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~ PREFACE ~ 

 

“Mankind is continually screening low-molecular-weight compounds from a 

plethora of synthetic and natural sources in the search for molecules with novel or 

superior pharmaceutical or biological activities. Various bioprospecting, synthetic 

and biotech strategies to produce and diversify natural products are being exploited 

to provide new pipelines for bioactive molecules, e.g. for use as drugs or 

agrochemicals. Plants are a potential rich source of such molecules. However, 

because of their extreme diversity and complex chemistry, plant metabolism is still 

under-explored. Consequently, the full potential of plant-derived, low-molecular 

weight, bioactive compounds is still largely untapped”. [1] 

This PhD program was funded by a European project called TriForC (Triterpenes for 

Commercialization), whose aim is the discovery of new triterpenic compounds 

marketable in medicinal and agrochemical fields. The consortium involves different 

research groups with complementary skills in the field of chemistry, genomics and 

pharmacology, flanked by companies able to transfer academic discoveries to 

commercial reality. 

The final purpose of our research group, as a part of this project, was the 

identification of new bioactive chemical entities, based on triterpenic acids 

extracted from edible sources. 
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Terpenes are a large family of secondary metabolites mainly produced by plants 

with different functions both in vegetables and mammalians. They are part of the 

defensive strategy of plants against microorganism and insects, and they play other 

important ecological roles such as pollinator attractants and allelopathic agents. In 

mammalians, apart from their contribution to the stabilization of membranes and 

to the regulation of some enzymatic reactions, they show an interesting biological 

profile in the treatment of different pathologies. The members of this large class of 

natural products have structures that can be traced back to isoprene, following the 

so called “isoprenic rule” deduced and described by the Nobel laureate Leopold 

Ruzicka (Figure 1). They are classified according to the number of carbon atoms of 

the structure: hemiterpenes (C-5), monoterpenes (C-10), sesquiterpenes (C-15), 

diterpenes (C-20), triterpenes (C-30), tetraterpenes (C-40).[2]   

      

Figure 1: isoprenic unit. 

Nowadays it’s known that the precursor of terpenes is not isoprene itself, but two 

isoprenic units, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate 

(DMAPP), mainly originating from mevalonic acid (MVA) pathway. IPP and DMAPP 

are linked together into head-tail fashion furnishing geranyl diphosphate (GPP, C-

10) and, after an iterative phase, farnesyl diphosphate (FPP, C-15) and 

geranylgeranyl pyrophosphate (GGPP) are obtained. FPP and GGPP homo-

dimerization, through head-head interaction, provides squalene C-30 (precursor of 

triterpenes and steroids) and phytoene C-40 (precursor of carotenoids and 

tetraterpenes) (Figure 2).[2] 



3 

 

IPP and DMAPP are synthesized by the mevalonate pathway in eukaryotes, but in 

eucobacteria they are  produced by following methylerythritol phosphate (MEP) 

biogenetic pathway.[2] 

 

Figure 2: biosynthesis of isoprenoids: mevalonate pathway and MEP pathway. 

 

Pentacyclic triterpenic acids (PCTTAs) are members of the terpene family containing 

six isoprene units and they are synthesized by the oxidative cyclization of squalene 

(formed by condensation of two farnesyl PP molecules) following a similar 

biogenetic pattern used for the synthesis of steroids (Figure 3).[2] 
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Figure 3: cyclization of 2,3-oxidosqualene forms either lanosterol or cycloartenol via a series of enzymatic 

cyclizations leading to sterols in plants, fungi and animals.[3] 

 

More than 20000 triterpenes are known in nature, many of them occurring in their 

free form (sapogenins), whilst others being glycosides (saponins). Triterpenes can 

be divided into acyclic, mono-, bi-, tri-, tetra- and pentacyclic triterpenes (PTs).  

In the plant kingdom there are hundreds of naturally occurring PTs which are 

classified into three main categories based on their structural skeleton: oleanane 

type (like oleanolic acid, maslinic acid, hederagenin, β-amyrin, glycyrrhizic acid), 

lupane type (such as lupeol, betulinic acid and betulin) and ursane type (like ursolic 

acid, α-amyrin).[4] 
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Natural PCTTAs can target many macromolecular end-points with low-to moderate 

affinity[5] and their multi-target biological profile have not gone unnoticed in the 

biomedical community, spurring drug discovery campaigns aimed at improving the 

activity of PCTTAs leads or, alternatively, using their rigid scaffold to recognize 

specific protein surfaces. Clear examples of the pharmacological potential of this 

class of secondary metabolites are represented by the anti-viral agent bevirimat 

(BMS-955176) 1[5] and the ultrapotent antioxidant inflammation modulator 

bardoxolone methyl 2[6], both included in advanced clinic trials.  

 

 Although these two molecules represent an excellent result, the research around 

the PCTTAs turns out to be still lively.  

In this context, for this PhD project we have decided to explore in more depth the 

pharmacological space of three natural triterpenic acids easily obtainable from both 

edible sources and urban waste such as oleanolic, ursolic and betulinic acid (Figure 

4). 

 

Figure 4: pentacyclic triterpenoid acids modified in this thesis. 
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PHARMACOLOGICAL ACTIVITY OF PENTACYCLIC TRITERPENOID ACIDS 

A wide range of pharmacological activities has been described for PCTTAs: 

• ANTIDIABETIC PROPERTIES: PCTTAs reduce glucose level in blood through 

inhibition of α-amylase and β-glucosidase. They stimulate glucose uptake 

and glycogen synthesis via AMPK-GSK- 3β pathway and they stimulate also 

insulin biosynthesis by increasing its secretion and sensitivity through the 

inhibition of Protein Tyrosine Phosphatase 1B (PTP1B) and the resulting 

increase in PI3K/ Akt. [4],[7] 

• HYPOLIPIDEMIC and ANTI-OBESITY ACTIVITIES: PCTTAs have been shown to 

decrease the total level of cholesterol, the concentration of triglycerides, 

the body weight and abdominal fat accumulation by increasing plasma 

levels of insulin and leptin; PCTTAs lead to reduction of intestinal cholesterol 

absorption and they also inhibits pancreatic lipase reducing the absorption 

of lipids in small intestine and increasing the mobilization of fats through 

lipolysis in adipose tissues.[4],[7] 

• ANTI-INFLAMMATORY PROPERTIES: scientific studies have shown 

triterpenoids to be potential anti-inflammatory agents, thanks to the 

downregulation of NF-kB, inhibition of phospholipase A2 (involved in the 

inflammation process) and repression of COX-2 and its product PGE2. These 

properties could be an interesting alternative in treatment of the metabolic 

syndrome. [8] 

• ANTITUMOR ACTIVITY:  it is one of the most widely studied aspects of these 

compounds’ pharmacology. It seems clear that the main mechanisms 

involved are the stimulation of apoptosis, inhibition of NF-kB and STAT3 and 

the antioxidant effect.[8]
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 Chapter 1 

 

DEOXYGENATION OF URSOLIC, 
OLEANOLIC AND BETULINIC ACID 
 TO THEIR CORRESPONDING C-28 

METHYL DERIVATIVES  
(α-AMYRIN, β-AMYRIN, LUPEOL) 
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1.1 INTRODUCTION 

α-amyrins (1), β-amyrins (2) and lupeol (3) are widespread in plant kingdom and 

represent the archetypal pentacyclic triterpenoid alcohols of ursane (α-amyrin), 

oleanane (β-amyrin) and lupane (lupeol) series. 

 

Amyrins and lupeol have a similar pharmacological profile as antifungal, 

antimicrobial and anti-inflammatory agents and they exhibit an interesting 

antioxidant effect. [1],[2] 

Interest in these compounds was spurred by the discovery that amyrins show sub-

nanomolar activity in animal assays on the endocannabinoid system. This surprising 

finding was next shown to result from the inhibition of a series of esterases (α,β-

hydrolases and to a lesser extent, monoacylglycerol lipase (MAGL)) involved in the 

hydrolytic degradation of the endocannabinoid 2-arachidonoyl glycerol (2AG) and 

not from the direct activation of cannabinoid receptors (CBs).[3] The resulting 

potentiation of endocannabinoid signaling might underline the anti-inflammatory 

and antinociceptive activity of amyrins.[4] 



11 

 

A recent study of Mannowetz et al.[5] shows that lupeol can act as contraceptive 

compound, due to the occupation of the progesterone binding site of ABHD2, a 

serine hydrolase expressed in spermatozoa that degradates 2-AG to arachidonic 

acid and glycerol. The inhibition of 2-AG degradation prevents CatSper activation 

by progesterone via a competitive antagonist-type mechanism. 

CatSper is a progesterone sensitive calcium channel that guides sperm to the 

ovulum and makes fecundation possible and it has recently been identified as 

possible target for the production of a male contraceptive.[5] 

α and β amyrins are accumulated in significant amounts (> 10%) in various plants 

and plant materials such as leaves, bark and wood. Considerable amounts (up to 

g/kg) of these triterpenes are available in the resins of Bursera and Protium species 

of the Burseraceae family, but they occur as mixtures very difficult to separate by 

chromatography or by fractionate crystallization. [2],[6] 

Lupeol, instead, is found in very low concentration in common fruit plants such as 

Olive fruit (3µg/g), Mango (180 µg/g), Aloe leaves (280 µg/g), elm plant (880 µg/g) 

etc.[7] The richest source is an expensive South-American ornamental plant 

(Angelonia angustifolia Benth), in whose roots it occurs in ca 1% concentration.[8] 

Furthermore, lupeol is obtained from side-cuts from the purification of betulin from 

Betulla alba L. bark,[9] a process detailed in various patents.[10] 

On the other hand, ursolic acid (4), oleanolic acid (5) and betulinic acid (6), the C-

28 oxidized analogues of, respectively, α-amyrin (1), β-amyrin (2) and lupeol (3), are 

easily available in high yield, low cost and excellent purity from agricultural waste 

(olive tree pruning for oleanolic acid)[11] or urban landscape waste (bark peels of 

plane trees for betulinic acid) and from leaves of Ilex paraguariensis St. Hil. (for 

ursolic acid).[12] 
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Using these semi-synthetic samples, their capacity to inhibit 2AG degradation by 

the -hydrolase ABHD2 could be comparatively evaluated. 
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1.2 RATIONALE OF THE PROJECT 

Despite lupeol and amyrins have interesting pharmacological profile, further 

studies are blocked or slowed down by the difficulties in obtaining these secondary 

metabolites in good amount and purity: they generally occur in complex mixture 

very difficult to separate by chromatography or by fractionate crystallization and 

the total synthesis of naturally occurring pantacyclic triterpenes is still a big 

challenge with extremely high cost and very low overall yield.[13],[14][15][16]  

  

 

In this contest a semisynthetic approach which provides the C-28 deoxygenation of 

these three triterpenic acids, could offer a good alternative to afford large amounts 

of these compounds. 

Most of the synthetic protocols in literature to deoxygenate a carboxyl to a methyl 

involve the nucleophilic displacement of the corresponding alcohol by a 

nucleophilic hydride source.  

1971 2009 1993 

in 1971 Stork et al. 

carried out a total 

synthesis of (±)-lupeol 

in 41 steps 

 

In 1993 a total synthesis of 

racemic β-amyrin was 

conducted by Jonhson et al. 

in ca. 0,2% overall yield 

Followed by…. 

 

…the first enantioselective 

total synthesis by Corey 

First 

enantioselective 

total synthesis of 

lupeol by Corey 
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However, the neopentylic nature of the C-28 carboxylate and the resulting 

complete lack of reactivity of the corresponding alcohol in nucleophilic 

displacement reactions restricted the choice to the Wolff-Kishner 

deoxygenation.[6],[17]  

The deoxygenation of C-28 triterpenoid carboxylates via a modified Wolff-Kishner 

reaction based on semicarbazones was reported in the classic structural studies of 

amyrins and lupeol from the 1930s. This strategy was based on extensive functional 

groups’ manipulations:  

a) protection of C-3 hydroxyl group as acetate  

b) conversion of C-28 carboxylate into the corresponding acylchloride  

c) Rosemund reaction and deoxygenation via the semicarbazone 

modification of the Wolff-Kishner reaction[18] 

 

In view of the very low yield of the process and the impossibility to scale it up to 

gram scale, we have decided to design a new strategy for an easy access to these 

interesting and rare secondary metabolites.  
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1.3 RESULTS AND DISCUSSION 

1.3.1 Chemistry 

The first synthetic strategy that we have planned (Scheme 1) was a 7 steps process 

in which the first step was the conversion of the carboxylic moiety of betulinic acid 

into the more soluble methyl ester, that was easily reduced to the corresponding 

3,28-dihydroxy derivative 8 by using LiAlH4. Acetylation and selective deacetylation 

furnished the C-28 primary alcohol (10) that was readily oxidized with IBX to the 

corresponding aldehyde (11). The latter was deacetylated and the final reductive 

step was then carried out according to the Huang-Minlon modification of the Wolff 

Kishner reaction (heating in ethylene glycol with hydrazine and KOH), affording the 

expected C-28 methyl derivative 3.  

While the 6 previous steps furnished the expected products in good to excellent 

yields, the deoxygenation step gave a less than 40% yield.  

Attempts to improve this critical step by using other variations of the original Wolff-

Kishner protocol (Cram,[19] Myers[20]) or replacing hydrazine with tosylhydrazine 

and the base with LiAlH4 (Caglioti modification[21]) did not improve the yield, while 

methylation, silylation as well as acetylation of the 3-hydroxyl group shut down 

completely the reaction under both the original Wolff- Kishner protocol and the 

Huang-Minlon modification.  

This observation is a classic example of the Gestalt (shape)-effect that trouble the 

chemistry of triterpenoids and might be the reason why the old studies, that used 

acetylated substrates, resorted to the semicarbazide version of the reaction, that 

affords significant amounts of the corresponding alcohol.[18] 

For the acetate these observations are even more surprising, since the 3-acetyl 

group does not survive to the basic conditions of the reaction. 
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In order to optimize the strategy by removing the use of protecting groups and 

reducing the synthetic steps, 3,28-dihydroxy derivative 8 was chemoselectively 

oxidized to the corresponding C-28 aldehyde by using the TEMPO (2,2,6,6-

tetramethylpiperidinyloxy)- NCS (N-chlorosuccinimide) protocol (Scheme 2). The 

aldehyde, obtained in high yield and complete chemoselectivity, underwent to the 

final deoxygenation furnishing the final product (3) in 50% yield.  

This strategy was successfully applied to the synthesis of the three deoxygenated 

compounds (gram scale) with an overall yield of 32% for α-amyrin, 42% for -amyrin 

and 40% for lupeol (Scheme 2). 
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Unfortunately, on september 2017 Dongyn Chen et al.[22] published a paper about 

the synthesis of the deoxygenated derivatives of oleanolic, ursolic and betulinic acid 

in 7 steps retracing on our first strategy in which the only difference was in the 

oxidation step where in place of the nontoxic IBX was used highly toxic PCC.  

 

1.3.2 Biological Evaluation 

The C-28 methyl triterpene alcohols 1, 2, 3 and all the intermediates were sent to 

our partner Prof. Jurg Gertsch (University of Bern, Switzerland) to be evaluated as 

possible inhinitors of the hydrolisis of 2-AG. 

 

1.3.3 Conclusions 

A new and protection-free semi-synthetic route to obtain amyrins and lupeol in 4 

synthetic steps has been developed. The process is flexible and easily scalable to 

gram scale starting from easily accessible starting materials, furnishing the desired 

deoxygenated products in good overall yields. 
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1.4 EXPERIMENTAL SECTION 

General Methods and Materials. 

Commercially available reagents and solvents were purchased from Aldrich or Alfa-

Aesar and were used without further purification. N,N′-Dimethylformamide (DMF) 

was dried over a neutral alumina pad and stored on 4 Å activated molecular sieves. 

Dichloromethane was dried by distillation from P2O5 and stored on 4 Å activated 

molecular sieves. Pyridine was dried over neutral alumina pad and stored on 

activated 4 Å molecular sieves under nitrogen. When needed, the reactions were 

performed in flame- or oven-dried glassware under a positive pressure of dry 

nitrogen. For spectroscopic characterization, a JEOL ECP 300 MHz spectrometer 

was used for 1H and 13C spectra. Chemical shifts are reported in parts per million 

(ppm) using the residual solvent peak as reference (CHCl3 at δ 7.27). A Thermo 

Finningan LCQ-deca XP-plus equipped with an ESI source and an ion trap detector 

was employed for mass spectrometry. Flash column chromatography was 

performed on silica gel (Merck Kieselgel 60, 230−400 mesh ASTM). Thin-layer 

chromatography (TLC) was carried out on 5 × 20 cm plates with a layer thickness of 

0.25 mm (Merck silica gel 60 F254). When necessary, KMnO4 was used for 

visualization. All the intermediates are known and our data are in accordance to 

those published in literature. 
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Betulinic and ursolic acid were easily obtained respectively from sycamore tree 

(Platanus acerifolia L.) outer bark that comes off unassisted each year in autumn 

and yerba mate (Ilex paraguariensis), through an efficient extraction processes. 

High pure oleanolic acid was commercially available in bulk (5 Kg). 

EXTRACTION OF BETULINIC ACID 

PROCEDURE: the milled bark was placed inside a PET bottle and acetone was added 

to about half of the container, leaving it to macerate overnight. 

After 48 hours the vegetable matrix was filtered under vacuum on a sintered filter 

and the brown acetone extract was collected in a round bottom flask. 

The acetonic extract was concentrated to half its volume and subsequently left at   

-18 ° C overnight favouring the precipitation of betulinic acid as pale-yellow crystals.  

Betulinic acid was filtered under vacuum on a sintered filter and washed with 

petroleum ether previously cooled to -18 ° C. The crude betulinic acid crystals were 

collected in a beaker and left in vacuum dryer to obtain a completely dry pale-

yellow solid (yield ca 1-2%). 

EXTRACTION OF URSOLIC ACID 

For the extraction of ursolic acid we have used yerba mate (Ilex paraguariensis), 

sold in supermarkets. 

The leaves of mate are rich of ursolic acid, but they contain also α and β-amyrines 

esterified with fatty acids. Therefore, it is necessary to separate first the amyrine 

esters (using petroleum ether) to extract the pure ursolic acid.  

PROCEDURE: Mate leaves was placed inside a PET bottle that was half filled with 

petroleum ether. The vegetable material was left in extraction overnight, filtered 

under vacuum using a sintered filter to separate the petroleum extract from the 
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vegetable matrix. After evaporation of petroleum ether extract, we have obtained 

a brown residue rich in amyrin esters. 

Then vegetable matrix was re extracted in acetone overnight, filtered under 

vacuum, concentrated for half of its volume and left at -18 ° C to allow the 

precipitation of ursolic acid.  

Ursolic acid filtrate was filtered under vacuum and washed with the minimum 

amount of previously cooled petroleum ether (-18 ° C). Precipitated ursolic acid was 

collected from the filter, placed in a beaker and dried to obtain a green powder 

(yield ca 1-2%). 

 

General procedure of esterification (13, 14, 7): to a stirred solution of triterpenic 

acid (1 eq/mol ) in DMF (10 mL), sodium carbonate (5 eq/mol) and dimethylsulfate 

(5 eq/mol) were added. The reaction was stirred at room temperature overnight, 

then quenched with H2SO4 2N and extracted with a 3:1 mixture of petroleum ether 

and diethyl ether.  The organic layers were dried over Na2SO4, filtered and 

evaporated to afford the methyl ester without further purification (quantitative 

yield). 

General procedure of methyl esters reduction (15, 16, 8): to a cooled solution (0°C) 

of 13, 14, 7 (1 mol/eq) in dry THF (10mL), LiAlH4 (3 eq/mol) was slowly added. The 

mixture was stirred at room temperature overnight, then quenched with H2SO4 2M 

and extracted with ethyl acetate. The organic layers were washed with NaHCO3 sat. 

sol., dried over Na2SO4, filtered and evaporated to afford the corresponding 3,28-

dihydroxy derivative (15, 16, 8) without further purification (quantitative yield). 

General procedure of primary alcohol oxidation (17, 18, 12): to a stirred solution 

of 3,28-dihydroxy derivative (15, 16, 8) (1 mol/eq) in DCM (5 mL/0,23 mmol), water 
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(5 mL/0,23 mmol), potassium carbonate (250 mg/mmol substrate), sodium 

bicarbonate (1.5 g/mmol substrate) and tetra-butylammonium chloride (1 mol/eq) 

were added.  The obtained biphasic solution was stirred for 10 minutes then N-

chlorosuccinimide (6 mol/eq) and TEMPO (2 mol/eq) were sequentially added.  The 

flask was covered with aluminium foil and the biphasic mixture was vigorously 

stirred at room temperature overnight. Then reaction was diluted with brine, 

extracted with DCM and the combined organic layers were dried over Na2SO4, 

filtered and evaporated under reduced pressure. The crude was purified over silica 

gel using Pe/EtOAc 9:1 for 17 (99%),  Pe/EtOAc 95:5 for 18 (70%) and Pe/EtOAc 9:1 

for 12 (99%).   

General deoxygenation procedure (1, 2, 3): to a stirred solution of the formyl 

derivative (17, 18, 12) (1mol/eq) in ethylene glycol (20 mL/0.222 mmol), hydrazine 

monohydrate (43 eq/mol) and potassium hydroxide (60 eq/mol) were added.  The 

reaction was heated at 200 °C overnight, then cooled at room temperature, 

quenched with H2SO4 2N and extracted with a 3:1 mixture of petroleum ether and 

diethyl ether.  The organic layers were dried over Na2SO4, filtered and evaporated. 

The crude was purified over silica gel using Pe/EtOAc 95:5 for 1 (46%),  Pe/EtOAc 

95:5 for 2 (55%) and Pe/EtOAc 95:5 for 3 (46%).    

Compound 1: white solid. 1H NMR (CDCl3, 300MHz) δ 5.13 (t, J= 3.6 Hz, 1H), 3.23 

(dd, J= 5.3, 10.2 Hz, 1H), 2.06–1.78 (m, 4H), 1.68–0.72 (m, 19H), 1.07 (s, 3H), 1.01 

(s, 3H), 1.00 (s, 3H), 0.96 (s, 3H), 0.91 (s,3H), 0.80 (s, 3H), 0.79 (s, 3H), 0.77 (s, 3H); 

13C NMR (CDCl3, 75MHz) δ 139.6, 124.4, 79.1, 59.1, 55.2, 47.7, 42.1,41.5, 40.0, 39.7, 

39.6, 38.8, 36.9, 33.8, 33.0, 31.3, 28.7, 28.1,27.3, 26.6, 23.4, 23.3, 21.4, 18.4, 17.5, 

16.9, 15.7, 15.6. 

Compound 2: white solid. 1H NMR (CDCl3, 300MHz) δ 5.19 (t, J= 2.1Hz, 1H), 3.22 

(dd, J= 2.9, 6.8 Hz, 1H), 2.03–0.73 (m, 23H), 1.14 (s, 3H), 1.00 (s, 3H), 0.97 (s, 3H), 
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0.94 (s, 3H), 0.87 (s, 6H), 0.83 (s, 3H), 0.79 (s, 3H); 13C NMR (CDCl3, 75MHz) δ 145.2, 

121.8, 79.0,55.2, 47.7, 47.3, 46.9, 41.8, 39.8, 38.8, 38.6, 37.2, 37.0, 34.8,33.3, 32.7, 

32.5, 31.1, 28.4, 28.1, 27.3, 27.0, 26.2, 26.0, 23.7,23.5, 18.4, 16.8, 15.6, 15.5.  

Compound 3: white solid. 1H NMR (CDCl3, 300MHz) δ 4.68 (s,1H), 4.57 (s, 1H), 3.18 

(dd, J= 5.3, 10.8 Hz, 1H), 2.42–2.33 (m,1H), 1.99–1.85 (m, 1H), 1.68–0.67 (m, 23H), 

1.68 (s, 3H), 1.03 (s,3H), 0.97 (s, 3H), 0.94 (s, 3H), 0.83 (s, 3H), 0.79 (s, 3H), 0.76 

(s,3H); 13C NMR (CDCl3, 75 MHz) δ 151.0, 109.3, 79.0, 55.3, 50.4, 48.3, 48.0, 43.0, 

42.8, 40.8, 40.0, 38.8, 38.7, 38.0, 37.2, 35.6, 34.3, 29.8, 28.0, 27.4, 27.3, 25.1, 20.9, 

19.3, 18.3, 18.0, 16.1, 16.0, 15.4, 14.5.   
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Chapter 2 

TRITERPENOID HYDROXAMATES AS 

HIF PROLYL HYDROLASE INHIBITORS 
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2.1 INTRODUCTION 

Natural Pentacyclic Triterpenoid Acids (PCTTAs) can target many macromolecular 

end-points with low-to moderate affinity.[1] To improve potency, the most common 

strategy has been to implant functional groups on the lipophilic triterpenoid 

scaffold, as exemplified by the development of bardoxolone methyl from oleanolic 

acid (3a, Scheme 1), whose potency could be increased several orders of magnitude 

by the insertion of a cyanoacrylate Michael acceptor element on ring A.[2] Inspired 

by the success of this approach, we have attempted to replicate its “dock-and-bind” 

[3] strategy to discover new modulators of the hypoxia-inducible factors (HIFs). 

HIF-1 and HIF-2 are transcription factors stabilized by a cellular low oxygen 

status (hypoxia).[4]   

Hypoxia is most commonly associated with ischemic disease, vascular disease, 

chronic inflammation and may be lethal at arterial O2 pressures below 50 mmHg.  

Oxygen is the electron sink for oxidation of carbohydrates and fats and is the 

terminal electron acceptor in the electron transport chain of oxidative 

phosphorylation that aerobes use to produce ATP.[5] 

It is known that all nucleated cells in the body are able to detect changes in O2 levels 

and mount a physiological response when O2 drops to pathophysiological levels. 

The heterodimeric transcription factor HIF accumulates in response to hypoxia and 

binds to HRE (hypoxic response element) motif in DNA promotor region, controlling 

gene transcription.[5] 
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Figure 1: HIF-1α regulation by proline hydroxylation 

 

HIF is found in cells in two forms: HIF-1 and HIF-2. They are consisting of HIF-β 

subunits and a HIF-1α or HIF-2α partner, sharing 48% sequence homology. Unlike 

HIF-β, HIF-α is sensitive to O2 
[5]: molecular oxygen controls the stability of HIF-1 

and HIF-2 via HIF prolyl hydroxylases (PHDs), a class of iron-containing 

dioxygenases that, in the presence of molecular oxygen and 2-oxoglutarate, 

hydroxylate HIF-1 and HIF-2, inducing their ubiquitination by an E3-ubiquitin 

ligase and degradation by the 26S proteasome.[4]  
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Figure 2: catalytic cycle of PHD enzymes. 

 

Several lines of evidence suggest that the HIF-1/HIF-2 stabilization induced by 

pharmacological inhibition of PHDs may be of clinical relevance for the treatment 

of ischemic, inflammatory conditions and neurological disorders.[4] 

HIF-1α upregulates the vascular endothelial growth factor (VEGF) and 

erythropoietin (EPO), both showing neuroprotective activity in different animal 

models of disease including Huntington Disease (HD).[6] Efforts to discover small 

molecule PHDs inhibitors have led to FG-2216 (FibroGen), an orally bioavailable 

compound capable to increase the plasmatic levels of EPO,[7] later replaced by 

Roxadustat (FG-4592), currently in Phase III clinical trials for the treatment of renal 

anemia in patients with end-stage kidney disease.[8] GlaxoSmithKline, Bayer, Japan 

Tobbaco Inc. and Akebia Therapeutics are some of the major industrial players in 

the developing of oral PHDs inhibitors,[9] with Huntington Disease (HD) being a 

challenging additional pharmaceutical target for this class of compounds.[10]  
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HD is a fatal autosomal dominant and progressive neurodegenerative disease 

caused by a mutation in the Huntingtin gene (Htt). Mutated Htt protein leads to 

death and dysfunction of the GABAergic medium spiny striatal neurons, leading to 

severe neurological symptoms that included chorea, cognitive impairment, and 

changes in mood and personality.[11] 
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2.2 RATIONALE OF THE PROJECT 

The HIF pathway is sensitive to chelators. Thus, the tri-hydroxamate siderophore 

desferrioxamine B (DFX) blocks PHD activity by forming a very stable hexadentate 

complex with ferric iron,[12] and other hydroxamates have also been shown to 

target PHDs and activate the HIF pathway due to their iron-chelating properties.[13] 

Since the polycyclic lipophilic scaffold of triterpenoids seems remarkably versatile 

in terms of protein surface recognition,[1] we wondered if, by introducing a 

chelating element, the “dock and bind” strategy of bardoxolone methyl (2) could 

be replicated in another biological setting, combining shape affinity associated to 

the lipophilic scaffold with the specific binding properties of the chelating element. 

The hydroxamates of some triterpenoid acids have been described.[14,15] 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Chemistry 

Five PCTTAs were selected as starting material based on their multigram availability 

by isolation [ursolic acid (4a), betulinic acid (5a), maslinic acid (6a)], purchase 

[oleanolic acid (3a), glycyrrhetinic acid (7a)], or semi-synthesis (the 

oleanolic/glycyrrhetinic acid hybrid 8a).[16]  

Hydroxyamidation was realized, after protection of the 3-hydroxyl as acetate, by 

activation as chloride (3a-6a, 8a) or mixed phosphonic anhydride (7a),[17] followed 

by reaction with hydroxylammonium chloride in pyridine and deprotection, 

affording the hydroxamate alcohols 3b-8b (Scheme 1).  

The effect of an additional hydroxylamine-derived functional group was evaluated 

in the 3-hydroxyimino-28-hydroxamates 3d-5d achieved by two-fold 

hydroxyamination of the 3-dehydroderivatives of oleanolic-, ursolic- and betulinic 

acids (3c-5c, respectively).  
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Scheme 1: synthesis of the first generation PCTTA hydroxamates and oxyminohydroxamates. (a) Ac2O, DMAP, 

pyridine (quantitative); (b) Oxalyl Chloride, DCM 40 oC then NH2OH.HCl, Pyridine 40 oC (38-70%); (c) NaOH 4M, 

THF/MeOH 1:1 40 oC (50-60%); (d) Jones reagent, acetone/EtOAc 5:1 (nearly quantitative); (e) K2CO3, DMS, 

DMF (98%); (f) NH2OH.HCl, TEA, T3P, CH3CN (64%).  Ac2O = Acetic anhydride, DMAP= 4-

Dimethylaminopyridine, Jones reagent= Sulfuric acid-chromium trioxide mixture, DMS= Dimethylsulfate, DMF= 

Dimethylformamide, TEA= Triethylamine 
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Further derivatives were obtained (Scheme 2) by modifications on ring A of 

oleanolic and betulinic acids, whose hydroxamates (3b and 5b, respectively) had 

given the most interesting bioactivity (see biological part). 

Thus, a double bond was generated on ring A by dehydration of the 3-hydroxyl 

group, affording, after hydroxyamidation, oleanane 9 and lupane 10. Alternatively, 

Baeyer-Villiger expansion of ring A of the 3-dehydroderivative of oleanolic acid (3a) 

or its methyl ester (3e) afforded, respectively, the lactones 11a and 11b. The 

carboxylate 11a was next directly hydroxyamidated to 12, while the lactonized 

methyl ester 11b underwent alkaline-promoted -elimination to an A-seco 

derivative, next hydroxyamidated to 13. Further changes on ring A were carried out 

on the 3-dehydroderivative of betulinic acid (5c), that, after formylation, was 

condensed with hydroxylamine or hydrazine to afford the heterocyclic 1,2-azoles 

14a and 14b. 
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Scheme 2: synthesis of ring A-modified PCTTA hydroxamates. (a) TsCl, Pyridine; (b) NaOAc, DMF 120 oC (40-50 

over two steps); (c) Oxalyl Chloride, DCM 40 oC then NH2OH.HCl, Pyridine 40 oC (35-50%); (d) KOH, 

DCM/MeOH/H2O 3:3:1 (20%); (e) Oxalyl Chloride, DCM 40 oC then NH2OH.HCl, Pyridine 40 oC (35%); (f) Ethyl 

formate, NaOEt, toluene 50 oC for 19; (g) NH2OH.HCl, EtOH/H2O, 80 oC for 14a or NH2NH2, EtOH/H2O 80 oC for 

14b; (h) Oxalyl Chloride, DCM 40 oC then NH2OH.HCl, Pyridine 40 oC (40-50%). TsCl= p-Toluenesulfonyl chloride, 

DMF= Dimethylformamide 
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To compare the biological activity, the hydroxamate group of oleanolic (3b) and  

betulinic (5b) hydroxamate hits was replaced by a series of different chelating 

elements [glycinamide, 2-hydroxybenzalglycinamide, (N-methyl-2-

imidazolyl)hydroxymethyl], generating the analogues 15a, 15b, 16a, 18a and 18b. 

(Scheme 3). These compounds were prepared from the starting acids by amidation 

(15a and 16a) followed by ortho-hydroxybenzalization for the preparation of 15b, 

or from the corresponding C-28 aldehydes by addition of 2-lithio N-methylimidazole 

(18a and 18b). 

 

Scheme 3: synthesis of PCTTA bearing at C-28 a chelating group. (a) Ac2O, DMAP, pyridine (quantitative); (b) 

Oxalyl Chloride, 2 40 oC then Glycine methyl ester hydrochloride, Pyridine 40 oC; (c) NaOH 4M, THF/MeOH 1:1 

40 oC (50-60% over two steps); (d) Salicylaldehyde, NaOAc, Ac2O 140 oC; (e) NaOH 4M, THF/MeOH 1:1 40 oC 

(38% over two steps); (f) 1-Methylimidazole, n-BuLi, THF -78 oC (40% cumulative yield). Ac2O = Acetic anhydride, 

DMAP= 4-Dimethylaminopyridine 
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To better investigate the active site of the target protein, we have planned the 

synthesis of the biotinylated derivative of betulinic hydroxamate. 

The biotinylated derivative 19 is composed by the hydroxamate triterpenic core of 

betulinic acid connected with biotin by an aminoacidic linker of 6 carbon atoms 

(Figure 3). 

 

 

 

Figure 3 : biotinilated derivative of the hydroxamic acid of betulinic acid. 

 

Despite biotinilation is widely used in medicinal chemistry, the synthesis of 

compound 19 was challenging: several strategies were considered and different 

chemical problems were solved.  

Here below we report the evolution from the first to the last approach with the 

problems faced and the proposed solutions. 

Betulinic acid 

hydoxamate 

Aminoacidic 

linker 

 

Biotin 
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• First synthetic strategy  

 

Scheme 4: (a) isobutyl chloroformate, tri-N-butylamine, DMF; (b) amino hexanoic acid; (c) EDC, DMAP, TEA, 

DCM. 

Problem: monitoring by TLC of the first step. 

In this first approach we have decided to link biotin to the spacer at the early stages 

of the process and then proceeding with the esterification of the key intermediate 

20 with compound 5b. Unfortunately compound 20 couldn’t be easily detected in 

TLC and it was very difficult to follow the reaction. 

Solution:  to link the amino acid to betulinic acid first. In this way we were able to 

follow the reaction by TLC. 

• Second synthetic strategy 

 

 

Scheme 5: (a) EDC, DMAP, TEA, DCM; (b) deprotection; (c) Biotin. 

 

Problem: formation of isocyanate during the esterification reaction by Lossen 

rearrangement (Figure 4). 

In case of the second approach we have tried to link the spacer to compound 5b 

following a classical esterification process with the use of carbodiimides, without 

considering that hydroxamic acids can easily undergo to Lossen rearrangement to 

give the corresponding isocyanate 21. 

Biotin 
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Figure 4: Lossen rearrangement during the esterification reaction. 

 

Solution: protection of the hydroxamate group with benzyl group to avoid the 

formation of isocyanate. 

 

• Third synthetic strategy 

 

 

Scheme 6: (a) Benzoyl chloride, DMAP, TEA, THF dry; (b) TFA, DCM; (c) Biotin, EDC, HOBt, DCM; (d) H2, Pd/C, 

MeOH/EtOAc 

 

Problem: acid catalysed E ring expansion. 

To overcome the problem of Lossen rearrangement we have prepared the O-

benzylhydroxamate 22a that was esterified with the N-BOC-protected amino acid 

giving the key intermediate 22b. The deprotection of the amino group was done 

following the procedure published by Milan Urban et al. [18] 
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1H-NMR of the product 22c shows the presence of a single proton singlet at 3.99 

ppm, whilst the olefinic protons of betulinic acid are missing (Figure 7). Despite the 

protection of the carboxylic moiety at C-28, the strong acid medium of the reaction 

(TFA) catalyzes the ring expansion followed by the formation of trifluoromethyl 

ester at position 19 (Figure 5). 

 

 

Figure 5: reaction of TFA with betulinic derivative with consequent formation of six membered ring. 

 

The 1H-NMR of compound 23 reported by Milan Urban,[18] also shown the same 

anomalies: the missing of the olefinic protons of betulinic acid, and the presence of 

a singlet at 3.99 ppm, showing a misinterpretation of the NMR data (Figure 6).
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Figure 6: 1H-NMR spectra of the wrong structure of the biotinylated betulinic acid synthesized by Milan Urban 

et al. The spectra shows no signals of the hydrogens of betulinic acid double bond  (at 4,5 ppm), but there is the 

signal at 3,99 ppm of the hydrogen in position C-19, which reveals the transposition and the formation of the 

six membered ring. [18] 

H-19 

23 
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Figure 7: 1H-NMR spectra of compound 22c, in which there is the same signal at 3.99 ppm present in Figure 6. 

 

Solution: to avoid E ring expansion we have decided to conduct the reaction by 

using the Lewis acid BF3 instead of the Bronsted acid CF3COOH. 

19 

H-19 
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• Fourth synthetic strategy 

In view of the problems faced in the previous approaches, we have rethinked 

completely the synthetic startegy by  starting from betulinic acid 5a, that was 

esterified at position 3 with the N-BOC-protected amino acid giving compound 

24a, that was deprotected with BF3*Et2O to furnish the intermediate 24b. The 

latter was condensed with biotin leading the activated ester 24c, that by 

treatment with hydroxylamine in pyridine furnished the desired hydroxamate 

19.   

 

 

Scheme 7: (a) Benzoyl chloride, DMAP, TEA, THF dry; (b) BF3OEt2, DCM; (c) Biotin, EDC, HOBt, DCM; (d) 

NH2OH*HCl, Pyridine dry. 

 

This strategy still had some problems related to Yamaguchi reaction that did not 

lead to the total consumption of the starting material, making the product 

purification very challenging. 
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In order to improve the solubility of our lead compound 5b for further in-vivo 

experiments, we have planned the synthesis of a pro-drug (25d) with the insertion 

in position 3 of a 3,3-dimethylglutarate moiety (Scheme 8).  

To reduce the use of protecting groups we have planned a synthetic strategy in 

which the carboxylic acid at C-28 was at the same time protected and activated by 

the synthesis of the hydroxybenzotriazole ester 25a. This key intermediate was 

esterified with 5-(allyloxy)-3,3-dimethyl-5-oxopentanoic acid through modified 

Yamaguchi reaction affording compound 25b that was deprotected and converted 

into the corresponding hydroxamate 25d for treatment with hydroxylamine in 

pyridine. 

 

 

Scheme 8: synthesis of the prodrug of 5b. (a) HOBt, EDC, DCM (quantitative); (b) 5-(allyloxy)-3,3-dimethyl-5-

oxopentanoic acid, Benzoyl chloride, TEA, DMAP, THF dry (quantitative); (c) Pd(OAc)2, morpholine, PPh3, THF 

40°C (60%), (d) NH2OH*HCl, pyridine 80°C (50%). 
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2.3.2 Biological Evaluation 

Effect of PCTT hydroxamates on PHD activity 

HIF-1 transactivation assays were performed in NIH-3T3-EPO-Luc cells. The EPO-

Hypoxia Response Element (HRE)-luciferase reporter plasmid contains three copies 

of the HRE consensus sequence from the promoter of the erythropoietin gene fused 

to the luciferase gene and is therefore is a useful surrogated marker for the 

screening compounds for the induction of HIF-1/HIF-2 stabilization.[19] None of 

the starting PCTTAs (3a-8a) showed hypoxia mimetic activity, while their 

hydroxamates, with the notable exception of the one of glycyrrhethinic acid (7b), 

were, to a various extent, all significantly active. Conversely, no activity was 

observed in PCTTA bearing at C-28 chelating groups different from the hydroxamate 

(15a, 15b, 16a, 19a and 19b).  While emphasizing the relevance of the hydroxamate 

moiety for activity, these observations also highlight the relevance of its location on 

the triterpenoid backbone, since the C-30 hydroxamate 7b was inactive, while its 

corresponding C-28 hydroxamate 8b was significantly active. Within the C-28 

hydroxamates, activity was then fine-tuned by changes in connectivity and 

functionalization of the triterpenoid backbone. Thus, the lupane hydroxamate 5b 

was more potent than its oleanane (3b, 6b) and ursane (4b) analogues, while 

oxymation of the C-3 dehydroderivatives 3d-e was accompanied by a decrease of 

activity. Comparison of the activity of the hydroxamates of oleanolic (3b) and 

maslinic (6b) derivatives, showed that introduction of a further hydroxyl on ring A 

was moderately beneficial, while fusion of ring A with a heterocyclic ring or 

dehydration of the 3-hydroxyl were not critical. Overall, changes on ring A did not 

significantly affect potency. On the other hand, its expansion in 12 was associated 

to a decrease of activity, while a certain activity was also observed in the A-seco-C-

3 hydroxamate 13.  
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Taken together, these observations show that, within the PCTTA scaffold, the 

presence of a hydroxamate group and its location are both critical for PHD 

targeting, since activity was observed when this group was located at C-28, but not 

at C-30, while no activity was observed when the C-28 hydroxamate was replaced 

by other chelating groups.  

We have next investigated the biological translation of the acid-to-hydroxamate 

maneuver on other biological targets of PCTTA. These compounds are remarkably 

pleiotropic agents, targeting and/or modulating a series of transcription factors that 

include NF-B (Nuclear factor-kappa B), STAT3 (Signal transducer and activator of 

transcription 3), Nrf2 [NFE2L2 or Nuclear factor (erythroid-derived 2)-like 2], and 

the bile receptor GPBAR1.[20-22] Evaluation of the hydroxamates against these 

targets, showed a detrimental effect on bioactivity, with only some residual Nrf2- 

and TGR5-activity found in the hydroxamate of ursolic acid, and complete loss of 

activity toward NF-B or STAT3 pathways (Table 1).  
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Table 1: Activity of PCTTA hydroxamates on various transcription factors. 

 

The carboxylate-to-hydroxamate transformation has therefore a dramatic 

modulating activity on the biological profile of PCTTAs, focusing their blurred 

biological profile on the HIF pathway (Table 2). Based on considerations of potency 

and target selectivity, the hydroxamate of betulinic acid (5b) was selected for 

further studies.  
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Table 2:  effect of triterpenoid hydroxamates on HIF pathway activation. 

Comp. 
Efficacy HIF-1α  

  (IRA coefficient) a 
Potency EC50 HIF-1α      (µM) 

1a-8a -   (>50) 

3b 0,39 16.37 

3d 0,43 3.83 

8b 0,15 11.39 

9 0,16 5.00 

12 1,19 5,84 

13 2,2 7,53 

5b 0,36 4.81 

5d 0,31 6.82 

10 0,48 3.24 

14a 0,55 2.58 

14b 0,34 2.41 

4b 0,17 7.69 

4d 0,1 8.93 

6b 0,1 7.10 

7b 
                     - 

 (>50) 

    

 

aEC50 and IRA (Intrinsic relative activity) values were determined relative to 150 M deferoxamine (DFX) using 

the following equation: IRA coefficient = (EC50-DFX x Emax) / (EC50 x Emax-DFX), where EC50 and Emax denote EC50 and 

Emax of the agonist, and EC50-DFX and Emax-DFX denote EC50 and Emax values of the standard agonist DFX. 
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The effect of 5b on the expression of HIF-1 at the protein level was investigated 

in 293T cells. This compound stabilized HIF-1 protein without affecting the steady 

state levels of the PHDs analysed (Figure 8A). In kinetic experiments, its stabilizing 

activity on HIF-1 was significantly detectable after 15 min, peaked at 60 min and 

was maintained after 3 h of stimulation (Figure 8B). Next, the induction of HIF-1α 

in cells cultured under hypoxic conditions was investigated in 293T cells, subjecting 

them to hypoxia (1% O2) in the presence or the absence of 5b. The levels of HIF-1α 

stabilization were similar to those observed under hypoxia conditions, and the 

combination of both stimuli produced no significant change (Figure 8C). In 

accordance with these findings, the PHD2 levels were almost unaffected in 

response to both conditions (Figure 8C). These observations suggest that the 

hypoxia mimetic activity of 5b is associated to inhibition of prolyl hydrolase 

functional activity, as further shown by a close correlation between the inhibition 

of HIF-1 hydroxylation and HIF-1 stabilization in cells pre-incubated with the 

proteasome inhibitor MG132 (Figure 8D).  

The nature of the interaction with the HIF pathway was evaluated by assessing the 

induction of EPO-Luc activity in wash-out experiments where 5b was removed from 

the cell culture by washing the cells with PBS after 1 h of treatment, and the EPO-

Luc activity was then measured after further 5 hours. Activity was greatly reduced 

5 h after removal of 5b from the cell medium, as expected for a reversible inhibitor 

(Figure 8E). Remarkably, competition assays demonstrated that betulinic acid (5a) 

(50 M) inhibited the hypoxia-mimetic activity of its hydroxamate derivative 5b 

(Figure 8F), suggesting a “dock and bind” mechanism, where the triterpenoid 

scaffold is involved in target recognition, presumably by shape complementarity 

associated to its lipophilic core, and the hydroxamate reinforces it with polar 

interaction and/or chelation, Thus, docking experiments using PHD2 (4BQW from 
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Protein Data Bank) revealed that both 5a and 5b bind to the catalytic domain of 

PHD2 with similar intermolecular energy (data not shown).  

 

Figure 8: 5b mediates HIF-1α stabilization. (A) HEK-293T cells were stimulated with either 5b, at the indicated 

concentrations, of DFX (100 M) for 3 h and the expression of HIF-1α, PHD1, PHD2 and PHD3 analysed by 

western blots. (B) Time-course induction of HIF-1α stabilization. (C) Effect of 5b in the presence or the absence 

of low oxygen (1% O2) on HIF-1α stabilization. (D) HEK-293T cells were treated with 5b for 6 hours in the presence 

of MG132 and the levels of hydroxylated HIF-1α and HIF-1α were determined by immunoblot. (E) NIH-3T3-EPO-

Luc cells were pre-treated with 5b for 1 hour and then washed or not with PBS and incubated in complete 

medium for 6 hours. ***p<0.001 3a treated cells (no wash) vs untreated cells; # p<0.05, ### p<0.001 3a treated 

cells wash vs no wash cells (one-way ANOVA followed Tukey´s test).  (F) NIH-3T3-EPO-Luc cells were pre-

incubated with betulinic acid (5a) (50 M) for 30 min and then treated with 5b at the indicated concentrations 

for 6 h. Luciferase activity was measured in the cell lysates and fold induction relative to untreated cells is shown. 

***p<0.001 3a treated cells vs untreated cells; # p<0.05, ### p<0.001 3a treated cells wash vs 3a + BA treated 

cells (one-way ANOVA followed Tukey´s test). Data represent the mean ± SD (n=3).  



52 

 

 

To further identify which PHD is targeted by 5b, HEK293T cells were transfected 

with HA tagged PHD1, PHD2 and PHD3 plasmids, and next treated with 5b and 

DMOG (positive control). After treatments, PHDs were immunoprecipitated and 

the prolyl hydrolase activity was measured by the capacity to hydroxylate GST-HIF-

1. 5b was found to clearly inhibit PHD1 and PHD2 activities, with only a marginal 

effect of PHD3 (Figure 9). Overall, our data suggest that 5b binds the catalytic 

domain PHDs, but it does not mimic the activity of the iron chelator DFX in in vitro 

assays of PDH2 activity (data not shown), suggesting a different mechanism of 

inhibition. Thus, PHDs may undergo post-translational modifications affecting their 

activity, with phosphorylation at serine 125 by P70S6K for PHD2, and at serine 130 

of PHD1 by cyclin-dependent kinases 2, -4, and -6.[23,24] It is therefore possible that 

triterpenoid hydroxamates could modulate these processes. 



53 

 

 

Figure 9: Effect of 5b on PDHs activity HEK-293T cells were transfected with HA-PHD1 (A), HA-PHD2 (B) or HA-

PHD3 (C) as indicated. After 24 hours of transfection, cells were treated as following: P1: non transfected cells; 

P2: cells were transfected with PHDs and immunoprecipitated with IgG-HA; P3: cells were transfected with PHDs 

and immunoprecipitated with αHA; P4: cells transfected with PHDs, stimulated with 5b (10 uM) and 

immunoprecipitated with αHA; P5: cells transfected with PHDs, stimulated with 5b (10 uM) and 

immunoprecipitated with αHA; P6: cells transfected with PHDs, stimulated with DMOG (1 mM) and 

immunoprecipitated with αHA.  HIF Prolyl hydroxylase activity was measured using GST-HIF-1α protein and the 

levels of hydroxylated HIF-1α, HIF-1α and PHDs were analysed by immunoblot (n=3). 
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Effect of 5b on HIF-dependent gene expression, angiogenesis and 

neuroprotection in vitro.  

There is growing evidence that HIF-1 regulates the expression of a plethora of 

genes products have neuroprotective activity and mimic hypoxia preconditioning. 

[25-27] Thus, HIF-1α activates several proangiogenic genes, including vascular 

endothelial growth factor (VEGF-A) and fibroblast growth factor-2, mainly produced 

by vascular endothelial cells. These trophic factors are thought to maintain brain 

homeostasis within the context of the neurovascular unit. [28,29]  

Accordingly, low doses of VEGF165 are neuroprotective in in vitro and in vivo models 

of Huntington Disease (HD) caused by overexpression of mutated huntingtin. [30] 

Moreover, HIF PHDs inhibitors protected striatal cells bearing a mutated form of 

the huntingtin protein against mitochondrial toxin-induced cytotoxicity. [31]  

These considerations prompted us to investigate the effect of 5b on the expression 

of HIF-dependent genes. To this purpose, HBMEC were treated with 5b for 12 

hours, and the expression of 83 genes involved in the hypoxia pathway was then 

analysed by qPCR (Figure 10A). Fold up- or down-regulation was calculated for each 

gene, and those whose expression was upregulated more than 10-fold were 

identified. Several genes involved in neuroprotection such as Angiopoietin-like 4 

(Angptl4), N-myc down-regulated gene 1(Nrdg1), erythropoietin (epo) and solute 

carrier family 2-member 1 (slc2a1) were upregulated in cells treated with 5b. 

Angptl4 modulates brain blood barrier (BBB) dysfunction in ischemic stroke and is 

neuroprotective,[32] and several reports have demonstrated that EPO is also 

neuroprotective in different model of CNS diseases. [33-35]  

On the other hand, Nrdg1 plays a role on oligodendrocytes survival and the gene is 

represses in the white matter of post-mortem Multiple Sclerosis patients. [35] The 
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gene slc2a1 codifies for the glucose transporter-1 protein (Glut-1) that plays a key 

role in neuroprotection and brain microvasculature homeostasis. [36]  

In addition, 5b clearly induced the expression of VEFG (Figure 10B) and EPO (Figure 

5D) in a concentration-dependent manner, enhancing their plasmatic levels in vivo 

(Figure 10E). Since it also induced the expression of VEGFA, we were interested in 

studying the potential activity in angiogenesis and compare its effects with those 

induced by the proangiogenic growth factors VEGF and FGF. Thus, in HUVEC co-

cultured in a monolayer of primary fibroblasts, both rhVEGFA (10 ng/ml) and 5b (1 

M) clearly induced an increase in the network of endothelial tubes (Figure 10C), 

suggesting that 5b can induce angiogenesis in an autocrine manner after secretion 

of VEFG.  
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Figure 10: compound 5b induces the expression of HIF-dependent genes. (A) Human brain microvascular 

endothelial cells were stimulated with 5b (10 µM) for 12 h and the expression of genes involved in the human 

hypoxia signalling pathway determined by PCR array. Heat maps shows the significantly upregulated (green) 

genes in 3a-treated cells compared with control. (B-D) The mRNA expression levels of VEGFA and EPO genes 

respectively were quantified by qPCR in HBMEC cells. Data represent the mean ± SD (n=3). ***p<0.001 3a 

treated cells vs untreated cells (one-way ANOVA followed Dunnett´s test). (C) PrimeKit co-cultures were seeded 

on Day 0 and the indicated concentration of rhVEGFA, rhFGF or 3a was added on Day 2. Representative images 

from the experiment are shown. Magnification 4x. (E) EPO levels were determined in plasma from C57BL/6 

treated with betulinic acid (5a) (60 mg/kg) or Compound 5b (30 and 60 mg/kg) for 4 hours. Plasma levels were 

increased after the treatment with 5b. Results are expressed as mean ± SEM (n= 6 animals per group). 
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The effect of HIF pathway activation by 5b was next evaluated in response to 

mitochondrial dysfunction in neurons induced by the selective complex II inhibitor 

3-nitropropionic acid (3-NP). To this purpose, immortalized striatal neurons 

expressing normal huntingtin protein (STHdhQ7) and striatal neurons expressing a 

mutant huntingtin protein associated with juvenile onset HD (STHdhQ111) [37] were 

used. As expected, 3-NP was strongly cytotoxic in STHdhQ111 cells compared to 

STHdhQ7 cells, and treatment with 5b protected both type of cells from 3-NP-

induced cell death (Figure 11). 
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Figure 11: compound 5b prevents 3NP-induced cytotoxicity in striatal cells harboring wild type and mutant 

huntingtin. STHdhQ7 and STHdhQ111 cells were pre-incubated with the indicated concentrations of 5b for 6 hours 

and stimulated with 3NP for 30 h. Percentage of neuronal death was determined by YOYO-1 and referred to 

vehicle-treated neurons. Data represent the mean ± SD (n=3). ***p<0.001 3NP treated cells vs untreated cells; 

### p <0.001 3NP+5b treated cells vs 3-NP treated cells (one-way ANOVA followed Tukey´s test). 
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Neuroprotective effect of 5b in a murine model of neuronal striatal degeneration. 

In order to confirm the neuroprotective action of 5b in vivo, a model of 

Huntington`s disease based on 3-NP administration was used. Treatment with 3-NP 

results in several alterations, including neurological and histological changes 

characteristic of some aspects of HD pathology.  

Compared to the control animals treated with vehicle, the 3-NP-treated mice 

exhibited high scores in hind limb clasping, locomotor activity, hind limb dystonia 

and kyphosis (Figure 12A). Treatment with 5b improved the clinical symptoms of 

3NP-lesioned mice by improving locomotor activity hind limb clasping, dystonia and 

kyphosis. We have next investigated the impact of 5b in striatal degeneration and 

atrophy. The administration of 3-NP reduced the number of neurons in the 

striatum, as determined by Nissl staining (Figure 12B).  

In addition, 5b-mediated neuroprotection was associated with reduced 3-NP-

induced microgliosis and astrogliosis as determined by Iba1 and GFAP 

immunohistochemistry (Figure 12C). We have also analysed the expression of 

specific pro-inflammatory markers. In 3-NP-lesioned mice, an upregulation of 

mRNA levels of inflammatory markers such as COX-2, iNOS, IL-1 and IL-6 was 

observed, fully inhibited by treatment with 5b (Figures 12D-G). Betulinic acid (5a), 

a compound unable to affect the HIF signalling, only showed a marginal efficacy in 

animals intoxicated with 3-NP, highlighting the role of this pathway in the activity 

of 5b.  
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Figure 12: compound 5b is neuroprotective in 3NP-intoxicated mice. (A) Behavioural score was determined 

12 hours after 3NP intoxication. Mice were treated with betulinic acid (BA) (5a) (30 mg/kg) or 5b (30 mg/kg) as 

indicated. Hind limb clasping, general locomotor activity, hind limb dystonia and kyphosis were rated from 0 to 

2 based on severity, with score 0 indicating normal function, and 2 indicating the most severe affected function. 

Values are expressed as means ± SEM (n = 6). (B-C) Quantification of Nissl staining, Iba-1 and glial fibrillary acidic 

protein (GFAP) immunostained sections through the different group performed on coronal striatal brain sections 

from the same mice groups. Quantification of the different markers was performed with Image J software. Total 

average number of neurons, microglia (Iba1+) and astrocytes (GFAP+) is shown. Values are expressed as 

mean ± SEM (n = 6). Gene expression of inflammatory markers including (D) interleukin (IL)-6, (E) interleukin (IL)-

1β, (F) inducible nitric oxide synthase (iNOS) and (G) cyclooxygenase (COX)-2 was significantly downregulated 

in 3NP + compound 3a-treated mice compared with 3NP mice. Values are expressed as means ± SEM (n=6) 

animals per group. **p < 0.01, ***p < 0.001 3NP vs. Vehicle; #p < 0.05, ###p < 0.001 vs. 3NP+3a vs 3NP (one-

way ANOVA followed Tukey´s test). 

 

2.3.3 Conclusions 

Many compounds have shown promises for HIF-targeted therapies, but HIF-1 

associated neurotoxicity and/or cytotoxicity have, in most cases, hindered their 

advancement to in vivo studies, with a resulting shortage of pre-clinically validated 

leads.[8]  

We have provided evidence that PCTTA hydroxamates are a class of novel, selective 

and druggable modulators of HIF-1 signalling. Their mechanism of activity 

transcends simple chelation, since replacement of the carboxylate with other 

chelating elements was not associated to activity, while a definite spatial 

relationship between the hydroxamate moiety and the triterpenoid core was 

critical for activity. By combining data from in vitro and in vivo experiments, the 

hydroxamate of betulinic acid (5b) was selected for in vivo studies, validating at 

preclinical level its HIF-targeted therapeutic potential and qualifying it for further 

development as a neuroprotective agent.  
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2.4 EXPERIMENTAL SECTION 

General Methods and Materials. 

Commercially available reagents and solvents were purchased from Aldrich or Alfa-

Aesar and were used without further purification. N,N′-Dimethylformamide (DMF) 

was dried over neutral alumina pad and stored on 4 Å activated molecular sieves. 

Dichloromethane was dried by distillation from P2O5 and stored on 4 Å activated 

molecular sieves. Pyridine was dried over neutral alumina pad and stored on 

activated 4 Å molecular sieves under nitrogen. When needed, the reactions were 

performed in flame- or oven-dried glassware under a positive pressure of dry 

nitrogen. For spectroscopic characterization, a JEOL ECP 300 MHz spectrometer 

was used for 1H and 13C spectra, and a Thermo Finningan LCQ-deca XP-plus 

equipped with an ESI source and an ion trap detector for mass spectrometry. 

Chemical shifts are reported in parts per million (ppm) using the residual solvent 

peak as reference (CHCl3 at δ 7.27). Flash column chromatography was performed 

on silica gel (Merck Kieselgel 60, 230−400 mesh ASTM). Thin layer chromatography 

(TLC) was carried out on 5 × 20 cm plates with a layer thickness of 0.25 mm (Merck 

silica gel 60 F254). When necessary, KMnO4 was used for visualization. Purity of 

tested compounds was established by elemental analysis. Elemental analysis (C, H, 

N) of the target compounds are within ±0.4% of the calculated values, confirming 

≥95% purity. Compounds 3b,[17] 4b,[17] 5b[16] and 7b,[13] 11a[38] and 11b,[38] as well 

as 15a,[39] 16a[40] and 17 [41] have previously been reported. 
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Triterpenoid hydroxamates: 

Protocol A (via chlorides): synthesis of 5b as exemplificative:  a) Acetylation: to an 

ice-cold solution of betulinic acid 5a (1 gr, 2.19 mmol; 1 mol. equiv.) in dry pyridine 

(10 mL) acetic anhydride (413 µL, 4.38 mmol, 2 mol. equiv.) and DMAP (27 mg, 0.1 

mol. equiv.) were sequentially added. The reaction was stirred at room 

temperature for 3 h quenched with methanol, diluted with 2 N H2SO4, and extracted 

with EtOAc. The organic phases were washed with brine, dried over Na2SO4, and 

evaporated under vacuum to give crude acetylbetulinic acid, used for the next step 

without further purification. b) Hydroxyamidation: to an ice-cold solution of crude 

acetylbetulinic acid (1.09 gr, 2.19 mmol, 1 mol. equiv.) in dry DCM (15 mL), oxalyl 

chloride (1.13 mL, 13.14 mmol, 6 mol. equiv.) was added dropwise, and the mixture 

was heated at 40oC for 1.5 hours. The solvent was then removed under vacuum, 

the residue dissolved in dry pyridine, and hydroxylammonium chloride (913 mg, 

13.14 mmol, 6 mol. equiv.) was added. The reaction was heated at 40oC for 3 hours, 

quenched with 2N H2SO4 and extracted with EtOAc. The combined organic phases 

were washed with brine, dried over Na2SO4 and evaporated under vacuum. The 

crude reaction product was further purified over silica gel (PE/EtOAc 7:3) to afford 

667 mg (60%) of residue. c) deprotection: to a solution of 

acetylbetulinylhydroxamate (667 mg, 1.31 mmol) in THF/MeOH 1:1 (8 mL), 4N 

NaOH (16,4 mL, 65,5 mmol; 50 mol. equiv.) was added. The mixture was heated at 

40oC overnight, quenched with 2N H2SO4 and extracted with EtOAc. The organic 

phases were washed with brine, dried over Na2SO4 and evaporated. The crude 

product was purified over silica gel (PE/EtOAc 5:5) affording 330 mg (55%) of 5b as 

an off-white powder. For physical and spectroscopic data, see ref. 16. The data for 

the new compounds are as follows:  
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(2α,3β) 2,3-Dihydroxy-N-hydroxy-olean-12-en-28-amide (6b) : off-white solid 

(45%). IR (KBr) cm-1: 2939, 2867, 1662, 1450, 1031, 883.  1H NMR (300 MHz, CDCl3): 

 5.44 (brt, 1H), 3.72-3.61 (m, 1H), 2.99 (d, J = 9.5 Hz, 1H), 2.45 (d, J = 12.2 Hz, 1H), 

1.15 (s, 3H), 1.02 (s, 3H), 0.98 (s, 3H), 0.90 (s, 3H), 0.87 (s, 3H), 0.82 (s, 3H), 0.78 (s, 

3H); 13C NMR (75 MHz, CDCl3):  176.7, 167.1, 144.9, 123.8, 78.4, 76.6, 55.0, 47.3, 

46.2, 46.1, 45.6, 41.2, 41.0,  39.0, 38.7, 37.8,  33.6, 32.6, 32.4, 32.3, 31.4, 28.5, 27.4, 

27.3, 23.2, 23.1, 22.8, 18.6, 16.3, 16.5, 16.1. MS (ESI) m/z 488 (M + H)+. Anal. Calcd 

for C30H49NO4: C, 73.88; H, 10.13; N, 2.87. Found: C, 73.99; H, 10.15; N, 2.94. 

(3)-3-Hydroxy-11-oxo-olean-12-en-N-hydroxy-28-amide (8b): pale yellow solid 

(38%). IR (KBr) cm-1: 2944, 2865, 1651, 1464, 1209, 1039, 994, 733. 1H NMR (300 

MHz, CDCl3):  = 5.67 (s, 1H), 3.20 (t, J = 6.1 Hz, 1H), 2.74 (d, J = 12.2 Hz, 2H), 2.32 

(s, 1H), 2.10-2.02 (m, 1H), 1.18 (s, 3H), 0.96 (s, 3H), 0.94 (s, 3H), 0.90 (s, 9H), 0.77 (s, 

3H); 13C NMR (75 MHz, CDCl3)  = 200.2, 174.6, 167.9, 128.0, 78.8, 62.1, 55.0, 45.2, 

44.7, 43.6, 40.9, 39.2, 37.3, 33.7, 32.8, 32.7, 32.1, 30.7, 29.7, 28.1, 27.4, 27.3, 23.7, 

23.4, 23.3, 19.0, 17.5, 16.2, 15.6, 14.2. MS (ESI) m/z 486 (M + H)+. Anal. Calcd for 

C30H47NO4: C, 74.19; H, 9.75; N, 2.88. Found: C, 74.23; H, 9.80; N, 2.93. 

2. Protocol B (via mixed phosphoric anhydride): synthesis of 7b: to a stirred 

solution of PPAA (50% in EtOAc, 146 L, 0.264 mmol, 1.2 mol. equiv.) in acetonitrile 

(3 mL) triethylamine (126 L, 0.88 mmol, 4 mol. equiv.) and glycyrrhetic acid (100 

mg, 0.22 mmol, 1 mol. equiv.) were sequentially added. After stirring 30 min at 

room temperature, hydroxylammonium chloride (31 mg, 0.44 mmol, 2 mol. equiv.) 

was added and stirring was continued overnight at room temperature. The reaction 

was then worked up by dilution with EtOAc and washing with brine. The organic 

phases were dried over Na2SO4, evaporated and the residue was purified over silica 

gel (PE/EtOAc 5:5) affording 69 mg (64%) 7b [13] as a white powder. 
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Triterpenoid oxyminohydroxamates. Synthesis of 3d as exemplificative: a) To a 

stirred solution of oleanolic acid 3a (500 mg, 1.1 mmol, 1 mol. equiv.) in 

EtOAc/acetone 1:1 (7 mL), Jones reagent was added dropwise until the reaction 

remined orange. The mixture was diluted with brine, extracted with EtOAc and the 

combined organic phases were dried over Na2SO4 and evaporated. The residue was 

purified silica gel (PE/EtOAc, 8:2), affording 474 mg (95%) of dehydrooleanolic acid 

[42]. b) Oxyminohydroxylation: to an ice-cold solution of dehydrooleanolic acid (474 

mg, 1.04 mmol, 1 mol. equiv.) in dry DCM (7 mL), oxalyl chloride (353 L, 6.24 mmol, 

6 mol. equiv.) was added dropwise and the mixture was heated at 40oC for 1.5 

hours. The solvent was then removed in vacuum, the residue dissolved in dry 

pyridine and hydroxylammonium chloride (430 mg, 6.24 mmol, 6 mol. equiv.) was 

added. The reaction was heated at 40oC for 3 hours, quenched with 2N H2SO4 and 

extracted with EtOAc. The combined organic phases were washed with brine, dried 

over Na2SO4, and evaporated under vacuum. The crude reaction product was 

further purified over silica gel (PE/EtOAc 5:5) to afford 353 mg (70%) 3d as an off-

white solid. IR (KBr) cm-1: 2944, 2859, 1701, 1674, 1632, 1463, 1389, 1364, 924. 1H 

NMR (300 MHz, CDCl3):  = 5.45 (brt, 1H), 3.13-3.08 (m, 1H), 2.46 (m, 1H), 1.98 (m, 

3H), 1.13 (s, 3H), 1.07 (s, 6H), 1.05 (s, 3H), 0.86 (s, 6H), 0.82 (s, 3H) (only readily 

peaks are reported); 13C NMR (75 MHz, CDCl3)  = 176.7, 167.5, 144.9, 123.8, 55.7, 

47.1, 46.2, 45.5, 42.0, 40.8, 40.3, 39.4, 38.4, 37.0, 33.9, 32.9, 31.9, 30.7, 29.7, 29.2, 

27.2, 25.7, 25.5, 23.7, 23.5, 23.4, 19.0, 17.3, 16.7, 14.9. MS (ESI) m/z 485 (M + H)+. 

Anal. Calcd for C30H48N2O3: C, 74.34; H, 9.98; N, 5.78. Found: C, 74.35; H, 10.01; N, 

5.81. 

3-Hydroxyimino-N-hydroxy-urs-12-en-28-amide (4d): pale yellow solid (70%). IR 

(KBr) cm-1: 2956, 2833, 1729, 1630, 1423, 1390, 1374, 982, 949. 1H NMR (300 MHz, 

CDCl3):  = 5.43 (brt, 1H), 3.07 (m, 1H), 2.12 (m, 1H), 1.24 (s, 3H), 1.15 (s, 3H), 1.08 
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(s, 3H), 1.06 (s, 3H), 1.03 (s, 3H), 0.94 (s, 3H), 0.81 (s, 3H); 13C NMR (75 MHz, CDCl3) 

 = 177.3, 167.7, 140.6, 126.5, 55.7, 52.1, 47.0, 42.5, 40.2, 39.6, 39.4, 39.0, 38.5, 

37.0, 36.7, 32.2, 30.6, 29.7, 27.7, 27.4, 24.8, 23.5, 23.4, 23.3, 21.1, 19.0, 17.3, 17.2, 

16.8, 15.1. MS (ESI) m/z 485 (M + H)+. Anal. Calcd for C30H48N2O3: C, 74.34; H, 9.98; 

N, 5.78. Found: C, 74.40; H, 10.06; N, 5.84. 

3-Hydroxyimino-N-hydroxy-lup-20(29)-en-28-amide (5d): off-white solid (65%). IR 

(KBr) cm-1: 2966, 2831, 1751, 1715, 1665, 1453, 1449, 1034, 1007, 984, 866. 1H 

NMR (300 MHz, CO(CD3)2):  = 4.72 (s, 1H), 4.59 (s, 1H), 3.04-3.00 (m, 2H), 2.32 (s, 

1H), 1.68 (s, 3H), 1.24 (s, 6H), 1.22 (s, 3H), 1.12 (s, 3H), 0.97 (s, 3H), 0.96 (s, 3H), 0.91 

(s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, CO(CD3)2)  = 176.7, 

164.1, 150.5, 109.6, 56.0, 55.5, 55.3, 50.2, 47.1, 42.5, 40.8, 40.2, 38.7, 38.2, 37.9, 

37.2, 34.0, 33.3, 30.8, 29.4, 27.4, 25.6, 22.9, 21.5, 21.2, 19.4, 19.1, 16.1, 15.8, 14.6. 

MS (ESI) m/z 485 (M + H)+. Anal. Calcd for C30H48N2O3: C, 74.34; H, 9.98; N, 5.78. 

Found: C, 74.27; H, 9.94; N, 5.71. 

Synthesis of 2-hydroxamates: Synthesis of 9 as exemplificative: to a stirred 

solution of oleanolic acid 3a (500 mg, 1.1 mmol, 1 mol. equiv.) in dry pyridine (9 

mL), p-toluenesulfonyl chloride (735 mg, 3.8 mmol, 3.8 mol. equiv.) was added. The 

solution was stirred at room temperature for 24 h under nitrogen atmosphere, 

diluted with water and then extracted with CH2Cl2. The organic phases were washed 

with saturated KHSO4 solution, dried over Na2SO4 and concentrated under reduced 

pressure. The crude was diluted in DMF (6 mL), sodium acetate (315 mg, 2.3 mmol) 

was added and the mixture was heated at 120 oC for 24 h under nitrogen 

atmosphere. The mixture was diluted with brine and extracted with DCM. The 

organic phases were dried over Na2SO4 and evaporated. The residue was purified 

over silica gel (PE/EtOAc, 9:1), affording 221 mg (42%) of 2-oleanolic acid [42], next 

diluted in dry CH2Cl2 (4 mL) and cooled at 0 oC.  Oxalyl chloride (249 L, 2.9 mmol, 
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6 mol. equiv.) was then added dropwise and the mixture was heated at 40oC for 1.5 

hours. The solvent was then removed in vacuum, the residue dissolved in dry 

pyridine, and hydroxylammonium chloride (201 mg, 2.9 mmol, 6 mol. equiv.) was 

added. The reaction was heated at 40oC for 3 hours, quenched with 2N H2SO4 and 

extracted with EtOAc. The organic phases were washed with brine, dried over 

Na2SO4 and evaporated under vacuum. The crude reaction product was purified 

over silica gel (PE/EtOAc, 7:3) affording 104 mg (48%) 9 as yellowish oil. IR (KBr) cm-

1: 2949, 2868, 1632, 1461, 1387, 1362, 910, 731. 1H NMR (300 MHz, CDCl3):  = 

5.43-5.32 (m, 3H), 2.44 (d, J = 11.3 Hz, 1H), 1.14 (s, 3H), 0,97 (s, 6H), 0,87 (s, 12H); 

13C NMR (75 MHz, CDCl3)  = 176.4, 144.5, 138.0, 124.1, 121.3, 51.9, 46.4, 46.1, 45.5, 

42.1, 41.0, 40.7, 39.5, 36.1, 34.5, 34.0, 33.0, 31.9, 31.8, 31.6, 30.7, 27.2, 25.9, 25.7, 

23.8, 23.5, 22.9, 19.6, 16.3, 15.6. MS (ESI) m/z 454 (M + H)+. Anal. Calcd for 

C30H47NO2: C, 79.42; H, 10.44; N, 3.09. Found: C, 79.37; H, 10.40; N, 3.06. 

Lupa-2,20(29)-dien-N-hydroxy-28-amide (10): yellowish powder (54%). IR (KBr) 

cm-1: 2936, 2868, 1717, 1643, 1448, 1374, 881, 731. 1H NMR (300 MHz, CDCl3):  = 

5.38-5.28 (m, 2H), 4.73 (s, 1H), 4.59 (s, 1H), 3.03 (t, J = 9 Hz, 1H), 2.37 (t, J = 12.1 Hz, 

1H), 1.63 (s, 3H), 1.21 (s, 3H), 0,93 (s, 3H), 0,89 (s, 3H), 0,82 (s, 3H), 0,81 (s, 3H); 13C 

NMR (75 MHz, CDCl3)  = 175.0, 150.5, 137.9, 121.6, 109.6, 54.3, 52.1, 50.4, 49.2, 

42.3, 40.8, 38.4, 37.9, 36.4, 34.6, 33.5, 32.8, 31.7, 30.9, 30.8, 29.7, 29.3, 25.6, 22.6, 

19.5, 16.4, 15.8, 14.6, 14.5, 14.3. MS (ESI) m/z 454 (M + H)+. Anal. Calcd for 

C30H47NO2: C, 79.42; H, 10.44; N, 3.09. Found: C, 79.48; H, 10.47; N, 3.13. 
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Triterpenoid hydroxamates from the products of Bayer-Villiger fragmentation 

(11a,11b): 

Olean-12-en-N-hydroxy-28-amide-3-oic acid ε-lactone (13): prepared from 11a [38] 

according to the hydroxyamidation protocol A: white solid (35%). 1H NMR (300 

MHz, CDCl3):  = 5.45 (brt, 1H), 2.63 (t, J = 5.4 Hz, 2H), 2.47 (brdd, J = 9.4 Hz, 1H), 

2.05 (m, 2 H), 1.52 (s, 3H), 1.46 (s, 3H), 1.29 (s, 3H), 1.16 (s, 3H), 0.90 (s, 3H), 0.88 

(s, 6H), 0.83 (s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, CDCl3)  = 

176.5, 175.4, 144.6, 123.6, 86.4, 55.2, 47.2, 46.1, 45.5, 42.2, 40.8, 40.0, 39.4, 37.4, 

33.9, 32.96, 32.91, 31.99, 31.92, 30.7, 27.1, 25.5, 25.4, 23.9, 23.6, 23.4, 22.6, 20.8, 

16.5, 16.4. MS (ESI) m/z 486 (M + H)+. Anal. Calcd for C30H47NO4: C, 74.19; H, 9.75; 

N, 2.88. Found: C, 74.06; H, 9.68; N, 2.81. 

A-seco-4,12-dien-olean-N-hydroxy-3-amide-28-methyl ester (12): prepared from 

11b [38] after KOH hydrolysis and hydroxyamidation according to Protocol A.  White 

solid (20%). 1H NMR (300 MHz, CDCl3):  = 5.29 (brt, 1H), 4.85 (s, 1H), 4.66 (s, 1H), 

3.62 (s, 3H), 2.74 (brdd, J = 9.7 Hz, 1H), 1.71 (s, 3H), 1.10 (s, 3H), 0.90 (s, 6H), 0.87 

(s, 6H), 0.74 (s, 3H); 13C NMR (75 MHz, CDCl3)  = 178.4, 171.9, 147.5, 143.7, 122.2, 

113.7, 60.54, 51.6, 50.8, 46.8, 45.8, 42.2, 41.4, 39.3, 39.1, 38.1, 33.9, 33.1, 32.4, 

31.4, 30.7, 27.7, 25.8, 24.4, 23.6, 21.1, 20.8, 19.4, 18.4, 16.9, 14.2. MS (ESI) m/z 500 

(M + H)+. Anal. Calcd for C31H49NO4: C, 74.51; H, 9.88; N, 2.80. Found: C, 74.49; H, 

9.84; N, 2.77. 

Heterocyclic hydroxamates. Synthesis of 14a as exemplificative. a) Formylation: 

to a solution of 5c (300 mg, 0.65 mmol, 1 mol. equiv.) in toluene (70 mL), NaOEt 

(221 mg, 3.25 mmol, 5 mol. equiv.) and ethyl formate (241 mg, 3.25 mmol, 5 mol. 

equiv.) were sequentially added. The reaction mixture was stirred at 50 °C 

overnight, quenched with 2N H2SO4 and extracted with EtOAc. The organic phases 

were washed with brine, dried over Na2SO4 and evaporated under vacuum to afford 
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2-formyl-3-oxobetulinic acid [43] as a colorless oil, that was used without further 

purification for the next step. b) 1,2-Diazole formation: (reaction with 

hydroxylammonium chloride as exemplificative): to a stirred solution of crude 2-

formyl-3-oxo-betulinic acid (310 mg, 0.64 mmol, 1 mol. equiv.) in ethanol/H2O 9:1 

(6 mL) hydroxylammonium chloride (400 mg, 5.76 mmol, 9 mol. equiv.) was added. 

The reaction mixture was heated at 80 oC for 5 h, diluted with H2O and extracted 

with EtOAc. The organic phases were washed with brine, dried over Na2SO4 and 

evaporated under vacuum, affording the crude product as a brown oil, used without 

further purification. c) Hydroxyamidation: the reaction was carried out according to 

Protocol A, affording compound 14a (41% from 5c) as a white powder. 

Lup-2-eno[2,3-d]-isoxazol-N-hydroxy-28-amide (14a): white powder. IR (KBr) cm-

1: 2953, 2867, 1714, 1632, 1508, 1455, 1367, 956, 887. 1H NMR (300 MHz, CD3OD): 

 = 10.37 (s, 1H, NH), 8.42 (s, 1H, OH), 8.26 (s, 1H), 4.67 (s, 1H), 4.55 (s, 1H), 3.00 (t, 

J = 9.3 Hz, 1H), 2.61 (t, J = 12.0 Hz, 1H), 1.64 (s, 3H), 1.40 (s, 3H), 1.22 (s, 3H), 1.11 

(s, 3H), 0.93 (s, 3H), 0.74 (s, 3H); 13C NMR (75 MHz, CD3OD)  = 173.5, 172.5, 151.3, 

151.0, 109.9, 109.4, 54.0, 53.3, 50.6, 49.0, 48.9, 46.7, 42.4, 38.9, 37.3, 35.6, 34.8, 

33.4, 32.6, 30.9, 29.0, 25.7, 21.7, 19.5, 18.7, 16.4, 16.2, 14.8.  MS (ESI) m/z 495 (M 

+ H)+. Anal. Calcd for C31H46N2O3: C, 75.26; H, 9.37; N, 5.66. Found: C, 74.99; H, 9.30; 

N, 5.60. 

1'H-Lup-20(29)-eno[3,2-c]-pyrazol-N-hydroxy-28-amide (14b): yellowish powder 

(overall 48% from 5a). IR (KBr) cm-1: 2986, 2798, 1700, 1655, 1508, 1390, 1287, 

1035, 851, 739. 1H NMR (300 MHz, (CD3)2CO):  = 10.35 (s, 1H),  7.15 (s, 1H), 4.68 

(s, 1H), 4.56 (s, 1H), 3.03 (t, J = 9.1 Hz, 1H), 2.61 (m, 1H), 1.64 (s, 3H), 1.20 (s, 3H), 

1.09 (s, 3H), 0.94 (s, 3H), 0.93 (s, 3H), 0.72 (s, 3H); 13C NMR (75 MHz, (CD3)2CO)  = 

172.4, 151.0, 149.1, 132.8, 111.9, 109.0, 59.7, 50.0, 53.7, 50.5, 49.2, 46.8, 42.2, 

40.7, 38.6, 37.9, 37.7, 36.6, 33.5, 33.4, 32.3, 30.8, 30.6, 25.7, 23.3, 21.4, 19.1, 18.7, 
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15.6, 14.2, 13.7. MS (ESI) m/z 494 (M + H)+. Anal. Calcd for C31H47N3O2: C, 75.41; H, 

9.60; N, 8.51. Found: C, 75.35; H, 9.55; N, 8.48. 

2-(28-oleanoylamido)-3-(2-hydroxyphenyl) acrylic acid (15b): in a sealed tube, a 

solution of oleanoyl-glycineamide 15a [39] (200 mg, 0.39 mmol, 1 mol. equiv.) in 

acetic anhydride (92 L, 0.97 mmol, 2.5 mol. equiv.), was treated with salicylic 

aldehyde (72 mg, 0.58 mmol, 1.5 mol. equiv.) and NaOAc (24 mg, 0.29 mmol, 0.75 

mol. equiv.). The reaction was heated at 140 oC for 1.5 h, then diluted with MeOH, 

EtOAc and brine. The organic phases were dried over Na2SO4 and evaporated under 

vacuum. To crude azalactone (154 mg, 0.26 mmol, 1 mol. equiv.) was dissolved in 

THF/MeOH 1:1 (4 mL) and 4N NaOH (5 mL, 20 mmol, 51 mol. equiv.). The mixture 

was heated at 40oC overnight, quenched with 2N H2SO4 and extracted with EtOAc. 

The organic phases were washed with brine, dried over Na2SO4, and evaporated 

under vacuum. The crude product was purified over silica gel (PE/EtOAc 9:1) 

affording 82 mg (35% from 15a) 15b as a yellowish solid. 1H NMR (300 MHz, CDCl3): 

 = 8.76 (s, 1H), 8.70 (s, 1H), 7.35 (m, 3H), 5.63 (brt, 1H), 3.18 (dd, J = 7.9, 1.5 Hz, 

1H), 2.73 (dd, J = 11.4, 0.9 Hz, 1H), 1.18 (s, 3H), 0.95 (s, 3H), 0.93 (s, 6H), 0.85 (s, 

3H), 0.73 (s, 3H), 0.63 (s, 3H); 13C NMR (75 MHz, CDCl3)  = 178.3, 158.9, 149.9, 

142.8, 129.4, 127.8, 125.1, 124.8, 124.2, 122.9, 120.1, 116.3, 79.0, 55.1, 47.9, 47.6, 

46.5, 42.3, 41.9, 39.4, 38.8, 38.6, 36.9, 34.2, 33.0, 32.6, 32.4, 30.8, 28.1, 27.5, 27.2, 

25.9, 24.2, 23.6, 18.3, 16.4, 15.6, 15.4. MS (ESI) m/z 618 (M + H)+. Anal. Calcd for 

C39H55NO5: C, 75.81; H, 8.97; N, 2.27. Found: C, 75.85; H, 9.01; N, 2.32. 

N-Imidazolyl semiaminals 18 a and 18b: to a stirred and cooled (-78 °C) solution of 

methyl imidazole (75 mg, 0.91 mmol, 2 mol.equiv.) in dry THF n-BuLi (0.8 M, 1.13 

mL, 0.908 mmol, 2 mol.equiv.) was added dropwise. After 15 minutes, a solution of 

17 (200 mg, 0.454 mmol, 1 mol. equiv.) in dry THF (3 mL) was slowly added and the 

reaction was stirred overnight at room temperature. The reaction was quenched 
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with H2O, washed with EtOAc and the combined organic phases were dried over 

Na2SO4 and evaporated under vacuum. The crude product was purified over silica 

gel (PE/EtOAc 9:1 as eluent), affording 18a (35 mg, 15%) and 18b (58= mg, 25%).  

18a: IR (KBr) cm-1: 3112, 2945, 2872, 1463, 1365, 1274, 1000, 936, 734. 1H NMR 

(300 MHz, CDCl3):  = 6.94 (s, 1H), 6.78 (s, 1H), 5.36 (t, J = 3.3 Hz, 1H), 4.85 (s, 1H), 

3.71 (s, 3H), 3.20 (m, 1H), 2.73 (dd, J1 = 3.9 Hz, J = 9.1 Hz, 1H), 1.19 (s, 3H), 1.03 (s, 

3H), 0.98 (s, 3H), 0.93 (s, 6H), 0.88 (s, 3H), 0.77 (s, 3H). 13C NMR (75 MHz, CDCl3) = 

147.3, 144.2, 126.8, 123.1, 121.6, 79.0, 68.8, 55.2, 47.6, 46.9, 41.7, 41.6, 41.0, 40.0, 

38.8, 38.6, 37.0, 34.2, 33.9, 33.2, 32.5, 30.8, 28.1, 27.2, 26.3, 25.6, 25.4, 23.7, 23.4, 

22.7, 18.3, 17.4, 15.6, 15.6. MS (ESI) m/z 523 (M + H)+. Anal. Calcd for C34H54N2O2: 

C, 78.11; H, 10.41; N, 5.36. Found: C, 78.15; H, 10.45; N, 5.40. 

18b: IR (KBr) cm-1: 3100, 2967, 2855, 1459, 1405, 1137, 1079, 1035, 920, 765. 1H 

NMR (300 MHz, CDCl3):  = 7.03 (s, 1H), 6.79 (s, 1H), 5.18 (t, J = 3.3 Hz, 1H), 4.71 (s, 

1H), 3.66 (s, 3H), 3.21 (m, 1H), 2.12 (dt, J= 14.4 and 5.1 Hz, 1H), 1.20 (s, 3H), 1.01 (s, 

3H), 0.99 (s, 3H), 0.92 (s, 3H), 0.80 (s, 3H), 0.79 (s, 3H), 0.50 (s, 3H). 13C NMR (75 

MHz, CDCl3)  = 149.2, 145.5, 127.0, 124.0, 121.0, 78.9, 68.4, 55.1, 47.7, 47.5, 42.0, 

41.7, 39.9, 38.8, 38.5, 37.0, 34.2, 34.0, 32.9, 32.3, 30.7, 28.1, 27.2, 26.6, 25.7, 25.1, 

23.7, 23.4, 23.0, 18.4, 17.1, 15.6, 15.4.  MS (ESI) m/z 523 (M + H)+. Anal. Calcd for 

C34H54N2O2: C, 78.11; H, 10.41; N, 5.36. Found: C, 78.14; H, 10.48; N, 5.43. 

Synthesis of biotinylated derivative of 5b 

6-((tert-butoxycarbonyl)amino)hexanoic acid was prepared according to 

literature. [44] 

Synthesis of compound 24a (modified protocol of Yamaguchi esterification): to a 

stirred solution of 6-((tert-butoxycarbonyl)amino)hexanoic acid (1,2 eq) in dry THF 

(20 mL/gr), benzoyl chloride (1,2 eq), triethylamine (3 eq) and DMAP (cat) were 
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sequentially added. The reaction mixture was stirred for 10 minutes at room 

temperature and betulinic acid (1 eq) was finally added. After 24 h the reaction was 

quenched with H2SO4 2N. The solution was extracted twice with EtOAc. The 

combined organic phases were washed with NaHCO3 sat. sol. (X2), dried over 

Na2SO4 and evaporated under reduced pressure. The crude was purified over silica 

gel, using Pe/EtOAc 9:1 as eluent. 1H NMR (300 MHz, CDCl3) δ 4.73 (s, 1H), 4.60 (s, 

1H), 4.49 – 4.43 (m, 1H), 3.10- 3.80 (m, 2H), 2.28 (dd, J = 14.3, 7.7 Hz, 2H), 1.68 (s, 

3H), 1.43 (s, 3H), 0.96 (s, 3H), 0.92 (s, 3H), 0.82 (s, 3H) (only readily peaks are 

reported).  

Deprotection of 24a (24b): to a stirred solution of 24a (1 eq) in DCM dry (10 mL/g) 

at 0°C, boron trifluoride diethyl etherate (2 eq) was added dropwise. The reaction 

was warmed to room temperature and allowed to stir for 5 h. The reaction was 

quenched with a saturated solution of NaHCO3 and a precipitated was formed. The 

organic layer was removed by extraction and the aqueous phase was filtered to 

obtain 24b as white solid (57%). The product was used for the next step without 

further purification. 

Synthesis of 24c: to a stirred solution of biotin in DCM (10 mL/g), EDC (2,5 eq) was 

added follow by HOBt (2,5 eq). The reaction was allowed to stir for 4 h. Then a 

solution of 24b in DCM and TEA (3 eq) was added. After 24 h the reaction was 

extracted with DCM and brine (x2). The organic phase was dried over Na2SO4, 

evaporated under vacuum and then purified by GCC using EtOAc/MeOH 9:1 as 

eluent (21%). 1H NMR (301 MHz, CDCl3) δ 8.06 (d, J = 8.7 Hz, 1H), 7.44 (ddd, J = 22.4, 

15.2, 8.0 Hz, 3H), 6.22 (brd s, 1H), 4.71 (s, 1H), 4.62 (s, 1H), 4.51 – 4.40 (m, 3H), 4.31 

(brd s, 1H), 3.72 (dd, J = 6.6, 5.6 Hz, 3H), 3.25-3.10 (m, 4H), 2.30- 2.10 (m, 4H), 1.69 

(s, 3H), 1.41 (s, 3H), 1.03 (s, 3H), 0.97 (s, 3H), 0.82 (s, 3H) (only readily peaks are 

reported). 
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Synthesis of product 19: to a solution of compound 24c in pyridine (10 mL/g), 

NH2OH*HCl was added. The reaction was heated at 80°C overnight and then 

quenched with a solution of H2SO4 2N. The organic phase was washed with H2SO4 

2N (x3), dried over Na2SO4 and evaporated to obtain a crude product that was 

purified over silica gel, with EtOAc/MeOH 9:1 as eluent to afford a yellow solid 

(29%). 1H NMR (300 MHz, (CD3)2CO) δ 5.97 (s, 1H), 4.72 (s, 1H), 4.58 (s, 1H), 4.54 – 

4.40 (m, 2H), 4.35 (s, 1H), 3.28-3.15 (m, 4H), 2.28 (d, J = 7.6 Hz, 3H), 2.14 (d, J = 7.7 

Hz, 3H), 2.04 (s, 3H), 1.95 (s, 3H), 1.28 (s, 3H), 1.02 (s, 3H), 0.95 (s, 3H), 0.88 (s, 3H), 

0.84 (s, 3H) ) (only readily peaks are reported). 

Esterification of 5b with HOBt (25a): to a solution of betulinic acid in dry DCM, EDC 

(2 eq) was added followed by HOBt (2 eq). The reaction was allowed to stir at room 

temperature overnight. The solution was washed twice with brine and the organic 

phase was dried over Na2SO4 and evaporated under vacuum to obtain compound 

25a, that was used for the next reaction without further purification. 1H NMR (300 

MHz, CDCl3): δ 8.07 (d, J = 8.4 Hz, 1H), 7.63 – 7.34 (m, 3H), 4.68 (d, J = 27.5 Hz, 2H), 

3.18 (dd, J = 10.9, 5.3 Hz, 1H), 2.94 (td, J = 11.3, 5.4 Hz, 1H), 2.74 – 2.60 (m, 1H), 

2.40 (dd, J = 12.9, 8.0 Hz, 1H), 2.29 – 2.01 (m, 2H), 1.70 (s, 3H), 1.24 (s, 3H), 1.04 (s, 

3H), 0.97 (s, 3H), 0.80 (s, 3H), 0.75 (s, 3H) (only readily peaks are reported).  

Synthesis of 5-(allyloxy)-3,3-dimethyl-5-oxopentanoic acid: to a suspension of 3,3-

dimethylglutaric anhydride (3g, 26,3 mmol) in allylic alcohol (15 mL), DMAP 

(catalytic) was added and the reaction was allowed to stir at room temperature 

overnight. The reaction was extracted with EtOAc and brine (x3). The organic phase 

was dried over Na2SO4 and evaporated under reduced pressure to afford a yellow 

oil (61%). 1H NMR (300 MHz, CDCl3):  = 1.13- 1.18 (s, 6H), 2.48 (s, 2H), 2.49 (s, 2H), 

4.50 (d, J= 5.8 Hz, 2H), 5.25 (dd, J= 10.4, 1.3 Hz, 1H), 5.32 (dd, J= 17.3, 1.3 Hz, 1H), 

5.9 (m, 1H). 
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Synthesis of compound 25b (modified protocol of Yamaguchi esterification): to a 

solution of 5-(allyloxy)-3,3-dimethyl-5-oxopentanoic acid (1,5 eq) in dry THF (20 

mL/gr), benzoyl chloride (1,5 eq), triethylamine (2 eq) and DMAP (cat) were 

sequentially added. The reaction mixture was stirred for 10 minutes and compound 

25a (1 eq) was finally added. After 24 h the reaction was quenched with H2SO4 2N. 

The solution was extracted twice with EtOAc. The combined organic phases were 

washed with NaHCO3 sat. sol. (X2), dried over Na2SO4 and evaporated under 

reduced pressure. The product was used for the next synthetic step without further 

purification. 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 8.4 Hz, 1H), 7.59 – 7.31 (m, 3H), 

5.90 (ddd, J = 16.1, 10.9, 5.7 Hz, 1H), 5.25 (ddd, J = 13.8, 11.6, 1.4 Hz, 2H), 4.75 – 

4.41 (m, 2H), 2.93 (td, J = 10.9, 5.0 Hz, 1H), 2.67 – 2.53 (m, 1H), 2.43 – 2.30 (m, 5H), 

1.69 (s, 3H), 1.24 (s, 3H), 1.03 (s, 3H), 0.97 (s, 3H), 0.82 (s, 3H) (only readily peaks 

are reported).  

Procedure for the deprotection of compound 25b (25c): to a solution of compound 

25b in THF, Pd(OAc)2 (0,05 eq), morpholine (2 eq) and PPh3 (1,5 eq) were added. 

After 24h at 40°C, the reaction was quenched with H2SO4 2N and extracted with 

EtOAc. The organic phase was dried using Na2SO4 and evaporated under reduced 

pressure. The product was purified over silica gel (Pe/ EtOAc 7:3) to afford 25c as 

yellow solid (60%). 1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 8.3 Hz, 1H), 7.72 – 7.32 

(m, 3H), 4.67 (d, J = 27.5 Hz, 2H), 4.54 – 4.41 (m, 1H), 2.93 (dd, J = 11.1, 6.3 Hz, 1H), 

2.62 (d, J = 9.4 Hz, 1H), 2.39 (dd, J = 15.3, 7.6 Hz, 5H), 1.69 (s, 3H), 1.24 (s, 3H), 1.03 

(s, 3H), 0.97 (s, 3H), 0.82 (s, 3H) (only readily peaks are reported). 

Compound 25d: to a solution of compound 25c in pyridine, NH2OH*HCl (6 eq) was 

added and stirred overnight at 80°C. The reaction was quenched with 2N H2SO4 and 

extracted with EtOAc. The combined organic phases were washed with brine, dried 

over Na2SO4, and evaporated under vacuum. The crude reaction product was 
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further purified over silica gel (Pe/ EtOAc 6:4) to afford a yellow solid (50%). 1H NMR 

(300 MHz, CDCl3) δ 4.67 (d, J = 37.1 Hz, 2H), 4.48 (dd, J = 10.3, 5.2 Hz, 1H), 3.00 (dd, 

J = 12.9, 7.4 Hz, 1H), 2.42 (dd, J = 15.3, 7.6 Hz, 5H), 2.06 – 1.91 (m, 4H), 1.68 (s, 3H), 

0.96 (s, 3H), 0.91 (s, 3H), 0.84 (s, 3H), 0.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 183.1, 

179.2, 172.8, 150.4, 109.8, 81.2, 56.5, 55.4, 50.4, 49.3, 47.0, 42.4, 40.7, 38.46, 

38.40, 37.9, 37.1, 34.2, 33.7, 33.2, 32.2, 30.6, 29.7, 28.1, 25.4, 23.8, 20.9, 20.1, 19.4, 

18.2, 16.6, 16.2, 16.1, 14.7. 
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Chapter 3 

 

STRIGOTERPENOIDS,  
A CLASS OF CROSS-KINGDOM STRESS 

RESPONSE MODULATORS 
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3.1 INTRODUCTION 

Oats, peas, beans and barley grow, 

Oats, peas, beans and barley grow, 

Can you, or I, or anyone know 

How oats, peas, beans and barley grow? 

- Old English Nursery Rhyme 

 

Plant hormones are a structurally unrelated group of secondary metabolites able 

to influence at low concentration plant physiological processes such as growth, 

differentiation, development and response to abiotic and biotic stress. Among 

them, plant growth regulators such as auxin, gibberellin, cytokinin, abscisic acid, 

ethylene, together with defence hormones including salicylic acid, jasmonic acid 

and methyl malonate, have received attention regarding the mechanism governing 

the key processes of plant development and physiology.[1] 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Frits Went and Kenneth 

Thimann, botanist pioneers in plant 

physiology known for describing how 

hormones control plants. 

 

Kenneth Thimann, 1904-1997 Frits Went, 1903-1990 
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Strigolactones (SLs) are a class of natural and synthetic compounds that in the past 

decade have been exciting the scientific 

community not only for their intriguing 

biological properties but also for their 

potential applications in agriculture.[2] 

They are C15 apocarotenoid dilactones 

involved in shoot and root architecture and 

in plant responses to environmental 

stress, especially water and nutrient 

deprivation.  

Strigolactones were isolated from root exudates as stimulant of the germination of 

seeds of the parasitic plant Striga, the “witchweed”. 

Witchweeds were so-named by farmers in Africa because they appeared without 

warning from nowhere and attacked their crops. The Latin name for these 

witchweeds derives from Striga, a mythical witch apparently with origins in ancient 

Rome but known in several parts of Europe. The witch Striga was thought to be 

filled with hatred against others, especially children, feeding on their life essence, 

or consuming them without remorse.[3]  

The first member of this family was Strigol, isolated in 1966. To date, at least 25 

naturally occurring SLs have been characterized from root exudates and different 

synthetic analogues have been synthesized.[4] 

 

The basic framework of natural SLs is a tricyclic lactone skeleton (ABC ring), linked 

to a butenolide D ring by an enol ether bridge. According to the stereochemistry of 

BCD-ring system they can be classified in two groups: the first one with the 

configuration of (+)-Strigol and the second one with the configuration of (-)-

Orobanchol (Figure 3).  

Figure 2: plants of the witchweed Striga 

hermonthica parasitizing maize plant. 



84 

 

The biogenetic pathway of SLs starts in plastids with the conversion of all-trans-β-

carotene into carlactone by the action of an isomerase (D27) and two carotenoids 

cleavage dioxygenases (CCD7 and CCD8). Carlactone is then transferred into the 

cytoplasm and oxidized to carlalactonic acid that is finally converted into 5-

deoxystrigol or orobanchol, the key precursors of natural occurring SLs (Figure 3). 

[5] 

 

 

Figure 3: SLs biosynthesis.[6] 
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There is convincing evidence that the reactive CD ring system is responsible for the 

plant hormone activity of SLs, that is mediated by covalent binding to a reactive 

serine residue of the catalytic triad (serine-histidine-aspartate) in their 

macromolecular targets D14 and D14-like/KAI2. It is still debated if the hydrolysis 

of the butenolide moiety by the catalytic triad and mediated by water, is needed 

for the signalling (pathway a, Figure 4). Indeed, the potentially interaction between 

the C=O of the lactone and the serine oxygen atom could be sufficient to mediate 

a binding of SL to the receptor and an allosteric effect leading to the signalling 

(pathway b, Figure 4).[5] 

 

 

Figure 4: putative SL signalling pathways.[5] 

 

An alternative pathway would require the addition of water mediated by the serine 

or of a nucleophilic group present at the receptor site, that reacts in a Michael 

fashion with enone moiety in the CD-part, followed by a retro-Michael with a 

concomitant elimination of the D-ring unit (Figure 5).[7] 
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Figure 5: pathway addition-elimination.[7] 

 

 

It is important to underline the relationship between the plant and the organisms 

in contact with it through strigolactones, and the actions of these molecules on the 

architecture of the plant itself: 

 

 

 

Figure 6: roles of strigolactones in the rhizosphere (a) and in plant development (b).[5] 

 

• They are potent germination stimulants of parasitic weed seeds, that 

anchors itself on the host plant roots through haustorial penetration to 
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extract nutrients required for its survival and development, leading to plant 

death and economic losses.[5] 

• They are produced by plants to stimulate the symbiosis with arbuscular 

mycorrhizal fungi (AM fungi), that undergo symbiotic association with 

plants’ roots, helping the plant by improving the uptake of inorganic 

phosphate and minerals, and hence can sustain plant growth.[3],[2] 

• The number of nodules formed on the roots and the shape of roots itself of 

some vegetables are influenced by SLs, leading to a better nitrogen 

fixation.[5] 

• SLs act like signalling molecules not only in the rhizosphere but also in the 

aerial part of the plant and could mediate plant architecture changes (such 

as repression of lateral bud outgrowth).[5] 

• They induct leaf senescence, allowing the relocation of nutrients like 

phosphorous, nitrogen and metals from photosynthetically less active parts 

of the plant to developing tissues, flowers, seeds and leaves.[5] 

• SLs affect root architecture and root development depending on nutrients 

availability: under normal phosphate conditions, stimulate the growth of 

the primary root and of root hairs but they inhibit lateral roots 

development. In contrast, under low phosphate levels, these 

phytohormones increase the development of lateral roots to favour the 

adaptation of the plant architecture to abiotic stress conditions (drought, 

low soil nutrient content conditions). [5] 

 

Natural SLs can be obtained in minute amounts from plant root exudates or by long 

multistep chemical syntheses. Simplified synthetic SL analogues and mimics were 

developed to investigate the structure-activity relationship in plants[8] and to 

overcome their intrinsic instability in soil due the hydrolysis of the enolether bridge,  
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with consequent inactivation.[7] Among these, the most important simplified 

analogue is GR24, that retains the germination activity of the parent compounds.  

 

 
 

Figure 7: some examples of SL analogues and SL mimics. 

 

 

SLs mimics are a second group of SLs that don’t have the typical structural motif of 

natural SLs, but they are characterized by a simplified structure in which ABC system 

is replaced by an aryloxy-, arylthia- or aroyloxy-substituent linked to butenolide ring 

via an ether bridge.[8] 

Therefore, an alternative mechanism was proposed for the mimic involving a 

Michael addition, followed by a proton shift and the subsequent elimination of the 

aryloxy group as in case of 4-bromodebranone (Figure 8). 
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Figure 8: proposed mechanism for SL mimics mode of action.[7] 
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3.2 RATIONALE OF THE PROJECT 

Among plant hormones (Figure 9), plant growth regulators such as auxin, 

gibberellin (GA), cytokinin (CTK), abscisic acid (ABA), indole 3-acetic acid (IAA) and 

ethylene, together with defence hormones like salicylic acid (SA), jasmonic acid (JA) 

and methyl jasmonate (MJ), have received attention for their interesting biological 

profile both in plants and mammalians. [1] 

 

 

Figure 9: major classes of phytohormones. 

 

In a recent study, D-ring was attached to gibberellin and kaurenoic acid as scaffold 

creating hybrid compounds which are as active as GR24 as seed germination 

stimulant of parasitic weeds. [9] 

Moreover, plant hormones were used as a scaffold for drug discovery, as shown by 

aspirin and, more recently, by the cyclin-dependent kinase inhibitors olomoucine 

and roscovitine, whose structure was inspired by cytokinins, a class of N6-

substituted adenine derivatives.[10] 
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Synthetic and natural SLs have been extensively investigated as germination 

stimulants of parasitic weed seeds as well as biopesticides for crop protection, but 

only limited knowledge exists on their involvement in animal cell functions and their 

potential cross-kingdom activity, despite promising results in the realm of 

anticancer drug discovery.[11][12][13] 

Within the possible mammalian targets of SLs, Nrf2 (nuclear factor (erythroid-

derived 2)-like 2) seemed of particular relevance because of its sensitivity to 

nucleophilic trapping and its role in the regulation of many cytoprotective enzymes 

involved in the adaptive oxidative stress response.[14]  

 

 

Figure 10: Nrf2 pathway. 

 

Nrf2 is a transcription factor that under normal conditions is kept in the cytoplasm 

and degraded through ubiquitination.  

However, under oxidative stress conditions, it travels into the nucleus where it 

binds to DNA for the transcription of cytoprotective proteins involved in adaptive 

oxidative stress response.[14] 
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Nrf2 can be activated by electrophilic and non-electrophilic small molecules and it 

is the target of novel drugs exemplified by dimethyl fumarate and bardoxolone.  

 

 

 

Bardoxolone is an antioxidant inflammation modulator that also inhibits the 

activation of the proinflammatory transcription factor NF-kB.[15] 

 

 

Figure 11: NF-kB pathway.[16] 

 

NF-κB is another transcription factor present in the cytoplasm as a heterotrimer 

consisting of p50, p65 and an inhibitory subunit IκBα. NF-κB is activated by free 

radicals, inflammatory stimuli, cytokines, TNF-α, carcinogens, tumour promoters, 
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endotoxins, γ-radiation, ultraviolet light, and x-rays. On activation, the IκBα protein, 

an inhibitor of NF-κB, undergoes phosphorylation (by the kinase IKK), ubiquitination 

and degradation. p50 and p65 are then released to be translocated to the nucleus, 

binding to specific DNA sequences present in the promoters of various genes and 

initiating the transcription of more than 400 genes.[17] 

 

In our essay, (+)-strigol (1) turned out to be a potent activator of Nrf2 pathway (EC50 

= 1.2 ± 0.9 µM) providing a rationale for further studies in the area. 

Strigol and SLs in general have a very limited availability, and we therefore 

attempted to identify a surrogate of apocarotenoid A-C ring system of the natural 

hormone within more easily available isoprenoids and, to this purpose, analogues 

where ring D is implanted in various isoprenoids scaffolds were designed (Figure12). 

 

  

 

Figure 12: general synthesis of strigoterpenes (synthesis of menthol derivatives as example). 
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Lastly, to evaluate a possible synergistic effect, we have proceeded with the 

synthesis of new chimera derivatives where butenolide ring was condensed with 

easily available plant hormones such as indoleacetic acid and jasmonic acid. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Chemistry 

Two series of analogues were prepared, differing for the way ring D and the 

isoprenoid core are linked (oxymethine- or oxygen tether) (Scheme 1 and Scheme 

2).  

The first group of derivatives with an oxymethine tethered were built by Claisen 

formylation of an isoprenoid ketone and then coupling with the bromofuranone 2 

obtained starting from diethyl-2-methyl malonate following a general procedure 

reported in literature[18] (Scheme 1). 

 

Scheme 1: synthesis of homoterpeno-strigoids. (a) Ethyl formate, NaOEt, toluene 40°C; (b) NaH 60%, THF dry. 

 

 This synthetic approach has been applied to various isoprenoids obtaining in all 

cases an almost equimolecular and inseparable mixture of isomers at the furanone 

C-5 carbon and the diastereomeric mixture was assayed as such.   The reaction was, 

however, stereoselective regarding the configuration of the oxymethine linker, with 

the predictable exclusive formation of the E-isomer, as evident from the downfield 

shift of the oxymethine ( ca 7.40), diagnostic of a syn-relationship with the 

carbonyl. Thus, the nucleophilic displacement reaction occurred with formal 

inversion of configuration of the enol double bond, that was in the intramolecularly 

hydrogen-bonded Z-configuration in the starting enol (Table 1). 
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The second series of terpenostrigoids was obtained by condensing the butenolide 

lactol with a series of isoprenoid alcohols according to Feringa protocol[19] (heating 

at 120° C in the absence of solvent) (Scheme 2). Also, in this case, the reaction gave 

a mixture of diastereomeric furanones (16a-21a) that were assayed as such (Table 

1). 

 

Scheme 2: synthesis of  terpenostrigoids. 

 

Table 1: activity of homoterpeno-strigoids and terpenostrigoids on Nrf2 and TNF-induced NF-B activation. 

Strigol (1) EC50: aNRF2 (EC50) 1.2  0.9; b NF-κB (IC50) >50 

 Compound 
Yield 
(%) 

NRF2 
(EC50)a 

NF-κB 
(IC50)b 

3c 

 

70 >50 >50 

4c 

 

51 >50 >50 

5c 

 

65 >50 >50 
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6c 

 

73 >50 >50 

7c 

 

44 >50 >50 

8c 

 

28 >50 >50 

9c 

 

56 >50 >50 

10c 

 

68 17.8  1.7 >50 

11c 

 

64 1.6  0.3 >50 
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12c 

 

66 5  0.2 >50 

13c 

 

37 1.9  0.6 >50 

14c 

 

48 1.2  0.03 7.9  1.1 

15c 

 

26 2.5  0.2 N.D. 

16a 

 

20 29.5  6.4 >50 

17a 

 

31 16.2  2.3 >50 

18a 

 

24 22.8  3.4 >50 

19a 

 

28 26.3  4 >50 

20a 

 

44 16.3  2.7 >50 
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21a 

 

14 15.5  1.9 >50 

 

To conclude our proof of principle library we synthesized six chimera compounds 

deriving from the condensation of known bioactive phytohormones such as 

indoleacetic acid and jasmonic acid with bromofuranone 2 (Scheme 3 and Scheme 

4). Compounds 23 and 27 were firstly transformed into corresponding α-

hydroxymethylene intermediates 24a, 25 and 29a, that were finally coupled with 2 

to give the desired 24b, 25a and 29b, while in parallel, 23 and 27 were directly 

esterified with 22 under modified Yamaguchi conditions yielding compounds 26a 

and 30.  

By using the same reaction conditions, we finally synthesized compound 28, an 

hybrid between the two phytohormones. 
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Scheme 3: synthesis of chimeric compounds between methyl jasmonate (23) and D ring. (a) NaBH4, MeOH; (b) 

NaH 60%, methyl formate, THF dry; (c) 2, NaH 60%, THF dry 0°C to RT; (d) LiOH, THF/H2O; (e ) 22, Benzoyl 

chloride, TEA, DMAP, THF dry 
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Scheme 4: synthesis of chimeric compounds between indolacetic acid (27) and D ring. (a) 24, Benzoyl chloride, 

TEA, DMAP, THF dry; (b) K2CO3, DMS, DMF; (c) NaH 60%, methyl formate, THF dry; (d) 2, NaH 60%, THF dry 0°C 

to RT; (e) 22, Benzoyl chloride, TEA, DMAP, THF dry. 

 

Table 2: activity of chimeric derivatives on Nrf2 and TNF-induced NF-B activation. 

Strigol (1) EC50: aNRF2 (EC50) 1.2  0.9; b NF-κB (IC50) >50 

Compound Yield (%) NRF2 (EC50) NF-κB (IC50) 

24b 48 >50 >50 

25a 51 1,2 39,81 

26a 25 5,62 >50 

28 53 >50 >50 

29b 32 7.2  1.7 >50 

30 31 7,76 >50 
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3.3.2 Biological Evaluation 

The strigoids obtained from tetracyclic triterpene ketones (3c-9c) were totally 

devoid of activity, suggesting that the isoprenoid scaffold was too large to access 

the site hosting the reactive thiol group of Nrf2. In accordance with this as-

sumption, bicyclic and monocyclic isoprenoid ketones afforded active strigoids, 

some of which showed potency similar to strigol, with EC50 in the one-digit µM 

range.  

Within p-menthane derivatives, the cross-conjugated dienones 11c and 12c, 

obtained from, respectively, carvone and pulegone, were significantly more potent 

than the enone 10c, derived from menthone (EC50 = 1.6 ±0.3 µM and 5 ±0.2 µM vs 

17.8 ±1,7 µM, respectively), suggesting that electronic factors are important for 

activity. Also, 13c derived from α-thujone was significantly active (EC50 = 1.9 ± 0.6 

µM) and one-digit mM activity was also retained in the bicyclic strigoids 14c (EC50 

=1.2 ± 0.03 µM and 15c (EC50 = 2.5 ± 0.2 µM) derived, respectively, from the 

sesquiterpene coumarin ether samarcandone and the triterpenoid mirrhanone. 

Overall, the oxygen-tethered terpenostrigoids were one order of magnitude less 

potent than the oxymethine-linked homoterpeno-strigoids.  

Lastly, chimeric compounds were active with a similar potency of strigol, and in 

particular compound 25a was able to inhibit both Nrf2 and NF-kB.  

Compound 14c was chosen as lead for further studies for its interesting dual profile 

of activity. We have first clarified the Nrf2 activation mechanism, that can be 

electrophilic (direct thiol trapping) or oxidative (oxidation of the cysteine sulfur 

atom) and mediated by reactive oxygen species (ROS). To this purpose, we have 

investigated the relationship between the induction of Nrf2 activity and the 

increase of cellular ROS.   
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Figure 13: 14c activates Nrf2 without inducing ROS. (A) ROS production in HaCaT cells. Images were obtained 
after 3 h of treatment. (B) Nrf2 transcription activity was analyzed in HaCaT-ARE-Luc. Cells were treated with 

14c in absence or presence of NAC (15mM) at the doses indicated during 6 h.  

 

Figure 13A shows that, in contrast to tert-butyl hydroperoxide (TBHP), 14c was 

unable to affect the intracellular levels of ROS. Interestingly, pre-treatment with N-

acetyl cysteine (NAC) inhibited the activity of 14c on Nrf2 activation (Fig. 13B).  NAC 

is a scavenger of oxygen free radicals and a precursor of L-cysteine. Since 14c was 

not able to induce ROS, NAC might react with its coumarin moiety, that has Michael-

acceptor properties, to generate an inactive adduct.[20] 

 Next, we have investigated the effect of 14c on the canonical pathway of NF-κB 

activation by analyzing the steady-state levels of phosphorylated IκBα and p65 (a 

subunit of the more common form of NF-κB heterodimers). Both IκBα and p65 

proteins are phosphorylated by the IκB kinase β (IKKβ), which is activated by TNFα 

A

B

TBHP (400µM)Control 6b (10µM)
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through the so-called canonical pathway. The drimane strigoid 14c clearly inhibits 

the phosphorylation of both IκBα and p65 induced by TNFα in NIH-3T3-KBF-Luc 

cells. Phosphorylation of IκBα is required for its degradation and we found that 14c 

could also prevent TNFα-induced IκBα degradation (Figure 14A).  

 

 

Figure 14: effects of 13c on NF-κB activation. (A) Levels of NF-B proteins expression and phosphorylation by 

immunoblot. (B) IKKβ-induced NF-B activation is inhibited by 14c. 
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Furthermore, 14c could also inhibit specifically the NF-kB activation induced by 

overexpression of IKKβ (Figure 2B). Taken together, these observations suggest that 

14c could directly interact with the Cys-179 of this kinase, inhibiting its activity.  

 

3.3.3 Conclusions 

We have identified a sesquiterpene-coumarin strigoid (14c) that not only replicated 

the activity of natural strigol (1) on the activation of Nrf2, but also targeted the      

NF-kB pro-inflammatory pathway. Within terpeno-strigoids, the activation of Nrf2 

was sensitive to the size of the isoprenoid moiety, tolerating mono- and bicyclic sys-

tems but not more complex polycyclic constructs, while the inhibition of NF-kB was 

specific of 14c.  

The cross-talk between inflammation and the oxidative response plays an 

important role in cancer, and compounds capable to modulate both pathways are 

interesting leads to prevent and treat malignancies, qualifying 14c for further 

studies.[21]   

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

3.4 EXPERIMENTAL SECTION 

General Methods and Materials. 

Commercially available reagents and solvents were purchased from Aldrich or Alfa-

Aesar and were used without further purification. N,N′-Dimethylformamide (DMF) 

was dried over a neutral alumina pad and stored on 4 Å activated molecular sieves. 

Dichloromethane was dried by distillation from P2O5 and stored on 4 Å activated 

molecular sieves. Pyridine was dried over neutral alumina pad and stored on 

activated 4 Å molecular sieves under nitrogen. When needed, the reactions were 

performed in flame- or oven-dried glassware under a positive pressure of dry 

nitrogen. For spectroscopic characterization, a JEOL ECP 300 MHz spectrometer 

was used for 1H and 13C spectra. Chemical shifts are reported in parts per million 

(ppm) using the residual solvent peak as reference (CHCl3 at δ 7.27). A Thermo 

Finningan LCQ-deca XP-plus equipped with an ESI source and an ion trap detector 

was employed for mass spectrometry. Flash column chromatography was 

performed on silica gel (Merck Kieselgel 60, 230−400 mesh ASTM). Thin-layer 

chromatography (TLC) was carried out on 5 × 20 cm plates with a layer thickness of 

0.25 mm (Merck silica gel 60 F254). When necessary, KMnO4 was used for 

visualization. 

 

Synthesis of bromobutenolide from methyl malonic acid (2): 2 was prepared 

according to literature[18] to give a yellow oil (58%). 1H NMR (300 MHz, CDCl3) δ 7.20 

(1 H, s, H3'), 6.83 (1 H, s, H2'), 2.01 (3 H, s, H7'); 13C NMR (75 MHz, CDCl3) δ 170.7, 

147.4, 130.8, 74.8, 10.5. 

General procedure of oxidation of terpenic alcohol with Jones reagent (3a- 15a): 

a solution of alcohol and acetone/EtOAc 1:1 was placed in a round-bottom flask and 

cooled to 0°C (ice-water bath). To the magnetically stirred solution Jones reagent 
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was added dropwise. Jones solution was added until an orange tint persisted in the 

reaction mixture. Isopropyl alcohol was then added dropwise to destroy excess of 

Jones reagent. The reaction mixture was washed with water, sodium bicarbonate, 

and brine, dried over anhydrous sodium sulfate, concentrated and the 

corresponding ketones were purified over silica gel. 

General procedure of the synthesis of the oxymethine deritives (3b-15b): to a 

stirred solution of alcohol (3a-15a) (1 eq) in dry toluene (30 mL/g), freshly prepared 

NaOEt (10 eq) was added. The reaction was stirred at room temperature for 10 

minutes and then ethyl formate was added (11 eq) and the reaction was warmed 

at 50 oC overnight. The reaction mixture was diluted with H2SO4 2N, extracted with 

EtOAc and the organic phases were dried over Na2SO4 and evaporated under 

reduced pressure. The crude was purified over silica gel.  

Compounds 3b,[22] 4b[23], 5b[24] 7b[25], 9b[26], 10b[23], 12b[27], 11b[27], have previously 

been reported. 

Compound 6b: white solid (53%), Pe/Et2O 99:1. 1H NMR (300 MHz, CDCl3)  δ 8.57 

(s, 1H), 5.24 (s, 1H), 2.29 (d, J = 14.3 Hz, 1H), 1.17 (d, J = 14.0 Hz, 3H), 1.15 (s, 3H), 

1.12 (s, 3H), 1.02 (s, 3H), 0.93 (s, 3H), 0.87 (s, 6H), 0.84 (s, 3H) (only readily peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 190.9, 188.2, 145.2, 121.6, 105.5, 52.1, 

47.4, 46.9, 45.7, 41.9, 40.2, 39.7, 39.5, 37.2, 36.3, 34.8, 33.4, 32.6, 31.9, 31.1, 28.5, 

28.5, 27.0, 26.2, 25.8, 23.7, 23.6, 21.0, 19.6, 16.7, 14.7. 

Compound 8b: pale pink solid (45%), Pe/Et2O 99:1. 1H NMR (300 MHz, CDCl3) δ 8.57 

(s, 1H), 5.18 (s, 1H), 2.30 (t, J = 12.8 Hz, 1H), 1.19 (s, 3H), 1.12 (s, 3H), 1.08 (s, 3H), 

1.06 (s, 3H), 0.94 (s, 3H), 0.91 (s, 3H), 0.81 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 190.9, 

188.2, 139.7, 135.0, 124.3, 105.9, 59.3, 52.2, 42.3, 41.6, 40.2, 39.8, 39.7, 39.6, 36.2, 

33.9, 32.2, 31.3, 28.8, 28.6, 28.0, 27.0, 23.5, 23.2, 21.4, 21.0, 19.6, 17.5, 16.8, 14.9. 
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Compound 15b: pale yellow oil (39%), Pe/EtOAc 9:1. 1H NMR (300 MHz, CDCl3) δ 

8.60 (s, 1H), 6.71 (t, J = 8.1 Hz, 1H), 5.22 – 5.04 (m, 2H), 3.69 (s, 3H), 1.79 (s, 3H), 

1.60 (s, 3H), 1.58 (s, 3H), 1.17 (s, 6H), 1.06 (s, 3H), 0.76 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 190.5, 188.4, 142.4, 142.0, 135.2, 133.8, 124.9, 125.0, 105.7, 73.6, 60.4, 

59.1, 51.9, 51.7, 43.4, 40.6, 40.3, 38.6, 38.3, 38.2, 31.1, 28.4, 27.3, 26.6, 25.6, 23.9, 

23.3, 21.4, 20.6, 16.2, 16.0, 14.1, 12.4. 

Compound 13b (mixture of stereoisomers): brown oil (60%), Pe/EtOAc 95:5. 1H 

NMR (300 MHz, CDCl3)  δ 7.23 (s, 1H), 7.16 (s, 1H), 2.79 (dt, J = 13.9, 7.0 Hz, 1H), 

2.47 – 2.28 (m, 2H), 1.82 – 1.60 (m, 3H), 0.31 (t, J = 4.0 Hz, 1H), 0.22 (t, J = 6.0 Hz, 

1H); 1C NMR (75 MHz, CDCl3)  δ 213.0, 212.8, 159.4, 158.0, 118.5, 117.9, 45.3, 44.0, 

41.6, 32.5, 30.9, 30.5, 24.9, 24.0, 23.6, 23.3, 22.8, 21.6, 21.0, 20.8, 20.6, 19.3, 19.2, 

18.1, 17.1, 14.6, 13.3. 

Compound 14b: yellow solid (81%), Pe/EtOAc 6:4. 1H NMR (300 MHz, (CD3)2CO) δ 

9.30 (s, 1H), 8.60 (s, 1H), 7.93 (d, J = 16.0 Hz, 1H), 7.52 (d, J = 9.2 Hz, 1H), 6.70- 6.4 

(m, 3H), 4.76 – 4.05 (m, 2H), 3.70 (s, 2H), 3.16 (brd s, 1H), 2.57 (d, J = 14.9 Hz, 1H), 

2.19 (d, J = 15.0 Hz, 1H), 1.21 (s, 3H), 1.20 (s, 3H), 1.10 (s, 3H), 0.98 (s, 3H); 1C NMR 

(75 MHz, (CD3)2CO) δ 190.7, 188.1, 167.6, 162.0, 158.1, 140.1, 130.2, 115.1, 114.6, 

107.3, 102.3, 71.0, 65.5, 59.5, 57.8, 51.8, 50.6, 43.4, 38.8, 37.3, 29.3, 23.5, 20.1, 

20.0, 14.2.  

General procedure of the synthesis of strigolactone derivatives (3c-15c): 

A stirred solution of formylated compound (3b-14b) (1 eq) in dry THF was cooled at 

0 ° C with an ice bath and NaH (60% in mineral oil) (1,5 eq) was added. After 10 

minutes a solution of bromobutenolide 2 (1,5 eq) in dry THF was added dropwise 

and the reaction was warmed to room temperature and stirred overnight. The 

reaction mixture was diluted with H2SO4 2N, extracted with EtOAc, dried over 
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Na2SO4 and evaporated under reduced pressure. The crude was purified over silica 

gel furnishing a mixture of two non-separable diastereoisomers. 

Compound 3c (mixture of stereoisomers): off-white solid (77%), Pe/EtOAc 8:2. 1H 

NMR (300 MHz, CDCl3) δ 7.35 (brd, 1H), 6.88 (brd, 1H), 6.08 (d, J = 4.6 Hz, 1H), 4.71 

(s, 1H), 4.56 (s, 1H), 3.65 (s, 3H), 3.00 (m, 1H), 2.67 (t, J = 16.5 Hz, 1H), 1.98 (s, 3H), 

1.60 (s, 3H), 1.30 (s, 3H), 1.05 (s, 9H), 0.93 (s, 1H), 0.92 (s, 3H) (only readable peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 207.0, 206.7, 176.6, 170.7, 170.6, 151.8, 

151.5, 150.5, 141.6, 135.3, 135.1, 116.9, 116 .8, 109.6, 100.8, 100.6, 56.5, 52.8, 52.6, 

51.3, 49.3, 49.2, 48.5, 48.4, 46.9, 45.0, 44.9, 42 .4, 40.48, 40.44, 39.5, 39.3, 38.4, 

36.9, 35.6, 35.5, 33.2, 33.1, 32.0, 30.5, 29.6, 29.2, 29.0,25.6, 22.2, 22.1, 20.32, 20.30, 

19.39, 19.35, 15.8, 15.7, 15.5, 15.4, 14.6, 10.6; MS (ESI) m/z 615 (M + Na)+. Anal. 

Calcd for C37H52O6: C, 74.97; H, 8.84. Found: C, 75.08; H, 8.92.  

Compound 4c (mixture of stereoisomers): off-white solid (51%), Pe/EtOAc 8:2. 1H 

NMR (300 MHz, CDCl3) δ 7.36 (brd, 1H), 6.88 (brd, 1H), 6.09 (d, J = 4.4 Hz, 1H), 4.68 

(s,1H), 4.54 (s, 1H), 2.68 (t, J = 16.2 Hz, 1H), 2.39 (m, 1H), 1.99 (s, 3H), 1.67 (s, 3H), 

1.43 (s, 3H), 1.06 (s, 9H), 0.95 (s, 1H), 0.79 (s, 6H) (only readable peaks are reported); 

13C NMR (75 MHz, CDCl3)δ  208.0, 151.6, 151.4, 151.0, 141.5, 135.4, 135.3, 117.1, 

117.0, 109.4, 100.8, 10 0.6, 52.9, 52.6,  48.7, 48.3, 48.0, 45.1, 45.0, 43.0, 42.9, 40.69, 

40.67, 40.0, 39.5, 39.3, 3 8.2, 35.7, 45.5, 33.2, 33.1, 29.8, 29.2, 29.1, 27.4, 25.3, 22.3, 

22.1, 21.7, 20.3, 19.3, 18.1,  15.9, 15.8, 15.5,8, 15.56, 14.5, 10.7; MS (ESI) m/z 571 

(M + Na)+. Anal. Calcd for C36H52O4: C, 78.79; H, 9.55. Found: C, 78.83; H, 9.59.  

Compound 5c (mixture of stereoisomers): white solid (65%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3) δ 7.36 (s, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.10 (brd, 1H), 5.29 (brt, 

1H), 3.59 (s, 3H), 2.85 (d, J = 13.1 Hz, 1H), 2.62 (t, J = 12.8 Hz, 1H), 1.97 (s, 3H), 1.12 

(s, 3H), 1.06 (s, 6H), 0.90 (s, 1H), 0.87 (s, 3H), 0.84 (s, 3H), 0.83 (s, 3H), 0.75 (s, 3H) 
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(only readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 206.8, 206.5, 178.2, 

170.6, 151.6, 151.4, 143.7, 141.6, 135.4, 135.2, 122.2, 116.7, 116.6, 100.7, 100.6, 

53.0, 52.8, 51.6, 46.8, 45.9, 45.4, 45.3, 45.0, 44.9, 41.9, 41.5, 39.1, 38.9, 35.5, 35.4, 

33.9, 33.1, 32.3, 31.9, 30.7, 29.4, 29.2, 27.6, 25.7, 23.6, 23.5, 23.1, 22.5, 22.4, 20.9, 

16.5, 15.3, 15.2, 10.7; MS (ESI) m/z 615 (M + Na)+. Anal. Calcd for C37H52O6: C, 74.97; 

H, 8.84. Found: C, 74.92; H, 8.79.  

Compound 6c (mixture of stereoisomers): white solid (73%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3) δ 7.37 (s, 1H), 6.89 (dd, J1 = 7.0 Hz J2 = 1.5 Hz, 1H), 6.10 (brd, 1H), 

5.20 (brt, 1H), 2.65 (t, J = 12.5 Hz, 1H), 1.98 (s, 3H), 1.09 (s, 3H), 1.08 (s, 6H), 1.00 (s, 

3H), 0.82 (s, 6H), 0.79 (s, 3H) (only readable peaks are reported); 13C NMR (75 MHz, 

CDCl3) δ 206.7, 206.5, 170.6, 170.5, 151.5, 151.4, 145.1, 141.5, 135.4, 135.2, 121.7, 

121.6, 116.8, 116.7, 100.7, 100.6, 53.0, 52.8, 47.4, 46.8, 45.3, 45.2, 45.0, 44.9, 42.0, 

41.9, 39.67, 39.63, 39.3, 39.2, 37.1, 35.4, 35.3, 34.7, 33.4, 32.6, 31.8, 31.1, 31.0, 

29.4, 29.3, 28.5, 27.0, 26.0, 25.8, 25.7, 23.78, 23.73, 23.66, 22.5, 22.4, 20.3, 19.7, 

16.5, 15.5, 15.4, 14.2, 10.7; MS (ESI) m/z 571 (M + Na)+. Anal. Calcd for C36H52O4: C, 

78.79; H, 9.55. Found: C, 78.84; H, 9.61.  

Compound 7c (mixture of stereoisomers): off-white solid (44%), Pe/EtOAc 9:1. 1H 

NMR (300 MHz, CDCl3) δ 7.38 (brs, 1H), 6.90 (d, J = 6.7 Hz, 1H), 6.10 (d, J = 4.8 Hz,  

1H), 5.29 (brt, 1H), 3.59 (s, 3H), 2.66 (t, J = 14.4 Hz, 1H), 2.23 (d, J = 11.3 Hz, 1H), 

1.99 (s, 3H), 1.06 (s, 12H), 0.93 (s, 3H), 0.84 (s, 3H), 0.76 (s, 3H) (only readable peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 206.8, 206.5, 178.09, 178.06, 170.3, 

151.8, 151.6, 141.5, 138.27, 138.20, 135.4, 135.3, 125.5, 122.2, 116.68, 116.64, 

100.8, 100.7, 53.1, 53.0, 52.8, 51.5, 48.2, 45.2, 45.1, 45.0, 44.9, 42.2, 39.3, 39.1, 

38.9, 36.6, 35.4, 35.3, 32.28, 32.22, 30.7, 29.4, 29.3, 28.0, 24.2, 23.5, 23.4, 22.5, 

22.4, 21.2, 20.2, 17.0, 16.7, 15.5, 15.4, 10.7; MS (ESI) m/z 615 (M + Na)+. Anal. Calcd 

for C37H52O6: C, 74.97; H, 8.84. Found: C, 74.89; H, 8.80.  
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Compound 8c (mixture of stereoisomers): off-white solid (28%), Pe/EtOAc 8:2. 1H 

NMR (300 MHz, CDCl3) δ 7.38 (brs, 1H), 6.90 (d, J = 6.7 Hz, 1H), 6.10 (d, J = 4.8 Hz,  

1H), 5.29 (brt, 1H), 3.59 (s, 3H), 2.66 (t, J = 14.4 Hz, 1H), 2.23 (d, J = 11.3 Hz, 1H), 

1.99 (s, 3H), 1.06 (s, 12H), 0.93 (s, 3H), 0.84 (s, 3H), 0.76 (s, 3H) (only readable peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 206.8, 206.5, 178.09, 178.06, 170.3, 

151.8, 151.6, 141.5, 138.27, 138.20, 135.4, 135.3, 125.5, 122.2, 116.68, 116.64, 

100.8, 100.7, 53.1, 53.0, 52.8, 51.5, 48.2, 45.2, 45.1, 45.0, 44.9, 42.2, 39.3, 39.1, 

38.9, 36.6, 35.4, 35.3, 32.28, 32.22, 30.7, 29.4, 29.3, 28.0, 24.2, 23.5, 23.4, 22.5, 

22.4, 21.2, 20.2, 17.0, 16.7, 15.5, 15.4, 10.7; MS (ESI) m/z 615 (M + Na)+. Anal. Calcd 

for C37H52O6: C, 74.97; H, 8.84. Found: C, 74.89; H, 8.80.  

Compound 9c (mixture of stereoisomers): white solid (56%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3) δ 7.38 ( d, J =11.9 Hz, 1H), 6.90 (d, J = 20.7 Hz, 1H), 6.10 (d, J = 9.4 

Hz, 1H), 5.69 (brt, 1H), 3.67 (s, 3H), 2.46 (s, 1H), 1.97 (s, 3H), 1.40 (s, 3H), 1.13 (s, 

6H), 1.11 (s, 9H), 0.76 (s, 3H) (only readable peaks are reported); 13C NMR (75 MHz, 

CDCl3) δ 206.3, 206.1, 199.5, 199.4, 176.9, 176.4, 170.9, 170.7, 170.3, 170.2, 170.0, 

152.0, 151.0, 141.9, 141.8, 135.4, 134.8, 128.4, 128.2, 116.6, 116.5, 100.9, 100.3, 

60.3, 59.3, 59.2, 53.1, 53.0, 51.8, 48.4, 45.1, 45.05, 45.00, 44.0, 43.8, 43.4, 41.2, 

39.6, 39.4, 37.7, 35.5, 35.3, 31.8, 31.6, 31.5, 31.1, 29.5, 29.3, 28.6, 28.3, 26.5, 26.4, 

23.2, 23.1, 22.4, 22.3, 19.5, 18.07, 18.01, 15.4, 14.3, 10.7, 10.6; MS (ESI) m/z 629 (M 

+ Na)+. Anal. Calcd for C37H50O7: C, 73.24; H, 8.31. Found: C, 73.19; H, 8.27.  

Compound 10c (mixture of stereoisomers): pale-yellow oil (69%), Pe/EtOAc 95:5. 

1H NMR (300 MHz, CDCl3) δ 7.24 (d, J = 5.9 Hz, 1H), 6.89 (s, 1H), 6.09 (brs, 1H), 3.03-

2.85 (m, 1H), 2.47 (m, 1H), 1.96 (s, 3H),  1.72-1.66 (m, 3H), 1.00 (d, J = 7.5 Hz, 3H), 

0.89 (d, J = 7.3 Hz, 3H), 0.77 (d, J = 6.9 Hz, 3H) (only readable peaks are reported); 

13C NMR (75 MHz, CDCl3) δ 201.9, 170.7, 150.1, 149.9, 141.8, 135.1, 135.0, 125.5, 

125.1, 125.0, 100.7, 54.5, 54.4, 54.3, 29.1, 28.9, 27.9, 27.8, 27.0, 26.8, 20.8, 20.7, 
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20.6, 20.2, 19.6, 18.3, 17.7, 17.6, 17.5, 10.6; MS (ESI) m/z 301 (M + Na)+. Anal. Calcd 

for C16H22O4: C, 69.04; H, 7.97. Found: C, 69.09; H, 8.05.  

Compound 11c (mixture of stereoisomers): brown oil (64%), Pe/EtOAc 95:5. 1H 

NMR (300 MHz, CDCl3) δ 7.45 (s, 1H, first stereoisomer), 7.43 (s, 1H, second 

stereoisomer), 6.89 (s, 1H), 6.59 (brs, 1H), 6.13 (s, 1H), 4.71 (s, 1H), 4.58 (s, 1H),  

3.69 (brd, 1H), 2.48 (m, 2H), 1.97 (s, 3H),  1.77 (s, 3H), 1.67 (s, 3H, first stereoisomer), 

1.65 (s, 3H, second stereoisomer); 13C NMR (75 MHz, CDCl3) δ 187.8, 187.7, 170.7, 

170.6, 149.9, 149.3, 145.3, 145.0, 142.2, 142.1, 141.9, 136.0, 135.9, 135.1, 134.9, 

119.9, 111.7, 111.6, 100.9, 100.7, 60.3, 39.3, 39.2, 28.3, 21.4, 16.0, 10.6; MS (ESI) 

m/z 297 (M + Na)+. Anal. Calcd for C16H18O4: C, 70.06; H, 6.61. Found: C, 70.10; H, 

6.71.  

Compound 12c (mixture of stereoisomers):  off-white solid (66%), Pe/EtOAc 8:2. 1H 

NMR (300 MHz, CDCl3) δ 7.28 (d, J = 4.3 Hz, 1H), 6.90 (s, 1H), 6.10 (brd, 1H), 2.95 

(m, 1H), 2.52 (m, 1H), 2.45 (m, 1H), 2.10 (s, 3H),  1.96 (s, 3H), 1.79 (s, 3H), 1.74 (m, 

1H), 1.56 (m, 1H), 1.03 (dd, J1 = 7.0 Hz J2 = 2.5 Hz, 3H ); 13C NMR (75 MHz, CDCl3) δ 

191.4, 170.8, 149.6, 149.5, 147.1, 141.9, 135.0, 130.2, 130.1, 126.4, 100.7, 28.6, 

28.3, 27.9, 27.7, 24.5, 24.4, 23.8, 23.5, 23.4, 18.6, 18.4, 10.6; MS (ESI) m/z 299 (M + 

Na)+. Anal. Calcd for C16H20O4: C, 69.55; H, 7.30. Found: C, 69.48; H, 7.27.  

Compound 13c (mixture of stereoisomers): brown oil (37%), Pe/EtOAc 9:1. 1H NMR 

(300 MHz, CDCl3) δ 7.28 (brs, 1H), 6.92 (brs, 1H), 6.09 (brs, 1H), 2.30 (m, 2H), 1.97 

(s, 3H),  1.92 (m, 1H), (only readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 

211.0, 209.0, 170.7, 148.3, 148.0, 147.8, 147.4, 142.2, 141.6, 141.5, 135.4, 135.2, 

123.8, 123.6, 122.8, 122.7, 101.1, 100.8, 46.0, 44.8, 34.0, 32.7, 27.0, 26.9, 22.2, 22.1, 

21.7, 21.5, 18.0, 17.9, 16.5, 16.4, 13.6, 13.5, 10.7; MS (ESI) m/z 299 (M + Na)+. Anal. 

Calcd for C16H20O4: C, 69.55; H, 7.30. Found: C, 69.57; H, 7.35.  
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Compound 14c (mixture of stereoisomers): amorphous solid (48%), Pe/EtOAc 6:4. 

1H NMR (300 MHz, CDCl3) δ 7.81 (d, J = 16.2 Hz, 1H), 7.44 (m, 2H), 7.05 (s, 1H), 6.93 

(m, 2H), 6.69 (m, 1H), 6.32 (m, 2H), 6.14 (s, 1H), 4.46 (brt, 1H), 4.22 (brt, 1H), 3.76 

(s, 2H), 2.87 (d, J = 16.2 Hz, 1H), 2.01 (s, 3H), 1.30 (s, 6H), 1.19 (s, 3H), 0.87 (s, 3H) 

(only readable peaks are reported); 13C NMR (75 MHz, CDCl3) δ 205.7, 205.5, 198.2, 

171.1, 170.6, 167.8, 167.4, 161.2, 161.1, 156.2, 156.1, 152.0, 151 .8, 151.4, 146.1, 

145.9, 142.2, 141.7, 141.6, 138.7, 138.4, 135.6, 134.8, 134,3, 129.7, 129.6, 129.4, 

117.9, 117.8, 117.5, 116.8, 115.7, 110.8, 110.4, 110.2, 109.4, 103.0, 100.6, 100.5, 

98.2, 98.6, 72.3, 66.5, 66.3, 65.5, 60.4, 57.0, 56.6, 56.5, 55.0, 52.7, 52.6, 51.7, 45. 5, 

45.2, 45.1, 42.9, 39.8, 39.7, 38.7, 38.6, 38.5, 29.7, 29.5, 29.4, 24.1, 23.9, 22.5, 22.4, 

22.0, 15.5, 15.5, 14.4, 10.7; MS (ESI) m/z 545 (M + Na)+. Anal. Calcd for C30H34O8: C,  

68.95; H, 6.56. Found: C, 69.01; H, 6.60.  

Compound 15c (mixture of stereoisomers): yellow oil (26%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3) δ 7.41 (s, 1H), 6.70 (t, J = 7.0 Hz, 1H), 5.13 (m, 2H), 3.69 (s, 3H), 

1.79 (m, 3H), 1.59 (s, 3H), 1.57 (s, 3H), 1.16 (s, 6H), 1.06 (s, 3H), 0.76 (s, 3H) (only 

readable peaks are reported); 13C NMR (75 MHz, CDCl3) δ 206.5, 206.3, 170.7, 168.4, 

152.1, 144.4, 142.5, 142.1, 141.9, 135.56, 135.50, 135.2, 134.0, 133.6, 125.0, 116.1, 

100.7, 96.7, 73.7, 73.6, 60.5, 59.0, 58.9, 52.8, 52,6, 51.8, 45.2, 45.1, 43.1, 39.6, 38.2, 

37.4, 31.3, 29.7, 29.4, 29.2, 27.3, 27.1, 25.7, 25.6, 23.1, 23.0, 22 .4, 22.3, 16.1, 16.0, 

14.7, 14.6, 14.3, 12.4, 10.7, 10.6; MS (ESI) m/z 633 (M + Na)+. Anal. Calcd for 

C37H54O7: C, 72.75; H, 8.91. Found: C, 72.67; H, 8.87.  

 

General procedure for the synthesis of strigolactone mimics (16a-21a): a mixture 

of hydroxybutenolide 22 (1.5 eq) and alcohol (16-21) (1 eq) were heated at 120°C 

for 3-7 days. The crude was directly purified over silica gel.  

Compounds 19a have previously been reported.[19] 
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Compound 16a (racemic): yellow oil (20%), Pe/EtOAc 95:5. 1H NMR (300 MHz, 

CDCl3) δ 6.74 (t, J = 1.5 Hz, 1H), 5.75 (t, J = 1.2 Hz, 1H), 5.26 (dt, J1 = 7.6 J2 =0.9  Hz, 

1H), 4.18 (m, 2H), 1.83 (s, 3H), 1.68 (s, 3H), 1.61 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 

172.0, 143.3, 139.7, 133.7, 119.1, 100.4, 66.1, 25.8, 18.0, 10.5; MS (ESI) m/z 205 (M 

+ Na)+. Anal. Calcd for C10H14O3: C, 65.92; H, 7.74. Found: C, 65.98; H, 7.81.  

Compound 17a (racemic): yellow oil (29%), Pe/Et2O 99:11H NMR (300 MHz, CDCl3) 

δ 6.79 (brd, 1H), 5.82 (d, J = 0.9 Hz, 1H), 5.26 (t, J = 7.3 Hz, 1H), 5.06 (brt, 1H), 4.29 

(m, 2H), 2.06 (m, 4H), 1.92 (s, 3H), 1.69 (s, 3H), 1.65 (s, 3H), 1.58 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 172.1, 143.2, 133.9, 131.9, 123.8, 118.7, 100.2, 66.2, 39.6, 26.3, 

25.7, 17.7, 16.5, 10.6; MS (ESI) m/z 273 (M + Na)+. Anal. Calcd for C15H22O3: C, 71.97; 

H, 8.86. Found: C, 72.01; H, 8.90.  

Compound 18a (mixture of stereoisomers): colourless oil (24%), Pe/Et2O 99:1 

1H NMR (300 MHz, CDCl3) δ 6.79 (brd, 1H), 5.77 (s, 1H), 5.07 (t, J = 7.0 Hz, 1H), 3.88 

(m, 1H),  3.67 (m, 1H), 1.95 (m, 2H), 1.93 (s, 3H), 1.69 (s, 3H), 1.58 (s, 3H), 1.35 (m, 

5 H), 0.88 (d, J = 6.4 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 171.9, 143.0, 134.0, 131.3, 

124.1, 101.7, 101.6, 68.7, 37.1, 36.4, 29.4, 25.7, 25.4, 19.4, 17.6, 10.6; MS (ESI) m/z 

275 (M + Na)+. Anal. Calcd for C15H24O3: C, 71.39; H, 9.59. Found: C, 71.44; H, 9.63.  

Compound 20a (racemic): yellow oil (44%), Pe/Et2O 99:1. 1H NMR (300 MHz, CDCl3) 

7.29 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 6.81 (s, 1H), 5.86 (s, 1H), 4.88 (d, J = 

11.3 Hz, 1H), 4.67 (d, J = 11.0 Hz, 1H), 2.90 (m, 1H), 1.93 (s, 3H), 1.24 (d, J = 7.0 Hz, 

6H); 13C NMR (75 MHz, CDCl3) δ 172.0, 149.3, 143.2, 134.0, 133.5, 128.6, 126.8, 

100.3, 71.6, 33.9, 24.0, 10.6; MS (ESI) m/z 269 (M + Na)+. Anal. Calcd for C15H18O3: 

C, 73.15; H, 7.37. Found: C, 73.10; H, 7.40.  
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Compound 21a (mixture of stereoisomers): yellow oil (14%), Pe/Et2O 99:1. 1H NMR 

(300 MHz, CDCl3) δ 6.79 (s, 1H), 5.81 (s, 1H), 5.60 (brd, 1H), 4.14 (m, 2H), 1.93 (s, 

3H), 1.28 (s, 3H), 0.81 (s, 3H) (only readable peaks are reported); 13C NMR (75 MHz, 

CDCl3) δ 172.0, 143.7, 143.5, 134.1, 134.0, 122.8, 122.2, 100.5, 100.1, 72.8, 72.7, 

43.6, 43.3, 40.76, 40.71, 38.1, 38.0, 31.6, 31.5, 31.43, 31.40, 26.2, 21.2, 21.0 10.7; 

MS (ESI) m/z 271 (M + Na)+. Anal. Calcd for C15H20O3: C, 72.55; H, 8.12. Found: C, 

72.60; H, 8.16.  

Synthesis of compound 24: methyl jasmonate (1 eq.) was dissolved in EtOH/DCM 

10:1 and NaBH4 (1 eq.) was added. The reaction mixture was stirred for 2 h, 

quenched with H2SO4 2N and extracted with EtOAc. The organic phase was dried 

over Na2SO4, evaporated under reduced pressure and the crude product was used 

without further purification for the next reaction. Our data are in agreement with 

those reported in literature. [28] 

Synthesis of compound 26: To a solution of methyl jasmonate (1 eq) in THF/H2O, 

LiOH*H2O was added (2 eq). The reaction mixture was stirred at room temperature 

for 1 h, quenched with H2SO4 2N and extracted with EtOAc. The organic phase was 

dried over Na2SO4 and evaporated under reduced pressure, and the crude product 

was used without further purification for the next reaction. Our data are in 

agreement with those reported in literature.[29]   

General procedure of the synthesis of chimeric esters 26a, 28, 30 (modified 

protocol of Yamaguchi esterification): to a stirred solution of acid (26 and 27) (1,5 

eq) in dry THF (20 mL/gr), benzoyl chloride (1,5 eq), triethylamine (2 eq) and DMAP 

(cat) were sequentially added. The reaction mixture was stirred for 10 minutes at 

room temperature and the alcohol (22 and 24) (1 eq) was finally added. After 24 h 

the reaction was quenched with H2SO4 2N and extracted twice with EtOAc. The 
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combined organic phases were washed with NaHCO3 sat. sol. (X2), dried over 

Na2SO4 and evaporated under reduced pressure. The crude was purified over silica 

gel.  

Compound 28: brown oil (53%), Pe/EtOAc 8:2. 1H NMR δ 8.39 (br s, NH), 7.62 (d, J 

= 7.8 Hz, 1H), 7.34 – 7.01 (m, 4H), 5.46 – 5.20 (m, 2H), 4.93 – 4.85 (m, 1H), 3.76 (s, 

2H), 3.74 (s, 2H), 3.69 (S, 3H), 3.66 (s, 3H),  2.52 (ddd, J = 20.0, 14.5, 8.0 Hz, 1H), 2.23 

– 1.85 (m, H), 1.74 – 1.62 (m, H), 1.42 – 1.24 (m, 2H), 0.96 – 0.87 (m, H); 13C NMR 

(75 MHz, CDCl3) δ 173.7, 172.0, 136.2, 133.6, 132.8, 127.3, 126.9, 125.8, 123.3, 

122.0, 119.5, 118.9, 111.4, 108.2, 80.9, 77.8, 51.6, 50.8, 49.7, 39.8, 39.8, 39.3, 39.1, 

31.8, 31.7, 31.2, 3.1, 30.1, 29.6, 29.3, 24.4, 20.6, 20.6, 14.3, 14.3. 

Compound 26a (mixture of stereoisomers): yellow oil (25%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3) δ 6.87 (m, 2H), 5.40 (m, 1H), 5.21 (m, 1H), 2.76 (m, 1H), 2.29 (m, 

4H), 1.95 (s, 3H), 0.90 (t, J = 7.3 Hz, 3H) (only readily peaks are reported); 13C NMR 

(75 MHz, CDCl3) δ 218.4, 171.0, 170.4, 170.3, 141.9, 134.6, 134.5, 134.3, 134.2, 

124.9, 124.8, 92.4, 92.3, 53.8, 38.7, 38.6, 37.8, 37.7, 37.6, 27.15, 27.11, 25.5, 20.6, 

14.1, 10.6; MS (ESI) m/z 329 (M + Na)+. 

Compound 30 (racemic): brown oil (31%), Pe/EtOAc 8:2. 1H NMR (300 MHz, CDCl3) 

δ 8.35 (brs, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.17 (m, 2H), 7.06 

(brs, 1H), 6.81 (dd, J1= 13.2 Hz J2= 1.2 Hz, 2H), 3.83 (s, 2H), 1.92 (s, 3H); 13C NMR (75 

MHz, CDCl3) δ 171.5, 170.5, 142.4, 136.2, 134.3, 127.0, 123.7, 122.3, 119.8, 118.6, 

111.6, 106.7, 92.8, 31.0, 10.6; MS (ESI) m/z 294 (M + Na)+. 

 

General procedure for the synthesis α-hydroxymethylene intermediates (24a, 25, 

29a): to a cooled (0°C) and stirred solution of 24, 23, 29 (1 eq) in dry THF (10 mL/gr) 

NaH (60% in mineral oil) (3 eq) was added. After 10 minutes methyl formate (5 eq) 
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was added and the reaction was stirred at room temperature overnight. The 

mixture was quenched with H2SO4 2N, extracted with EtOAc, and the organic phase 

was dried over Na2SO4 and evaporated under reduced pressure. The crude was 

purified over silica gel.  

Compounds 25[30] and 29a[31] have previously been reported and our data are in 

agreement with those reported in literature. 

Compound 24a: colourless oil (43%), Pe/EtOAc 95:5. 1H NMR  (300 MHz, CDCl3) δ 

11.62 (d, J = 12.5 Hz, 1H), 6.98 (d, J = 12.6 Hz, 1H), 5.57 – 5.16 (m, 2H), 4.57 (br s, 

1H), 2.56 (br s, 1H), 2.29 – 1.52 (m, 9H), 0.94 (t, J = 7.6 Hz, 3H); 13C NMR  (75 MHz, 

CDCl3) δ 171.8, 159.2, 134.1, 134.0, 125.4, 125.0, 108.5, 83.9, 47.7, 38.9, 30.7, 30.6, 

26.5, 20.7, 14.3. 

General procedure of the synthesis lactone derivatives (24b, 25a, 29b): to a cooled 

(0°C) solution of formylated compound (24a, 25, 29a) (1 eq) in dry THF, NaH (60% 

in mineral oil) (4 eq)  was added. The reaction was allowed to react for 5 minutes 

and then bromobutenolide 2 (1,5 eq) was added and the reaction was stirred at 

room temperature overnight. The mixture was quenched with H2SO4 2N, extracted 

with EtOAc, and the organic phase was dried over Na2SO4 and evaporated under 

reduced pressure. The crude was purified over silica gel.  

Compound 24b (mixture of stereoisomers): yellow amorphous solid (48%), 

Pe/EtOAc 8:2. 1H NMR (300 MHz, CDCl3) δ 7.40 (d, J = 4.6 Hz, 1H), 6.93 (s, 1H), 6.14 

(s, 1H), 5.53 – 5.20 (m, 2H), 4.56 (s, 1H), 3.06 (s, 1H), 1.99 (s, 3H), 1.72 – 1.57 (m, 

1H), 0.93 (t, J = 7.5 Hz, 3H) (only readily peaks are reported); 13C NMR (75 MHz, 

CDCl3) δ 170.5, 166.3, 150.2, 141.2, 135.7, 134.0, 125.0, 117.8, 100.6, 47.3, 36.3, 

36.2, 30.0, 29.9, 28.2, 28.1, 26.4, 20.7, 14.3, 10.7. 
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Compound 25a (mixture of stereoisomers): yellow oil (50%), Pe/EtOAc 8:2. 1H NMR 

(300 MHz, CDCl3)  7.35 (s, 1H), 6.89 (brs, 1H), 6.11 (brs, 1H), 5.42 (m, 1H), 5.25 (m, 

1H), 3.64 (s, 3H), 2.33 (m, 4H), 0.91 (t, J = 7.7 Hz, 3H) (only readily peaks are 

reported); 13C NMR (75 MHz, CDCl3)  206.7, 172.5, 172.4, 170.5, 147.9, 147.5, 14.5, 

141.4, 135.4, 134.9, 134.5, 134.2, 140.0, 125.1, 124.9, 118.4, 100.7, 54.5, 53.9, 51.6, 

39.0, 35.5, 29.7, 25.5, 20.6, 14.1, 10.6; MS (ESI) m/z 371 (M + Na)+. 

Compound 29b (mixture of stereoisomers): brown oil (32%), Pe/EtOAc 7:3.   1H 

NMR (300 MHz, CDCl3) δ 8.37 (brs, 1H), 7.78 (s, 1H), 7.23 (m, 4H), 6.75 (s, 1H), 6.12 

(s, 1H), 3.78 (s, 3H), 3.76 (s, 2H), 1.89 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 170.9, 

170.8, 168.0, 166.4, 152.0, 148.7, 141.9, 141.6, 136.2, 135.6, 135.2, 126.6, 126.3, 

125.5, 123.9, 122.4, 122.0, 120.9, 120.6, 120.2, 119.7, 119.4, 111.6, 111.4, 109.7, 

109.3, 106.4, 100.6, 100.5, 52.0, 51.9, 10.7, 10.6; MS (ESI) m/z 336 (M + Na)+. 
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4.1 INTRODUCTION 

The human immunodeficiency virus (HIV) is a lentivirus (a subgroup of retrovirus) 

that causes HIV infection that evolves in the so called acquired immunodeficiency 

syndrome (AIDS). 

In most cases, HIV is a sexually transmitted infection and it occurs by contact or 

transfer of blood, pre-ejaculate, semen, and vaginal fluids. Non-sexual 

transmission can occur from an infected mother to her child during pregnancy or 

childbirth by exposure to her blood or vaginal fluid and through breast milk. Within 

these bodily fluids, HIV is present as both free virus particles and virus within 

infected immune cells.[1]  

Two types of HIV have been characterized: HIV-1 and HIV-2. HIV-1 is the most 

virulent and infective one and it is mainly localized in Europe, America and Central 

Africa, while HIV-2 is found more widespread in West Africa and Asia and it has a 

clinically more moderate syndrome.[2] 

HIV-1 infects cells that have on their membrane the CD4 receptor and the co-

receptors CXCR4 and CCR5, belonging to the family of G protein-coupled 

receptors (GPCRs). 

The cells affected by HIV are cells of the human immune system, such as T helper 

cell (specifically CD4+ T cells), monocytes, CD68+ macrophages (in lymph nodes, 

spleen, liver, brain, lungs, bone marrow), dendritic cells in lymph node germination 

centers and lymphoepithelial surfaces (e.g. in the vagina, in the rectum and in the 

tonsils).[3] 

In general, HIV causes a systemic and generalized infection with a progressive 

elimination of T helper lymphocytes (CD4+), our sentinels in the recognition of 

foreign pathogens such as viruses, bacteria, tumour cells and fungi, leading to the 

immunodeficiency syndrome. 
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Figure 1: diagram of HIV virion.  

 

The virion of HIV has a spherical structure with a diameter of about 100-120 nm. It 

is an enveloped virus in which the envelope is a lipid bilayer surrounding the viral 

matrix, and the core consists of a conoid shaped capside, enclosing the viral 

genome. The envelop, using gp120 and gp41 proteins, is responsible for the 

hooking and the fusion of the virus with the cell, favouring the penetration. [4] 

The genetic material of the virion and the three genes essential for the replication 

are contained in a central core called capsid, that consists entirely of a single 

protein, p24. A matrix composed of the viral protein p17 surrounds the capsid 

ensuring the integrity of the virion particle and the release of the new replicated 

viruses as it interacts with the cell membrane allowing the budding. [5] 
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Gag (group-specific-antigen) encodes for the virion core proteins (p24, p17, p9, p7),  

Pol (polymerase) encodes for the reverse transcriptase, the protease and the 

integrase, while Env ( envelope) encodes for the proteins of the outer envelope.[2] 

 

Figure 2: the HIV replication cycle. 

 

The HIV virion enters macrophages and CD4+ T cells by the adsorption of gp120 on 

its surface to CD4, CXCR4 and CCR5 on the target cell followed by fusion of the viral 

envelope with the target cell membrane.[6],[7]  

After the hooking HIV RNA and various enzymes (including reverse transcriptase, 

integrase, ribonuclease, and protease) are injected into the cell and the viral RNA 

genome is transcribed into DNA, which is then integrated into the host 

chromosome followed by new structural HIV proteins synthesis.  
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Finally, the virus is released from the cell and a protease splits new synthesized 

proteins to create a new mature infectious virus.  

 

AIDS continues to remain a major health crisis affecting more than 40 million people 

worldwide. Highly active antiretroviral therapy (HAART) combines antiretroviral 

therapies with different modes of action, improving the prognosis of HIV infected 

patients.  However, patients are more affected by the long-term side effects of 

antiretroviral therapy, drug toxicity and drug-drug interactions.[8] 

The main classes of anti-HIV drugs are: 

• Nucleoside/ Nucleotide Reverse Transcriptase Inhibitor (NRTI): both classes 

are pro-drugs acting as false precursors of nucleosides that are incorporated 

in the chain of nascent viral DNA by reverse transcriptase (zidovudina and 

tenofovir are examples). 

• Inhibitors of the HIV Protease: these compounds act on the aspartyl-

protease of HIV, an essential enzyme that cleaves the Gag-Pol polyprotein 

into the individual structural proteins and enzymes necessary for the 

formation of mature virions (ritonavir, saquinavir and lopinavir are 

examples). 

• Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI): they bind to 

reverse transcriptase with consequent inhibition (nevirapine, efavirenz and 

etravirine). 

• Fusion inhibitors: drugs that block the entry of the virus into the cell through 

binding of gp41 (enfuvirtide) or CCR5 (maraviroc).[9]  
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Although current therapies have led to a chronicity of the disease, increasing 

patients' life expectancy, the inaccuracy of the virus in the replication process 

has generated new mutated forms resistant to treatments. 

Primary infection with antiretroviral-resistant HIV-1 has become an important 

clinical problem rendering available treatments less effective. Therefore, there 

is a need for new antiretrovirals with novel mechanism of action, which will not 

be subjected to cross-resistance with existing agents.[8] 

A new promising approach is to inhibit the maturation of virion by targeting Gag 

protein, an important player in virus life cycle responsible of the virion 

maturation. To date only two different groups of small molecules have been 

identified as HIV-1 maturation inhibitors:  

1. betulinic acid (BA) derivatives  

 

 

2. piridone based compound PF-46396 
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Bevirimat (BVM) is the first-in-class HIV-1 maturation inhibitor based on 

betulinic acid skeleton able to prevent the cleavage of capsid protein (CA) from 

its precursor SP1 leading to the accumulation of CA-SP1.   

Bevirimat is HIV-1 specific (with IC50 of 10,3 nM), with no meaningful activity 

against HIV-2 or simian immunodeficiency viruses. Such findings support the 

high specificity of its mechanism of action for HIV-1.[8] 

Clinical trials indicated that BVM caused a significant and clinically relevant 

reduction of the viral load, however a significant fraction (40-50%) of treated 

patients had resistant viruses that had significantly reduced sensitivity to BVM. 

This drug resistance was linked to naturally occurring HIV polymorphisms in the 

SP1 region of HIV-1 Gag and it poses serious limitations to the clinical potential 

and further development of BMV.[10] 

To overcome the limitations connected to BVM, and to improve the potency of 

this class of promising compounds, the chemical space of betulinic acid was 

deeply explored through the installation of different groups at positions 3 

and/or 28, underling how the viral targets could vary depending  on the nature 

and position of the side chain.[11] 
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Despite BVM is the prototype of HIV-1 maturation inhibitors, the insertion of a 

-amino acid moiety at position 28 of betulinic acid led to statine derivatives 

RPR103611 and IC0564, inhibiting the virus-cell fusion step. 

Different mechanisms have been proposed for these compounds: 

• They might insert into a groove formed at interface between gp41 and 

gp120 that is induced upon gp120 binding to CD4, resulting in reduced 

co-receptor binding.  

• They could lock the gp120-gp41 complex into an inactive conformation 

by inhibiting signals.  

• The direct interaction of BA derivatives with gp41 might lock the protein 

in its metastable conformation, inactivating the protein. 

Despite a good level of activity these derivatives failed in-vivo studies due 

to the resistance induced by mutations in gp120 and gp41.  

The modification of both positions 3 and 28 gave a new group of BA 

derivatives, exemplified by LH15 and LH55, having in position 3 the 3,3’-

dimethylsuccinyl moiety typical of BVM, and in position 28 different acidic 

amides.[11] 
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These molecules exhibit both anti-fusion and anti-maturation activities with an 

enhanced antiviral potency also against the resistant forms of the virus, 

displaying a potential to become useful in anti-HIV therapy.[11] 

A second generation of maturation inhibitors has been developed by Bristol-

Myers Squibb,[12] leading the discovery of the orally efficacious compound BMS-

955176 that is currently in Phase IIb clinical trials. 
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The para-substitution pattern in position 3 is critical for antiviral activity, while 

the 1,1- dioxidothiomorpholine heterocycle in position 17 is important for the 

oral exposure. The candidate compound has a low plasma protein binding, it 

can be administered once a day, it is safe and well tolerated and it is currently 

being evaluated in a phase II clinical trial as part of a treatment regimen with 

antiretroviral agents that have different mechanism of actions (EC50 1,9 nM).[12] 
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• Acylation only at C-28 

position did not results in 

significant anti-HIV activity 

 

• Linkage and orientation of C-3 acyl side chain play an 

important role in the activity: 3’,3’-dimthylsuccinyl and 

3’,3’-dimethylglutaryl substitution are essential to anti-

HIV activity  

 

• C-3 acyl chain is crucial for HIV inhibition 

• Bioisosteric replacement of C-3 ester 

with amide functionality decreases 

activity 

 

4.2 RATIONALE OF THE PROJECT 

The exploration of the chemical space of BA has led to the synthesis of 

numerous compounds that can be considered as mosaic tails in the definition 

of the SAR table (Figure 3) of BA based maturation inhibitors.[13], [14]  

 

 

 

 

 

 

Figure 3: summary of SAR of BA analogues. 

 

Considering all the information reported in the SAR table, we have decided to 

design new BA derivatives where the ester function at position 3 was replaced 

with 1,2,3- triazole ring as a bridge between the free carboxylic acid end and 

the terpenic core, while in position 28 we have decided to introduce a 3,3’-

dimethylglutaryl group. 

The introduction of a 1,2,3- triazole ring ensures greater metabolic stability: 

bevirimat and all the analogues having an ester function at C-3 are readily 

inactivated by phase 1 metabolism and it gives us the possibility to apply a “click 

chemistry approach” for testing various linear and aromatic azides having a free 

carboxylic acid function. 

 

• Proper 3,28-disubstituited BA 

analogues showed significant 

antiviral activity, slightly better 

than bevirimat 

 • Free terminal carboxylic acid at C-28 side 

chain might be needed for HIV inhibition 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Chemistry 

The first approach was based on the Sonogashira cross-coupling reaction 

between vinyl triflate 2 and ethynyltrimethylsilane for the insertion of ethynyl 

moiety in position 3. Unfortunately, we were not able to obtain the desired 

compound 3, although different reaction conditions and different catalysts have 

been tested (Scheme 1).
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Since we were unable to implant the alkyne group in the terpenic scaffold, we have  

planned new analogues in which the triazole ring was linked at position 3 via an 

ether bond. (Figure 4). 

 

Figure 4 

 

The methyl ester of betulinic acid 8 (Scheme 2) was treated with NaH 60% in dry 

THF in presence of propargyl bromide to give compound 9 in moderate yield 

(45%), that was finally reduced with LiAlH4 to the corresponding alcohol 10 as 

key intermediate.  Compound 10 was coupled with five different azides (11a-e, 

Table 1) under Medal-Sharpless conditions giving 1,2,3-triazole esters 12a-e, 

that were hydrolysed (NaOH 10N, THF/H2O, 85 oC) to the corresponding free 

carboxylic acids 13 a-e.
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Table 1: aromatic and linear azides used for the synthesis of 1,2,3-triazole derivatives of BA. 

Compound Azide 

11a 
 

11b 

 

11c 
 

11d 
 

11e 
 

 

 The final compounds (14a-e) were obtained by reacting compounds 13a-e with 

3,3-dimethyl glutaric anhydride in DCM in presence of DMAP (Scheme 2).
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This synthetic process is not ideal to be scaled up, due to the low yield in the 

etherification reaction between propargyl bromide and betulinic methyl ester. We 

have investigated different conditions in order to improve the yield of the reaction, 

by varying solvents, temperature and nature of the base, without significant results 

(Table 2).  

Table 2: reactions conducted to improve the yield of propargylation reaction. 

REAGENTS SOLVENT RESULT 

1) NaH 60% 1,5 eq, 10’, 0°C 

2) Propargyl bromide 1,2 eq, 0°C-RT 
THF dry Starting material 

1) NaH 60% 7 eq, 30’, 0°C 

2) Propargyl bromide 3 eq, NaI cat, 

0°C-85°C 

DMF dry 9% yield 

1) NaH 60% 7 eq, 18-crown-16, 30’, 

0°C 

2) Propargyl bromide 3 eq, 0°C-85°C 

DMF dry Starting material 

1) LDA, 30’, 0°C 

2) betulinic methyl ester 1 eq, 0°C 

to RT, 5’ 

3) Propargyl bromide 3 eq, 0°C to 

40°C  

THF dry Starting material 

1) LDA, 0°C, 30’ 

2) 18-crown-16 cat, betulinic 

methyl ester 1 eq, 0°C to RT, 30’ 

3) Propargyl bromide, 0°C to 60°C 

THF dry Starting material 

1) LDA, 0°C, 30’ 

2) 18-crown-16 cat, betulinic 

methyl ester 1 eq, 0°C to RT, 30’  

3) Propargyl bromide, 0°C to 60°C 

DMPU 

dry 
Starting material 
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1) NaH 2 eq, 18-crown-16, 0°C to 

RT, 30’ 

2) Propargyl bromide 3 eq, 0°C to 

RT / 0°C to 60°C 

DMPU 

dry 
Starting material 

1) LiHMDS 1.1 eq, 18-crown-16 cat, 

propargyl bromide 2 eq (one 

pot), 0°C to RT/ 0°C to 60°C 

THF dry Starting material 

1) NaH 60% 1.1 eq, 0°C to RT 30’ 

2) Propargyl bromide 2 eq, 0°C to 

RT/ 0°C to 60°C 

THF dry Starting material 

On betulinic acid  

1) NaH 60% 1.1 eq, 0°C to RT 30’ 

2) Propargyl bromide 2 eq, 0°C to 

RT/ 0°C to 60°C 

THF dry Starting material 

1) LiHMDS 1M 2 eq , 18-crown-16 

cat, 30’, 0°C 

2) Propargyl bromide 2 eq, 0°C to 

60°C 

DMPU 

dry 
See Figure 5 

1) LiHMDS 2 eq , 18-crown-16 cat, 

0°C 

2) Propargyl bromide 2 eq, 0°C to 

40°C 

DMPU 

dry 
Starting material 

 

 

 

 

 

Figure 5: mechanism of 

reaction with LiHMDS and 

propargyl bromide 
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4.3.3 Conclusions 

New 1,2,3- triazole analogues of anti-HIV drug bevirimat were synthetized in a 6 

steps process. Both the triazole intermediate 12a-e and the final compounds 13a-

e will be tested as possible anti-HIV agents by Vivacell, our biological partner in 

the TriForC consortium. 

If the compounds will be active, we have planned in the future to expand the 

library of compounds using other azides and synthesizing analogues with different 

side chains.
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4.4 EXPERIMENTAL SECTION 

General Methods and Materials. 

Commercially available reagents and solvents were purchased from Aldrich or 

Alfa-Aesar and were used without further purification. N,N′-Dimethylformamide 

(DMF) was dried over a neutral alumina pad and stored on 4 Å activated 

molecular sieves. Dichloromethane was dried by distillation from P2O5 and 

stored on 4 Å activated molecular sieves. Pyridine was dried over neutral 

alumina pad and stored on activated 4 Å molecular sieves under nitrogen. When 

needed, the reactions were performed in flame- or oven-dried glassware under 

a positive pressure of dry nitrogen. For spectroscopic characterization, a JEOL 

ECP 300 MHz spectrometer was used for 1H and 13C spectra. Chemical shifts are 

reported in parts per million (ppm) using the residual solvent peak as reference 

(CHCl3 at δ 7.27). A Thermo Finningan LCQ-deca XP-plus equipped with an ESI 

source and an ion trap detector was employed for mass spectrometry. Flash 

column chromatography was performed on silica gel (Merck Kieselgel 60, 

230−400 mesh ASTM). Thin-layer chromatography (TLC) was carried out on 5 × 

20 cm plates with a layer thickness of 0.25 mm (Merck silica gel 60 F254). When 

necessary, KMnO4 was used for visualization. 



141 

 

      SYNTHESIS OF AZIDES 11a-e 

 

 

Synthesis of compound 11a: to a stirred solution of p-TsOH·H2O (9 eq) in H2O 

(9 mL/1 mmol), p-aminobenzoic acid was added (1 eq). After stirring for 1 

minute, an aqueous solution of NaNO2 (9 eq) was added dropwise in 5 min. The 

resulting mixture was then stirred for 1 h and then NaN3 (2 eq) was added. An 

immediate emission of N2 was observed and the mixture was stirred for 4 h. 

Solid aryl azide was filtered off, washed with H2O and dried. The aqueous phases 

were further extracted with EtOAc (x3), dried (Na2SO4) and evaporated at 

reduced pressure.  

The crude carboxylic azide 16 (1 eq) was treated with sodium carbonate (5 eq) 

and dimethylsulfate (5 eq) in DMF (10 mL/ 1 g). The reaction was stirred at room 

temperature overnight, then quenched with H2SO4 2N and extracted with a 3:1 

mixture of petroleum ether and diethyl ether.  The organic layers were dried 

over Na2SO4, filtered and evaporated to afford the methyl ester 11a as brown 

solid, without further purification (quantitative yield). 1H NMR (300 MHz, CDCl3) 

δ 7.98 (d, J = 8.9 Hz, 3H), 7.02 (d, J = 8.9 Hz, 3H), 3.87 (s, 3H)



142 

 

 

 

Synthesis of compound 11b:  To a stirred solution of hydroxy propionate 17 (1 

eq) in DCM (20 mL/10 mmol), Tf2O (1,2 eq) and 2,6-lutidine (1,2 eq) were 

sequentially added at 0 °C. The resulting solution was stirred for 3 h, quenched 

with H2SO4 2N (x2) and extracted with DCM (100 mL/ 10 mmol). The organic 

phases were dried over Na2SO4 and evaporated at reduced pressure to give the 

crude triflate that was used without further purification. To the crude was 

dissolved in acetone (20 mL/ 10 mmol) and water (20 mL/ 10 mmol) and NaN3 

(2 eq)  was added. The resulting solution was stirred at 60°C overnight. The 

mixture was extracted with EtOAc and the organic phase was dried over Na2SO4 

and evaporated under reduce pressure giving crude 11b as a brown oil. 

 1H NMR (300 MHz, CDCl3) δ 3.65 (s, 3H), 3.35 (s, 2H), 1.15 (s, 6H). 
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Synthesis of compound 11c: to a stirred solution of methyl 3-bromopropanoate 

(1 eq) in acetone (50 mL/ 60 mmol) an aqueous solution of NaN3 (2,5 eq) was 

added. The reaction was stirred at 60°C overnight, the solvent was evaporated 

and the crude mixture was diluted with water and extracted with DCM (x4). The 

organic phases were dried over Na2SO4 and evaporated under reduce pressure 

giving crude 11c as a brown oil. 1H NMR (300 MHz, CDCl3) δ 3.64 (s, 3H), 3.50 (t, 

J = 6.5 Hz, 2H), 2.51 (t, J = 6.5 Hz, 2H). 

 

 

Synthesis of compound 11d: To a stirred solution of 19 (1 eq) in acetone (50 

mL/ 60 mmol) an aqueous solution of NaN3 (2,5 eq) was added. The reaction 

was stirred at 60°C overnight, the solvent was evaporated and the crude 

mixture was diluted with water and extracted with DCM (x4). The organic 

phases were dried over Na2SO4 and evaporated under reduce pressure giving 

crude 11d as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 4.12 (q, J = 7.1 Hz, 2H), 

3.75 (s, 2H), 1.16 (d, J = 7.1 Hz, 3H). 
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Synthesis of compound 11e: to a stirred solution of 3,3-dimethylglutaric 

anhydride 20 (1 eq) in EtOH, DMAP (0,1 eq) and TEA (1 eq) were sequentially 

added. The solution was stirred overnight at reflux, cooled to room temperature 

and the solvent evaporated under reduced pressure. The crude mixture was 

diluted with H2SO4 2N (x1) and extracted with EtOAc (x1). The organic phases 

were dried over Na2SO4 and evaporated under reduce pressure giving the crude 

monoester 21 (colourless oil), that was used in the next step without further 

purification.  

To a cooled (-15°C) solution of the crude monoester 21 (1 eq) in dry THF (13 mL/ 

13,1 mmol), BH3-THF 1M was added dropwise (1 eq). The reaction was stirred 

at -15°C for 10 minutes at room temperature for 6 h, then cooled down at 0 ° C, 

diluted with Na2CO3 sat. sol. and extracted with EtOAc (x3). The organic phases 

were dried over Na2SO4, evaporated under reduce pressure giving the crude 

mono alcohol 22 (yellowish oil) without further purification. 

To a stirred and cooled (0°C) solution of 22 in DCM (30 mL/ 1g), 

triphenylphosphine (1,1 eq)  and NBS (1,2 eq) were sequentially added. After 24 

h, DCM was removed under reduced pressure and a cold mixture of  

benzene/cyclohexane 1:1 was added to the round bottom flask and brought to 
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-18°C overnight. The precipitate was filtered over celite and washed with a cold 

mixture of benzene/cyclohexane 1:1 (x3). The organic phase was evaporated 

under reduced pressure affording crude compound 23 used without further 

purification. 

To a stirred solution of 23 (1 eq) in acetone (50 mL/ 60 mmol) an aqueous 

solution of NaN3 (2,5 eq) was added. The reaction was stirred at 60°C overnight, 

the solvent was evaporated and the crude mixture was diluted with water and 

extracted with DCM (x4). The organic phases were dried over Na2SO4 and 

evaporated under reduce pressure giving crude 11e as yellow oil, 1H NMR (300 

MHz, CDCl3) δ 4.08 (q, J = 7.1 Hz, 2H), 3.25 (t, J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.61 

(t, J = 7.8 Hz, 2H), 1.19 (t, J = 6.8 Hz, 3H), 0.97 (s, 6H). 

Procedure for the esterification of betulinic acid (8): to a stirred solution of 

betulinic acid 7 (1 eq) in DMF (10 mL), sodium carbonate (5 eq) and 

dimethylsulfate (5 eq) were added. The reaction was stirred at room 

temperature overnight, then quenched with H2SO4 2N and extracted with a 3:1 

mixture of petroleum ether and diethyl ether.  The organic layers were dried 

over Na2SO4, filtered and evaporated to afford the methyl ester without further 

purification (quantitative yield). 

Synthesis of compound 9: to a cooled solution of 8 in dry THF (10 mL/ 1g) NaH 

(60% in mineral oil) (7 eq) and a catalytic amount of 18-crown-6 were 

sequentially added. The solution was stirred at 0 ° C for 30 minutes and 

propargyl bromide 80% wt solution in benzene (3 eq) was added dropwise. The 

reaction was heated at 90° C overnight, cooled in an ice bath, quenched with 

H2SO4 2N and extracted with EtOAc. The organic phases were dried over 

Na2SO4, evaporated under reduce pressure and the crude product was purified 

over silica gel (Pe/EtOAc 98:2 as eluent) affording compound 9 (40%) as a yellow 
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solid. 1H NMR (300 MHz, CDCl3) δ 4.72 (s, 1H), 4.58 (s, 1H), 4.15 (qd, J = 15.9, 1.8 

Hz, 2H), 3.64 (s, 3H), 2.98 (dd, J = 11.5, 4.5 Hz, 2H), 2.36 – 2.31 (m, 1H), 2.26 – 

2.11 (m, 2H), 1.66 (s, 3H), 1.24 (s, 3H), 0.94 (s, 3H), 0.89 (s, 3H), 0.80 (s, 3H), 0.73 

(s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 176.4, 

150.3, 109.7, 85.7, 80.9, 73.4, 56.4, 56.2, 56.0, 51.2, 50.6, 49.5, 46.9, 42.3, 40.7, 

38.5, 38.3, 37.1, 36.8, 34.3, 32.1, 30.6, 29.6, 27.9, 25.5, 22.4, 21.0, 19.4, 18.2, 

16.2, 15.9, 14.7. 

Synthesis of compound 10: to a cooled solution (0°c) of 9 in THF dry, LiAlH4 (4 

eq) was added. The reaction mixture was stirred at room temperature for 5 h, 

cooled in an ice bath, diluted with H2SO4 2N and extracted with EtOAc (x1). The 

organic phase was washed with NaHCO3 sat. sol. dried over Na2SO4 and 

evaporated under reduce pressure. The crude product was purified over silica 

gel (Pe/EtOAc 9:1 as eluent) affording compound 10 (83%) as a white solid. 1H 

NMR (300 MHz, CDCl3) δ 4.60 (d, J = 29.8 Hz, 2H), 4.25 – 4.03 (m, 3H), 3.76 (d, J 

= 10.7 Hz, 1H), 3.30 (d, J = 10.8 Hz, 1H), 2.98 (dd, J = 11.7, 4.1 Hz, 1H), 2.43 – 

2.29 (m, 2H), 1.66 (s, 3H), 1.24 (s, 3H), 1.14 (s, 3H), 1.00 (s, 3H), 0.95 (s, 3H), 0.81 

(s, 3H), 0.74 (s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, CDCl3) 

δ 150.4, 109.7, 85.7, 80.8, 73.6, 60.5, 60.2, 56.4, 55.9, 50.4, 48.8, 47.8, 47.7, 

42.7, 41.0, 40.9, 38.6, 37.2, 37.1, 34.2, 34.0, 29.8, 29.2, 28.0, 27.1, 25.2, 22.6, 

20.9, 19.1, 18.3, 16.2, 16.1, 16.0, 14.8. 

Click Chemistry General procedure. Synthesis of 12a-e: to a stirred solution of  

10 in H2O:t-butanol 1:3 and THF (1mL/ 400 mg) as cosolvent, azide (2 eq), a 

catalytic amount of sodium ascorbate and copper sulfate were sequentially 

added. The solution was stirred at 40 °C overnight, diluted with brine and 

extracted with EtOAc.  The organic phases were dried over Na2SO4, evaporated 

under reduce pressure, followed by purification over silica gel. 
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Compound 12a: yellow solid (80%), Pe/EtOAc 8:2. 1H NMR (300 MHz, CDCl3) δ 

8.19 (d, J = 8.7 Hz, 2H), 8.01 (s, 1H), 7.84 (d, J = 8.7 Hz, 2H), 4.86 (d, J = 12.4 Hz, 

1H), 4.63 (dd, J = 21.5, 8.7 Hz, 3H), 3.94 (s, 3H), 3.78 (d, J = 10.8 Hz, 1H), 3.32 (d, 

J = 10.8 Hz, 1H), 2.99 (dd, J = 11.6, 4.2 Hz, 1H), 2.38 (dt, J = 16.1, 8.2 Hz, 1H), 

1.67 (s, 3H), 1.00 (s, 4H), 0.96 (s, 3H), 0.94 (s, 3H), 0.82 (s, 3H), 0.78 (s, 3H) ) (only 

readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 165.9, 150.5, 147.7, 

140.2, 131.3, 130.1, 119.9, 109.6, 87.0, 63.1, 60.1, 55.7, 52.4, 50.3, 48.8, 47.8, 

47.8, 42.7, 40.9, 38.9, 38.5, 37.3, 37.1, 34.2, 34.0, 29.8, 29.2, 28.1, 27.1, 25.2, 

22.9, 20.9, 19.1, 18.3, 16.3, 16.1, 16.0, 14.7. 

Compound 12b: yellow solid (85%), Pe/EtOAc 7:3. 1H NMR (300 MHz, CDCl3) δ 

7.51 (s, 1H), 4.77 – 4.44 (m, 6H), 3.75 (d, J = 11.0 Hz, 1H), 3.68 (s, 3H), 3.29 (d, J 

= 10.8 Hz, 1H), 2.90 (dd, J = 11.5, 3.6 Hz, 1H), 2.34 (dd, J = 11.5, 6.1 Hz, 1H), 2.00 

(s, 3H), 1.64 (s, 3H), 1.19 (s, 3H), 0.97 (s, 1H), 0.93 (s, 3H), 0.79 (d, J = 8.2 Hz, 3H), 

0.71 (s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 179.1, 

150.5, 146.3, 123.7, 109.7, 86.5, 62.9, 60.6, 57.3, 55.7, 50.4, 48.9, 47.8, 43.8, 

42.8, 41.0, 38.8, 38.6, 37.4, 37.2, 34.3, 34.0, 29.8, 29.3, 28.0, 27.1, 25.3, 23.3, 

23.2, 23.1, 20.9, 19.1, 18.3, 16.3, 16.1, 16.0, 14.8. 

Compound 12c: pale brown solid (100%), Pe/EtOAc 7:3. 1H NMR (300 MHz, 

CDCl3) δ 7.60 (s, 1H), 4.76 – 4.47 (m, 6H), 3.77 (d, J = 10.7 Hz, 1H), 3.67 (s, 3H), 

3.30 (d, J = 10.8 Hz, 1H), 3.01 – 2.87 (m, 3H), 2.43 – 2.31 (m, 1H), 1.65 (s, 3H), 

0.98 (s, 3H), 0.94 (s, 3H), 0.85 (s, 3H), 0.79 (s, 3H), 0.73 (s, 3H) (only readily peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 170.9, 150.5, 123.2, 109.6, 86.4, 63.0, 

60.3, 60.0, 55.6, 52.1, 50.3, 48.7, 47.8, 45.5, 42.6, 40.9, 38.7, 38.5, 37.2, 37.1, 

34.4, 34.2, 34.0, 29.7, 29.2, 27.9, 27.0, 25.2, 22.8, 20.8, 19.1, 18.2, 16.2, 16.1, 

16.0, 14.7. 
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Compound 12d: yellow solid (90%), Pe/EtOAc 7:3. 1H NMR (300 MHz, CDCl3) δ 

7.64 (s, 1H), 5.12 (s, 2H), 4.81 – 4.49 (m, 6H), 4.22 (dd, J = 14.9, 7.6 Hz, 2H), 3.76 

(d, J = 11.8 Hz, 1H), 3.29 (d, J = 11.5 Hz, 1H), 2.92 (dd, J = 12.1, 4.4 Hz, 1H), 2.48 

– 2.28 (m, 1H), 1.64 (s, 3H), 1.26 (s, 3H), 0.97 (s, 3H), 0.93 (s, 3H), 0.86 (s, 3H), 

0.78 (s, 3H), 0.72 (s, 3H) (only readily peaks are reported); 13C NMR (75 MHz, 

CDCl3) δ 166.3, 150.5, 147.0, 123.7, 109.7, 86.5, 63.1, 62.4, 60.4, 55.7, 50.9, 

50.4, 48.8, 47.8, 42.7, 41.0, 38.8, 38.5, 37.3, 37.1, 34.2, 34.0, 29.8, 29.2, 28.1, 

27.0, 25.2, 22.9, 20.9, 19.1, 18.3, 16.3, 16.1, 16.0, 14.7, 14.1. 

Compound 12e: colourless solid (87%), Pe/EtOAc 7:3. 1H NMR (300 MHz, CDCl3) 

δ 7.52 (s, 1H), 4.85- 4.35 (m, 7H), 3.77 (d, J = 10.8 Hz, 1H), 3.30 (d, J = 10.7 Hz, 

1H), 2.93 (d, J = 11.6 Hz, 1H), 2.41 – 2.29 (m, 1H), 1.66 (s, 3H), 1.24 (s, 3H), 1.06 

(s, 3H), 0.99 (s, 3H), 0.94 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H), 0.74 (s, 3H) (only 

readily peaks are reported); 13C NMR (75 MHz, CDCl3) δ 171.6, 150.6, 146.4, 

109.6, 100.0, 86.5, 63.2, 60.4, 60.3, 59.9, 55.7, 50.3, 48.8, 47.8, 46.6, 45.6, 42.7, 

41.5, 40.9, 38.8, 38.5, 37.3, 37., 34.2, 34.1, 32.6, 29.8, 29.2, 28.0, 27.5, 27.1, 

25.2, 22.9, 20.9, 19.1, 18.2, 16.3, 16.1, 16.0, 14.7, 14.3, 14.2.  

General procedure of hydrolysis to compounds 13a-e: to a solution of 12a-e in 

THF, 10 equivalents of 10N NaOH were added and the reaction was stirred at 

85 ° C for 5 hours. The reaction was diluted with H2SO4 2N, extracted with EtOAc 

and washed with H2SO4 2N (X3). The organic phase was dried using  Na2SO4 and 

evaporated under reduced pressure affording crude compounds 13a-e, that 

were purified over silica gel. 

Compound 13a: yellow solid (59%), EtOAc/ MeOH 8:2.  1H NMR (300 MHz, 

DMSO-D6) δ 8.88 (s, 1H), 8.07 (bdd, 4H), 4.80 – 4.45 (m, 4H), 3.59- 4.40 (m, 2H), 

3.02 (dd, J = 34.8, 8.7 Hz, 2H), 2.50- 2.39 (m, 1H), 1.63 (s, 3H), 1.23 (s, 3H), 0.95 
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(s, 3H), 0.92 (s, 3H), 0.85 (s, 3H), 0.79 (s, 3H), 0.70 (s, 3H) ) (only readily peaks 

are reported); 13C NMR (75 MHz, DMSO-D6) δ 183.0, 166.8, 151.0, 146.7, 140.1, 

131.5, 130.0, 122.6, 120.2, 110.2, 85.8, 67.5, 62.2, 58.5, 55.6, 50.3, 48.7, 47.9, 

47.8, 42.8, 38.9, 38.8, 37.3, 37.2, 34.3, 29.9, 29.6, 28.3, 27.2, 25.6, 25.4, 22.9, 

20.9, 19.3, 18.4, 16.8, 16.5, 16.4, 16.2, 15.0. 

Compound 13b: white solid (78%), EtOAc 100%.  1H NMR (300 MHz, CDCl3) δ 

7.50 (s, 1H), 4.81 – 4.50 (m, 6H), 3.79 (d, J = 11.2 Hz, 1H), 3.33 (d, J = 11.1 Hz, 1H), 

2.96 (dd, J = 11.6, 3.7 Hz, 1H), 2.44 – 2.32 (m,1H), 1.68 (s, 3H), 1.26 (s, 3H), 1.00 

(s, 3H), 0.96 (s, 3H), 0.83 (s, 3H), 0.81 (s, 3H), 0.73 (s, 3H) (only readily peaks are 

reported); 13C NMR (75 MHz, CDCl3) δ 179.1, 150.5, 146.3, 123.7, 109.7, 86.5, 

62.9, 60.6, 57.3, 55.7, 50.4, 48.9, 47.8, 43.8, 42.8, 41.0, 38.8, 38.6, 37.4, 37.2, 

34.3, 34.0, 29.8, 29.3, 28.0, 27.1, 25.3, 23.3, 23.2, 23.1, 20.9, 19.1, 18.3, 16.3, 

16.1, 160, 14.8. 

Compound 13c: white solid (66%), EtOAc 100%.  1H NMR (300 MHz, CDCl3) δ 

4.75- 4.50 (m, 6H), 3.78 (d, J = 11.9 Hz, 1H), 3.32 (d, J = 11.5 Hz, 1H), 3.01 – 2.86 

(m, 3H), 2.35 (dd, J = 15.9, 10.2 Hz, 1H), 1.65 (s, 3H), 1.34 (s, 3H), 0.98 (s, 3H), 

0.94 (s, 3H), 0.85 (s, 3H), 0.79 (s, 3H), 0.72 (s, 3H) (only readily peaks are 

reported); 13C NMR (75 MHz, CDCl3) δ 173.7, 150.5, 146.1, 123.5, 109.7, 86.8, 

62.8, 60.4, 55.7, 53.5, 50.3, 48.8 47.8, 45.7, 42.7, 40.9, 38.8, 38.5, 37.3, 37.1, 

34.6, 34.2, 34.0, 29.7, 29.2, 28.0, 27.0, 25.2, 22.9, 19.1, 18.3, 16.3, 16.2, 16.0, 

14.8. 

Compound 13d: pale yellow solid (68%), EtOAc 100%. 1H NMR (300 MHz, CDCl3) 

δ 7.70 (s, 1H), 5.14 (s, 2H), 4.83 – 4.46 (m, 6H), 3.79 (d, J = 11.4 Hz, 1H), 3.32 (d, 

J = 10.7 Hz, 1H), 2.93 (d, J = 8.4 Hz, 1H), 2.34 (s, 1H), 1.66 (s, 3H), 1.24 (s, 3H), 

0.98 (s, 3H), 0.94 (s, 3H), 0.87 (s, 3H), 0.80 (s, 3H), 0.73 (s, 3H) (only readily peaks 

are reported); 13C NMR (75 MHz, CDCl3) δ 169.4, 150.4, 146.2, 124.4, 109.8, 
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87.0, 62.9, 60.4, 55.7, 53.5, 50.3, 48.8, 48.0, 46.8, 42.7, 40.9, 38.8, 38.5, 37.3, 

37.1, 34.2, 34.0, 29.7, 29.5, 28.1, 27.0, 25.2, 23.9, 22.9, 20.9, 19.1, 18.3, 16.3, 

16.2, 16.1, 14.8. 

Compound 13e: white solid (60%), Pe/EtOAc 6:4. 1H NMR (300 MHz, CDCl3) δ 

7.53 (s, 1H), 4.75- 4.37 (m, 6H), 3.78 (d, J = 10.7 Hz, 1H), 3.32 (d, J = 11.0 Hz, 1H), 

2.93 (dd, J = 11.6, 3.8 Hz, 1H), 1.66 (s, 3H), 1.09 (s, 3H), 0.99 (s, 3H), 0.95 (s, 3H), 

0.87 (s, 3H), 0.80 (s, 3H), 0.74 (s, 3H) (only readily peaks are reported); 13C NMR 

(75 MHz, CDCl3) δ 176.1, 150.5, 146.3, 122.4, 109.7, 86.7, 63-0, 60.3, 55.7, 50.3, 

48.8, 47.8, 47.7, 46.8, 45.5, 42.7, 41.5, 40.9, 38.8, 38.5, 37.3, 37.1, 34.2, 34.0, 

32.5, 29.7, 29.2, 28.0, 27.5, 27.0, 25.2, 22.9, 20.96, 20.92, 19.1, 18.3, 16.3, 16.1, 

16.0, 14.8. 

General procedure for the synthesis of compounds 14a-e: to a stirred solution 

of compound 13a-e in dry pyridine, 3,3- dimethylglutaric anhydride (2 eq) and 

DMAP (1 eq) were sequentially added and the reaction was stirred at 40 ° C 

overnight. The reaction mixture was quenched with H2SO4 2N and extracted 

with EtOAc. The combined organic phases were washed with brine, dried over 

Na2SO4, evaporated under reduced pressure, and the crude compound was 

purified over silica gel.
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5.  FINAL CONCLUSIONS  

PCTTAs occur very widely distributed in the vegetal kingdom, and for over 100 years 

they have attracted the attention and stimulated the curiosity of organic chemists, 

favoring a deep exploration of their chemical space. 

Their multi-target biological profile has not gone unnoticed in the biomedical 

community, and despite they can be considered as “old scaffolds”, they are still 

providing bioactive compounds for the treatment of major diseases (bardoxolone 

methyl, bevirimat, BMS-955176). 

In this PhD thesis, we have designed a new protecting-free and easily scalable semi-

synthetic route to obtain  and -amyrins and lupeol in high yield from easily 

accessible starting materials and we have identified the pentacyclic triterpenoid 

acid hydroxamates as a class of novel and selective modulators of HIF-1 signaling. 

Moreover, we have synthesized triterpeno-strigoids that were devoid of activity on 

stress response modulators, but others mono and sesquiterpeno-strigoids shown 

interesting biological profiles comparable to that of natural strigolactones. 

Finally, a small set of new 1,2,3-triazole analogues of bevirimat were synthesized, 

as possible anti-HIV candidates.



154 

 

6. RINGRAZIAMENTI 

Eccomi arrivata alla parte più difficile della tesi…i ringraziamenti! 

Ho scelto di spendere poche parole e di non dilungarmi troppo e ho deciso di 

concludere con le foto di coloro che hanno percorso con me questi tre meravigliosi 

anni di dottorato! 

Quindi grazie a… 

    

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Daiana,  

un’amica “scoperta” 

solo da poco... che 

spero di continuare 

a “scoprire” anche in 

futuro 

Federica Giovanni & 

 



155 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Ai miei genitori, che spero di 

rendere sempre orgogliosi.  

Il vostro appoggio sarà 

fondamentale per le scelte che 

dovrò prendere in futuro…perché 

questo è solo l’inizio del mio 

cammino! 

Concludo con coloro che mi hanno vista ridere, a volte piangere, crescere e 

cambiare. Grazie ad Albi e Diego per esserci stati sempre! 

Vi voglio bene! 

 



156 

 

7. PUBLICATIONS 

1. Pollastro F, Caprioglio D, Del Prete D, Rogati F, Minassi A, Tagliatela-Scafati 

O, Munoz E, Appendino G, Cannabichromene, Nat. Prod. Commun., 2018, 

13 (9), 1189- 1194 

2. Rogati F, Cruz C, Prados M. E, Galera N, Jinénez C, Appendino G, Bellido M. 

L, Calzado M. A, Caprioglio D, Muñoz E, Minassi A, Triterpenoid Hydroxamates 

as HIF Prolyl Hydrolase Inhibitors, J. Nat. Prod., 2018, 81 (10), 2235- 2243. 

3. Rogati F, Millan E, Appendino G, Correa A, Caprioglio D, Minassi A, Munoz E, 

ACS Med. Chem. Lett., 2019, DOI: 10.1021/acsmedchemlett.8b00604 

 

  



157 

 

8. POSTERS AND ORAL COMMUNICATIONS 

1. Poster “Synthesis of triterpenic acid derivatives containing chelating 

groups” presented at XLII Attilio Corbella Summer School On Organic 

Synthesis, Gargnano (BS), 18-22 June 2017  

2. Poster “Synthesis of triterpenic acid derivatives containing chelating 

groups” presented at International Summer School of Natural Product 

ISSNP, Napoli, 3-7 July 2017. Winner of the 3rd place poster award. 

3. Oral presentation: “Strigoterpenes: a new class of compounds with cross-

kingdom action?” At XLIII edition of Attilio Corbella International Summer 

School On Organic Synthesis (ISOS 2018), Gargnano (BS), 10-14 June 2018  

4. Poster “Deoxygenation Of Ursolic, Oleanolic And Betulinic Acid To Their 

Corresponding C-28 Methyl Derivatives (α-amyrin, β-amyrin, Lupeol)” at XII 

Spanish-Italian Symposium on Organic Chemistry (SISOC-XII), Ferrara, 2-4 

July 2018 

5. Poster “Triterpenoid hydroxamates as HIF Prolyl Hydrolase inhibitors” at 

XXXVIII Convegno Nazionale della Divisione di Chimica Organica della 

Società Chimica Italiana (CDCO 2018). Milan, 9-13 September 2018 

6. Oral presentation ‘’Strigoterpenes, a class of cross-kingdom stress response 

modulators’’ at 4th Sino-Italian Symposium on Bioactive Natural Products 

(SISBNP 2018). Turin, 4-5 October 2018 

7. Oral presentation “Triterpenoid hydroxamates as HIF Prolyl Hydrolase 

inhibitors” at MERCK & ELSEVIER Young chemists symposium. Rimini, 19-21 

November 2018 

 

 

  



158 

 

9. DIDACTIC SCTIVITIES 

Schools and congresses: 

1. XLI A. Corbella “International Summer School on Organic Synthesis”, 

Gargnano (BS), 12-17 June 2016  

2. XLII A. Corbella “International Summer School on Organic Synthesis”, 

Gargnano (BS), 18-22 June 2017 (32 CFU) 

3. Second edition “International Summer School of Natural Product ISSNP”, 

Napoli, 3-7 July 2017 (32 CFU) 

4. “XLIII edition of Attilio Corbella International Summer School On Organic 

Synthesis” (ISOS 2018), Gargnano (BS), 10-14 June 2018  

5. “XII Spanish-Italian Symposium on Organic Chemistry” (SISOC-XII), Ferrara 

2-4 July 2018 

6. “XXXVIII Convegno Nazionale della Divisione di Chimica Organica della 

Società Chimica Italiana” (CDCO 2018). Milan, 9-13 September 2018 

7. “4th Sino-Italian Symposium on Bioactive Natural Products” (SISBNP 2018). 

Turin, 4-5 October 2018 

8. “MERCK & ELSEVIER Young chemists symposium”, Rimini, 19-21 November 

2018 

 

Seminars and classes attended: 

1. Corso di Piante medicinali, Prof. Federica Pollastro (Dipartimento di Scienze 

del Farmaco Novara), 2016  

2. "Molecular properties in drug discovery", Prof. Giulia Caron (University of 

Torino), Novara, 11th February 2016. 

3. "Asymmetric Hydroxylative Phenol Dearomatization Reactions using Chiral 

Iodanes", Prof. Stéphane Quideau (University of Bordeaux), Novara, 25th 

February 2016. 



159 

 

4. Corso base sui brevetti e sulla valorizzazione della ricerca scientifica, Scuola 

di Medicina, Novara, 29th January 2016. 

5. Theoretical and practical course ‘’How to structure, write and assess a 

scientific project” with Prof. Cesare Patrone, Dipartimento di Scienze del 

Farmaco Novara.  

6. Using Deuterium in Drug Discovery, Prof. Pirali, 21th June 2018. 

7. Structural Biology and enzymology in drug discovery, Prof. Rizzi, 8th February 

2018. 

8. The click chemistry in medicinal chemistry: from drug discovery to 

bioconjugation and in vivo imaging, Prof. Tron, 11th July 2018. 

9. Transannular cyclization reactions: a shortcut in the total synthesis of 

natural product, Prof. Minassi, 10th April 2018.



160 

 

10. CURRICULUM VITAE 

Federica Rogati was born in 1990 in Borgomanero (NO, Italy). After graduating from 

high school at "Contessa Tornielli Bellini" institute in Novara, she started her 

university studies in 2009 in Medicinal Chemistry and Technology at the University 

of Eastern Piedmont Amedeo Avogadro (department of Pharmacy), Novara.  

She graduated with honors in March 2015 with a thesis in medicinal chemistry in 

the laboratories of Prof. Gian Cesare Tron. 

After obtaining the qualification to practice as a pharmacist in June 2015, she 

obtained a six months fellowship in the laboratory of Prof. Giovanni Battista 

Appendino. 

From November 2015 to November 2018 she was involved in the XXXI doctorate 

cycle in organic chemistry under the supervision of Prof. Alberto Minassi, working 

on synthesis and modification of bioactive triterpenoids. 

 

 

 


