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Evaluating the complexity of some families of
functional data

E. G. Bongiorno1, A. Goia2 and P. Vieu3

Abstract

In this paper we study the complexity of a functional data set drawn from particular processes
by means of a two-step approach. The first step considers a new graphical tool for assessing to
which family the data belong: the main aim is to detect whether a sample comes from a monomial
or an exponential family. This first tool is based on a nonparametric kNN estimation of small
ball probability. Once the family is specified, the second step consists in evaluating the extent of
complexity by estimating some specific indexes related to the assigned family. It turns out that the
developed methodology is fully free from assumptions on model, distribution as well as dominating
measure. Computational issues are carried out by means of simulations and finally the method is
applied to analyse some financial real curves dataset.
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1. Introduction

The description and the analysis of a statistical sample X1, . . . ,Xn often rely on the com-
plexity of the objects being observed. In usual multivariate situations (that is when each
Xi is a d-dimensional vector) the degree of complexity is linked with the dimension d
of the data which is in general known and statistical procedures are therefore developed
to estimate and/or describe some probabilistic characteristic of the underlying random
vector X (density function being the most common). For many reasons that we will
discuss just below, this general approach cannot be followed in functional data analysis,
that is the branch of statistics dealing with observations Xi which are curves, surfaces,
images or other objects. Such a topic has attracted a lot of researchers and the interest
towards this discipline is certified by monographs (see e.g. Bosq, 2000; Ferraty and
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Vieu, 2006; Horváth and Kokoszka, 2012; Ramsay and Silverman, 2005), collections
of recent contributions (see e.g. Aneiros et al., 2017; Bongiorno et al., 2014), special
issues (see e.g. Kokoszka et al., 2017; Goia and Vieu, 2016) and recent articles (see
among many others Bongiorno and Goia, 2016; Cardot, Cénac and Godichon-Baggioni,
2017; Chen, Delicado and Müller, 2017; Vilar, Raña and Aneiros, 2016). The question
of defining the complexity of a functional sample has to be thought in a much more
different way. The problem goes back to mathematical analysis in abstract infinite di-
mensional spaces, and more precisely to the difficulty for choosing some dominating
measure (as could be the Lebesgue measure for continuous vectors or the counting mea-
sure for discrete ones). This is discussed in details for instance in Bogachev (1998).
This has at least two important consequences. Firstly, the notion of density function
has to be revisited, and secondly the notion of complexity of the model could not be
reduced to a simple dimensionality index (see Bongiorno and Goia, 2017; Delaigle and
Hall, 2010; Ferraty, Kudraszow and Vieu, 2012).
An usual way to overpass this difficulty when the sample comes from a variable X

valued in some infinite dimensional topological space F is to consider the Small Ball
Probability (SmBP), that is the asymptotic behaviour of P(X ∈ B(χ,h)) as h tends to
zero. Here B(χ,h) stands for the ball centered at χ with radius h. Operatively, it is
useful to assume that the SmBP satisfies for small h

P(X ∈ B(χ,h))∼ ψ (χ)φ(h) , (1)

where, to ensure identifiability of the decomposition, one has to impose some normal-
ization restriction like E [ψ(X)] = 1. This factorization isolates the manner in which the
SmBP depends upon χ and h through the spatial and volumetric terms ψ and φ respec-
tively without referring to some dominating measure, and this justifies its utilization in
literature (see for instance Gasser, Hall and Presnell, 1998 and Masry, 2005). Although
the volumetric term has been studied extensively from a probabilistic point of view
and mostly for the Gaussian processes (see the surveys on small tail literature Li and
Shao, 2001; Lifshits, 2012 and references therein), from a statistical point it has only
been used as a tool for controlling asymptotic behaviour of nonparametric functional
estimator (see Ferraty and Vieu, 2006, Chapter 13; Masry, 2005). In fact, functional
data analysis literature has focused mostly on the spatial term ψ(χ) since it naturally
leads to define a surrogate density for the process and the methods vary from semi–
to non–parametric approaches (see Bongiorno and Goia, 2016, 2017; Ciollaro et al.,
2014; Delaigle and Hall, 2010; Delsol and Louchet, 2014; Ferraty et al., 2012) with ap-
plications in various statistical problems like defining/estimating functional modes (see
Ferraty and Vieu, 2006, Chapter 6; Delaigle and Hall, 2010; Gasser et al., 1998) and
classification problems (see Bongiorno and Goia, 2016; Ciollaro et al., 2014; Jacques
and Preda, 2014).
To understand how the volumetric term φ can be of help in evaluating the complexity,

firstly consider the multivariate setting F = R
d . Here, the complexity parameter is
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the dimension d which appears in φ(h) = vdhd (with vd being the volume of the d–
dimensional unit ball), while the function ψ (χ) represents the d–dimensional density
function. In the functional setting, there is an important additional problem coming
from the fact that the concentration function φ(·) may be of many different forms, most
of them being not as simple as in the multivariate one: often φ can not be expressed in
closed form not even asymptotically (see Bongiorno and Goia, 2017; Delaigle and Hall,
2010). On the other hand, there are some remarkable cases whose volumetric term can
be explicitly written; in particular, let us look at three specific cases (trajectories drawn
from two of them are depicted in Figure 1):

Figure 1: Ten trajectories drawn from a noised 3–dimensional process and a Brownian Bridge process are
depicted on left and right panel respectively.

Case 1 The functional data have some finite dimensional structure. In this case the
concentration function has the monomial form φ(h) = cdhd , for some constant
term cd and the complexity of the model is the positive integer parameter d. This
happens for instance when the topology on the functional space is constructed
by looking only at d directions (of a given orthonormal basis) of the functional
elements (see Ferraty and Vieu, 2006, Chapter 13).

Case 2 The functional data have some fractal structure (see Ferraty and Vieu, 2006,
Definition 13.1). This is an extension of the first situation in which the concen-
tration function takes the form φ(h) = cαhα, for some constant term cα and the
complexity of the model is now the (non integer) positive parameter α.

Case 3 The functional data come from some Gaussian processes. This corresponds
for instance to Wiener, Brownian Bridge or diffusion processes in L 2

[0,1] (see
Li and Shao, 2001), for which the concentration function has the exponential
form φ(h) = C1hγ exp

{−C2/hβ} with β ∈ (0,∞) and γ ∈ [0,∞). In this case
the complexity of the data is measured by the indexes γ, β which cannot be
interpreted as some dimensionality parameters (see Li and Shao, 2001 for deeper
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discussion and more examples of exponential type processes). Note that, such
an exponential structure is implicitly linked with the existence of some Gaussian
dominating measure for the process.

In what follows, the term monomial (exponential resp.) family refers to the set of pro-
cesses like in Case 1 or 2 (Case 3, resp.). Since these cases are, to the best of our
knowledge, the only ones for which the volumetric term can be specified and cover a
wide range of situations, we limit our analysis to them.
It is worth noticing that, by analogy with the finite dimensional setting, the function

φ may reveal some latent features of the process: φ can be interpreted as a rough-
ness/complexity function and characterizes the family to which the process belongs.
Each class of functions φ defines a different kind of process (see examples just above),
and inside each class the corresponding parameters (d, α, β, γ, . . . ) will be called the
complexity indexes.
In light of what explained above, we propose a flexible approach to evaluate the com-

plexity of functional data. The aim of our paper is twofold: firstly one has to detect the
kind of process the data belong to (distinguishing between monomial and exponential
families), and, once this is done, to estimate the complexity index(es). In the first step,
starting from an estimate of φ, we introduce a method being free of dominating measure
and based on a new graphical tool, named log-Volugram, that allows us to identify to
which family of processes the statistical sample belongs (this is done along Section 2.1).
To ensure a high degree of flexibility of the procedure, one has to use estimates being
free from parametric restriction and models being distribution-free: to achieve this goal
our procedure is based on kNN nonparametric functional smoothers which combine
flexibility, easiness of implementation (because the dependence on a single discrete pa-
rameter) and location-adaptive feature. This is why the exploited kNN methodologies
in functional data analysis are shortly reviewed at the beginning of Section 2. In the
second step, once the class of the process is detected, the complexity index(es) (d, α,
β, γ, . . . ) is(are) estimated and this can be done because of the free-modelling feature
of the estimate φ. To do this we adopt a strategy commonly used in nonparametric
framework: to study some specific submodel one compares a free-model estimate with
what would be the true target under the submodel (see Härdle and Mammen, 1993 for
earlier works in this direction in the multivariate regression setting). In our setting, the
non-parametric estimates of φ is compared through a dissimilarity measure with one
parametric family among the ones illustrated above and, by minimizing arguments, the
complexity index(es) are estimated. This second step is presented in Section 2.2. Prac-
tical aspects about the introduced methodology and computational issues are discussed
in Section 3.1 whereas the behaviour of the whole procedure is illustrated by means of
a wide scope simulation studies in Section 3.2; these show good performances under
different experimental conditions. Finally, to show how our two steps procedure can be
usefully applied in a real case, we examine its performance in a financial framework to
verify the compatibility of the data with standard model assumptions (see Section 4).
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2. Methodology

In this section, after reviewing how the volumetric term in factorization (1) can be es-
timated nonparametrically, we show how to use it in developing new graphical tools
that allow us to qualitatively detect the class of process from which the sample is drawn
(see Section 2.1). Therefore, Section 2.2 describes how the nonparametric feature of the
method allows to get estimates of the index complexity of the sample given the specified
family.
The first statistical step consists in estimating both components in the decomposition

(1) from a sample. To ensure a wide applicability of the method one has to develop
statistical models/procedures being fully nonparametric. In the functional data setting,
nonparametric statistics have been popularized in the book Ferraty and Vieu (2006) and
are now widely used as long as one is interested in estimating some functional operator
(regression, conditional distribution, . . . ). Among the various nonparametric smoothers,
the kNN method is particularly adapted to the functional setting because it provides
directly location adaptive estimates without needing highly complicated procedure (see
Laloë, 2008; Burba, Ferraty and Vieu, 2009 for introductory works on functional kNN,
see Biau, Cérou and Guyader, 2010; Lian, 2011; Kara et al., 2017; Kudraszow and Vieu,
2013 for the most recent advances and see Biau and Devroye, 2015 for a recent general
presentation of kNN ideas).
Concerning the estimation of the terms in (1) the kNN estimates has a very sim-

ple and appealing form (see Ferraty et al., 2012). In fact, given a sample of n curves
X1, . . . ,Xn drawn from X , a point χ ∈ F and a integer k < n, the surrogate density ψ at
χ can be estimated by

ψ̂k (χ) =
k (n−1)∑n

i=1 ki
, (2)

where ki= #{ j �= i : Xj ∈ B(Xi,Hn,k(χ))},Hn,k(χ)=min
{
h ∈ R

+,
∑n

i=1 1B(χ,h) (Xi) = k
}

and 1A(x) is the characteristic function of the set A. As a matter of consequence, the sin-
gle parameter involved in the method is a simple integer one, namely the number k of
data contained in each neighbourhood.
At this stage, once the surrogate density is estimated and given the asymptotic factor-

ization (1), one can easily derive nonparametric estimates of the volumetric component
φ in the following way:

φk,n (h) =
n−1

∑n
i=1 1B(χ,h) (Xi)

ψ̂k (χ)
. (3)

Theoretical assessments related to the consistency of estimators (2) and (3) are devel-
oped in Ferraty et al., 2012. In order to compute (3) one has to face some practical
problems. Firstly, since the asymptotic factorization (1) holds for small h, too large
values must be avoided since they may increase the estimation error. At the same time,
even too small values of h must be discharged since they force φk,n to be null: the ball,
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at the numerator on the right-side hand of (3), does not contain sample points. In other
words, a suitable range of values H = [hm,hM] for h should be identified; for details
see Section 3.1. Secondly, once h is appropriately chosen, one must take into account
that the point χ, at which the SmBP is estimated, affects the approximation error of the
whole factorization and, hence, the error of both ψ̂k and φk,n. In this view, to circumvent
such issue and to avoid an arbitrarily choice of χ, the estimation is averaged over the
sample, that is

φ̂k,n (h) = n−1
n∑
j=1

φ
( j)
k,n(h), (4)

where φ( j)k,n is (3) computed with χ = Xj. In the following, if no ambiguities arise the
dependences on k and/or n are dropped.
From such an estimate, one can visualize two graphical tools, that we name Volugram

and log-Volugram. The shape of the latter is of help in discriminating among different
family models for φ(·) and in evaluating the roughness/complexity indexes. This is the
basis of the descriptive approach to be developed in this paper.

2.1. The (log-)Volugram

The Volugram is the plot of φ̂ computed on the realizations x1, . . . ,xn versus h taken in
a suitable positive interval sufficiently closed to zero. Because the quantities φ̂(h) are
fully free from any kind of hypothesis (neither on the model, nor on the distribution of
X , nor on any underlying dominating analytic structure), the observation of the shape
of the curve φ̂ can be directly used to have an idea on what is the complexity of the
statistical sample. To fix the ideas let us just look at how behaves this Volugram in some
simple examples. Figure 2 depicts the Volugrams of the noised 3-dimensional process
and of the Brownian Bridge whose trajectories are illustrated in Figure 1. In both cases,
estimations are based on samples of size n= 200, the number of neighbourhood is fixed
to k= n/2 and, for the sake of computational practicality, h takes values in {Hn,k(xi)}ni=1.
Moreover, to ensure that the Volugram explores the smallest values of h, the plot is
restricted to the 50% smallest values of the latter grid.
As is clear from Figure 2, although the Volugrams behave as one can expect (in

both cases φ̂(h) decreases to zero as smaller values of h are considered), by looking at
the sole Volugram it is not possible to discriminate from which family (exponential or
monomial) the sample is drawn from. A practical tool to establish by eye such feature
is instead provided by the log-Volugram defined as the plot of log φ̂(h) versus logh. In-
deed, from a theoretical point of view, the volumetric term of processes in the monomial
family satisfy, for small values of h, logφ(h)∼ α logh whereas, in the exponential case,
logφ(h) ∼ −C2/hβ . In other words, for small values of h, logφ(h) is proportional to
logh (1/hβ respectively) for a process in the monomial (exponential respectively) fam-
ily and the log-Volugram presents (does not present) a straight line shape. As a matter of
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Figure 2: Volugrams associated to a sample (of size 200) of a noised 3-dimensional process (left) and a
Brownian Bridge (right) defined on [0,1]. In both cases, k = �n/2� and h takes values in the 50% smallest
values of {Hn,k(xi)}ni=1.

Figure 3: log-Volugrams associated to a sample (of size 200) of a noised 3-dimensional process (left) and
a Brownian Bridge (right) defined on [0,1]. In both cases, k= �n/2� and h takes values in the 50% smallest
values of {Hn,k(xi)}ni=1. The line passing through the first and the last points (ordered according to the
ascending order of h) is drawn as well.

illustration and using the same data and settings of Figure 2, the correspondent log-
Volugrams are depicted in Figure 3. For the sake of comparison, the latter figures are
completed by overlapping the line passing through the first and the last points (ordered
according to the ascending order of h).
These arguments make clear how the log-Volugram allows, better than the Volugram,

to drive the researcher towards the family of processes from which the sample comes.
In particular, the more {( logh, log φ̂(h))} are aligned, the greater the compatibility to
the monomial model is. On the contrary, deviations from this situation represent an
empirical evidence of exponential model. Hence, one can decide that the theoretical
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volumetric function φ(·) is of some specific form depending on a complexity parameter
θ ∈Θ where Θ is a subset of Rp

φ ∈ C = {φθ,θ ∈Θ}.

To fix the idea, the left panel of Figure 3 suggests the monomial family CM = {φα(h) =
cαhα,α> 0}, whilst the right panel leads towards the exponential oneCE = {φ(γ,β)(h)=
C1hγ exp{−C2/hβ},β > 0,γ ≥ 0}.

2.2. Estimating the complexity index

In the second step of the procedure the aim is to gain more insights into the structure
of the data by intending to estimate the complexity index θ of the chosen family C by
means of a comparison between the free-model estimate φ with one of the parametric
family that would be the true target. Precisely, this leads to consider the centered cosine
dissimilarity between g(φθ) and g(φ̂k) computed on the observed values and defined by

Δ(φ̂k,φθ) = 1− 〈g̃(φθ), g̃(φ̂k)〉2
‖g̃(φθ)‖2‖g̃(φ̂k)‖2

, k = 1,2, . . . ,(n−1), θ ∈Θ, (5)

where 〈 f1, f2〉 =
∫
H f1 f2 with H being a suitable interval included in (0,∞), ‖ f‖2 =

〈 f , f 〉 and g̃(φ) = g(φ)− ∫
H g(φ) with g(·) a suitable continuous real valued function

defined on (0,+∞). Note that centered cosine dissimilarity is invariant for affine trans-
formations. Practical aspects in computing (5), including how g(·) and H are chosen,
are treated in details in Section 3.1. The idea is to estimate the complexity index that
minimizes Δ(φ̂k,φθ) over suitable grids T for θ, and K for k. Let us now show how
such dissimilarity behaves in the simple examples that are following through the paper.
Figure 4 depicts the heat-map of Δ (top panels) and the curves {Δ(φ̂k,φθ) : k ∈K } (bot-
tom panels). These heuristically show that Δ reaches a minimum which appears rather
stable with respect to the choice of k.
That spontaneously leads to estimate the complexity index by minimizing (5) for a

fixed k, that is
θ̂ = argmin

θ∈T
Δ(φ̂k,φθ).

At this stage, it is worth noticing that if the shape of log-Volugram produces doubts
in the choice of the family, it is always convenient to firstly classify the sample as drawn
from the exponential family and estimate β. If a misspecification of the model occurred,
then the estimation of the complexity index tends to assume the minimum values in the
grid T , see Figure 5; i.e. the exponential part of the volumetric term can be considered
negligible. This can be used as a feedback procedure to avoid this kind of misspecifica-
tion error.
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Figure 4: Top panels: the heat maps of Δ(φ̂k,φθ) as a function of k/n and θ associated to a sample (of
size 200) of a noised 3-dimensional process (left) and a Brownian Bridge (right) defined on [0,1]. Bottom
panels: graphs of Δ(φ̂k,φθ) with k = �n/2�, as a function of θ, associated to the same samples.

In conclusion, the method detects the good class as explained above and, within the
selected family, it seems also capable to find a good estimation of the complexity index.
Simulations described in what follows confirm these abilities.

3. Algorithm in action

In this section we firstly describe the algorithm in Section 3.1 and, soon after in Sec-
tion 3.2, we show its performance over a set of selected simulations under different
experimental conditions.
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Figure 5: The heat map of Δ(φ̂k,φθ) (left panel) and the plot of Δ(φ̂k0 ,φθ) against θ (right panel) when
the noised 3-dimensional process (in left panel of Figure 3) is confused with a process from the exponential
family.

3.1. Procedure description

Here we detail the algorithm features; some of them depend on the family identified at
the first step of the methodology as described in Section 2.1.
Although the algorithm could be implemented for potentially anyF whose topology

is induced by a semimetric ρ, here, for simplicity, F is L 2
[0,1]: the separable Hilbert

space of square integrable function on [0,1] with usual inner product, norm and induced
metric. Thus the realizations x1, . . . ,xn of a sample X1, . . . ,Xn, drawn from theF -valued
random element X , are considered.
In computing the dissimilarity measure Δ(φ̂k,φθ), we have to specify g(·), H , T

andK .
For what concerns the transformation g(·), if the monomial class CM is suggested by

the log-Volugram, g is the identity function, whereas, for the exponential class CE , it is
the logarithm transformation. In both cases, the transformed empirical volumetric term
g(φ̂) is then compared with a term in the simple form chθ for small values of h. In fact,
if φ ∈ CM, then φ(h) = cαhα with α ∈ (0,∞). If φ ∈ CE ,

logφ(h) = logC1+γ logh−C2h−β ∼−C2h−β (6)

and then, in the exponential case, the leading complexity parameter is β. Indeed, at the
best of our knowledge, for the most of processes related to Brownian motion with known
SmBP asymptotic, it holds logφ(h) ∼ −C2h−2 (see, for instance, Nikitin and Pusev,
2013). In particular, C2 = 1/8 when X is Wiener, Brownian Bridge (BB), Geometric
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Brownian Motion (GBM), Ornstein-Uhlenbeck. Anyway, note that (6) is more accurate
if γ= 0, and this happens, for instance, in the case of Brownian Bridge that consequently
becomes a benchmark process. In practice, beside the BB, we have specialized our
method to deal with those processes suspected to be Wiener or GBM since these can be
led back to a BB by means of suitable transformations. In more details, if X(t) =W (t)
is Wiener on t ∈ [0,1], then

W (t)− tW (1), (7)

is a BB on [0,1], whereas if X(t) is the GBM identified by the stochastic differential
equation {

dX(t) = μX(t)dt+σX(t)dW(t), t ∈ [0,1],
X(0),σ > 0,

(8)

whose solution is X(t) = X(0)exp
{(
μ−σ2/2)t+σW (t)

}
, t ∈ [0,1], then

[log(X(t)/X(0))− (μ−σ2/2)t]/σ, t ∈ [0,1] (9)

is a Wiener process for which transformation (7) can be applied, leading to a BB on
[0,1]. The estimation of γ remains an open problem for processes different from the
BB, the Wiener process and the GBM.
For what concernsH = [hm,hM], hm is chosen in order to guarantee that there exists

at least an observed curve xi for which B(xi,hm) includes some x j �= xi; whereas, the
rangeH should become closer to zero as the sample size increases.
Finally,T is a equally spacedmesh over an interval that varies with the experimental

setting; our suggestion is to start with a wide range of values with a relatively rough step,
then to restrict the region of search by using a finer grid. To reveal possible dependencies
on k, in the simulation study, we use K = {�δn� : δ = 1/4,1/3,1/2} with �δn� being
the smaller integer greater than δn. Such a choice is coherent with many rules introduced
in literature (see, for instance, Devroye, Györfi and Lugosi, 1996; Duda, Hart and Stork,
2012; Györfi et al., 2006).

3.2. Numerical Experiments

In this section we present the results of numerical experiments aimed to evaluate the
ability of the method in estimating the complexity parameter by varying the underlying
process and the sample size.
We generate 1000 Monte Carlo samples each one constituted by n independent ran-

dom curves X1, . . . ,Xn drawn from a process X with n = 50,100,200,500. From each
sample the complexity index is estimated and its distribution analysed. In particular, we
consider noised finite dimensional processes and infinite dimensional ones.
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About the noised finite dimensional processes, curves are generated according to

X (t) =
d∑
j=1

a jξ j (t)+E (t), t ∈ [0,1]

where {ξ j}dj=1 are the first d elements of the Fourier basis

ξ j(t) =

{ √
2sin(2πmt−π), j = 2m−1√
2cos(2πmt−π), j = 2m m ∈ N,

{a j}dj=1 are i.i.d. as N (0,1) and E (t) is a Gaussian white noise with σ = 0.02 repre-
senting a measurement error. Here, d = 3 and d = 6 are considered.
For what concerns the infinite dimensional processes, we consider the Wiener pro-

cess and the Geometric Brownian Motion (GBM). Each curve in both families are dis-
cretized over an equispaced grid on [0,1] consisting of 100 points: the resulting data-sets
are n× 100 matrices with entries xi, j, i = 1, . . . ,n, j = 1, . . . ,100. GBM trajectories are
simulated from the stochastic differential equation (8), with X(0) = 1, μ = 0, σ = 1,
using the Euler-Maruyama approximation scheme (Kloeden and Platen, 1992, Section
9.1). Coherently with what stated in the previous section, Wiener curves are transformed
by means of (7) whereas GBM trajectories by (9) and, successively, (7). To operational-
ize (9), maximum likelihood estimates of parameters are computed for each discretized
curve in the sample: for each i= 1, . . . ,n, μ and σ are estimated by μ̂= 100−1

∑100
j=1 xi, j

and σ̂2 = 100−1
∑100

j=1(xi, j− μ̂)2 respectively. Integrals in (5) are approximated on such
grid by using a rectangular numerical rule. In what follows, T is an equispaced grid
with step 0.01 and k = �δn� with δ = 1/4,1/3,1/2.
Table 1 collects the results from the Monte Carlo experiments from which we can

appreciate the good performances of complexity index estimator. In particular, in all
the cases no relevant bias arises, variability of the estimator is moderate, especially, in
relative terms with respect to the true parameter. As expected, variability decreases with
n whereas, in the finite dimensional case, it slightly increases with the complexity: the
larger d is, the larger the variability in relative terms with respect to the true parameter
is. These comments hold true for all the chosen k, therefore, for practical purposes, an
heuristic choice like k = �n/2� is reasonable.
The distributions of estimated values d̂ and β̂ over the 1000 simulations when n =

500 and k= 250 are plotted in Figure 6: dashed vertical lines are superimposed to kernel
density estimates in correspondence of extreme quantiles of order 0.025 and 0.975, in
order to delimit a Monte Carlo empirical 95% confidence interval. All distributions
appear rather symmetric and bell-shaped: anyway, the Shapiro-Wilk test tends to reject
the normality assumption in all the cases at the level 5%.
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Table 1: Synthetic indicators of the estimated complexity indexes obtained from 1000 MC replication under
different experimental conditions.

Process δ → 1/2 1/3 1/4
family n ↓ Mean St.dev Mean St.dev Mean St.dev

Finite dimensional 50 2.966 0.305 2.994 0.312 3.023 0.316
(with d = 3) 100 2.985 0.167 3.007 0.169 3.023 0.170

200 3.014 0.100 3.034 0.100 3.046 0.100
500 3.072 0.072 3.090 0.071 3.101 0.070

Finite dimensional 50 5.938 1.559 5.962 1.596 5.986 1.629
(with d = 6) 100 5.891 0.911 5.926 0.933 5.947 0.947

200 5.894 0.497 5.923 0.509 5.940 0.521
500 5.985 0.249 6.008 0.255 6.023 0.260

GBM (β = 2) 50 1.995 0.190 1.927 0.187 1.897 0.188
100 2.011 0.117 1.949 0.113 1.916 0.112
200 2.015 0.072 1.956 0.070 1.924 0.069
500 2.005 0.039 1.952 0.038 1.921 0.038

Wiener (β = 2) 50 1.987 0.190 1.920 0.187 1.888 0.188
100 2.005 0.117 1.942 0.113 1.909 0.112
200 2.009 0.071 1.950 0.069 1.918 0.069
500 1.999 0.039 1.946 0.038 1.915 0.037

Figure 6: Kernel density estimates of d̂ and β̂ for the finite dimensional processes (d = 3 and d = 6, left
and right top panels respectively) and for the GBM and Wiener processes (β = 2, left and right bottom
panels respectively) when n= 500. Dashed vertical lines correspond to the 95% Monte Carlo confidence
interval limits.
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4. Application to financial data

A common problem in finance is the modelling of stock prices time series, for example
in implementing parametric option pricing models via Monte Carlo simulations. Thanks
to its nice properties, the GBM has gained a central place in theoretical and applied
financial literature, becoming a prototype for a generation of models; see, for example,
Fusai and Roncoroni (2007) and Campbell, Lo and MacKinlay (1997).
In this section we illustrate how the proposed methodology can provide a tool for

practitioners in detecting the family of processes to which the observed time series be-
longs, and for a rough evaluation of the complexity of such data. To do this, we analyze
in details the case of the S&P500 during the period 14th October 2016, 15th January
2017 with 1 minute frequency for a total of 63 market days and 390 observations per
day (we deleted shorter days). Data are collected by using the link https://www.google.
com/finance/getprices?i=60&p=200d&f=d,o,h,l,c,v&df=cpct&q=.INX. The correspond-
ing trajectory is depicted in the left panel of Figure 7. To qualitatively assess that the
observed trajectory is compatible with a GBM process, we apply our method on a sam-
ple derived from above dataset: given the high frequency of measurements, each market
day is divided into three non-overlapping parts having the same size to which correspond
three trajectories. Consequently, the sample is formed by n = 189 each one discretized
over an equally spaced grid of 130 points.
In order to implement the two steps of our method, the sample must be transformed

as explained in detail in Section 3.2. In particular, given the assumption that the under-
lying process is a GBM, since drift and volatility of a stock process vary with time, it
is reasonable to model each curve xi with specific parameters μi and σi. They are es-
timated by using the maximum likelihood approach illustrated in the previous section,

Figure 7: Left panel - Trajectory of S&P500 value from 14th October 2016 to 15th January 2017 with 1
minute frequency. Right panel - The functional sample: each functional observation is one third of a market
day trajectory after transformation (9).

https://www.google.com/finance/getprices?i=60{&}p=200d{&}f=d,o,h,l,c,v{&}df=cpct{&}q=.INX
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Figure 8: The log-Volugram for the transformed S&P500 sample.

starting from discretized points of each curve. The sample of curves which arise from
these manipulations is plotted in the right panel of Figure 7.
In the same spirit of Section 2.1, we plot the log-Volugram with k = �n/2�, see

Figure 8. Its shape drives our analysis towards the exponential family. The heat map of
dissimilarity Δ and the dissimilarity computed at k = �n/2� are drawn in Figure 9. The
minimization of Δ leads to β̂ = 1.94.
This first analysis supports the assumption that S&P500 could bemodelled as a GBM

with varying parameters at least for a short time period.

Figure 9: The heat map of Δ (left panel) and Δ at k = �n/2� (right panel) for the transformed S&P500
sample.
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In order to evaluate the stability of results with respect to the way in which we built
the sample of functional data, we repeated the analysis using different cutting criteria:
besides dividing each market day in three parts, we tried also with two parts consisting of
195 points, five parts of 78 points and 6 parts of 65 (all the intervals are not overlapped).
Resulting samples have sizes n = 126,315,378 whereas the results obtained with k =
�n/2� are β̂ = 1.94,1.96,1.98 respectively. They confirm the compatibility of data with
a GBM (with time varying parameters) assumption that, hence, can be used as a good
approximating model for performing option pricing.

5. Comments

This paper has provided flexible tools for analysing the complexity of a functional sta-
tistical sample. In order to ensure its high degree of applicability the procedure is free
from any structural assumption from several points of view: from an analytic point of
view (it is free from any dominating measure assumption in the underlying infinite di-
mensional space), from a probabilistic point of view (it is free from any distribution
assumption on the underlying stochastic process), from a statistical point of view (it is
free from any parametric assumption on the model), and from a computational point of
view (the method depends on a single discrete parameter). This has been possible by
using kNN ideas that combine good theoretical properties and ease of implementation.
In a first step, the method provides some graphical tools (the so-called Volugram or
log-Volugram) which are used to detect the class of complexity of the data, while in a
second step it provides an automatic estimate of the index of complexity inside of the
detected class. The methodology provides excellent results in evaluating the complexity
family and index on simulated and real datasets.
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