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Abstract

We introduce the notion of set-valued Capital Allocation rule, and
study Capital allocation principles for multivariate set-valued coherent
and convex risk measures. We compare these rules with some of those
mostly used for univariate (single-valued) risk measures.
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1 Introduction

In the risk management literature, the topic known as Capital Allocation
problem consists in choosing a fair way for sharing a risk capital held by
firms, insurances or in general portfolio managers in order to hedge the
uncertain future net worth of their positions, among the different business
lines (see, for example [9], [10], [24]): Capital Allocation problems and the
theory of risk measures are hence naturally linked through the role played
by risk measures in determining risk capital ([3]).
A large part of the literature on Capital Allocation is based on the idea
that fairness amounts to allocating to a sub-portfolio a cost corresponding
to its marginal contribution to the riskiness of the whole portfolio (see, for
example [10], [26]) and, in this respect, many Capital Allocation rules are
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based on the assumption of differentiability of the underlying risk measure.
In a previous paper we have extended some known allocation rules to cover
the case of non-differentiability, introducing a family of Capital Allocation
rules based on sub-differentials, which thus give rise to a set-valued map
([7]).
Indeed, quite recently, risk measures have been studied and extended to a
more general setting where they can be set-valued ([23], [20]): one among the
different financial motivations for studying set-valued risk measures is given
by the existence of portfolios of financial positions in different currencies
that can not be aggregated for reasons such as liquidity constraints and/or
transaction costs ([23], [20]). In this case, in fact, it seems more reasonable
to consider risk measures that associate to any financial portfolio in different
currencies a set of hedging deterministic positions. Dual representations for
set-valued risk measures can be found, among many others, in [19], [20]
while extensions to the dynamic framework can be found in [12], [13], [4].
Recently, many well known risk measures have been extended to the set-
valued case (see, for example [1], [15], [25]) and, furthermore, set-valued risk
measures have also been applied to the study of systemic risk ([2],[14]).

In this paper, we define and extend the concept of Capital Allocation
rule to set-valued risk measures, and provide some Capital Allocation rule
once more based on the idea of marginality and so, linked to the concept of
subdifferential for set-valued functions.
The paper is organized as follows: in Section 2 we introduce the mathemat-
ical setup and recall the main results about representation of set-valued risk
measures and their subdifferentials, in Section 3 we introduce the Capital
Allocation problem in the set-valued context, define some set-valued Capital
Allocation rules based on the directional derivative and on sub-differentials
of a set-valued function, and study their properties. We also briefly investi-
gate the case when we reduce to a scalar-valued risk measure. Moreover, by
adopting Kalkbrener’s view ([24]), we also derive set-valued risk measures
with suitable properties, by starting with a general Capital Allocation rule.
Section 4 is devoted to some examples. Section 5 sums up and provides
some conclusions.

2 Mathematical Preliminaries

In the following, (Ω,FT , P ) will denote a probability space where T is an a
priori fixed time horizon.
Let L∞d be the usual linear space of P -equivalence classes of FT -measurable
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functions X : Ω −→ Rd, such that ess supω∈Ω |X(ω)| < +∞. We will
assume L∞d endowed with the σ(L∞d , L

1
d) topology. Given a vector X =

(X1, . . . , Xd), E[X] will denote the componentwise expectation of X under
P while, if Q = (Q1, . . . , Qd), EQ[X] will denote (EQ1 [X1], . . . , EQd [Xd]).
Every element X ∈ L∞d has components in L∞, and 1 denotes the random
variable in L∞d assuming, P -a.s, the constant value 1. The value of each
component Xi, i = 1, . . . d of the random vector X is interpreted as the
profit and loss of asset i in some market, at maturity T .
Let M be a linear subspace of Rd having dimension 1 ≤ m ≤ d. The
financial meaning of M is that a regulator accepts compensation for risk
only in a given subset of the d markets. Moreover, it will be assumed that
M ∩Rd+ 6= ∅, meaning that there exists at least a position with non-negative
components which is accepted to hedge risk. Furthermore, a closed convex
cone K ⊂ Rd, termed as solvency cone, will be considered to induce a partial
order ≤K on Rd, namely x ≤K y if and only if y−x ∈ K for every x, y ∈ Rd.
If a deterministic position belongs to the solvency cone, it means that it can
be converted, by payment of a transaction cost, into an acceptable position
with nonnegative components. Hence, we will be interested in the positions
belonging to the closed convex cone KM = K ∩M .
The partial order induced by K extends from Rd to P(Rd), the set of all
subsets of Rd, in the following way: A ≤K B if and only if B ⊆ A+K, for
A,B ∈ P(Rd) (where + is the usual elementwise Minkowski sum). If we set
P(Rd,K) , {A ∈ P(Rd) : A = A+K}, then for every A,B ∈ P(Rd,K), we
have that A ≤K B ⇐⇒ A ⊇ B. It is well known (see [21] for more details
on this topic), that ((Rd,K),⊇) is a complete lattice where, for A ⊆ (Rd,K),
inf A =

⋃
A∈AA , and supA =

⋂
A∈AA. For every A,B ∈ P(Rd), we define

the operation of inf-residuation: A−.B , inf{D ∈ P(Rd,K) : A ⊇ B+D}.
Let K+ also denote the dual positive cone of K in Rd. Set L∞d (K) , {X ∈
L∞d : X ∈ K, P − a.s.} and let L1

d(K
+) denote its positive dual cone. This

cone generates a partial order on the set of random variables vectors which
extends the one generated by K on Rd.
We point out that, for the sake of simplicity, we work in L∞d even if the
results also hold in the case of Lpd, with p ≥ 1. Let now FM = {D ⊆ M :
D = cl(D +KM )} be the family of upper closed subsets of M .
Given a function R : L∞d → FM , its effective domain is the set domR =
{X ∈ L∞d : R(X) 6= ∅}. A function R : L∞d → FM is said to be proper if
domR 6= ∅ and R(X) 6= M , for every X ∈ L∞d .
We are now ready to recall the definition and the dual representation of
set-valued risk measures (see [20]).

3



Definition 1 (see [20]) A set-valued convex risk measure is a function:

R : L∞d → FM

satisfying the following properties:

• normalization: R(0) ⊇ KM and R(0) ∩ (−intKM ) = ∅;

• M -translation: R(X + u1) = R(X)− u for any X ∈ L∞d and u ∈M ;

• monotonicity: if Y −X ∈ K, then R(Y ) ⊇ R(X);

• convexity: R(αX + (1−α)Y ) ⊇ αR(X) + (1−α)R(Y ) for any X,Y ∈
L∞d , α ∈ (0, 1).

A set-valued coherent risk measure is a set-valued convex risk measure sat-
isfying also:

• positive homogeneity: R(αX) ⊇ αR(X) for any α > 0 and X ∈ L∞d .

We can now recall the dual representations for coherent and convex set-
valued risk measures (see [20]). Set GM = {D ⊆M : D = cl co(D +KM )},
and M⊥ = {v ∈ Rd : vTu = 0,∀u ∈ M}. Denote by MP

1,d(Ω,FT ) the set
of all vectors Q = (Q1, . . . , Qd) of probability measures, such that Qi � P ,
i = 1, . . . , d. Set W = {(Q,w) ∈MP

1,d ×K+ \M⊥ : diag(w)dQdP ∈ L
1
d(K

+)},
where diag(w) denotes the square diagonal matrix having the components
of w on the diagonal, and dQ

dP = (dQ1

dP , . . .
dQn
dP ). Then it holds:

• any proper, convex and σ(L∞d , L
1
d) - closed set-valued risk measure

R : L∞d → GM can be represented as

R(X) =
⋂

(Q,w)∈W

{−αR(Q,w) + (EQ[−X] +G(w)) ∩M} (1)

where G(w) , {x ∈ Rd : wTx ≥ 0}, and αR(Q,w) is a GM -valued
function defined on MP

1,d ×K+ \M⊥. In particular, αR can be given
by

−α(Q,w) = cl

(⋃
X

[R(X) + (EQ[−X] +G(w)) ∩M ]

)
(2)

• any proper, coherent and σ(L∞d , L
1
d) - closed set-valued risk measure

R : L∞d → GM can be represented as

R(X) =
⋂

(Q,w)∈WR

(EQ[−X] +G(w)) ∩M (3)

where WR is a suitable subset of W.

4



We briefly recall the interpretation of the dual variables (Q,w) (see also
[20]): the vector Q represents probabilistic scenarios which can differ in the
various markets, while the vector w is connected to the preferences of the
investors among the reference instruments. Roughly speaking, while Q has
the same interpretation as in the scalar case, the component w is new and is
“responsible” of giving rise to a set by means of G(w). Remember also that
the operation of intersection in the representation is a supremum w.r.t. the
order relation on the set GM , in analogy to the scalar single-valued case.

In [21], Prop. 5.19, the authors, taken w ∈ K+ and X̄ ∈ L∞d , also define
the w-subdifferential of a GM -valued set function at X̄ and characterize it
as the following (nonempty) set:

∂wR(X̄) (4)

= {Qw :
(
EQw [X] +G(w)

)
∩M −. R(X) ⊇

(
EQw [X̄] +G(w)

)
∩M −. R(X̄) for any X}.

3 Capital Allocation for Set-Valued Risk Measures

We now extend the classical notion of Capital Allocation rule ([24]) to the
set-valued setting.

Definition 2 Given a set-valued risk measure R, a set-valued Capital Allo-
cation rule (associated to R) is a set-valued map

Λ : L∞d × L∞d → FM

satisfying Λ(X,X) = R(X) for any X. We will refer to weak set-valued
Capital Allocation rule when the previous property is replaced by the weaker
condition Λ(X,X) ⊇ R(X) for any X.
Also in this setting we can define some desirable properties:

• no undercut: Λ(Y ;X) ⊇ R(Y ) for any X,Y ∈ L∞d ;

• sub-allocation: Λ(X1 +X2 + ...+Xn, X) ⊇
∑n

i=1 Λ(Xi, X) once X1 +
X2 + ...+Xn = X.

We interpret Λ(Y ;X) as the set of all deterministic positions that can
be allocated to Y in order to compensate for its risk as a sub-portfolio of
X. With this in mind, also the interpretation of the properties becomes
clear: indeed the no undercut means that all the deterministic positions
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that hedge the risk of Y as a sub-portfolio of itself, also cover the risk of Y
as a sub-portfolio of X, while the sub-allocation property means that, if we
split a portfolio X into n sub-portfolios Xi, then its risk can be covered in
more ways than only by using deterministic vectors obtained by summing
positions that cover the risk of the Xi’s as sub-portfolios of X. As in the
scalar case, therefore, under no undercut there is no incentive to split the
sub-portfolio Y from the whole X since the riskiness R(Y ) of Y as a stand-
alone portfolio is contained in Λ(Y ;X).

The condition Λ(X,X) ⊇ R(X) required for a weak capital allocation
rule is automatically fulfilled for R satisfying the no undercut and can be
interpreted similarly to that property. That is, all the deterministic positions
covering the risk of X can also be allocated to X in order to compensate
for its risk as a sub-portfolio of itself. For capital allocation rules, the same
holds for all and only deterministic positions as before.

Proposition 3 Assume that R : L∞d → GM is a proper, convex and closed
set-valued risk measure, and suppose that, for every X ∈ L∞d , there existed
(QX , wX) ∈ W, such that R(X) = −αR(QX , wX) + (EQX [−X] +G(wX)) ∩
M .
Then, the set-valued map defined by:

Λ(Y ;X) = −αR(QX , wX) + (EQX [−Y ] +G(wX)) ∩M,

for every Y,X ∈ L∞d , is a set-valued capital allocation rule satisfying no un-
dercut. Moreover, if the following condition holds true for any X1, . . . , Xn, X ∈
L∞d with X1 + · · ·+Xn = X:

(∗) −αR(Qw,X , wX) +
∑
i

(EQX ,wX [−Xi] +G(wX)) ∩M

⊇
∑
i

[−αR(QX , wX) + (EQX ,wX [−Xi] +G(wX)) ∩M ],

then Λ satisfies also sub-allocation.

Proof. Λ(X;X) = R(X) holds trivially.
For Y,X ∈ L∞d , by the assumption that there exists (QX , wX) ∈ W s.t.
R(X) = −αR(QX , wX)+(EQX [−X] +G(wX))∩M , it holds that Λ(Y ;X) ⊇⋂

(Q,w)∈W {−αR(Q,w) + (EQ[−Y ] +G(w)) ∩M} = R(Y ).
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Take now X and X1, . . . , Xn s.t. X = X1 + · · ·+Xn. Then

Λ(X;X) = −αR(QX , wX) +

(
n∑
i=1

EQX [−Xi] +G(wX)

)
∩M

⊇
n∑
i=1

(−αR(QX , wX) + (EQX [−Xi] +G(wX)) ∩M),

where the last step follows directly from Lemma 4.1 and Proposition 4.2 in
[20].

Some necessary and sufficient conditions for the existence of a global
(Q,w) ∈ W realizing the intersection in (1) for any X can be found in
Hamel et al. [21]. Such conditions include lattice-lower semicontinuity of
ρ at 0 and some other quite strong assumption on ρ, such as additivity.
Concerning the existence of (QX , wX) ∈ W as in Proposition 3, we provide
two examples (see Examples 12 and 13) showing that for general R existence
may occur or not.

Remark 4 Notice that, if the risk measure R is coherent, condition (∗) is
automatically fulfilled.

Remark 5 The previous result can be regarded as a set-valued version of the
classical capital allocation rules based on marginal contribution. Indeed, if
there exists (QX , wX) inW such that the intersection in the representation
is realized at this point, then it is easy to show that −QX ∈ ∂wXR(X).
Indeed,

EQX [−Xi] +G(wX)) ∩M = R(X) + αR(QX , wX)

and hence, by the definition of inf-residuation:

αR(QX , wX) = EQX [−Xi] +G(wX)) ∩M −. R(X).

Therefore −QX ∈ ∂wXR(X).
Notice that the result above resembles those true for single-valued scalar
risk measures where the existence of a generalized scenario QX realizing the
supremum in the dual representation of ρ(X) implies that −QX ∈ ∂ρ(X).
The interested reader can see Kalkbrener [24] and Delbaen [8] (coherent
case), Centrone and Rosazza Gianin [7] (convex case) for details. Differently
from the classical (single-valued scalar) case, however, in the set-valued one
the dependence on w appears as usual.
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Since the hypothesis of Proposition 3 are quite strong, we investigate
now what happens when the condition of the existence of (QX , wX) ∈ W
is weakened and replaced by the existence (for any fixed w) of some QX,w
such that R(X) =

⋂
w

{
−αR(QX,w, w) +

(
EQX,w [−X] +G(w)

)
∩M

}
.

Proposition 6 Assume that R : L∞d → GM is a proper, convex and closed
set-valued risk measure, and suppose that, for every X ∈ L∞d and any fixed
w, there exists QX,w such that (QX,w, w) ∈ W and

R(X) =
⋂
w

{
−αR(QX,w, w) +

(
EQX,w [−X] +G(w)

)
∩M

}
.

Then, the set-valued map defined by

Λ(Y ;X) =
⋂
w

{
−αR(QX,w, w) +

(
EQX,w [−Y ] +G(w)

)
∩M

}
, (5)

for every Y,X ∈ L∞d , is a set-valued capital allocation rule satisfying no
undercut. Moreover, if the following condition holds true for any w and any
X1, . . . , Xn, X ∈ L∞d with X1 + · · ·+Xn = X:

(∗∗) −αR(Qw,X , w) +
∑
i

(EQX ,w[−Xi] +G(w)) ∩M

⊇
n∑
i=1

[−αR(QX , w) + (EQX ,w[−Xi] +G(w)) ∩M ],

then Λ satisfies also sub-allocation.

Proof. It follows immediately that Λ(X;X) = R(X) and that Λ is a
set-valued capital allocation rule.

No undercut. By (5),

Λ(Y ;X) ⊇
⋂

(Q,w)∈W

{−αR(Q,w) + (EQ[−Y ] +G(w)) ∩M} = R(Y ),

hence no undercut is verified.
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Sub-allocation. Let X1, . . . , Xn satisfy X1 + · · · + Xn = X and assume
(∗∗). Then

Λ(X1 + · · ·+Xn;X) =
⋂
w

{
−αR(QX,w, w) + (EQX,w [−X1 − · · · −Xn] +G(w)) ∩M

}
⊇

⋂
w

{
−αR(QX,w, w) +

n∑
i=1

(EQX,w [−Xi] +G(w)) ∩M

}

⊇
⋂
w

{
n∑
i=1

[
−αR(QX,w, w) + (EQX,w [−Xi] +G(w)) ∩M

]}

⊇
n∑
i=1

{⋂
w

[
−αR(QX,w, w) + (EQX,w [−Xi] +G(w)) ∩M

]}

=
n∑
i=1

Λ(Xi;X),

where the first inclusion is due to the coherence of (EQ[−Y ] + G(w)) ∩M
(see Prop. 4.2 and Lemma 4.1 in Hamel and Heyde [20]), while the second
to condition (∗∗).

Notice that condition (∗∗) implies (∗) of Proposition 3 and that, as for
condition (∗), also (∗∗) is automatically satisfied when R is coherent.

It is worth to emphasize that in the scalar case the two previous ap-
proaches collapse to one in line with the gradient approach for single-valued
scalar risk measures.

Remark 7 (Scalar case) Assume to be in the scalar case, that is d = 1,
M = R and K = R+.

Firstly, let R be a coherent risk measure. By (3), it follows that

R(X) =
⋂

(Q,w)∈WR

(
EQ[−X] + R+

)
∩M

=
⋂
Q

[EQ[−X]; +∞) (6)

=

[
sup
Q
EQ[−X]; +∞

)
(7)

since K+ = R+ and, consequently, G(w) = R+ for any w ∈ K+. Hence
R(X) = [ρ(X); +∞) where ρ(X) , supQEQ[−X] is a single-valued scalar
coherent risk measure.
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Since the dependence on w disappears in (6) and (7), the approaches in
Propositions 3 and 6 reduce to requiring that for any X there exist some
QX ∈ argmaxQEQ[−X]. In that case,

R(X) = [EQX [−X]; +∞) and Λ(Y ;X) = [EQX [−Y ]; +∞) (8)

Since QX ∈ argmaxQEQ[−X] implies that −QX ∈ ∂ρ(X), the approach
above generalizes the gradient approach for scalar single-valued risk measures
where Λρ(Y ;X) = EQX [−Y ] with −QX ∈ ∂ρ(X). See [24], [8] and [7].

Similar arguments hold also for the convex case. Let, indeed, R be a
convex risk measure. By (1) it follows that

R(X) =
⋂

(Q,w)∈W

[−αR(Q,w) + [EQ[−X]; +∞)]

=
⋂
Q

[EQ[−X]− αR(Q); +∞) (9)

=

[
sup
Q
{EQ[−X]− αR(Q)}; +∞

)
(10)

since, by (2),

−αR(Q,w) = cl

(⋃
X

[R(X) + (EQ[−X] +G(w)) ∩M ]

)

=

[
− sup

X
{EQ[X]− inf R(X)}; +∞

)
= [−αR(Q); +∞)

where αR(Q) , supX{EQ[X] − inf R(X)}. Hence R(X) = [ρ(X); +∞)
where ρ(X) , supQ{EQ[−X]−αR(Q)} is a scalar single-valued convex risk
measure. Notice also that αR is the minimal penalty term associated to ρ
because ρ(X) = inf R(X).

As for coherent risk measures, also in this case the dependence on w
disappears in (9) and (10). The approaches in Propositions 3 and 6 reduce
therefore to requiring that for any X there exist some QX ∈ argmaxQ{EQ[−X]−
αR(Q)}. As before, then, the approach above generalizes the gradient ap-
proach for scalar single-valued risk measures where Λρ(Y ;X) = EQX [−Y ]−
αR(QX) with −QX ∈ ∂ρ(X). See [7].

We recall that, in the framework of scalar single-valued risk measures,
Kalkbrener [24] showed that the directional derivative has a special role as
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a capital allocation rule. The use of the subdifferential, instead, has been
investigated by Delbaen [8] and Centrone and Rosazza Gianin [7], among
others. Inspired by the results above, we investigate whether the directional
derivative could still be a good capital allocation rule also for set-valued risk
measures or not.
To this aim, we recall from Hamel et al. [21] that the (lower Dini) directional
derivative of R with respect to w at Y in the direction X is defined as

DwR(Y ;X) , lim inf
t↓0

(R(Y + tX) +G(w)) ∩M −. R(Y )

t
, (11)

while the subdifferential of R with respect to w at X can be equivalently be
defined as in (4). Moreover, for a convex set-valued risk measure R satisfying
the additional hypothesis of Theorem 5.18 in [21] it holds that, given w, for
any X there exists −Q̄w,X ∈ ∂wR(X) such that

DwR(Y ;X) =
(
EQ̄w,X [−Y ] +G(w)

)
∩M. (12)

See [21] for details.
In the spirit of Kalkbrener [24], we define now

Λw(Y ;X) , DwR(Y ;X) (13)

once w is given.

Proposition 8 Let w be given and let R be a set-valued risk measure sat-
isfying the hypothesis of Theorem 5.18 in [21].
(a) If R is coherent, then Λw is a weak capital allocation satisfying no un-
dercut and sub-allocation.
(b) If R is convex, then Λw satisfies the following generalized no undercut

R(Y ) ⊆ −αR(Q̄w,X , w) + Λw(Y ;X), for any X,Y ∈ L∞d . (14)

Proof. (a) By the dual representation of R, (12) and (13), the no
undercut follows immediately.

Consider now any X1, ..., Xn, X with X1 +X2 + ...+Xn = X. Then

Λw(X1 +X2 + ...+Xn;X) =
(
EQ̄w,X [−(X1 +X2 + ...+Xn)] +G(w)

)
∩M

⊇
n∑
i=1

(
EQ̄w,X [−Xi] +G(w)

)
∩M

=
n∑
i=1

Λw(Xi;X),
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where the inclusion is due to coherence of (EQ[−Z] +G(w))∩M (see Prop.
4.2. and Lemma 4.1 in Hamel and Heyde [20]). Sub-allocation is then
proved.

(b) The generalized no undercut can be deduced immediately from the
dual representation of R and (12).

Notice that the previous result is in line with those of Kalkbrener [24] and
Centrone and Rosazza Gianin [7] for coherent and convex scalar single-
valued risk measures. While, indeed, for coherent risk measures both no
undercut and sub-allocation hold true, in the convex case sub-allocation in
general fails and no undercut should be replaced by a generalized one tak-
ing into account the penalty term. This generalized no undercut (14) can
be interpreted and motivated as in the classical case (see [7]). The main
differences between coherent and convex risk measures consist, indeed, in
positive homogeneity that can be seen as a scaling invariance property and,
in terms of dual representation, in a penalty term. Differently from coherent
risk measures, convex ones are able to take into account liquidity aspects,
hence to distinguish between portfolios formed by different sizes of the same
assets. It seems therefore to be financially reasonable that for convex risk
measures the generalized no undercut in terms of Λw(Y ;X) would depend
not only on the sub-portfolio Y but also on the whole portfolio X (for in-
stance, by means of its size) and on the penalty term.
Once w is fixed, Λw(Y ;X) as defined in (13) provides a possible rule of
capital allocation depending on w. Anyway, there is freedom on the choice
of w and, depending on w, we will have different capital allocation rules.
This fact again reflects the preferences of the investors among the reference
instruments. An alternative way to define Λ independently on the choice of
w is, however, to consider

Λ̃(Y ;X) ,
⋂
w

Λw(Y ;X). (15)

So far, we have examined the properties of a capital allocation stemming
from a coherent/convex set-valued risk measure. We now assume the con-
verse standpoint: starting from a set-valued capital allocation, we define a
set-valued risk function and study its properties, in the spirit of Kalkbrener’s
paper ([24]).

Proposition 9 Let Λ : L∞d × L∞d −→ FM be a set-valued map, and define
R(X) = Λ(X,X), for every X ∈ L∞d .
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If Λ satisfies: (a) Λ(Y ;X) ⊇ Λ(Y ;Y ), for every X,Y ∈ L∞d , (b) Λ(X1 +
· · ·+Xn;X) ⊇

∑n
i=1 Λ(Xi, X), (c) Λ(X;αZ) = Λ(αX;Z) = αΛ(X;Z), for

every α > 0, X, Z ∈ L∞d , then R is a positively homogeneous and subadditive.
If Λ satisfies (a), (b) and the second equality in (c), then R is convex.

Proof. We have R(αX) = Λ(αX;αX) ⊇ αΛ(αX;X) = αΛ(X;αX) ⊇
αΛ(X;X) = αR(X). This proves positive homogeneity. Moreover note that
it also holds R(αX) = Λ(αX;αX) ⊆ Λ(αX;αX) = αΛ(X;X) = αR(X).
R(X +Y ) = Λ(X +Y ;X +Y ) = Λ(X;X +Y ) + Λ(Y ;X +Y ) ⊇ Λ(X;X) +
Λ(Y ;Y ) = R(X) +R(Y ). This proves subadditivity.
As for the second part of the proposition, we have: R(αX + (1 − α)Y ) =
Λ(αX + (1 − α)Y ;αX + (1 − α)Y ) = Λ(αX;αX + (1 − α)Y ) + Λ((1 −
α)Y ;αX+(1−α)Y ) ⊇ Λ(αX;αX)+Λ((1−α)Y ; (1−α)Y ) = αΛ(X;αX)+
(1−α)Λ(Y ; (1−α)Y ) ⊇ αΛ(X;X)+(1−α)Λ(Y ;Y ) = αR(X)+(1−α)R(Y ).

4 Examples

In this section we study some examples of set-valued capital allocation rules,
also in connection with the rule we introduced in Proposition 3.
The first two examples deal with the scalar case that is particularly relevant
for its interpretation and its relation with the case of single-valued risk
measures.

Example 10 (Scalar case) Consider M = R and K = R+. Let R be
the 1-dimensional set-valued risk measure defined as R(X) , [ρ(X); +∞),
where ρ is a (single-valued) coherent risk measure that is continuous from
below. Hence ρ(X) = maxQ∈P EQ[−X] for any X ∈ L∞.

It can be easily checked that R is a coherent set-valued risk measure and
that

R(X) = [EQ∗
X

[−X]; +∞), (16)

where Q∗X ∈ argmaxQ∈PEQ[−X]. For any fixed w, it follows that −∂wR(X) =
−∂ρ(X), hence R(X) =

⋂
Q[EQ[−X]; +∞) = [EQ∗

X
[−X]; +∞) with −Q∗X

belonging to ∂wR(X) for any w. By the dual representation of R and the
definition of ∂wR(X), indeed, for any fixed w it holds that

−∂wR(X) = {Q : [EQ[−Y ]; +∞)−.R(Y ) ⊇ [EQ[−X]; +∞)−.R(X) for any Y }

since G(w) = {v ∈ R : w · v ≥ 0} = R+ because w ≥ 0. Furthermore,
by (16), the definition of Q∗X , Q

∗
Y , and the definition of inf-residuation, it
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follows that

−∂wR(X)

= {Q : [EQ[−Y ]− EQ∗
Y

[−Y ]; +∞) ⊇ [EQ[−X]− EQ∗
X

[−X]; +∞) for any Y }
= {Q : [EQ[−Y ]− ρ(Y ); +∞) ⊇ [EQ[−X]− ρ(X); +∞) for any Y }
= {Q : ρ(Y )− ρ(X) ≥ EQ[−(Y −X)] for any Y }
= −∂ρ(X).

Assume now that R be defined as R(X) , [ρ(X); +∞), where ρ is a
(single-valued) convex risk measure that is continuous from below. Hence
ρ(X) = maxQ∈P{EQ[−X]−α(Q)} for any X ∈ L∞. It can be easily checked
that R is a convex set-valued risk measure and that

R(X) = [EQ∗
X

[−X]− α(Q∗X); +∞), (17)

where Q∗X ∈ argmaxQ∈P{EQ[−X]− α(Q)}.
Similarly to above, one can check that for any fixed w it holds that

−∂wR(X) = −∂ρ(X). Hence R(X) =
⋂
Q[EQ[−X]−α(Q); +∞) = [EQ∗

X
[−X]−

α(Q∗X); +∞) with −Q∗X belonging to ∂wR(X) for any w.

Example 11 (Aumann and Shapley set-valued capital allocation)
Set M = R and K = R+ and let ρ be a scalar-valued lower semicontinuous
coherent risk measure. Take QX ∈ argmaxQ∈PEQ[−X]. Since ρ is coher-
ent it holds: argmaxQEQ[−X] ≡ argmaxQEQ[−γX] for any γ ∈ [0, 1] and

X ∈ L∞. Then ρ(X) =
∫ 1

0 EQγX [−X]dγ.

Define the set-valued risk measure R(X) , [ρ(X),+∞) and the set-valued
map Λ(Y ;X) = [

∫ 1
0 EQγX [−Y ]dγ,+∞).Then Λ is a set-valued capital allo-

cation rule.
Indeed, by construction Λ(Y ;X) = R(X) is trivially fulfilled while no un-
dercut follows from

∫ 1
0 EQγY [−Y ]dγ ≥

∫ 1
0 EQγX [−Y ]dγ.

The following two examples show that it may happen or not that there
exist some (Q,w) realizing the intersection in the dual representation of R.

Example 12 Let d = 2, Ω = {ω1, ω2}. Set M = R2 and K = R2
+.

Take the set Q = {Q1 = (Q1
1, Q

2
1), Q2 = (Q1

2, Q
2
2)} where Q1

1(ω1) = Q1
1(ω2) =

1/2, Q2
1(ω1) = 1/4, Q2

1(ω2) = 3/4, and Q1
2(ω1) = 1/3, Q1

2(ω2) = 2/3, Q2
2(ω1) =

3/4, Q2
2(ω2) = 1/4. Consider now

WR = Q× {w̃}
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with w̃ = (1, 1). Hence G(w̃) = {(v1, v2) : v1 + v2 ≥ 0}. Let X = (X1, X2),
with

X1 =

{
x1

1; ω1,
x2

1; ω2.
, X2 =

{
x1

2; ω1,
x2

2; ω2.

Hence

EQ1 [−X] = (EQ1
1
[−X1], EQ2

1
[−X2]) =

(
x1

1 + x2
1

2
,
x1

2 + 3x2
2

4

)
and

EQ2 [−X] = (EQ1
2
[−X1], EQ2

2
[−X2]) =

(
x1

1 + 2x2
1

3
,
3x1

2 + x2
2

4

)
.

Therefore, by (3) and WR = Q× {w̃},

R(X) =

{(
x1

1 + x2
1

2
,
x1

2 + 3x2
2

4

)
+G(w̃)

}
∩
{(

x1
1 + 2x2

1

3
,
3x1

2 + x2
2

4

)
+G(w̃)

}
is a coherent set-valued risk measure. So, depending on the various configu-
rations of the realizations of X1 and X2, R(X) is equal to either EQ1 [−X]∩
G(w̃) or to EQ2 [−X] ∩ G(w̃). In other words, for any X there exists
(QX , wX) ∈ WR realizing the intersection in the dual representation of R.
In particular, (QX , wX) = (QX , w̃) with QX ∈ {Q1, Q2} depending on X.
Indeed, the existence of a maximizer as above is not always guaranteed, as
the next example shows.

Example 13 In the setting of the previous example, let

X1 =

{
0; ω1,
3; ω2.

, X2 =

{
−2; ω1,

1; ω2.

Then, EQ1 [−X] = (3/2, 1/4) and EQ2 [−X] = (2,−5/4). In this case, taken
w̃ as before, it is immediate to see that R(X) = EQ1 [−X] +G(w̃).
Take now also w∗ = (2, 3). An easy computation shows that in this case it
does not exist a couple (QX , wX) in the set Q×{w̃, w∗} such that R(X) can
be expressed as R(X) = EQX [X] +G(wX).

5 Conclusions

In this paper we have extended the well known definition of Capital Alloca-
tion rule, as well as its properties, to the setting of set-valued risk measures.
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This is motivated by the growing interest in set-valued risk measures, sup-
ported by financial arguments. We have defined some Capital Allocation
rules based on representation theorems for coherent and convex set-valued
risk measures and have shown that, under suitable assumptions, they are
linked to the subdifferential of set-valued functions, in analogy to what hap-
pens in the scalar case. Also, again inspired by the single-valued case, we
have defined a Capital allocation rule through the set-valued directional
derivative. We have finally provided some examples, some of which are
related to the scalar case.
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