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The intracellular bacterium Anaplasma
phagocytophilum selectively manipulates
the levels of vertebrate host proteins in the
tick vector Ixodes scapularis
Margarita Villar1†, Vladimir López1†, Nieves Ayllón1†, Alejandro Cabezas-Cruz2, Juan A. López3, Jesús Vázquez3,
Pilar Alberdi1 and José de la Fuente1,4*

Abstract

Background: The intracellular bacteria Anaplasma phagocytophilum are emerging zoonotic pathogens affecting
human and animal health, and a good model for the study of tick-host-pathogen interactions. This tick-borne
pathogen is transmitted by Ixodes scapularis in the United States where it causes human granulocytic anaplasmosis.
Tick midguts and salivary glands play a major role during tick feeding and development, and in pathogen acquisition,
multiplication and transmission. Vertebrate host proteins are found in tick midguts after feeding and have been
described in the salivary glands of fed and unfed ticks, suggesting a role for these proteins during tick feeding and
development. Furthermore, recent results suggested the hypothesis that pathogen infection affects tick metabolic
processes to modify host protein digestion and persistence in the tick with possible implications for tick physiology
and pathogen life-cycle.

Methods: To address this hypothesis, herein we used I. scapularis female ticks fed on uninfected and A.
phagocytophilum-infected sheep to characterize host protein content in midguts and salivary glands by proteomic
analysis of tick tissues.

Results: The results evidenced a clear difference in the host protein content between tick midguts and salivary glands
in response to infection suggesting that A. phagocytophilum selectively manipulates the levels of vertebrate host
proteins in ticks in a tissue-specific manner to facilitate pathogen infection, multiplication and transmission while
preserving tick feeding and development. The mechanisms by which A. phagocytophilum manipulates the levels
of vertebrate host proteins are not known, but the results obtained here suggested that it might include the
modification of proteolytic pathways.
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Conclusions: The results of this study provided evidence to support that A. phagocytophilum affect tick proteolytic
pathways to selectively manipulate the levels of vertebrate host proteins in a tissue-specific manner to increase tick
vector capacity. Investigating the biological relevance of host proteins in tick biology and pathogen infection and the
mechanisms used by A. phagocytophilum to manipulate host protein content is essential to advance our knowledge of
tick-host-pathogen molecular interactions. These results have implications for the identification of new targets for the
development of vaccines for the control of tick-borne diseases.
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Abbreviations: HGA, human granulocytic anaplasmosis; MS, mass spectrometry; RNAseq, RNA sequencing;
FASP, filter aided sample preparation; TFA, trifluoroacetic acid; TEAB, TriethyLammonium bicarbonate; LC, liquid
chromatography; FDR, false discovery rate; GO, gene ontology; IFA, immunofluorescence assay; BSA, bovine serum
albumin; BP, biological process; HSP, heat shock protein; Ig, immunoglobulin; HRG1, Heme-responsive gene 1
protein; HELP, Heme-binding lipoprotein; VG1, Vitellogenin 1; VG2, Vitellogenin 2; ROS, reactive oxygen species;
AMP, anti-microbial peptides

Background
Infectious diseases transmitted by arthropod vectors such
as ticks constitute a growing burden for human and ani-
mal health worldwide [1–4]. Anaplasma phagocytophilum
(Rickettsiales: Anaplasmataceae) are tick-borne intracellu-
lar bacteria that infect vertebrate host granulocytes caus-
ing human, canine and equine granulocytic anaplasmosis
and tick-borne fever of ruminants [5–8]. Human granulo-
cytic anaplasmosis (HGA) is the second most common
tick-borne disease in the United States, and tick-borne
fever is an established and economically important disease
of sheep in Europe [6, 9]. This emerging zoonotic patho-
gen is transmitted by Ixodes ticks of which the major vec-
tor species are I. scapularis in the United States and I.
ricinus in Europe [2]. In ticks, A. phagocytophilum infects
and multiply in different tissues including midguts [10]
and salivary glands [11].
Anaplasma phagocytophilum is a good model for the

study of tick-host-pathogen interactions because recent
results have shown that infection affects gene expression
and protein levels in vertebrate hosts and ticks [8, 12].
Recently, we proposed that the evolution of I. scapu-
laris-host-A. phagocytophilum molecular interactions in-
volving genetic traits of all parts resulted in conflict and
cooperation between them, with mutual beneficial ef-
fects for ticks, hosts and pathogens [13]. Furthermore,
A. phagocytophilum evolved common strategies for in-
fection of vertebrate host and tick cells that include but
are not limited to remodeling of the cytoskeleton, inhib-
ition of cell apoptosis, manipulation of the immune re-
sponse and control of host cell epigenetics [14].
Tick midguts are the tissue where blood digestion oc-

curs while salivary glands produce and secrete proteins
and other molecules that modulate host defenses to en-
hance blood feeding [15–21]. Additionally, tick midguts
and salivary glands play a major role during pathogen
acquisition, multiplication and transmission [22, 23].

The functional role of these tissues during tick feeding
and pathogen infection is reflected at the transcriptome
and proteome levels, with tissue-specific differences be-
tween midguts and salivary glands [12, 20, 21].
Vertebrate host proteins are found in tick midguts

after feeding and have been described in the salivary
glands and saliva of fed ticks [24–30]. Additionally, ver-
tebrate host proteins and particularly alpha and beta-
globin chains of hemoglobin have been identified in
unfed I. scapularis and Amblyomma americanum
nymphs [31] and Rhipicephalus sanguineus adult ticks
[32]. Wickramasekara et al. [31] suggested that because
blood meal digestion in ticks occurs gradually within
midgut cells after endocytosis [19], the combination of
slow assimilation and uptake of some host proteins into
tick hemolymph might explain the persistence of host
blood proteins for months after feeding and molting. In
fact, Francischetti et al. [33] did not identify vertebrate
host proteins in salivary glands from fed soft ticks
Ornithodoros coriaceus, probably associated with the fact
that hard ticks feed for several days while soft ticks feed
for less than 1 hour, therefore decreasing the probability
for host proteins to persist. Nevertheless, Diaz-Martin et
al. [26] did find host proteins in the saliva of the soft
ticks Ornithodoros moubata.
These results suggest a mechanism by which host pro-

teins remain in the tick after blood digestion. For ex-
ample, host proteins persisting in the tick after molting
may serve as a reserve for nutrients until the next infest-
ation and feeding cycle are completed. However, prelim-
inary results in questing R. sanguineus infected with
Rickettsia conorii suggested that pathogen infection
modify tick digestion processes, thus provoking an in-
crease in the concentration of some host proteins such
as hemoglobin ingested with blood meal in infected ticks
when compared to uninfected controls [32]. These re-
sults led to the hypothesis that pathogen infection affect
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tick metabolic processes to modify host protein digestion
and persistence in the tick, with possible implications
for tick physiology and pathogen life-cycle.
To address this hypothesis, in this study we used I.

scapularis female ticks fed on uninfected and A. phago-
cytophilum-infected sheep to characterize host proteins
present in midguts and salivary glands by mass spec-
trometry (MS) analysis of the proteome. The results evi-
denced a clear difference in the sheep host protein
content between tick midguts and salivary glands in re-
sponse to infection and provided evidence to support
that A. phagocytophilum selectively manipulates the
levels of vertebrate host proteins in the tick vector I.
scapularis.

Methods
Ethics statement
Animals were housed and experiments conducted with
the approval and supervision of the Oklahoma State
University Institutional Animal Care and Use Committee
(Animal Care and Use Protocol, ACUP No. VM1026).

Ticks and sample preparation
Ticks and sample preparation were previously described
[12]. Briefly, I. scapularis ticks were obtained from the
laboratory colony maintained at the Oklahoma State
University Tick Rearing Facility [34]. Adult female I.
scapularis were infected with A. phagocytophilum by
feeding on a sheep inoculated intravenously with ap-
proximately 1 × 107 A. phagocytophilum (NY18 isolate)-
infected HL-60 cells (90–100 % infected cells). In this
model, over 85 % of the ticks become infected with A.
phagocytophilum in nymphs, midguts and salivary
glands. One hundred adult female ticks were removed
from the sheep 7 days after infestation, held in the hu-
midity chamber for 4 days and dissected for DNA, RNA
and protein extraction from midguts and salivary glands
using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen,
Valencia, CA, USA). Midguts and salivary glands were
washed in PBS after collection to remove hemolymph-
related cells. Uninfected ticks were prepared in a similar
way but feeding on an uninfected sheep. Two independ-
ent samples were collected and processed for proteomics
analysis for each tick tissue. Ten individual female ticks
were dissected and samples collected and processed as
described above to characterize A. phagocytophilum in-
fection and the mRNA or protein levels of selected
genes/proteins after RNA sequencing (RNAseq) or pro-
teomics analyses.

Proteomics data collection and analysis
Proteins were digested using the filter aided sample
preparation (FASP) protocol [35]. The FASP method al-
lows processing total SDS lysates of essentially any class

of protein from biological samples of any origin, thus
solving the long-standing problem of efficient and un-
biased solubilization of all cellular proteins irrespective
of their subcellular localization and molecular weight.
Samples were dissolved in 50 mM Tris-HCl pH8.5, 4 %
SDS and 50 mM DTT, boiled for 10 min and centrifuged.
Protein concentration in the supernatant was measured
by the Direct Detect system (Millipore, Billerica, MA,
USA). About 150 μg of protein were diluted in 8 M urea
in 0.1 M Tris-HCl (pH 8.5) (UA), and loaded onto 30 kDa
centrifugal filter devices (FASP Protein Digestion Kit,
Expedeon, TN, USA). With this method, the sample is sol-
ubilized in 4 % SDS, then retained and concentrated into
microliter volumes in an ultrafiltration device. The filter
unit then acts as a ‘proteomic reactor’ for detergent re-
moval, buffer exchange, chemical modification and pro-
tein digestion. Notably, during peptide elution, the filter
retains high-molecular-weight substances that would
otherwise interfere with subsequent peptide separation
[35]. The denaturation buffer was replaced by washing
three times with UA. Proteins were later alkylated using
50 mM iodoacetamide in UA for 20 min in the dark, and
the excess of alkylation reagents were eliminated by wash-
ing three times with UA and three additional times with
50 mM ammonium bicarbonate. Proteins were digested
overnight at 37 °C with modified trypsin (Promega, Madi-
son, WI, USA) in 50 mM ammonium bicarbonate at 40:1
protein:trypsin (w/w) ratio. The resulting peptides were
eluted by centrifugation with 50 mM ammonium bicar-
bonate (twice) and 0.5 M sodium chloride. Trifluoroacetic
acid (TFA) was added to a final concentration of 1 % and
the peptides were finally desalted onto C18 Oasis-HLB
cartridges and dried-down for further analysis. For stable
isobaric labeling, the resulting tryptic peptides were dis-
solved in Triethylammonium bicarbonate (TEAB) buffer
and labeled using the 4-plex iTRAQ Reagents Multiplex
Kit (Applied Biosystems, Foster City, CA, USA) according
to manufacturer’s protocol. Briefly, each peptide solution
was independently labeled at room temperature for 1 h
with one iTRAQ reagent vial (mass tag 114, 115, 116 or
117) previously reconstituted with 70 μl of ethanol. Reac-
tion was stopped after incubation at room temperature for
15 min with diluted TFA, and peptides were combined.
Samples were evaporated in a Speed Vac, desalted onto
C18 Oasis-HLB cartridges and dried-down for further
analysis. Labeled peptides were loaded into the liquid
chromatography (LC)-MS/MS system for on-line desalt-
ing onto C18 cartridges and analyzing by LC-MS/MS
using a C-18 reversed phase nano-column (75 μm I.D. ×
50 cm, 2 μm particle size, Acclaim PepMap 100 C18;
Thermo Fisher Scientific, Waltham, MA, USA) in a con-
tinuous acetonitrile gradient consisting of 0–30 % B in
145 min, 30–43 % B in 5 min and 43–90 % B in 1 min (A
= 0.5 % formic acid; B = 90 % acetonitrile, 0.5 % formic
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acid). A flow rate of c.200 nl/min was used to elute pep-
tides from the reverse phase nano-column to an emitter
nanospray needle for real time ionization and peptide
fragmentation on a QExactive mass spectrometer
(Thermo Fisher Scientific). For increasing proteome
coverage, iTRAQ-labeled samples were run at least twice.
For peptide identification, all spectra were analyzed with
Proteome Discoverer (version 1.4.0.29, Thermo Fisher Sci-
entific) using a Uniprot databases containing all sequences
from Ruminantia and Ixodida (April 14, 2014). For data-
base searching, parameters were selected as follows: tryp-
sin digestion with 2 maximum missed cleavage sites,
precursor and fragment mass tolerances of 2 Da and
0.02 Da, carbamidomethyl cysteine as fixed modification
and methionine oxidation as dynamic modifications. For
iTRAQ labeled peptides, N-terminal and Lys iTRAQ
modification was added as a fixed modification. Peptide
identification was validated using the probability ratio
method [36] and false discovery rate (FDR) was calculated
using inverted databases and the refined method [37] with
an additional filtering for precursor mass tolerance of
12 ppm. Only peptides with a confidence of at least 99 %
were used to quantify the relative abundance of each pep-
tide determined as described previously [38]. Protein
quantification from reporter ion intensities and statistical
analysis of quantitative data were performed as described
previously using QuiXoT [39, 40]. The intensity of the re-
porter peaks was used to calculate the fitting weight of
each spectrum in the statistical model as described previ-
ously [39]. Outliers at the scan and peptide levels and sig-
nificant protein-abundance changes were detected from
the Z-values (the standardized variable used by the model
that expresses the quantitative values in units of standard
deviation) by using a FDR threshold of 1 % as described
previously [39]. Results are the mean of two replicates.
The gene ontology (GO) analysis was performed using
Uniprot (http://www.uniprot.org) annotations.

Characterization of the digestion of sheep host
hemoglobins in tick midguts and salivary glands
Sheep hemoglobin alpha 1/2 (P68240) and beta (P02075)
peptides detected by MS analysis with 1 % FDR in mid-
guts and salivary glands from uninfected and A. phago-
cytophilum-infected ticks were used for analysis. For this
analysis, a new database search of MS spectra was per-
formed with the same parameters described above but
selecting “no enzyme” instead of “trypsin” digestion to
identify the non-tryptic peptides present in the samples.
The preferred cleavage sites for hemoglobinolytic en-
zymes Trypsin, Leucine aminopeptidase, Legumain, Ca-
thepsin B, Cathepsin C, Serine carboxypeptidase were
determined by searching against the MEROPS Peptidase
Database (https://merops.sanger.ac.uk, release 10.0) (see
in Additional file 1: Dataset S1).

Characterization of the I. scapularis proteolytic and heme
transport pathways mRNA and protein levels in response
to A. phagocytophilum infection
The quantitative transcriptomics and proteomics data
for midguts and salivary glands from uninfected and A.
phagocytophilum-infected I. scapularis were obtained
from previously published results and deposited at the
Dryad Digital Repository database with the dataset iden-
tifier http://dx.doi.org//10.5061/dryad.50kt0 [12]. The
analysis of the tick proteolytic pathway included the
genes/proteins annotated as protease, proteinase, peptid-
ase, and its inhibitors [41].

Determination of hemoglobin protein levels by ELISA
Proteins were extracted from midguts and salivary
glands dissected from individual uninfected and A. pha-
gocytophilum-infected I. scapularis female ticks using
the AllPrep DNA/RNA/Protein Mini Kit (Qiagen, Inc.
Valencia, CA, USA) according to manufacturer instruc-
tions. Extracted proteins were resuspended in PBS with
0.5 % Triton X-100 and protein concentration was deter-
mined with the Pierce BCA Protein Assay Kit (Thermo
Scientific, San Jose, CA, USA) using bovine serum albu-
min (BSA) as standard. Hemoglobin protein levels were
determined by ELISA (Cloud-Clone Corp., Houston, TX,
USA) following manufacturer instructions. Optical density
values were converted to μg/ml hemoglobin using the
assay standard curve and regression analysis. Hemoglobin
values were compared between groups by one-tailed
Student’s t-test for samples with unequal variance (P <
0.05; n = 2 biological replicates).

Determination of tick mRNA levels by real-time RT-PCR
The expression of selected genes was characterized using
total RNA extracted from individual I. scapularis female
midguts and salivary glands obtained from uninfected
and A. phagocytophilum-infected samples as previously
described [12]. All ticks were confirmed as infected or
uninfected by real-time PCR analysis of A. phagocytophi-
lum msp4 DNA. Real-time RT-PCR was performed on
RNA samples with gene-specific oligonucleotide primers
(see Additional file 2: Table S1) using the iScript One-
Step RT-PCR Kit with SYBR Green and the iQ5 thermal
cycler (Bio-Rad, Hercules, CA, USA) following the man-
ufacturer’s recommendations. A dissociation curve was
run at the end of the reaction to ensure that only one
amplicon was formed and that the amplicons denatured
consistently in the same temperature range for every
sample. The mRNA levels were normalized against tick
cyclophilin and ribosomal protein S4 as described pre-
viously using the genNorm method (ddCT method as
implemented by Bio-Rad iQ5 Standard Edition, Version
2.0) [12]. Normalized Ct values were compared be-
tween infected and uninfected tick samples by Student’s
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t-test with unequal variance (P < 0.05; n = 3–17 bio-
logical replicates).

Immunofluorescence assay (IFA)
Female ticks fed on A. phagocytophilum-infected and
uninfected sheep and fixed with 4 % paraformaldehyde
in 0.2 M sodium cacodylate buffer were embedded in
paraffin and used to prepare sections on glass slides as
previously described [12]. The paraffin was removed
from the sections through two washes in xylene and the
sections were hydrated by successive 5 min washes with
a graded series of 100 %, 96 and 65 % ethanol and finally
with distilled water. Next, the slides were treated with
Proteinase K (Dako, Barcelona, Spain) for 7 min, washed
with 0.1 % PBS-Tween 20 (Sigma-Aldrich, St. Louis, MI,
USA) and blocked with 2 % bovine serum albumin
(BSA; Sigma-Aldrich) in PBS-Tween 20 during 1 h at
room temperature. The slides were then incubated over-
night at 4 °C with rabbit anti-Cathepsin L (mature re-
gion No. pab0213-0; Covalab, Villeurbanne, France)
antibodies diluted 1:1000 in 2 % BSA/PBS-Tween 20.
This antibody was previously shown to recognize tick
Cathepsin L by Western blot [42]. After 3 washes with
PBS-Tween 20, the slides were incubated for 1 h with
goat-anti-rabbit IgG conjugated with FITC (Sigma-Al-
drich) diluted 1:160 in 2 % BSA/PBS-Tween 20. Finally,
after two washes with PBS the slides were mounted on
ProLong Diamond Antifade Mountant with DAPI re-
agent (Thermo Scientific™, Madrid, Spain). The sections
were examined using a Leica SP2 laser scanning confocal
microscope (Leica, Wetzlar, Germany) and IgGs from
rabbit preimmune serum were used as controls.

Proteomics data
Data are available via Peptide Atlas (http://www.pepti-
deatlas.org) with identifier PASS00854.

Results
The vertebrate host protein content differs between tick
midguts and salivary glands in response to A.
phagocytophilum infection
Infection with A. phagocytophilum affects gene expression
and protein production in ticks in a tissue-specific man-
ner, but the effect on host protein content in different tick
tissues has not been characterized. To address this ques-
tion, sheep host proteins present in midguts and salivary
glands were characterized in uninfected and A. phagocyto-
philum-infected I. scapularis female ticks. A total of 1,753
sheep host proteins were identified in fed adult female
ticks, of which 473 were identified with more than one
peptide per protein in at least one of the samples (see
Additional file 2: Table S1). Of these, 1,151 (364 identified
with more than one peptide per protein) and 1,282 (414
identified with more than one peptide per protein)

proteins were identified in tick midguts and salivary
glands, respectively (see Additional file 3: Dataset S2). Of
the host proteins identified with more than one peptide
per protein, 388 proteins were found in both midguts and
salivary glands (see Additional file 3: Dataset S2).
Sheep host proteins showing statistically significant pro-

tein abundance changes on the basis of Zq, or standard-
ized log2-ratio of A. phagocytophilum-infected versus non-
infected samples (Zq > 2, Zq < −2), were selected among
proteins identified with more than one peptide in at least
one of the samples [12, 39]. A total of 48 (6 underrepre-
sented and 42 overrepresented) and 50 (36 underrepre-
sented and 14 overrepresented) differentially represented
sheep host proteins were found in tick midguts and saliv-
ary glands, respectively (see Additional file 3: Dataset S2).
Of them, only 8 proteins were found in both midguts and
salivary glands.
The GO analysis of differentially represented sheep

host proteins showed that most biological processes
(BPs) were found in both tick midguts and salivary
glands (Fig. 1a, b). However, immune response, other
and oxygen transport BPs contained 68 % of the differ-
entially represented sheep host proteins in tick midguts
while in salivary glands the most represented BPs were
other, unknown, oxygen transport and translation, con-
taining 64 % of the differentially represented sheep host
proteins (Fig. 1a, b). These results evidenced a clear dif-
ference in the host protein content between tick midguts
and salivary glands in response to A. phagocytophilum
infection. Additionally, although the total number of dif-
ferentially represented sheep host proteins was similar
between tick tissues, 88 % of the differentially repre-
sented host proteins in midguts were overrepresented
while in salivary glands only 28 % of the differentially
represented proteins were overrepresented in infected
ticks when compared to uninfected controls (Fig. 1c, d).
Furthermore, while sheep host stress response and tran-
scription/DNA replication proteins were overrepresented
in midguts and salivary glands, proteins in the lipid me-
tabolism, oxygen transport and immune response BPs
were overrepresented in midguts and underrepresented in
salivary glands in response to A. phagocytophilum infec-
tion (Fig. 1c, d).

Sheep host heat shock and chromatin-related proteins
are overrepresented in response to A. phagocytophilum
infection in tick midguts and salivary glands
To characterize the putative physiological role of the
host proteins differentially represented in tick midguts
and salivary glands in response to A. phagocytophilum
infection, we first focused on sheep host stress response
and transcription/DNA replication proteins that were
overrepresented in both tick tissues (Fig. 1c, d). The re-
sults showed that two sheep heat shock proteins (HSPs),
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HSP60 and HSP70, were overrepresented in infected tick
midguts and salivary glands, respectively when com-
pared to uninfected controls (Table 1). In the transcrip-
tion/DNA replication BP, three host proteins involved in
chromatin structure and function were overrepresented
in response to A. phagocytophilum infection in tick mid-
guts and salivary glands (Table 1).

Sheep host proteins involved in lipid metabolism and
immune response are overrepresented in tick midguts
but underrepresented in salivary glands in response to A.
phagocytophilum infection
To characterize further the putative physiological role of
the host proteins differentially represented in response
to A. phagocytophilum infection, we then focused on
sheep host proteins in the lipid metabolism and immune
response BPs that were overrepresented in midguts and
underrepresented in salivary glands in response to A.

phagocytophilum infection (Fig. 1c, d). The host lipid
metabolism proteins overrepresented in A. phagocyto-
philum-infected tick midguts when compared to unin-
fected controls included proteins involved in lipid
absorption, transport and excretion (Table 1). In tick sal-
ivary glands, sheep host proteins involved in lipid syn-
thesis were underrepresented in infected ticks when
compared to uninfected controls (Table 1).
In tick midguts, sheep host immune response proteins

that were overrepresented in response to A. phagocytophi-
lum infection included proteins involved in innate
immunity (including several S100 proteins), adaptive
immunity, anti-bacterial immunity, regulation of the im-
mune response, and antigen processing and presentation
(Table 1). In tick salivary glands, sheep host immuno-
globulin (Ig)-like proteins and proteins involved in innate
and anti-bacterial immunity were underrepresented in re-
sponse to A. phagocytophilum infection (Table 1).

Fig. 1 Tissue-specific effect of A. phagocytophilum infection on sheep host proteins represented in ticks. The results demonstrated a clear difference
in the sheep host protein content between tick midguts and salivary glands in response to A. phagocytophilum infection. a Biological processes of
differentially represented sheep host proteins in infected female tick midguts. b Biological processes of differentially represented sheep host proteins
in infected female tick salivary glands. c Number of underrepresented and overrepresented sheep host proteins in different biological processes in
infected female tick midguts when compared to uninfected controls. d Number of underrepresented and overrepresented sheep host proteins in
different biological processes in infected female tick salivary glands when compared to uninfected controls
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To confirm the origin of selected differentially repre-
sented proteins (Table 1), all of the peptides used to
identify the proteins sharing tryptic peptides with I. sca-
pularis proteins were revised to show the sequence of
the peptides that are exclusive for host-derived proteins
(Table 2).

Anaplasma phagocytophilum infection impacts on
vertebrate host hemoglobin content in tick midguts and
salivary glands
The identification of differentially represented sheep
host proteins in A. phagocytophilum-infected I. scapu-
laris midguts and salivary glands suggested the question

Table 1 Sheep host stress response, transcription/DNA replication, lipid metabolism, and immune response proteins differentially
represented in tick midguts and salivary glands in response to A. phagocytophilum infection

ID Description Log2 (infected/uninfected) fold change Function

Midguts Salivary glands

Stress response proteins

P31081 HSP60 +2.9 ns Response to cold

P0CB32 HSP70 ns +1.4 Heat shock response

Transcription/DNA replication

P62803 Histone H4 +3.1 ns Chromatin structure

P68432 Histone H3.1 +3.1 ns Chromatin structure

F1MN93 TOP1 uncharacterized protein ns +2.7 Chromatin binding

Lipid metabolism

W5QHX9 Phospholipase B +2.3 -1.3 Lipid absorption

Q9GL30 Phospholipase B +1.9 ns Lipid absorption

P15497 Apolipoprotein A-I +1.9 ns Cholesterol transport

Q32PF2 ATP-citrate synthase ns -1.5 Lipid synthesis

Q9TTS3 Acetyl-CoA carboxylase 1 ns -1.6 Lipid synthesis

Immune response

W5NQK9 S100A8 +3.8 ns Innate immunity

W5NQJ0 S100A12 +3.2 ns Innate immunity

W5NQH6 S100A9 +3.1 ns Innate immunity

P28783 S100A9 +2.6 ns Innate immunity

D8X187 Serpin peptidase inhibitor clade B
ovalbumin member 1

+2.1 ns Innate immunity

P62808 Histone H2B type 1 +3.4 ns Adaptive immunity

W5PGJ7 PYD and CARD Domain-Containing
uncharacterized protein

+2.9 ns Adaptive immunity

P49928 Cathelin-related peptide SC5 +3.1 ns Anti-bacterial immunity

P82018 Cathelicidin-2 +2.7 ns Anti-bacterial immunity

P50415 Cathelicidin-3 +2.3 ns Anti-bacterial immunity

P79360 Myeloid antimicrobial peptide +2.6 ns Anti-bacterial immunity

W5P7S6 Alpha-1-acid glycoprotein +2.6 nf Regulation of the immune
response

W5PLV3 RAB5B uncharacterized protein +2.4 nf Antigen processing and
presentation

W5PSQ7 Ig-like uncharacterized protein ns -1.3 Adaptive immunity

G5E513 Ig-like uncharacterized protein ns -1.8 Adaptive immunity

G5E5T5 Ig-like uncharacterized protein ns -2.7 Adaptive immunity

F1MQF6 Apoptosis-associated speck-like
protein-containing a CARD

nf -1.5 Innate immunity

W5PGJ7 LOC101105208 uncharacterized protein ns -1.6 Anti-bacterial immunity

Abbreviations: ID protein (Uniprot; http://www.uniprot.org) accession numbers; +, overrepresented proteins in infected vs uninfected ticks; -, underrepresented
proteins in infected vs uninfected ticks; nf, not found; ns, not significant
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about the origin of these proteins. The analysis of cell
compartment GO showed that over 50 % of the proteins
were extracellular or associated with blood cells (Fig. 2a;
see Additional file 3: Dataset S2). Nevertheless, other
proteins were localized in the cell cytoplasm (Fig. 2a; see
Additional file 3: Dataset S2), probably associated with
host blood cells ingested by ticks during feeding. Most
of the host proteins in the hemoglobin complex and
blood microparticle classification were sheep hemoglo-
bins in the oxygen transport BP represented in both tick
midguts and salivary glands (Fig. 2b). These hemoglo-
bins were overrepresented in midguts and underrepre-
sented in salivary glands of A. phagocytophilum-infected
ticks when compared to uninfected controls (Fig. 2c), a
result that was corroborated by an independent analysis
using a specific ELISA test (Fig. 2d).

Anaplasma phagocytophilum manipulates host protein
content through modification of tick proteolytic pathways
To aid in the probable mechanism responsible for the
differential representation of host proteins in midguts

and salivary glands of A. phagocytophilum-infected ticks
when compared to uninfected controls, the tissue-
specific effect of infection was characterized on tick
hemoglobinolytic enzymes and other proteases. The
transcriptomics and proteomics data used in this study
was previously validated by real-time RT-PCR and West-
ern blot or immunofluorescence for selected genes and
proteins, respectively [12, 43]. Nevertheless, 5 selected
genes coding for hemoglobin digesting enzymes differen-
tially regulated in response to A. phagocytophilum infec-
tion were used for analysis by real-time RT-PCR in
individual tick midguts and salivary glands (see Add-
itional file 2: Figure S1). As previously discussed [12],
the differences observed between the results of both
analyses that were evident in tick midguts considering
the absence of transcriptomics data for some genes in
salivary glands, could be attributed to intrinsic variation
in gene expression and the fact that approximately 85 %
of the ticks used for RNAseq were infected [44], while
for real-time RT-PCR all ticks were confirmed unin-
fected or infected with A. phagocytophilum before ana-
lysis. At the protein level, an antibody recognizing tick
Cathepsin L was used to corroborate proteomics results
by IFA. Similar to proteomics analysis (Table 3), the re-
sults showed protein underrepresentation in the salivary
glands of A. phagocytophilum-infected ticks when com-
pared to uninfected controls (Fig. 3). Furthermore, al-
though proteomics data were not available, Cathepsin L
was overrepresented in tick midguts in response to in-
fection (Fig. 3). Therefore, considering these results,
the analysis of the differential expression/representation
of tick hemoglobinolytic enzymes in response to A.
phagocytophilum infection was presented by pondering
mRNA (transcriptomics RNAseq and real-time RT-
PCR) and protein (proteomics) data (see Additional file
2: Figure S2).
The results suggested that in midguts from A. phago-

cytophilum-infected ticks when compared to uninfected
controls, the hemoglobin primary cleavage was inhibited
after Legumain underrepresentation while hemoglobin
secondary and tertiary cleavages were probably not af-
fected (Fig. 4 and Table 3). The hemoglobinolytic en-
zymes were also found in tick salivary glands, suggesting
a role in hemoglobin digestion in this tissue (Table 3). In
the salivary glands of infected ticks when compared to un-
infected controls, the results suggested that hemoglobin
primary and secondary cleavages were inhibited because
Cathepsins L and B were underrepresented in response to
infection while the hemoglobin tertiary cleavage was prob-
ably not affected (Fig. 4 and Table 3). The analysis of
sheep hemoglobin alpha 1/2 (P68240) and beta (P02075)
peptides identified by MS in tick midguts and salivary
glands showed the presence of potential cleavage sites for
trypsin (used in protein digestion for MS analysis),

Table 2 Identification of host-derived proteins with identical
tryptic peptides to I. scapularis tick homologues

ID Description Unique host-derived peptides

P31081 HSP60 ALMLQGVDLLADAVAVTMGPK

VGGTSDVEVNEK

VGGTSDVEVNEKKDR

P0CB32 HSP70 FDLTGIPPAPR

RKELEQVCNPIITK

P68432 Histone H3.1 RVTIMPKDIQLAR

SAPATGGVK

SAPATGGVKKPHRYRPGTVALR

F1MN93 TOP1 uncharacterized protein AGNEKEEGETADTVGCCSLR

HLQDLMEGLTAK

P62808 Histone H2B type 1 AMGIMNSFVNDIFER

EIQTAVRLLLPGELAK

EIQTAVR

ESYSVYVYK

SRKESYSVYVYK

STITSREIQTAVRLLLPGELAK

STITSREIQTAVR

VLKQVHPDTGISSK

W5PLV3 RAB5B uncharacterized protein TAMNVNDLFLAIAK

P62803 Histone H4 None

Q9TTS3 Acetyl-CoA carboxylase 1 None

To confirm the origin for selected differentially represented proteins (Table 1),
all of the peptides used to identify the proteins sharing tryptic peptides with I.
scapularis proteins were revised. The peptides unique for host-derived proteins
are shown. For protein P62803, we could not define the origin due to 100 %
homology between sheep and tick proteins. For protein Q9TTS3, all peptides
used for identification were identical in both host and tick-derived proteins
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Legumain, Cathepsin B, Cathepsin C, Leucine amino-
peptidase and Serine carboxipeptidase, therefore pro-
viding additional support for the activity of these
enzymes in both tick tissues (Fig. 5a; see Additional
file 1: Dataset S1).
In the midguts of ticks infected with A. phagocytophi-

lum, Heme-responsive gene 1 protein (HRG1) was un-
derrepresented, while heme transport proteins Heme-
binding lipoprotein (HELP) and Vitellogenin 2 (VG2)
but not Vitellogenin 1 (VG1) were overrepresented and
underrepresented, respectively, in response to infection
(Fig. 4 and Table 3). Furthermore, sheep host blood co-
agulation factors Annexin A3 (Q3SWX7; overrepre-
sented in infected tick midguts and involved in blood
anti-coagulation as a Phospholipase 2 inhibitor), and Fi-
brinogen gamma-B, and uncharacterized protein APOH

(P12799 and W5Q268; underrepresented in infected tick
salivary glands and involved in blood coagulation) were
differentially represented in infected ticks when com-
pared to uninfected controls (see Additional file 3: Data-
set S2), resulting in the inhibition of blood coagulation
in both tick tissues.
In addition to hemoglobinolytic enzymes, other tick

proteases were upregulated/overrepresented while prote-
ase inhibitors were down-regulated or did not change in
midguts and salivary glands of A. phagocytophilum-in-
fected ticks when compared to uninfected controls
(Fig. 5b, c). However, as shown for the hemoglobinolytic
enzymes (Fig. 3), the tick proteases differentially regu-
lated in response to infection were predominantly differ-
ent between midguts and salivary glands (see Additional
file 2: Table S2).

Fig. 2 Sheep host hemoglobin levels vary in a tissue-specific manner in response to A. phagocytophilum infection in ticks. a Cell compartment
classification of differentially represented sheep host proteins in infected female tick midguts and salivary glands. b Venn diagram of the sheep
host hemoglobin differentially represented in infected vs uninfected tick tissues. c Differential host hemoglobin protein representation in response
to A. phagocytophilum infection in tick midguts and salivary glands. d Hemoglobin levels in tick midguts and salivary glands from A. phagocytophilum-
infected and uninfected ticks determined by ELISA in individual tick protein extracts, represented as the mean + standard deviation (SD) and compared
between samples from infected and uninfected ticks by Student’s t-test with unequal variance (P < 0.05; 2 biological replicates)
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Table 3 Differential expression/representation of enzymes involved in tick hemoglobinolytic and heme transport pathways in
response to A. phagocytophilum infection

ID Description Log2 (infected/uninfected) fold change (mRNA/protein) Role in hemoglobin digestion

Midguts Salivary glands

Tick hemoglobinolytic pathway

EF428204 Cathepsin D nf/ns ns/nf Primary cleavage

A4GTA5

HQ615697 Cathepsin D2 nf/ns ns/nf Primary cleavage

E7E820

ISCW000202 Legumain -0.6/ns ns/ns Primary cleavage

B7P6S9

ISCW015983 Legumain -1.3/nf nf/nf Primary cleavage

B7P2C6

ISCW000076 Cathepsin L -7.3/nf nf/nf Primary and secondary cleavage

B7P3N8

JX502821 Cathepsin L nf/nf nf/-2.9 Primary and secondary cleavage

J9QSA1

ISCW000080 Cathepsin B +0.5/ns nf/-2.1 Secondary and tertiary cleavage

B7P3P1

EU551624 Cathepsin B nf/ns nf/-2.0 Secondary and tertiary cleavage

B7SP39

ISCW013346 Cathepsin B -1.6/ns ns/-2.5 Secondary and tertiary cleavage

B7QCU7

ISCW000078 Cathepsin B +0.2/ns -4.3/-1.8 Secondary and tertiary cleavage

B7P3P0

ISCW003494 Cathepsin C +0.3/ns -2.6/+2.2 Tertiary cleavage

B7PEB4

ISCW001779 Leucine aminopeptidase +2.2/ns ns/nf Tertiary cleavage

B7P2N4

ISCW023735 Leucine aminopeptidase +2.0/ns +1.1/ns Tertiary cleavage

B7QLQ7

ISCW001780 Leucine aminopeptidase +1.4/ns +0.5/ns Tertiary cleavage

B7P2N5

ISCW013904 Serine carboxipeptidase +1.0/ns ns/ns Tertiary cleavage

B7QLB7

ISCW024536 Serine carboxipeptidase -0.5/ns ns/nf Tertiary cleavage

B7Q049

ISCW024751 Serine carboxipeptidase -0.7/ns ns/ns Tertiary cleavage

B7QD81

ISCW024883 Serine carboxipeptidase -4.5/nf -2.4/nf Tertiary cleavage

B7QK83

ISCW007492 Serine carboxipeptidase -1.7/ns ns/ns Tertiary cleavage

B7PTE5

ISCW003059 Serine carboxipeptidase -1.2/nf ns/nf Tertiary cleavage

B7PC00
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Discussion
The characterization of sheep host proteins in the mid-
guts and salivary glands of uninfected and A. phagocyto-
philum-infected I. scapularis female ticks showed tissue-
specific differences in response to infection. Vertebrate
host proteins in the transcription, lipid metabolism, im-
mune response and oxygen transport (hemoglobins)
were previously found to be highly abundant in the sal-
iva of engorged I. scapularis ticks [24, 30]. The authors
suggested that ticks have evolved mechanisms to select-
ively secrete host proteins in the saliva to aid in the feed-
ing process [30]. Furthermore, anti-microbial peptides
(AMP) such as S100 proteins [45] highly abundant in
the saliva of engorged I. scapularis were proposed to
function in clearing microbes from the feeding site to
preserve ticks [30]. In A. phagocytophilum-infected ticks,
host proteins from some of these pathways such as
stress response and transcription were overrepresented
in tick midguts and salivary glands, supporting the exist-
ence of a mechanism to facilitate tick feeding that was
enhanced in response to infection. However, other host
proteins overrepresented in A. phagocytophilum-infected
tick midguts probably reflected the host response to in-
fection. For example, proteins in the immune response
BP are upregulated at the transcriptional level in sheep
infected with A. phagocytophilum [46]. Nevertheless, im-
mune response proteins were underrepresented in in-
fected tick salivary glands when compared to uninfected
controls, suggesting that A. phagocytophilum selectively
manipulates the levels of host proteins to facilitate
pathogen infection, multiplication and transmission.
The infection with A. phagocytophilum modulates lipid

metabolism in vertebrate host cells and bacteria incorp-
orate host cholesterol for survival [47–49]. In tick cells,

A. phagocytophilum infection inhibits lipid metabolism
through down-representation of tick proteins [50]. The
overrepresentation of sheep host proteins involved in
lipid absorption, transport and secretion in midguts and
the underrepresentation of lipid synthesis proteins in
salivary glands of infected ticks when compared to unin-
fected controls may constitute an additional mechanism
by which A. phagocytophilum selectively manipulates
lipid metabolism to enhance infection and multiplication
in tick tissues.
Although ticks contain genes that encode heme syn-

thesis enzymes, recent results demonstrate that they do
not synthesize heme but obtain heme from the verte-
brate host hemoglobin in the midgut and from tick
heme transporters HELP/VG1/VG2 in other tissues
[50–52]. Recently, Hajdusek et al. [50] proposed that the
heme produced after host hemoglobin digestion is trans-
ported outside the endosomal digestive vesicle by HRG1
and subsequently detoxified in the hemosome or trans-
ported by HELP, VG1 and VG2 to other tick tissues such
as salivary glands. However, as shown here and in previ-
ous reports [30], the presence of active tick hemoglobi-
nolytic enzymes in the salivary glands and secreted in
the saliva of engorged I. scapularis suggests the possibil-
ity that host hemoglobin may be also digested under dif-
ferent conditions to provide heme in the salivary glands.
Although heme may not contribute to the cellular iron
pool in ticks [52], the results reported here suggested
that A. phagocytophilum affects hemoglobin primary
cleavage in tick midguts and salivary glands, probably to
reduce the production of hemoglobin-derived AMP to
facilitate pathogen multiplication [50]. Furthermore, al-
though A. phagocytophilum infection did not affect most
of the enzymes involved in hemoglobin secondary and

Table 3 Differential expression/representation of enzymes involved in tick hemoglobinolytic and heme transport pathways in
response to A. phagocytophilum infection (Continued)

Tick heme transport pathway

ISCW001847 Heme-responsive gene 1 (HRG1) -0.8/nf ns/nf Heme transporter

B7P8M4

ISCW021709 Heme-binding lipoprotein (HELP) +3.3/ns -0.2/ns Heme transporter

B7Q406

ISCW013727 Vitellogenin 1 (VG1) ns/ns ns/nf Heme transporter

B7QJ67

ISCW021228 Vitellogenin 2 (VG2) -1.1/nf ns/nf Heme transporter

B7Q7E5

Transcriptomics RNAseq and proteomics data from A. phagocytophilum-infected and uninfected tick samples were obtained from Ayllón et al. [12]. Except for
Cathepsins D and D2, which were included to show that these proteins were identified in the proteomics analysis but were not significantly different between
infected and uninfected samples, only genes/proteins with statistically significant differences in at least one of the analyses (transcriptomics or proteomics) and
samples (midguts or salivary glands) were included. Abbreviations: ID, gene (GenBank; http://www.ncbi.nlm.nih.gov) and protein (Uniprot; http://www.uniprot.org)
accession numbers
+, upregulated/overrepresented genes/proteins in infected vs uninfected ticks; -, downregulated/underrepresented genes/proteins in infected vs uninfected ticks;
nf, not found; ns, not significant
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tertiary cleavage in tick midguts, the underrepresenta-
tion of HGR1 suggested a mechanism to reduce heme
release into the cytoplasm of midgut cells (Fig. 4). This
mechanism is probably manipulated by A. phagocyto-
philum to facilitate infection through reduction of the
antimicrobial oxidative burden caused by reactive oxy-
gen species (ROS) generated after heme release [19, 53,
54]. Furthermore, the inhibition of blood coagulation

may be a mechanism driven by tick and/or A. phagocy-
tophilum to facilitate tick feeding and pathogen multi-
plication. As recently proposed [13], these mechanisms
may have evolved to guarantee A. phagocytophilum in-
fection, multiplication and transmission while preserv-
ing tick life cycle.
Once shown that A. phagocytophilum selectively ma-

nipulates the levels of vertebrate host proteins in ticks in

Fig. 3 Characterization of Cathepsin L protein levels by IFA. Representative images of IFA of midguts and salivary glands of uninfected and A.
phagocytophilum-infected adult female I. scapularis. Tick tissues were stained with rabbit anti-Cathepsin L (mature region No. pab0213-0; Covalab,
Villeurbanne, France) antibodies (green, FITC) or DAPI (blue), and images were superimposed after staining (right panels). Preimmune control
serum-treated samples showed similar results for uninfected and infected ticks. Uninfected and infected samples stained with anti-Cathepsin L
antibodies showed higher protein levels in infected midguts while Cathepsin L was underrepresented in infected salivary glands when compared
to uninfected controls (arrowheads). Scale-bars: 10 μm
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a tissue-specific manner, the next question was why
these proteins were selected among all host proteins
ingested by ticks during blood feeding? Some of these
host proteins such as hemoglobins, S100 and Ig-like pro-
teins that were overrepresented in tick midguts and un-
derrepresented in salivary glands have a crucial role
during tick feeding and pathogen infection. In feeding
ticks, host hemoglobins are the source of heme and
AMP, which together with other immune system pro-
teins such as S100 and Ig-like proteins may be essential
for tick feeding and antimicrobial response to control
microbe levels in tick tissues [19, 30, 45, 50, 53, 54].
Additionally, most of these proteins are highly conserved
among major domestic and natural vertebrate hosts for
A. phagocytophilum and I. scapularis (see Additional file
2: Table S3). Therefore, these results suggested that the
mechanisms responsible for the selective manipulation
of vertebrate host proteins by A. phagocytophilum infec-
tion in tick tissues are evolutionary conserved.
The physiological significance of these findings was

addressed by responding to the questions recently

proposed by Sojka et al. [19] for a better understanding
of how ticks handle the blood meal. Among these
questions they proposed to address if the same tick
enzyme machinery process hemoglobin and other ver-
tebrate host proteins and the role of blood digestion
and chemical reduction-oxidation reaction balance on
pathogen infection and transmission in the tick mid-
gut. The results of our study showed that tick hemo-
globinolytic enzymes are present and active in both
midguts and salivary glands of fed ticks and therefore
may be involved in the digestion of hemoglobin and
other host proteins. Although the effect of hemoglobin
digestion and ROS production on pathogen infection
and transmission was not directly addressed in our
study, the results suggested that A. phagocytophilum
selectively manipulate these and other processes to
facilitate pathogen infection, multiplication and
transmission.
The results reported here suggested that the mech-

anism used by A. phagocytophilum to selectively ma-
nipulate the levels of vertebrate host proteins in a

Fig. 4 The levels of enzymes involved in the tick hemoglobinolytic pathway vary in a tissue-specific manner in response to A. phagocytophilum
infection. Differential expression/representation of tick hemoglobinolytic enzymes in response to A. phagocytophilum infection was obtained from
Ayllón et al. [12] and represented by pondering mRNA (transcriptomics RNAseq and real-time RT-PCR) and protein (proteomics) data. In tick
midguts, the hemoglobinolytic pathway operating in the endosomal digestive vesicle was revised by Sojka et al. [19]. In tick salivary glands, these
enzymes are also produced and may function under different conditions. Abbreviations: AMP, hemoglobin-derived antimicrobial peptides (Hemocidins
and other); HRG1, Heme-responsive gene 1; HELP, Heme-binding lipoprotein; VG1, Vitellogenin 1; VG2, Vitellogenin 2
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tissue-specific manner is through modification of tick
proteolytic pathways. How A. phagocytophilum mod-
ify tick proteolytic pathways is not known, but may
include the regulation of gene expression through
epigenetic mechanisms recently shown to be affected
by pathogen infection in I. scapularis [43]. These epi-
genetic mechanisms are probably controlled by se-
creted bacterial effectors [55–58]. However, future
experiments should address the physiological signifi-
cance of tick proteolytic pathways during A. phagocy-
tophilum infection and multiplication in midguts and
salivary glands.

Conclusions
In summary, the results of this study corroborated that
vertebrate host proteins are present in the midguts and
salivary glands of fed female I. scapularis. To our know-
ledge, the results presented here showed for the first
time that A. phagocytophilum selectively manipulates the
levels of vertebrate host proteins in the tick vector to fa-
cilitate pathogen infection, multiplication and transmis-
sion while preserving tick feeding and development
(Fig. 6). The mechanisms by which A. phagocytophilum
manipulates the levels of vertebrate host proteins are
not known, but may include modification of proteolytic

Fig. 5 The digestion of sheep host hemoglobin varies between tick midguts and salivary glands in a tissue-specific manner in response to A.
phagocytophilum infection. a Sheep hemoglobin alpha 1/2 (P68240) and beta (P02075) peptides detected by MS analysis with 1 % FDR in midguts
and salivary glands from uninfected and A. phagocytophilum-infected ticks. Peptides detected in uninfected and infected (blue), infected (red), or
uninfected (green) tick midguts and in uninfected and infected (underlined), infected (bold), or uninfected (italics) tick salivary glands are shown.
Hemoglobin protein coverage by detected peptides is highlighted in green. The preferred cleavage sites for Trypsin and hemoglobinolytic
enzymes are shown over P1 amino acid for Trypsin (t), Leucine aminopeptidase (l), Legumain (g), Cathepsin B (b), Cathepsin C (c), and Serine
carboxypeptidase (s) (see Additional file 3: Dataset S2). b The number of protease genes/proteins different from hemoglobinolytic enzymes and
differentially expressed/represented in response to A. phagocytophilum infection in tick midguts and salivary glands were extracted from
transcriptomics and proteomics data [12]. c The number of protease inhibitor genes/proteins differentially expressed/represented in response to
A. phagocytophilum infection in tick midguts and salivary glands were extracted from transcriptomics and proteomics data [12]
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pathways by affecting tick epigenetics and other bio-
logical processes.
Despite the growing burden that A. phagocytophilum

and other tick-borne pathogens represent for human
and animal health worldwide, effective control measures
have not been developed [59]. Investigating the bio-
logical relevance of host proteins in tick biology and
pathogen infection and the mechanisms used by A. pha-
gocytophilum to manipulate host protein content is es-
sential to advance our knowledge of tick-host-pathogen
molecular interactions. These results have implications
for the identification of new targets for the development
of vaccines for the control of tick-borne diseases.
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