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1.0 Introduction

1.1  General Introduction

During the last years the sequencing of nucleic acids has been a key technology to 

understand the structure of genes, the mechanism of splicing, and even to discover 

new molecules like miRNAs and lncRNAs. The first sequencing technology has been 

Sanger Sequencing; this technique dominated for almost two decades and led to a 

number of monumental successes, including the complete sequencing of the human 

genome  [1].  Even  if  Sanger  sequencing  is  a  powerful  method  to  understand  the 

genomic complexity of various organisms, it carries several limitations because, for 

example, it requires an high amount of time to sequence a relative low number of 

bases.  Even if  NGS (Next-Generation Sequencing) produces reads usually shorter 

than the  canonical 1,000 bp of length of the typical Sanger sequences, the massive 

depth  of  coverage,  i.e.  multiple  reads  over  the  same  template  DNA  region, 

compensates for the limitations of short reads. Indeed, the average higher coverage of 

NGS guarantees a more accurate result compared to Sanger sequencing. Also, NGS 

technology  has  got  the  ability  to  produce  an  enormous  volume  of  data  cheaply. 

Nowadays it is possible to sequence an entire genome in few days or even in few 

hours [2]. These NGS technologies have enabled the possibility to sequence many 

new genomes, to analyze genomic diversity [3], to discover pathogenic variants [4] 

and to perform extensive studies of transcription, gene regulation and epigenetics in 

many species [5-6]. However the main issue of this technology is the high-throughput 

of data itself, since it is not simple to extract a biological meaning from such a great 

amount of data, and several computing algorithms and approaches are needed for 

interpreting any single output of a sequencing run. The instrument returns in output 

very large files containing a list of the fragmented DNA sequenced called “reads” in 

which the DNA from input samples is coded and it may be not trivial at all to manage 
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this  output  and  to  perform  all  the  analysis  steps  required  to  extract  any  useful 

information: this is the reason why bioinformatics analysis became an essential part 

of the process. Moreover, the field of application for NGS techniques is wide and 

there is no a “universal” way to analyze the data. Depending on the design of the 

project it would be needed to use different software for the analysis or to create a new 

custom one.

1.2 Chemistry of NGS

The preparation of the samples and the sequencing reactions differs in many ways 

based on the kind of study, the nature of the sample and the platform of sequencing 

used. For each platform, the input is a double-stranded DNA library consisting of 

short fragments flanked by adapters of known (and platform-specific) sequence. The 

most used platforms are produced by Illumina, TermoFisher and Applied Biosystems 

SOLiD. Here we present the details of Illumina platform, the platform that  the data 

analyzed in this study. However, every currently available platform of NGS uses a 

step of amplification of DNA sample to output a great amount of reads in order to 

amplify the signal.

After the extraction of the DNA or the retrotrascription of RNA in cDNA, the sample 

must be subjected to some step before the sequencing reaction. The sample could be 

DNA, cDNA or the product of a previous PCR amplification (in the Amplicon Based 

sequencing). Generally the steps to prepare a sample and obtain a DNA library ready 

to be sequenced are the following:

1) Fragmentation or target amplification.

2) Adapter ligation.

3) Size selection.

4) Quality control and quantification.
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1) Fragmentation or target amplification

NGS platform cannot receive in input a large molecule of DNA and directly sequence 

all of it. For this reason, in the library preparation step, long nucleic acids molecules 

must  be  fragmented in  small  molecules  of  variable  dimension,  depending  on the 

platform used (usually into a length of 150–500 base pairs for Illumina platforms. 

This  fragmentation  is  usually  obtained   by  mechanical  approach  or  enzymatic 

digestion. If a mechanical approach is chosen, that could be nebulization that consists 

in using a disposable device driven by pressurized air,  or in using ultrasounds to 

fragment the DNA with Covaris instrument. Covaris fragments the DNA in pieces of 

different dimension varying the intensity and the duration of the acoustic waves (150 

– 5,000 bp) [7]. An alternative method of library preparation is Illumina’s Nextera 

tagmentation technology that incorporate in a single step fragmentation and adapter 

ligation  step:  in  this  method a  transposase  enzyme fragments  and inserts  adapter 

sequences  into  dsDNA in  the  same  time  [7].  Normally,  if  Nextera  tagmentation 

technology is not used, nucleic acids after fragmentation must be attached to adapters 

in order to proceed in the library preparation.

The original DNA can also be previously targeted and amplified by PCR, instead of 

being fragmented, in order to obtain a sequencing of a specific DNA region. The 

product of the PCR is  then normally processed and sequenced.

2) Adapters Ligation

DNA fragments  must  be  blunted  and  5'  phosphorylated  while  3'  ends  must  be 

Adenosine-tailed  in order to properly attach adapters at 5' and 3'. For this goal, the 
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fragments  must  be  treated  using  different  enzymes:  First,  a  mixture  of  T4 

polynucleotide kinase, T4 DNA polymerase, and Klenow Large Fragment is used for 

the blunt and for the 5' phosphorylation. Next, the 3′  ends are A-tailed using either 

Taq polymerase or Klenow Fragment without exonuclease activity (exo-) [7]. After 

this, a reaction of the enzyme T4 Ligase attaches the adapters to the 5' and 3' properly 

modified ends of DNA fragments. However, the adapters ligation step can vary a lot 

depending on the used protocol but it consists always in a PCR reaction.  Adapters 

are  molecules  ligated  with  barcodes  (also  called  indexes).  Barcodes  are 

oligonucleotides between 6 and 12 bp that are unique, specific for each sample; they 

are used to associate each read only with a specific sample and are ligated to each 

fragment of DNA in this experimental step.  

3) Size Selection

A size  selection  is  needed  before  the  DNA can  be  sequenced.  Usually  the  size 

selection step can be done through magnetic beads.

4) Quality control and quantification

After the size selection step the library is ready to be loaded on the flow cell and to be 

sequenced. However, a good practice is to perform a titration run in order to verify 

the  integrity  of  the  library  and,  more  importantly,  anyway,  verify  the  DNA 

concentration of the different samples in order to load the right amount of DNA in the 

flow cell.  The  volumes and the concentration to  load vary from one platform to 

another. 

-Bridge PCR
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After the size selection and the quality control step, the template DNA, ligated with 

adapters,  P5 and P7 fragments is loaded into the flow cell  in which every single 

molecule of sample is amplified in the  Bridge PCR  step, also called  In Situ  PCR. 

First, the DNA template hybridizes into the  surface of the flow cell thanks to the 

complementary sequence of P5 and P7 to the oligos present on the surface of the flow 

cell.  After  the  hybridization  many  cycles  of  amplification  are  performed  by  the 

instrument in the Bridge PCR step. At the end of this step, each nanowell will contain 

many clones of the original DNA template that will be sequenced.

-Sequencing Step

During the sequencing step the clusters are sequenced. After the end of Bridge PCR 

step  sequencing  primers  are  added  into  the  flow  cell  and  a  sequencing  PCR  is 

performed. The sequencing primer anneal to its the complementary region  and start 

to  synthesize a  new  strand  of  each  amplified  molecule  in  the  first  round  of 

sequencing step.  In this PCR, however,  called sequence-by-synthesis PCR, that is 

performed  at  the  same  time  for  each  cluster,   the  Taq  polymerase  incorporates 

nucleotides that carry a fluorescent molecule that emits light at different wave lengths 

depending on the base carried (A, C, T or G). When a fluorescent molecule is added, 

the camera of the instrument reads and interprets the base incorporated. Each base is 

added  one  per  round.  After  the  reading of  the  incorporated  base,  the  fluorescent 

molecule is washed away and another fluorescent base is added.  The second step of 

sequencing starts at the point in which the barcode primer is added and the barcode is 

sequenced. After, the reverse primer is added and the read is sequenced in reverse 

with the same principle if you are using a paired-end approach. Note that for reads 

with double index, the total number of sequencing steps is four, because a new step 

with a new primer is needed to sequence the other index. However, every time a base 
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is included and sequenced, this occurs at the same time for all the cluster on the flow 

cell, in this way, millions of clustering are sequenced at the same time.

The single-end sequencing works exactly like the paired-end sequencing but it ends 

after the sequencing of the region of interest and the index (or both index 1 and index 

2) without sequencing in reverse the read.

 Scheme of the sequencing of each molecular of cluster for a read with a single index [8].
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expression level  of  the  proteins  produced by the  cell.  An  application  of  NGS in 

molecular diagnostics is, for example, the identification of clinically relevant variants 

present in a biopsy of cancer cells. 

The study of the mutation of DNA is pivotal in oncology. The subclonal mutations in 

cancer  it’s  very  important  not  only  to  understand  the  biological  evolution  of  the 

disease but also to predict the patients’ response to treatment [10]. These subclonal 

mutations are generally present only in a small number of reads in each NGS run, and 

in low frequency rate. For this reason they could be generally difficult to identify 

with NGS technology and with currently available bioinformatics tools because they 

tend  to  have  a  frequency  similar  to  the  background  noise,  mostly  generated  by 

sequencing errors of each NGS run.

Sequencing errors are one of the most common issues in NGS sequencing and the 

most typical source of noise background. Although provided accuracy is usually very 

high (in the range of 98% to 99.9%) each platform has got its specific error model 

that must be considered when performing analysis. Therefore sequencing errors leads 

to the insertion of SNP and indels mutation in a random number of reads during  the 

sequencing process. Above all, the background noise could be generated by errors in 

sequencing process, but also by contamination in the sample or by errors of the PCR 

sequencing reaction that is performed in targeting sequencing prior to the sequencing 

step.  These  facts  could  lead  to  call  a  variant  that  is  not  present  in  the   original  

sequence,  in  this  case  a  false  positive  result  may be  generated.  In  any case  this 

problem can be compensated by sequencing depth, that represents how many times 

each nucleotide from input sample is sequenced: since it is very unlikely to get the 

same errors in all reads, sequencing more and more time the same region of the DNA 

aims to lower the impact of a single error. Adequate coverage, or sequencing depth, is 

critical for an accurate calling of true variants and today it is not a problem to achieve 

very  high  sequencing  depths.  The  main  method  used  to  achieve  a  sufficient 

sequencing depth is called Amplicon-based sequencing in which the original DNA is 
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amplified by PCR prior to be sequenced, generating a list of PCR amplicons that later 

will be sequenced. This process is useful in order to obtain an higher final number of 

reads  and  therefore  major  sequencing  depth  for  each  single  nucleotide  in  the 

interested target region. Sequencing a specific region, like a specific gene, instead of 

performing a whole exome or a whole genome sequencing is a preferable approach in 

this situation to obtain an higher sequencing depth in the region of interest. 

Variant calling software can distinguish true subclonal variants after the alignment of 

the reads to a reference genome [11-19]. The alignment aims to associate each read 

with  some coordinates  of  the  reference  and  to  probe  if  in  that  region  there  is  a 

mutation in the sequenced sample. This can lead to the discovery of SNP and indels 

in the region of interest.  But after the alignment step a huge list of variants with vary 

frequency is found; many of them consists in noise background. For this reason the 

subsequent analysis step is the variant  calling step. Many of the current available 

tools for variant calling can’t identify accurately somatic point mutations, and are 

generally applied in WES (Whole Exome Sequencing) or in WGS (Whole Genome 

Sequencing) and not in ultra-deep sequencing based on PCR amplicons [20]. WES 

and WGS are techniques of sequencing that allow to explore a large portions of a 

genome,  or  even  sequencing  it  all,  but  with  relative  low degree  of   read  depth, 

generally  around  100-150x  for  WES  and  30x  for  WGS  [21].  Most  part  of  the 

currently available variant calling tools, for example SomaticSniper, are calibrated to 

run at these read depths [22]. The variant calling tools are often used in the study of 

oncogenes  and  oncosuppressor  genes  such  as  KRAS,  NRAS,  BRAF  and  EGFR 

because they are very important for the diagnosis and prognosis, and for the treatment 

of  many  malignancies  such  as  colorectal  cancer  [23]  because  these  genes  often 

contain hotspot missense mutations, which are the focus of variant calling tools [24-

25]. However, the available variant callers, such as GATK [24] and VarScan2 [25] are 

designed to call indels and SNV but often they lack in sensibility or in precision.
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For  all  these  reason  we  used  a  custom pipeline  of  analysis  to  analyze  our  data 

described in chapter “Materials and Methods”. 

1.3.2 NGS data analysis workflow: Detection of somatic DNA mutations

The analysis of somatic variants from NGS data is complex and characterized by 

multiple steps. The following scheme sums up every step.

Workflow of NGS analysis of somatic variants

FastQ: The workflow of each analysis starts from the FastQ file that contains the list  

of reads sequenced by the instrument.

Alignment:  This step is computing challenging and consists in the comparison of 

each read to a reference sequence that usually for amplicon-based approach is a small 

sequence like a single gene.

Variant Calling: In this step of the analysis, true variants must be distinguished from 

false variant (noise background).

13



Annotation:  In this step variants must be analyzed one by one, compared to the 

known  variants  databases  such  as  dbSNP [26]  and  ClinVar  [27]  to  obtain  more 

information on them and ascertain, for example, if a specific variant is already known 

and associated with a certain pathology. 

1.3.3 BRCA1 and BRCA2

BRCA1 and BRCA2 are genes located respectively on chromosome 13 and 17. These 

genes codify for two tumor suppressor proteins. Unfortunately, it is common that a 

mutated  version  of  these  genes  is  present  on  patients  in  germline  state,  these 

mutations are responsible for the hereditary breast and ovarian cancer. It is sufficient 

a single loss of one of the two alleles of these two genes to produce a considerable 

higher risk to develop cancer. Patients that inherited a mutated version of BRCA1 or 

BRCA2 have got a risk of 50-80% of developing breast cancer and of 30–50% of 

developing  ovarian  cancer.  However,  mutated  BRCA1 and  BRCA2 are  not  only 

correlated with breast  and ovarian cancer,  but also prostate cancer and pancreatic 

cancer.  It  has been calculated,  for  example,  that  for  the mutation of  BRCA2, the 

relative risk of developing pancreatic and prostate cancer are up to 10-fold and 20-

fold respectively [28]. 

BRCA1 and BRCA2 are involved in some mechanisms of DNA damage repair, in 

particular  in  the  mechanism called  Homologous  Recombination  (HR)  and  in  the 

mechanism of Non-Homologous End Joining (NHEJ). Homologous Recombination 

uses a template strand, the other chromosome, as template to guide repair. Since a 

template is present, this process is almost error free; it is activated by BRCA1 and is 

performed by a crossing-over mechanism between the portion of damaged DNA and 

the  correspondent  sequence  on  the  other  chromosome.  Non-Homologous 
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recombination instead is activated by both BRCA1 and BRCA2 and doesn't need a 

template DNA to be performed, but, since a benchmark sequence is not given, it is 

more likely that in this process of repair a mutation is inserted [29]. 

DNA damage  can be generated by errors during the replication process, radiations or 

other  genotoxic  compounds,  like  oxygen  free  radicals  [30],  and  can  be  very 

dangerous if it occurs during the replication of a cell because, if not repaired, the 

damage can be inherited and consolidated in the cell lineage. For this reason, during 

cell cycle there are several checkpoints, particularly in G1/S and G2/M phases, in 

which sensor proteins check the integrity of the DNA, to repair it if needed, before 

going on with the replication.

BRCA1 and BRCA2 can interact each other in a complex with RAD51 and other 

proteins for the activation of HR  pathway [31]. BRCA1 and BRCA2 interact also 

with the protein ATM and with TP53 that has got a central key in the physiology of 

cell  cycle  [32].  If  BRCA1  or  BRCA2  are  mutated,  the  pathway  of  TP53  is 

deregulated. With a deregulation of TP53, the normal cell cycle is disrupted and also 

the apoptosis is deregulated. If these pivotal functions are not correctly performed, 

the cell gains an advantage in survival and doesn't die even if it is present a damage 

in the DNA. With the accumulation of DNA damage and the downregulation of TP53 

pathway,  the  cell  could  gain  malignant  features;  if  TP53  is  downregulated,  the 

checkpoint controls of the DNA damage are skipped and the cell continues to proceed 

in the cell cycle even when DNA damage is present.
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1.3.4 Ovarian cancer and PARP inhibitors

Classification of ovarian cancer

Breast cancer is the most common cancer in woman worldwide and is often based on 

a mutation of BRCA1 or BRCA2 like ovarian cancer.  Ovarian cancer causes more 

deaths in the United States than any other type of female reproductive tract cancer, 

with an estimated 22,430 new cases and 15,280 deaths in 2007 [33]. Ovarian cancer 

can be classified in various way depending on the cell of origin and the degree of 

differentiation. A scheme of the main classification of ovarian cancer is shown in the 

figure  from the AARC of 2013 presented in this paragraph: the figure shows the 

main subtypes along with the main altered genes of ovarian cancer. The sex-cord 

stromal ovarian cancer derives from a component of the stromal cells of the ovary: 
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the granulosa cells, thecal cells and fibrocytes. Generally this kind of ovarian cancer 

derives from the cells that secrete hormones. Germ cells are the cells that will become 

gametes.  Epithelial carcinoma derives from cells on the surface layer that covers the 

ovary  or  other  tracts  of  the  reproductive  system  like  fallopian  tubes.  Serous 

carcinomas may have a complex admixture of cystic and solid areas with extensive 

papillations, or they may contain a predominantly solid mass with areas of necrosis 

and hemorrhage [34]. Mucinous ovarian cancers are cystadenomas that usually occur 

as a large, multiloculated cystic mass with mucus-containing fluid and have other 

peculiar features [35]. Clear Cell Carcinoma of the ovary (CCCO) is an epithelial 

ovarian  carcinoma  but  shows  peculiar  features,   mains  are:  CK7+  and  CK20+, 

absence of mutations in BRCA1, BRCA2, p53, but presence ofmutations in ARID1A, 

PIK3CA and pathway of mTOR up-regulated [36].

In this research, we analyzed data only from patient diagnosed with high-grade serous 

ovarian carcinoma (HGSC) that is the only subtype that may carry a mutation of 

BRCA1 and/or BRCA2. We sequenced only patients with HGSC that developed drug 

resistance against  traditional  chemotherapy used in first  line treatment;  they have 

been screened for BRCA1 and BRCA2 mutations with our NGS analysis. If BRCA1 

or BRCA2 were mutated, with a mutation that alters the function or the expression of 

the protein,  the patient  has been treated with PARP inhibitors:  the mechanism of 

action of these drugs is highly related with the DNA mechanism of repair.

DNA mechanisms of repair are divided in two main groups:

-Single-Strand: this mechanism repairs the damage without using any template for 

repairing the damage. This class is divided in many submechanisms (base excision 

repair, nucleotide excision repair and mismatch repair).

-Double-Strand:  this  mechanism uses  the  other  filament  of  DNA as  template  for 

replacing the bases damaged. This is divided in  Nonhomologous end-joining (NHEJ) 

mechanism and Homologous Recombination (HR).
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All mechanisms of DNA repair of the single strand break depend on PARP (Poly- 

ADP-Ribose  Polymerase)  proteins.  PARP protein  family  is  a  superfamily  of  18 

proteins [37]. PARP inhibitors like Olaparib, already approved by FDA and EMA 

[38-39] activate they effect threw a mechanism called tumor-selective cytotoxicity. 

PARP inhbitors in particular target PARP1 and PARP2 that are two protein with a 

zinc-finger  domain  that  binds  the  damaged  DNA.  The  role  of  PARP  to  ADP-

ribosylates itself and its  ADP-ribosylation aims to recruit  other proteins including 

PARP itself in the damage site of the DNA and promotes the repair of the damaged 

region [40]. PARP inhibitors block both PARP1 and PARP2. Since these proteins are 

fundamental to repair the damage of the single strand of the DNA, these inhibitors 

block this pathway. PARP inhibitors work for both hereditary and somatic forms of 

ovarian cancer. However, the drug doesn't have a systemically effect since in normal 

cells  BRCA mutations are  often in heterozygosis,  and these mutations have no a 

phenotypic effect, and the cells, with a reduced amount of BRCA are still able to 

survive even when PARP1 or PARP2 are inhibited since SSB pathway is blocked, the 

replication fork is blocked for the great accumulation of SSB and the SSB becomes a 

DSB but the cell can still repair the DSB  through HR. On the contrary, in cancer 

cells BRCA1 and BRCA2 are often mutated in homozygosis and HR is impossible to 

be activated. This lead to a significant synthetic lethality of PARP inhibitors in cells 

where BRCA1 and BRCA2 are mutated in homozygosis since they have no other 

way to repair the DSB caused by the accumulation of SSB [41-42]. As final effect, 

even if these drugs are usually administrated orally, their toxic effect is limited to 

cancer cells.

However, since PARP normally inhibits the pathway of the error-prone DSB repair of 

NHEJ mechanism,  the  inhibition  of  PARP leads  to  an  aberrant  activation  of  this 

mechanism that accumulates even more errors in DNA structure [43]. So, with PARP 

inhibitors not only the SSB cannot be repaired, and this brings to more DSB errors, 
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Illustration of DNA damage pathways and PARP inhibitors activity [45]
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1.4.1 RNA-Seq

RNA-seq  (also  called  Whole-Transcriptome  shotgun  sequencing  (WTSS)  [46]) 

consists  in  the sequencing of  all  the transcripts  produced in a  specific  biological 

sample. It is a powerful technique that aims to identify and quantify all the transcripts 

present in a controlled experimental situation. With a RNA-seq analysis it is possible 

to  obtain  different  pieces  of  information  about,  besides  protein  coding  genes, 

miRNAs, lncRNAs and other non-coding RNAs. The data analysis approach of an 

RNA-seq depends on the availability of a reference genome of the organism or the 

organisms in exam. If a reference genome is available, it is possible to perform a 

reference based analysis, else it is necessary to perform a De novo assembly.  RNA-

seq  can  be  applied  on  several  kinds  of  study  such  as  evaluation  of  nucleotide 

variations, evaluation of methylation patterns [47], micro-RNA analysis, and analysis 

of Differential Expressed Genes (DEG). In general in every study of DEG, after the 

extraction from the biological sample, the RNA  is fragmented and retrotranscripted 

into cDNA and then sequenced on a NGS platform. After this step, the reads are 

mapped  to  a  genome  or  transcriptome,  if  a  reference  based  approach  is  used, 

otherwise in the de novo approach the reads are reassembled with specific software. 

Finally,  the  expression  levels  for  each  gene  or  protein  isoform  is  estimated  by 

statistical analysis and DEG can be obtained [48-49]. After this step of analysis, it is 

necessary to give a peculiar  biological  significance to the obtained DEG, starting 

from the original biological question [50]. With the increasing popularity of RNA-

Seq technology, many software and pipelines have been developed to analyze these 

data but they are usually designed for the Reference based method. This approach is 

certainly  the  most  efficient  and  accurate  but  it  is  applicable  only  if  high quality 

annotated references are available; this could be true for human genome, but not for 

all  species  of  mammals,  plants,  bacteria,  fungi  or  other  organisms.  When  this 
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condition is not fulfilled, the only way to extract some valid information from RNA-

seq data is the De novo assembly approach. In this methodology, reads are not aligned 

to  a  reference  genome but  assembled one  to  another  to  recreate  the original  full 

length transcripts. There are some tools like Bridger [51], Oases [52] and Trinity [53] 

that can assembly de novo reads from RNA-seq, but although they work with a good 

level of sensibility, they produce an high number of false positive that result in the 

lack of specificity. 

This new software is called STAble and it will be explained in details in “Materials 

and  Methods”  chapter;  STAble  is  thought  to  be  applied  in  Metatransciptomics 

studies.

1.4.2 The human microbiota and its impact on human health

Today  NGS technology  is  one  of  the  most  used  technique  for  the  study  of  the 

microbiota [54]. This study is usually divided in two main fields: metagenomics and 

metatranscriptomics.  Both tries to extract information directly from the sample of 

interest, without previously culturing the organisms. Metagenomics tries to identify 

which microorganisms are present  usually sequencing the 16S rRNA [55],  that  is 

conserved between different species,  and aligning reads to databases of annotated 

sequences,  such  RDP [56];  with  this  procedure  in  some,  mostly  rare,  cases  it  is 

possible  to  perform  classification  even  at  strain  level.  To  obtain  a  taxonomic 

classification,  it  is  also  possible  to  do  a  shotgun  metagenomics  sequencing  and 

amplify all the DNA present in the sample (including fungi and some viruses) that 

aims to classify more species and go deeper in the analysis even at strain level, but 

with a greater effort in term of computational performance and sequencing cost since 

greater  coverage  is  needed  to  perform  this  kind  of  analysis.  Instead 

Metatranscriptomics  aims  to  identify  a  set  of  transcripts  expressed  by  the 
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microorganism  population  sequencing  the  entire  RNA retrotranscripted  in  cDNA 

[57]. 

The study of microbiota is very important for human health since more than 1014 

microrganisms (bacteria, fungi, protozoa, viruses) are resident on the human body but 

the most well study group is the one of bacteria [58]. Even if different microrganisms 

are present in different district of the human body, the most study environment is the 

gut. The vast majority of the bacteria of the human gut microbiota are Firmicutes and 

Bacteroidetes  [59-60]  and they reside  in  the  distal  part  of  the  gut  [61].  The  gut 

microbiota contributes to the host's  homeostatis  with the biosynthesis  of  essential 

amino acids and vitamins [62] while the host gives to the resident microorganisms 

nutrients and a controlled environment in which they can live, recreating a perfect 

symbiotic  relationship.  Plus,  microbiota  is  very  important  to  coordinate  immune 

system, since studies conducted using germ-free mice suggest  that the microbiota 

directly promote local  intestinal  immunity through its  effects on toll-like receptor 

(TLR) expression, antigen presenting cells, differentiated T cells,  lymphoid follicles 

and  the  promotion  of  systemic  antibody  expression  [63-66].  Even  if  the  above 

mentioned states are linked to physiological events,  the influence of microbiota is 

pivotal even in pathological situation since a lot of disease have been linked to an 

altered  gut  microbiota.  For  example  obesity  is  usually  correlated  by  an  altered 

intestinal Bacteroides:Firmicutes ratio [67]. Above all, if it is clear that a wealth state 

of gut microbiota is essential to maintain a good homeostasis of the digestive tract, 

the influence of gut microbiota is not only linked to the digestion and assimilation 

processes  or  to  the  immune system,  since  a  recent  study  evidenced how the  gut 

bacteria  can  produce  significant  amounts  of  amyloid  proteins  and 

lipopolysaccharides,  which  are  key  players  in  the  pathogenesis  of  Alzheimer’s 

disease [68].  Also, it has been shown that individuals with metabolic disorders such 

as  obesity  and  diabetes  have  much  more  probability  to  have  intestinal  dysbiosis 

compared to healthy individuals [69-70]. Since microbiota plays a critical role in all 
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these systems, both in health and in pathological condition, and since diet can rapidly 

influence  the  composition  of  microbiota  population  [71],  altering  the  balance  of 

power  between species  i.e.  advantaging or  disadvantaging  pathogen  species,  it  is 

evident  that  the  interest  in  understanding  the  microbiota  population  is  currently 

increasing. Since every single patient has got a different physiological gut microbiota, 

the potential of  tailored medicine in this field would be enormous: the ultimate goal 

would be, given a pathological situation, administer the best treatment (drug or diet) 

to realign the patient's altered microbiota to a condition of physiological homeostasis. 

The impact of diet is very powerful on gut microbiota because, for example, intestinal 

small  chain fatty acids have been shown to directly  increase the abundance of  T 

regulatory cells in the gut and to protect against allergic airway inflammation [72-75]; 

also they may inhibit the transcription factor NF-κB, leading to a decrease secretionB, leading to a decrease secretion 

of several pro-inflammatory cytokines [76]. The importance of an intervention on 

microbiota  to  threat  metabolic  disease,  and potentially  other  kind of  pathological 

states, it is proved by several situations. For example Lactobacillus seems to have an 

important role in treat obesity. Particularly Lactobacillus has been shown to alleviate 

obesity-associated  metabolic  complications  interacting  with  Bacteroidetes  and 

Firmicutes and also modulating host immunity [77-79]. Therefore acting on the gut 

microbiota can be extremely important to drive a patient towards an health situation. 

Although  during  the  last  years  more  and  more  databases  of   human  symbiotic 

microorganisms are being generated,  like The Human Microbiome Project (HMP) 

[80] that keeps a curated collection of sequences of microorganisms associated with 

the  human  body,  including  eukaryota,  bacteria,  archaea  and  viruses,  from  both 

shotgun  and 16S sequencing projects  and  other  specialized  databases  have  being 

produced comprising only members of the human intestinal microbiota [81-82], there 

is still not a database which contains full sequenced genomes of all the species that 

composes  the  human microbiota.  For  this  reason  STAble  works  with  a  de  novo 
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assembly approach to be applied for the study of potentially every microorganism, 

even for those whose reference is not available. 

Differential approaches for sequencing microbial populations with NGS technology

1.4.3 STAble core algorithm: Reconstruction of transcripts module

STAble  algorithm  has  been  originally  developed  in  order  to  perform  de  novo 

reconstruction of transcripts on bacterial samples.

In the first module, STAble uses a new approach in order to reconstruct transcripts 

from raw reads. The central idea is that, instead of using small k-mers, STAble uses 

the  entire  length  of  the  reads  to  reconstruct  transcripts,  performing  a  head-tail 
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alignment of the reads, in order to reduce the number of false positive results. STAble 

performs three main processes in order to reconstruct transcripts from reads:

1. Efficient detection of head-tail alignments.

2. Construction and traversal of an unweighted directed graph.

3. Post processing of results.

The head-tail alignment step between reads is a fundamental process because if two 

reads align each other in head-tail position with a good score, they can be assembled 

into a longer contig. The alignment starts from a k-mer called anchor, that is used to 

start the alignment. The default length of anchor is 11 and an anchor is considered 

valid only if consists in a sequence that contains all four nucleotides in order to filter 

low homopolymerich regions or other low complexity regions. Moreover, in this first 

alignment step a number of mismatches are allowed to be aligned in order to deal 

with  sequencing errors  (default  value  is  10% of  overlap  length).  There  are  other 

important parameters that play an essential role in this step of analysis like. All of 

them, explained in details in [83], are important to avoid incorrect alignments that can 

lead to false positive results or for avoiding to obtain chimeric reconstructions and to 

reduce the complexity of the next steps of the analysis.

Then, all the alignments and all the reads are built up in a De-Brujin graph that must  

be  correctly  followed  to  obtain  a  list  of  correctly  reconstructed  transcripts.  This 

second part is very complex from a computational point of view. Briefly, each node 

of this graph represents a read and each arc represents an head-tail alignment between 

two of them. Every time a node is traversed, the partial reconstructed transcript is 

elongated until no more head-tail alignments are available.

Benchmark data of this first module of STAble can be found in Appendix B.
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Stable first module workflow: The left panel shows the head-tail alignments between 

reads,  the  right  panel  shows  the  building  and  the  crosswalk  of  the  directed 

unweighted  graph  to  reconstructtranscripts.  After  this  step,  transcripts  are  post-

processed before returning the output.1.4.4 Post-Processing

Due  to  high  redundancy  of  NGS data  it  is  possible  that  different  paths  that  are 

completely unrelated in terms of graph nodes represent the same biological sequence, 

so  we  decide  to  implement  a  clustering  algorithm,  vsearch in  order  to  collapse 

redundant results that they have the same biological meaning [84].
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2.0 Materials and Methods

2.1 Perl scripts

Since FASTQ files, the standard output format of NGS platforms, contain hundreds 

of thousands of reads, it is impossible to manually manage this kind of files. For this 

reason, a large part of this research work was based on the usage of a programming 

language  studied  for  the  manipulation  of  huge  text  files,  “Perl”  [85].   Perl  is  a 

modulated, interpreted programming language that integrates some functions of C, 

sed, awk, sh and however, even if it is mainly projected for scanning huge texts files 

and extracting pieces of information from them, it is also a good language for system 

management.

2.2.1 Variant Calling GUI – Amplicon Suite

The new variant calling algorithm presented in this work is integrated in a software 

for the analysis of SNP and indels called Amplicon Suite. The software is composed 

by an intuitive GUI (Graphical  User  Interface)  that  can be used to  automatically 

process  raw  data.Amplicon  Suite  integrates  every  step  of  NGS  sequencing  data 

analysis, starting from alignment step to the annotation of the identified variants.

2.2.2 Variant Calling algorithm

Our variant calling algorithm is based on the detection of outliers in a distribution of 

values as described in [86]. Since the vast majority of NGS variants in an NGS run is 

part of the noise background, the software takes this fact in consideration and builds 
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up  a  suitable  two-way contingency  table  for  the  detection  of  outliers.  The  input 

parameters that the algorithm takes in are the number reads that confirm each variant 

and their sequencing depth. A one-tailed binomial distribution is constructed by the 

algorithm to detect the outliers. 

2.2.3 Simulated Datasets

The  variant  callers  were  tested  on  simulated  dataset  to  carfully  benchmark 

performances with a controlled environment.

Simulated  datasets  were  generated  selecting  96  target  regions  on BRCA1  and 

BRCA2 genes  similar to the target regions amplified in real samples (see below). 

Reads were generated using ART [87] as Illumina 150 bp paired end with  Miseq 

quality  profile.  Briefly,  we  generated  a  number  of  100.000  normal  and  100.000 

mutated reads per amplicon. In mutated reads we inserted a total number of 800 SNPs 

and  500  indels  mutations.  For  each  amplicon  we  inserted  a  number  of  known 

mutations. . A custom perl script took normal and mutated reads and shuffle them in 

order  to  give  a  different  number  of  reads  for  each  amplicon,  simulating  various 

degrees of sequencing depth for BRCA1 and BRCA2 genes for each amplicon.  We 

put mutations in each sample at a custom depth and frequency only in one amplicon 

at a time. This choice has been made to control the number of mutation for each 

sample, in order to recreate a number of mutations per sample that could be found in 

real datasets, and to test if our system was good to identify mutations occurring in 

every amplicons of BRCA1 or BRCA2 genes. This process has been made several 

times  inserting  mutations  in  each  gene  and  in  each  amplicon,  simulating  a  total 

number of about 1300 samples. Mutations were inserted in a depth varying from from 

0 to 10.000, with controlled frequencies of 1%, 3% and 10%.

When we run our algorithm to analyze these simulated data and distinguish between 

true variants and noise background we divided the variants in two groups, separating 
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SNPs from indels, since it is known that in NGS runs they have a different noise 

background. We didn’t perform this division when we run the other algorithms since 

they are supposed to work directly on the BAM file that contains all the aligned reads 

of the sample in exam. 

2.2.4 Other Variant Calling software

We compared the performance of our algorithm to the best variant calling software 

according to the analysis of Xu et al. [20] and VarDict [88].

All  of  the  variant  calling  algorithms  have  generally  been  run,  if  not  otherwise 

specified  with  standard  parameters  suggested  in  documentation  or  with  the 

commands suggested by Xu et al [20]. In particular, we calculated the sensibility and 

the precision of each tool, testing it on the simulated data that we generated with ART 

simulator. In particular we tested:

-VarDict (v1.07) [88]: VarDict is an ultra sensitive variant caller for both single and 

tumor-normal  paired  samples.  VarDict  implements  several  novel  features  such  as 

amplicon bias aware variant calling from targeted sequencing experiments, rescue of 

long indels by realigning soft clipped reads and better scalability than many Java 

based variant callers. 

We run VarDict with the “single sample analysis” option. we simulated our datasets 

in sam format and we converted them into a bam file using Samtools [89], after this 

conversion  we  sorted  and  indexed  the  BAM  file  using  the  same  tool,  then  we 

analyzed the bam file using VarDict and we obtained the result in VCF format. The 

minimum variant frequency is a needed parameter; we run the software always with 

the minimum possible value for that parameter (1%). This software can find both 

SNP and indels mutations.
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-SomaticSniper [22] version v1.0.2:  SomaticSniper calculates the Bayesian posterior 

probability of each possible joint genotype across the normal and cancer samples. 

This software works only making a differential analysis between the “normal” sample 

and the “tumor” samples; the software compares these two samples and highlights the 

variants  that  are  present  in  the  tumor  sample  but  not  in  the  normal  sample.  We 

generated the input files into a SAM file and then we converted it into a BAM file 

using Samtools [89]. After this conversion we used the same tool to sort and index 

the BAM file, then we run SomaticSniper with standard parameters on the sorted and 

indexed BAM file and we obtained the result in VCF format. This software cannot 

call indel mutations.

-Mutect  [90]  version  v1.1.4:  MuTect   is  an  algorithm that  detects  somatic  point 

mutations in NGS data using a Bayesian classifier approach and can perform a single 

sample analysis. We run this algorithm with its default parameter settings using java 

6.

We decided to not use the standard Reject filter in order to avoid a too restrictive 

variant  calling  analysis:  This  filter  would  remove  false  positives  (FP)  caused  by 

nearby misaligned small indel events. This software cannot identify indel mutations.

-VarScan2 [25] version v2.3.6: VarScan2 needs two files for working: normal sample 

file and tumor sample file. This software automatically call variants on the base of 

coverage and quality of  the variant  itself  separately in the normal file and in the 

tumor file. This tool is based on the Fisher’s exact test. We generated the input file 

using  SAMtools  mpileup  command,  starting  from a  standard  indexed  and  sorted 

BAM file, and then we run the program with standard parameters but calibrating the 

software setting to the minimum frequency of the variant it had to find in order to 

increase  the  performance  of  the  software  knowing  the  frequency  of  the  inserted 

mutations.  VarScan2 can point  out  SNP and indels  mutations.  We run it  with the 

specific option of “min-var-freq”, in order to improve the performance in precision.
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-GATK  [22]  version  GenomeAnalysisTK  2.3.9:  This  software  can  call  variants 

separately from tumor sample  and normal tumor and it  doesn't  need two distinct 

BAM files to work. We converted simulated data to a SAM file and obtained the 

BAM from it using Samtools [89]. With the same tool we sorted and indexed the 

BAM file,  and  after,  we  used  PicardTools  function  AddOrReplaceReadGroups  to 

generate  the  head  of  the  file  that  GATK  needs  for  working.  Using  Java  6,  we 

launched the algorithm with standard parameters.

-Strelka  [91]  version  v.1.0.7:  Although  Strelka  is  another  software  suggested  for 

variant calling by Xu and colleagues [20], this algorithm is very complicated to use 

and requires a deep configuration before starting the analysis for any single sample. 

Because of this problem we decided to not compare our system to Strelka algorithm.

We also considered to compare the performance of our system of analysis against 

Strelka2 [92], Mutect2 (that is just an update of Mutect [90]), SNVsniffer [93] and 

JointSNVMix [94] as somatic variant calling softwares but they rely on paired tumor-

normal samples for calling variants. For this reason we chose to not test them on our 

datasets.

All  of  the  variant  calling  algorithms  have  generally  been  run,  if  not  otherwise 

specified  with  standard  parameters  suggested  in  documentation  or  with  the 

commands suggested by Xu and colleagues [20].

2.2.5 Statistical analysis of simulated datasets

We evaluated the performance of our algorithm and the performance of the software 

in terms of sensibility and precision.
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Sensibility=TP/TP+FN (True  Variant  called/(True  Variant  called+True  Variant  not 

called)).

Precision= TP/TP+FP (True Variant called/(True Variant called+Error called)). 

2.2.6 Real dataset

We  analyzed  a  cohort  of  474  patients  from  Policlinico  Gemelli  of  Rome,  all 

diagnosed with ovarian cancer classified as High-grade serous carcinoma (HGSC). 

Patients signed the consensus for the treatment of their data in research field. The 

library preparation and the sequencing reaction have been performed following the 

instructions  of  BRCA-Devyser  Kit  protocol  for  the  sequencing  of  BRCA1  and 

BRCA2  genes.  Several  variants discovered  by  our  algorithm  have  been  later 

validated using  Sanger Sequencing method.

More information about the kit can be available at [95].

2.3 STAble methods

We prepared several lines of code in order to add two new modules to the main core 

of  STAble.  These  two  modules  consist  in  a  minor  module  written  in  Perl  that 

associate the reconstructed transcripts to a list  of known mRNAs and count them 

estimating their  abundancy, putting this information in a contingency table,  and a 

more  complex  module  that  perform  a  flux-balance  analysis  starting  from  the 

informations contained in the contingency table. After the writing of the two new 

modules, we added them at the original STAble core algorithm. We then tested it on a 

real RNA-seq dataset as described in our work [83]. Briefly we downloaded reads of 
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some  metatranscriptomic  data  extracted  from  sheep  gut  available  in  SRA from 

Kamke and colleagues work [96] and applied the first module of STAble on them in 

order to obtain a list of reconstructed mRNAs. We then downloaded bacterial FASTA 

sequences  of  orthologous  genes  of  several  pathways  (glycolysis/gluconeogenesis, 

butanoate  metabolism,  methane  metabolism,  carbon  fixation  pathways, 

phosphotransferase system) from KEGG orthology database [97].  We chose these 

pathways because Kamke and colleagues already investigated these data and they 

highlighted them as the most important and expressed in their experiment.

Briefly, the reconstructed transcripts were aligned to bacterial genes using BLAST 

algorithm accepting matches with at least 92% of similarity and allowing up to 20 

nucleotides of mismatches over flanking regions. After this step the raw reads were 

realigned  against  reconstructed  transcripts  using  BLAST.  Then,  reads  used  to 

reconstruct each transcript are associated with orthologous genes and a contingency 

table has been obtained with some custom Perl scripts. The contingency tables with 

read count for each orthologous gene has been processed with metabolic models, with 

a process similar to flux balance analysis, to interpret gene expression: the process 

adopted is described in [98]. The metabolic model used for the flux balance analysis 

is a general metabolic model of E. Coli.
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3.0 Aim of the study

The aim of this study is focused on two main areas of NGS analysis data: RNA-seq 

(with  a  specific  interest  in  meta-transcriptomics) and  DNA  somatic  mutations 

detection. 

We developed a simple and efficient pipeline for the analysis of  NGS data derived 

from gene panels to identify DNA somatic point mutations.

In particular  we   optimized  a somatic variant calling  procedure that was tested on 

simulated  datasets  and  on  real  data.  The  performance  of  our  system  has  been 

compared with  currently available tools for variant calling reviewed in literature.

For RNA-seq analysis, in this work we tested and optimized STAble, an algorithm 

developed originally in our laboratory for the  de novo reconstruction of transcripts 

from  non reference based  RNA-seq data. At the beginning of this study,  the first 

module  of  STAble  was  already been  written.  The  first  module  is  the  one  which 

reconstructs a list of transcripts starting from RNA-seq data. The aim of this study, 

particularly, consisted in adding a new module to STAble, developed in collaboration 

with Cambridge University, based on the flux-balance analysis in order to link the 

metatranscriptomic analysis to a metabolic approach. This goal has been achieved in 

order to study the metabolic fluxes of microbiota starting from metatranscriptomic 

data.
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4.0 Results

4.1.0 Variant Calling results overview

At the beginning of this study, we tested the existing variant calling software on the 

simulated data that we generated with ART, in order to investigate their performance 

in finding SNPs and indels and verify if they could be applied in the analysis of our 

data.  The results  of  these  tests  can be  found in Appendix A.  Since we were not 

satisfied of these results,  we proceeded with the development of our algorithm of 

variant calling and we proceed to test it against the other software on simulated data. 

ASince the performance of our algorithm on simulated data have been satisfying, 

later we proceeded to use it to analyze real data.

4.1.1 Variant Calling results on simulated datasets

In  the  following  graphs we  show  a  deep  analysis  of  the  performances  of  our 

algorithm  against  the  other  variant  calling  software.  Figures  1-2  show  the 

performance of  our algorithm in finding mutation inserted at  vary frequency rate 

against  the  best  software tested at  each condition.  The data  demonstrate  that  our 

algorithm has got better performance in terms of sensibility and its results are more 

stable  and  reliable  since  the  sensibility  increases  directly  proportionally  with 

sequencing  depth.  The  software  have  in  some point  better  performance  than  our 

algorithm in terms of precision, but at the same time they show far worse results in 

terms of sensibility.

In  Figure 3  it  is  shown a further comparison of  the performance of  the software 

against  our  algorithm  in  finding  somatic  mutations  at  1%  of  frequency  in  our 

simulated data at a depth of 2000. SomaticSniper and GATK are not shown in this 
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graph, because at 2000 of depth their sensibility and precision are equal to zero in 

finding variants at 1% of frequency.

In  Figure 4  it  is  shown a further comparison of  the performance of  the software 

against  our  algorithm  in  finding  somatic  mutations  at  1%  of  frequency  in  our 

simulated  data  at  a  depth  of  5000.  VarDict  loses  performance  at  this  read  depth 

regarding indels mutation. SomaticSniper and GATK are not shown in this graph, 

because at 5000 of depth their sensibility and precision are equal to zero in finding 

variants at 1% of frequency.

 

In the end, our algorithm shows better performance, more stable and more reliable 

results increasing read depth of sequencing on simulated datasets.  It has got a far 

better sensibility than other variant calling softwares at a cheap cost in precision. 
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Figure 1: Performance of our algorithm on simulated datasets (mutations at 3% of frequency rate).

Our algorithm is far superior than any other software in terms of sensibility (VarDict is the best  

among the other software at this condition). In terms of precision our performance is slightly worse 

than the other software (all around 99% of precision) except for transversions (our precision is 

around 88%), but this drop in precision is far highly compensated by the major sensibility. (VarDict 

is the best among the other software even if it lacks in precision in finding indels compared to 

VarScan2).
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Figure 2: Performance of our algorithm on simulated datasets (mutations at 10% of frequency rate).

Our algorithm is far superior than any other software in terms of sensibility. SomaticSniper is the 

best among the other software at this condition (sensibility at 10%) except for indels; SomaticSniper 

cannot  point  out  indels  mutation  while  VarDict  can.  In  terms  of  precision  our  performance  is 

slightly worse than the other software (all around 99% of precision, our precision is around 85%), 

but this drop in precision is far highly compensated by the major sensibility. VarDict is the best 
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among the other software (regarding the precision at 10%) even if it lacks in precision in finding 

indels compared to VarScan2 at this condition.

Figure 3: Comparison of the performance of the best software (Mutect, VarScan2 and VarDict) 

against our algorithm at 2000 depth in finding somatic mutations at 1%. Indels of Mutect is zero 

because this software cannot call indels.
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Figure 4:  Comparison of the performance of the best software (Mutect, VarScan2 and VarDict) 

against our algorithm at 5000 depth in finding somatic mutations at 1%. Indels of Mutect is zero 

because this software cannot call indels.
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4.1.2 Variant Calling tests on real dataset

Thanks to a collaboration with Gemelli hospital, we  were able to analyze with our 

algorithm  the data  obtained from the  sequencing of  a  total  court  of  474 patients 

affected by HGSC. When we tested our algorithm we found that a surprisingly high 

number of variants passed the filter and were reported as true.   Figure 5 shows the 

results   obtained  with  a  sample  but  results  are  very  similar  for  all  the  analyzed 

samples. Red dots represent the variants that passed our variant caller.

Such an high number of true somatic variant in every sample is biologically very 

unlikely,  moreover  we  noticed  that  many  of  the  variants  were  recurring  among 

samples.  However this number of positive variant  and their frequency is coherent 

with  artifacts  introduced  duringthe  preparation  of  the  sample.   Indeed  as 

demonstrated  in  [21],  during amplicons  generation  PCR may insert  a  number  of 

errors. Error rate also depend on the specific base and it has ben demonstrated that it 

isdifferent between transitions and transversions. 

For  this  reason when  decided to  apply  two changes  to  our  procedure:  firstly  we 

decide to apply our algorithm on transitions (G:A and T:C variants) and transversions 

(all other SNPs) separately since, as demonstrated in [21] they show a different level 

of noise background.  Secondly  we decided to introduce a second  level of filtering 

to  remove  variants  present in “many” samples at the “same” frequency. Indeed it is 

unlikely to find the same variant at very similar frequency in   many samples.  The 

second  level  works  as  follow:  variants  with  a  recurrence  in  less  than  of  5% of 

samples are considered true; more recurring variants are considered true only if their 

allele frequency is more than 2 standard deviation from the average VAF of the same 

variants in all the samples.

By applying this second filter only variants  marked with an “X” in the figure  were 

considered positive and have been validated with Sanger Sequencing.
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Figure 5: An example of variant distribution in one of the samples in exam. “x” axis represents read 
depth while “y” axis represents the frequency of variants in percentage. Blue variants are filtered 
out by the first filter. Red variants remain after the first filtering. Variants indicated with an “X” 
passed the two filters.

Table  1 shows  the  filtering  steps  power  on  a  subset  of  all  the  samples  that  we 

analyzed. Here we show only the first 49 samples that we analyzed. At the begging, 

after the alignment step every sample carries a huge number of variants,shown in the 

“unfiltered” column; The vast majority of them comes from sequencing errors that 

are  filtered  out  by  the  first  filter.  The  second  level  of  filtering  eliminates  the 

remaining falls positive calls. What remains after this filter is a number of somatic 

variants,  one per  sample in average,  that  is  reasonable from a biological  point  of 

view.
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Table 2 shows the list of variants found in our real dataset that have been validated 

with Sanger Sequencing

Table 1: This table shows the subsequent levels of filtering the data in our pipeline, showing the 

number of variants that remain after the application of the filters of our pipeline.
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Sample Unfiltered First Filter Second Filter
sample1 61602 197 1
sample2 67991 105 1
sample3 64207 137 1
sample4 65658 138 2
sample5 65673 118 1
sample6 65107 151 2
sample7 62811 138 0
sample8 60308 141 1
sample9 64066 137 0
sample10 66367 116 1
sample11 77551 137 0
sample12 83748 171 4
sample13 75931 138 2
sample14 73224 116 0
sample15 77617 136 2
sample16 59898 213 3
sample17 60523 161 0
sample18 75449 117 2
sample19 58931 159 0
sample20 59673 151 1
sample21 72060 142 1
sample22 80219 117 0
sample23 63829 126 1
sample24 62167 246 2
sample25 69860 161 0
sample26 76783 148 2
sample27 73932 155 1
sample28 82567 216 9
sample29 80834 113 3
sample30 77496 141 2
sample31 62135 133 0
sample32 66175 117 0
sample33 65311 127 0
sample34 71847 118 0
sample35 66752 168 1
sample36 65483 119 0
sample37 64406 123 0
sample38 66487 108 1
sample39 61731 117 0
sample40 64754 122 0
sample41 68625 114 1
sample42 62796 125 0
sample43 72496 103 3
sample44 70211 135 0
sample45 75539 125 0
sample46 63040 114 1
sample47 65527 120 3
sample48 74137 165 4
sample49 60427 139 2



Table 2

Figure  6 show  all  the  validated  variants  with  Sanger  method  found  in  our  49 

samples. VAF=Variant Allele Frequency.

Panel A: c.8165C>T on gene BRCA2.

Panel B: c.3262A>G on gene BRCA1. 

Panel C: c.1244A>G on gene BRCA2.

Panel D: c.4264_4273delGAGACTTCTG on gene BRCA2.

Panel E: c.5313delC on gene BRCA1.

Panel F: c.5158_5163delACCCAG on gene BRCA1. 

Figure 6 Panel A

47

 
VAF 5%
p.Thr2722Ile BRCA2   
c.8165C>T

WT

Sample HGVS Gene Frequency (%)
27 c.8165C>T BRCA2 5
41 c.3262A>G BRCA1 12
38 c.1244A>G BRCA2 25
21 c.4264_4273delGAGACTTCTG BRCA2 8
35 c.5313delC BRCA1 19
20 c.5158_5163delACCCAG BRCA1 21



Figure 6 Panel B

48

VAF 12%
p.Asn1311Ser BRCA1 
c.3262A>G

WT







4.2 STAble results

We downloaded original RNA reads are from Kamke and colleagues of HMY and 

LMY bacteria [96]. LMY and HMY RNAs have been separately reconstructed with 

STAble. Reconstructed transcripts have been then aligned using BLAST algorithm 

against our custom reference genes as described in “Materials and Methods” section. 

The  original  reads  of  the  samples  have  then  been  aligned  to  the  reconstructed 

transcripts to estimate the abundance of each reconstructed transcript as explained in 

Materials and Methods section. The data obtained from this analysis flowed into two 

distinct contingency tables, one for HMY and one for LMY, that have been the input 

files for the last module of STAble: the flux-balance analysis. 

Table 3 and Table 4 show a sum up the features of the samples used in our study. The 

tables contain the number of the reads of each sample, the number of unused reads 

for each sample, i.e. the reads that have been not used for the reconstruction of any 

transcript,  the  number  of  the  reconstructed  transcripts  for  each  sample  and  the 

number of the reads associated to the mRNAs. Unused reads have been aligned later 

against Blast NCBI database and we verified that they were bacterial rRNA sequence. 

That could be explained with consideration that samples had not been well cleaned 

from rRNA sequences.

Figure 7 shows a scheme of the modules whom STAble is composed. Module A has 

been written before the start of this study while modules B and C have been written 

as part  of  this research project.  Module C has been written in collaboration with 

Cambridge University.

Figure 8 shows a graphic example of a pathway that we reconstructed in our study, 

particularly the pathway of Butanoate Metabolism. We mapped the raw reads count 

associated with each gene of the pathway, coloring in red the genes more expressed in 

LMY animals and in green the genes more expressed in HMY animals. These raw 

data  seems to indicate  the same results  suggested by Kamke and colleagues:  the 
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formation of butyrate from succinate is more abundant in LMY animals or negatively 

correlated to methane yield animals as suggested by Kamke and colleagues [96].

The raw reads count associated to each reconstructed transcripts, of each pathway, 

was the input of the module C, the flux-balance analysis module.

Table 5 and Table 6 showed the results of the last module of STAble, the one which 

predict metabolic switches after the reconstruction of a dataset of transcripts. Original 

RNA reads are from Kamke and colleagues of HMY and LMY bacteria [96]. Results 

obtained  from  our  metabolic  network  analysis  are  consistent  with  data  about 

differences  in  usage  of  Glycolysis/Gluconeogenesis  and  Butanoate  Biosynthesis 

pathways  described  in  the  paper  (data  not  shown).  Interestingly  our  analysis 

identified new pathways that are independent from the original set of transcripts used 

to  feed  the  metabolic  model  network.  Indeed,  our  metabolic  network  analysis 

identified  that  both  in  LMY  and  HMY  bacteria,  transport  channels  are  highly 

expressed. Moreover, the performed analysis revealed carbohydrate metabolism as 

dominating  followed  by  amino  acid  metabolism,  results  in  agreement  with  those 

reported by Hinsu and colleagues that described functionally active bacteria and their 

biological  processes  in  rumen  of  buffalo  (Bubalus  bubalis)  adapted  to  different 

dietary treatments [99].

Table 3: Data of the original number of reads, the reads discarded by the assembler 

and the number of reconstructed transcripts for LMY animals.

Table 3

Table 4: Data of the original number of reads, the reads discarded by the assembler 

and the number of reconstructed transcripts for HMY animals.

52

Sample Total N° Reads N°_Unused_Reads N° Reconstructed mRNAs N°_Reads_Associated_to_mRNAs
SRR873454_LOW 29084026 13669375 615298 10555304
SRR873451_LOW 33318400 13114978 640845 14678617
SRR873453_LOW 45075982 18756225 795115 18788929



Table 4
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Sample Total N° Reads N°_Unused_Reads N° Reconstructed mRNAs N°_Reads_Associated_to_mRNAs
SRR873461_HIGH 33752384 18069111 673936 11360308
SRR873463_HIGH 26822560 14526596 560288 8166309
SRR1206249_HIGH 31366260 15950930 650016 10646926







Table 5:  List of all  bacterial metabolic reactions identified in high methane yield 

animals. 

Table 6: List  of  all  bacterial  metabolic reactions identified in low methane yield 

animals.
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Table 5

abbreviation Subsystem officialName

NADH16pp Oxidative Phosphorylation NADH dehydrogenase (ubiquinone-8 & 3 protons) (periplasm)

PROt2rpp Transport L-proline reversible transport via proton symport (periplasm)

PROt4pp Transport Na+/Proline-L symporter (periplasm)

GLCP2 Glycolysis/Gluconeogenesis glycogen phosphorylase

GLCS1 Glycolysis/Gluconeogenesis glycogen synthase (ADPGlc)

GLGC Glycolysis/Gluconeogenesis glucose-1-phosphate adenylyltransferase

THRt2rpp Transport L-threonine reversible transport via proton symport (periplasm)

THRt4pp Transport L-threonine  via sodium symport (periplasm)

INSt2pp Transport inosine transport in via proton symport (periplasm)

INSt2rpp Transport inosine transport in via proton symport reversible (periplasm)

PPCSCT Alternate Carbon Metabolism Propanoyl-CoA: succinate CoA-transferase

SUCOAS Citric Acid Cycle succinyl-CoA synthetase (ADP-forming)

TALA Pentose Phosphate Pathway transaldolase

ACCOAL Alternate Carbon Metabolism acetate-CoA ligase (ADP-forming)

GLUt4pp Transport Na+/glutamate symport (periplasm)

PPAKr Alternate Carbon Metabolism Propionate kinase

PTA2 Alternate Carbon Metabolism Phosphate acetyltransferase

THFAT Folate Metabolism Tetrahydrofolate aminomethyltransferase

FOMETRi Folate Metabolism Aminomethyltransferase

ADK3 Nucleotide Salvage Pathway adentylate kinase (GTP)

FBA3 Pentose Phosphate Pathway 7-bisphosphate D-glyceraldehyde-3-phosphate-lyase

PFK_3 Pentose Phosphate Pathway phosphofructokinase (s7p)

URAt2pp Transport uracil transport in via proton symport (periplasm)

URAt2rpp Transport uracil transport in via proton symport reversible (periplasm)

GLYt2pp Transport glycine transport in via proton symport (periplasm)

GLCP Glycolysis/Gluconeogenesis glycogen phosphorylase

NDPK1 Nucleotide Salvage Pathway nucleoside-diphosphate kinase (ATP:GDP)

CA2t3pp Inorganic Ion Transport and Metabolism calcium (Ca+2) transport out via proton antiport (periplasm)

CAt6pp Inorganic Ion Transport and Metabolism calcium / sodium antiporter (1:1)

PPKr Oxidative Phosphorylation polyphosphate kinase

URIt2pp Transport uridine transport in via proton symport (periplasm)

URIt2rpp Transport uridine transport in via proton symport reversible (periplasm)

NADH18pp Oxidative Phosphorylation NADH dehydrogenase (demethylmenaquinone-8 & 3 protons) (periplasm)

FRD3 Citric Acid Cycle fumarate reductase

ALAt2pp Transport L-alanine transport in via proton symport (periplasm)

ALAt2rpp Transport L-alanine reversible transport via proton symport (periplasm)

GLYt2rpp Transport glycine reversible transport via proton symport (periplasm)
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Table 6

abbreviation Subsystem officialName
ALATA_L Alanine and Aspartate Metabolism L-alanine transaminase
THMDt2pp Transport thymidine transport in via proton symport (periplasm)
THMDt2rpp Transport thymidine transport in via proton symport reversible (periplasm)
NAt3pp Inorganic Ion Transport and Metabolism sodium transport out via proton antiport (cytoplasm to periplasm)
VPAMTr Valine, Leucine and Isoleucine Metabolism Valine-pyruvate aminotransferase
VALTA Valine, Leucine and Isoleucine Metabolism valine transaminase
SUCDi Oxidative Phosphorylation succinate dehydrogenase (irreversible)
GLUABUTt7pp Transport 4-aminobutyrate/glutamate antiport (periplasm)
ABUTt2pp Transport 4-aminobutyrate transport in via proton symport (periplasm)
GLYt4pp Transport glycine transport in via sodium symport (periplasm)
GLUt2rpp Transport L-glutamate transport via proton symport reversible (periplasm)
GLDBRAN2 Glycolysis/Gluconeogenesis glycogen debranching enzyme (bglycogen -> glycogen)
GLYCLTt2rpp Transport glycolate transport via proton symport
GLYCLTt4pp Transport glycolate transport via sodium symport (periplasm)
ACt2rpp Transport acetate reversible transport via proton symport (periplasm)
ACt4pp Transport Na+/Acetate symport (periplasm)
ADK1 Nucleotide Salvage Pathway adenylate kinase
PTAr Pyruvate Metabolism phosphotransacetylase
ACKr Pyruvate Metabolism acetate kinase
ACS Pyruvate Metabolism acetyl-CoA synthetase
SERt2rpp Transport L-serine reversible transport via proton symport (periplasm)
SERt4pp Transport L-serine via sodium symport (periplasm)
GLCtex Transport glucose transport via diffusion (extracellular to periplasm)
PRPPS Histidine Metabolism phosphoribosylpyrophosphate synthetase
PPM Alternate Carbon Metabolism phosphopentomutase
R15BPK Alternate Carbon Metabolism Ribose-1,5 bisphosphokinase
R1PK Alternate Carbon Metabolism ribose 1-phosphokinase
GLCtexi Transport D-glucose transport via diffusion (extracellular to periplasm) irreversible
ADNt2pp Transport adenosine transport in via proton symport (periplasm)
ADNt2rpp Transport adenosine transport in via proton symport reversible (periplasm)
ASPt2pp Transport L-aspartate transport in via proton symport (periplasm)
ASPt2rpp Transport L-aspartate transport in via proton symport (periplasm) reversible
INDOLEt2pp Transport Indole transport via proton symport irreversible (periplasm)
INDOLEt2rpp Transport Indole transport via proton symport reversible (periplasm)
FBA Glycolysis/Gluconeogenesis fructose-bisphosphate aldolase
PFK Glycolysis/Gluconeogenesis phosphofructokinase
ICHORS Cofactor and Prosthetic Group Biosynthesis isochorismate synthase
ICHORSi Cofactor and Prosthetic Group Biosynthesis Isochorismate Synthase
HPYRI Alternate Carbon Metabolism hydroxypyruvate isomerase
HPYRRx Alternate Carbon Metabolism Hydroxypyruvate reductase (NADH)
TRSARr Alternate Carbon Metabolism tartronate semialdehyde reductase
CYTDt2pp Transport cytidine transport in via proton symport (periplasm)
CYTDt2rpp Transport cytidine transport in via proton symport reversible (periplasm)
FRD2 Citric Acid Cycle fumarate reductase
NADH17pp Oxidative Phosphorylation NADH dehydrogenase (menaquinone-8 & 3 protons) (periplasm)
EX_h(e) Exchange H+ exchange
EX_fe3(e) Exchange Fe3+ exchange
EX_fe2(e) Exchange Fe2+ exchange
Htex Transport proton transport via diffusion (extracellular to periplasm)
FEROpp Inorganic Ion Transport and Metabolism ferroxidase
FE3tex Transport iron (III) transport via diffusion (extracellular to periplasm)
FE2tex Transport iron (II) transport via diffusion (extracellular to periplasm)
GLBRAN2 Glycolysis/Gluconeogenesis 4-alpha-glucan branching enzyme (glycogen -> bglycogen)
EX_o2(e) Exchange O2 exchange
EX_h2o(e) Exchange H2O exchange
O2tex Transport oxygen transport via diffusion (extracellular to periplasm)
H2Otex Transport H2O transport via diffusion (extracellular to periplasm)
CRNDt2rpp Transport D-carnitine outward transport (H+ antiport)
CRNt2rpp Transport L-carnitine outward transport (H+ antiport)
CRNt8pp Transport L-carnitine/D-carnitine antiporter (periplasm)
ALAt4pp Transport L-alanine transport in via sodium symport (periplasm)
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5.0 Discussion and conclusion

During the PhD., the research activity has been divided in two main field of analysis 

of NGS data: the development of a new variant calling algorithm for the analysis of 

somatic mutations (SNP and indels) and the analysis of RNA-Seq data. This second 

part ended with our publication [83] and consisted in the update of STAble, a de novo 

assembly software.

As  regard  the  first  part  of  the  research,  the  variant  calling  algorithm  has  been 

integrated in Amplicon Suite, a software that is currently used by clinicians for the 

analysis of NGS data. The algorithm can perform single sample analysis, because it 

can calibrate itself on the base of the noise background of the single sample without 

the need of particular settings before running the analysis or the need of a control 

sample.  This means that could be used on different kind of data and on different 

experimental condition  and can potentially work on different gene panels. Here we 

presented only data from a single gene panel, particularly data obtained with the use 

of the BRCA-Devyser Kit but our laboratory is already analyzing, for example, some 

data from CFTR gene using the same algorithm with good results. Other software can 

be good for germline analysis and in WES or WGS but it is very difficult to use them 

for a single sample somatic variant analysis since many of them like VarScan2 need a 

control sample to calibrate themselves before starting the analysis; often, a control 

sample  cannot  be  easily  obtained  in  clinical  conditions,  or  could  be  too  much 

expensive to obtain and analyze it in terms of time or cost.  For these reasons we 

developed our algorithm. First, we developed an algorithm that could eliminate the 

first level of noise background, and we tested it on simulated datasets generated with 

ART simulator. To test our algorithm and compare its performance against the other 

variant calling software we considered to use available datasets like for examples 
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those provided by  the DREAM group [100], but anyone of the datasets that we found 

on the available  databases was  conform to our need.  We wanted something that 

could represent in a very similar manner the panel genes that we needed to analyze. 

Because of this unmet necessity and since we wanted to have a complete control on 

our data, in order to perform a precise test of the algorithms and the other software 

we chose  to  simulate  the data  and to  test  the  performance of  the variant  calling 

software in silico. But when we tested the algorithm on real sample we realized that 

applying only a first level of filter was not sufficient to detect somatic true variants, 

since after the application of the first level filter we found still a lot of number of  

variant on the samples tested, even more than one hundred per sample, a number that 

is not plausible from a biological point of view. This can be explained because ART 

when produces simulated reads,  it  mainly introduces the errors of  the sequencing 

platform but cannot simulate the errors induced by the PCR in the amplicon based 

sequencing [21]. The error introduced by the PCR divides the noise background of 

SNPs  in  two main  groups  that  we  call  transitions  (T:C  and  G:A mutations)  and 

transversions  (other  transitions  plus  transversions).  Since  these  two  groups  of 

mutations shows difference noise background due to the error introduced by the Taq 

polymerase during the amplification step, as described in [21], we decided to divide 

the input variants of our variant calling algorithm in three groups when we applied it  

on  real  datasets:  transitions,  transversions  and indels  (data  not  shown)  to  take  in 

consideration even the error introduced by the Taq polymerase. Above this correction, 

to further reduce the lack in terms of precision of our simulated data, we decided to 

insert  a new level  of filter  on our pipeline,  a filter of second level:  since variant 

calling software filter the variants on the base of the frequency it is impossible for 

them to filter variants with an high frequency that could be, however, the product of a 

contamination. Indeed, if a variant is present in an high number of samples always at 

the same frequency is likely an error, due to a contamination or a PCR error, or due to 

other technical problems occurring in the phase of preparation of the library, since it 
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is extremely unlikely that a somatic variant, that is basically a rare event, is present in 

many samples always at the same frequency. The criteria we used to filter variants in 

the second step of filtering are the followings: variants that are present in more than 

5% of the samples always at the same frequency are filtered out because they are 

considered part of the noise background, while variants that are present in more than 

5% of  the  samples  that  have  got  a  frequency  equal  or  higher  to  the  average  of 

frequency  among  the  other  samples  plus  3  times  the  standard  deviation  are 

considered interesting and are not filtered out.

In the final report of our pipeline the clinician can examine each variant that pass the 

filters and can choose which variants are the most interesting from their clinical point 

of view. The clinical has got a full control of the variants discarded from the second 

filter, indeed the option of  Variant Distribution  permits to examine the presence of 

that variant among the samples in our database with a bar chart in which on the x axis 

there is the frequency in percentage, and on y axis there is the number of samples in 

which that variant is present. This information could admit to bypass the second level 

of noise background that other variant calling software cannot point out. 

 

In the second part of this research work we focus on the analysis of RNA-Seq data. 

This  second part  ended with our  publication  [83]  and consisted  in  the  update  of 

STAble, a de novo assembly software. STAble is born as a new standalone RNA-seq 

de novo assembler since our group decided, prior to the start of this research project, 

to develop a new tool for the analysis of RNA-seq data, developing the first module 

of STAble. This module is based on the principle of head-tail alignments between 

reads and the construction and the traversal of a graph in order to reconstruct full  

length transcripts, as described in [83]. But then we evaluated that the reconstruction 

of full length transcripts was not enough informative from a biological point of view. 

We decided to add a new part in our workflow of analysis that uses the information 

given by transcripts expressed by microbiota to build-up a metabolic network. This 
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last module is based on a flux-balance analysis approach and has been developed by 

Pietro Liò and his group in Cambridge University. More details about this module 

can be found in [98]. The aim of this flux-balance analysis is to identify switches in 

metabolic  pathways of  the  microbial  population  in  the  sample  in  exam from the 

normal metabolic flux that is represented by a model organism. In our test we used 

the normal metabolic flux of E. Coli as model. The output of the analysis is a list of 

predicted altered,  downregulated or upregulated genes,  grouped in pathways.  This 

approach admits to analyze deeply the flux of metabolism of an entire microbiota and 

opens the theoretical possibility to intervene not balancing the bacterial population 

with physiological  species to  restore the healthy condition,  like happens in many 

therapeutic  approach,  but  particularly  in  adopting  a  specific  drug  that  target  the 

altered  gene  or  genes,  or  pathway that  are  upregulated  or  downregulated  in  that 

patient  and  in  that  specific  moment.  This  idea,  that  in  this  moment  is  mainly 

experimental,  could  contribute  to  find  new clinical  approaches  to  treat  dysbiosis. 

Although we tested STAble on different datasets of human and microbiota, for the 

moment,  the complete  pipeline of  analysis  that  includes the flux-balance analysis 

module has been tested only on a single RNA-seq dataset, the one of Kamke and 

colleagues [96]. We wanted to test it on more datasets but even if many RNA-seq 

datasets from human microbiota can be available, we needed to find one dataset that 

were  been extensively  analyzed,  even with  transcript  abundancy,  to  have  a  good 

quality benchmark dataset to test our second module to verify the performance of our 

system. Our specific work in this project, above testing again the first module and 

optimize some parameters, was to reconstruct the transcripts from RNA-seq data of 

Kamke  and  colleagues  with  the  first  module  of  STAble,  align  the  reconstructed 

transcripts against a list of orthologous genes of several bacterial metabolic pathways 

downloaded from KEGG database and build-up a contingency table with the read 

counts associated with each ortologhous gene that is the input file for the flux-balance 

analysis module, as described in [83]. After the tests, we found that our results were 
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comparable with ones declared by Kamke and colleagues (data not shown), but our 

work predicted that in the samples of Kamke and colleagues were expressed new 

pathways and proteins like transport  membrane proteins and membrane channels, 

which Kamke and colleagues did not find in their analysis. Since our system predict 

the same results that Kamke and colleagues validated in their experiments, but also 

predicted  the  alteration  of  the  metabolic  fluxes  of  different  pathways  and  the 

alteration  of  expression  of  different  proteins,  these  results,  even  if  they are  only 

preliminary,  and  would  need  to  be   experimentally  validated,  leaded  us  to  the 

conclusion that STAble could be an optimal instrument to analyze switches in the 

metabolism of microbiota and an optimal instrument to predict the expression of new 

proteins and reactions not directly inferable by raw metatranscriptomic data.

Above all, the main output data of this last module is not only a list of single genes up 

or down-regulated, but also a group of pathways that can be more easily correlated 

with a biological meaning than a list of isolated genes. This could help  to build-up a 

different approach in the future, even in clinical applications, for the treatment of 

dysbiosis.

6.0 Appendix A

Prior to the development of our variant calling algorithm, we tested the other variant 

calling software on simulated data, and we evaluated if they were able to identify 

both SNPs and indels on our simulated datasets calculating sensibility and precision 

for each condition. Results for SNPs are shown in  Figures a-b-c, results for indels 

are presented in Figures d-e-f. Software like SomaticSniper and Mutect are not able 

to identify indels. GATK either could not identify indels  when we tested it on our 

datasets.

GATK  obtained  bad  results  at  each  level  of  depth  or  at  each  level  of  mutation 

frequency. SomaticSniper generally shows a low level of precision which increases 
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with raising of read depth. Mutect works well at medium-high level of depth, and it 

can identify low frequency somatic mutations in SNPs with 1% and 3% of frequency 

at different  read depths. VarDict works more or less with the same performance of 

Mutect.  Mutect  and  SomaticSniper  cannot  call  indel  mutations.  Generally,  these 

software show irregular and unstable results, particularly VarScan2 which sensibility 

generally drops at different read depths. Also, in several point conditions during our 

tests their precision and sensitivity is zero because they could not call any variant in 

that experimental condition.
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Figure a:  Performance of the software in analyzing SNPs at 1%. a=VarDict;  b=SomaticSniper; 
c=VarScan2; d=Mutect; e=GATK.
VarScan2 sensibility drops at high values of read depth.
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Figure b:  Performance of the software in analyzing SNPs at 3%. a=VarDict;  b=SomaticSniper; 
c=VarScan2; d=Mutect; e=GATK.
In this conditions VarScan2 sensibility shows the most unstable result dropping at 1000 of read 
depth but increasing at very high level of read depth.
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Figure c:  Performance of the software in analyzing SNPs at 10%. a=VarDict; b=SomaticSniper; 
c=VarScan2; d=Mutect; e=GATK.
VarScan2 sensibility drops again at 7000 of read depth while other software reach a plateau or a 
more defined trend.
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Figure  d:  Performance  of  the  software  in  analyzing  indels  at  1%.  a=VarDict;  b=VarScan2; 
c=GATK.
VarDict shows very poor performance in terms of sensibility while its precision performance is not 

stationary.
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Figure  e:  Performance  of  the  software  in  analyzing  indels  at  3%.  a=VarDict;  b=VarScan2; 
c=GATK.
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Figure  f:  Performance  of  the  software  in  analyzing  indels  at  10%.  a=VarDict;  b=VarScan2; 

c=GATK.
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7.0 Appendix B

STAble Benchmarks data

STAble has been tested on simulated datasets and has been optimized for working 

both on bacterial transciptome but also on human genomes and to reconstruct even 

transcripts with splicing variants. 

The original work of STAble consisted in validate the performance of STAble and 

comparing it against the other available de novo assembly software on simulated data 

because it was necessary to know unambiguously what was true and what was false 

in benchmark tests. With real data the correctness of reconstructions has been usually 

assessed  by  the  alignment  of  the  reconstructed  transcripts  to  a  genome  or  to  a 

database of known transcripts, so as long as reconstructions were compatible with the 

reference were considered as true. With simulated datasets instead, more hard filters 

have been applied by accepting as true only those transcripts that were effectively 

present in database used for simulation: this opportunity allowed to characterize a 

new type of false positive that has been called False positive of class A (FPA): FPA 

group  contains  the  reconstructions  that  are  compatible  with  genome  but  do  not 

correspond to any of the transcripts used to perform sequencing simulation. Chimeric 

reconstructions that are not compatible with genome instead have been called False 

positive of class B (FPB). 

A total of 4 datasets have been simulated to test STAble performance against Trinity, 

Oases and Bridger using ART and simulating Illumina reads of 150 bp with 20x of 

coverage,  single  end,  platform  HiSeq  2500.  Reconstructed  transcript  have  been 

aligned  to  reference  of  really  expressed  genes  using  BLASTN  [101].  Only  the 

transcripts that were fully included in the reference sequences have been accepted as 

true positive reconstruction. If a reference sequence was reconstructed of at least the 
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90% of its own length, it was labeled as full reconstructed. GMAP have also been 

used to distinguish between FPA and FPB: false positive reconstructions that were 

compatible with genome were labeled as FPA, else they were labeled as FPB.

The results of the comparison between STAble, Bridger and Oases in reconstructing 

the simulated datasets are shown in Table A and Table B.

Reconstructing dataset A Oases showed the highest sensibility but also the lowest 

precision since it showed the highest number of false positives. On the other hand 

STAble showed a good sensibility comparable to other software but producing the 

lowest  number  of  false  positives,  only  three  transcripts.  The  same  behaviour  of 

STAble can be seen on dataset B. However, in this case Oases and Trinity showed a 

slightly higher number of transcripts reconstructed at 70% and 100% than STAble, 

but at the same time they also showed the highest rate of false positives. 

Since  datasets  C  and  D  were  produced  using  bacterial  transcripts  we  could  not 

produce FPA results since splicing is not present in bacterial genomes. Anyway in 

dataset  C  STAble  showed the  highest  sensibility  while  minimizing false  positive 

ratio.

Results on dataset D underlines the notable technical features of STAble: it run with 

only 8 GB of RAM and completed the assembly work. While, analyzing the same 

dataset, even on a computer equipped with 48 GB of RAM other assemblers could 

not complete the assembly.

Table A: Results on 200 (Dataset A) and 6309 (Dataset B) random human transcripts. 

STAble returned the most reliable set of results showing a sensibility comparable to 

other assemblers while producing only 3 false positives. 

Table B: 11815 (dataset C) and 43578 (dataset D) mixed bacterial transcripts. STAble 

shown the best sensibility while producing the lowest false positive ratio alongside 

with Trinity. Due to absence of alternative splicing in bacterial transcriptome it is not 
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possible  to  produce FPA class  errors.  With dataset  D it  has been not  possible  to 

compare results of STAble with existing assemblers as they terminated with an out of 

memory error. 

Legend:

Assembler: Name of the assembler.

# of results: Total number of reconstructed transcripts.

# of FP: Number of False Positive results. 

FPA:  False Positive class A.

FPB: False Positive class B.

100%: Number of full reconstructed transcripts.

70%: Number of transcripts reconstructed at 70%.

S100: Percentage of full reconstructed transcripts.

 S70: Percentage of transcripts reconstructed at 70%.

FPR: False Positive Ratio.

Table A

Dataset A 
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Assembler # of results # of FP FPA FPB 100% 70% S100 S70 FPR

STAble 227 1 0 1 152 161 76% 81% 0.44%

Bridger 210 58 30 28 143 148 72% 74% 28%

Oases 321 106 89 17 159 165 80% 83% 33%

Trinity 258 56 48 8 157 167 79% 84% 22%

Dataset B

Assembler # of results # of FP FPA FPB 100% 70% S100 S70 FPR

STAble 8906 2285 1053 1232 3295 4179 52% 66% 26%

Bridger 5697 1820 945 875 2728 3315 43% 53% 32%

Oases 16895 5722 2835 2887 3550 4156 56% 66% 34%

Trinity 8300 2543 2223 320 3603 4315 57% 68% 31%

Table B

Dataset C

Assembler # of results # of FP 100% 70% S100 S70 FPR

STAble 13985 983 10007 10263 85% 87% 7%

Bridger 5873 253 8510 9075 72% 77% 4%

Oases 5579 268 6687 8603 57% 73% 5%

Trinity 7597 145 9136 9565 77% 81% 2%

Dataset D

Assembler # of results # of FP 100% 70% S100 S70 FPR

STAble 134110 1040 20800 35424 48% 81% 0.8%
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