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Abstract In this paper we prove a central limit theorem for an estimator
of the integrated quarticity based on Fourier analysis, strictly related to the
one proposed in [Mancino and Sanfelici, 2012]. Also, a consistency result is de-
rived. We show that the estimator reaches the parametric rate ρ(n)1/2, where
ρ(n) is the discretization mesh and n the number of points of such discretiza-
tion. The optimal variance is obtained, with a suitable choice of the number of
frequencies employed to compute the Fourier coefficients of the volatility, while
the limiting distribution has a bias. As a by-product, thanks to the Fourier
methodology, we obtain consistent estimators of any even power of the volatil-
ity function as well as an estimator of the spot quarticity. We assess the finite
sample performance of the Fourier quarticity estimator in a numerical simu-
lation.
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1 Introduction

Over the past two decades many scholars have worked in the theory and appli-
cation of volatility and volatility functionals measurement from high-frequency
data. In particular, the (ex-post) measure of the second power of the volatility
has been the focus of much attention, both in its spot (i.e., spot variance) and
integrated (i.e., integrated variance) form. Nonetheless, the estimation of the
fourth power of the volatility turns out to be fundamental as well because it is
needed in order to produce feasible central limit theorems for all these estima-
tors. Integrated fourth power of the volatility, dubbed integrated quarticity or,
simply, quarticity, is heavily employed in practice to estimate the confidence in-
tervals for integrated variance estimate [Andersen et al., 2014], to apply jump
tests [Dumitru and Urga, 2012], to forecast volatility [Bollerslev et al., 2016]
and to compute the optimal sampling frequency in the presence of market mi-
crostructure noise [Bandi and Russel, 2006]. The instantaneous fourth power
of the volatility, dubbed spot quarticity, mainly appears in the limiting dis-
tribution of spot volatility estimators, such as in [Ogawa and Sanfelici, 2011,
Zu and Boswijk, 2014], but it is still less investigated.

Since the efficient estimation of quarticity turns out to be a sensitive is-
sue as pointed out by [Barndorff-Nielsen et al., 2008a], not so many works
are exclusively focused on this topic, at least if compared to those focusing
on the estimation of variance and integrated variance. A consistent estimator
of quarticity – in the absence of microstructure noise – has been proposed in
[Barndorff-Nielsen and Shephard, 2004] and [Barndorff-Nielsen et al., 2006]. Al-
ways in absence of microstructure noise, we mention the quarticity estimator
proposed by [Mykland, 2012] which is strongly related to the one of [Barndorff-Nielsen and Shephard, 2002].
[Andersen et al., 2014] propose two (jump-robust) estimators of integrated
quarticity which take the minimum or the median of two and three adjacent
returns, respectively, in order to reduce the influence of jumps. These estima-
tors perform very well in the presence of jumps, but are less efficient for dif-
fusive processes. [Jacod and Rosenbaum, 2013,Jacod and Rosenbaum, 2015],
instead, propose a general framework for the estimation of integrals of smooth
functions of the volatility in the absence of microstructure frictions, to which
the quarticity estimator belongs too. They also provide an unbiased cen-
tral limit theorem for the latter estimator, which is efficient in the sense of
the Hajek convolution theorem, (see [Clement et al., 2013]). More precisely,
they show the optimality of the estimator both in terms of rate, that is
ρ(n)1/2, with ρ(n) the (regular) discretization mesh and n the number of
points of such a discretization, and of asymptotic variance, that is equal
to 8

∫ t
0
σ8(s) ds. A closely related estimator is the one recently proposed by

[Kolokolov and Renó, 2018], defined as a suitable linear combination of a fixed
number m of multi-power estimators. This estimator coincides with the one
of [Jacod and Rosenbaum, 2013] when m diverges to infinity but presents a
smaller limiting variance when m is fixed. [Mancino and Sanfelici, 2012] de-
velop a methodology based on Fourier analysis to estimate both spot and
integrated quarticity. The authors prove the consistency of the quarticity es-
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timator in the absence of noise and analyse its finite-sample efficiency, both
theoretically and empirically, in the presence of microstructure noise. Indeed,
they construct an optimal Mean Squared Error (hereafter, MSE) based Fourier
quarticity estimator, which makes the methodology feasible with real data.
However, the rate of convergence of the Fourier estimator of quarticity is not
studied.

In the present work, we propose an estimator of the integrated quarticity
based on Fourier methodology, strictly related to the previous one, and we
study its asymptotic properties in the absence of microstructure noise. The
properties of the estimator largely depend on two cutting frequencies: the first
one, N , refers to the number of Fourier frequencies of the asset returns needed
to estimate the Fourier coefficients of the variance, while the second one, M ,
controls the product formula between the Fourier coefficients of the variance
and contributes to increase the precision of the quarticity estimator obtained
by simply taking the square of the Fourier estimator of integrated variance. Un-
der suitable asymptotic conditions on these two cutting frequencies, we prove
that the proposed estimator converges (stably) in law to a non-centered nor-

mal random variable with optimal asymptotic variance equal to 8
∫ t
0
σ8(s) ds,

when the Nyquist frequency is chosen for N , and the rate of convergence is
equal to ρ(n)1/2. The bias term of the asymptotic distribution is in line with
the one found by [Jacod and Rosenbaum, 2015], and depends on the volatility
of volatility, on a statistical error term, and on the choice of the parameter
M . Notice that it is not surprising to find such a rate of convergence in the
absence of microstructure noise since, by definition, the Fourier quarticity es-
timator relies on the estimated Fourier coefficients of the integrated variance
and the product formula. Indeed, in a non-parametric setting for integrated
functionals estimation, the rate of convergence is usually ρ(n)1/2 (see, e.g.,
[Bickel and Ritov, 2003]).

We confirm the theoretical findings in a realistic Monte Carlo experiment.
Moreover, we make a comparative study of the performance of the Fourier
quarticity estimator with that of some estimators used in the literature, ex-
tending the analysis performed in [Mancino and Sanfelici, 2012] by consider-
ing the case of non-regular sampling and with different market microstructure
frictions, such as auto-correlated market microstructure noise.

The paper is organized as follows. Section 2 presents the model and the
setting. In Section 3 the Fourier estimator of the quarticity is defined and the
main theorems are stated. Section 4 contains the simulation results, while Sec-
tion 5 concludes. Finally, the proof of the main theorems are in the Appendix
6, whereas the Appendix 7 summarizes some properties of the Dirichlet kernel.

2 Setting and notation

In this section, we recall the main results of the Fourier estimation approach by
[Malliavin and Mancino, 2002]. Let (p (t))t≥0 be the logarithmic price process,
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which is observed at time t over a fixed time time period [0, T ], with T < ∞
(e.g., a trading day). We assume that

(A.I) p is an Itô process satisfying

dp(t) = σ(t) dW (t) + b(t) dt,

where W is a Brownian motion on a filtered probability space (Ω, (Ft)t∈[0,T ],P)
satisfying the usual conditions, and σ and b are adapted stochastic processes
such that

E

[∫ T

0

σ8(t)dt

]
<∞, E

[∫ T

0

b4(t)dt

]
<∞.

We want to compute the fourth power of the volatility function, i.e., σ4.
Towards this aim, we use a methodology which allows to compute the Fourier
coefficients of the latter from the asset prices observations only and therefore
to recover its Fourier expansion. By a change of the origin of time and rescaling
the unit of time we can always reduce ourselves to the case where the time
window [0, T ] becomes [0, 2π].

First, for any integer k, define the Fourier coefficient of the log-return dp
as

F(dp)(k)
.
=

1

2π

∫ 2π

0

e−ikt dp(t)

and the Fourier coefficients of the function σ2 as

F(σ2)(k)
.
=

1

2π

∫ 2π

0

e−iktσ2(t)dt.

The first step of the Fourier method consists in the computation of F(σ2)(k).
The latter is obtained by means of a convolution product as in the following
result.

Theorem 1 Suppose that the log-price p satisfies assumption (A.I). Then, the
following convergence in probability holds

F(σ2)(k) = lim
N→∞

2π

2N + 1

∑
|s|≤N

F(dp)(s)F(dp)(k − s), for all k ∈ Z. (1)

Hereafter, for simplicity, we assume that b is equal to zero since the drift
term gives no contribution to the estimation of the Fourier coefficients of the
volatility (see [Malliavin and Mancino, 2009] for the proof).

The second step consists in the computation of the k-th Fourier coefficient
of σ4. To this end, the product formula of Fourier series can be applied and
the k-th Fourier coefficient of the stochastic function σ4 is obtained as the
following limit

F(σ4)(k) = lim
M→∞

∑
|s|≤M

F(σ2)(s)F(σ2)(k − s). (2)
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Finally, the fourth power of the volatility function can be reconstructed by
means of its Fourier coefficients (2) as the following limit in probability

σ4(t) = lim
N→∞

∑
|k|≤N

F(σ4)(k) eikt for all t ∈ (0, 2π). (3)

Remark 1 The Fourier methodology presented in this section can be easily
adapted to obtain unbiased estimators of higher power functions of volatility.
Indeed, by using as building blocks the Fourier coefficients of the variance
function and the product formula, we can compute the Fourier coefficients of
any positive even power of the volatility function. In particular, the following
formula holds

F(σ2(p+q))(k) = lim
M→∞

∑
|s|≤M

F(σ2p)(s)F(σ2q)(k − s) (4)

for any p, q ≥ 1. In particular, if p = q = 1 we get the k− th Fourier coefficient
of the fourth power.

Remark 2 The integrated quarticity can be obtained from (2) by setting k = 0.
Indeed, it holds that ∫ 2π

0

σ4(t)dt = 2πF(σ4)(0).

We stress that in order to compute the integrated fourth power of volatility
function the datum of the integrated volatility (the 0th Fourier coefficient)
is not sufficient, but all the Fourier coefficients of the volatility are needed.
Nonetheless, the knowledge of the instantaneous volatility is not required.

3 Main Results

Suppose that the asset log-price p, satisfying assumption (A.I), is observed at
discrete, irregularly spaced points in time: {0 = t0,n ≤ . . . ti,n . . . ≤ tn,n = 2π}.
In what follows, for sake of simplicity we will omit the second index n. Denote
ρ(n)

.
= max0≤h≤n−1 |th+1 − th| and suppose that ρ(n) → 0 as n → ∞.

Consider the following interpolation formula

pn(t)
.
=

n−1∑
i=0

p(ti)I[ti,ti+1[(t)

and denote the returns by δi(p)
.
= p(ti+1)− p(ti). For any integer k, |k| ≤ 2N ,

set

ck(dpn)
.
=

1

2π

n−1∑
i=0

e−iktiδi(p). (5)

For any |k| ≤ N , define

ck(σ2
n,N )

.
=

2π

2N + 1

∑
|s|≤N

cs(dpn)ck−s(dpn) (6)
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as the discrete counterpart of (1). We are interested in the 0th Fourier coef-
ficient of σ4. Thus, relying on (2), the Fourier estimator of quarticity can be
defined by

σ̂4
n,N,M

.
= 2π

∑
|k|≤M

ck(σ2
n,N )c−k(σ2

n,N ), (7)

where the ck(σ2
n,N ), |k| ≤ M are explicit functions of the log-returns δi(p)

(i = 1, . . . , n) as defined by (6).

Remark 3 Note that the definition (7) uses only integrated quantities, that is
the pre-estimated Fourier coefficients of the variance. This property ensures
some computational advantages due to the numerical instability of the spot
variance estimators, see also Section 4.

3.1 Consistency

In this section, we prove the consistency of the estimator defined in (7). Pre-
cisely, we prove that the latter converges in probability to the quarticity under
the following conditions relating the number of data and the cutting frequen-

cies N and M : N/n → cN > 0 and M ρ (n)
1/2 → cM > 01. In particular, the

first condition ensures that (6) is a consistent and efficient estimator of the
Fourier coefficients of the volatility (see, e.g. [Mancino et al., 2017] Chapter 3
and references therein), while the second one is necessary for the convergence
of the Fourier series resulting from the product formula (2).

In what follows, we suppose that the process
(
σ2(t)

)
t≥0 satisfies to the

following assumptions:
(A.II) ess sup ‖σ2‖L∞ <∞, where ‖σ2‖L∞

.
= supt |σ2(t)|,

(A.III) the function σ2 (t) is almost surely α-Hölder continuous with α ∈
(0, 1] in [0, 2π].

We assume a regular sampling as in [Jacod and Rosenbaum, 2013] which makes
easier the comparison between the methods. The result can be extended to the
case of irregularly spaced points in time or random times independent of the
price and volatility process.

Theorem 2 Under the assumptions (A.I)− (A.II)− (A.III) and the parame-
ters condition N/n→ cN > 0 and Mρ(n)1/2 → cM > 0, it holds in probability

lim
n,N,M→∞

σ̂4
n,N,M =

∫ 2π

0

σ4(t)dt.

Remark 4 The condition relating the number of data and the cutting fre-
quency N assumed in [Mancino and Sanfelici, 2012], i.e., N/n → 0 does not
apply here. Indeed, the main interest of [Mancino and Sanfelici, 2012] is the
efficiency of the Fourier estimator in the presence of microstructure noise.

1 We stress the point that cN and cM are two positive constants, the notation being in
line with that used in [Mancino et al., 2017].
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3.2 Asymptotic Normality

In this section, we study the asymptotic error distribution for the Fourier
estimator of quarticity defined by (7). In the following we assume that

(A.III)′ the variance process σ2 is the Itô process described by

dσ2(t) = β(t)dt+ γ(t)dZ(t),

where Z is a Brownian motion, possibly correlated with W , β and γ are
continuous adapted stochastic process,

(A.IV) the volatility of volatility process γ is essentially bounded and is
almost surely ν-Hölder continuous with ν ∈ (0, 1] in [0, 2π].

For instance, a model with stochastic volatility of volatility, i.e., a model
in which the volatility of the variance process is driven by a second source of
randomness as in [Barndorff-Nielsen and Veraart, 2013,Sanfelici et al., 2015]
could be considered.

Hereafter, for simplicity, we assume that β is equal to zero. In fact, with
a similar argument as in [Malliavin and Mancino, 2009], it can be shown that
the drift term gives no contribution to the estimation of the Fourier coefficients
of the volatility fourth power.

Theorem 3 Under the assumptions (A.I)− (A.II)− (A.III)′ − (A.IV), N/n→
cN > 0 and Mρ(n)1/2 → cM > 0, then the following convergence holds stably
in law

ρ(n)−1/2
(
σ̂4
n,N,M −

∫ 2π

0

σ4(t)dt

)
→ XcM + YcM ,cN + ZcN ,

where

XcM
.
= − 1

cM

1

π

(∫ 2π

0

γ2(t)dt+
(
σ2 (2π)− σ2 (0)

)2)
,

YcM ,cN
.
= 2cM

1

π
(1 + 2η(cN ))

∫ 2π

0

σ4(t)dt, (8)

and η (cN ) = (1/4c2N )r (2cN ) (1− r (2cN )), where r (x) = x − [x] with [x] the
integer part of x. ZcN is a (conditionally) Gaussian r.v. with zero mean and

variance 8(1 + 2η(cN ))
∫ 2π

0
σ8(t)dt.

Remark 5 A priori, the asymptotic variance depends also on cM . However, it
is worth noting that the asymptotic variance in Theorem 3 depends only on
the parameter cN , which relates the number of observations to the Fourier fre-
quencies needed to estimate the Fourier coefficients of the squared volatility. In

particular, the estimator has the optimal asymptotic variance, 8
∫ 2π

0
σ8 (t) dt,

if one chooses the so called Nyquist frequency, which is known to be the optimal
choice to estimate the volatility in the absence of noise, see [Mancino et al., 2017].
By definition, η (cN ) = 0 if one sets cN = (1/2)m, with m a positive in-
teger, and η (cN ) > 0 otherwise. This latter observation suggests the choice
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cN = (1/2)m in Theorem 3, which leads to the optimal asymptotic variance.
On the other hand, it is known that N must be chosen less or equal to the
Nyquist frequency n/2 in order to avoid aliasing effects, which leads to the
choice of cN = 1/2 as the most suitable here. However, the choice of the
frequency N << n/2 makes the Fourier quarticity estimator efficient in the
presence of noise (see [Mancino and Sanfelici, 2012] and Section 4).

Remark 6 Concerning the parameter cM , it plays a crucial role in controlling
the two bias terms YcM ,cN and XcM . More precisely, a choice of cM close to
0 would make the bias YcM ,cN vanishing, but the bias XcM exploding, as it hap-
pens for the (un-corrected) estimator of quarticity by [Jacod and Rosenbaum, 2015].
Notice that, if the Nyquist frequency is chosen, then the bias term YcM ,cN
coincides with the bias term A2 of the (un-corrected) estimator of quartic-
ity by [Jacod and Rosenbaum, 2015], letting π/cM = θ. The bias term XcM ,
instead, depends on a boundary term and on the integrated volatility of vari-
ance, similarly as [Jacod and Rosenbaum, 2015]. In particular, we could pro-
ceed with a bias correction of the Fourier estimator of quarticity by using
a consistent estimator of the integrated volatility of variance appearing in
XcM . This can be obtained with its Fourier estimator, which has been studied
in [Barucci and Mancino, 2010,Sanfelici et al., 2015]. However, the simulation
study conducted in Section 4 shows that the performance of the Fourier es-
timator (7) without any correction is quite satisfactory in comparison with
other estimators and even better in the presence of microstructure noise.

Finally, notice that (4) would produce (with the choice p = q = 2) a
consistent estimator of the integrated eighth power of volatility, that is the
asymptotic variance in Theorem 3. This result plays a role if one wants to
obtain a feasible version of the central limit theorem (Theorem 3).

4 Simulation results

In this section, we assess via a detailed and realistic Monte Carlo simula-
tion the finite sample performance of the Fourier quarticity estimator, whose
asymptotic properties have been investigated in Section 3. We illustrate such
analysis in the case of the following model for log-price p(t) and instantaneous
log-variance log σ2(t):

dp(t) = cσ η(t)σ(t) dW (t) + µdt (9)

d log σ2(t) = γ dZ(t) + (α− β log σ2(t)) dt,

where W and Z are two correlated Brownian motions with correlation ρ. For
the values of the parameters (i.e., α, β, γ, µ and ρ), we use those estimated by
[Andersen et al., 2002] on S&P500 (parameters are expressed in daily units
and returns are in percentage). The volatility factor cσ = 2 corresponds to
(roughly) a daily volatility of 1% and the process η(t) is intended to capture
the U-shaped pattern of the intraday volatility. The latter coincides with the
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process estimated on S&P500 by [Kolokolov and Renó, 2018]. Numerical inte-
gration of the stochastic volatility model (9) is performed on a one-second time
grid via a standard Euler scheme and with initial conditions p(0) = log 100
and log σ2(0) = α/β. Once simulated, the efficient prices are sampled every
minute, i.e., we have a total of n = 390 intraday returns.

In the first part, we numerically confirm the asymptotic result provided in
Theorem 3. Precisely, we display in Figure 1 the histograms of the following
error

ρ(n)−1/2
σ̂4
n,N,M −

∫ 2π

0
σ4(t) dt√

8
∫ 2π

0
σ8(t) dt

.

We remind that the Fourier quarticity estimator is characterized by the cutting
frequencies N and M , which satisfy the following two assumptions N/n →
cN > 0 and Mρ(n)1/2 → cM > 0, and that in our simulation exercise n =
390. As discussed in Remark 5, we choose cN = 1/2, that is N = n/2, and
we vary cM in such a way that M belongs to the following set of values
{1, 2, 3, 5, 10, 15}, i.e., cM ∈ {0.12, 0.25, 0.38, 0.63, 1.26, 1.90}. Histograms are
computed on a basis of 10,000 replications. The plots confirm the discussion
in Remark 6. More precisely, cM can be chosen to trade-off the two bias terms
XcM and YcM ,1/2. When cM is small, the term that contributes most to the
bias is XcM , whereas the bias caused by YcM ,1/2 (notice that η(cN ) = 0 with
cN = 1/2) is almost negligible. On the other hand, if we increase cM the bias
induced by XcM becomes negligible, whereas YcM ,1/2 contributes to the bias
the most. Accordingly, the resulting histograms shift to the right.

In the second part, we numerically examine the performance of the Fourier
estimator when no microstructure frictions are present, with a non-regular
price sampling and with correlated market microstructure noise, by extend-
ing the numerical analysis carried out in [Mancino and Sanfelici, 2012]. We
also compare them with those of some estimators used in the literature. To
evaluate the impact of microstructure noise on these estimators, we contam-
inate the sampled efficient price with an additive noise of the form: εj,n =
ρεεj−1,n + ε∗j,n, where ε∗j,n ∼ N (0, σ2

ε ), ρε = 0.5 and σ2
ε = 0.0005 IV, with

IV denoting the daily integrated variance, see also the value proposed in
[Podolskij and Vetter, 2009]. Concerning the irregular sampling, instead, we
assume that at each time instant the observed return can be either zero or
the efficient one depending on the outcome of a Bernoulli random variable
having probability of success equal to 0.3, as in [Kolokolov and Renó, 2018].
To compare the performance, we implement the following estimators.

i) The Fourier estimator of quarticity proposed in [Mancino and Sanfelici, 2012].
The latter is defined in the following way

σ̃4
n,N,M

.
= 2π

∑
|s|<M

(
1− |s|

M

)
cs
(
σ2
n,N

)
c−s

(
σ2
n,N

)
, (10)

i.e., is obtained from (7) with the choice of the Fourier-Fejer summation
by adding a Barlett kernel, which improves the behaviour of the estimator
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Fig. 1 Limiting Distribution: Figure represents the distribution of the normalized error
in 4 for different choices of cN and cM . The distribution is computed with 10,000 replications
of n = 390 intraday returns.

for very high observation frequencies. In what follows, we denote with Ñ ,
M̃ the parameters relative to the estimator in (10).

ii) The non-truncated multi-power variation of [Barndorff-Nielsen and Shephard, 2004],
defined by

MPV([1, 1, 1, 1])
.
= cr

n−4+1∑
i=1

|δi(p)||δi+1(p)||δi+2(p)||δi+3(p)|,

where cr is a constant meant to make the estimator unbiased in small sam-
ples under the assumption of constant volatility. Notice that, in a general

setting, we may define the estimator MPV(r)
.
= cr

∑n−m+1
i=1

(∏m
j=1 |δi+j−1(p)

)rj
,

where r = [r1, . . . , rm], R
.
=
∑m
j=1 rj equals to the power of the volatility

that we are estimating and

cr
.
=
( n
T

)R
2 −1 n

n− (m− 1)

 m∏
j=1

(
µrj
)−1 ,
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where µr = E [|u|r] with u being a standard normal.
iii) The min- and med-RQ estimators proposed in [Andersen et al., 2014a] and

[Andersen et al., 2014], defined by

minRQ
.
=

π

3π − 8

n2

n− 1

n−1∑
i=1

min(|δi(p)|, |δi+1(p)|)4 ,

medRQ
.
=

3π

9π + 72− 52
√

3

n2

n− 2

n−2∑
i=1

med (|δi(p)|, |δi+1(p)|, |δi+2(p)|)4 .

iv) The estimator of [Jacod and Rosenbaum, 2013] implemented with, QVeff(kn),
and without, QVeffB(kn)2, the bias correction proposed in [Jacod and Rosenbaum, 2015]
and defined by

QVeffB(kn)
.
= ∆n(1− 2

kn
)

[1/∆n]−kn+1∑
i=1

((σ̂2)ni )2,

QVeff(kn)
.
= ∆n(1− 2

kn
)

[1/∆n]−kn+1∑
i=1

((σ̂2)ni )2 +(kn−1)∆n
(σ4(0) + σ4(1))

2
.

where

(σ̂2)ni
.
=

1

kn∆n

kn−1∑
j=0

(δi+j(p))
2.

v) The efficient multi-power estimator of [Kolokolov and Renó, 2018] which
is defined as a (suitable) linear combination of multi-power estimators,
denoted, by using authors’ notation, with GTMPV(m), where m indicates
both the fixed number of multi-power estimators involved in the linear
combination and consecutive returns. It is defined as

GTMPV(m)
.
=

3

2m+ 1
MPV([4]) +

2

2m+ 1

m−2∑
j=0

MPV

[2, 0, . . . , 0︸ ︷︷ ︸
j terms

, 2]

 .

Some clarifications are in order. The estimators QVeff(kn), QVeffB(kn) and
GTMPV(m) are characterized by the choice variables kn and m respectively,
and in order to compare their performance we fix kn = m+ 1. To fix m, and
therefore kn, in case of no market microstructure frictions, we use the recipe
proposed in [Kolokolov and Renó, 2018] (3.11), by choosing m∗ that minimizes
the following quantity

M̃SE(GTMPV(m))
.
= [GTMPV(m)− Q̂]2 + V ar(GTMPV(m)),

2 The index kn denotes the length of the window used to estimate the spot volatility.
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where Q̂ is any unbiased estimator of the quarticity (e.g., any multipower, near-
est neighbour and Fourier estimator) and the variance of V ar(GTMPV(m))
is substituted by the following approximation(

8 +
8

2m+ 1

)
MPV([8/3, 8/3, 8/3]).

On the other hand, the Fourier estimators are characterized by the frequen-
cies N and M . Regarding this choice, in case of no frictions, we use the recipe
provided by [Mancino and Sanfelici, 2012]. More precisely, we use the upper
bound provided by Corollary 3.3. Finally, when the efficient price is contam-
inated with market micro-structure frictions we select N , M , m and kn by
minimizing the corresponding infeasible MSE, which is defined as

MSE(σ̂4
INT) = E

[(
σ̂4
INT − σ4

INT

)2]
,

where σ̂4
INT is any estimator of the integrated quarticity whereas σ4

INT is the

true integrated quarticity. The selected values for M , N , M̃ , Ñ and m are the
following. In case of no frictions, both cN and cÑ are equal to 0.5 (i.e., N∗ =

Ñ∗ = n/2 = 195), cM = c
M̃

= 0.25 (i.e., M∗ = 2) and m∗ = 100. In the case
of no microstructure noise but irregular sampling, we select again the Nyquist
frequency cN = cÑ = 0.5 (i.e., N∗ = Ñ∗ = n/2 = 195), cM = c

M̃
= 0.12 (i.e.,

M∗ = 1), according [Kolokolov and Renó, 2018] we choose m∗ = 5. In case of
autocorrelated market microstructure noise cN = 0.14 (i.e., N∗ ≈ n/7 = 58),
cM = 0.12 (i.e., M∗ = 1), m∗ = 100, and cÑ = 0.17 (i.e., Ñ∗ ≈ n/5.5 = 70,

c
M̃

= 0.25 (i.e., M̃∗ = 2). Table 1 summarises the results.
In both cases of no-frictions, the performance of the Fourier estimator

in better than both the multi-power and the min-med estimators (in terms of
RMSE) and in line with the corrected estimator of [Jacod and Rosenbaum, 2015].

The contamination of the efficient price with (autocorrelated) market mi-
crostructure noise induces a distortion in all the estimates, in form of an upper
bias ranging from +11% (σ̂4

n,N,M and σ̃4
n,N,M ) to (roughly) +90% (MPV([1, 1, 1, 1])).

Notice that, although no estimator is corrected for the presence of market
micro-structure noise, the increase in the BIAS of the Fourier estimators is ap-
proximately two times less than that of QVeffB(k∗n) and eight times less than
all the other estimators, because for the latter the noise bias is preponderant
with respect to the bias of the original estimator. The observed variance is, in-
stead, slightly greater than that of QVeff(k∗n), QVeffB(k∗n) and GTMPV(m∗).
The fact that estimators based on Fourier methodology are robust in the
presence of microstructure noise (by a suitable cutting of the highest fre-
quency) has already been documented so far (see [Mancino and Sanfelici, 2008,
Mancino and Sanfelici, 2012] and references therein). Notice that the Fourier
estimator has the smallest RMSE among the estimators in the case of irreg-
ular sampling. We interpret this result as being symptomatic of the good
performance of the Fourier-type estimators to irregular sampling, see also
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Table 1 Table reports the relative root mean square error (RMSE), the standard deviation
(STD), and the bias (BIAS) computed with 252 replications of n = 390 intraday returns,
in case of No Frictions (first column), in the case of autocorrelated marketmicro structure
noise (second column), and in the case of irregular sampling (third column).

Absence of Frictions With Noise Irregular sampling

RMSE STD BIAS RMSE STD BIAS RMSE STD BIAS

MPV([1,1,1,1]) 0.2170 0.2170 -0.0024 0.9769 0.3769 0.9013 0.7361 0.1084 -0.7281
minRQ 0.2445 0.2445 0.0026 1.0429 0.4264 0.9517 0.4198 0.2276 -0.3528
medRQ 0.2207 0.2207 0.0003 1.0096 0.3864 0.9327 0.3125 0.2182 -0.2236
QVeff(k∗n) 0.1556 0.1446 -0.0575 0.8728 0.3023 0.8188 0.2276 0.2034 -0.1021
QVeffB(k∗n) 0.3866 0.0982 -0.3739 0.3238 0.2031 0.2523 0.2348 0.1881 -0.1405
GTMPV(m∗) 0.1639 0.1369 -0.0901 0.8357 0.2905 0.7836 0.2298 0.1858 -0.1352
σ̂4
n,N∗,M∗ 0.1559 0.1535 -0.0275 0.3284 0.3090 0.1111 0.1912 0.1892 -0.0276

σ̂4
n,Ñ∗,M̃∗

0.1620 0.1610 -0.0278 0.3164 0.2822 0.1432 0.2055 0.1903 -0.0449

[Mancino and Sanfelici, 2012]. We note that the performance of our estima-
tor is in line with the corrected estimator of [Jacod and Rosenbaum, 2015].
In particular, the de-biasing of the latter estimator can be computationally
challenging (see also the discussion in [Li et al., 2019]).

Finally, let us see a purely descriptive example on the ability of the Fourier
estimator in tracking the instantaneous fourth power of the volatility. The
instantaneous fourth power of the volatility (usually) appears when one de-
termines the asymptotic distribution of the spot-volatility estimator, as in
[Zu and Boswijk, 2014]. The latter authors say that heuristically one could use
the squared increment of the estimated spot variance to approximate the spot
quarticity. In this example, we fix N = n/2 = 195 and M = 2. Figure 2 dis-
plays the simulated (red line), the estimated (blue line) instantaneous fourth
power of the volatility and the estimated (black line) instantaneous second
power of the volatility squared respectively, averaged across 252 replications
of n = 390 intraday returns. Both the approximation of the true quantity
are satisfactory, although some remarks are in orders. The heuristic estimator
presents a smooth trajectory but underestimates the true instantaneous fourth
power of the volatility both at the beginning and the end of the day. On the
other hand, σ̂4

n,N,M (t) tracks all the trend of σ4(t) with satisfactory accuracy,
although it appears visually noisier.

5 Conclusion

In this paper we have studied the asymptotic error distribution of the Fourier
quarticity estimator providing a new consistency result and by providing asymp-
totically normality. More precisely, we show that the estimator reaches the
optimal rate and the optimal variance through a suitable choice of the num-
ber of cutting frequencies employed to compute the Fourier coefficients of the
volatility. Further, the asymptotic bias can be reduced through the choice of
the second cutting frequency M , which controls the product formula between
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Fig. 2 Figure represents the simulated instantaneous fourth power of the volatility (red
line), the estimated instantaneous fourth power of the volatility (blue line), and the esti-
mated instantaneous second power of the volatility squared (black line).

the Fourier coefficient of the second power of the volatility. In a realistic Monte
Carlo experiment, we show that the proposed estimator, although presenting a
bias, has a quite satisfactory performance in comparison with other estimators
proposed in the literature and even better in the presence of microstructure
noise. The study of the asymptotic properties of the estimator when the effi-
cient price is contaminated with market microstructure noise is left for future
research.
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6 Appendix A: Proofs

We use the following notation. Let ϕn (t)
.
= sup {tj : tj ≤ t} and denote,

for t, u ∈ [0, 2π], DN,n (t− u)
.
= DN (ϕn (t)− ϕn (u))3, where DN (·) is the

rescaled Dirichlet kernel defined in (77).
In addition, we denote by DN (·) .

= (2N + 1)DN (·) the non-rescaled Dirichlet
kernel, and by D̄N,n (t− u)

.
= (2N + 1)DN,n (t− u). For simplicity, we con-

sider the case of regular sampling, i.e., ϕn (t) = 2π
n j, if 2π

n j ≤ t <
2π(j+1)

n .
We begin with a decomposition of σ̂4

n,N,M as in (7) in order to simplify the
proofs of the asymptotic properties.

6.1 Preliminary Decomposition

From the Itô formula, the term in (6) is decomposed as

ck(σ2
n,N ) = Ak,n +Bk,n,N + Ck,n,N , (11)

where

Ak,n
.
=

1

2π

∫ 2π

0

e−ikϕn(s)σ2(s)ds, (12)

Bk,n,N
.
=

1

2π

∫ 2π

0

e−ikϕn(s)
∫ s

0

DN,n(s− u)σ(u)dWu σ(s)dWs, (13)

3 We stress that with a slight abuse of notation, the discretized Dirichlet kernel
DN,n (t− u) is used to denote DN (ϕn (t)− ϕn (u)), not the kernel DN (ϕn (t− u)). The
notation is chosen to highlights the role of the convolution product, one of the key tools in
the Fourier methodology.
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Ck,n,N
.
=

1

2π

∫ 2π

0

∫ s

0

e−ikϕn(u)DN,n(s− u)σ(u)dWu σ(s)dWs. (14)

By exploiting decomposition (11) and the symmetry with respect to k of
the summation, we rewrite the Fourier estimator of the integrated quartic-
ity σ̂4

n,N,M as

2π
∑
|k|≤M

Ak,nA−k,n (15)

+2π
∑
|k|≤M

2(Ak,nB−k,n,N +Ak,nC−k,n,N ) (16)

+2π
∑
|k|≤M

(Bk,n,NB−k,n,N + 2Bk,n,NC−k,n,N + Ck,n,NC−k,n,N ). (17)

First consider the term (16). Applying the Itô formula it has the following
decomposition

2(AB
(i)
M,n,N +AB

(ii)
M,n,N +AC

(i)
M,n,N +AC

(ii)
M,n,N ),

where AB
(i)
M,n,N and AB

(ii)
M,n,N are defined by

2AB
(i)
M,n,N

.
=

∫ 2π

0

2

∫ u

0

1

2π
D̄M,n(u− s)σ2(s)ds Yn,N (u, u)σ(u)dWu, (18)

2AB
(ii)
M,n,N

.
=

∫ 2π

0

2

∫ u

0

1

2π
D̄M,n(u− s)Yn,N (s, u)σ(s)dW (s)σ2(u)du, (19)

where

Yn,N (t, s)
.
=

∫ t

0

DN,n(s− u)σ(u)dWu. (20)

Terms 2AC
(i)
M,n,N and 2AC

(ii)
M,n,N are analogous to (18) and (19) and give,

asymptotically, the same contribution. Therefore, due to space constraints,
they are omitted. Concerning (17), we rewrite it in the following way

BB
(i)
M,n,N + 2BB

(ii)
M,n,N + 2(BC

(i)
M,n,N +BC

(ii)
M,n,N +BC

(iii)
M,n,N ) + CC

(i)
M,n,N + 2CC

(ii)
M,n,N ,

where, by using (20)

BB
(i)
M,n,N

.
=

1

2π

∑
|k|≤M

∫ 2π

0

Y 2
n,N (s, s)σ2(s)ds, (21)

2BB
(ii)
M,n,N

.
=

∫ 2π

0

2

∫ u

0

1

2π
D̄M,n(u− s)Yn,N (s, s)σ(s)dWsYn,N (u, u)σ(u)dWu,

(22)

2BC
(i)
M,n,N

.
=

∫ 2π

0

2

∫ s

0

1

2π
D̄M,n(s− v)DN,n(s− v)σ(v)dWvYn,N (s, s)σ2(s)ds,

(23)
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2BC
(ii)
M,n,N

.
= 1

2π

∑
|k|≤M

∫ 2π

0
2
∫ u
0
e−ikφn(s)Yn,N (s, s)σ(s)dWsYk,n,N (u, u)σ(u)dWu,

(24)

2BC
(iii)
M,n,N

.
=
∫ 2π

0

∫ u
0

2
∫ v
0

1
2π D̄M,n(u− s)DN,n(v − s)σ(s)dWs σ(v)dWv Yn,N (u, u)σ(u)dWu,

(25)

CC
(i)
M,n,N

.
=

1

2π

∑
|k|≤M

∫ 2π

0

Yk,n,N (s, s)Y−k,n,N (s, s)σ2(s)ds, (26)

2CC
(ii)
M,n,N

.
=

1

2π

∑
|k|≤M

2

∫ 2π

0

∫ s

0

Yk,n,N (v, v)σ(v)dWv Y−k,n,N (s, s)σ(s)dWs,

(27)
where, for |k| ≤M

Yk,n,N (t, s)
.
=

∫ t

0

e−ikϕn(u)DN,n(s− u)σ(u)dWu. (28)

6.2 Proof of Theorem 2

Relying on the decomposition obtained in the previous section, in order to
prove the consistency result of Theorem 2, it is sufficient to prove that the
first term in the decomposition (15) converges in probability to the quarticity,
while all the remaining terms vanish.

Step I
First, using the definition of Ak,n in (12) we have:

2π
∑
|k|≤M

Ak,nA−k,n =

∫ 2π

0

2

∫ s

0

1

2π
D̄M,n(s− u)σ2(u)duσ2(s)ds. (29)

Exploiting (29), the fact that the following convergence in probability holds

lim
M,n→∞

2π
∑
|k|≤M

Ak,nA−k,n =

∫ 2π

0

σ4(t)dt,

is equivalent to prove the asymptotic negligibility of the following two differ-
ences

2

∫ 2π

0

(∫ s

0

1

2π
D̄M,n(s− u)σ2(u)du−

∫ s

0

1

2π
D̄M (s− u)σ2(u)du

)
σ2(s)ds

(30)

+2

∫ 2π

0

∫ s

0

1

2π
D̄M (s− u)σ2(u)du σ2(s)ds−

∫ 2π

0

σ4(s)ds. (31)

Note that, while assumption (A.III)′ is needed to obtain the Central Limit
theorem, in order to prove that (30) and (31) goes to zero in probability,
then assumption (A.III) is enough. The convergence follows by Lemma 1 and
Lemma 5.1 in [Cuchiero and Teichmann, 2015], in virtue of the fact that the
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function σ2(t) is Hölder continuous and Mγρ(n) → K, with K constant and
γ > 1.

Step II
For sake of brevity, we summarise results in Step II as a consequence of the
proof of Theorem 3 in the next section. More precisely, the terms (21), (23),
(26) have order equal to Op(ρ(n)1/2) and hence they converge to zero in prob-
ability. Terms (22), (27), (24) and (25) are op(ρ(n)1/2), thus, they converge
to zero in probability. Finally, the terms (18), (19) and their analogous are
Op(ρ(n)1/2). Notice that the assumptions (A.III)′ and (A.IV) are necessary
only for the study of the bias term in the Step I of the proof of Theorem 3,
therefore, they are not required here.

6.3 Proof of Theorem 3

The proof consists of four steps. Throughout, C is a constant which may
change from line to line.

Step I
We study the convergence in probability of the following term

ρ(n)−1/2

2π
∑
|k|≤M

Ak,nA−k,n −
∫ 2π

0

σ4(t)dt


= ρ(n)−1/2

(∫ 2π

0

2

∫ s

0

1

2π
D̄M,n(s− u)σ2(u)du σ2(s)ds−

∫ 2π

0

σ4(t)dt

)
,

(32)

which can be rewritten as

ρ (n)
−1/2

[∫ 2π

0

2

∫ s

0

1

2π
D̄M (s− u)σ2(u)du σ2(s)ds−

∫ 2π

0

σ4(t)dt (33)

+

∫ 2π

0

2

(∫ s

0

1

2π
D̄M,n(s− u)σ2(u)du−

∫ s

0

1

2π
D̄M (s− u)σ2(u)du

)
σ2(s)ds

]
.

(34)
We start from (33). First, for any M ∈ N we define

σ2
M (s)

.
=
∑
|k|≤M

eiksck(σ2), (35)

where, for sake of brevity, we use the notation ck(f), instead of F(f)(k), to
denote the k-th Fourier coefficient of a given function f . Then it holds∫ 2π

0
2
∫ s
0

1
2π D̄M (s− u)σ2(u)du σ2(s)ds−

∫ 2π

0
σ4(t)dt =

∫ 2π

0

(
σ2
M (s)− σ2 (s)

)
σ2 (s) ds,

which is equal to

−4π
∑
k>M

|ck(σ2)|2. (36)
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Using the integration by parts formula, we have that for any k 6= 0

ck(σ2) =
1

ik

(
ck(dσ2)− σ2(2π)− σ2(0)

2π

)
,

and, in particular, |ck(σ2)|2 is equal to

1

4π2k2

[∫ 2π

0

γ2 (s) ds+ 2

∫ 2π

0

∫ s

0

cos (k (s− v)) γ (v) dZvγ (s) dZs

− 2
(
σ2 (2π)− σ2 (0)

) ∫ 2π

0

cos (ks) γ (s) dZs +
(
σ2 (2π)− σ2 (0)

)2 ]
.

We start by studying the first and the last term in the previous expression.
Precisely, by plugging these terms into (36) we have to consider

− ρ (n)
−1/2

4π
∑
k>M

1

4π2k2

[∫ 2π

0

γ2 (s) ds+
(
σ2 (2π)− σ2 (0)

)2 ]
. (37)

Noting that
∑
k>M

1
k2 = 1

M +O
(

1
M2

)
, (37) converges to

− 1

πcM

[∫ 2π

0

γ2 (s) ds+
(
σ2 (2π)− σ2 (0)

)2 ]
. (38)

Then, we consider the two martingale components of |ck(σ2)|2 and study the
sum (36). We show explicitly the computation only for the first term, since
for the second a similar reasoning applies. By applying the Itô isometry, by
using the orthogonality properties of the Fourier basis and the boundedness
of γ, one finds that

ρ (n)
−1 E

(∑
k>M

1

4π2k2
2

∫ 2π

0

∫ s

0

cos (k (s− s1)) γ (s1) dZs1γ (s) dZs

)2


≤ Cρ (n)
−1 ∑

k>M

1

k4
,

(39)

which is of order O
(
n−1/2

)
.

We now analyse (34), i.e., the discretization error, and we show that it is

asymptotically negligible. It can be rewritten as ρ (n)
−1/2

times

2π

 ∑
|k|≤M

(
ck
(
D̄M,n

)
− ck

(
D̄M

))
|ck(σ2)|2 +

∑
|k|>M

ck
(
D̄M,n

)
|ck(σ2)|2

 .

(40)
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Before proceeding4, we compute the k-th Fourier coefficient of D̄M,n (·). To do
so, we note that, for any j such that 0 ≤ j ≤ n− 1, it holds

ck

(
I[ 2πn j,

2π
n (j+1)[

)
=

1

2πik
e−2πi

k
n j
(

1− e−2πi kn
)
.

Therefore, we obtain

ck(D̄M,n) =

n−1∑
j=0

D̄M

(
2π

n
j

)
ck

(
I[ 2πn j,

2π
n (j+1)[

)

=
1

2πik

(
1− e−2πi kn

) ∑
|l|≤M

n−1∑
j=0

e−2πi
(l−k)
n j .

(41)

We note that the summation
∑n−1
j=0 e

−2πi (l−k)n j is either equal to n or equal to
zero depending on whether n divides l−k or not. Moreover, if n divides k then
ck
(
D̄M,n

)
is zero. Therefore, we only need to consider the case in which n does

not divide k and n divides l − k. In particular, k is of the form k = nq + r,
with q ≥ 0 and 1 ≤ r < n. We note that if r were r ≥ M then n would not
divide l − k since |l| < M , thus one has 1 ≤ r < M . Moreover l = −r if n
divides l − k. Then (41) reduces to

ck
(
D̄M,n

)
= n

1

2πik

(
1− e−2πi kn

)
,

provided that M < n. First, we consider the low frequencies term in (40) and
we observe that

ck
(
D̄M,n

)
− ck

(
D̄M

)
=

(
1− e−2πi kn

2πi kn
− 1

)
= −πik

n
+O

(
k2

n2

)
, ∀ |k| ≤M.

Therefore, we need to study the order of

π

n

∑
|k|≤M

k|ck(σ2)|2.

Using the definition of |ck(σ2)|2 we have that the leading term is π
n

∑
|k|≤M

1
k ,

which has order O
(

logM
n

)
. Therefore, we can conclude that

ρ(n)−1/2
∑
|k|≤M

(ck(D̄M,n)− ck(D̄M )) |ck(σ2)|2

converges to 0 in probability. Finally, we prove that the sum of the high-
frequencies in (40) converges to zero. We explicitly compute the upper bound

4 With abuse of notation in equation (40) we have denoted by ck(D̄M,n) the Fourier

coefficient of D̃M,n, which is the kernel defined by D̃M,n(s)
.
= D̄M (ϕn(s)) (remember that

D̄M (·) is the non-rescaled Dirichlet kernel). A straightforward but lengthy proof, which is
available from the authors upon request, shows that the difference between the two kernels
is negligible in estimating the quantity in (40).
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for the first term, which gives a contribution of the same order of the third
one, and it is the leading term

E

[
2
∑
k>M

|ck(D̄M,n)| 1

k2
1

(2π)2

∫ 2π

0

γ2(s)ds

]

≤ C
∑
q≥1

M−1∑
r=1

1

(nq + r)2
1

q + r
n

|1− e−2πi rn |.
(42)

Using the inequality |1− e−2πi rn | ≤ 2π rn , the term (42) is dominated by

C
1

n3

∑
q≥1

1

q3

M−1∑
r=1

r

(
1 +

r

nq

)−3
. (43)

Observe now the following fact

M−1∑
r=1

1

(1 + r
nq )3

≤
∫ M

0

dx

(1 + x
nq )3

=
1

2

[
nq − nq

(1 + M
nq )2

]
= M +

3

2

M2

nq
+ o(1),

then (43) is less than CM2/n3. In particular, when multiplied by ρ(n)−1/2,
this term vanishes in the limit for n→∞.
Summarizing, in Step I we have determined the bias term XcM which is equal
to

XcM
.
= − 1

cM

1

π

(∫ 2π

0

γ2 (t) dt+
(
σ2 (2π)− σ2 (0)

)2)
. (44)

Step II. The bias

We start with the study of BB
(i)
M,n,N in (21) and BC

(i)
M,n,N in (23). The term

CC
(i)
M,n,N in (26) is analogous to BB

(i)
M,n,N and gives the same contribution.

We split BB
(i)
M,n,N into two terms

1

2π

∑
|k|≤M

∫ 2π

0

∫ s

0

D2
N,n(s− u)σ2(u)duσ2(s)ds (45)

+
1

2π

∑
|k|≤M

∫ 2π

0

2

∫ s

0

Yn,N (u, s)DN,n(s− u)σ(u)dWu σ
2(s)ds. (46)

We start from (45) and study the convergence in probability of

ρ(n)−1/2
1

2π

∑
|k|≤M

∫ 2π

0

∫ s

0

D2
N,n(s− u)σ2(u)duσ2(s)ds

=
1√
2π

1

2π

(2M + 1)√
n

∫ 2π

0

(
n

∫ s

0

D2
N,n(s− u)σ2(u)du

)
σ2(s)ds.

(47)
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By using Lemma 2 iv) and the fact that Mρ (n)
1/2 → cM the last term con-

verges in probability to

1

2π
cM (1 + 2η (cN ))

∫ 2π

0

σ4(s)ds.

Consider, now (46). Using the Lemma 2 i) and the fact that for v < s − ε,
D2
N,n(s − v) ≤ CN−2 for n large enough, thanks to the Assumption (A.II),

it follows that (46) has order op(ρ(n)) along the same lines of the analogous
term (41) in [Clement and Gloter, 2011]. We conclude that

ρ (n)
−1/2 1

2π

∑
|k|≤M

∫ 2π

0

∫ s

0

D2
N,n(s− u)σ2(u)duσ2(s)ds = op(ρ(n)1/2).

We consider now BC
(i)
M,n,N in (23), which can be split into three terms∫ 2π

0

2

∫ s

0

1

2π
D̄M,n(s− v)D2

N,n(s− v)σ2(v)dv σ2(s)ds (48)

+
∫ 2π

0
2
∫ s
0

∫ u
0

1
2π D̄M,n(s− v)DN,n(s− v)σ(v)dWvDN,n(s− u)σ(u)dWu σ

2(s)ds
(49)

+
∫ 2π

0
2
∫ s
0

∫ u
0

1
2πDN,n(s− v)σ(v)dWv D̄M,n(s− u)DN,n(s− u)σ(u)dWu σ

2(s)ds.
(50)

Consider (48) and let fM (s, t)
.
= D̄M (s− t)σ2 (t). Then we study

ρ (n)
−1/2

∫ 2π

0

2

∫ s

0

1

2π
fM (s, v)D2

N,n (s− v) dv σ2 (s) ds.

By using Lemma 2 iv), the previous term converges in probability to

1

π
cM (1 + 2η(cN ))

∫ 2π

0

σ4(s)ds,

where we have used that D̄M (0) = 2M + 1.
Thus, it remains to show that the terms (49) and (50) converge to zero. By an
iterated application of Itô isometry, Assumption (A.II), Lemma 2, ii), and the
fact that for v < s− ε, ε > 0, then D2

N,n(s− v) ≤ C N−2 for n large enough,
as for (46), we obtain

E

[(
2

∫ s

0

∫ u

0

1

2π
D̄M,n(s− v)DN,n(s− v)σ(v)dWvDN,n(s− u)σ(u)dWu

)2
]

≤ C
∫ s

0

∫ u

0

D̄2
M,n (s− v)D2

N,n (s− v) dv D2
N,n (s− u) du ≤ CN−2n−1.

Therefore the term (49) multiplied by ρ (n)
−1/2

converges in probability to
zero.

For the term (50), by an iterated application of the Itô isometry, the
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Assumption (A.II), Lemma 2, ii) and the fact that for v < s − ε, ε > 0,
then D2

N,n(s − v) ≤ CN−2 for n large enough (as for (46)), and noting that

D̄2
M (0) = (2M + 1)

2
, we have

E

[(
2

∫ s

0

∫ u

0

1

2π
DN,n(s− v)σ(v)dWv D̄M,n(s− u)DN,n(s− u)σ(u)dWu

)2
]

≤ C
∫ s

0

∫ u

0

D2
N,n (s− v) dv D̄2

M,n (s− u) D2
N,n (s− u) du ≤ Cn−2.

Therefore the term (50) multiplied by ρ (n)
−1/2

converges in probability to
zero.
Finally, the total contribution of the terms (21), (23) and (26) gives the fol-
lowing bias:

2cM
1

π
(1 + 2η(cN ))

∫ 2π

0

σ4(s)ds.

Move now to the term 2BB
(ii)
M,n,N in (22) and the term 2CC

(ii)
M,n,N in (27).

We prove that the former converges to zero. The other one is analogous. Con-
sider

ρ(n)−1E
[(∫ 2π

0
2
∫ u
0

1
2π D̄M,n(u− s)Yn,N (s, s)σ(s)dWs Yn,N (u, u)σ(u)dWu

)2]
.

(51)
Applying first the Itô isometry, then the Itô formula we write (51) as the sum
of two terms

ρ(n)−1E
[∫ 2π

0

∫ u

0

1

π2
D̄2
M,n(u− s)Y 2

n,N (s, s)σ2(s)ds Y 2
n,N (u, u)σ2(u)du

]
(52)

and

ρ(n)−1E

[∫ 2π

0

∫ u

0

∫ s

0

1

π
D̄M,n(u− v)Yn,N (v, v)σ(v)dWv ·

1

π
D̄M,n(u− s)Yn,N (s, s)σ(s)dWs Y

2
n,N (u, u)σ2(u)du

]
.

(53)
We consider first (52). Using Assumption (A.II), it is sufficient to study the
following term

ρ(n)−1
∫ 2π

0

∫ u

0

D̄2
M,n(u− s)E

[
Y 2
n,N (s, s)Y 2

n,N (u, u)
]
du. (54)

First we observe that, by applying the Burkholder-Davis-Gundy inequality
and Lemma 2 the following inequality holds

E
[
sup
s≤v

Y 4
n,N (s, s)

]1/2
≤ C

∫ v

0

D2
N,n(v − t)dt ≤ Cρ(n). (55)

Then, by the Cauchy-Schwartz inequality and (55)

E
[
Y 2
n,N (s, s)Y 2

n,N (u, u)
]
≤ Cρ(n)2,
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which enables us to conclude that (54) is less or equal to CMρ(n) and vanishes
when taking the limit for n → ∞. We consider now (53). Using assumption
(A.II) it is sufficient to study

E

[∣∣∣∣∣
∫ u

0

∫ s

0

1

π
D̄M,n(u− v)Yn,N (v, v)σ(v)dWv

1

π
D̄M,n(u− s)Yn,N (s, s)σ(s)dWs Y

2
n,N (u, u)

∣∣∣∣∣
]
.

Applying the Cauchy-Schwartz inequality to this term and using (55), it is
enough to show that

E

[(∫ u

0

∫ s

0

D̄M,n(u− v)Yn,N (v, v)σ(v)dWv D̄M,n(u− s)Yn,N (s, s)σ(s)dWs

)2]
(56)

converges to zero. By applying the Itô formula, Assumption (A.II) and the
Cauchy-Schwartz inequality, the latter is less or equal to a constant C times∫ u
0
E
[(∫ s

0
D̄M,n(u− v)Yn,N (v, v)σ(v)dWv

)4]1/2 E [Y 4
n,N (s, s)

]1/2
D̄2
M,n(u− s)ds.

By using the Burkholder-Davis-Gundy inequality, inequality (55) and the re-
lation between D̄M (·) and DM (·), we get that (53) is less than

C

∫ u

0

(∫ s

0

D̄4
M,n(u− v)E

[
Y 4
n,N (v, v)

]
dv

)1/2

E
[
Y 4
n,N (s, s)

]1/2
D̄2
M,n(u− s)ds

≤ Cρ(n)2M4

∫ u

0

(∫ s

0

D4
M,n(u− v)dv

)1/2

D2
M,n(u− s)ds ≤ Cρ(n)2M → 0,

where, in the last step, we use Lemma 1 and the fact that, for v < u− ε with
ε > 0, then D2

M,n (u− v) ≤ CM−2.

We consider now the term 2BC
(ii)
M,n,N defined by (24). Applying Itô formula,

it splits into three terms:

1

2π
(2M + 1)

∫ 2π

0

2

∫ u

0

Yn,N (s, s)DN,n(u− s)σ2(s)ds σ(u)dWu (57)

+
∫ 2π

0

∫ u
0

2
∫ v
0

1
2π D̄M,n(v − s)Yn,N (s, s)σ(s)dWsDN,n(u− v)σ(v)dWv σ(u)dWu

(58)

+
∫ 2π

0

∫ u
0

2
∫ v
0

1
2π D̄M,n(v − s)DN,n(u− s)σ(s)dWs YN,n(v, v)σ(v)dWv σ(u)dWu.

(59)
We begin with the study of (57). In particular, we prove that

ρ(n)−1M2E

[∫ 2π

0

(∫ u

0

Yn,N (s, s)DN,n(u− s)σ2(s)ds

)2

σ2(u)du

]
goes to 0. By Assumption (A.II) it is enough to prove that

ρ(n)−1M2

∫ 2π

0

E

[(∫ u

0

Yn,N (s, s)DN,n(u− s)σ2(s)ds

)2
]
du (60)
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goes to 0. By applying the Fubini theorem and the Itô isometry, we have

ρ(n)−1M2E

[(∫ s

0

∫ u

0

DN,n(u− s)σ2(s)dsDN,n(s− v)σ(v)dWv

)2
]

≤ Cn2
∫ s

0

E

[(∫ u

0

Dp
N,n(u− s)σ2p(s)ds

)2/p
]
D2
N,n(s− v)dv (61)

for any p > 1. By Lemma 2 i) we have, for n and N large enough,

n

∫ u

0

Dp
N,n(u− s)σ2p(s)ds ≤ Cp

for any p > 1. Therefore, it holds that (61) has order n1−
2
p . Hence, it is

sufficient to take 1 < p < 2.
Consider now (58). We prove that

ρ(n)−1E

[∫ 2π

0

(∫ u

0

2

∫ v

0

1

2π
D̄M,n(v − s)Yn,N (s, s)σ(s)dWsDN,n(u− v)σ(v)dWv

)2

σ2(u)du

]
(62)

converges to 0. By the Itô isometry and Assumption (A.II) the previous term
is less or equal to

Cρ(n)−1
∫ 2π

0

∫ u

0

∫ v

0

D̄2
M,n(v − s)E

[
Y 2
n,N (s, s)

]
dsD2

N,n(u− v)dv du.

We remember now that E
[
sups≤v Y

2
n,N (s, v)

]
≤ Cρ (n). In addition, by using

Lemma 1 and 2 this term has order O
(
Mn−1

)
. Therefore, it converges to zero.

The term (59) can be studied in a similar way.

Finally, we consider the term 2BC
(iii)
M,n,N defined by (25). By the Itô isom-

etry it is enough to prove that

ρ(n)−1E

[ ∫ 2π

0

(∫ u
0

2
∫ v
0

1
2π D̄M,n(u− s)DN,n(v − s)σ(s)dWs σ(v)dWv

)2

Y 2
N,n(u, u)σ2(u)du

]
(63)

converges to 0. By Assumption (A.II) and the Cauchy-Schwartz inequality,
(63) is smaller than a constant C times

ρ(n)−1
∫ 2π

0
E

[(∫ u
0

2
∫ v
0

1
2π D̄M,n(u− s)DN,n(v − s)σ(s)dWs σ(v)dWv

)4]1/2
E
[
Y 4
N,n(u, u)

]1/2
du.

Therefore, applying the Burkholder-Davis-Gundy inequality and using the in-
equality (55), it remains to prove that∫ u

0

∫ v

0

D̄4
M,n(u− s)D4

N,n(v − s)ds dv → 0.

The above result follows by the relation between D̄M (·) and DM (·), by the
fact that for s < u− ε, ε > 0, D2

M,n (u− s) ≤ CM−2, and by Lemma 2 ii), as
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for (46).
Summarizing, in Step II we have determined the bias term YcM ,cN which is
equal to

YcM ,cN
.
= 2cM

1

π
(1 + 2η (cN ))

∫ 2π

0

σ4 (t) dt. (64)

Step III: Asymptotic Variance
Following [Jacod, 1994] we determine the variance of the asymptotic dis-

tribution by studying

〈ρ(n)−1/2 2(AB
(i)
M,n,N +AB

(ii)
M,n,N +AC

(i)
M,n,N +AC

(ii)
M,n,N ),

ρ(n)−1/2 2(AB
(i)
M,n,N +AB

(ii)
M,n,N +AC

(i)
M,n,N +AC

(ii)
M,n,N )〉,

(65)

where 〈·, ·〉 denotes the quadratic covariation in [0, 2π].

First we observe that the term AB
(ii)
M,n,N (resp. AC

(ii)
M,n,N ) can be treated as

AB
(i)
M,n,N (resp.AC

(i)
M,n,N ). Indeed, by the stochastic Fubini theorem [Protter, 1990],

we have that

2AB
(ii)
M,n,N =

∫ 2π

0

2

∫ 2π

s

1

2π
D̄M,n (s− u)σ2 (u) duYn,N (s, s) dWs.

Therefore, (65) contributes with sixteen terms, each of them leads to the same
limit. We study the first in detail, being the remaining terms similar. We prove
that

〈ρ (n)
−1/2

AB
(i)
M,n,N , ρ (n)

−1/2
AB

(i)
M,n,N 〉

= ρ (n)
−1
∫ 2π

0

(
2

∫ u

0

1

2π
D̄M,n (u− s)σ2 (s) ds

)2

Y 2
n,N (u, u)σ2 (u) du

converges in probability to

1

2
(1 + 2η (cN ))

∫ 2π

0

σ8 (u) du. (66)

By applying the Itô formula we study

ρ (n)
−1 ∫ 2π

0

(
2
∫ u
0

1
2π D̄M,n (u− s)σ2 (s) ds

)2 ∫ u
0
D2
N,n (u− s)σ2 (s) ds σ2 (u) du

(67)

+ ρ (n)
−1
∫ 2π

0

(
2

∫ u

0

1

2π
D̄M,n (u− s)σ2 (s) ds

)2

2

∫ u

0

∫ s

0

DN,n (u− v)σ (v) dWv·

·DN,n (u− s)σ (s) dWsσ
2 (u) du.

(68)
Consider (67). Using the fact that M/n → 0, as shown by the study of (34)

(multiplied by ρ (n)
−1/2

) in Step I, it is enough to prove that (67) converges
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in probability to (66). We observe that by using Step I, namely (32), then (67)
is equal to

ρ (n)
−1
∫ 2π

0

σ6 (u)

∫ u

0

D2
N,n (u− s)σ2 (s) ds du+ op(1)

Finally, using Lemma 2, this last term converges to (66). Consider now (68).
Using the same argument applied for (67), it is enough to prove that

ρ (n)
−1
∫ 2π

0

(
2

∫ u

0

1

2π
D̄M,n (u− s)σ2 (s) ds

)2

2

∫ u

0

∫ s

0

DN,n (u− v)σ (v) dWv·

·DN,n (u− s)σ (s) dWs σ
2 (u) du.

converges in probability to zero. By using the convergence in Step I, the pre-
vious term is equal to

ρ (n)−1
∫ 2π

0
σ6 (u) 2

∫ u

0

∫ s

0
DN,n (u− v)σ (v) dWvDN,n (u− s)σ (s) dWs du

(69)

+ ρ (n)−1
∫ 2π

0
2

∫ u

0

∫ s

0
DN,n (u− v)σ (v) dWv DN,n (u− s)σ (s) dWs du ·

·op(1). (70)

Consider the term (69). It holds

E
[∣∣∣∣ρ (n)

−1
∫ 2π

0

σ6 (u) 2

∫ u

0

∫ s

0

DN,n (u− v)σ (v) dWvDN,n (u− s)σ (s) dWs ds du

∣∣∣∣]

≤ C
∫ 2π

0

E

[(
ρ (n)

−1
2

∫ u

0

∫ s

0

DN,n (u− v)σ (v) dWvDN,n (u− s)σ (s) dWs

)2
]1/2

du.

By iterated application of Itô formula and Assumption (A.II), this is less or
equal to

C

∫ 2π

0

(
ρ (n)

−2
∫ u

0

∫ s

0

D2
N,n (u− v) dv D2

N,n (u− s) ds
)1/2

du.

By using Lemma 1 and the fact that for ε > 0 and v < u − ε we have
D2
N,n (u− v) ≤ CN−2 for n large enough (as for (46)), the above term is of

order N−1. As a consequence both (69) and (70) converge to zero.

Step IV: Orthogonality
We prove that the following convergence holds in probability

〈ρ(n)−1/22(AB
(i)
M,n,N +AB

(ii)
M,n,N +AC

(i)
M,n,N +AC

(ii)
M,n,N ),W 〉 −→ 0.
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We consider the term 2AB
(i)
M,n,N . The others are analogous. By Itô formula

we have

〈ρ(n)−1/22AB
(i)
M,n,N , W 〉

= ρ(n)−1/2
∫ 2π

0

2

∫ u

0

∫ s

0

1

2π
D̄M,n(s− v)σ2(v)dvDN,n(u− s)σ(s)dWsσ(u)du

+ ρ(n)−1/2
∫ 2π

0

2

∫ u

0

∫ s

0

DN,n(s− v)σ(v)dWv
1

2π
D̄M,n(u− s)σ2(s)ds σ(u)du.

In the following, we study in detail the first term since the second is analogous.
Let FM (s, s) be defined as

FM (s, s)
.
= 2

∫ s

0

1

2π
D̄M (s− v)σ2 (v) dv.

Then, by using the fact that M/n→ 0 and Assumption (A.II), it is enough to
prove that

ρ (n)
−1
∫ 2π

0

∫ 2π

0

E

[∣∣∣∣∣
∫ u

0

FM (s, s)DN,n (u− s)σ (s) dWs

∫ u′

0

FM (s′, s′)DN,n(u′ − s′)σ(s′)dWs′

∣∣∣∣∣
]
du du′ → 0.

(71)
Without loss of generality consider the case u ≤ u′. First consider, for any
ε > 0, the case u < u′ − ε and split (71) into

ρ (n)
−1
∫ 2π

0

∫ 2π

0

E

[∣∣∣∣∣
∫ u

0

FM (s, s)DN,n (u− s)σ (s) dWs

∫ u′−ε

0

FM (s′, s′)DN,n(u′ − s′)σ(s
′
)dWs′

∣∣∣∣∣
]
du du′

(72)

+ρ (n)
−1
∫ 2π

0

∫ 2π

0

E

[∣∣∣∣∣
∫ u

0

FM (s, s)DN,n (u− s)σ (s) dWs

∫ u′

u′−ε
FM (s′, s′)DN,n(u′ − s′)σ(s′)dWs′

∣∣∣∣∣
]
du du′.

(73)
We consider first (72). By applying the Cauchy Schwartz inequality, the ex-
pectation multiplied by ρ(n)−1, is less or equal than

Cρ (n)
−1 E

[∫ u

0

F 2
M (s, s)D2

N,n (u− s)σ2 (s) ds

]1/2
E

[∫ u′−ε

0

F 2
M (s′, s′)D2

N,n (u′ − s′)σ2 (s′) ds′

]1/2
,

which is of order O
(
n−1/2

)
thanks to Step I and 2. Consider now (73). By

applying Itô formula to the product of the two stochastic integrals, it splits
into three terms∫ 2π

0

1[0,u]∩[u′−ε,u′](s)F
2
M (s, s)DN,n (u− s)DN,n (u′ − s)σ2 (s) ds

(74)

+
∫ 2π

0

∫ s
0

1[0,u](s
′)FM (s′, s′)DN,n (u− s′)σ (s′) dWs′1[u′−ε,u′](s)FM (s, s)DN,n (u′ − s)σ (s) dWs

(75)

+
∫ 2π

0

∫ s
0

1[u′−ε,u′](s
′)FM (s′, s′)DN,n (u′ − s′)σ(s′)dWs′1[0,u](s)FM (s, s) DN,n (u− s)σ (s) dWs.

(76)
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In particular, it is easily seen that all the terms are identically zero as u < u′−ε.
Finally, we consider the case u′−ε ≤ u ≤ u′ and prove that the following term
converges to zero

ρ (n)
−1
∫ 2π

0

∫ 2π

0

1[u′−ε,u′](u)E

[∣∣∣∣∣
∫ u

0

FM (s, s)DN,n (u− s)σ (s) dWs

∫ u′

0

FM (s, s)DN,n (u′ − s′)σ (s′) dWs′

∣∣∣∣∣
]
dudu′.

By applying, again, the Cauchy-Schwartz inequality and by using the result
in Step I, the previous term is less or equal to

∫ 2π

0

du

∫ 2π

0

du′1[u′−ε,u′](u)

(
E

[
ρ (n)

−1
∫ u

0

D2
N,n(u− s)σ6(s) ds

]1/2
E

[
ρ (n)

−1
∫ u′

0

D2
N,n(u′ − s′)σ6(s′) ds′

]1/2
+ o(1)

)
≤ 2ε

for M large enough. The proof is now complete.

7 Appendix B: Auxiliary Lemmas

This Appendix contains some results about the Dirichlet and the rescaled
Dirichlet kernel. We keep the notation used by [Malliavin and Mancino, 2009]
and we denote with DN (·) the rescaled Dirichlet kernel

DN (x) =
1

2N + 1

∑
|k|≤N

eikx. (77)

We let D̄N (·) .
= (2N + 1)DN (·), that is the Dirichlet kernel.

Lemma 1 Let D̄M (·) be the Dirichlet kernel. The following results hold.

i) For any M ∫ π

−π
D̄M (x) dx = 2π,

ii) Let γ > 1 and suppose that lim n
Mγ = K for some constant K > 0, then

lim
n,M→∞

∫ π

−π
D̄M (ϕn (x)) dx = lim

M→∞

∫ π

−π
D̄M (x) dx = 2π,

lim
n,M→∞

∫ π

−π

1

2M + 1
D̄2
M (ϕn (x)) dx = 2π.

iii) Let γ > 1 and suppose that lim n
Mγ = K for some constant K > 0 and let

f be a ν-Hölder continuous function with ν ∈ (0, 1]. Then

lim
n,M→∞

∫ π

−π

1

2M + 1
D̄2
M (y − ϕn (x)) f (x) dx = f (y) . (78)

Proof The proof follows the lines of Lemma 5.1 of [Cuchiero and Teichmann, 2015].

Lemma 2 Let DN (·) be the rescaled Dirichlet kernel. Under the assumption
that limn,N→∞

N
n = cN > 0, the following results hold.
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i) For any p > 1 there exists a constant Cp such that:

lim
n,N→∞

n sup
x∈[0,2π]

∫ 2π

0

Dp
N,n(x− y)dy ≤ Cp,

ii)

lim
n,N→∞

n

∫ x

0

D2
N,n(x− y)dy = π(1 + 2η(cN ))

where

η(cN )
.
=

1

4c2N
r(2cN )(1− r(2cN )) (79)

and r(x) = x− [x], with [x] the integer part of x.
iii) For any x < t we have

lim
N,n→∞

n

∫ x

0

D2
N,n(t− y) dy = 0.

iv) For any x < t and f a Hölder continuous with parameter ν ∈ (0, 1] we
have

lim
N,n→∞

n

∫ t

0

∫ x

0

D2
N,n(x− y)f(x, y)dy dx = π(1 + 2 η(cN ))

∫ t

0

f(x, x)dx.

Proof See [Clement and Gloter, 2011] Lemma 1 and Lemma 4.
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