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Abstract

Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years,
an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published.
Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction
(RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the
performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were
asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2
(EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion
that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories
and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the
combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples
included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR
systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in
the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one
molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic
diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic
accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is
recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing.
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Introduction

Rabies as a notifiable zoonotic disease is an acute, progressive

and incurable viral encephalitis which is clinically characterized by

central nervous disorders that ultimately lead to death. The disease

is caused by different Lyssavirus species of the Rhabdoviridae family

[1], with classical rabies virus (RABV) being responsible for tens of

thousands of deaths per year [2]. In Europe, alongside sylvatic

rabies in foxes, bat rabies is prevalent in a number of different bat

species, mainly caused by the European bat lyssaviruses type 1 and

2 (EBLV-1 and 2) [3]. From single rabid bats e.g. West Caucasian

bat lyssavirus (WCBV) [4] and Bokeloh bat lyssavirus (BBLV) [5]

were isolated.

Whilst ante-mortem testing is only recommended by the World

Health Organization (WHO) for rabies suspect human patients,

definite rabies diagnosis in both human and animal samples relies

on post-mortem laboratory findings. The widely accepted (post-

mortem) ‘‘gold standard’’ method of the WHO and the World

Organisation for Animal Health (OIE) is the detection of lyssavirus

antigen by the fluorescent antibody test (FAT) [6,7]. For samples

from suspected rabid animals with contact to humans or samples
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with other epidemiological relevance, virus isolation is recom-

mended as the confirmatory test for inconclusive and negative

FAT results [2]. Apart from the inevitably fatal outcome of a

rabies infection, reliable rabies diagnosis has to meet the highest

possible quality standards because in a human case patient

management can be optimized and precautions for the nursing

staff can be taken. In an animal case laboratory confirmation of

rabies via RT-PCR is on the one hand important for the

identification of new lyssavirus species. On the other hand if

human contacts occurred with this rabid animal then adequate

post exposure prophylaxis (PEP) must be initiated.

With the advance of molecular techniques, reverse transcription

polymerase chain reaction (RT-PCR) has been increasingly used

for amplification of lyssavirus RNA from sample materials.

Nowadays, numerous assays are available; for review see Dacheux

et al. (2010) [8]. However, to date, RT-PCR and other

amplification systems are not recommended for routine post-

mortem diagnosis of rabies, but may be used for epidemiological

surveys. Laboratories conducting the analysis should have

sufficient experience with the techniques in question and should

also apply strict quality control procedures [2]. Nevertheless,

especially for ante-mortem diagnosis in humans and decomposed

brain samples these techniques showed advantages over conven-

tional virological methods and in those cases may be the only

option to obtain a definite diagnosis [9–11]. In many laboratories,

PCR has already been employed as a rapid diagnostic tool in

animal rabies diagnosis in addition to the FAT with the aim to

allow early termination of initiated PEP in humans. Also PCR

offers options for further virus characterization using sequence

analysis.

For generic pan-lyssavirus approaches the hemi-nested assay

described by Heaton et al. (1997) [12] has been widely used in

daily laboratory routine. Few nested RT-PCR protocols were

developed for pan-lyssavirus detection, e.g. Echevarrı́a et al.

(2001) and Vázquez-Morón et al. (2006) [13,14]. More recently,

RT-PCR systems using fluorogenic probes allowed the detection

of sequence-specific templates in real-time. One of the most widely

used lyssavirus TaqMan� assays detects and differentiates RABV

from EBLV-1 and EBLV-2. Generic primers and species-specific

probes were combined within one reaction [15]. Later on, the

specificity of the RABV system was improved by changing some

nucleotides of the primers and probe [16]. Alternatively, the

Wakeley protocol [15] (named R13 by Hoffmann et al., 2010 [17])

was combined with a second set of primers and probe (R14)

downstream of R13 on the nucleoprotein gene to broaden the

diagnostic range for RABV [17]. It was also shown that using the

primers of the Wakeley protocol with SYBRH Green, which

eliminates the requirement for probes, and therefore removes

possible problems identified with specificity of the RABV-specific

probe, allowed a sensitive pan-lyssavirus detection [18] (further

assays are mentioned in Table S1 A+B [32–41]).

Newly available chemistries, reagents and procedures have

improved and standardised the detection techniques leading to

higher sensitivities and specificities. Therefore, validated RT-

PCR-based tests were proposed as alternative, confirmatory tests

also for rabies, and were suggested to be included in the OIE

Manual of Diagnostic Tests and Vaccines for Terrestrial Animals

[19]. Furthermore, molecular tools have become an important

basis for most of the notifiable and/or zoonotic viral diseases, and

lyssaviruses should not be an exclusion.

Previous ring trials focussed mainly on classical methods like

FAT and virus isolation or included only a very limited panel of

brain tissues for the RT-PCR analysis [20]. Here, we provided for

the first time a complete report on a ring trial specifically designed

for RT-PCR for the detection of lyssavirus genomic RNA, e.g.

RABV and EBLV, focussing on an assessment and comparison of

the performance of conventional and real-time RT-PCR assays

established in different European laboratories.

Materials and Methods

A panel of 28 lyssavirus samples from the virus archive of the

Friedrich-Loeffler-Institut (FLI) was selected for the trial. Either

original brain material or tissue culture supernatant after infection

of MNA cells was used (Table 1). All isolates had been tested

positive by using FAT, rabies tissue culture infection test (RTCIT)

and real-time RT-PCRs for RABV, EBLV-1 and EBLV-2

(Hoffmann et al., 2010 [17]; Freuling et al., unpublished). In

order to cover the very high genetic diversity of the different

RABV strains, the panel consisted of 26 RABV RNA samples

from different countries across the world and various isolation

years, including one log10 dilution series (L-30, L-06, L-27, L-28),

as well as one EBLV-1 (L-18) and EBLV-2 (L-24) RNA sample

each (Table 1). The extraction of the viral RNAs was performed at

the FLI using the RNeasyH kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions and stored in RNA-

safe buffer (50 ng/ml carrier RNA (poly A homopolymer from

Qiagen, Hilden, Germany), 0.05% Tween 20 (Sigma, Munich,

Germany) and 0.05% sodium acid (NaN3) solution (Sigma,

Munich, Germany) in RNase free water) [21]. Furthermore, two

negative samples (L-07, L-25) containing water or RNA-safe buffer

were added. All samples were transferred into labelled reaction

tubes and shipped on dry ice to the 16 participating laboratories

(Table S2 A) using polystyrene boxes. To mimic influences of

transportation, one sample set was subjected to a freeze-thaw-cycle

and subsequently tested by real-time PCR (freeze-thaw control;

Table S3). Particular attention was paid to provide the same

material to all labs in good condition.

All participants were asked to investigate the complete set of 30

blinded samples in duplicate with the diagnostic PCR assays used

in their own laboratory. If possible, differentiation of the most

common species (RABV, EBLV-1, EBLV-2) was requested and

results, e.g. positive/negative for conventional and Cq values for

real-time PCRs, respectively, had to be reported using an Excel-

spread sheet. Each test was designated to the respective laboratory

(designated as A-P), and if two or more methods were performed

an additional number (A1, A2, etc.) was added. Furthermore,

additional information on the established RT-PCR assays e.g.

published or unpublished (in-house) method, RT-PCR kits used

and modifications of protocols were also requested and recorded.

Results

In summary, nine different published and five unpublished (in-

house) assays mostly targeting the nucleoprotein gene were used in

the frame of this ring trial, including real-time RT-PCR (14 labs)

as well as conventional RT-PCR (5 labs) techniques (Tables 2, 3,

and 4). These techniques comprised both two-step (n = 2) and one-

step (n = 11) RT-PCR systems. In this ring trial eleven laboratories

relied on real-time PCR only, whereas two laboratories only used

conventional techniques (Table S2 B). Three laboratories used

both techniques in parallel. For the viral RNA detection, most

laboratories (12 out of 16) performed two or more tests. For real-

time RT-PCR detection, different modified protocols (lab-

versions) of the assay published by Wakeley et al. (2005) [15]

and the assay developed by Hoffmann et al. (2010) [17] were most

frequently used (Table 2). A lab-version of the original protocol

could differ slightly by changes of the PCR kit chemistry and/or

adjustment of the temperature profile. In detail, six laboratories

A Lyssavirus Ring Trial
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used a lab-version of the Wakeley protocol (R13) alone, while in

two laboratories versions of both, the Wakeley (R13) and the

Hoffmann protocol (R14) were run separately. In three labs,

variations of the combined version (R13/14) were used as a single-

tube reaction (Table 2). Additionally, one laboratory also applied

the assay published by Orlowska et al. (2008) [22]. This assay is

also located in the nucleoprotein encoding gene and uses a nearly

identical detection region for RABV as the Wakeley assay (98

nucleotides overlap of the amplified region). Furthermore, an in-

house broad spectrum system based on detection via an

intercalating dye was used by one laboratory (G).

To rule out variability as a result of RNA extraction

methodologies, RNA was extracted prior to the shipment to the

participating laboratories. To maintain RNA stability during

transportation, samples were stored in RNA-safe buffer [21] and

shipped on dry ice. In order to confirm RNA stability after

suboptimal transportation, one sample set was subjected to a

freeze-thaw-cycle. Subsequent real-time PCR testing of this freeze-

thaw control did not reveal any noticeable increase of Cq values

(Table S3).

Real-time RT-PCR
The results of the real-time RT-PCR genome detection in the

different laboratories are summarized in Tables 2 and 3. The

individual laboratories used one to five microliter template RNA

for their real-time PCR investigations. None of the applied real-

time RT-PCR systems or runs produced false-positive results for

the negative samples but two EBLV-2 samples scored positive in

RABV-specific real-time PCRs (P2, O). Detection of viral RNA

via RABV-specific or pan-lyssavirus real-time RT-PCR often

failed for single RABV isolates (Table 2), while ten of the 30

samples (L-1, L-2, L-8, L-11, L-13, L-16, L-19, L-20, L-22 and L-

23) were always correctly detected. Some participating laborato-

ries failed to identify certain isolates, while others obtained a

positive result using lab-versions of the same published protocol

(Table 2). The system by Wakeley et al. (2005) [15] used generic

Table 1. Data description of the samples (n = 30) included into the lyssavirus panel.

Lab ID
Ring trial
number

Virus
species Genetic lineage

Year of
isolation Origin Source Host R13* R14* R13/14*

12952 L-01 RABV NEE 2001 Estonia BS fox 31.0 27.4 27.8

13091 L-02 RABV Middle east 1991 Abu Dabi BS camel 17.5 16.7 16.7

20280 L-03 RABV Arctic-like 2006 Afghanistan BS dog 15.7 no Cq 17.0

20295 L-04 RABV Middle East 2009 Iraq BS dog 17.4 12.9 13.4

13250 L-05 RABV – 1973 Chile BS human no Cq 28.8 28.8

20293 1021 L-06 RABV Middle East 2008 Iraq BS dog – – –

NTC L-07 – – – – – – – – –

13001 L-08 RABV NEE 1990 Estonia TCS raccoon 30.9 27.3 27.7

13136 L-09 RABV Africa 2 1989 Nigeria BS – 22.8 no Cq 22.9

20281 L-10 RABV Arctic-like 2006 Afghanistan BS dog 14.9 no Cq 17.3

20297 L-11 RABV Middle East 2009 Iraq BS horse 14.9 11.9 11.8

13254 L-12 RABV – 1979 Chile BS human no Cq 20.5 20.5

13213 L-13 RABV – 1981 USA TCS skunk 28.0 25.8 25.2

13044 L-14 RABV Middle-East 1990 Saudi Arabia TCS fox 20.5 19.4 19.5

13138 L-15 RABV Africa 2 1989 Nigeria BS dog – – –

20290 L-16 RABV Middle East 2008 Iraq BS cow 24.2 25.2 24.3

11164 L-17 RABV CEE 2005 Germany BS fox no Cq 23.4 23.9

EBLV-1 L-18 EBLV-1 EBLV-1a 1968 Germany BS bat – – –

20294 L-19 RABV Middle East 2008 Iraq BS dog 16.6 12.5 12.5

13078 L-20 RABV EE 1995 Bulgaria BS human 13.8 12.7 12.8

13205 L-21 RABV – 1981 USA BS raccoon – – –

20291 L-22 RABV Middle East 2008 Iraq BS dog 22.6 18.5 19.1

SAD-B19 L-23 RABV vaccine 1991 Germany TCS vaccine 18.2 19.0 18.3

EBLV-2 L-24 EBLV-2 EBLV-2a 1985 Finland BS human – – –

RSB50 L-25 – – – – – – – – –

13081 L-26 RABV – 1985 China TCS – 26.1 23.0 22.7

20293_1022 L-27 RABV Middle East 2008 Iraq BS dog – – –

20293_1023 L-28 RABV Middle East 2008 Iraq BS dog – – -

13240 L-29 RABV Eptesicus fuscus 1986 Canada BS bat no Cq 25.4 25.5

20293 L-30 RABV Middle East 2008 Iraq BS dog 16.6 12.6 13.0

dilution series is depicted in bold; NTC: no template control; BS: brain suspension; TCS: tissue culture supernatant; NEE: North Eastern Europe; CEE: Central and Eastern
Europe; EE: Eastern Europe; RABV: Rabies virus; EBLV: European Bat Lyssavirus; –: not tested;
*Cq values from previous publication [17]; no Cq: no Cq value detected; R13, R14, R13/14: R13, R14, duplex R13/14 assay by [17].
doi:10.1371/journal.pone.0058372.t001
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primers either with a RABV-specific or with EBLV-1- and -2-

specific hydrolysis probes described here as broad spectrum

approach. Additionally, one lab (N1) also used a two-step

modification of the Wakeley protocol with an intercalating dye

instead of hydrolysis probes for fluorescence detection, based on

Hayman et al. (2011) [23]. This lab-version was able to detect all

positive lyssavirus samples correctly with exception of the

1.00E23 dilution step of RABV isolate 20293 (L-28). Further-

more, two results were reported as doubtful which would require

further investigations.

Taking the best scoring laboratory results for each assay (P1 for

R13, A1 and P2 for R14, O for R13/14) a combination of R13

and R14 assays (in single wells or as duplex assay) were able to

detect all rabies samples very robustly. However, sample L-29 was

not detected by any of the applied R13 assays and samples L-05,

L-12 and L-17 were unreliably detected. Samples L-09 and L-15

from Nigeria (clade Africa 2) were not detected by the R14 system

(described previously by [17]) while samples L-03, L-11 and L-21

were unreliably detected. Moreover, some samples were unreliably

detected by both assays; specifically L-03, L-09, L-10, L-15, L-21

for R14 and L-05, L-12, L-17 and L-29 for R13. Interestingly, by

Table 2. Comparative analysis of viral genome detection via real-time RT-PCR. Mean Cq values from duplicate runs.

Broad spectrum approach RABV-specific

i.h. 2) Wakeley et al., 2005 Hoffmann et al., 2010

Sample Species r, e1 r, e1+2 r (R13) r (R14) r (R13/14)

int.
dye probes probes

int.
dye probe probe probes

G ts D3 B C D1 N1 ts P1 Imod. M N2 ts A2 A1 E F1 J P2 D2 F2 O

L-01 RABV 32 32 27 28 31 37 26 32 23 34 25 27 25 27 30 25 33 27 25

L-02 RABV 24 32 25 27 29 32 24 31 27 32 24 26 23 25 28 23 29 25 24

L-03 RABV 32* fn 26 27 30 34 24 32 27 32 24 32 exp exp exp 29 30 30 25

L-04 RABV 25 fn 26 30 30 33 24 33 27 32 23 24 23 24 24 22 29 25 24

L-05 RABV 24 26 26 exp exp 30 28 exp exp exp exp 21 23 20 21 20 27 21 21

L-06 RABV (I) 30 fn 29 33 33 37 27 37 29 35 26 27 25 27 29 25 32 26 27

L-07 neg na – – – – – – – – – – – – – – – – – –

L-08 RABV 29 30 26 27 30 35 25 31 28 34 24 26 24 25 28 24 32 26 25

L-09 RABV 33 24 20 24 24 26 29 29 21 24 18 exp exp exp exp exp 26 23 20

L-10 RABV 33* 31 23 25 28 32 22 28 25 30 22 31 exp exp exp 28 29 28 23

L-11 RABV 26 30 26 29 30 34 24 32 29 33 23 25 24 24 27 23 29 24 23

L-12 RABV 15 21 21 exp exp 23 21 exp exp exp exp 14 17 15 17 13 20 15 15

L-13 RABV 25 24 18 22 23 28 18 25 20 27 17 18 17 18 19 17 23 19 18

L-14 RABV 23 fn 23 22 27 32 21 31 24 33 20 23 21 23 23 21 28 23 21

L-15 RABV fn 33 27 33 32 36 26 31 29 35 24 exp exp exp exp exp 33 31 27

L-16 RABV 22 31 25 30 30 34 25 33 26 34 24 28 25 27 29 25 32 28 25

L-17 RABV 11 24 22 exp exp 27 23 39 exp 27 22 20 21 21 23 19 27 20 20

L-18 EBLV-1 19 25 27 30 27 30 – – – – – – – – – – – – –

L-19 RABV 28 30 26 28 29 34 24 33 27 34 23 24 23 24 24 23 29 24 24

L-20 RABV 23 24 21 23 29 29 19 26 23 30 20 20 19 18 23 18 26 20 19

L-21 RABV 32 fn 21 37 fn 31 21 28 24 30 21 28 fn fn fn 27 fn fn 23

L-22 RABV 28 36 28 31 31 35 26 34 30 36 25 26 24 26 27 24 30 26 25

L-23 RABV 23 22 19 19 23 29 17 21 22 29 17 20 19 20 23 19 24 19 18

L-24 EBLV-2 23 – 22 29 25 28 – – – – – – – – – 37# – – 31#

L-25 neg 2(45) – – – – – – – – – – – – – – – – – –

L-26 RABV fn 33 25 fn ? (40) ? (43) 32 36 34 ? (41) 30 27 fn 28 fn 30 35 27 23

L-27 RABV (II) 33 fn 33 36 36 ? (40) 30 40 35 ? (39) 30 31 ? 30 30 29 36 29 30

L-28 RABV (III) 34* fn fn 39 ? (40) fn 34 fn 39 fn 33 34 fn 33 fn 32 ? (39) 34 36

L-29 RABV 25 fn exp exp exp 31 exp exp exp exp exp 18 20 19 21 17 25 19 19

L-30 RABV (0) 24 fn 26 29 29 33 24 32 27 33 24 24 23 23 27 22 29 24 24

RABV: Rabies virus; ;EBLV: European Bat Lyssavirus;neg.: negative control; 2: negative result; #: cross-reactivitiy with other Lyssavirus species; ?: doubtful result;
*doubtful result was retested; i.h.: in-house assay; dilution series (0), (I), (II), (III); 100, 1021, 1022, 1023; mod.: assay modified; r: RABV-specific detection; e1: EBLV-1
specific; e1+2: EBLV-1+22 specific; r13, r14, r13/14: R13, R14, duplex R13/14 assay by [17]; fn: false negative results; exp: expected negative results from previous
publication; ts: two-step systems; no duplicates for assays D2, D3 and M; 2) Orlowska et al., 2008 [22].
doi:10.1371/journal.pone.0058372.t002
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combining the results from laboratories A and P where R13 and

R14 versions were applied in parallel, all positive samples were

recognized correctly with a similar sensitivity to the duplex assay.

The results from laboratories O (R13/14) and P2 (R14) for

sample L-24 provide some indication for cross-reactivity of these

rabies-specific methods with EBLV-2. Although this is not a

diagnostic disadvantage, as the assay detected a positive lyssavirus

sample correctly, it highlights the issues with the use of hydrolysis

probes to differentiate Lyssavirus species.

Varying the R14 single assay with different PCR chemistries,

laboratories E and J produced identical seven false-negative

results. Using this assay with the same RT-PCR kit and the same

PCR cycler model but slightly different temperature profiles,

laboratory P (P2) yielded a better performance with lower Cq

values (1–3 cycles; except for the Chinese strain L-26) compared to

laboratory A (A1). Also, the variation of the Cq values for

individual samples between different laboratories using a lab-

version of the same assay was remarkably broad in several cases.

The assay published by Orlowska et al. (2008) [22] correctly

recognized EBLV-1 but failed to detect several RABV isolates

including the complete dilution series. Considering the retesting of

doubtful results, the two-step in-house assay applied by laboratory

G recognized 24 out of the 26 RABV isolates as well as the EBLV-

1 and EBLV-2 samples.

In general, EBLV-1 and -2 were recognized correctly by the

appropriate assays (Table 3). Only one laboratory (N3+4) obtained

a cross-reactivity with some RABV strains using a two-step variant

of the Wakeley assay [15], whereas the remaining five laboratories

Table 3. Mean quantification cycle (Cq) values of viral genome detection via EBLV-1 and EBLV-2 specific real-time RT-PCR.

Participants

Species Freuling unpublished Wakeley et al., 2005
in-house
assay

A3 A4 O1 O2 E1* E2* F3 F4 I1 I2 J1 L1 L2 M1 M2 N3 ts N4 ts P3 P4

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – 31# – – –

RABV (I) – – – – – – – – – – – – – – – – – – –

neg – – ? (32) – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – 24# - – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – ? (36) – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

EBLV–1 18 – 21 – 20 – 26 – 28 – 28 24 – 26 – 31 – 20 –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – 38# – –

RABV – – – – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

EBLV–2 – 17 ? (13) 21 – 20 – 22 – 28 18 – 25 – 24 – 29 – 17

neg – – ? (29) – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV (II) – – – – – – – – – – – – – – – – – – –

RABV (III) – – ? (25) – – – – – – – – – – – – – – – –

RABV – – – – – – – – – – – – – – – – – – –

RABV (0) – – – – – – – – – – – – – – – – – – –

RABV: Rabies virus;;EBLV: European Bat Lyssavirus;neg.: negative control; –: not applicable; #: cross–reactivitiy with other Lyssavirus species; ?: inconclusive based on
curve shape; dilution series (0), (I), (II), (III); 100, 1021, 1022, 1023;
*Hoffmann and Müller personal communication; ts: two-step systems; no duplicates for assays M1 and M2; all laboratories except J1 used separate species-specific real-
time PCRs to detect EBLV-1 or -2.
doi:10.1371/journal.pone.0058372.t003
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had no problems applying their lab-versions of the assay. Another

laboratory obtained some inconclusive results for EBLV-1

detection according to the curve shape by usage of a yet

unpublished assay (Freuling, unpublished data). Nevertheless, this

unpublished assay provided in laboratory A very robust Cq values

for the recognition of EBLV-1.

Conventional RT-PCR
The performance of five conventional RT-PCR methods for

RABV-specific detection or a broad range application is shown in

Table 4. Although most samples were correctly diagnosed, the

1000 fold dilution step of RABV isolate 20293 (L-28) was not

detected by four of the nine conducted runs. Furthermore, at least

one sample was not recognized by each of the applied methods or

classified as doubtful. Variations of the pan-lyssavirus assays

established by Heaton et al. (1997) [12], Echevarrı́a et al. (2001)

[13], and Vázquez-Morón et al. (2006) [14] were able to detect

almost every RABV and EBLV isolate in this panel (Table 4).

Both, the original protocol (lab H) developed by Vázquez-Morón

and co-workers (2006) [14] and a lab-version of laboratory I (I5)

generally failed to recognize the Nigerian sample L-15. In

addition, laboratory H obtained a doubtful result for the

1.00E23 dilution step of RABV isolate 20293 (L-28). Using a

one-step version of the Heaton assay [12], laboratory J (J2)

obtained one false-positive result.

Laboratory I (I7) recognized all isolates except the European

sample L-17 with a two-step version of this assay. Lab-versions of

the system by Echevarrı́a and co-workers (2001) [13] were able to

detect all isolates, with the exception of one doubtful result in each

run. Two RABV-specific assays (in-house assay based on East

Table 4. Comparison of conventional PCR systems for the detection of RABV and/or EBLV-1 and EBLV-2.

Participants

V.-M. et al., 2006 Heaton et al., 1997 Ech. et al., 2001 i.h. M/V

Sample Species Hp I3p Jp Kp, * I5pts I1p I2p I4r, 1)ts O1r O2e

L-01 RABV RABV + + + + + + fn RABV na

L-02 RABV RABV + + + + + + + RABV na

L-03 RABV RABV + + + + + + + fn 2

L-04 RABV RABV + + + + + + + RABV na

L-05 RABV RABV + + + + + + + RABV na

L-06 RABV (I) RABV + + + + + + + RABV na

L-07 neg 2 2 2 2 2 2 2 2 2 2

L-08 RABV RABV + + + + + + + RABV na

L-09 RABV RABV + + + + + + fn RABV na

L-10 RABV RABV + + + + + + + fn -

L-11 RABV RABV + + + + + + + RABV na

L-12 RABV RABV + + + + + + + RABV na

L-13 RABV RABV + + + + + + + RABV na

L-14 RABV RABV + + + + + + + RABV na

L-15 RABV fn fn + + + + ? + RABV na

L-16 RABV RABV + + + + + + + RABV na

L-17 RABV RABV + + + fn + + + RABV na

L-18 EBLV-1 EBLV1a + + + + + + 2 2 EBLV-1

L-19 RABV RABV + + + + + + fn RABV na

L-20 RABV RABV + + + + + + + RABV na

L-21 RABV RABV + + + + ? + + fn 2

L-22 RABV RABV + + + + + + + RABV na

L-23 RABV RABV + + + + + + + RABV na

L-24 EBLV-2 EBLV2a + + + + + + 2 2 EBLV-2

L-25 neg 2 2 fp 2 2 2 2 2 2 2

L-26 RABV RABV + + + + + + + RABV na

L-27 RABV (II) RABV + + + + + + + RABV na

L-28 RABV (III) RABV + fn fn + + + fn fn 2

L-29 RABV RABV + + + + + + + fn 2

L-30 RABV (0) RABV + + + + + + fn RABV na

RABV: Rabies virus; ;EBLV: European Bat Lyssavirus;neg.: negative control; +: positive genome detection; -: negative result; ?: doubtful result; i.h.: in-house assay; na: not
applicable; dilution series (0), (I), (II), (III); 100, 1021, 1022, 1023; p: detection of RABV, EBLV-1 and -2; r: RABV-specific detection; e: EBLV-specific; fp: false positive result; fn:
false negative results; ts: two-step system;
*Bourhy unpublished data; Ech. et al., 2001: [13]; M/V: [26] and [27]; V.-M. et al., 2006: [14]; 1) Ito et al., 2001 [25].
doi:10.1371/journal.pone.0058372.t004
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et al., 2001 [24]; Ito et al., 2001 [25]) applied by laboratory O and

I (O3, I6), were not able to detect five RABV isolates, respectively.

Also EBLV-specific conventional RT-PCR assays [26,27] reliably

detected EBLV-1 and -2 (Table 4).

In general, usage of different tests in parallel led to correct or at

least questionable results which would require further investiga-

tions (Table S4). There are only a few exceptions (samples L-21

and L-28) where parallel testing provided an overall false result.

Due to an overall insufficient analytical sensitivity, two laboratories

(J, N) were not able to detect the 1000 fold dilution step of RABV

isolate 20293 (L-28) using two different tests, respectively. It is

more critical that in the hands of laboratories D and F an

inadequate degree of diagnostic sensitivity led to a detection failure

for sample L-21 despite of a significant viral load.

Discussion

During the recent validation of a fluorogenic probe-based real-

time RT-PCR for RABV, it had become evident, that a single

assay was not sufficient to detect all tested RABV strains due to a

high degree of genetic diversity [17]. As a consequence, we tried

for the first time to assess how published or in-house molecular

assays are performing at different European laboratories in an

international ring trial.

The results described and discussed here revealed a relatively

high degree of divergence among the participating laboratories.

Partially, this can be explained by the diagnostic range of the

applied assays and has been highlighted in Table 2 for the R13

and R14 assay. To differentiate between a failure of the system due

to a test specificity issue according to mismatches in the primer

and/or probe region (expected negative; Hoffmann et al., 2010

[17]) or due to laboratory discrepancies (false negative), different

labellings were used. Interestingly, some samples tested positive in

one laboratory and were not detected in the other. Various reasons

could be responsible for such an unexpected pattern, e.g. quality of

extracted RNA (degradation), primers, probes, PCR machines and

used commercial real-time RT-PCR kits. In this case the use of an

internal control system could be helpful to elucidate this finding.

In previous European ring trials for rabies routine diagnosis [20]

both conventional techniques, e.g. FAT and rabies tissue culture

infection test (RTCIT), and real-time RT-PCR had been used on

brain tissues [20]. However, the diversity of lyssavirus isolates was

very limited and therefore, results are not easily comparable. In

contrast, our study was solely dedicated to assessing established

RT-PCR assays for RABV in particular. This might explain why

most laboratories (n = 11; Table S2 B) performed real-time PCR

exclusively. Alternatively, brain homogenates would be a suitable

option for the next ring trial, enabling the application of internal

control assays such as b-actin, which will aid interpretation of the

negative results, already a vital element in any diagnostic assay.

Ring trials as the one described here trigger diagnostic

laboratories to start intensive investigations on the diagnostic

quality, so that an overall improvement can be made.

A first problem that may be associated with comparing the

performance of RT-PCR assays is the stability of the RNA during

both, transport and testing. In our case, RNA degradation is

unlikely as the RNA was preserved in a special storage buffer and

shipment was done on dry ice. Furthermore, a freeze-thaw control

was used to confirm RNA stability. A similar approach proved to

be successful for a recent European classical swine fever virus

(CSFV) ring trial [28]. In the future, samples could also be spiked

with an internal control, e.g. EGFP [21] to allow for monitoring of

PCR performance. There is proven evidence that commercially

available RT-PCR test kits perform differently and can have a

substantial impact on the RT-PCR results obtained [29].

As a main conclusion the R13/14 RABV-specific real-time RT-

PCR system [17], used as a duplex assay or in combination of both

single assays, displayed the best sensitivity for RABV detection

among all applied real-time RT-PCR assays during this ring trial.

The Wakeley assay [15] performed by lab B also displayed good

results by detecting all RABVs (apart from the known issue with L-

29 and the 1.00E23 dilution (L-28)). Also, both EBLV-1 and -2

were correctly detected with the specific primers and probes. The

application of this broad spectrum assay with an intercalating dye

(N1, two-step) enabled the detection of L-29 whilst also detecting

all other samples correctly, except the 1.00E23 dilution (L-28) and

two doubtful results. It is likely that the diluted sample was not

detected due to the application of a two-step methodology because

only a proportion of the cDNA is used in the two-step assay. In

comparison to a two-step system all the available cDNA can be

used in the one-step/one-tube system.

In North America, TaqManH PCR assays for the detection of

RABV were either comparable, or they had a considerably

reduced detection limit compared to hemi-nested PCR [30,31]. In

contrast, in this ring trial, the panel of RABV strains included was

of such genetic heterogeneity, that particularly the hydrolysis-

based assays displayed problems in detecting certain strains, mostly

not belonging to the cosmopolitan variant. Therefore, in order to

overcome these problems, the parallel use of several (real-time)

RT-PCR assays in a diagnostic setting is highly recommended.

One argument against PCR diagnostics in the field of rabies,

but also in general, is the risk of contamination leading to false-

positive results. However, carry-over contamination from positive

controls can be prevented efficiently by strict quality control

procedures in place, such as using artificial positive controls [17].

In the context of this ring trial, false-positive results were not

observed, indicating high laboratory quality standards. However,

we only asked for testing extracted RNA, and therefore the RNA

extraction step could not be evaluated, both in terms of sensitivity

as well as carry-over contamination. False-negative results due to

PCR inhibition are also critical. This possibility can easily be ruled

out by the use of an internal control as performed by five of the 16

laboratories using b-actin or external heterologous control systems.

Most conventional RT-PCR methods performed satisfactorily

for RABV detection and in general were less error-prone; nearly

all samples were recognized, than the real-time PCR approaches.

Also one conventional RT-PCR assay generally failed to detect a

certain isolate (L-15) presumably according to mismatches in the

primer binding region due to viral diversity. Furthermore, there

were fewer inter-laboratory variations when individual versions of

the same assay were used. One possible explanation could be that

conventional RT-PCRs are well established in many rabies

diagnostic laboratories, whereas the implementation of real-time

RT-PCRs is an on-going process. This is a very important point,

as we would predict a similar situation with the real-time assays as

they have become more embedded and routinely applied. While

real-time RT-PCR assays could be used for rapid rabies diagnosis,

conventional RT-PCR methods will remain valuable since

sequence information can be obtained for subsequent phylogenetic

analysis. Furthermore, all applied EBLV-specific investigations,

real-time as well as conventional systems were suitable for a

reliable EBLV diagnosis, although additional studies are required,

since only single samples of each virus has been included into the

study panel.

Based on molecular techniques using any kind of PCR

diagnostics, 29 inconclusive or false negative results occurred

resulting in an overall sensitivity of 93% (70.0–100%) for RT-
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PCR. Although this may be acceptable, in total, only four of the 16

laboratories submitted 100% concordant results for RABV

diagnosis. This appears to be a very low proportion, considering

that during rabies diagnostic ring trials 90.5% and 80.5% of

participating laboratories produced satisfactory results with no

false negative results in 2009 and one false negative result in 2010,

respectively [20]. In these previous ring trials false positive results

occurred only in laboratories were also nested PCR was

performed, presumably in consequence of cross-contamination.

Furthermore, in previous ring trials the panel consisted of very few

RABV strains. The sample material consisted of brain tissue

homogenates and no dilution series was included. In general, the

analysis of the dilution series revealed differences in sensitivity

between the various approaches. Altogether, the serial dilution of

RABV isolate 20293 was detected correctly by only 53% (16 out of

30 tests) of the appropriate real-time and conventional RT-PCR

investigations. In another 30% (9 out of 30 runs) of cases all

dilution steps except the 1.00E23 dilution could be recognized.

Although a 1.00E23 dilution does not seem very critical for a

highly sensitive method, the initial undiluted sample already had

Cq values in the high twenties, indicating a low amount of viral

RNA. Thus by diluting further, some assays reached their

diagnostic limits in terms of sensitivity. However, one has to keep

in mind that false-negative results would be a major problem in

animal rabies diagnosis where a human exposure occurred

because this can cause human fatality. Thus, parallel testing is

again recommended in this case.

The overall analysis of the ring trial showed that RT-PCR could

be a very reliable diagnostic tool if assays with the broadest

diagnostic range are used and quality standards are met at each

level. Then, RT-PCR methods are probably suitable to be used in

a qualified and trained laboratory as a second diagnostic line in

parallel to traditional methods like FAT, mouse inoculation test

(MIT) and RTCIT. For this purpose, a further harmonisation and

standardisation of the individual methods e.g. by the use of

commercial RT-PCR kits as seen in the case of CSFV detection

[28] or RT-PCR trainings could help to improve the overall

performance between the individual laboratories. Moreover, the

ability to sequence an RT-PCR amplicon is extremely useful for

surveillance purposes by determining and characterising the

Lyssavirus species detected.

Here, we used a very broad and complex RNA panel to test the

assays used as much as possible. Nevertheless, this ring trial was

not intended to discredit any methodology. However, if a

laboratory involved in rabies control uses a certain established

protocol that solely recognizes the prevailing RABV variants,

problems can occur if a case of imported rabies occurs. In this

case, the molecular diagnosis needs to be as broad as possible. This

is particularly important if laboratories act as national reference

laboratories and are confronted with human rabies diagnosis. In

this case, the use of broad spectrum lyssavirus assays may be more

suitable, as no prior epidemiological information is necessary.

These reference laboratories should particularly be interested in

the realisation of further ring trials.

At the moment, neither the WHO nor the OIE have approved

molecular techniques for rabies. However, validated PCR-based

investigations are proposed to be included in the OIE Manual of

Diagnostic Tests and Vaccines for Terrestrial Animals [19]. Based

on the results obtained in this study, instead of recommending or

approving a single assay, we would finally propose that a

proficiency test including a similarly broad standard panel of

RABV and indeed other Lyssavirus species should be passed, as

performed annually through a program coordinated by the French

Agency for Food, Environmental and Occupational Health &

Safety (ANSES) [20], before a laboratory is qualified to use RT-

PCR as a complementary test in rabies routine diagnosis.
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