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Abstract

We present a linear response formalism for the description of the electronic ex-

citations of a non-collinear reference defined via Kohn-Sham spin density functional

methods. A set of auxiliary variables, defined using the density and non-collinear mag-

netization density vector, allows the generalization of spin density functional kernels

commonly used in collinear DFT to non-collinear cases, including local density, GGA,

meta-GGA and hybrid functionals. Working equations and derivations of functional

second derivatives with respect to the non-collinear density, required in the linear re-

sponse non-collinear TDDFT formalism, are presented in this work. This formalism

takes all components of the spin magnetization into account independent of the type of

reference state (open or closed shell). As a result, the method introduced here is able

to afford a non-zero local xc torque on the spin magnetization, while still satisfying the

zero-torque theorem globally. The formalism is applied to a few test cases using the
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variational exact-two-component reference including spin-orbit coupling to illustrate

the capabilities of the method.

1 Introduction

In recent years we have witnessed an ever expanding research effort in the modeling of spin-

related phenomena, which are at the basis of magnetic materials and spintronic devices.1–4

An accurate theoretical description of the variety of spin phenomena involved in these fields

requires enough flexibility to allow the spin magnetization vector to move about and re-

orient itself along any axis. In some cases, the direction of the spin magnetization may

not be the same at every point in space, a situation often referred to as non-collinear spin.

This flexibility in the spin orientation is unfortunately not found in most common quantum

chemical methods, which implicitly assume that the spin magnetization is uniformly oriented

along an axis, conventionally taken to be the z axis. Therefore, generalizations of widely

available theoretical and computational methods specifically designed to describe these spin

arrangements are greatly appreciated.

Non-collinear spins also have a prominent role in relativistic quantum chemical theory

based on the Dirac equation.5,6 Relativistic effects are known to be of importance for the

description of heavy elements, in which scalar relativistic effects cause significant contractions

of the core electron shells,7 but they also introduce spin-spin and spin-orbit couplings in the

Hamiltonian, whose effects can be observed directly even in light atoms in the fine structure

splittings that occur in their ground and excited electronic states. While scalar relativistic

effects can be modeled using a collinear method, the introduction of spin-orbit couplings

often requires this constraint to be relaxed so that a more consistent description of the

system can be achieved. This is not merely academic: a growing class of multiferroics are

functional strictly due to the noncollinear arrangement of their lattice spins.8 The relativistic

corrections to the Heisenberg exchange interaction due to spin orbit coupling, known as
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the Dzyaloshinskii-Moriya interaction,9,10 favor perpendicular orientations of adjacent spins

leading to an overall noncollinear spin orientation (often called a spiral magnetic order). This

leads to magnetic ferroelectric materials with an extreme sensitivity to external magnetic

fields.

Among the quantum chemical methods that are available today, density functional the-

ory (DFT) has become the method of choice for a wide array of applications thanks to its

ability to offer a good compromise between accuracy and computational cost. It is there-

fore highly desirable to extend the method based on DFT to the non-collinear framework.

Unfortunately, density functionals commonly employed in quantum chemistry have been

developed for collinear densities, and therefore there is no straightforward way to employ

them in non-collinear systems. Ideally, new density functionals specifically designed to take

non-collinearity into account should be used, and some work has be done in this direction.11

However, for the time being it would be highly desirable to use standard functionals in non-

collinear DFT. The results of many benchmarking studies have shown that these functionals

yield accurate results in a wide variety of contexts and for the calculation of a multitude of

molecular properties.

Several different approaches have been proposed to address this problem,12–29 and in this

work we extend a non-collinear DFT formalism previously applied for ground-state calcu-

lations19–21 to the description of excited states, and built upon previous work by some of

us on excited-state two-component methods such as the time-dependent Hartree-Fock (2c-

TDHF) method30,31 and the particle-particle Tamm-Dancoff approximation.32 The approach

presented here is compatible with the inclusion of relativistic effects such as spin-orbit cou-

pling via one of the many available methods such as the Douglas-Kroll-Hess expansion to

4th order,33–35 the normalized elimination of the small components,36,37 or the exact two-

component method (X2C).24,25,31,38–48
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2 Theory

2.1 Two-component Relativistic Hamiltonian

The Dirac Hamiltonian in relativistic quantum mechanics has the following expression:5,6

Ĥ =



V σ0 cσ · p

cσ · p (V − 2mc2)σ0


 (1)

where V is the scalar potential, σ is a vector whose components are the Pauli matrices, and

σ0 is the rank-two identity matrix. The relativistic wave function is a four-component (4c)

object, and is usually separated into the large and small components which each consists of

spin-up and spin-down parts:

ψ4c =



ψL

ψS


 (2)

ψL =



ψαL

ψβL


 ; ψS =



ψαS

ψβS


 (3)

In the non-relativistic limit, for positive-energy solutions, the large component approaches

the non-relativistic wave function while the small component vanishes. From the four-

component wave function, the spin density can be obtained through the Gordon decom-

position of the three-current:26,49

s =
1

2
ψ†βΣψ ; βΣ =



σ 02

02 −σ


 (4)

While the Dirac equation can be solved in its full form, it is often convenient to simplify

it by transforming it into a form that is closer to its non-relativistic counterpart. This is
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achieved by means of a unitary transformation U such that:

UĤU † =



Ĥ+ 02

02 Ĥ−


 ; U



ψL

ψS


 =



ψ2c

0


 (5)

The two-component transformed wave function is an eigenstate of the transformed Hamil-

tonian operator Ĥ+. Given its two-component form, the transformed Dirac equation can be

solved using techniques that are also employed in the case of non-collinear non-relativistic

quantum chemistry.23,25–27,48 The exact transformation U for the full equation including the

two-electron terms cannot, however, be found in most practical cases. Therefore, one must

introduce approximations for the decoupling of the large and small components. In this

contribution we will employ the the exact two-component method (X2C), where the ap-

pellative “exact” refers to the fact that X2C is based on the exact diagonalization of the

one-electron four-component Hamiltonian,24,25,29,31,32,38,40–45 though the term X2C can also

be used more in general to describe methods in which an effective Hamiltonian, such as

a mean-field Dirac-Fock operator, is diagonalized to obtain a suitable two-component one-

electron operator.39,40,46,47 A very common approximation is to neglect the transformation

of the two-electron terms of the Dirac Hamiltonian. This approach greatly reduces the com-

putational cost associated with the transformation, but it neglects two-electron spin-orbit

terms, some of which are of the same order as their one-electron counterparts. Several

methods have been proposed to recover a posteriori the effect of the two-electron spin-orbit

contributions.24,37,42,50 Here we adopt a simple method that uses a fudging of the one-electron

spin-orbit terms according to a scheme that takes the angular momentum of the functions

into account.51,52

2.2 Two-component Density Functional Theory

Non-relativistic density functional theory is based on the Hohenberg-Kohn theorem and it

is realized in quantum chemistry through the Kohn-Sham method. The same approach
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can be carried over to the relativistic framework provided that the density is replaced with

the ground-state four-current.53–55 While the exact relativistic functional may depend on

the current, in most practical applications this dependence is dropped in favor of a sim-

pler dependence on the electron density only. Even with this simpler density dependence,

density functionals commonly used in quantum chemistry implicitly assume that density to

be collinear, i.e. that the spin magnetization is oriented along the same axis (convention-

ally chosen to be the z axis) at all points in space. This situation is usually acceptable

in the non-relativistic regime, with an exception given by spin-frustrated systems. How-

ever, fundamental relativistic effects such as the presence of spin-orbit coupling in the Dirac

equation can cause the magnetization to assume a non-collinear configuration. The de-

velopment of true non-collinear density functionals that depend on both the total density

and the magnetization vector density is an ongoing effort.11 However, a common approach

is to reformulate the density-dependence of collinear functionals in order to use them in

a non-collinear two-component Kohn-Sham method. This extension allows one to benefit

from the rich development in the field of collinear non-relativistic DFT made in the last few

decades.12–28,56

In the two-component formalism the generalized density can be expressed in a spin-

blocked form or as a sum of the total density n and the vector magnetization density m:

ρ(r) =



ραα(r) ραβ(r)

ρβα(r) ρββ(r)


 =

1

2
n(r)σ0 +

1

2
m(r) ◦ σ (6)

where the circle ‘◦’ is used to denote a scalar product over the magnetization spin labels of

any two quantities (a ◦ b =
∑

k=x,y,z akbk). The expressions of the density elements can be

found in the Appendix.

A strictly local exchange-correlation functional would require only these density variables

to be considered. However, more advanced density functionals capable of achieving more

accurate results, also depend on the density gradients, the Laplacian of the densities or the
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kinetic energy densities. In order to make use of such functional forms in the relativistic

two-component Kohn-Sham method, the functionals are redefined (in the similar spirit of

spin-polarized DFT) to depend on a set of auxiliary generalized variables which take the full

magnetization vector density into account,19–21

Exc =

∫
f(n+, n−, γ++, γ−−, γ+−, τ+, τ−) d r (7)

where the generalized variables are defined as follows

n± =
1

2
n± 1

2

√
m ◦m

γ±± =
1

4
∇n ·∇n+

1

4
∇m · ◦∇m± f∇

2

√
∇n ·∇m ◦∇m ·∇n

γ+− =
1

4
∇n ·∇n− 1

4
∇m · ◦∇m

τ± =
1

2
τ ± fu

2

√
u ◦ u

f∇ = sgn(∇n ·∇m ◦m)

fu = sgn(u ◦m)

(8)

In the expression above τ and u are the total and magnetization vector kinetic energy

densities, while ‘sgn’ indicates the sign function. For meta-GGA, additional Laplacians of

the densities are needed (see the Appendix).20

These definitions have the advantage of yielding an energy that is independent of the

choice of the global orientation of the magnetization. Compared to other definitions of the

generalized density variables,13–17,22,23,25–27the method proposed herein, when applied to non-

local functionals, can yield a non-zero local torque acting on the magnetization while still

giving rise to a zero global torque. This property satisfies the zero-torque theorem, which is a

known property of the exact functional.57 It should be pointed out that the exact functional

in Eq. (7) is not formally the same as the exact density functional that should be used in

the time-dependent theory. In this work, we choose to generalize the common practice of
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employing the same functional for both ground state and response calculations to the regime

of non-collinear spins. In addition, we cast our formalism within the generalized Kohn-Sham

(GKS) formalism, in which no restrictions are imposed on the the density in terms of spin,

and allows to model bond-breaking without resorting to multi-reference methods. This is in

contrast with recent developments in spin-adapted TDDFT,28,58 which have the advantage

of avoiding spin-contamination problems in open-shell system.

2.3 Functional Derivatives of Non-Collinear DFT

In deriving the linear response equation for non-collinear DFT, derivatives of the functional

up to second order with respect to the density variables must be evaluated. Mathematical

derivations of functional derivatives with respect to fundamental density variables and their

working equations in atomic orbital basis are presented in the Appendix. These equations

have been implemented in this work for a large class of functionals, including GGAs and

functionals that depend on the kinetic energy density and the Laplacian of the density. In

this section, we only highlight technical details that addresses some challenges in developing

functional second derivatives for non-collinear DFT.

Derivatives of a functional, which is defined in terms of auxiliary variables, with respect

to fundamental density matrix elements can be obtained by the application of chain rules.

While expressions for the functional derivatives with respect to the auxiliary variables have

the same forms as for the collinear case, the derivatives of auxiliary variables with respect to

density variables, e.g. ∂n+

∂m
and ∂2n+

∂m∂m
, are very different (see the Appendix). Complications

may however arise in regions where the magnetization is zero or close to zero, especially in

the case of second derivatives. This is apparent in the expression for some of the chain rule

coefficients. For instance,

∂2n+

∂m∂m
=

1

m

(
1− m⊗m

m2

)
(9)
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when m is close to zero, such as in regions where magnetization is very small, however,

this quantity can be ill-conditioned within a given machine precision, and the magnetization

vector becomes directionless. Although such situation can be easily avoided for a perfectly

closed shell system,14–16 it imposes a challenge to the development of numerically stable

non-collinear DFT methods for open-shell systems.

In this work, we wish to develop a general and numerically stable method that is applica-

ble for any reference state (open or closed shell) and in which the magnetization may possibly

be zero (or very small) in some regions of space, and non-zero in others. A crucial aspect of

the development is ensuring that the first and second functional derivatives are numerically

stable, even when the direction of the magnetization may be effectively discontinuous in

regions where its magnitude is very small.

Numerical instabilities arise from the functional differentiation with respect to magne-

tization vector and magnetization vector kinetic energy densities in the square-root form

(see Eq. (8)). To avoid having the magnetization length m in the denominator of functional

derivatives, we choose to use scalar forms of magnetization vector and magnetization vector

kinetic energy densities in the square-root terms only in regions where the magnetization

length is below a threshold (m < 10−12 used in this work). This leads to slightly different

auxiliary variables,

n± =
1

2
n± 1

2
ms

γ±± =
1

4
∇n ·∇n+

1

4
∇m · ◦∇m± f∇

2
∇n ·∇ms

γ+− =
1

4
∇n ·∇n− 1

4
∇m · ◦∇m

τ± =
1

2
τ ± fu

2
us

ms =
1

3
(mx +my +mz)

us =
1

3
(ux + uy + uz)

(10)

The advantage of this formulation is that square-root terms that lead to the near-zero de-
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nominators in the chain rule coefficients disappear, while the equations still approach the

correct limit for zero magnetization. It seems that this alternate definition of auxiliary vari-

ables breaks the invariance with respect to rotations of the spin reference frame. However,

as long as it is used only in regions where the magnetization is small enough, such prop-

erties are still satisfied numerically to an acceptable accuracy. The validity of the present

approximation has been tested on several systems, and results are outlined in the following

sections.

2.4 AO Direct Linear Response Formalism of Non-collinear TDDFT

The linear response formalism of the time-dependent two-component Hartree-Fock method

has been derived and discussed in the previous work.31,59 Although they are fundamentally

different, the working equations of two-component TDDFT and TDHF in the molecular

orbital (MO) basis share a similar matrix representation,




A B

B∗ A∗






X

Y


 = ω




1 0

0 −1






X

Y


 (11)

where X and Y represent the excitation and de-excitation amplitudes. The matrices A and

B are defined as:

Aai,bj = δabδij(εa − εi) +Kai,bj (12)

Bai,bj = Kai,jb (13)

For non-collinear TDDFT, the coupling matrix K depends on the form of exchange and

correlation functionals and functional derivatives. Note that Eq. (11) is cast in the X2C

transformed picture frame.31 For discussions on the effect of two-component picture frame

change on excitation energies, we refer readers to Ref. 31. Also note that Eq. (11) is closely

related to the stability test of two-component ground state wave function.59–61
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Equation (11) is a complex non-Hermitian eigenvalue equation of dimension 2OV , which

is usually solved numerically using the Davidson algorithm,62 since only the lowest few ex-

cited states are typically needed. Higher energy states can be obtained in a similar way

using energy-windowed algorithms.63,64 Given the high dimensionality that both the linear

response and stability problems can reach, the matrix vector products in Eq. (11) are per-

formed in a direct fashion in the AO basis. The details of the efficient direct contraction

algorithm of the Coulomb and HF exchange terms have been discussed in an earlier con-

tribution.31 In this paper, we focus on direct contraction algorithm with the non-collinear

transition density related to functional derivatives that occur in the coupling matrix.

The coupling matrix in the AO basis has the following general expression,

Kµν,κλ = (µν|κλ) +
∂2Exc

∂Pµν∂Pκλ
(14)

The working equations for the functional second derivatives in non-collinear density matrix

basis are derived and presented in the Appendix. The direct algorithm using Davidson type

of solvers to solve Eq. (11) requires the on-the-fly contraction of four-index coupling matrix

elements (Eq. (14)) with the two-component non-Hermitian transition density, T obtained

by transforming the guess vector |X Y 〉 into the AO basis, to form the matrix-vector product

on the left hand side of Eq. (11). Detailed technical aspects regarding this direct contraction

step and procedure to reduce the computational costs are discussed in the Appendix.

3 Applications

All calculations were performed with a locally modified version of the Gaussian quantum

chemistry program package.65 Relativistic effects were accounted for by means of the X2C

method.24,25,38,40–42 In order to partially account for two-electron spin-orbit interactions in

the Hamiltonian, we employed a scheme based on the scaling of the one-electron interactions

depending on the nuclear charges and the angular momenta of the basis functions involved.51
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The atomic nuclei, rather than being treated as point charges, were described using s-type

functions.66,67 The stability of the ground state wave function was also tested before linear

response calculations were performed. For the various examples in the following subsections,

we used the LSDA,68,69 BLYP,70–72 B3LYP,71,73 PBE,74 PBE0,75 TPSS,76 M06-2X,77 and

M06-HF78,79 functionals.

3.1 Dilithium

To illustrate the features of the method we present in this subsection results on the dilithium

molecule. This system has been extensively studied using a variety of theoretical methods in

the past,80–94 and its small size allows for extensive testing. It is well known that methods

restricting the spin pairing of the electrons, such as restricted Hartree-Fock (RHF) and its

Kohn-Sham equivalents, cannot be used to produce potential energy surfaces of dissociating

systems correctly. This is because, for instance, while the system is in a singlet state at

the equilibrium geometry, as bonds are broken the triplet reference state may become more

stable. Being able to employ an unrestricted reference is helpful in these cases. Just like in

the unrestricted Hartree-Fock (UHF) method, however, a non-zero spin multiplicity in the

single-determinant ground state causes the excited states to be spin-contaminated.95

As a simple model system to study the effect of bond-breaking on the excited states, we

calculated the potential energy surfaces of the lowest excited states of dilithium using the

linear response two-component non-collinear TDDFT method developed in this work at the

2c-B3LYP/Sapporo-DZP-201296 level of theory with relativistic effects in the description

(shown in Fig. 1). Since lithium is a very light atom, spin-orbit couplings are too small

to cause a significant degree of non-collinearity and spin is still a good quantum number.

Nevertheless, it is still an interesting system to study because the ground state reference

within a single determinant description undergoes a continuous transition from a closed

shell to an open shell configuration as the bond breaks. This correlates to the change of

definition of the auxiliary variables from Eq. (10) to Eq. (8) as the magnetization increases
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from zero (closed shell) to 2 (open shell).
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Figure 1. Left: 2c-B3LYP excitation energies as a function of Li-Li bond length.
Right: UB3LYP excitation energies as a function of Li-Li bond length. Numbers
in parenthesis indicate degeneracy.

At small interatomic distances the ground state of the system has a closed shell config-

uration 1Σg with no significant degree of non-collinearity, and the excited states also have

well-defined symmetries and spin multiplicities. The energy levels computed at 2c-B3LYP

in this region are the same as those computed at UB3LYP. However, UB3LYP results miss

a number of degenerate states within a same spin manifold due to the restricted spin align-

ment.59 This is due to the fact that in the one-component calculations we are not converging

any of the spin-flip states, and for each triplet manifold only the state with ms = 1 is con-

verged. At the bond length of ∼3.8 Å, the ground state undergoes a reference change from

closed-shell to open-shell. As a result, excited state potential energy surfaces intersect in

that region. The triple degenerate ground state is correctly captured in the 2c-B3LYP calcu-

lations. For detailed discussions regarding spin-symmetry characteristics of two-component

methods for excited state calculations, please see Ref. 59.

This simple test suggests that the change of definition of auxiliary variables in the situa-

tion of small magnetization does not introduce a discontinuity in the excited state potential

energy surfaces within the numerical accuracy.
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3.2 Trilithium

In this section we analyze the excited states of a lithium trimer model system, which has

been extensively studied in the literature97–103 and was shown to have non-collinear states

even in the absence of relativistic effects.30 The non-collinearity of each electronic state can

be visualized as local magnetization vector on each atom using the Hirshfeld partitioning

scheme.104 In a collinear solution all vectors would be oriented along the same (arbitrary)

direction. For the excited state, the Hirshfeld partitioning scheme is applied to analyze the

unrelaxed excited state density matrix defined as95,105,106

P exc
pq = P 0

pq +
occ∑

i

(X∗piXqi + Y ∗piYqi)−
vir∑

a

(X∗apXaq + Y ∗apYaq) (15)

where P0 is the ground-state density, and X and Y are the excitation and de-excitation

amplitudes. The calculated local magnetization vectors of excited states and their energies

using 2c-PBE are shown in Fig. 2.

We consider this molecule in an equilateral triangular geometry (D3h symmetry), with a

bond distance of 4.0 Å. The ground state has a four-fold degeneracy with different alignments

of local magnetization vectors shown as the red-arrows and States 1–3 in Fig. 2). This is

expected from (Hartree-Fock) studies on similar noncollinear systems.59,61,107 These ground

state wave functions have been confirmed to be stable.61 In the presented calculations, the

reference for linear response calculations corresponds to a non-collinear arrangement of mag-

netization vectors when three local vectors are pointing outwards with 120◦ angle with respect

to each other (see red-arrows in Fig. 2). Note that approximate treatment of 2c-TDDFT,

such as the Tamm-Dancoff approximation, can not reproduce degenerate non-collinearity

due to the lack of de-excitation amplitudes. All non-collinear DFT functionals (2c-LSDA,

2c-PBE and 2c-PBE0) tested herein produce similar state orderings. For detailed analysis of

energetic and symmetry characteristics of molecules with D3h symmetry in a non-collinear

formalism, we refer readers to Ref. 59.
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Figure 2. Hirshfeld magnetization vectors of the reference state (red arrows)
and the 2c-PBE calculated states (blue arrows) of Li3.
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Figure 2 suggests that the auxiliary variables defined in this work give rise to the correct

physics — non-zero local magnetizations while still being a non-collinear system and having

a zero global magnetization (e.g. States 1-5 in Fig. 2). It is also worth mentioning that the

linear response two-component non-collinear DFT methods allow change of global magneti-

zation upon excitation as exemplified by the non-zero global spin-projection for states 6 to

11.

The strongly non-collinear solution of the lithium trimer allows for a good test of the

correctness of our implementation of the functional second derivatives, by comparing the

absorption spectra obtained by LR-2c-TDDFT with the same spectra obtained with real-

time two-component time-dependent density functional theory (RT-2c-TDDFT).29,30 The

two methods are equivalent when used to obtain electronic absorption spectra. However,

RT-2c-TDDFT does not require the explicit evaluation of functional second derivatives, and

therefore if our derivation and implementation of the functional second derivatives is correct,

the two methods should agree. We show a comparision of the absorption spectrum of the

lithium trimer for the two methods using the PBEPBE exchange-correlation functional in

Fig. 3. The stick spectra from LR-2c-TDDFT is overlaid on the absorption lineshape is from

the RT calculations. The RT solution was perturbed with a delta electric field pulse of 0.005

V·Å−1 and propagated for 40 fs with time step of 0.000242 fs (0.01 au) using the second-

order modified midpoint unitary method (MMUT).108–110 To accelerate the convergence of

the Fourier transform, we used the Padé transformation scheme,111 and the electric dipole

response was damped exponentially to give each peak a Lorentzian line shape with full-width

half-max of 0.03 eV. Though the real time methods can only resolve optically bright modes,

we see excellent agreement between the two methods. For the lowest six peaks considered, the

maximum deviation between the two methods is 0.01 eV, with a mean absolute error of 0.002

eV. The discrepancies are due to the numerical integration error from the finite time step

used in the RT calculations. Though the peak heights are arbitrarily scaled for comparison

between the methods, we find it encouraging that relative peak height is consistent among
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the LR and RT methods.
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Figure 3. Comparison of the computed optical absorption spectra of noncollinear
Li3 between the linear response (stick plot) and real time TDDFT (line shape) for-
malisms with the PBEPBE exchange-correlation functional. The excellent agree-
ment of the two methods indicate the correctness of the LR functional second
derivatives, as RT methods do not require the explicit calculation of functional
second derivatives, and the RT and LR methods access the same fundamental
observables. For the peaks considered, the mean absolute deviation is 0.002 eV,
which is within numerical error for the finite timestep used in RT-2c-TDDFT.
Details of the RT calculation can be found in the text.

3.3 Uranyl Ion

In this section we turn our attention to a more realistic and chemically interesting system, the

linear uranyl(VI) ion UO2+
2 . This is molecule has been studied in earlier work using different

electronic structure methods, including methods employing perturbative treatment of spin-

orbit couplings.22,31,112–116 This system has an even number of electrons, and would give a

singlet ground state in a non-relativistic framework. For our tests we selected a U-O bond

distance of 1.708 Å. When spin-orbit couplings are introduced in the two-component non-

collinear formalism, the variational optimization of the ground state Kohn-Sham determinant
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yields a state with a non-zero total spin expectation value. In addition, spin-orbit couplings

also cause splittings in the excited states. Table 1 presents the 2c-TDDFT calculated lowest-

energy excitations compared to CASPT2 and LR-CCSD calculations with perturbative spin-

orbit corrections.

Pure functionals, such as LSDA, GGA (BLYP and PBE) and meta-GGA (TPSS), tend

to yield lower excitation energies compared to all other functionals and to the wave function

results. The inclusion of Hartree-Fock exchange has a significant effect on the excitation

energies. The results obtained with B3LYP and PBE0 are quite similar, while M062X

yields substantially higher excitation energies overall, likely owing to its higher percentage

of Hartree-Fock exchange (0.54 %, compared to 20 % and 25 % for B3LYP and PBE0, re-

spectively). The M06HF functional has 100 % HF exchange, and gives the highest excitation

energies overall. When compared with the published wave function methods, M062X seems

to give results that more closely fall within the interval defined by the CASPT2115 and

LR-CCSD113 excitation energies.

Table 1. Calculated lowest excited state energies (in eV) of the uranyl(VI)
cation. cc-pVTZ basis set117 is used for oxygen and SARC-DKH basis is used for
uranium.118

LSDA BLYP PBE TPSS B3LYP PBE0 M062X M06HF CASPT2115 LR-CCSD113

1.41 1.22 1.18 1.15 1.61 1.63 2.45 3.21 2.38 2.83
1.57 1.40 1.37 1.35 1.78 1.82 2.58 3.21 2.49 2.85
1.99 1.83 1.76 1.67 2.01 1.95 2.64 3.44 2.51 2.96
2.21 2.06 2.00 1.91 2.26 2.22 2.93 3.68 2.77 3.13
2.33 2.15 2.11 2.09 2.51 2.53 3.35 3.70 3.15 3.45
2.43 2.41 2.37 2.30 2.68 2.64 3.39 3.93 3.26 3.60
2.47 2.42 2.45 2.56 2.92 2.99 3.55 4.10 3.61 4.01
2.57 2.46 2.50 2.56 3.31 3.53 4.00 4.22 3.88 4.30

4 Conclusions and Perspectives

In this work, we presented a two-component non-collinear density functional formalism,

which also includes relativistic effects such as spin-orbit coupling using the X2C method,
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for the evaluation of excited states. Notably, a similar approach can also be used to assess

the stability of the ground-state with respect to any general perturbation. We employ a

set of auxiliary variables that take the mixed-spin components of the non-collinear density

into account when computing the exchange-correlation part of the energy. An AO direct

algorithm is presented in this work that also takes advantages of spin-blocked symmetry of

the non-collinear density and transition density.

This non-collinear linear-response formalism requires the functional second derivatives

with respect to the non-collinear density and magnetization components. In regions where

the magnetization is close to zero, functional second derivatives may encounter numerical

instabilities. These numerical issues were resolved by introducing a new set of auxiliary

variables defined only in the small magnetization region, without significantly altering the

desirable properties of the non-collinear DFT formalism. This approach extends the ap-

plicability of the method to all systems, regardless of the spin multiplicity of the reference

state.

With this approach we are able to extend existing GGA, meta-GGA, and hybrid function-

als to the regime of non-collinear spin. For functionals beyond the local density approxima-

tion, through the use of both the parallel and perpendicular components of the magnetization

gradient, the definitions of the auxiliary variables presented are able to correctly give rise to

non-zero local torque on the magnetization, while maintaining net zero global torque, as it is

expected from the exact functional. Several tests were used to validate existing functionals

for non-collinear and relativistic calculations using the presented formalism for excited state

energetics and properties.

The inclusion of spin-orbit effects in the ground state variationally and in a linear response

treatment of the one-electron excitations opens the door to the description of phenomena such

as the intersystem crossing between states of different spin-multiplicities. In addition to the

transition energy, other excited state properties like transition moments need to be evaluated

for both the absorption and emission process (either by fluorescence or phosphorescence).
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Future work will also address the energy gradient and Hessian of excited states.
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Appendix: Non-collinear exchange-correlation functional

derivatives

In this appendix, we present derivations of the exchange-correlation functional derivatives

with respect to non-collinear density matrix, including the working equations for the first

and second derivative of Exc.

A1. Fundamental variables

In order to allow for non-collinearity, the spin orbitals are expressed as a two-component

spinor,

ψk(x, t) =



φαk (r, t)

φβk(r, t)


 (16)

where the spatial functions {φαk (r, t)}, {φβk(r, t)} are expanded in terms of a common set of

real atomic orbital (AO) basis functions {χµ(r)}

φαk (r, t) =
∑

µ

Cα
µk(t)χµ(r) (17)

φβk(r, t) =
∑

µ

Cβ
µk(t)χµ(r) (18)

where the expansion coefficients C’s may take complex values.

With the definition of the two-component spinor, the density matrix comprises four

independent spin-blocks (αα, αβ, βα, and ββ),

P =




Pαα Pαβ

Pβα Pββ


 (19)

P ττ ′

µν (t) =
∑

i∈occ

Cτ
µi(t)C

τ ′∗
νi (t), τ, τ ′ = α, β (20)
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which can be further expanded into their real and imaginary (R/I) and then symmet-

ric/antisymmetric (S/A) components,

P =




PααRS + iPααIA PαβRS + PαβRA + i(PαβIS + PαβIA)

PαβRS −PαβRA − i(PαβIS −PαβIA) PββRS + iPββIA


 (21)

Note certain symmetry blocks of the density matrix vanish due to the Hermiticity of P

(e.g. PααIS = PββIS = 0). Using the set of variables defined in Eq. (8) no contribution can

arise from the antisymmetric AO density components, since such variables only involve sym-

metric combination of AO basis functions. The antisymmetric matrices would be involved

if the Exc depended on the current densities, but we do not consider this extension here.

Nevertheless, the antisymmetric AO densities do contribute to the Hartree-Fock exchange

in hybrid functionals.31 Following the notation of Eq. (21) and dropping the superscript S

in the components, the symmetric part of the two-component ground state density can be

written as 


PααR PαβR + iPαβI

PαβR − iPαβI PββR


 (22)

Upon contraction of the density matrix with the AO basis functions, the scalar total

charge density n(r) and magnetization density vector m(r) can be constructed,31

n(r) =
∑

i∈occ

ψ†i (r)ψi(r) =
∑

µν

(PααR
µν + P ββR

µν )χµ(r)χν(r) (23)

mx(r) =
∑

i∈occ

ψ†i (r)σxψi(r) = 2
∑

µν

PαβR
µν χµ(r)χν(r) (24)

my(r) =
∑

i∈occ

ψ†i (r)σyψi(r) = −2
∑

µν

PαβI
µν χµ(r)χν(r) (25)

mz(r) =
∑

i∈occ

ψ†i (r)σzψi(r) =
∑

µν

(PααR
µν − P ββR

µν )χµ(r)χν(r) (26)
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where σk are Pauli matrices.

σx =




0 1

1 0


 , σy =




0 −i

i 0


 , σz =




1 0

0 −1


 (27)

A2. Functional variables

For GGA, the exchange-correlation functional has the general form

Exc =

∫
f(n+, n−, γ++, γ−−, γ+−, τ+, τ−)dr (28)

for meta-GGA,

Exc =

∫
f(n+, n−, γ++, γ−−, γ+−, τ+, τ−,∇2ρ+,∇2ρ−)dr (29)

where f is a function of auxiliary variables {Ui}

{Ui} =

{
n+ n− γ++ γ−− γ+− τ+ τ− ∇2ρ+ ∇2ρ−

}
(30)

{Ui} are defined as functions of density variables {Vi} in Eq. (8),

{Vi} =





n mx my mz τ ux uy uz

∇n ∇mx ∇my ∇mz ∇2n ∇2mx ∇2my ∇2mz





(31)

n(r) and m(r) are defined in Eqs. (23) to (26). Scalar τ(r) and vector u(r) are
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τ(r) =
1

2

∑

i∈occ

[∇ψi(r)]† ·∇ψi(r) =
1

2

∑

µν

(PααR
µν + P ββR

µν )∇χµ(r) ·∇χν(r) (32)

ux(r) =
1

2

∑

i∈occ

[∇ψi(r)]† · σx∇ψi(r) =
∑

µν

PαβR
µν ∇χµ(r) ·∇χν(r) (33)

uy(r) =
1

2

∑

i∈occ

[∇ψi(r)]† · σy∇ψi(r) = −
∑

µν

PαβI
µν ∇χµ(r) ·∇χν(r) (34)

uz(r) =
1

2

∑

i∈occ

[∇ψi(r)]† · σz∇ψi(r) =
1

2

∑

µν

(PααR
µν − P ββR

µν )∇χµ(r) ·∇χν(r) (35)

The gradient and laplacian of n(r) and m(r) are defined as

∇n(r) =
∑

µν

(PααR
µν + P ββR

µν )∇(χµ(r)χν(r)) (36)

∇mz(r) =
∑

µν

(PααR
µν − P ββR

µν )∇(χµ(r)χν(r)) (37)

∇mx(r) = 2
∑

µν

PαβR
µν ∇(χµ(r)χν(r)) (38)

∇my(r) = −2
∑

µν

PαβI
µν ∇(χµ(r)χν(r)) (39)
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∇2n(r) =
∑

µν

(PααR
µν + P ββR

µν )∇2(χµ(r)χν(r)) (40)

∇2mz(r) =
∑

µν

(PααR
µν − P ββR

µν )∇2(χµ(r)χν(r)) (41)

∇2mx(r) = 2
∑

µν

PαβR
µν ∇2(χµ(r)χν(r)) (42)

∇2my(r) = −2
∑

µν

PαβI
µν ∇2(χµ(r)χν(r)) (43)

These density variables {Vi} are linear in density matrix blocks, and the functional derivatives

can be obtained via the chain rule.

A3. Functional first derivatives

The first derivative of Exc with respect to the density matrix elements can be calculated via

the chain rule,

(FNC
xc )µν =

∂ENC
xc

∂Pνµ
=
∑

ij

∫
∂f({Ui(r)})
∂Ui(r)

∂Ui(r)

∂Vj(r)

∂Vj(r)

∂Pνµ
dr (44)

While ∂f
∂Ui

is the same as collinear case, the Jacobians ∂Ui
∂Vj

are different than those in the

collinear case. The Jacobian is sparse, and the non-zero elements are listed below. In the

following equations, α, β are used to label spin index, and i, j for cartesian index x, y, z. The

following equations use the Einstein summation convention.

n+(n,mα):

∂n+

∂n
=

1

2
(45)

∂n+

∂mα

=
1

2

mα√
m ◦m

(46)
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n−(n,mα):

∂n−

∂n
=

1

2
(47)

∂n−

∂mα

= −1

2

mα√
m ◦m

(48)

γ++(∂in, ∂imα):

∂γ++

∂(∂in)
=

1

2
∂in+

f∇
2

∂imα∂jmα∂jn√
∇n ·∇m ◦∇m ·∇n

(49)

∂γ++

∂(∂imα)
=

1

2
∂imα +

f∇
2

∂in∂jmα∂jn√
∇n ·∇m ◦∇m ·∇n

(50)

γ−−(∂in, ∂imα):

∂γ−−

∂(∂in)
=

1

2
∂in−

f∇
2

∂imα∂jmα∂jn√
∇n ·∇m ◦∇m ·∇n

(51)

∂γ−−

∂(∂imα)
=

1

2
∂imα −

f∇
2

∂in∂jmα∂jn√
∇n ·∇m ◦∇m ·∇n

(52)

γ+−(∂in, ∂imα):

∂γ+−

∂(∂in)
=

1

2
∂in (53)

∂γ+−

∂(∂imα)
= −1

2
∂imα (54)

τ+(τ, uα):

∂τ+

∂τ
=

1

2
(55)

∂τ+

∂uα
=
fu
2

uα√
u ◦ u

(56)
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τ−(τ, uα):

∂τ−

∂τ
=

1

2
(57)

∂τ−

∂uα
= −fu

2

uα√
u ◦ u

(58)

∇2ρ+(∇2n,∇2mα):

∂∇2ρ+

∂∇2n
=

1

2
(59)

∂∇2ρ+

∂∇2mα

=
f∇2

2

∇2mα√
∇2m ◦ ∇2m

(60)

∇2ρ−(∇2n,∇2mα):

∂∇2ρ−

∂∇2n
=

1

2
(61)

∂∇2ρ−

∂∇2mα

= −f∇2

2

∇2mα√
∇2m ◦ ∇2m

(62)

A4. Functional second derivatives

Second derivative of Exc with respect to the density matrix elements is required to assem-

ble the A and B matrix in linear response and stability calculation. Functional second

derivatives can be derived by applying a second chain rule,

∂2Exc
∂Pµν∂Pκλ

=
∑

ijkl

∫ (
∂2f

∂Ui∂Ul

∂Ui
∂Vj

∂Ul
∂Vk

+
∂f

∂Ui

∂2Ui
∂Vj∂Vk

)
∂Vj
∂Pµν

∂Vk
∂Pκλ

dr (63)

Non-zero elements of second derivatives of {Ui} with respect to {Vi} are listed below.

n+:

∂2n+

∂mα∂mβ

=
1

2

(
δαβ√
m ◦m

− mαmβ

(
√

m ◦m)3

)
(64)
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n−:

∂2n−

∂mα∂mβ

= −1

2

(
δαβ√
m ◦m

− mαmβ

(
√

m ◦m)3

)
(65)

γ++

∂γ++

∂(∂in)∂(∂jn)
=

1

2
δij +

f∇
2

(
∂imα∂jmα√

∇n ·∇m ◦∇m ·∇n
− ∂imα∂kmα∂kn∂ln∂lmβ∂jmβ

(
√
∇n ·∇m ◦∇m ·∇n)3

)

(66)

∂2γ++

∂(∂in)∂(∂jmα)
=
f∇
2

(
∂imα∂jn+ δij∂kmα∂kn√
∇n ·∇m ◦∇m ·∇n

− ∂imβ∂kmβ∂kn∂jn∂lmα∂ln

(
√
∇n ·∇m ◦∇m ·∇n)3

)
(67)

∂2γ++

∂(∂imα)∂(∂jmβ)
=
δijδαβ

2
+
f∇
2

(
δαβ∂in∂jn√

∇n ·∇m ◦∇m ·∇n
− ∂in∂kmα∂kn∂ln∂lmβ∂jn

(
√
∇n ·∇m ◦∇m ·∇n)3

)

(68)

γ−−

∂γ−−

∂(∂in)∂(∂jn)
=

1

2
δij −

f∇
2

(
∂imα∂jmα√

∇n ·∇m ◦∇m ·∇n
− ∂imα∂kmα∂kn∂ln∂lmβ∂jmβ

(
√
∇n ·∇m ◦∇m ·∇n)3

)

(69)

∂2γ−−

∂(∂in)∂(∂jmα)
= −f∇

2

(
∂imα∂jn+ δij∂kmα∂kn√
∇n ·∇m ◦∇m ·∇n

− ∂imβ∂kmβ∂kn∂jn∂lmα∂ln

(
√
∇n ·∇m ◦∇m ·∇n)3

)
(70)

∂2γ−−

∂(∂imα)∂(∂jmβ)
=
δijδαβ

2
− f∇

2

(
δαβ∂in∂jn√

∇n ·∇m ◦∇m ·∇n
− ∂in∂kmα∂kn∂ln∂lmβ∂jn

(
√
∇n ·∇m ◦∇m ·∇n)3

)

(71)

γ+−

∂2γ+−

∂(∂in)∂(∂jn)
=

1

2
δij (72)

∂2γ+−

∂(∂imα)∂(∂jmβ)
= −1

2
δijδαβ (73)
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∇2ρ+:

∂(∇2ρ+)

∂(∇2mα)∂(∇2mβ)
=
f∇2

2

(
δαβ√

∇2m ◦ ∇2m
− ∇2mα∇2mβ

(
√
∇2m ◦ ∇2m)3

)
(74)

∇2ρ−:

∂(∇2ρ−)

∂(∇2mα)∂(∇2mβ)
= −f∇2

2

(
δαβ√

∇2m ◦ ∇2m
− ∇2mα∇2mβ

(
√
∇2m ◦ ∇2m)3

)
(75)

A5. Derivatives with respect to non-collinear density matrix

Derivatives of density variables with respect to the non-collinear density matrix, ∂Vi
∂Pττ ′

, are

needed in the functional first (Eq. (44)) and second (Eq. (63)) derivative evaluations before

they can be contracted with the ground state density matrix or the transition density matrix.

Using the expression for the non-collinear density matrix in Eq. (22), the general expression

for spin-blocked density derivatives can be written as,

∂

∂P
=




∂
∂PααR

1
2

∂
∂PαβR

− i
2

∂
∂PαβI

1
2

∂
∂PαβR

+ i
2

∂
∂PαβI

∂
∂PββR


 (76)

Since {Vi} are linear in density matrix elements, their derivatives can be easily evaluated

using Eq. (76) given the expressions defined in Eqs. (23) to (26) and Eqs. (32) to (35).

A6. Direct contraction of functional second derivatives with non-

collinear transition density

The fundamental operation at the core of the iterative solution of Eq. (11) is a matrix-vector

product that amounts to contracting the functional second derivatives (Eq. (63)) on the

right with a trial two-component non-Hermitian non-collinear transition density T. In order

to take advantage of the symmetry of the functional second derivatives with respect to the
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non-collinear density matrix (Eq. (76)), the symmetric part of the non-collinear transition

density T in AO basis are separated into spin-blocked (αα, αβ, βα, or ββ) real/imaginary

(R/I) components:




TααR + iTααI TαβR + iTαβI

TβαR + iTβαI TββR + iTββI


 (77)

with its Hermitian and anti-Hermitian components given by:

TH =




TααR 1
2

(
TαβR + TβαR

)
+ i

2

(
TαβI −TβαI

)

1
2

(
TβαR + TαβR

)
+ i

2

(
TβαI −TαβI

)
TββR




TAH =i




TααI 1
2

(
TαβI + TβαI

)
− i

2

(
TαβR −TβαR

)

1
2

(
TβαI + TαβI

)
− i

2

(
TβαR −TαβR

)
TββI




Since the xc kernel originates from a Hermitian ground state, only eight contraction steps

give rise to non-zero contributions,

∂2Exc

∂P∂PααR
TααR ∂2Exc

∂P∂PαβR

1

2

(
TαβR + TβαR

)

∂2Exc

∂P∂PββR
TββR ∂2Exc

∂P∂PαβI

1

2

(
TαβI −TβαI

)

i
∂2Exc

∂P∂PααR
TααI i

∂2Exc

∂P∂PαβR

1

2

(
TαβI + TβαI

)

i
∂2Exc

∂P∂PββR
TββI i

∂2Exc

∂P∂PαβI

−1

2

(
TαβR −TβαR

)
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