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Abstract The presence of toxic metals in soil per se,

and in soil impacted by mining, industry, agriculture

and urbanisation in particular, is a major concern for

both human health and ecotoxicology. The dual aim of

this study was: to ascertain whether topsoil composi-

tion could influence the spatial distribution of mortal-

ity due to different types of cancer and to identify

possible errors committed by epidemiological studies

which analyse soil composition data as a closed

number system. We conducted an ecological cancer

mortality study, covering 861,440 cancer deaths (27

cancer sites) in 7917 Spanish mainland towns, from

1999 to 2008. Topsoil levels of Al, As, Cd, Cr, Cu, Fe,

Mn, Ni, Pb and Zn were determined by ICP-MS at

13,317 sampling points. We transformed the topsoil

data in two ways, i.e. log transformation and centred

logratio transformation. Principal factor analysis was

performed to obtain independent latent factors for the

transformed variables. To estimate the effect on

mortality of topsoil factor loadings, we fitted Besag,

York and Mollié models embedded in geostatistical-

spatial models. This model included soil sample

locations and town centroids (non-aligned data), fitted

using the integrated nested Laplace approximation

(INLA) as a tool for Bayesian inference and stochastic

partial differential equations (SPDE). All results were

adjusted for socio-demographic variables. The results

indicated that soil composition could have an influ-

ence on the spatial distribution and mortality patterns

of cancer. The analysis adjusted for socio-demo-

graphic variables showed excess male mortality due to

digestive system tumours in areas with soils contain-

ing higher Cd, Pb, Zn, Mn and Cu concentrations,

bladder cancer in areas with soils containing higher Cd

concentrations, and brain cancer in areas with soils

containing As. In both sexes, cancer of oesophagus

was associated with soils containing a higher lead

content, while lung cancer was associated with soils

containing a higher copper content. Stress should be

laid on the importance of taking into account the

compositional nature of the data in this type of

analysis.
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Environmental and Cancer Epidemiology Unit, National

Centre for Epidemiology, Carlos III Institute of Health,

Avda. Monforte de Lemos 5, 28029 Madrid, Spain
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Introduction

Chemical composition of soil, due to its geological

origin, remains stable over time and can contain

carcinogens such as heavy metals. In theory, human

exposure to bioavailable carcinogenic components of

soil can affect both sexes indiscriminately. On the

other side, spatio-temporal cancer mortality studies

and various cancer atlases in Spain have revealed

geographical patterns for some tumours, which dis-

play similar spatial distribution inmen and women and

persist over time (López-Abente et al. 2007, 2014).

Furthermore, the determinants of these patterns have

been very difficult to ascertain. Cancers of the upper

gastrointestinal tract (stomach and oesophagus), pan-

creas, brain, kidney and thyroid all display the above

characteristics.

The presence of toxic metals in soil per se, and in

soil impacted by human activity in particular (Fer-

nández-Navarro et al. 2012; Garcı́a-Pérez et al. 2007;

Garcı́a-Perez et al. 2016), is a major concern for both

human health and ecotoxicology (Ranville 2005).

High-level exposures to arsenic and heavymetals have

been found to be associated with multiple cancer types

by numerous epidemiological studies (Naujokas et al.

2013). There is far less information, however, on the

health effects of low-dose chronic exposure to many

trace metals, and studies on the health effects of metals

and metalloids in topsoil belong to this latter category

(Centeno et al. 2013).

Data drawn from geochemical soil studies are

recorded in mg/kg or parts per million (ppm) and come

within the category of compositional data or closed

number systems (Aitchison 1994, Reimann et al.

2011). Data of this type are vectors whose components

are the proportion of some whole and are thus not

independent (e.g. their sum is some constant). For

instance, in geochemical soil studies, this could induce

negative correlations or no correlations in variables

one would logically expect to be positively correlated.

The usual approach in compositional analysis is to

resort to different transformations (logratio analysis)

(Aitchison 1982), removing the closure effects in data

points. Another difficulty of these analyses is that,

depending upon the local geological formation, there

will be one or more naturally associated soil elements

(Selinus et al. 2013). The results of individual, isolated

analysis of some components may thus raise doubts as

to the associations found. The usual form of analysis is

to study the possible effect of the soil element

associations detected, by means of factorial analysis.

The development of environmental monitoring

networks and advances in sensor technology make

for a data-rich environment that affords extraordinary

opportunities for understanding the complexity of

geocoded ecological data (Finley et al. 2014). In

ecological analysis, one usually tries to draw infer-

ences about an association between multiple variables

or to predict their values at new locations. The study

reported here sought to use data on topsoil composi-

tion in a grid of 13,000 points to ascertain the influence

of local soil composition on the distribution of cancer

mortality in [8000 towns. In the literature, this is

known as point areal spatial misalignment (Finley

et al. 2014), though there are authors who prefer the

term, ‘‘change of support problem’’ (Gotway and

Young 2002).

To deal with the misalignment issue, exposure (in

this case, topsoil metal composition) can be predicted

at the outcome location using spatial interpolation

methods (kriging). The uncertainty surrounding such

exposure (kriging error) is by no means negligible and

may vary substantially from one area to another. A

naı̈ve inference ignores this error, something that may

in turn lead to a highly biased estimate of the exposure

effect and poor coverage of the confidence interval

(Gryparis et al. 2009). Yet, if the inference is

performed in a model where spatial variations of the

exposure and the health outcome are jointly modelled,

any uncertainty associated with the exposure predic-

tion is implicitly taken into account (Blangiardo and

Cameletti 2015). However, this measurement error

model approach is computationally expensive if all

metal composition components are included in the

model. The factor analysis suggested above to solve

the multicollinearity problem can also notably reduce

this calculation cost. The factors extracted from this

analysis are, by construction, mutually independent.

Hence, analysis of the association between cancer

mortality risk and topsoil metal composition can be

broken down into a few covariates of one-dimensional

exposure association analyses.
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Accordingly, this study sought to answer the

following questions: (1) could topsoil composition

influence the spatial distribution of mortality at

different cancer sites? and (2) which errors are

committed when soil composition data are analysed

as a closed number system in epidemiological studies?

Materials and methods

Mortality data

A detailed description of the mortality data and soil

samples collected can be found in a previously

published study (Núñez et al. 2016). Briefly, mortality

data (observed and expected cases) for each of the

8077 (7917 mainland) Spanish towns were drawn

from the records of the National Statistics Institute

(NSI) for the study period (1999–2008) and computed

for 13 types of malignant tumours (see Supplementary

data, Table S1), with a total of 669,973 deaths due to

the tumours analysed.

Soil sampling and metal analysis

Across the period June 2008–November 2010, a total

of 21,187 residual soil samples (13,505 from the

surface horizon and 7682 from the deeper horizon)

were collected at a total of 13,505 sampling points

(13,317 in mainland Spain and 188 on the Canary and

Balearic islands). The residual soil samples were

analysed by instrumental inductively coupled plasma

mass spectrometry (ICP-MS). The elements included

in this analysis were Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb

and Zn. A detailed description of the sample collection

and the chemical analysis techniques used can be

found in the Geochemical Atlas of Spain (Locutura

et al. 2012). All the laboratory determinations were

performed at Activation Laboratories Ltd. (Actlabs,

Ontario).

Topsoil data transformations

Topsoil data were transformed prior to their analysis in

two ways, i.e. log transformation (classical option) and

centred logratio transformation (clr transformation).

Log transformation consists of standardisation of

the logarithm of the concentration:

y ¼ log xð Þ �mean log xð Þð Þð Þ
sd log xð Þð Þð Þ

For compositional data, the sum of all concentra-

tions of the elements in each sample is almost constant

or at least restricted. To avoid spurious correlations,

the soil compositions estimated for the respective

towns were transformed by clr transformation (Filz-

moser et al. 2010; Aitchison 1982, 2003). This results

in a multivariate observation y = (y 1,…, yD) and is

defined as:

y ¼ log
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QD
i¼1 xi

q . . .; log
xD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

QD
i¼1 xi

q

0

B

@

1

C

A

Each value of a variable for each point was divided

by the geometric mean of all variables for that point,

and the logarithms then obtained. This is the prefer-

able method for opening a data set whenever a direct

relation to the variables is needed (Reimann et al.

2011).

Reduction in dimensions (factorial analysis)

A direct consequence of data log transformation is

emerging collinearity (e.g. cadmium occurs mainly in

ores with zinc and, to a lesser degree, with lead and

copper). Moreover, the clr transformation produces

variables whose correlation matrix is singular. It is

therefore difficult to perform a regression analysis

with such explanatory variables. Moreover, the effects

on human health might possibly derive from exposure

to associations between elements, which would mean

that such associations would be the variable of

exposure of interest.

In order to avoid this problem, a factorial analysis

was conducted to obtain independent latent factors for

the log-transformed and clr-transformed variables.

This type of analysis provides information about the

internal structure of the geochemical data, reduces

data dimensionality to a few representative factors and

thus seeks to summarise the multivariate information

in a compact manner. We performed this analysis by

using principal factor analysis (PFA) (Reimann et al.

2011), in which a cumulative variance of over 75%

was obtained by 4 factors for log-transformed data and

5 factors for clr-transformed data. For statistical

analysis purposes, the factor scores for each topsoil
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sample point were extracted after rotation by the

varimax method. Information on the output of princi-

pal components analysis for the two variable trans-

formations is shown graphically on a biplot.

To make it easier to interpret the results of the

analysis of the clr-transformed data, the sign of the

factor loadings was changed, since the metals most

representative of the factors had negative factor

loadings.

Statistical analysis of spatially misaligned data

Cancer mortality data are aggregated at a town area

level, while the data concentrations of elements in

topsoil are measures taken at sampling locations

across the country. To take this into account, we

therefore adopted an approach whereby spatial vari-

ations in metal concentrations (topsoil sampling

locations) and in relative risks of cancer mortality

(town locations) were jointly modelled and estimated

(spatially misaligned data).

Let exposi denote the topsoil composition indicator

(factorial scores) at each centroid area location si and

assume for the moment that these values are known.

We assume that the observed number of cases Oi in the

ith area is Poisson-distributed, with mean Eiki, where

Ei is the expected number of cases in that area and the

relative risk ki follows a log-linear model, such that:

log kið Þ ¼ a þ bexposi þ ui þ vi; ð1Þ

where a is an intercept, b is the coefficient for the

exposure covariate exposi, vi are unstructured normal

residuals, and ui are spatially structured effects which

follow an intrinsic conditional autoregressive model,

namely the Besag, York and Mollié model (BYM)

(Besag et al. 1991). Inference for the primary param-

eter of interest b is made in a Bayesian framework, and

prior distributions are specified for all parameters.

In point of fact, the exposure covariate exposi is not

directly observed. Instead, we observe the factor

scores cj at sampling locations sj. For these observa-

tions, we assume the log-linear model

log cj

� �

= Normal xj; r
2
x

� �

; ð2Þ

where xj is the realisation of a Matérn Gaussian field at

location sj and r2x is a measurement error variance.

In our approach, exposi is a latent variable equal to

xi and its relationship with the relative risk of mortality

is assessed through joint estimation of models (1) and

(2). Hence, this approach leads to conservative

confidence intervals, as it takes into account the

uncertainty in the exposure variable. The Gaussian

field in model (2) was approximated using the

stochastic partial differential equation (SPDE) (Lind-

gren et al. 2011; Lindgren and Rue 2015), as

implemented in integrated nested Laplace approxima-

tion (R-INLA) (Rue et al. 2009; Rue and Martino

2010). This approach is based on a triangulated mesh

of mainland Spain (Núñez et al. 2016). The choice of

the mesh resolution (number of vertices) is a compro-

mise between the accuracy of this approach and

computational costs. To solve this trade-off, we used

an information criterion based on the greatest length of

the triangle edge allowed, with the selected value of

this length being 5 km. The extension of the mesh with

a lower resolution around the Spanish mainland was

constructed to control for boundary effects.

In addition to model (1), another ecological

regression (3) was considered to account for potential

socio-demographic and environmental confounding

factors:

log kið Þ ¼ aþ b exp osi þ
X

j

djSocij þ ui þ vi; ð3Þ

where the socio-demographic indicators (Socij) were

obtained from the 1991 census and considered for their

availability at the city level and potential explanatory

ability vis-à-vis certain geographical mortality pat-

terns (López-Abente et al. 2006). These indicators

(j) were: population size (categorised into three levels:

0–2000 [rural zone], 2000–10,000 [semi-urban zone]

and greater than 10,000 inhabitants [urban zone]);

percentages of illiteracy, farmers and unemployment;

average number of persons per household; and mean

income.

Results

Figure 1a shows the factor loading plots for the log-

transformed and clr-transformed four- and five-factor

models, respectively (PFA and varimax rotation). The

position of the element names in the plot reflects the

loading of that element on the different factors. In

addition, the percentages at the top of the plots display

the cumulative explained percentage of total variabil-

ity. The scale on the horizontal axis is in accordance
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with the relative amount of variability explained by

each single factor (Filzmoser et al. 2009). This

figure gives an idea of the significance/composition

of each factor. The comments make reference to items

with factor scores C|0.4|. In the log-transformed

factorial analysis, the respective factors were defined

Fig. 1 a Factor loading plots for the log-transformed and

centred logratio-transformed (clr-transformed) four- and five-

factor models (PFA and varimax rotation). b Biplot of PC1

versus PC2 (Principal Components analysis) of the log-

transformed (left) and clr-transformed (right) loadings (arrows)

and scores (data points)
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by the following positive loadings: F1 by Ni, Cu, Fe

and Mn; F2 by Cr, Al and Fe; F3 by Pb, Zn, Fe and As;

and F4 by Cd. In the clr-transformed factorial

analysis, in contrast, the factors (sign changed) were

defined as follows: F1 by a combination of positive

loadings of Cd and negative loadings of Fe and Al; F2

by Pb, Zn and negative loadings of Ni and Cr; and F3,

F4 and F5 by positive loadings of As, Mn and Cu,

respectively. There was negligible correspondence

between the factors of the two transformations. In a

biplot, Fig. 1b shows the important change brought

about by clr transformation.

Tables 1 and 2, with the log-transformed and clr-

transformed data, respectively, show the RRs with

95% credibility intervals of the four and five score

loads for the tumours analysed, by sex. Results are

shown with adjustment for potential socio-demo-

graphic confounders. Results in that the 95% CI not

including the unity, are in bold.

In the case of the log-transformed variable with the

four factors adjusted for socio-demographic variables,

Table 1 shows excess mortality among men for F3

(Pb, Zn, Fe, As) in cancers of the lung, buccal cavity

and pharynx, and leukaemias. The contrary (a protec-

tive effect, in which the upper limit of the credibility

interval is below unity) was found for F2 (Al, Cr, Fe)

in cancers of the lung, buccal cavity and pharynx.

Among women, excess mortality was detected for F3

(Pb, Zn, Fe, As) in oesophageal cancer and LNH, and

for F4 (Cd) in brain cancer. No protective effect with

respect to mortality was detected in women.

Where there are negative factor loadings, interpre-

tation of results is complicated by the fact that the

factors refer to relative combinations of elements.

Since elements with negative factor loadings were

predominant in this analysis, the sign was changed to

make interpretation of the results easier. In the

analysis of the clr-transformed variable adjusted for

socio-demographic variables shown in Table 2, excess

risk was detected for factors F2 (–Ni –Cr Pb Zn) and

F4 (Mn) in tumours of the digestive system (oesoph-

agus and stomach), F1 (Cd) in cancer of bladder, F3

(As) in brain cancer, and F2 (–Ni –Cr Pb Zn) and F5

(Mn) in leukaemias. Women registered a lower

mortality due to cancers of the buccal cavity and

pharynx, and oesophagus for factors F4 (Mn) and F3

(As), respectively. Excess mortality was detected in

lung [F5 (Cu)], brain [F1 (Cd)] and oesophageal

cancer [F2 (–Ni –Cr Pb Zn)]. Excess mortality in both

Table 1 Estimates of the effect [RR and 95% credibility

interval (CI)] of factors corresponding to score loads from

principal factor analysis, on mortality due to different tumour

types, by sex for the log-transformed data analysis adjusted for

socio-demographic variables

Cancer site Men Women

RR 95% CI RR 95% CI

Lung F1 NA NA NA 1.026 0.980 1.069

Buccal

cavity and

pharynx

F1 0.996 0.948 1.044 0.997 0.939 1.063

Oesophagus F1 0.956 0.899 1.001 1.013 0.908 1.104

Stomach F1 1.007 0.963 1.046 0.995 0.952 1.039

Pancreas F1 1.002 0.971 1.042 0.981 0.947 1.020

Colorectal F1 1.013 0.986 1.042 1.011 0.987 1.042

Breast F1 1.004 0.976 1.030

Prostate F1 1.000 0.975 1.030

Bladder F1 0.990 0.957 1.030 0.995 0.950 1.044

Kidney F1 1.011 0.969 1.061 0.993 0.941 1.047

Brain F1 1.008 0.970 1.043 1.026 0.986 1.078

NHL F1 0.996 0.949 1.041 1.016 0.976 1.057

Leukaemias F1 0.998 0.965 1.033 0.990 0.955 1.032

Lung F2 0.952 0.918 0.989 1.016 0.946 1.075

Buccal

cavity and

pharynx

F2 0.907 0.846 0.965 1.089 0.994 1.188

Oesophagus F2 0.961 0.899 1.029 1.148 0.838 1.357

Stomach F2 0.990 0.941 1.042 0.996 0.937 1.056

Pancreas F2 1.019 0.975 1.067 0.994 0.938 1.042

Colorectal F2 0.990 0.955 1.027 0.975 0.942 1.009

Breast F2 0.978 0.943 1.013

Prostate F2 1.010 0.975 1.048

Bladder F2 0.975 0.928 1.021 0.998 0.935 1.072

Kidney F2 0.972 0.916 1.036 1.008 0.932 1.085

Brain F2 0.978 0.933 1.034 1.027 0.969 1.096

NHL F2 0.961 0.900 1.021 1.045 0.982 1.104

Leukaemias F2 0.993 0.930 1.040 1.013 0.964 1.075

Lung F3 1.123 1.084 1.146 1.037 0.980 1.077

Buccal

cavity and

pharynx

F3 1.062 1.015 1.109 1.025 0.970 1.089

Oesophagus F3 1.063 0.992 1.113 1.121 1.026 1.225

Stomach F3 1.008 0.980 1.048 0.977 0.939 1.022

Pancreas F3 1.019 0.980 1.049 1.017 0.983 1.050

Colorectal F3 0.991 0.966 1.017 0.987 0.966 1.012

Breast F3 1.004 0.977 1.027

Prostate F3 0.998 0.973 1.024

Bladder F3 0.990 0.953 1.022 0.972 0.925 1.011

Kidney F3 1.014 0.973 1.054 1.017 0.964 1.066

Brain F3 0.999 0.968 1.034 0.988 0.945 1.025
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sexes was only observed in oesophageal cancer for F2

and lung cancer for F5.

The comparison of the two analyses (log transfor-

mation vs. clr transformation) was complicated by the

different meaning of the factors and the factor loadings

of different sign in the clr-transformed analysis. Any

similarities attributable to the presence of lead would

be represented by factor F3 (0.678) in the log-

transformed analysis and by factor F2 (0.554) in the

clr-transformed analysis. Hence, whereas excess mor-

tality was detected by the log-transformed analysis for

cancers of the lung, buccal cavity and pharynx, and

leukaemias in men, and for oesophageal cancer and

NHL in women, this was detected by the clr-

transformed analysis for the same tumours plus

oesophageal cancer in men.

In the case of Cd, the possible correspondence

would be between factor F4 in the log-transformed and

F1 in the clr-transformed analyses, i.e. while the log-

transformed analysis showed excess mortality due to

kidney cancer in men and brain cancer in women, the

clr-transformed analysis showed excess mortality due

to cancers of the buccal cavity, pharynx and bladder in

men and brain cancer in women.

In both analyses, stress should be laid on the

importance of adjustment for socio-demographic

variables, since a considerable reduction in the effect

(confounding effect) is evident in many of the

outcomes of the associations in the crude analyses

(see Supplementary material).

Discussion

The results of this ecological mortality analysis show

that soil composition could have an influence on the

spatial distribution and mortality patterns of cancer.

The original soil composition data were transformed

by logratio transformation and subjected to factorial

analysis,with the resulting factor scores being included

as explanatory variables of exposure in the spatial

regression models. The analysis adjusted for socio-

demographic variables shows a number of associations

not accounted for by random chance. These associa-

tions are in both directions, i.e. positive (risk factor)

and negative (protective factor), as are the factor

loadings. Among men, excess mortality was observed

for tumours of the digestive system in soils with higher

Pb, Zn, Mn, Cu and Cd concentrations, bladder cancer

in soilswith higherCd concentrations, and brain cancer

in soils with As. Among women, excess mortality was

observed for brain tumours in the case of factor F1 (Cd)

and lung cancer in the case of F5 (Cu).

Male mortality was higher than expected both for

brain cancer, due to the presence of the inverted factor

F3 -characterised by a high As concentration (loading

of 0.917), and for cancer of buccal cavity and pharynx,

and leukaemias, due to the presence of F5 (Cu).

Similarly, among women higher concentrations of Cd

could be associated with brain cancer and those of Cu

with lung cancer. The results for F2 would appear to be

better explained by the presence of lead. In the case of

this factor, excess risk was observed for cancers of the

lung, buccal cavity, oesophagus and leukaemias,

though these same excesses were not in evidence

among women.

The findings for F3 (As) in respect of oesophageal

cancer among women (lower mortality than expected)

would seem to contradict those of previous studies

(Núñez et al. 2016), though this might be determined

by the low presence of Cr in this factor. However, a

review of F3 (As) outcomes shows the RRs to be

higher than 1 in women for cancers of the lung, buccal

Table 1 continued

Cancer site Men Women

RR 95% CI RR 95% CI

NHL F3 1.019 0.969 1.060 1.044 1.002 1.081

Leukaemias F3 1.048 1.015 1.080 1.018 0.985 1.056

Lung F4 0.993 0.950 1.032 1.009 0.953 1.068

Buccal

cavity and

pharynx

F4 1.052 0.989 1.121 1.053 0.977 1.139

Oesophagus F4 1.023 0.962 1.095 1.122 0.975 1.445

Stomach F4 0.977 0.929 1.030 1.018 0.962 1.082

Pancreas F4 1.029 0.988 1.083 0.998 0.954 1.048

Colorectal F4 1.036 0.999 1.072 0.990 0.958 1.023

Breast F4 0.996 0.964 1.036

Prostate F4 1.014 0.979 1.050

Bladder F4 1.044 0.994 1.095 1.051 0.995 1.120

Kidney F4 1.061 1.006 1.133 1.005 0.944 1.082

Brain F4 1.035 0.993 1.084 1.110 1.054 1.171

NHL F4 1.016 0.963 1.085 0.981 0.934 1.036

Leukaemias F4 0.997 0.957 1.048 0.981 0.936 1.027

Results that do not include the unity in the 95% credibility

interval (statistically significants) are in bold.

F1: Ni, Cu, Fe, Zn, Cr; F2: Al, Cr, Fe; F3: Pb, Zn, Fe, As; F4:

Cd
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Table 2 Estimates of the effect [RR and 95% credibility interval (CI)] of factors corresponding to score loads from principal factor

analysis, on mortality due to different tumour types, by sex for the clr-transformed data analysis adjusted for socio-demographic

variables

Cancer site Men Women

RR 95% CI RR 95% CI

Lung F1 Cd 1.003 0.958 1.044 0.948 0.897 1.007

Buccal cavity and pharynx F1 1.099 1.033 1.181 0.987 0.908 1.065

Oesophagus F1 1.052 0.982 1.126 0.978 0.851 1.250

Stomach F1 0.981 0.931 1.041 1.001 0.944 1.070

Pancreas F1 1.014 0.973 1.064 1.010 0.965 1.064

Colorectal F1 1.023 0.984 1.060 0.999 0.968 1.040

Breast F1 1.026 0.992 1.064

Prostate F1 1.002 0.966 1.041

Bladder F1 1.057 1.008 1.110 1.043 0.987 1.111

Kidney F1 1.049 0.992 1.110 1.006 0.943 1.099

Brain F1 1.018 0.976 1.066 1.081 1.024 1.142

NHL F1 1.027 0.971 1.093 0.980 0.927 1.030

Leukaemias F1 0.988 0.934 1.099 0.998 0.945 1.042

Lung F2 Pb 1.038 1.009 1.069 1.017 0.967 1.056

Buccal cavity and pharynx F2 1.062 1.019 1.112 1.008 0.954 1.062

Oesophagus F2 1.065 1.013 1.112 1.093 1.013 1.202

Stomach F2 1.019 0.984 1.072 0.990 0.950 1.030

Pancreas F2 1.002 0.974 1.034 1.013 0.981 1.051

Colorectal F2 0.994 0.967 1.019 0.987 0.966 1.011

Breast F2 1.001 0.981 1.026

Prostate F2 0.997 0.973 1.024

Bladder F2 0.994 0.962 1.029 0.982 0.93 1.021

Kidney F2 1.007 0.969 1.048 1.016 0.972 1.065

Brain F2 0.991 0.961 1.023 0.982 0.945 1.017

NHL F2 1.02 0.975 1.061 1.007 0.973 1.046

Leukaemias F2 1.046 1.013 1.076 1.022 0.986 1.053

Lung F3 As 1.030 0.995 1.065 1.036 0.984 1.089

Buccal cavity and pharynx F3 1.054 0.996 1.118 1.007 0.933 1.095

Oesophagus F3 1.017 0.957 1.077 0.891 0.798 1.000

Stomach F3 1.028 0.983 1.077 1.017 0.966 1.073

Pancreas F3 1.012 0.970 1.052 1.004 0.959 1.046

Colorectal F3 1.034 0.993 1.066 1.022 0.993 1.054

Breast F3 0.999 0.962 1.028

Prostate F3 1.002 0.967 1.034

Bladder F3 1.037 0.995 1.082 1.019 0.963 1.082

Kidney F3 1.047 0.992 1.103 0.995 0.929 1.059

Brain F3 1.064 1.016 1.108 1.027 0.968 1.079

NHL F3 1.026 0.972 1.082 1.016 0.969 1.072

Leukaemias F3 1.007 0.962 1.047 0.994 0.950 1.039

Lung F4 Mn 0.996 0.968 1.040 0.979 0.934 1.030

Buccal cavity and pharynx F4 0.967 0.921 1.028 0.906 0.844 0.959
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cavity and pharynx, stomach, pancreas, colorectal,

bladder, brain and NHL (all except oesophagus,

kidney, and leukaemias), and higher than 1 in men

for all the tumours studied, though without statistical

significance being reached in any case. These results

are in line with those published by previous studies

(Núñez et al. 2016).

There is sufficient evidence in humans and exper-

imental animals of the carcinogenicity of cadmium

and cadmium compounds. Indeed, exposure to cad-

mium and cadmium compounds causes cancer at

several sites (Straif et al. 2009). F2 factor is repre-

sented by lead concentrations, and associations were

found for cancers of lung, buccal cavity and pharynx,

and leukaemias in men, and for oesophageal cancer in

both sexes. Associations between lead and cancer have

been reported by other types of studies in the case of

cancer of the stomach (Zhao et al. 2014) and pancreas

(Amaral et al. 2012). The IARC classifies inorganic

lead compounds as probably carcinogenic to humans

(Group 2A), and lead exposure is known to increase

the risk of lung, stomach, and bladder cancer (IARC

Working Group et al. 2006). With respect to F5,

represented by Cu, an association was found with lung

cancer in both sexes, and with cancer of buccal cavity

and pharynx, and leukaemias in men. Nevertheless,

neither the EPA nor the IARC (Group 3) classifies

copper as a human carcinogen because there are no

suitable human or animal cancer studies.

With respect to compositional analysis, for multi-

variate data the effects of ‘‘closure’’ can be overcome

by applying a suitable logratio transformation (i.e. clr

Table 2 continued

Cancer site Men Women

RR 95% CI RR 95% CI

Oesophagus F4 0.976 0.930 1.036 0.926 0.840 1.044

Stomach F4 1.058 1.012 1.099 1.008 0.959 1.055

Pancreas F4 0.997 0.962 1.031 0.986 0.951 1.026

Colorectal F4 1.01 0.981 1.038 1.018 0.983 1.044

Breast F4 1.018 0.987 1.046

Prostate F4 1.017 0.989 1.047

Bladder F4 0.998 0.962 1.039 0.963 0.913 1.013

Kidney F4 1.004 0.951 1.050 1.013 0.953 1.075

Brain F4 1.036 0.996 1.078 0.960 0.917 1.008

NHL F4 0.976 0.931 1.028 1.017 0.968 1.062

Leukaemias F4 1.003 0.965 1.041 1.007 0.967 1.052

Lung F5 Cu 1.032 1.000 1.061 1.053 1.010 1.101

Buccal cavity and pharynx F5 1.093 1.043 1.150 1.009 0.948 1.081

Oesophagus F5 0.993 0.944 1.043 1.031 0.932 1.134

Stomach F5 0.99 0.954 1.032 0.984 0.944 1.035

Pancreas F5 0.99 0.959 1.026 0.988 0.953 1.038

Colorectal F5 1.024 0.997 1.052 1.016 0.990 1.041

Breast F5 1.000 0.975 1.028

Prostate F5 0.981 0.953 1.008

Bladder F5 1.001 0.968 1.043 0.998 0.947 1.047

Kidney F5 1.029 0.986 1.088 0.994 0.944 1.054

Brain F5 0.993 0.956 1.031 1.010 0.966 1.056

NHL F5 1.033 0.984 1.081 0.987 0.947 1.032

Leukaemias F5 1.039 1.005 1.078 0.995 0.953 1.032

Results that do not include the unity in the 95% credibility interval (statistically significants) are in bold.

F1: Cd, -Fe, -Al; F2: -Ni, -Cr, Pb, Zn; F3: As; F4: Mn; F5: Cu
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transformation) (Aitchison 2003; Reimann et al.

2011). When carrying out principal component or

factor analysis, the effect of opening the data is

conspicuous on a biplot (Fig. 1b). When carrying out

principal components or factor analysis, the effect of

opening the data is conspicuous on a biplot (Fig. 1b).

Only logratio-transformed data provide information

about the true relationships between the variables,

relationships which are independent of the total

concentrations of the elements (Reimann et al.

2012). The use of log transformation made it possible

to compare the differences and concordances between

the results of the two analyses. Examples in epidemi-

ology of compositional data analysis are to be found in

recent nutrition and human microbiome studies,

though there is an acknowledged lack of sufficient

methodological development in this sphere (Leite

2014; Tsilimigras and Fodor 2016).

Furthermore, it is important to highlight the fact

that data transformation and factorial analysis pose

difficulties when it comes to interpretation of results in

terms of population risk. Rather than referring to

specific elements or to relative risks for a category of

exposure to an element, the results instead refer to

their associations or topsoil composition patterns.

Outliers were not eliminated from this analysis.

Even so, we verified that elimination of outliers in

factorial analysis does not alter the composition of

the factors obtained (results not shown) and, further-

more, that the analysis procedure implies a smooth-

ing of the estimate of the level of each element in

each town similar to that obtained by a kriging

interpolation.

Analysis of point–point misaligned data (Finley

et al. 2014; Lindgren and Rue 2015) has provided a

viable solution for epidemiological analysis in the

form of SPDE and R-INLA. INLA, combined with the

SPDE approach (Lindgren et al. 2011), can easily

accommodate all types of geographically referenced

data, including areal, geostatistical and spatial point

process data (Blangiardo and Cameletti 2015). The

software enables one to construct the triangulation

mesh and programme the joint modelling of the

sampling points and mortality with BYM autoregres-

sive models. The computation times, though very

long, are, nevertheless, acceptable using high-perfor-

mance equipment, with R-INLA itself ensuring the

parallelisation of the process by using all available

processors for the purpose.

The weaknesses of this study are those inherent in

ecological mortality studies and the use of data

aggregated by town. Little or nothing is known about

many potential aspects of exposure stemming from

soil composition, individual lifestyles and variables of

great importance in cancer, such as smoking. Accord-

ingly, the assumption inherent in this study, i.e. that

the population consumes local products, is accept-

able for small towns but not for large cities where the

bulk of family food buying currently takes place at

major shopping malls. In view of the long latency

periods in cancer, however, it can be assumed that in

past decades, the consumption of local products was

more generalised.

To our knowledge, there are no other studies

comparable to ours in terms of dimension and scope.

This study covered mainland Spain and contains soil

concentration measurements of 10 elements (heavy

metals and metalloids) for a mesh of [13,000

sampling points. It also includes cancer mortality data

in over 8000 towns across a 10-year study period,

recording a total of 861,440 deaths due to the tumours

analysed. For statistical treatment purposes, use was

made of hierarchical models, with spatial components

(Besag et al. 1991) being adjusted by R-INLA

(Lindgren and Rue 2015). In these models, the risk

of ecological fallacy was minimised by using a very

fine spatial scale and making no inferences at an

individual level (Clayton et al. 1993; Cressie et al.

2009). Moreover, to account for the spatial interpola-

tion error in the inference, a multivariate model for

spatially misaligned data was used (the set of observed

locations for the explanatory variable is not identical

to that for the response variable) (Cameletti et al.

2013). The inference in this model was performed by

means of the SPDE approach (Lindgren et al. 2011),

thus making it computationally feasible and efficient.

By way of conclusion, attention should be drawn to

the fact that these new results support the relative role

which topsoil composition may play in the frequency

and geographical distribution of cancer, and to the

importance of taking into account the compositional

nature of the data in the analysis, despite the difficul-

ties of interpretation of results that this generates.
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