
Chapter 22
Characterization of the Dynamical Model of a
Force Sensor for Robot Manipulators

Ezio Bassi, Francesco Benzi, Luca Massimiliano Capisani, Davide Cuppone, and
Antonella Ferrara

22.1 Introduction

Recent advances in robotics include the capability of planning a suitable trajec-
tory in order to drive the robot from an initial configurationto a pre-determined
goal point, or to follow, when possible, a pre-specified trajectory even in unknown
environments [8]. Various methods can be adopted to accomplish this task. These
methods are mainly classified in relation to the capability of the sensors which are
employed to map the environment and the obstacles near the robot. When distance
sensors and cameras are considered, the trajectory can be planned without colliding
with the obstacles (i.e. no force measurements are required), see [3, 12, 13].

In contrast, considering only force sensors, the robot mustcollide with the obsta-
cles in order to detect their presence and location and to plan a suitable trajectory to
reach the goal [6, 7, 11, 18]. In this case, it is fundamental to design a suitable control
law to reduce the risk of harming the robot or the obstacles themselves. Moreover,
the use of force sensor is advisable in many position/force control schemes for ro-
bot manipulators. In all the mentioned cases, it is important to formulate an accurate
model of the sensor to correctly measure the relevant contact forces.

In this paper, a case is considered in which a force sensor is mounted on the end-
effector of a robot manipulator. The force revealed by the sensor results not only
from the actual contact force between the tip of the sensor and the environment,
but also from other dynamical effects, related to gravity, centripetal and Coriolis
forces, accelerations of the tip of the sensor, and noise dueto vibrations or electrical
disturbances (see [14]). To determine reliable force measurements, it is necessary
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to estimate the dynamical effects which generate forces notrelated with the actual
contact forces, so as to eliminate these effects from the measured force.

In this work, a planar manipulator in the vertical plane is considered. Starting
from the manipulator kinematics, a dynamical model of the sensor and its tip is
formulated. Then, identification experiments to estimate the unknown parameters
of the sensor and tip dynamical model are designed. The presented identification
procedure is oriented to minimize the noise effects on the estimate, by choosing
parametrized experiments which are optimized consideringa scalar valued informa-
tion function of the collected data [16, 17]. To deal with input noise, the approach
proposed by [19] has been followed. This approach consists in repeating the same
optimized experiment many times. In this way, assuming Gaussian input noise, it is
possible to determine an estimation of the average input andaverage output signals,
reducing the noise effects.

The model is then used to make the sensor measurements more accurate. Finally,
it is analyzed how to obtain the absolute value and the direction of the contact force.
Note that by enhancing the quality of the force measurements, the application of
robust position controllers provides improved performances (e.g., see [2, 5, 9]).

The identification experiment, made on a COMAU SMART3-S2 anthropomor-
phic rigid robot manipulator with an ATI Gamma force sensor,is finally described.

22.2 Sensor Measurements

A fundamental part of a force control loop is the determination of the contact force
between the tip of the manipulator and the environment [18].The considered force
sensor measures the forcef acting on its tip. This force is described in theO− xy
vertical plane indicated in Fig. 22.1, which represents themanipulator workspace.
The forcef is composed by two terms

f =
[

fx fy τz
]T

= f0 + fc, fc =
[

fcx fcy τcz
]T

(22.1)

where f0 refers to the forces related to the tip dynamics andfc refers to the forces
related to the contact with the environment. Vectorf contains the force and the
torque generated because of the contact, and the dynamical effects on the sensor tip,
where fx and fy are the components of the force andτz is the corresponding torque
revealed by the sensor. The torqueτcz on Ps is generated by the forcesfcx and fcy.

The objective is to determine a suitable model in order to eliminate the effect of
f0 in (22.1), so that the remnant force is actually the contact force. This implies that
if the tip is not in contact with the environment, the considered force has to be zero.
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Fig. 22.1 Three link planar manipulator

22.3 The Kinematic Model of the Robot

To analyze the dynamical effects of the masses of the sensor and the tip which
determine the termf0 in (22.1), it is necessary to introduce the kinematic model of
the robot.

In this paper, only vertical planar motions are considered,by locking three of the
six joints of the manipulator (note that the extension to thespatial motions is possi-
ble, but in this case the dynamic model of the tip is more complicated). The kine-
matic model describes the relation between the configuration q = [q1,q2,q3]

T of the
three considered joints and the end-effector position and orientationP = [Px,Py,φ ]T

in the vertical plane{x,y} which is the workspace. The angular termq1 is the orien-
tation of the first link with respect to they axis clockwise positive, whileq j, j = 2,3,
define the displacement of thej− th link with respect to the( j−1)− th, clockwise
positive (see Fig. 22.1).

The first rotational joint of the manipulator is located at the originO of the{x,y}
plane. The position of the sensor and of the extreme point of the robot are

Ps =
3

∑
k=1

[

lk sin(∑k
z=1qz)

lk cos(∑k
z=1 qz)

]

, P = Ps + lt

[

sin(q1 + q2+ q3)
cos(q1 + q2+ q3)

]

(22.2)

whereqi andli are the angular displacement and the length of thei-th link, respec-
tively while lt is the length of the tip. As indicated in Fig. 22.1, the pointP is the
extremal point of the tip of the end-effector, while the orientation of the tip with
respect to they axis is given byφ = q1 + q2 + q3. The positionPs of the sensor is
given in the{x,y} plane.

Now consider the center of gravityG of the rigid body given by the sensor and
its tip (see Fig. 22.1). The position of the pointG and its velocityvG are given by

G = Ps + lg

[

sin(φ)
cos(φ)

]

, vG = Ṗs + lg

[

φ̇ cos(φ)
−φ̇ sin(φ)

]

(22.3)
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wherelg is the distance betweenG and the position of the force sensorPs, m is the
total mass of the tip and the sensor, which causes the forces that are measured by
the sensor itself. Note thatlg andm are unknown. Then, the accelerationaG is

aG = P̈s + lg

[

−φ̇2 sin(φ)+ φ̈ cos(φ)
−φ̇2 cos(φ)− φ̈ sin(φ)

]

=

[

aGx

aGy

]

. (22.4)

Note that the the angular rotation of the tip with respect to thex axis is described
by φ , and the angular velocity of the tip is given byφ̇ez, whereez is the unit vector
in thez direction, normal to{x,y}. The angular acceleration is given byφ̈ez.

22.4 Sensor and Tip Dynamical Model

The dynamical model we have formulated is a relationship between the quantities
which characterize the motion of the tip of the sensor and theforces generated and
measured from the sensor itself. Note that in this paper it isassumed that the sensor
is composed of two parts: the first part is fastened with the robot and its mass cannot
produce forces measurable by the sensor since it can be viewed as a part of the link,
while the second part is fastened with the tip, and its mass, jointly with the mass
of the tip, can produce significant dynamical effects which can be revealed by the
sensor. For this reason, the robot and the first part of the sensor are not considered
in the formulation of the dynamical model. Only the structure composed by the tip
and by the second part of the sensor is relevant for our analysis.

By relying on (22.4) and on the transport theorem [1], it is possible to expressf ′0,
which is obtained by describingf0 in the rotated{x′,y′} reference, as follows

f ′0 =





f0x′

f0y′

τ0z



 =







f̄0x′ −maGx′ −mgsinφ
f̄0y′ −maGy′ −mgcosφ

τ̄0z − Iφ̈ + mlg(aGx′ + g)sinφ






(22.5)

whereg = 9.806 m/s2, I is the inertia of the sensor tip, which is unknown, and the
terms f̄0x′ , f̄0y′ , τ̄0z take in account the unknown constant biases always present on
the acquired generalized force.

Note that model (22.5) neglects some aspects as elasticity in transmissions and
mechanical plays, which can affect the determination ofG andφ , as well as their
derivatives. Moreover, noise is present in the analog communication between the
sensor and the dsPIC sampler. This is the reason why in the proposed identifica-
tion procedure, suitable actions has been done to counteract biasing due to these
unmodelled aspects. The procedure consists of the following steps: data sampling;
model parametrization; trajectory optimization; execution of the optimized exper-
iment for Nexp times (see [19]); determination of the average values for the input
and the output signals; construction of a single identification input matrix, which
will be denoted withΦ(·), collecting all averaged input samples; determination of
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a suitable preconditioner for the normal equations matrix,i.e., Φ(·)T Φ(·), see [4];
determination of the parameter vectorθ LS on the basis of the LS estimator [15];
validation of the identified model.

In the sequel, we will denote with the termsample of the optimized experiment
E the set of the entries of two vectors: the first vector has, as components, the forces
and the torques acquired, i.e.yE

i = [ f E

0x′i, f E

0y′i,τ
E
0zi]

T , while the second has, as compo-

nents, the parameters of the motion of the tip of the sensor:uE
i = [P̈E

si ,φE
i , φ̇E

i , φ̈E
i ]T .

Each samplesTE
i = [uTE

i ,yTE
i ] represents the inputs and outputs values at the dis-

crete time instanti. At the end of an optimized experiment, an output vector
Y E = [yTE

1 , ...,yTE
i , ...,yTE

NE ]T , whereNE is the number of sampled data of the op-

timized experimentE , and an input matrixΦE (·), which is a nonlinear function of
all the input signalsuE

i and of their first and second time derivatives, are determined.
As for model parametrization, it is apparent that model (22.5) is linear in the

parameters vector
θ o = [ f̄0x′ , f̄0y′ , τ̄0z,m,mlg, I]

T (22.6)

which contains the actual but unknown parameters. Therefore, the model can be
rewritten in the parametrized linear formY = Φθ o whereΦ is a suitable matrix.
When a particular optimized experimentE is executed, the noise is present on the
outputs, i.e. the model becomes

YE = ΦE (P̈s,φ , φ̇ , φ̈)θ o +V (22.7)

andV is supposed to be Gaussian.ΦE (·) collects the values of the input samples,
i.e.ΦTE = [ΦTE

1 , . . . ,ΦTE
i , . . . ,ΦTE

N ] andΦTE
i is an input transformation at the time

instanti,

ΦE
i =





1 0 0M1i M2i 0
0 1 0M3i M4i 0
0 0 1 0 M1i M2i



 (22.8)

whereMki refers to the value ofMk(t) for the optimized experimentE at the time
instantt = iT ,

M1 =
[

P̈sx cosφ −
(

P̈sy + g
)

sinφ
]

, M2 = φ̈ ,

M3 = −
[

P̈sx sinφ +
(

P̈sy + g
)

cosφ
]

, M4 = φ̇2.
(22.9)

To design each optimized experiment, Finite Fourier Serieshave been considered






















qr
1(t) = ∑3

i=1

[

xi sin 2π it
T + xi+3cos2π it

T + xi+6sin 2π(i+3)t
T

]

qr
2(t) = ∑3

i=1

[

xi sin 2π it
T + xi+3cos2π it

T + xi+9sin 2π(i+3)t
T

]

qr
3(t) = ∑3

i=1

[

xi sin 2π it
T + xi+3cos2π it

T + xi+12sin 2π(i+3)t
T

]

(22.10)

wherex ∈ R
15, so as to define parametrized reference signalsqr

j(t) for the manipu-
lator joints which can be optimized by choosing the vectorx.
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The functionF to be optimized is a measure of the information contained in
the matrixM = ΦT Φ in the Loewner sense, see [16]. Among the possible criteria
which can be considered for the functionF theD-criterion has been choosen, i.e.
F = det(M) which has many interesting properties, such as the independence of
the informativity ofM from the trajectory parametrization. Hence, the best choice
for the optimized experiment parametrization is given by

xopt = argmaxxdet(M) (22.11)

in which M is obtained by simulating the values of the input matrixΦ when the
inputs are given from the equations (22.10) with the choice (22.11). It can be proved
that, in this way, it is possible to minimize the variance of each parameter estimate.
Note that in our case, the feasibility of the trajectory determinable relying onxopt

through (22.10) has been verified a posteriori. Another approach could be that of
applying a constrained optimization method.

As described by [19], the optimized experiment is executedNexp times, so as to
reduce the noise acting on the input signal. Then, the identification data setS is ob-
tained by averaging the sampled signals obtained during therepeated experiments,
i.e. each samplesE

i of each experiment is considered to determine the samples re-
lated to the identification data setsS

i

sS
i =

∑∀E sE
i

Nexp . (22.12)

The data setsS is then considered to perform the parameter identification.

22.5 Estimation of the Contact Force

Once the parameters of the model for thef0 term in (22.1) are estimated, it is possi-
ble to determine a better estimation of the contact forcefc by evaluating the term

f̂c = f −R(−φ)Φ(P̈s,φ , φ̇ , φ̈ )θ LS (22.13)

where f̂c is the estimation offc, Φ(P̈s,φ , φ̇ , φ̈ ) is the nonlinear transformation of the
inputs at the time instanti, θ LS is the estimated parameters vector, andR(−φ) is a
rotation in the{x,y} plane.

Note that the objective is to estimate the absolute value andthe direction of the
contact forcefc, while in (22.13) three equations are present, hence the problem of
estimating the contact force is overdetermined. Let us denote with R the absolute
value of the contact force (ϕ is its direction, with respect to they axis). In absence
of noise and unmodelled effects,fc is given by

fc = [ fcx, fcy, τcz]
T = [−Rsinϕ , −Rcosϕ , −Rd sinϕ ] (22.14)
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whered = ‖P−PS‖ = lt . In presence of noise and unmodelled effects,f̂c differs
from fc. Then, (22.14) can be rewritten as

f̂c = J(ϑ o)+ ε, ϑ o = [R,ϕ ]T (22.15)

in which J(·) represents the nonlinear model (22.14) andε ∈ R
3 is unknown. By

minimizing the termεT ε with respect toϑ o, one obtains

ϕ = arctan

[

f̂cx − τ̂czd

f̂cy(1+ d2)

]

, R =

∣

∣

∣

∣

(τ̂czd− f̂cx)sinϕ − f̂cy cosϕ
1+ d2sin2 ϕ

∣

∣

∣

∣

. (22.16)

Fig. 22.2 The COMAU SMART3-S2 robot and the force sensor with its tip

22.6 Description of the Considered Robotic System

The COMAU SMART3-S2 industrial anthropomorphic rigid manipulator, located
at the Department of Electrical Engineering of the University of Pavia, is shown in
Fig. 22.2. It consists of six-DOF actuated by six brushless electric motors. Six 12-bit
resolvers supply accurate angular position measurements.

Torque transmission is provided by reducers. As previouslymentioned, in this
paper, for the sake of simplicity, a three-DOF planar manipulator is considered (see
Fig. 22.1). That is, for our purposes, joints 1, 4 and 6 of the robot have been locked
so that only joints 2, 3 and 5 are used. Yet, the proposed approach can be easily ex-
tended to an-joint robot. The three considered joints are numbered as{1, 2, 3}. The
mechanical reducers associated with each motor have a gear ratio of (207, 60, 37),
respectively. Thus the accuracy (in the worst case, i.e. taking into account the minor
gear ratio equal to 37) is 360/(212 ·37), which is quite satisfactory. The considered
robot is equipped with an ATI Gamma force sensor. The analog output of the sensor
is acquired and sampled with a FLEX dsPIC micro-controller [10].
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22.7 Experimental Results

In this section a comment is made on the results obtained in practice by applying
the described procedure. Note that all the experiments devoted to the identification
of the parameters of the sensor model are executed in the absence of contact forces
fc. In this case, the measures acquired during the experimentsare due only because
of the tracking of the trajectories and the gravity effect.

The optimization step performed to determinexopt gives the following result,
once the Matlab commandfminsearch has been applied:

xopt =
[12.99, 8.95, −0.43, 5.72, 7.97, 11.42, 3.16, 1.92,

9.49, −1.68, 4.40, 10.27, −1.33, 2.85, 2.01]T
. (22.17)

In this case, the value reached for the objective function isdet(M) > 1041. The end
of optimization procedure is reached after 115 evaluationsof the objective function.
Then, after the execution of the optimized experiments and the data averaging to
determine the data related to the identification experiment, the following parameter
vector is obtained after the identification step

θ LS = [15.0119N, 0.2465N, −1.3342N, 0.2630kg, 0.0127kgm, 0.018kgm2]T .
(22.18)

The objective function determined considering the data setof the identification ex-
periment is det(MS ) > 1036.

Table 22.1 Identification and validation tests data sets residuals analysis

Data set Mean Error Varianceσ 2

E[ f̂0x′ − f0x′ ] E[ f̂0y′ − f0y′ ] E[τ̂0z − τ0z] Var[ f̂0x′ − f0x′ ] Var[ f̂0y′ − f0y′ ] Var[τ̂0z − τ0z]
10−13[N] 10−13[N] 10−13[Nm] [N2] [N2] [N2m2]

E = 1 -0.474 0.095 -0.017 0.819 2.207 0.002
E = 2 -0.643 0.088 -0.042 0.469 3.435 0.029
E = 3 -0.402 0.195 -0.009 0.672 2.170 0.008
E = 4 -0.514 0.011 0.008 0.740 3.645 0.033
E = 5 0.849 0.072 0.047 0.575 2.610 0.003
E = 6 -0.488 0.040 0.004 0.697 2.516 0.002
E = 7 0.439 -0.039 0.039 0.778 2.784 0.006
E = 8 -0.438 0.091 0.029 0.658 2.320 0.007
E = 9 -0.518 -0.067 -0.001 0.644 2.202 0.024
E = 10 -0.386 0.104 -0.108 0.653 2.649 0.003

S 0.465 -0.026 0.044 0.037 0.110 0.000

V 0.005×1013 0.287×1013 -0.001×1013 0.464 1.597 0.001

As described in Subsection 22.4, the force measurements areaffected by unpre-
dictable noise which is due to the presence of electromagnetic waves generated by
the robot actuation system and by the power suppliers. Despite the presence of these
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disturbances during the real tests, with the proposed identification method, it is pos-
sible to obtain satisfying results. Table 22.1 shows the analysis relative to 10 of the
Nexp = 30 identification data sets compared with the data set considered to estimate
the model parameters. As can be observed from the analysis, the data coming from
the averaged data setS lead to more satisfactory results in terms of noise variance
reduction (note that the mean error is very low, due to the fact that the data sets have
been considered for the estimation procedure).

Table 22.1 also shows the validation data set analysis. The validation experiment
is similar to the optimized identification one. As can be noted, the estimated mean
for the residuals (first three columns) is greater than the identification one, but it is
acceptable. The same comment applies to the variance analysis.
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Fig. 22.3 Model validation: measurements and their prediction for the signalsf0x′ , f0y′ , τ0z

Fig. 22.3 shows the good performances of the model in validation. Moreover, it
can be noted that the validation residuals are not comparable with the white noise.
This effect is generated by the particular measurement strategy performed by the
sensor, which is redundant in the sense that one can acquire three signals which
describe a quantity, the forcef0, which has two degrees of freedom.

As can be observed in the second plot of Fig. 22.3, the less accurate estimation
is obtained for the signalf0y′ . This is due to the low precision of the sensor in the
y′ direction. Yet, the two degrees of freedom force to be estimated is described by
three signals, thus the scarcely accurate estimation of thef0y′ signal is compensated
by the other two estimations.
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22.8 Conclusions

The paper considers the problem of determining reliable force measurements by
compensating the dynamical effects which are present on thetip of a robot manipu-
lator during the motion. A kinematic and a dynamic model are formulated starting
from the manipulator structure. The parameters of the dynamic model are identi-
fied with the proposed identification procedure, which is designed so as to reduce
the noise effects on the estimation and to optimize the information which can be
captured during the identification experiments. Finally, amethod to estimate the
direction and the absolute value of the contact force is described. The identifica-
tion and validation of experimental results obtained with the proposed identification
procedure are quite satisfactory.
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