data from large clini-

cal series have demonstrated that MBZ mainly exerts an inhibitory, rather than curative, effect

on the growth of both E. granulosus and E. multilocularis metacestodes in vivo [57,60,61].

Depending on the Echinococcus species involved, the organ affected, the therapeutic regimen,

and the methods used for measuring the treatment outcome, MBZ chemotherapy was success-

ful in 14% to 49% of cases, whereas improvement was observed in 29% to 70% of the treated

patients. In 16% to 43% of cases the MBZ treatment failed [57,61–64]. Interestingly, MBZ ther-

apy success has been shown to be greatly influenced by cyst size and organ affected. Thus,

MBZ treatment was more effective in cysts whose mean size was� 5 cm, whereas it was largely

unsuccessful in cysts with a mean size of� 7 cm [64]. Similarly, in a case series of 23 patients

with CE or AE, cysts regression was more commonly observed in pulmonary (83%) than in

hepatic (18%) locations [65].

In recent years little research has been directed towards the improvement of the MBZ che-

motherapeutical activity. This is in large part due to the progressive substitution of MBZ by

albendazole in the treatment of human CE and AE (see below). Efforts have mainly been done

to develop new formulations to enhance the solubility and oral bioavailability of the drug. In

this regard, micro-particles of hydroxypropylcellulose, a cellulose derivative polymer used for

the preparation of artificial tears in the ophthalmic industry, has recently been used as a carrier

of MBZ at low dose (5 mg�kg-1) [66]. This formulation proved significantly more active than

pure MBZ against all the developmental stages of the nematode Trichinella spiralis in a murine

model. Similarly, cyclodextrins plus ABZ were more active than pure ABZ against this nema-

tode [67]. This system may represent a more secure drug delivery system in the clinical treat-

ment of systemic helminthic infections. Based on early experiments showing that oral

administration of MBZ with olive oil slightly increase its bioavailability [47], nine different

MBZ-oil preparations were used to assess the efficacy of these formulations in mice with

experimentally induced secondary hydatidosis. Among them, oleic acid, glycerol trioleate, and

soybean oil tested at 25 mg�kg-1 achieved the best results. Compared to controls, these three

MBZ-oil preparations evidenced a 1.6–2.8-fold increase in plasma concentration, a 1.7–

2.4-fold increase in bioavailability, and a 1.8–3.3-fold reduction in cyst weight. Independently

of the oil formulation used, MBZ levels in plasma were maintained for about 15 h post-admin-

istration [68] (Table 1).

Albendazole. Albendazole (ABZ) (S1 Fig, compound 2) is a BMZ derivative with a broad-

spectrum activity, including helminthic and protozoan infections. First introduced for human

use in 1982, ABZ has now replaced MBZ as the drug of choice for the treatment of CE and AE,

due mainly to its improved bioavailability, superior efficacy, easier administration, and lower

undesired effects [4,57,62,69]. In addition, ABZ is 40% cheaper than MBZ [58]. Still, ABZ

availability and/or cost continue to be an issue in many socioeconomically disadvantaged and

even in high-income countries [70].

Because ABZ is poorly absorbed in the gastrointestinal tract after oral administration,

higher doses of the parent drug are required to elicit effective therapeutic responses at the tis-

sue level. After intestinal absorption, ABZ passes on to the bloodstream and is carried to the

liver, where it is extensively metabolized. The process is so rapid that plasma levels of the par-

ent drug are usually undetectable [71]. ABZ is then oxidized to ABZ sulfoxide (S1 Fig, com-

pound 3) (ABZSO), also known as ricobendazole, the main metabolite in vivo [72]. ABZSO

can be further oxidized to ABZ sulfone (S1 Fig, compound 4) (ABZSN), a metabolite that has

demonstrated in vitro activity against E. granulosus protoscoleces and E. multilocularis vesicles
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[73,74]. In an early study assessing the pharmacokinetics of ABZ in 11 pre-surgical CE

patients, ABZSO plasma levels remained stable (0.6–1 μg�mL-1) after 2 to 4 days of treatment,

whereas intra-cyst concentration was 0.921 μg�mL-1 [75]. Similar results were obtained in two

CE patients treated with ABZ for 4–5 days before surgical removal, with pre- and intra-opera-

tive plasma levels of ABZSO ranging from 0.18–1.26 μg�mL-1 to 0.10–1.24 μg�mL-1, respec-

tively. Intra-cyst concentrations of ABZSO were estimated at 0.16 μg�mL-1 and 0.59 μg�mL-1,

respectively [76]. In a recent survey examining 48 CE patients treated with 15 mg�kg-1�day-1

ABZ for 10 days before surgery ABZSO concentrations were measured both in plasma

(0.431 μg�mL-1) and cysts (0.279 μg�mL-1) at the moment of surgical intervention. In this study

no clear association between plasma and cyst ABZSO concentration could be demonstrated,

maybe due to the different cyst types detected in the patients’ cohort [77]. In vitro parasitocidal

activity of ABZSO against E. multilocularis vesicles has been found at 10 μg�ml-1 in the culture

medium, reaching 2.5 to 5.5 μg�ml-1 inside the vesicles [74], a concentration three to ten times

higher than that reported inside CE cyst of ABZ treated patients.

ABZ oral administration is currently recommended at a dosage of 10–15 mg-1�kg-1�day-1 in

two divided doses for the treatment of both CE and AE [3]. Because ABZ is nowadays consid-

ered a relatively safe drug, continuous therapy is preferred over discontinuous treatment pro-

tocols. Recent descriptive studies based on case series have evidenced that the frequency of

undesirable side effects attributable to ABZ ranged from 3–5% [58,78,79], with some surveys

reporting none [80]. The adverse reactions more frequently described were jaundice, severe

headache, cough, hemoptysis, altered levels of serum transaminases, vertigo, loss of hair, and

itching [58,78,79]. Despite the fact that ABZ and ABZSO have been demonstrated teratogenic

in rats and rabbits at 6–30 mg-1�kg-1�day-1, examination of 49 case histories of women pre-

scribed with ABZ for the treatment of various helminthic infections during the first trimester

of pregnancy failed to demonstrate congenital abnormalities associated to drug exposure [81].

Additionally, and due to the scarcity of CE and AE cases in patients of pediatric age, ABZ has

not been fully evaluated in children younger than 6 years of age. However, it is important to

take into account that no proper pharmacokinetics studies have been conducted to conclu-

sively validate the optimal time course and ABZ dosage for the treatment of human CE and

AE. This is mostly because the clinical management of CE and AE performed by different cen-

tres globally is extremely heterogeneous. In addition, the slow progress of these diseases

together with the relatively low number of confirmed cases even in endemic areas makes very

difficult the design and implementation of clinical trials [82].

As previously mentioned poor water solubility and weak intestinal absorption of ABZ com-

promises its therapeutic effectiveness due to low bioavailability both in plasma and intra-cyst.

In an attempt to overcome this situation, a number of strategies have been tested to enhance

the bioavailability of the drug. For instance, it has been demonstrated that plasma concentra-

tion of ABZSO was 4.5-fold higher when ABZ was given with a fatty meal than when adminis-

tered in the fasting state [83]. Chemical modifications of the parent compound have also been

assessed. In this regard, an ester of ABZ has been synthesized with significant improved solu-

bility. This ABZ derivative exhibited a similar scolicidal activity than that observed for the par-

ent compound in in vitro experiments [84]. Toxicological tests conducted in mice orally or

intraperitoneally administered with the drug showed little effect, although more research is

needed to ascertain the efficacy of this chemically modified compound in experimental animal

models.

A significant amount of effort has also been devoted to develop novel formulations and

technologies for delivering ABZ into tissues in order to enhance its therapeutic effects. In this

regard, of particular interest is the appraisal of sustained release formulations, including lipo-

somes, biodegradable microspheres, and polymer conjugates, targeting specific organs in
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which the drug is released over a period of time in a controlled manner. In vitro experiments

with ABZ-encapsulated conventional liposomes and polyethylene glycol (PEG)-coated lipo-

somes have demonstrated release of the drug for prolonged periods of time when compared

with the parent compound [85]. Similarly, ABZ matrix tablets containing synthetic polymers

have been used to mimic in vitro the release of ABZ in fresh caecal content obtained from

euthanized rats [86].

More physiologically relevant data comes from an in vivo rat model evaluating the effective-

ness of ABZ associated to nanoparticles of the linear polysaccharide chitosan as a liver-target-

ing delivery system [87]. This formulation also included Poloxamer 188 as auxiliary solvent to

increase ABZ solubility and enhance its absorption at the intestinal level. As demonstrated by

in vivo near-infrared fluorescence real-time imaging, chitosan nanoparticles succeeded in

accumulating both ABZ and ABZSO in the liver of orally administered rats at concentrations

much higher than that obtained using MBZ as internal control [87]. Additionally, this formu-

lation combined also efficient drug loading, high physical stability, and low toxicity, features

that made it a promising delivery system for ABZ in the treatment of human CE and AE.

Finally, clinical data on the efficiency of formulations based on ABZ carrier vehicles is very

limited. Thus, in a recent case series three out of four (75%) patients who suffered from late-

stage AE and were administered with 10 mg�kg-1�day-1 liposomal ABZ achieved clinical

improvement, as determined by imaging methods confirming cyst regression and clinical

manifestation evaluation [78]. Although indicative of a parasitostatic rather than a parasitoci-

dal effect, this success rate was significantly higher than that (38%) obtained with ABZ admin-

istered as parent compound, suggesting that liposomal formulation considerably improved the

bioavailability of the drug. In addition, liposomal ABZ therapy was associated with milder

undesirable side effects compared with ABZ.

In recent years the chemotherapeutical efficacy of ABZ and its derivatives against the larval

stages (including protoscoleces) of E. granulosus and E. multilocularis has been assessed in a

number of in vitro and in vivo studies (Table 1). In this regard, it is worth to mention that

direct comparison among results obtained from different research groups is difficult due to

the lack of standardized protocols and procedures.

ABZ at 10 nmol�mL-1 was demonstrated to reduce 70% the vitality of E. granulosus proto-

scoleces in culture after 30 days of incubation [13]. Experimental infection of mice with proto-

scoleces of E. granulosus constitutes a widely used in vivo model for the assessment of ABZ

efficacy against secondary hydatidosis [13,28]. ABZ treatment for 20–30 days at different dose

regimes had both chemo-prophylactic and therapeutic properties in infected mice, achieving a

higher reduction in cyst weight compared to control (untreated) mice [27,88,89]. ABZ efficacy

was further enhanced (91–98%) when prepared as solid dispersion in formulation with Polox-

amer 188 [27]. In addition, 150 mg�kg-1 ABZ administered for 10 consecutive days from the

time of infection was demonstrated to completely inhibit cyst growing [88]. ABZ has also been

tested in the treatment of secondary pleural hydatidosis in rabbits [90]. In this animal model

intra-thoracic administration of 2% ABZ as a single dose was simultaneously conducted with

the injection of hydatid cyst fluid containing fertile protoscoleces into the pleural cavity of

experimentally infected rabbits. The chemo-prophylactic efficacy of the treatment was demon-

strated by the failure to develop hydatid cysts in treated animals compared to controls. Oral

treatment with ABZ over 55 days was also effective against the larval stage of E. granulosus in

naturally infected sheep [91]. In this study, the vitality and in vivo development to cysts in

mice of protoscoleces obtained from hydatid cysts recovered from treated animals was greatly

reduced compared to protoscoleces obtained from unmedicated animals.

ABZ has been the drug of choice for the treatment of human CE cases in later years. There-

fore, a number of clinical series studies have been recently conducted to assess the therapeutic

Progress in the pharmacological treatment of human CE and AE

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006422 April 20, 2018 12 / 48

https://doi.org/10.1371/journal.pntd.0006422


effect of ABZ either in long-term treated patients [80] or as a complement to surgical proce-

dures to prevent recurrence [77,79,92]. Depending on the study duration of treatment was

highly variable, ranging from less than a week to 24 months. In all cases ABZ dosages used

were within the recommended range. Importantly, the final efficacy assessment of ABZ may

vary in function of the criteria chosen to define success between treatment outcomes. For

instance, when this parameter was defined as the complete disappearance of all cysts or a

reduction of cyst size� 25% after treatment, the efficacy of ABZ therapy was estimated in the

range of 26–34% in a case series of Peruvian patients [80]. However, higher success rates may

be reported if less stringent definitions are adopted [93,94]. In addition, intra- and peri-opera-

tive treatment with ABZ has been demonstrated effective to prevent recurrence following sur-

gical or percutaneous (PAIR) procedures [79,92]. In this regard, ABZ treatment initiated 1

week before and continued for 1 month after PAIR procedure has been shown to be sufficient

to reduce or even prevent recurrence of the infection [92]. It should be also noted that length

of ABZ therapy was not necessarily associated with satisfactory treatment outcome, as evi-

denced in some long-term and follow-up studies [80], as the success/failure balance is also

influenced by a number of factors, including the size, location, and type of the cyst, or the age

and overall health status of the patient. Overall, prescribed ABZ regimes were well tolerated,

even in long-term therapies. When present, undesirable side effects were mild and rarely treat-

ment-limiting [79].

As in the case of CE, ABZ is also the preferred drug for the treatment of human AE nowa-

days. In vitro treatment of E. multilocularis metacestodes with 40 μM ABZ for 12 days led to a

rapid increase of alkalin phosphatase EmAP (a marker of pharmacological damage in treated

metacestodes) activity within four days of culture [95]. However, a lower concentration of the

drug had no effect in parasite vesicles treated for a shorter period of time, based on the mea-

surement of PGI activity as viability marker [96]. Studies relying on experimentally infected

mice developing secondary AE have also been used as in vivo models to assess the efficacy of

ABZ against the parasite. Oral or intra-gastric administration of the drug at 200 mg�kg-1�day-1

for 6–8 weeks have demonstrated a reduction in parasite weight in the range of 36% to 48% in

treated mice compared to the untreated control group [95–98]. Interestingly, intra-peritoneal

administration of 200 mg�kg-1�day-1 ABZ for four weeks was far more effective, achieving a

reduction of 84% in the parasite burden [98], although the translation of this regime to human

treatment in not very feasible. In a case series of eight AE patients with multi-organ involve-

ment including liver, lung, and brain, 10–15 mg�kg-1�day-1 ABZ therapy showed a 38% cure

rate [78] well in line with previously published data [4,58]. However, severe clinical symptoms

including jaundice, cough and hemoptysis were reported in some of the treated patients.

Although ABZ is capable of exerting a true parasitocidal effect, treatment discontinuation

often leads to the recurrence of parasite growth [99,100], maybe related with the more frequent

parasitostatic effect in vivo or to other reasons, e.g. the tubulin insoform expressed by the para-

site’s stem cells show limited affinity to BMZ [31].

In an attempt to improve ABZ solubility and subsequent bioavailability liposomal formula-

tions of the drug have been tested for chemotherapy against both CE and AE. Although lipo-

somal ABZ treatment of E. granulosus protoscoleces cultured in vitro only showed a very

limited (~20%) effect in viability reduction, intra-gastric administration of the same formula-

tion in mice with secondary hydatidosis was sufficient to prevent cyst development in 17 out

of 20 (85%) treated mice [101]. Unfortunately, pure ABZ was not used as a control in this

study, so a direct comparison of the therapeutic effectivities of both compounds was not possi-

ble. Liposomal ABZ formulations have also been successfully assessed against human AE.

Thus, in a clinical series of four AE patients with multi-organ involvement administration of

this formulation significantly improved the therapeutic efficacy of conventional ABZ
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treatment from 38% to 75%. Additionally, liposomal ABZ-treated patients experienced lesser

and milder clinical symptoms compared to conventional ABZ-treated patients. [78].

A drawback of liposomes is their limited loading capacity of hydrophobic drugs, including

ABZ. As an alternative, lipid nanocapsules are used to encapsulate lipophilic drugs without

using organic solvents. A formulation in lipid nanocapsules to enhance ABZ bioavailability

was described and tested against secondary CE in mice, showing 91% cyst weight reduction

and enhancing the results obtained when animals were treated with ABZ (47% reduction)

[102]. ABZ has been also formulated in chitosan microspheres [103]. These have shown effec-

tivity against AE secondary infection in mice after oral administration, resulting in 94.5% of

cyst weight reduction in treated mice, in comparison with 78.5% and 91.2% reduction

achieved after treatment with ABZ and ABZ liposomes, respectively [103]. When ABZ sulfox-

ide concentration profiles were compared, these were enhanced in mice treated with the

microspheres compared with those treated with liposomes. Moreover, treatment with ABZ in

chitosan microspheres induced a shift from Th2 to Th1 (potentially protective) response in

mice. A further advantage of those microspheres compared with liposomes is their stability

and simpler manufacturing [103].

As previously commented, ABZSO (S1 Fig, compound 3) is the main active metabolite of

ABZ in vivo [72]. This ABZ derivative has also evidenced a potent scolicidal activity in vitro.

For instance, 50 μg�mL-1 ABZSO was capable to kill 98% of E. granulosus protoscoleces in only

5 min. Very similar results were also obtained under the same treatment conditions with

ABZSN (S1 Fig, compound 4), an ABZ derivative metabolite initially thought to be inactive

[73]. In another study protoscolex viability decreased to ~45% after 30 days of incubation

when a much lower dose of 10 nmol�mL-1 (equivalent to 2.6 ng�mL-1) ABZSO was used, a dose

closer to the intra-cyst concentrations found in treated patients than those in the range

of μg�mL-1 [13]. ABZSO was compared to ABZSO loaded in PGLA-PEG nanopolymeric, long

circulating particles against E. granulosus protoscoleces in vitro, achieving 100% scolicidal

effect with 200 μg�mL-1 in 5 min, six times faster than with ABZSO alone [104]. Similarly,

ABZSO at 1 μg�mL-1 concentration rendered inactive 100% of E. multilocularis protoscoleces

after a 30 days exposure [58]. In addition, a recent in vivo study in mice with experimentally

induced secondary CE has demonstrated that intramuscular administration of ABZSO at low

dose (0.5 mg�kg-1�day-1) led to a~50% reduction in cyst size and weight in comparison to those

collected from untreated control mice. Use of ABZSO at the same concentration but formu-

lated as solid lipid nanoparticles did not further improve these results [105].

Fenbendazole. Since its introduction in 1974 fenbendazole (FBZ) (S1 Fig, compound 5)

has been shown as a broad spectrum ABZ anthelmintic effectively used against gastrointestinal

parasites including nematodes, cestodes belonging to the genus Taenia, and some protozoan

species such as Giardia. FBZ has been extensively used in veterinary medicine, but it is not cur-

rently licensed for human use.

The mechanism of action of FBZ is as other members of the BMZ family [35], and also has

a very poor solubility in water, so oral administration of the drug in production animals leads

to a limited absorption into the bloodstream. Absorbed FBZ is metabolised in the liver to its

active sulfoxide derivative, which is identical with oxfendazole (see below), and subsequently

to its sulfone derivative [106].

As in the case of ABZ, treatment of E. multilocularis metacestodes with FBZ in vitro was

ineffective in inducing damage in the parasite´s vesicles, as no measurable levels of the PGI

marker could be detected [96]. However, experimentally infected mice treated with FBZ exhib-

ited a 55% reduction in parasite burden compared with untreated control mice. In the same

study, ABZ-treated mice under the same treatment regimen only achieved a 36% reduction in

parasite weight. Whether the activity of FBZ in vivo, compared with its lack of activity in vitro,
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could be attributed to a concomitant action of the immune response of the host, should be

investigated. Given these results, the authors proposed the use of FBZ as an alternative che-

motherapeutical agent for the treatment of human AE.

Oxfendazole. Oxfendazole (OXF) (S1 Fig, compound 6) is the sulfoxide metabolite deriv-

ative of FBZ. This compound is much less frequent used in veterinary medicine than its parent

molecule. Its use has not been licensed for human use. As also demonstrated for both ABZ and

FBZ, OXF treatment had no apparent effect on E. multilocularis metacestodes cultured in vitro
[96]. The chemotherapeutical efficacy of OXF has been evaluated in a number of production

animal species naturally infected with E. granulosus. Suprisingly, many of those in vivo studies

refer to the effect of OXF in protoscolex viability, but not to its effects in cyst reduction or via-

bility. In an early study, absent or dead protoscoleces were found in 97% of cysts isolated from

OXF-treated animals compared to 28% of cysts from untreated control animals. Although the

authors claimed that OXF was at least as effective as ABZ for the treatment of CE, no direct

comparison between the two BMZ compounds was carried out [107]. Somewhat similar

results were obtained in a field trial survey where 30 sheep with CE were orally treated with

OXF. After necropsy, OXF treatment induced a viability reduction of 50% and 92% in proto-

scoleces collected from lung and liver cysts, respectively, in treated animals compared to

untreated control animals. Not surprisingly, OXF-treated sheep were associated with a mean

weight gain> 3 kg compared to control animals. No side effects were reported with this treat-

ment regimen [26]. In a following study, OXF administered to sheep naturally infected with E.

granulosus was effective in reducing the mean diameter or lung and liver cysts by 17% and

40%, respectively, compared to placebo [108]. These results support that OXF should be fur-

ther tested in vivo ideally compared with ABZ, regarding both activity and side effects, to guar-

antee its use in patients.

Flubendazole. Initially developed in the 1970s flubendazole (FLBZ) (S1 Fig, compound

7), the ρ-fluoro analogue of MBZ, is a synthetic broad-spectrum anthelminthic widely used in

veterinary medicine, particularly in poultry and swine. FLBZ is currently registered in Europe

as an anthelmintic in humans for intestinal nematodes including pinworms (Enterobius vermi-
cularis), roundworms (Ascaris lumbricoides), hookworms (Ancylostoma duodenale) and whip-

worms (Trichuris trichiura). Complying with the inherent physicochemical features of BMZ,

FLBZ has poor solubility and very low bioavailability, as demonstrated in studies of the in vivo
biotransformation of FLBZ administered to production animal species. Thus, intra-ruminal

administration of FLBZ showed low plasma concentrations of FLBZ parent drug being mea-

sured between 6 and 48 h, and only trace concentrations of hydrolysed FLBZ being detected

[109]. Subsequent research has demonstrated that the metabolic biotransformation of FLBZ

into reduced FLBZ (R-FLBZ) was taking part in the microsomal and cytosolic subcellular frac-

tions obtained from sheep liver and duodenal mucosa, with most (~75%) of R-FLBZ being

synthesized at the hepatic level and the remaining fraction being metabolized at the intestinal

level [110].

The therapeutic properties of FLBZ against Echinococcus infection have been only

attempted in a limited number of studies. Revealingly, treatment of E. granulosus protoscoleces

with FLBZ resulted in marked transcriptional modifications of structural and metabolic genes

essential for the energy production metabolism of the parasite that were not observed when

ABZ or nitazoxanide were used at the same concentration [111]. More specifically, FLBZ treat-

ment induced a 90% reduction in tubulin transcripts (as determined by RT-PCR and pPCR)

after 72 h post-treatment, compared to untreated controls. This effect was paralleled by a sig-

nificant (~80%) decrease in the gene expression and activity of the malate dehydrogenase. In

addition, after 24 h exposure to FLBZ a transient increase of intracellular Ca2+ followed by a

slow recovery to basal levels was observed. Because this intracellular Ca2+ raise took part before
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the depletion of cellular glycogen storages, the authors suggested that Ca2+ levels may play a

key role in the downstream signalling pathways controlling the energy metabolism of the para-

site [111].

FLBZ at concentrations in the nanomolar range has evidenced a potent scolicidal activity

(78–99%) in vitro, but at exposure times ranging from 24 to 30 days [13,112]. Interestingly, E.

granulosus protoscoleces incubated with 10 nmol�mL-1 FLBZ exhibited the quickest reduction

in protoscoleces viability compared to those obtained after treatment with the same concentra-

tions of ABZ, ABZSO, and R-FLBZ [13]. Additionally, experimentally infected mice have been

used as in vivo model for the assessment of the therapeutic properties of FLBZ against E. gran-
ulosus. Initial experiments using FLBZ orally administered managed to reduce 90% the mean

cyst weight of FLBZ-treated mice compared to untreated infected controls [13]. In treated

infected mice, FLBZ and R-FLBZ achieved peak plasma concentrations of 1.56 μg�mL-1 and

1.02 μg�mL-1, respectively, at 30–40 min after the administration of the parent compound,

being detected up to 6 h post-treatment [13]. Further studies using a double FLBZ dosage and

a longer exposure time did not further improve this success rate [91]. In an attempt to enhance

FLBZ bioavailability and in vivo efficacy, this drug has been experimentally assessed in solution

containing hydroxipropyl-β-cyclodextrin or in suspension containing carboxymethyl cellu-

lose. Oral administration of FLBZ formulated as a solution to healthy mice resulted in FLBZ

plasma concentrations higher than those measured for its reduced or hydrolysed metabolites,

peaking at 42 min post-treatment, and much higher than that reached after the oral adminis-

tration of FLBZ formulated as a suspension [113]. In addition, after administration of FLBZ-

solution to mice with secondary CE, the mean cyst weight was reduced by 78% three months

post-infection, compared to the values obtained for cysts recovered from untreated mice.

Treatment with FLBZ-suspension did not achieve a significant reduction of the parasite bur-

den [113]. Interestingly, both FLBZ-solution and FLBZ-suspension formulations exhibited a

strong chemoprophylactic activity when orally administered to mice experimentally infected

by intraperitoneal inoculation with E. granulosus protoscoleces. This treatment regimen suf-

fices to reduce by 77–84% the mean cyst weight of treated mice in comparison to unmedicated

control mice [114]. The study of the efficacy of FLBZ and their derivatives for the treatment of

AE has not been attempted to date. Among the recently developed new strategies aiming to

improve FLBZ systemic availability after oral administration, the use of amorphous solid dis-

persion (ASD) formulations is one of the most promising, as evidenced by the encouraging

results obtained in murine efficacy models of filariasis [115]. ASD-based preparations still

have not been evaluated for the treatment of human CE and AE.

Triclabendazole. Triclabendazole (TCBZ) (S1 Fig, compound 8) is a narrow-spectrum

BMZ compound mainly used to treat human cases of fasciolosis, although it is not currently

licensed for the management of human CE and AE. From a molecular point of view, the chem-

ical structure of TCBZ differs from other members of the BMZ family in which it contains a

chlorinated benzene ring but no carbamate group, features that may well account for the

highly specificity of TCBZ for liver flukes, with little or still unclear activity against nematodes,

cestodes, and other trematodes. TCBZ has been demonstrated as a potent inhibitor of protein

synthesis [116], and the ATP-binding cassette transporter ABCG2/BCRP, a membrane-associ-

ated protein involved in the extrusion of a wide range of xenotoxins [117], in addition to the

customary microtubule-inhibiting mode of action of all BMZ members. After oral administra-

tion, TCBZ is rapidly absorbed at the intestinal level. In sheep, biotransformation of the parent

compound in liver microsomes resulted in the generation of the active metabolite TCBZ-sulf-

oxide (TCBZSO) and thereafter to TCBZ-sulfone (TCBZSN) and hydroxy derivatives

[118,119].
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So far, the chemotherapeutical properties of TCBZ against Echinococcus has been only

tested in in vitro-cultured E. multilocularis metacestodes, where incubations with 20 μg�mL-1

TCBZ or TCBZSO for 12 days or 15 days, respectively, caused a complete disruption of the

parasite´s vesicles [120]. Further in vivo studies should be done for its recommendation for the

potential treatment of AE and CE patients. In this sense, recommended TCBZ dosages for the

treatment of human fascioliasis is similar to those recommended for other BMZ compounds

used against AE and CE [121]. Reported adverse reactions associated to TCBZ therapy are also

similar to those reported for other BMZ. No information is currently available regarding the

potential teratogenicity of TCBZ in pregnant women, or its suitability for the treatment of

patients of paediatric age.

Sodium salts of ricobendazole and triclabendazole sulfoxide. Anthelmintic compounds

containing a sulfanyl-benzimidazole (SBZ) scaffold such as ABZ and TCBZ are in vivo oxi-

dized into sulfinyl-benzimidazole (SOBZ) derivatives (ricobendazole, RBZ, and triclabenda-

zole sulfoxide, TRBZSO, respectively) which are the active metabolites of drugs. The sulfur

atom of the sulfoxide group is a stereogenic center and, consequently, RBZ, and TRBZSO con-

sist of an equimolar mixture of two enantiomers. In vivo studies have highlighted a stereoselec-

tivity in SOBZ drug-organism interaction depending on the species, age and gender of the

host as well as the type of parasite [122–124]. As an example, following oral administration of

RBZ, it has been demonstrated that the (−)-RBZ enantiomer is predominant in rats and mice,

whereas the (+)-RBZ enantiomer is prevalent in sheep, goats, dogs, cattle and humans [125].

The different plasma concentration of the two enantiomers suggests a potential therapeutic

application of enantiopure forms of sulfoxides. As above mentioned, ABZ and TCBZ are

totally insoluble in water whereas RBZ and TRBZSO are poorly soluble in aqueous conditions

and in most of the injectable co-solvents or surfactants.

Recently, a simple synthetic strategy based on the presence of the acidic NH group in the

benzimidazole nucleus has been presented with aim to obtain new water-solubility salts of

RBZ and TRBZSO [126,127]. Accordingly, the nitrogen atom of the imidazole nucleus has

been successfully deprotonated and salified through the addition of freshly ground sodium

hydroxide at room temperature. The transformation of racemic or enantiopure sulfoxides,

which can be obtained on a semipreprative scale by enantioselective HPLC on polysaccharide-

based chiral stationary phases, into their sodium salts (RBZ-Na and TRBZSO-Na) offers the

opportunity to optimize the physicochemical parameters of the ionizable drug molecules with-

out changing their pharmacologically active moiety. Since the single synthetic step affords

quantitative yields and uses ethanol as solvent, the proposed approach seems to be ideally

suited for a sustainable large-scale pharmaceutical development of the alkaline salts.

Dissolution experiments via spectrophotometric measurements indicate that RBZ-Na salt is

highly soluble either in water and 0.01 M phosphate pH 7.4 buffer solution. In fact, the solubil-

ity of RBZ-Na is 22.83 mg�mL−1 in water (vs 0.06 mg�mL−1 of the unsalified form) and 14.49

mg�mL−1 at physiological pH [126]. Because of these encouraging results, the preparation of

injectable anthelmintic formulations based on both racemic and enantiopure forms of

RBZ-Na seem to be potentially possible. More recently, efficacy of RBZ-Na and its enantio-

mers [(R)-RBZ-Na; (S)-RBZ-Na)] has been tested in a BALB/C model of experimental second-

ary CE, resulting in extensive damage to the parasite in preclinical studies (Casulli, personal

communication).The novel sodium salt of TRBZSO has been also subjected to solubility tests

using as dissolving medium a 0.01 M phosphate buffer solution at pH 7.4. Unlike TRBZSO

which is practically insoluble at physiological pH (i.e. more than 100 mL of solvent are needed

to dissolve 0.5 mg of sulfoxide), TRBZSO-Na exhibits the notable solubility of 19.3 mg�mL−1

[127].
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As a general principle, it should be stressed that attempting to improve systemic bioavail-

ability of BMZ drugs can results in an increase of side adverse events that could be overcome

by decreasing currently recommended human dosage.

Benzimidazoles in combined therapies with other biocidal agents. In an attempt to

improve the chemotherapeutic management of human CE and AE, a number of BMZ agents

have been assessed in combined treatment regimens with other drugs including synthetic and

natural compounds [39,42,43]. The rationale behind this strategy is based on the ground that

interaction between two drugs may well have a synergistic effect resulting in a significant

enhancement of their individual therapeutic performances. In this regard, relevant in vitro and

in vivo data concerning the combined chemotherapeutic efficacy of BMZ with other anti-infec-

tive agents for the treatment of CE and AE reported in the literature from 2008 to date are

shown in Table 2. Some of these compounds have also been used alone, and as such are also

revised in their respective sections.

Because ABZ is by far the drug most frequently used in clinical treatment regimens nowa-

days, it is not surprising that this compound is usually the most frequently used drug in com-

bined therapies. For instance in vivo treatment of E. multilocularis-infected mice with ABZ in

combination with its derivative dihydroartemisinin (see below) has been demonstrated effec-

tive in reducing by 76% the parasite weights compared to untreated control mice. Under the

same experimental conditions, ABZ monotherapy achieved a 48% reduction in cyst weight.

Importantly, none of the treated mice exhibited aberrant behaviour or abnormal histopatho-

logical findings, suggesting that treatments were well tolerated [95].

Intra-gastric administration of ABZ formulated as a liposomal preparation in combination

with Huaier (Trametes robiniophila) aqueous extract (see below) to mice with secondary CE

resulted in the complete elimination of the parasite in 95% (19/20) of treated mice, compared

to 85% (17/20) of mice treated with liposomal ABZ alone. Apparent toxic effects were reported

neither in medicated mice nor in mammalian cell (Neuro2a and HEK293) cultures. In addi-

tion, in vitro incubation of E. granulosus protoscoleces with a combination of ABZ and Huaier

aqueous extract achieved a moderate (50%) reduction in the number of viable protoscoleces

after a prolonged incubation time (12 days) [101].

The pesticide lufenuron (see below) has recently been proposed as an enhancer of the ABZ

parasitocidal activity [28]. Although experimentally infected mice with secondary CE sepa-

rately treated with ABZ or lufenuron did not show a significant decrease in the number and

size of cysts compared to untreated controls, the combined administration of both compounds

achieved a significant reduction in cyst diameter both per animal (38%) and mice group

(28%). These results suggested that a synergistic effect was taking place when these drugs were

used in combination, although the actual extent of this finding and its mechanistic explanation

should be confirmed in future studies. A synergistic effect was also found when ABZ and met-

formin, the first-line medication against type 2 diabetes, are combined, both against E. granu-
losus protoscoleces and cysts in vitro and against E. granulosus cysts in vivo [128,129]. The in
vitro effect of the combination of BZSO and metformin showed promising results, although

100% mortality of the parasite occurred after prolonged periods of incubation (> 7 days). In
vivo (mouse model), cyst weight reduction was very high in animals treated with the combined

drugs, and higher than the reduction achieved with either metformin or albendazole alone

(96% vs. 84%). More importantly, reduction in cyst number was also very high in mice treated

with the combined drugs, in comparison with animals treated with any of the drugs separately

(86% vs. 56%).

ABZ-combined treatments not necessarily translate into a significant improvement of the

efficacy demonstrated by monotherapeutic approaches, or even elicit inhibitory responses.

This seems to be the case of the combined application of ABZ and the synthetic analogue of
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Table 2. Characteristics of benzimidazole compounds, including their metabolites and solubility-improved formulations, in combination with other drugs for the

treatment of human cystic and alveolar echinococcosis based on the published literature from 2008 to date.

Compound Disease Assay setting Dosage Treatment Efficacy assessment Reference

In
vitro

In
vivo

In

patients

(n)

Initiation Duration Activity

against

Successa

(%)

Toxicity

Albendazole +

Amphotericin B

AE Yes — — 1 μg�mL-1 (ABZSO) +

2.5 μg�mL-1 (AMB)

N/A 16 days Cysts Yes (100) N/A [19]

Albendazole +

Artesunate

AE — Yesb — 50 mg�kg-1�day-1

(ABZ)d + 200 mg�kg-1�

day-1 (Artesunate)d

8 weeks 6 weeks Cysts Yes (76) Yes [95]

Albendazole + DHA AE — Yesb — 50 mg�kg-1�day-1

(ABZ)d + 200 mg�kg-1�

day-1 (DHA)d

8 weeks 6 weeks Cysts Yes (76) Yes [95]

Albendazole L +

Huaier

CE Yes Yesb — In vitro: 10 μg�mL-1 (ABZ

L) +2 mg�mL-1 (Huaier)

N/A (in
vitro)

12 days (in
vitro)

PSC, Cysts Yes (~50,

in vitro)

N/S [101]

In vivo: 75 mg�kg-1 (ABZ

L)d + 15 g�kg-1 (Huaier)d
6 weeks (in

vivo)

4 months (in
vivo)

Yes (95, in
vivo)

Albendazole +

Lufenuron

CE — Yesb — 50 mg�kg-1 (ABZ)d + 100

mg�kg-1 (LFR)d
4 months 45 days Cysts Yes (28–

38)

N/S [28]

Albendazole L +

Mefloquine

AE — Yesb — 200 mg�kg-1�day-1 (ABZ)d

+25 mg�kg-1 (MFQ)d
6 weeks 8 weeks Cysts Yes (N/S) N/S [97]

Albendazole +

Metformin

CE — Yesb — 5 mg�kg-1�day-1 (ABZ)d +

50 mg�kg-1�day-1 (MET)d
4 months 8 weeks Cysts Yes (96) N/S [129]

Albendazole +

Praziquantel

CE — Yesc — 30 mg�kg-1 (ABZ)d + 40

mg�kg-1 (PZQ)d
N/A 6 weeks Cysts Yes (70) None [108]

— — Yes (57) 400 mg�day-1 (ABZ)d +

20–75 mg�kg-1 (PZQ)d
Unknown 1–109 months Cysts Yes (~45) Mild [130]

Albendazole +

Thymol

AE Yes Yesb — In vitro: 10 μg�mL-1

(ABZ) + 10 μg�mL-1

(THY)

N/A (in
vitro)

18 days (in
vitro)

PSC, Cysts Yes (33, in
vitro)

N/S [131]

In vivo: 5 mg�kg-1

(ABZ)d + 40 mg�kg-1

(THY)d

7 weeks (in
vivo)

20 days (in
vivo)

Yes (83.5,

in vivo)

[132]

Yes — — 10 μg�mL-1 (ABZ)

+10 μg�mL-1 (THY)

N/A 10 days Cysts Yes (N/S) N/A [131]

Albendazole

sulfoxide +

Metformin

CE Yes — — 2.5 μM (ABZSO) + 1mM

(MET)

N/A 7 days (PSC),

27 days

(Cysts)

PSC, Cysts Yes (100) N/A [129]

Albendazole

sulfoxide + sulfone

CE Yes — — 50 μg�mL-1 (ABZSO) +

50 μg�mL-1 (ABZSN)

N/A 5 min. PSC Yes (99) N/A [73]

Flubendazole +

Ivermectin

CE Yes — — 10 μg�mL-1 (FBZ) +

1 μg�mL-1 (IVM)

N/A 24 days Cysts Yes (96) N/A [112]

Yes — — 1 μg�mL-1 (FBZ) +

1 μg�mL-1 (IVM)

N/A 12 days Cysts Yes (N/S) N/A [112]

Flubendazole +

Nitazoxanide

CE Yes Yesb — 10 μg�mL-1 (FBZ) +

10 μg�mL-1 (NTZ)

N/A (in
vitro)

12 days (in
vitro)

PSC, Cysts Yes (100,

in vitro)

N/S [133]

10 mg�kg-1 (ABZ)d + 100

mg�kg-1 (NTZ)d
8 months

(in vivo)

25 days (in
vivo)

Yes (66, in
vivo)

Oxfendazole +

Nitazoxanide

CE — Yesc — 30 mg�kg-1 (OXF)d + 15

mg�kg-1 (NTZ)d
N/A 11 weeks Cysts Yes (61–

100)

None [26]

(Continued)
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quinine mefloquine (see below). Thus, whereas monotherapy with ABZ orally administered to

E. multilocularis-infected mice was highly effective in reducing parasite weight, combined

application of ABZ under the same regimen with mefloquine orally administered did not

increase the treatment efficacy [97]. The fact that intraperitoneal, but not oral, administration

of mefloquine was successful in reducing the parasite biomass provided also experimental

proof of the relevance of the delivery route in the outcome of the treatment. In another study,

the combined treatment of in vitro-cultured E. multilocularis metacestodes with ABZ and the

fungicidal agent amphotericin B (S1 Fig, compound 9) exerted an inhibitory effect on vesicle

destruction, whereas pre-incubation with ABZ for 24 h and subsequent exposure to amphoter-

icin B exerted a complete destruction of parasite vesicles [19]. Similarly, simultaneous expo-

sure of cultured E. granulosus protoscoleces to the ABZ derivatives ABZSO and ABZSN for

only five min resulted in the killing of 98% of the treated protoscoleces. This treatment effi-

ciency was practically identical to those obtained by ABZSO (98%) and ABZSN (97%) when

used in monotherapy [73].

Historically, dual treatment with ABZ and the anthelmintic praziquantel (see below) has

been one of the preferred combined therapies against human CE and AE [39,43]. In recent

years, new data have become available from in vivo animal models and clinical retrospective

case series (e.g., in sheep naturally infected with E. granulosus [108] and in CE patients [130].

However, data on patients are blurry and it is important to highlight that to date there are no

published randomized clinical trials comparing treatment with ABZ in monotherapy versus

combined therapy with ABZ plus praziquantel, so the potential additive or synergistic effect of

these drugs has not been conclusively demonstrated yet [32].

Simultaneous exposure of cultured E. multilocularis protoscoleces to ABZ and the natural

biocide compound thymol (see below) has been reported to obtain a 33% reduction in proto-

scoleces viability after a prolonged time. This reduction rate was higher than those obtained by

ABZ and thymol when individually tested. In addition, treatment with this drug combination

was able to induce substantial ultra-structural alteration and severe damage in cultured E. mul-
tilocularis metacestodes, as determined by scanning electron microscopy [131]. The same com-

bination was more effective than ABZ alone against E. multilocularis established cysts in the

mouse model [132].

Apart of ABZ, the only BMZ agents used in combined therapies against Echinococcus para-

sites were FLBZ and OXF (Table 2). Treatment of cultured E. granulosus protoscoleces with

FLBZ plus the anti-parasitic drug ivermectin (see below) evidenced a 96% viability reduction,

whereas therapies with FLBZ alone or ivermectin alone were effective in killing ~80% of the

Table 2. (Continued)

Compound Disease Assay setting Dosage Treatment Efficacy assessment Reference

In
vitro

In
vivo

In

patients

(n)

Initiation Duration Activity

against

Successa

(%)

Toxicity

Oxfendazole +

Praziquantel

CE — Yesc — 30 mg�kg-1 (OXF)d + 40

mg�kg-1 (PZQ)d
N/A 6 weeks Cysts Yes (72) None [108]

ABZ: Albendazole; ABZSN: Albendazole sulfone; ABZSO: Albendazole sulfoxide; AMB: Amphotericin B; DHA: Dihydroartemisin; IVM: Ivermectin; LFR: Lufenuron;

NTZ: MFQ: Mefloquine; Nitazoxanide; OXF: Oxfendazole; PZQ: Praziquantel; PSC: Protoscoleces; THY: Thymol
a Defined as a significant reduction of the parasite burden or the viability of the any form of the larval stage of the parasite, including protoscoleces or cysts.
b Experimental infection in mice.
c Natural infection in sheep.
d Oral or intra-gastric administration.

https://doi.org/10.1371/journal.pntd.0006422.t002
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protoscoleces. Similarly, E. granulosus metacestodes cultured in vitro and exposed to a dual

treatment of FLBZ and ivermectin were damaged faster and to a greater extent than when

these drugs were used separately. Vitality assessment was based on the macroscopic appear-

ance of the cysts and the ultra-structural features of the germinal layer [112]. Combination of

FLBZ with the synthetic anti-protozoal agent nitazoxanide has been also tested against E. gran-
ulosus protoscoleces and cysts in vitro and against cysts in a mouse model [133]. In vitro, NTZ

is 100% effective after 12 days at 10 μg�mL-1, either alone or in combination with FLBZ, while

FLBZ alone takes at least 30 days to reach 100% effectivity. In contrast, intragastric administra-

tion of FLBZ plus NTZ in infected mice resulted in 65.9% reduction of cyst weight, although

FLBZ alone resulted in a higher reduction (80%). These results suggest that the distribution of

NTZ in vivo could limit its access to the cysts [133].

The therapeutic efficacy of OXF in combination with praziquantel or nitazoxanide (see

below) against CE has been evaluated in randomized placebo-controlled trials in naturally

infected sheep. Thus, dual oral administration of OXF and nitazoxanide led to a decrease in

the number of fertile cysts and an increase in the number of degenerated cysts, achieving a sco-

licidal activity of 61% for lung cyst and of 100% for liver cysts. These efficacy rates were higher

than those found when OXF was used alone (50% and 92%, respectively). No side effects were

detected in the treated animals, suggesting that the drug dosages used in this study were safe in

sheep. Importantly, the cost of a single dose of OXF for an average weight sheep (32 kg) was

estimated at US$ 0.26 [26]. In a subsequent study, oral administration of OXF and praziquan-

tel reduced the parasite biomass by ~72% in both pulmonary and hepatic cysts, although this

therapeutic effectivity was not significantly higher than that obtained with OXF alone [108].

Thus, praziquantel activity against CE or AE is still a matter of discussion.

Synthetic compounds

A wide range of chemically synthetised molecules, including anti-virals, antibiotics, anti-para-

sites, anti-mycotics, immunomodulatory agents, and inhibitor compounds of key metabolic

enzymes or signalling pathways have been evaluated in in vitro and in vivo experimental set-

tings in order to assess their potential effect against human CE and AE. However, some of

these synthetic compounds have been studied comparatively less thoroughly that their coun-

terparts of the BZD family. Thus, their actual chemotherapeutic efficacy and safety of use

remains unclear in many cases. A summary of these molecules and compounds, together with

their therapeutic performance is presented in Table 3.

Following, detailed information is given on the different compounds, their mode of action

(when available), and effectivity against E. granulosus and E. multilocularis in vitro and in vivo
at the different dosages and administration regimes assayed by different authors. While infor-

mation on the use of BMZ against AE and CE has been compiled only from 2008, drugs and

compounds different from BMZ are presented historically, allowing the reader to identify

most of the agents that have been assayed to seek for their potential use in the treatment of

human AE and CE.

Anti-virals and antibiotics. Fifteen different anti-viral and antibiotic compounds have

been tested against CE and/or AE (Table 3). The majority of them have been specifically

assessed for their scolicidal activity and potential use to avoid recurrence in CE, either intra-

operatively in the peri-cystic area or directly injected into the cysts during surgical interven-

tion or percutaneous management.

Currently, 20% saline in contact with the germinative membrane of cysts (intra-cyst) for at

least 15 min is recommended to avoid recurrences in CE [3]. Nevertheless, 20% saline can

induce cholangitis when the cyst is communicated with bile ducts. Thus, alternative
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Table 3. Characteristics of synthetic compounds for the treatment of human cystic and alveolar echinococcosis based on the published literature.

Compound Disease Assay setting Dosage Treatment Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%)

ANTIVIRALS AND ANTIBIOTICS

Benzoic acid

thioureides

AE Yes — — 2–20 μM N/A 1 week Cysts Yes (30->50) N/A [20]

Cetrimide CE Yes Yesc,d — 1.5% (cetrimide) +

0.5%

(chlorhexidine) (in
vitro)

N/A 10 min (in
vitro)

PSC Yes (93, in vitro) No [15,73]

0.1–5% (in vivo)f 1 min (in
vivo)

Yes (100, in vivo)

Chlorhexidine

gluconate

CE — Yesb Yes (30) 0.04% (in vivo)f N/S 5 min PSC Yes (100, in vivo) N/S [16,17]

Fluoride CE Yes — — 20% N/A 16 h PSC Yes (100) N/A [140]

Glucose 50% CE Yes — — 50% N/A 5 min PSC Yes (95) N/A [134]

H2O2 CE Yes — See text 4% N/A 10 min PSC Yes (96) N/A [73]

Isoprinosine AE Yes Yesb — 2 mM (in vitro) N/A (in
vitro)

48 h (in
vitro)

PSC,

Cysts

Yes (95, in vitro) N/S [146,147]

0.5 g�kg-1�day-1 (in
vivo)e

3 moths (in
vivo)

2 weeks (in
vivo)

Yes (42, in vivo)

CE — Yesb — 1–2 g�kg-1�day-1,e 10 months 2 weeks to 2

months

Cysts Yes (80–90) N/S [143]

Monensin CE Yes — — 10 μM N/A 3 days PSC Yes (100) N/A [137]

Nitrite and

peroxynitrite

CE Yes — — 80–320 μM N/A 1–2 days PSC Yes (100) N/A [138]

Povidone-iodine CE Yes — See text 10% N/A N/S PSC Yes (100) N/A [90]

Rifampicin AE Yes — — 10 μg�mL-1 N/A 6 weeks Cysts No N/A [144,145]

CE — Yes — 9 mg�kg-1,e 3 months 2 weeks Cysts No N/S [142]

Saline 20% CE Yes — See text 20% N/A 10 min PSC Yes (99–100) N/A [73,90]

Sodium arsenite CE Yes — — 20 M N/A 6 days PSC Yes (100) N/A [141]

Taurolidine CE Yes Yesb — 5 mg�mL-1 (in vitro) N/A (in
vitro)

1.5 h (in
vitro)

PSC Yes (100, in vitro) No [139]

400 mg�kg-1 (in
vivo)g,h

0–3 months

(in vivo)

Single dose

(in vivo)

Yes (prophylaxis)

No (therapy)

Trimetoprim-

sulfametoxazole

AE Yes — — 0.02 mg�mL-1 N/A 4 weeks Cysts No N/A [144]

ANTIPROTOZOA

Artemisinin and

synthetic ozonide

derivates

CE Yes — — 40 μM N/A 4 days PSC Yes (90) N/A [95]

AE Yes Yesb — 20–40 μM (in vitro) N/A (in
vitro)

4–5 days (in
vitro)

Cysts Yes (100, in vitro) Yes [95,149]

200 mg�kg-1�day-1

(in vivo)e
2 months

(in vivo
6 weeks (in

vivo)

Yes (75–100, in
vivo)

Mefloquine AE Yes Yesb — 60 μM (in vitro) N/A (in
vitro)

2–5 days (in
vitro)

Cysts Yes (100, in vitro) Yes (see

[152])

[97,152]

8 weeks (in
vivo)g

25 mg�kg-1�day-1 (in
vivo)g

1.5 months

(in vivo)e. g
12 weeks

(in vivo)e
Yes (100g, 78e, in

vivo)

100 mg�kg-1 3 days-1

(in vivo)e

(Continued)
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Table 3. (Continued)

Compound Disease Assay setting Dosage Treatment Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%)

Mefloquine

enantiomer DB1127

AE Yes Yesb — 20 μM (in vitro) N/A (in
vitro)

5 days (in
vitro)

Cysts Yes (100, in vitro) Yes [98,153]

50 mg�kg-1�day-1 (in
vivo)e

4 weeks (in
vivo)e

No (in vivo)e

2 mg�kg-1�day-1 (in
vivo)g

1.5 months

(in vivo)

6 weeks (in
vivo)g

Yes (70, in vivo)g

Miltefosine AE Yes — — 7.5 μg�mL-1 N/A 6 weeks Cysts No N/A [144,145]

Nitazoxanide AE Yes Yesb Yes (6) 10 μg to 5 mg�mL-1

(in vitro)

N/A (in
vitro)

10 days-6

weeks (in
vitro)

Cysts Yes (variable, in
vitro and in vivo)

Yes [5]

[6]

[22]

[145]

[150]

[154]

3 mg�day-1 (in vivo)e 0–2 months

(in vivo)

35 days (in
vivo)

N/S (in patients) 15 months

(in patients)

15 months

(in

patients)

No (in patients)

CE — Yesc See text 15 mg�kg-1�week-1

or

30 mg�kg-1�day-1 (in
vivo)e

N/A 5 days to 5

weeks

Cysts No No [26]

Nitazoxanide derivates

RM4807 and RM4841

AE Yes — — 5 mg�mL-1 N/A 5 days Cysts Yes (N/S) N/A [22]

ANTIHELMINTHIC

Clorsulon AE Yes — — 15 μg�mL-1 N/A 20 days Cysts No N/A [120]

Ivermectin AE Yes — — 1.75 mg�mL-1 N/A 6 weeks Cysts No N/A [144,145]

CE Yes Yesb — 0.1 mg�mL-1 (in
vitro)

N/A (in
vitro)

50–72 h (in
vitro)

PSC,

Cysts

Yes (100, in vitro) N/S [160]

[161]

[162]

[163]
4 mg�kg-1�day-1 (in

vivo)e
48 h or 4

months (in
vivo)

4 months

(in vivo)

No (in vivo)

Levamisole CE Yes — — 0.1 mg�mL-1 N/A 6 days PSC Yes (100) N/A [160]

Praziquantel CE Yes — See text 0.1 mg�mL-1 N/A 48 h PSC Yes (100) N/A [14]

AE Yes Yesb See text 10 μg�mL-1 (in vitro) N/A (in
vitro)

N/S (in
vivo)

PSC,

Cysts

Yes (100, in vitro) N/S [164,165]

300 mg�kg-1�day-1

(in vivo)e
1 month (in

vivo)

69 days (in
vivo)

No (in vivo)

ANTIARTHROPODA

Lufenuron CE — Yesb — 100 mg�kg-1�day-1,i 4 months 4 months Cysts No N/S [28]

ANTIMYCOTIC

Caspofungin AE Yes — — 0.07 mg�mL-1 N/A 1.5 months Cysts No N/A [144]

Itraconazole AE Yes — — 0.7 mg�mL-1 N/A 5 weeks Cysts No N/A [144,145]

IMMUNOMODULATORS

Cyclosporin A AE — Yesb — 40 mg�kg-1�day-1,i 1.5 months 80 days Cysts No N/A [170]

CE Yes Yesb — 50 μg�mL-1 (in vitro) N/A (in
vitro)

15 days (in
vitro)

PSC,

Cysts

Yes (100, in vitro) N/S [168,169]

50 mg�kg-1�day-1 (in
vivo)i

4.5 months

(in vivo)

5 days (in
vivo)

Yes (42, in vivo)

ANTINEOPLASTIC

(Continued)
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Table 3. (Continued)

Compound Disease Assay setting Dosage Treatment Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%)

Bortezomib AE Yes Yesb — 0.5 μM (in vitro) N/A (in
vitro)

5 days (in
vitro)

Cysts Yes (100, in vitro) N/S [177]

0.7 mg or 0.5 kg-1�

week-1 (in vivo)g
6 weeks (in

vivo)

3 weeks (in
vivo)

No (in vivo)

Doxorubicin

(nanoparticles)

AE — Yesb — 5 mg�kg-1,h 70–80 days 2 doses Cysts Yes (60) N/S [179]

Genistein and

derivates

AE, CE Yes — — 10 μg�mL-1 N/A 4 to 14 days PSC,

Cysts

Yes (60–100 for

PSC, N/S for cysts

in vitro)

N/A [173]

Imatinib AE Yes — — 50 μM N/A 1–3 weeks Cells,

PSC,

Cysts

Yes (100) N/A [174]

5-fluorouracil,

Paclitaxel

CE Yes — — 10 μg�mL-1 N/A 7–72 days Cells,

PSC,

Cysts

Yes (100, for

5-fluorouracil)

N/A [175]

Methotrexate,

Navelbine, Vincristine

AE Yes — — 2.4–60 nM N/A 5 days Cysts No N/A [171]

2-Methoxyestradiol CE Yes — — 10 μM N/A 1 week Cysts Yes (100) N/A [172]

AE Yes Yesb — 10 μM (in vitro) N/A (in
vitro)

1 week (in
vitro)

Cysts Yes (100, in vitro) N/A [172]

200 mg�kg-1�day-1

(in vivo)e
2 months

(in vivo)

6 weeks (in
vivo)

No (in vivo)

Mitomycin C AE — Yesb — 0.1 mg�week-1,g 1 day or 1

month

3 weeks Cysts Yes (76) N/A [180]

η(6)-Areneruthenium

(II) phosphite

AE Yes — — 20 μM N/A 5 days Cysts Yes (100) N/A [176]

Tamoxifen CE Yes Yesb — 20 μM (in vitro) N/A (in
vitro)

2–7 days (in
vitro)

PSC,

Cysts

Yes (100, in vitro N/S [25]

20–200 mg�kg-1�

day-1 (in vivo)e
3–6 months

(in vivo)

32–80 days

(in vivo)

Yes (61–83, in
vivo)

GENOME-BASED

Kinase inhibitor

BI2536

AE Yes — — 50 nM N/A 2–3 weeks Cells,

Cysts

Yes (100 for cysts;

98 for cells)

N/A [182]

Kinase inhibitors

ML3403 and

SB202190

AE Yes — — 5 μM N/A 4 days

(cysts), 4

weeks

(cells)

Cells,

Cysts

Yes (100 for cells,

50 for cysts)

N/A [183]

Kinase inhibitor

SB202190

CE Yes — — 80 μM N/A 1 day PSC Yes (70) N/A [184]

OTHERS

Chenodeoxycholic

acid

CE Yes — — 2 M N/A 10 days PSC Yes (100) N/A [188]

(Continued)
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compounds with scolicidal activity have been tested by different authors, the majority of them

presenting a generic mechanism of action directed towards biological membranes.

Cetrimide (one of whose active components is cetrimonium bromide; S1 Fig, compound

10), 50% glucose, H2O2, monensin (S1 Fig, compound 11), nitrite, and peroxynitrite, povi-

done-iodine (S1 Fig, compound 12), taurolidine (S1 Fig, compound 13), sodium arsenite, and

fluoride have been tested on E. granulosus protoscoleces in vitro. The effect of 50% glucose on

protoscoleces was promising [134], although the adverse effects of high concentrations of glu-

cose on host cells should be further assessed.

H2O2 and povidone-iodine have shown scolicidal activity in vitro at 4% and 10%, respec-

tively [73,90], but have been more frequently used peri-operatively covering the peri-cystic

interventional area with patches soaked with diluted solutions of one of these compounds.

Due to their toxicity, the intra-cyst use of H2O2 and povidone-iodine has been performed in

very few cases [135,136] and its general use for intra-operative interventions cannot be

recommended.

Monensin, nitric oxid derivates, taurolidine, sodium arsenite, and fluoride have shown sco-

licidal effect after prolonged in vitro incubation times (� 12 h), but the activity of these com-

pounds at the time periods (min) usually employed for scolicidal (intra-cyst) treatment have

not been reported [137–141]. Taurolidine has been also tested in vivo immediately after intra-

peritoneal inoculation of mice with protoscoleces, showing 100% scolicidal activity after a sin-

gle intravenous or intra-peritoneal dose of 400 mg�kg-1 [139]. Interestingly, taurolidine

showed potential scolicidal activity in vivo at the same dose regimen in mice treated after 3

months post-infection, period in which recovered cysts were all sterile, without adverse effects.

Nevertheless, taurolidine did not show activity against the metacestode besides its scolicidal

effect [139].

Additionally, cetrimide and chlorhexidine gluconate (S1 Fig, compound 14) have been

used as scolicidals after intracyst injection [17,73]. Low concentration (0.04% to 0.1%) and

short exposure times (1 to 5 min) for both compounds were ~100% effective against protosco-

leces inside the treated cysts. Chlorhexidine gluconate alone has been also used in patients,

showing 100% activity against protoscoleces after intra-cyst injection of a 0.04% solution for 5

min, with no side effects reported [16].

Table 3. (Continued)

Compound Disease Assay setting Dosage Treatment Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Activity

against

Successa (%)

Selenium

nanoparticles

CE Yes — — 500 μg�mL-1 N/A 10 min PSC Yes (100) N/A [186]

N/A: Not applicable; N/S: Not specified; PSC: Protoscoleces.
a Defined as a significant reduction of the parasite burden or the viability of the any form of the larval stage of the parasite, including protoscoleces or cysts.
b Experimental infection in mice.
c Natural infection in sheep.
d Natural infection in cattle.
e Oral or intra-gastric administration.
f Intracystic injection administration.
g Intraperitoneal administration.
h Intravenous administration.
i Subcutaneous administration.

https://doi.org/10.1371/journal.pntd.0006422.t003
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The anti-viral isoprinosine (S1 Fig, compound 15) and the antibiotic rifampicin (S1 Fig,

compound 16) have been also tested against CE. Both were given orally to mice after 3.3 and

10 months post-infection, respectively. Rifampicin did not show any effect against an estab-

lished CE infection [142], while isoprinosine at different doses and treatment duration (see

Table 3) resulted in a 80–90% decrease of the mean cyst weight and microscopical alterations

of the cyst germinal membrane and protoscoleces in treated animals compared with non-

treated mice [143]. Similar results were found when the two compounds were used against E.

multilocularis. Rifampicin, an inhibitor of the DNA-dependent RNA polymerase enzyme in

bacterias, did not show efficacy against AE cysts in vitro [144,145], and isoprinosine was only

partially effective against both E. multilocularis protoscoleces in vitro and metacestode vesicles

in mice with secondary AE [146,147]. The widely used trimethoprim-sulfametoxazole (S1 Fig,

compound 17) antibiotics, also inhibitors of bacterial enzymes responsible for the synthesis of

folic acid, did not show activity against AE cysts in vitro [144]. Importantly, the mechanism of

action of isoprinosine is also related with the immune system, and it has been shown to restore

impaired cell-mediated immune response to its baseline level, in addition to enhancing

humoral immune responses [148].

Fifty members of a novel class of anti-microbial compounds, 2-(4-R-phenoxymethyl) ben-

zoic acid (S1 Fig, compound 18) thioureides, were synthesized and characterized with respect

to their activity against AE cysts in vitro [20]. Two compounds (14 and 49) showed the stron-

gest cysticidal effect, resulting in the damage of 30% to more than 50% of cysts at concentra-

tions of 2 to 20 μM after incubation for 1 week, without exerting toxic effects in host cells [20].

The mode of action of thioureides in eucaryotes is unknown, so far, but due to their activity in
vitro against AE cysts at non-toxic concentrations, their testing in vivo should be performed.

Anti-protozoa. Several drugs usually used against protozoan parasites have been tested

mainly against E. multilocularis vesicles both in vitro and in vivo (Table 3). Artemisinin (S1

Fig, compound 19) and its synthetic ozonide derivatives (S1 Fig, compound 20), mefloquine

(S1 Fig, compound 21) and its enantiomers, and nitazoxanide (S1 Fig, compound 22) and its

derivatives have shown high activity against AE cysts in vitro [5,6,22,95,97,145,149,150]. On

the contrary, miltefosine (S1 Fig, compound 23), which has been postulated to reduce ATP

and GTP synthesis, showed to be ineffective against AE cysts in vitro at concentrations similar

to those used for the above-mentioned compounds [144,145]. Only three of these drugs (arte-

misinin, mefloquine plus enantiomers, and nitazoxanide) have been further tested in the in
vivo AE mouse model.

The semi-synthetic derivative of artemisinin artesunate (S1 Fig, compound 24), potentially

activating a cascade of reactions leading to the generation of reactive oxygen radicals which

damages parasites, did not affect alone parasite growth in mice orally treated at 2 months post-

infection, but improved the effects of ABZ when combined [95], probably due to the enhanced

entry of artesunate inside ABZ-damaged cysts. Although toxic in vitro [95,149] and in several

in vivo models, artemisinin and its derivatives are rapidly eliminated after oral intake, repre-

senting a relatively safe route of administration in patients [151]. Artemisinin has shown to be

also effective against E. granulosus protoscoleces in vitro after 4 days of incubation [94]. Thus,

it could be worth assessing the scolicidal activity of this drug in the in vivo murine CE model.

Mefloquine has been tested in vitro and showed a dose-dependent cysticidal activity of

100% at 24 μM for 10 days, as determined by murine bioassays [97]. In vivo, oral dosage and

intraperitoneal administration of mefloquine in mice against AE, resulted in a decrease in par-

asite weight–parasitostatic effect–comparable to that obtained after oral ABZ treatment, with-

out increase in treatment efficacy when both drugs were given together [97,152]. The in vivo
dose of mefloquine used in these studies was 20-fold lower than the LD50 in rats (880 mg�kg-1)

when administered orally (http://www.drugbank.ca/drugs/DB00358), but potential toxicity of
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this drug in the intraperitoneal route should be further assessed if it should be recommended

as alternative to ABZ. Similar results were obtained in vitro and in vivo for the DB1127 (S1 Fig,

compound 25) enantiomer of mefloquine [98,153]. The parasitostatic effects of mefloquine in
vivo could be attributed to its binding to ferritin and cystatin of the parasite [152].

Nitazoxanide has been the most extensively studied compound in this group of drugs. As

previously mentioned, nitazoxanide has shown high activity against AE cysts both in vitro and

in vivo given orally, with variable effectivity depending on the exposure time and the dose [5].

Due to those promising results, nitazoxanide has been used for the treatment of AE patients.

Unfortunately, available data on patients’ therapies are limited to a comparatively low number

of cases under heterogeneous regime treatments and clinical scenarios. For instance, in six

patients treated with nitazoxanide for a median of 15 months, no improvement was observed

and side effects were detected in some of the treated cases [154]. Similarly, in a single patient,

monotherapy with 1 g nitazoxanide for 15 months did not stop parasite growth [155].

Nitazoxanide has also reached clinical use, in combination with ABZ against CE in patients,

but again studies are on a very limited number of patients with different clinical and manage-

ment conditions. Contradictory results have been reported using similar treatment regimens

for bone CE patients (stable versus progressive disease after treatment) [156,157]. Similarly,

contradicting results were also obtained when nitazoxanide in combination with ABZ and pra-

ziquantel were used for the treatment of five CE patients, although conclusions are difficult to

drawn due to the heterogeneity in the management of each patient [158]. Nitazoxanide has

also been used for the treatment of CE in vivo on naturally infected sheep, showing no effects

on cysts from treated animals [26]. Together, these results discourage the further use of nita-

zoxanide against Echinococcus.
Anthelmintic. Four different anti-helmintic drugs have been assayed against E. granulo-

sus and E. multilocularis in vitro (Table 3). Clorsulon (S1 Fig, compound 26), an inhibitor of

phosphoglycerate mutase and kinase with a selective inhibition of glucose utilization, has

shown activity against flukes [159]. Despite the fact that both enzymes are known to be meta-

bolically expressed in E. multilocularis [31], when used on E. multilocularis metacestodes in
vitro clorsulon did not show activity against the parasite [120]. This lack of activity could be

attributed to sequence differences in the two enzymes between fasciolids and Echinococcus.
Ivermectin (S1 Fig, compound 27) is used against nematodes and increases Cl- permeability

in the parasite’s muscle cells, resulting in parasite paralysis [159]. A paralyzing effect followed

by irreversible tissue vacuolization and increased HSP60 expression was shown after in vitro
exposure of E. granulosus protoscoleces to both ivermectin and levamisole (S1 Fig, compound

28) (an agonist of nicotinic receptors producing spastic paralysis in worms), although after

prolonged (> 48 h) treatment periods [160,161]. Direct intra-cyst injection of ivermect at lapa-

rotomy in a rodent model also resulted in scolicidal activity, as demonstrated by the damaged

germinative membranes found in injected cysts [162]. In contrast, ivermectin showed no in
vivo effect in the CE secondary infection mouse model when given orally either at 48 hours or

at 4 months post-infection, although it showed synergistic effects when given in combination

with ABZ [163]. Ivermectin-induced damage of the germinal membrane after direct intra-cyst

injection but lack of effect when administered orally could be due to the limited access of the

drug into the cyst in in vivo conditions, rather than to the actual effectivity of the drug against

the cyst structures. Similarly, ivermectin has also been tested against E. multilocularis vesicles

in vitro, showing no effect at high concentration and prolonged exposure times [144,145].

Praziquantel (S1 Fig, compound 29) causes rapid muscle contraction in schistosomes due

to the induction of alterations in Ca2+ permeability of parasites’ cells. Praziquantel has been

tested in vitro and in vivo against both CE and AE. This compound was active against E. granu-
losus protoscoleces and E. multilocularis metacestodes in vitro [14,164]. Regarding its activity
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against protosocoleces, there is some clinical evidence supporting the role of praziquantel in

combination with ABZ in CE patients to reduce the risk of disease recurrence, although this

therapeutic regimen should be further evaluated for efficacy and safety in humans [3]. Against

the cyst stage, few data are available, either from prospective assays in naturally infected sheep

[108] or from retrospective studies in patients [32,130], for the recommendation of its use,

either alone or in combination with other drugs, in prolonged drug treatment for chronic CE.

For AE, experimental data showed that praziquantel enhances cyst growth in jirds [165] and

thus cannot be recommended for the treatment of AE patients. The voltage-gated calcium

channel subunit beta, the proposed target of praziquantel in schistosomes, is not expressed in

Echinococcus cysts [31], providing a putative explanation for its apparent lack of efficacy in
vivo against CE or AE cysts, and discouraging further testing in patients.

Anti-arthropoda. Only a single anti-arthopoda drug, the insect growth inhibitor lufe-

nuron (S1 Fig, compound 30), has been tested against CE in the in vivo mouse model

(Table 3). After secondary infection of mice, the subcutaneous administration of lufenuron at

4 months post-infection was demonstrated to be ineffective against the established parasite

[28]. However, luferunon enhanced the activity of ABZ when administered together, and its

effect is attributed to the interference with the laminated layer cyst development [28]. One of

the main problems associated with the efficacy of drugs against CE established cysts is to reach

enough drug concentration inside the cyst to be active against the parasite. The mechanical

barrier represented by the laminated layer of the metacestode, and the low solubility of most of

the drugs used or assayed against CE and AE, hinders the passive drug entry into the cyst.

Importantly, luferunon is the only known compound that could interfere with the formation

of the laminated layer in established CE cysts, thus potentially facilitating the access of other

drugs to the live parasite tissue inside the cyst. Further studies on the mechanisms by which

luferunon interferes with the laminated layer formation could lead to the formulation of com-

pounds to be used in combination with BMZ in the treatment of CE patients.

Anti-micotics. The activity of the anti-fungal drugs caspofungin (S1 Fig, compound 31)

and itraconazole (S1 Fig, compound 32) has been tested against E. multilocularis vesicles in
vitro (Table 3). Both are selective inhibitors of fungal growth by interfering with the fungal cell

wall synthesis. Caspofungin showed to be ineffective, while itraconazole provoked cyst disinte-

gration effects, but regrowth of the parasite was shown at seven days after the discontinuation

of incubation with the drug. Similar effects were found when cysts were incubated with ABZ

[144,145]. Whether the reversible effects of drugs like itraconazole and ABZ on AE cysts could

be due to the selective action on specific cells of E. multilocularis and not on cells particularly

important for parasite survival and re-growth after drug treatment discontinuation should be

further investigated. Additionally, amphotericin B has been used as salvage treatment for AE

patients with intolerance or resistance to benzimidazoles [166]. Although amphotericin B was

not parasitocidal, intravenous doses of 0.5 mg�kg-1 of body weight three times per week effec-

tively halted disease progression in three patients. Because amphotericin B is commonly used

to inhibit fungal growth in culture media, its parasitostatic properties may have inadverted,

detrimental effects in in vitro experimental settings involving E. multilocularis vesicles.

Immunomodulators. Cyclosporine A (S1 Fig, compound 33) is an immunosuppressant

that specifically and reversibly blocks the transcription of cytokine genes in activated T cells

[167]. Cyclosporine has been tested against AE and CE cysts in the mouse model and against

E. granulosus protoscoleces in vitro (Table 3). A prolonged exposure time was needed for scoli-

cidal activity in vitro [168], precluding its use by direct injection into cysts for a rapid scolicidal

activity, but showing its potential use for pre- and post-treatment in CE patients subjected to

surgery or aspiration techniques. Interestingly, cyclosporine has shown activity against proto-

scoleces and cysts in the CE mouse model. When administered subcutaneously 2 days prior to
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infection, the total number of cysts was around 18-fold lower than that found in non-treated,

infected mice [169]. The effect was less pronounced when treatment started at 4.5 months

post-infection, resulting in a ~50% decrease in cyst weight in treated animals compared with

non-treated mice [169].

When cyclosporine has been used at a similar regime treatment against AE in mice, the

immunosuppressive effects resulted in the enhanced growth of the parasite in treated animals

[170]. Cyclosporine is used in AE patients after liver transplantation, and the in vivo results

obtained with this drug shows the need of a careful follow-up of recurrences in this group of

patients.

Anti-neoplastics. Numerous anti-neoplastic drugs have been tested for activity against E.

granulosus and E. multilocularis (Table 3). In general, it should be mentioned that these com-

pounds have well defined targets as anti-cancer compounds in mammalian cells, although

their potential targets in Echinococcus have usually not been investigated, thus their effects can-

not be attributed to the presence of target homologues in the parasite. Additionally, and simi-

lar than to other drugs assayed against Echinococcus, dose of anti-cancer drugs reported by

some authors are too high to be safely used in patients. Two inhibitors of mitosis due to their

interaction with tubulin named navelbine (S1 Fig, compound 34) and vincristine (S1 Fig, com-

pound 35), in addition to methotrexate (S1 Fig, compound 36), an inhibitor of folic acid

reductase leading to inhibition of DNA synthesis, have been shown to be ineffective against E.

multilocularis vesicles in vitro [171], either due to low affinity of these compounds against the

specifically targeted molecules in E. multilocularis or to the scanty access of these drugs inside

the cysts. Similarly, 2-methoxyestradiol (S1 Fig, compound 37), an angiogenesis inhibitor,

showed to be ineffective against both CE and AE cysts in vitro and against AE in the mouse

model [172]. Treatment of AE cysts in vitro with this drug showed profound alterations of the

germinative layer of the parasite as seen in transmission electron microscopy, but drug-

induced damage was not enough to avoid parasite growth after subsequent injection of the

AE-treated material into mice [172]. Although this effect could be attributed to the need of

prolonged treatments to achieve full effectiveness of defined compounds, this study provided

experimental evidence showing that, in order to be conclusively considered as a cysticidal

agent, any drug assessed in vitro has to achieve the complete inactivation of the cyst. The in
vivo treatment of AE infected mice with a combination of 2-methoxyestradiol and ABZ at 2

months post infection did not show higher reduction in cyst weight in treated animals than in

animals treated only with ABZ [172]. Thus, this study is also a good example to illustrate that,

to some extent, the laminar layer surrounding the metacestode actively contributes with regard

to protectivity against drugs.

A number of anti-neoplastic drugs have shown in vitro activity against stem cell, protosco-

leces and cysts/vesicles of E. granulosus and E. multilocularis. Genistein (S1 Fig, compound 38)

and derivatives, imatinib (S1 Fig, compound 39), 5-fluorouracil (S1 Fig, compound 40), pacli-

taxel (S1 Fig, compound 41) and tamoxifen (S1 Fig, compound 42) are scolicidal in vitro, all

them after prolonged (> 24 hours) exposure time, and could be pre- and post-treatment can-

didate drugs to prevent recurrences in CE [25,173–175]. All those drugs, together with arener-

uthenium complexes (S1 Fig, compound 43) [176] and bortezomib [177,178], showed also

activity against CE or AE cysts in vitro (Table 3), but only two–bortezomib and tamoxifen–

were further tested in vivo [25,177]. Tamoxifen showed 100% activity against CE protoscoleces

in vitro, although this rate was reduced to 40% (6 out of 10 treated mice developed cysts) when

the treatment was given orally to mice at infection. When used at 3 or 6 months post infection,

treatment resulted in parasitostatic effects (reduction in cyst weight), which were more pro-

nounced in early (3 months) than in late (6 months) post infection regimens [25]. Tamoxifen

binds to estrogen receptors (ER), and if E. granulosus is sensitive to estrogens the candidate
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receptor might be the E. granulosus ER described in this study [25]. The proposed short-term,

low-dose therapy assessed by the authors could be a novel alternative approach for human CE

treatment. In contrast, although bortezomib treatment resulted in a clear effect on the mor-

phological structure of E. multilocularis lesions, both in vitro and in vivo, in terms of parasite

weight no significant reduction compared to untreated animals was found, thus giving evi-

dence of potentially low effectivity of this compound against AE [177].

Additionally, doxorubicin (S1 Fig, compound 44) and mitomicyn C (S1 Fig, compound 45)

have shown some effect on AE cysts in the rodent model. Doxorubicin, bound to a colloidal

biodegradable drug carrier, was tested in jirds infected by intrahepatic injection of AE meta-

cestodes [179]. Two intravenous doses at 70 and 80 days post-infection resulted in the absence

of liver parasite lesions in 60% of treated animals, compared with the non-treated control

group. Surprisingly, when one additional dose was given to the animals at day 90 post-infec-

tion, animals without liver lesions were only 10%. When parasite burden in the peritoneum

was assessed, no differences were found between treated and non-treated animals [179]. These

results, together with the lower effect achieved by the administration regimen of three doses

instead of two doses, question the real effectiveness of this treatment against AE in this experi-

mental model.

Mitomicyn C was effective against AE in jirds intraperitoneally administered either at 1 day

or at 1 month post-infection, reducing ~70% the parasite weight in treated animals [180]. Nev-

ertheless, the three doses of 0.1 mg each weekly described by the author resulted in the death

of 25% of the treated animals. The same author tried lower doses with the same anti-parasitic

effects and no adverse reactions, but only administered at 1 day post-infection [180].

Many anti-cancer drugs primarily target cells in mitosis. In this sense, three anti-neoplastic

drugs have been tested for activity against stem cells from both E. granulosus (5-fluorouracil

and paclitaxel; [175]) and E. multilocularis metacestodes (imanitib [174]). E. granulosus cells

were incubated for 7 days with 10, 5, and 1 μg�mL-1 of 5- fluorouracil or paclitaxel, and cell via-

bility was assessed by trypan blue exclusion and scanning electron microscopy. At 10 μg�mL-1,

both drugs inhibited cell proliferation and reduced the original cell number, whereas the

remaining cells were contracted and blebbing [175]. On the other hand, E. multilocularis larvae

have been shown to express potential targets for imanitib [174]. This drug had deleterious

effects on both cysts and protoscoleces of the parasite in vitro. Additionally, exposure of para-

site stem cells to imanitib (at 25 or 50 μM) resulted in the complete abolition of new vesicle for-

mation [174]. In vivo studies should be undertaken to further investigate whether imanitib

treatment could have a beneficial effect in the treatment of AE patients.

Genome-based targets. Recently, a set of 250–300 kinases has been identified in the Echi-
nococcus genome [31,181]. Kinases bind both their specific substrate and ATP, thus they can

be inhibited by small molecule compounds [181]. Due to their importance in malignant trans-

formation, research already brought up several inhibitory compounds currently in use to treat

various forms of cancer [181]. Not surprisingly, several anti-neoplastic drugs tested against

Echinococcus are kinase inhibitors (e.g., imatinib and pyridinylimidazoles; Table 3). These and

other anti-neoplastic drugs with this mode of action have been leading compounds for the

design of related small molecules that show therapeutic effects against the parasite. These

include the kinase inhibitors BI2536 (S1 Fig, compound 46) [182], ML3403 (S1 Fig, compound

47) and SB202190 (S1 Fig, compound 48) [183,184] (see Table 3). The three of them have been

tested in vitro against stem cells and metacestodes of E. multilocularis, and the inhibitor

SB202190 has been also assessed in vitro against E. granulosus protoscoleces [184].

BI2536, ML3403, and SB202190 have shown 98–100% activity against E. multilocularis stem

cells at 50 nM and 5 μM, being necessary prolonged incubation times (from 2 to 4 weeks) to

achieve full activity with lower compound concentrations [182,183]. Similarly, long incubation
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times (>1 week) seem to be also required to exert their activity against whole cysts. In this

regard, incubation for 4 days resulted in 50% cyst destruction [183], while 100% activity was

reached only after 3 weeks of incubation [182]. The kinase inhibitor SB202190 showed a sub-

optimal activity (70%) when tested against E. granulosus protoscoleces at a much higher con-

centration (80 μM) than that showing activity against E. multilocularis stem cells and vesicles

[184] (Table 3), although the incubation time was shorter (1 day) than the exposure time used

against E. multilocularis. Whether these differences were due to the parasite species or to other

factors should be further investigated.

Others. Selenium is a micronutrient with anti-oxidant activity that has been used incor-

porated in nanoparticles to inhibit bacterial growth [185]. Biogenic selenium nanoparticles

have been tested against E. granulosus protoscoleces in vitro, showing 100% activity after 10

min incubation of the parasite with 500 μg�mL-1 of this compound [186]. This activity was

comparable to that of other scolicidal compounds that can be used intra-cyst, making selenium

incorporated in nanoparticles a potentially suitable scolicidal candidate. In this sense, nano-

particles preparation and sterilization described by the authors are laborious and time-con-

suming, but the use of commercially available and homogeneous preparations of nanoparticles

could facilitate its use.

Chenodeoxycholic acid (CDCA) is a bile acid commonly used for the treatment of gall-

stones. Its use as a protoscolicidal agent is justified after the report of induction of apoptosis by

bile acids in different cell types, including cancer cells [187]. As such, CDCA has been used in
vitro against E. granulosus protoscoleces, and although 100% effective, its effects are seen only

after prolonged incubation time (10 days) at high concentration (2 to 3 mol�L-1) [188], limiting

its use as a protoscolicidal intra-operative agent.

Natural compounds

In the last few years, a growing number of plant- and fungus-derived products have been

tested against CE and AE, seeking for alternative natural compounds for the effective treat-

ment of both diseases. Nevertheless, the vast majority of these molecules have been exclusively

assayed in vitro against E. granulosus protoscoleces, and only three of them have been evalu-

ated for its activity in the murine in vivo model (Table 4). In general, these compounds are nat-

urally occurring biocides with low toxicity, acting synergistically with synthetic compounds

against pathogen resistant strains, and as such they can be used as general purpose disinfec-

tants [189]. Although some of them have shown effects potentially similar to ABZ, none of

them have been tested, alone or in combination, in CE or AE patients.

Thymol, menthol and plant extracts rich in thymol and menthol. Thymol (S1 Fig, com-

pound 49), a natural monoterpene phenol, and plant extracts rich in this compound, have

shown strong antiseptic properties. Commercial thymol and in-house made (essential oil,

water, methanol or ethanol) extracts showed dose- and time-dependent activities when tested

in vitro against E. granulosus (Table 4). Thymol at 50 to 200 μg�mL-1 applied in vitro during

seconds to few minutes resulted in the death of 100% of treated protoscoleces, inducing ultra-

structural damage to 100% of in vitro and in vivo obtained cysts [190,191]. In contrast, in vitro
treatment of protoscoleces and vesicles of E. multilocularis with 10 μg�mL-1 thymol only

resulted in partial loss of viability even at prolonged (10 or more days) incubation times [131].

The different effects obtained with thymol against both parasite species could be due to the

need of a minimum concentration of the compound (�50 μg�mL-1) to exert its full parasitoci-

dal activity. For plant extracts rich in thymol such as Trachyspermum ammi and Origanum vul-
gare essential oils, and Salvia officinalis and Thymus vulgaris ethanol extracts, 100% scolicidal

activity have been achieved against E. granulosus at different concentrations and incubation
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Table 4. Characteristics of natural compounds for the treatment of human cystic and alveolar echinococcosis based on the published literature.

Compound Disease Assay setting Dosage Treatment duration Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Tested

against

Successa (%)

THYMOL, MENTHOL AND PLANT EXTRACTS RICH IN THYMOL

Thymol CE Yes Yesb — 50–200 μg�mL-1

(PCS and cysts in
vitro)

N/A (in
vitro)

1 min to 2 days

(PSC and Cysts);

7 days (Cells) (in
vitro)

PSC,

Cysts,

Cells

Yes (100 for PSC

and Cysts; 63%

for Cells, in vitro)

No [142]

[190]

[191]

[193]5 μg�mL-1 (cells in
vitro)

64 mg�kg-1�day-1

(in vivo)c
3.5 months

(in vivo)

2 weeks (in vivo) No (in vivo)

AE Yes — — 10 μg�mL-1 N/A 10–36 days PSC,

Cysts

Yes (48 for PSC,

NA for cysts)

N/A [131]

Menthol CE Yes — — 50 μg�mL-1 N/A 5 days PSC Yes (100) N/A [190]

Trachyspermum ammi
L. fruit essential oil

CE Yes — — 10 mg�mL-1 N/A 10 min PSC Yes (100) N/A [192]

Zataria multiflora
water or methanol

extracts

CE — Yesb — 20–40 mL�l-1,d 0–8 months 3–8 months PSC,

Cysts

Yes (100 in

prophylaxis and

93 in therapy)

No [88,89]

Thymus vulgaris and

Origanum vulgare
essential oils

CE Yes Yesb — 10 μg�mL-1 (in
vitro)

4 months 5 days to 2

months (in vitro)

PSC,

Cysts

Yes (60–70 for

PSC, N/S for cysts

in vitro)

N/A [175]

[194]

40 mg kg-1�day-1

(in vivo)d
20 days (in vivo) Yes (72.3 in vivo)

Salvia officinalis and

Thymus vulgaris
ethanol extracts

CE Yes — — 500 μg�mL-1 N/A 6–7 days PSC Yes (100) N/A [190]

Mentha spp. essential

oil

CE Yes — — 10 μg�mL-1 N/A 1–18 days PSC,

Cysts,

Cells

Yes (50–100 for

PSC; NA for cysts;

77% for cells)

N/A [195]

[193]

Rosmarinus officinalis
essential oil

CE Yes — — 10 μg�mL-1 N/A 7 days Cells Yes (82%) N/A [193]

PLANT AND FUNGUS EXTRACTS

Allium sativum
methanol or

chloroform extract

CE Yes — — 50–200 mg�mL-1 N/A 10–180 min PSC Yes (98–100) N/A [196–198]

Berberis vulgaris
aequous extract

CE Yes — — 4 mg�mL-1 N/A 5 min PSC Yes (100) N/A [201]

Cnidium monnieri
osthole

CE Yes — — 120 M N/A 3 days PSC Yes (100) N/A [210]

AE — Yesb — 100 mg�kg-1�day-1 3.5 months 6 weeks Cysts Yes (50) No

Corylus spp. and

Curcurbia spp.

hydroalcoholic

extracts

CE Yes — — 50 mg�mL-1 N/A 2 h PSC Yes (10) N/A [197]

Curcuma longa
ethanol extract

CE Yes — — 50 mg�mL-1 N/A 30 min PSC Yes (93) N/A [206]

Mallotus philippinensis
fruit methanol extract

CE Yes — — 20 mg�mL-1 N/A 2 h PSC Yes (99) N/A [199]

Nigella sativa seed

essential oil

CE Yes — — 10 mg�mL-1 N/A 10 min PSC Yes (100) N/A [208]

Olea europaea leaves

aequous extract

CE Yes — — 0.1% N/A 2 h PSC Yes (90) N/A [203]

Penicillum extracted

chitosan

CE Yes — — 200–400 μg�mL-1 N/A 3 h PSC Yes (100) N/A [212,213]

(Continued)
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times [175,190,192] (Table 4). On the contrary, the essential oil of Thymus vulgaris showed

only 70% scolicidal activity [175]. In-house made extracts could contain variable amounts of

the active compound depending on the extraction procedure. Therefore, interpretation of effi-

cacy results could be greatly facilitated if commercial and standarised extracts are applied for

the assays.

Thymol, and the essential oils from Menta spp. and Rosmarinus officinalis, have been used

against E. granulosus cells derived from the germinal layer of cysts, resulting in a loss of viabil-

ity of 63% at 5 μg�mL-1 for thymol and between 71% and 82% for the other extracts at

10 μg�mL-1, after seven days of exposure, similar to the effects caused by ABZ at the same con-

centration and exposure time [193]. Interestingly, recent investigations have indicated that

germinative (stem) cells might be less sensitive to chemotherapy because they express a beta-

tubulin isoform with limited affinity to benzimidazoles [181]. Thus, although preliminary

interesting, the results obtained by Albani et al. [193] should be further investigated regarding

the effect of ABZ or any other compound against the different cell types present in a prepara-

tion of cells from the germinal layer of hydatid cysts.

Some activity against E. granulosus cysts in vitro and in vivo was detected when Origanum
vulgare essential oil was used [175,194]. Similarly, extracts of Zataria multiflora showed activity

Table 4. (Continued)

Compound Disease Assay setting Dosage Treatment duration Efficacy assessment Toxicity References

In
vitro

In
vivo

In

patients

(n)

Initiation

(p.i.)

Duration Tested

against

Successa (%)

Penicillium aculeatum
in silver particles

CE Yes — — 0.15 mg�mL-1 N/A 2 h PSC Yes (90) N/A [214]

Pestalotiopsis spp.

ethyl acetate extract

CE Yes — — 20 mg�mL-1 N/A 30 min PSC Yes (100) N/A [202]

Pistacia atlantica fruit

methanol extract

CE Yes — — 50 mg�mL-1 N/A 10 min PSC Yes (100) No [209]

Punica granatum peel

aequous extract

CE Yes Yesb — 16 mg�mL-1 (in
vitro)

2 days 48 h (in vitro) PSC,

Cysts

Yes (100, in vitro) N/A [211]

650 mg�kg-1�day-1

(in vivo)d
2 months (in

vivo)

Yes (63, in vivo)

Salvadora persica root

ethanol extract

CE Yes — — 50 mg�mL-1 N/A 20 min PSC Yes (100) No [204]

Sambucus ebulus fruit

methanol extract

CE Yes — — 100 mg�mL-1 N/A 2 h PSC Yes (99) N/A [200]

Satureja khuzestanica
leaves hydroalcoholic

extract

CE Yes — — 0.1% N/A 30 min PSC Yes (100) N/A [203]

Trametes robiniophila
murr aequous extract

CE Yes Yesb — 2 mg�mL-1 (in
vitro)

N/A (in
vitro)

12 days (in vitro) PSC,

Cysts

Yes (20, in vitro) No [101]

15 g�kg-1�week-1

(in vivo)d
1.5 months

(in vivo)

4 months (in
vivo)

Yes (75, in vivo)

Zingiber officinale
ethanol extract

CE Yes — — 50–100 mg�mL-1

(PSC-Cysts)

N/A 10 min (PSC, 72

h (Cysts)

PSC,

Cysts

Yes (100) N/A [206]

N/A: Not applicable; N/S: Not specified; PSC: Protoscoleces.
a Defined as a significant reduction of the parasite burden or the viability of the any form of the larval stage of the parasite, including protoscoleces or cysts.
b Experimental infection in mice.
c Intramuscular administration.
d Oral or intragastric administration.

https://doi.org/10.1371/journal.pntd.0006422.t004
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against E. granulosus in the murine model, when given orally at infection (100% activity) or at

8 months post-infection (93% activity) [88,89], showing that plant extracts containing thymol

could be useful for the treatment of CE patients.

Menthol (S1 Fig, compound 50) and menthol-rich extracts have been tested in vitro against

E. granulosus protoscoleces and cysts, and also against germinal layer cells (see above), with

variable results (Table 4). As for thymol, menthol as pure compound showed high (100%)

activity against protoscoleces [190], but the essential oil obtained from Mentha spp. evidenced

sub-optimal efficacy against both protoscoleces and cysts [194,195]. Differences in activity are

most probably related with the final concentration of the active compound in extracts, reach-

ing levels that could be not enough to exert the maximal activity.

Plant and fungus extracts. Eight additional plant extracts and three fungi extracts have

been described in the literature as potential scolicidal agents (Table 4). Plants and fungi from

which extracts were obtained were: Allium sativum [196–198], Corylus spp. and Curcurbia spp.

[196], Mallotus philippinensis [199], Sambucus ebulus [200], Trametes robiniophila murr [101],

Berberis vulgaris [201], Pestalotiopsis spp. [202], Satureja khuzestanica and Olea europaea
[203], Salvadora persica [204], Zingiber officinale [205,206], Curcuma longa [206], Nigella sativa
[207,208], Pistacia atlantica [209], Cnidium monnieri [210], Punica granatum [211], and Peni-
cillium [212–214]. All of them showed�90% scolicidal activity with the exception of the

hydroalcoholic extracts of Corylus spp. and Curcurbia spp. [197]. Effective concentrations ran-

ged from 4 to 200 mg�mL-1 applied for 5 min to 3 h (Table 4). The most efficient extract in

terms of concentration (4 mg�mL-1) and exposure time (5 min) was the aqueous extract of Ber-
beris vulgaris [201]. Its main component is berberine, an isoquinolone alkaloid with activity

against several pathogens [215]. Interestingly, berberine has shown anti-neoplastic effects

[216], and this could be exploited to test its activity against E. multilocularis. Additionally,

Punica grantum extracts showed activity in vivo against E. granulosus [211] and Cnidium mon-
nieri osthole owed activity in vivo against E. multilocularis [210] secondary infection in mice,

showing levels of efficacy similar to those of ABZ at the same regime dose (Table 4).

Extracts of the fungi Pestalotiopsis spp. and Penicillium spp. showed also to be fully effective

against E. granulosus protoscoleces in vitro, although at prolonged (�30 min) incubation times

[202,212–214], thus their usefulness as scolicidal agents in intra-cyst application in limited.

The third extract derived from a fungus (Trametes robiniophila) showed little effectivity against

protoscoleces. Remarkably, this extract had deleterious effects on E. granulosus cysts when

given orally to mice at 1.5 months post-infection [101], pointing out its potential application

to treat CE. The extracts of T. robiniophila have attracted attention in the last few years as an

anti-neoplastic compound [215].

Conclusions and future directions

Drugs assayed against CE and AE can be classified in scolicidal and/or cysticidal. Application

of scolicidal compounds either intra-cyst or peri-interventionally is used to minimise the risk

of recurrence in CE patients during surgical or percutaneous procedures. To be effective, scoli-

cidal agents must deliver their effects in the shortest therapeutic time period without eliciting

undesirable adverse events. In recent years several compounds have been proposed as candi-

date drugs to substitute the recommended 20% saline solution as scolicidal agent. From these,

glucose 50%, cetrimide, and H2O2 have a rapid effect on protoscoleces, but should be further

evaluated for potential cytotoxic effects before being safely recommended for human use. Bio-

genic selenium particles, thymol, and several plant extracts have also shown promising scolici-

dal properties, and are regarded as non-toxic compounds at the concentrations used to exert

their chemotherapeutic activity. Nevertheless, the main drawback of most of those compounds
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lies in the highly variable procedures involved in their in-house preparation, an inherent fea-

ture that makes difficult the assessment of the results obtained in different studies. In this

regard, thymol is a commercially available compound and as such could be easily used in stan-

dardized trials to prove its therapeutic performance, particularly in those clinical cases in

which biliary communication of cysts could advise against intra-cyst injection of 20% saline or

alcohol as scolicidal agents.

The efficacy of scolicidal compounds at the systemic level (usually peri-operatively) has

been far lesser investigated. In this specific clinical setting, candidate drugs should ideally com-

bine high solubility and intra-cyst bioavailability with elevated scolicidal efficiency, easy

administration regimen (preferably at low dose), and absence of side effects. Monensin, prazi-

quantel, imanitib and 2-methoxyestradiol may well comply with most of these requirements,

but further in vivo assays are needed to clearly demonstrate the adjunctive activity of these

drugs at different regimes and also to prove their safety of use.

The advantages of defining a good scolicidal agent rely in its use to avoid secondary CE in

patients. Disadvantages of testing only the scolicidal activity of drugs is that a good scolicidal

agent can show no activity against the metacestode, and that scolicidal drugs are of no use in

AE patients. In spite of this, majority of drug testing studies against Echinococcus are still per-

formed in vitro against protoscoleces.

Drugs directed against the larval stages of E. granulosus and E. multilocularis should also

share the same characteristics already mentioned for systemic scolicidal compounds. Unfortu-

nately, most of the drugs assayed to date against CE and AE cysts do not fulfil these criteria.

Many other factors may influence the parasitocidal activity of a given drug treatment against

CE and AE. Particularly relevant is the time during the dosing interval of the administered

drug, for which there is currently no consensus, not even for the best known compounds used

until now, the members of the BMZ family. Other variables that could affect the effectivity of

the treatment include the number, size, location, developmental stage and condition of cysts.

Most of these variables are usually not considered during the chemotherapeutic evaluation

process of a given compound. An additional and important variable affecting the outcome of

drug treatment in CE and AE is the time post-infection in which drugs are used. In this

respect, it has been shown by several authors that the in vivo treatment of CE and AE is more

effective when applied at early post-infection times regardless of the drug used. This fact may

explain, at least partially, the failure or limited success of therapies in CE and AE patients fre-

quently reported in the literature, where treatments usually starts at a late, chronic stage of the

disease. Similarly, the route of administration seems to be crucial for some compounds to

exert their activity, since some drugs demonstrate parasitocidal properties in intraperitoneal

administration but show little or no effect in more convenient regimes, e.g., oral

administration.

Both CE and AE are still very much neglected diseases for which the current drug of choice

is ABZ. Accessibility to ABZ is impaired by limited distribution and elevated cost not only in

socioeconomically disadvantages areas, but also in a number of developed countries. Addition-

ally, this compound seems to exert a parasitostatic, rather than a parasitocidal, effect against

both parasites and no alternative drug is available for patients with AE who experienced severe

side effects and cannot be treated with ABZ (or MBZ). This also seems to be the case for the

vast majority of alternative drugs assayed to date, since in vivo assays have evidenced changes

in cyst weight, but reduction in cyst number are rarely observed. Could ABZ or other drug

from those that have already shown parasitostatic effects be parasitocidal under specific condi-

tions? In an attempt to improve the intra-cyst bioavailability of ABZ, different formulations

have been assessed aiming to increase the solubility, absorption, and stability of the drug.

These improvements have translated into enhanced drug effectivity and should be further
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explored, e.g. by using nanoparticles that lead to increased intra-cyst drug levels, or novel drug

enantiomers with higher bioavailability and activity.

An additional strategy to overcome the problem of drugs’ solubility is represented by the

salification of sulfynil-benzimidazoles with sodium hydroxide solution. The proposed two-

step production of the enantiomers of RBZNa and TCBZSONa (i.e. enantioseparation of race-

mic sulfoxides by HPLC on chiral stationary phase and successive transformation of the benz-

imidazole scaffold into a sodium salt form) is simple and it seems to be suitable for

implementation on a semi-industrial or industrial scale. The main benefit of using water-solu-

ble RBZNa and TCBZSONa salts is the possibility to prepare novel anthelmintic formulations

with higher levels of bioavailability, downscaling currently recommended human dosage, thus

possibly decreasing side adverse events than those currently reported for RBZ, ABZ and

TCBZ.

A second line of investigation that seems promising is the use of therapies based on the

combination of two or more agents, since some components have shown to act synergistically,

e.g. together with ABZ, against the parasite, and importantly some of them have shown activity

specifically against the stem cells of the parasite. Development of synergistic combinations of

drugs can overcome toxicity and other side effects associated with high doses and/or long time

dosage of single drugs.

From those molecules assayed in in vivo models as an alternative for BMZ compounds, very

few have reached clinical use. One example is nitazoxanide, which showed high activity in pre-

liminary in vitro and in vivo studies, but when used in patients obtained results were discour-

aging. Clinical translation of drugs assayed in vivo has not been tackled systematically, and

number of treated patients have been usually low and their clinical status too variable to extract

robust evidence-based conclusions. Thus, there is still an urgent need for defining new com-

pounds or improved formulations of those already assayed, and also for a careful design of

clinical protocols that could lead to the draw of a broad international consensus on the use of a

defined drug, or a combination of drugs, for the effective treatment of CE and AE both in com-

plicated and non-complicated cases.

Interestingly, data on the genome of both E. granulosus and E. multilocularis have been

recently released [30,31]. These data have shown that the parasites display several sets of family

molecules related both with the activity of already known drugs (e.g., praziquantel) and also

with the activity of potentially new drugs that could find their targets in specific parasite

enzymes (e.g., protein kinases). Reasons for the reduced efficacy reported for some drugs

against larval stages and potential new targets could be extracted from these genomic data.

An orphan drug is defined as a compound that has been developed specifically to treat a

rare medical condition. It is easier to gain marketing approval for an orphan drug, and there

may be other financial incentives to encourage the development of compounds which might

otherwise lack a sufficient profit motive. Despite the fact that both CE and AE are classified as

orphan diseases (http://www.orpha.net/consor/cgi-bin/index.php?lng=EN), none of the drugs

tested so far against these diseases have been specifically developed against them, but have pre-

viously been licensed based on the activity demonstrated against other infectious and non-

infectious conditions.

Supporting information

S1 Fig. Chemical structures of the main bezimidazole compounds, synthetic compounds,

and natural compounds described in the present review.
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64. Doğru D, Kiper N, Ozçelik U, Yalçin E, Göçmen A. Medical treatment of pulmonary hydatid disease:

for which child? Parasitol Int. 2005; 54:135–138. https://doi.org/10.1016/j.parint.2005.02.003 PMID:

15866475

65. Kern P. Human echinococcosis: Follow-up of 23 patients treated with mebendazole. Infection. 1983;

11:17–24. PMID: 6840864

66. de la Torre-Iglesias PM, Garcı́a-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago S, Bolás-Fer-

nández F. Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible micro-

particles with low-substituted hydroxypropylcellulose. Drug Des Devel Ther. 2014; 8:1467–1479.

https://doi.org/10.2147/DDDT.S65561 PMID: 25258515

67. Casulli A, Morales MA, Gallinella B, Turchetto L, Pozio E. 2-Hydroxypropyl-beta-cyclodextrin improves

the effectiveness of albendazole against encapsulated larvae of Trichinella spiralis in a murine model.

J Antimicrob Chemother. 2006; 58:886–890. https://doi.org/10.1093/jac/dkl329 PMID: 16895937

68. Liu CS, Zhang HB, Jiang B, Yao JM, Tao Y, Xue J, et al. Enhanced bioavailability and cysticidal effect

of three mebendazole-oil preparations in mice infected with secondary cysts of Echinococcus granulo-

sus. Parasitol Res. 2012; 111:1205–1211. https://doi.org/10.1007/s00436-012-2954-2 PMID:

22661241

69. Franchi C, Di Vico B, Teggi A. Long-term evaluation of patients with hydatidosis treated with benzimid-

azole carbamates. Clin Infect Dis. 1999; 29:304–309. https://doi.org/10.1086/520205 PMID:

10476732

70. Budke CM, Casulli A, Kern P, Vuitton DA. Cystic and alveolar echinococcosis: Successes and continu-

ing challenges. PLoS Negl Trop Dis. 2017; 11:e0005477. https://doi.org/10.1371/journal.pntd.

0005477 PMID: 28426657

71. Redondo PA, Alvarez AI, Garcia JL, Larrodé OM, Merino G, Prieto JG. Presystemic metabolism of

albendazole: experimental evidence of an efflux process of albendazole sulfoxide to intestinal lumen.

Drug Metab Dispos. 1999; 27:736–740. PMID: 10348805

72. Kitzman D, Cheng KJ, Fleckenstein L. HPLC assay for albendazole and metabolites in human plasma

for clinical pharmacokinetic studies. J Pharm Biomed Anal. 2002; 30:3801–813.

73. Adas G, Arikan S, Kemik O, Oner A, Sahip N, Karatepe O. Use of albendazole sulfoxide, albendazole

sulfone, and combined solutions as scolicidal agents on hydatid cysts (in vitro study). World J Gastro-

enterol. 2009; 15:112–116. https://doi.org/10.3748/wjg.15.112 PMID: 19115476

Progress in the pharmacological treatment of human CE and AE

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006422 April 20, 2018 40 / 48

http://www.ncbi.nlm.nih.gov/pubmed/9875648
http://www.ncbi.nlm.nih.gov/pubmed/375511
http://www.ncbi.nlm.nih.gov/pubmed/7173081
http://www.ncbi.nlm.nih.gov/pubmed/6696172
http://www.ncbi.nlm.nih.gov/pubmed/3533299
http://www.ncbi.nlm.nih.gov/pubmed/10980173
http://www.ncbi.nlm.nih.gov/pubmed/10209979
http://www.ncbi.nlm.nih.gov/pubmed/1449273
http://www.ncbi.nlm.nih.gov/pubmed/10656037
http://www.ncbi.nlm.nih.gov/pubmed/1616396
http://www.ncbi.nlm.nih.gov/pubmed/8119701
https://doi.org/10.1016/j.parint.2005.02.003
http://www.ncbi.nlm.nih.gov/pubmed/15866475
http://www.ncbi.nlm.nih.gov/pubmed/6840864
https://doi.org/10.2147/DDDT.S65561
http://www.ncbi.nlm.nih.gov/pubmed/25258515
https://doi.org/10.1093/jac/dkl329
http://www.ncbi.nlm.nih.gov/pubmed/16895937
https://doi.org/10.1007/s00436-012-2954-2
http://www.ncbi.nlm.nih.gov/pubmed/22661241
https://doi.org/10.1086/520205
http://www.ncbi.nlm.nih.gov/pubmed/10476732
https://doi.org/10.1371/journal.pntd.0005477
https://doi.org/10.1371/journal.pntd.0005477
http://www.ncbi.nlm.nih.gov/pubmed/28426657
http://www.ncbi.nlm.nih.gov/pubmed/10348805
https://doi.org/10.3748/wjg.15.112
http://www.ncbi.nlm.nih.gov/pubmed/19115476
https://doi.org/10.1371/journal.pntd.0006422


74. Ingold K, Bigler P, Thormann W, Cavaliero T, Gottstein B, Hemphill A. Efficacies of albendazole sulfox-

ide and albendazole sulfone against in vitro-cultivated Echinococcus multilocularis metacestodes.

Antimicrob Agents Chemother. 1999; 43:1052–1061. PMID: 10223913

75. Saimot AG, Meulemans A, Cremieux AC, Giovanangeli MD, Hay JM, Delaitre B, et al. Albendazole as

a potential treatment for human hydatidosis. Lancet. 1983; 2:652–656. PMID: 6136799
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