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Abstract: Current therapy of mood disorders has several limitations. Although a high number
of drugs are clinically available, as of today, nearly two-thirds of individuals do not achieve full
symptomatic remission after treatment with conventional antidepressants. Moreover, several weeks
of drug treatment are usually required to obtain clinical effects, a limitation that has considerable
clinical implications, ranging from high suicide risk to reduced compliance. The characteristic
lag time in classical antidepressant effectiveness has given great impulse to the search for novel
therapeutics with more rapid effects. L-acetylcarnitine (LAC), a small molecule of growing
interest for its pharmacological properties, is currently marketed for treatment of neuropathic pain.
Recent preclinical and clinical data suggested that LAC may exert antidepressant effects with a more
rapid onset than conventional drugs. Herein, we review data supporting LAC antidepressant
activity and its distinctive mechanisms of action compared with monoaminergic antidepressants.
Furthermore, we discuss the unique pharmacological properties of LAC that allow us to look at this
molecule as representative of next generation antidepressants with a safe profile.
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1. Introduction

L-Acetylcarnitine (LAC) is a small molecule of growing interest for its biological and
pharmacological properties. Originally, LAC primary function was attributed to its role in the transport
of short- and medium-chain acyl groups outside mitochondria, a step required for utilization of fatty
acids and glucose [1]. Besides its role in energy metabolism, during the last two decades, a number of
studies have shown that LAC actions range from antioxidant, neuromodulatory, and neuroprotective
effects to modulation of gene expression [2–8]. Because of the multiplicity of actions and the excellent
safety and tolerability profile, LAC efficacy has been investigated in a number of clinical conditions
and neurological disorders (Table 1). The drug is currently marketed for the treatment of neuropathic
pain. Recent preclinical and clinical data support LAC antidepressant effects and suggest novel
underlying cellular and molecular effects, including epigenetic mechanisms. Herein, we discuss
the unique pharmacological properties of LAC that allow us to consider this molecule as a novel
antidepressant molecule.
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Table 1. L-Acetylcarnitine (LAC) clinical studies for disorders of central and peripheral nervous system.

Clinical Condition References

Alzheimer’s disease [9–12]
Parkinson’s disease [13]

Huntington’s disease [14]
Down’s syndrome [15]

Dysthymic/Depressive disorder [16,17]
Diabetic neuropathy [18–21]

HIV Neuropathy [22]
Carpal tunnel syndrome [23]

Fibromyalgia [24,25]

2. Role of Endogenous LAC in Energy Metabolism

LAC is an endogenous compound widely distributed in many tissues, including brain. Chemically,
LAC is the acetylated derivative of the amino acid L-carnitine whose function is generally correlated
with regulation of energy metabolism within mitochondria [1]. Its de novo synthesis is catalyzed by
the enzyme carnitine acetyltransferase (CAT), mainly located on the inner mitochondrial membrane
as well as in endoplasmic reticulum and peroxisome [26,27]. CAT promotes the transfer of an acetyl
group from acetyl-Coenzyme A (acetyl-CoA) to carnitine, thereby producing LAC and free CoA
(Figure 1) [28,29].
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hydroxyl group of carnitine by the enzyme carnitine acetyltransferase (CAT).

After being synthetized, LAC is transported outside mitochondria into the cytosol by the
enzyme carnitine/acetylcarnitine translocase (CACT) [30–32]. This is a crucial metabolic reaction for
β-oxidation of fatty acids whereby LAC facilitates the transport of acetyl-CoA across mitochondrial
membranes [1]. A nuclear carnitine acetyltransferase can also convey LAC from cytosol to the nucleus,
increasing the local pool of available acetyl groups [33]. It has been estimated that neurons from adult
brain contain a relatively high level of LAC, with highest content in hypothalamus [34,35].

3. Pleiotropic Effects and Mechanisms for Exogenously Administered LAC

When exogenously administered, LAC is easily absorbed. Due to its amphiphilic structure, LAC
is mobile throughout the plasma membranes and can rapidly cross blood-brain barrier [36,37]. Indeed,
LAC can be transported by the high-affinity sodium-dependent organic cation/transporter (OCTN2),
which is functionally expressed in cells forming the blood-brain barrier [38].

A wide range of mechanisms have been proposed to explain the multiplicity of LAC activities
within nervous tissues. In particular, it has been demonstrated that LAC modulates the activity of
nerve growth factor (NGF) and enhances the expression of NGF receptors in striatum/hippocampus
during development and in aged rats [39–41]. Moreover, LAC modulates different neurotransmitter
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systems, including the gabaergic, dopaminergic, and cholinergic system [42–46], the latter by increasing
acetyl-CoA content and choline acetyltransferase (ChAT) activity [47–49].

Recently, evidence that LAC serves as donor of acetyl groups further supported additional
functions that go beyond its classical role in energy metabolism. In particular, its ability to
contribute to acetylation of -OH or -NH2 functional groups on amino acids and N-terminal groups in
proteins [2,7,8,50,51] has opened up new avenues to explain mechanisms underlying important LAC
activities. Indeed, LAC has been suggested to modulate gene expression by an epigenetic mechanism
exerted via acetylation of histone proteins and transcription factors [7,8,50–53]. Epigenetic mechanisms
are physiologically achieved by activity of two classes of enzymes—histone acetyltransferases
(HATs) and histone deacetylases (HDACs)—that transfer and remove acetyl groups in histones and
transcription factors, respectively [54]. HATs and HDACs were originally identified as chromatin
modifying enzymes by operating posttranslational modifications of histones [55]. Later, it was
demonstrated that HATs and HDACs do not exclusively target histone proteins but also modulate the
activity of a number of transcription factors. Several HAT and HDAC inhibitors are currently under
investigation for epigenetic modulation of gene expression. LAC itself, similarly to HDAC inhibitors,
regulates epigenetic mechanisms by increasing the acetylation level of histones and transcription
factors such as NF-κB [8,51,53,56]. Studies from our groups indicated that LAC regulates the activity
of NF-κB signaling pathways by increasing acetylation of the p65/RelA subunit at lysine 310, an event
that may enhance transcriptional activity of the protein [7,8]. This effect has been correlated with the
ability of LAC to induce expression of metabotropic glutamate receptor type-2 (mGlu2), a potential
underlying mechanism for a wide spectrum of pharmacological activities ranging from analgesic,
proneurogenic, and antidepressant effects of LAC [7,8,50,51,56,57].

4. LAC as a Novel Antidepressant Drug with Unique Properties

In humans, and particularly in the elderly, the beneficial effects of LAC has been reported in
mood disorders, including major depressive disorder and dysthymia [58–60]. More recently, LAC was
investigated in a multicentric, double-blind, randomized clinical trials (RCT) in a population of elderly
patients with dysthymic disorder [16]. The drug was evaluated in comparison with fluoxetine for an
observation period of seven weeks. LAC and fluoxetine resulted equivalent in their antidepressant
efficacy. Of interest, a difference in latency time of clinical response was observed between the two
drugs, namely one and two weeks for LAC and fluoxetine, respectively, potentially suggesting a more
rapid effect elicited by LAC in humans [16]. Although the rapidity in the onset of LAC therapeutic
effects needs to be confirmed in studies with larger sample sizes and in mood disorders other than
dysthymia, it is quite interesting in view of the fact that rapid effects have also been observed in
preclinical models of depressive-like behavior [51].

A recent meta-analysis investigated the effects of LAC on depressive symptoms across published
RCT [61]. Again, LAC administration demonstrated efficacy when compared to placebo. Moreover,
LAC efficacy was comparable to classical antidepressant agents, but with significantly fewer side
effects [61]. These findings are in agreement with another meta-analysis including 34 studies
and 4769 patients with persistent depressive disorders. In that analysis, LAC treatment showed
lower rates of adverse events and discontinuation than any other drug comparator [62]. In addition,
a meta-analysis confirmed that LAC was more effective in older than in younger patients [61].
At present, the reason for a better drug response in elderly people is not clear. Although additional
research efforts are required to confirm these findings, the results suggest that LAC may represent
a potential alternative to classical antidepressants. Moreover, these clinical observations suggest that
LAC may potentially have a mechanism of action that is distinct from conventional antidepressants.
Surprisingly, despite these interesting clinical findings, in the past, very few studies have attempted to
investigate underlying mechanism(s) of LAC antidepressant effects.

One interesting form of neuroplasticity is adult neurogenesis, the process of generation of new
neurons in adulthood. In the dentate gyrus of hippocampus adult neurogenesis occurs in humans
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across their entire life span [63]. Although reduction of adult neurogenesis per se does not result in
depressive-like behavior, it has been proposed that adult hippocampal neurogenesis (ahNG) may be
required for some behavioral effects of antidepressants in rodent models and potentially contribute to
the antidepressant activity of these drugs in the clinical setting [64,65]. Antidepressant drugs indeed
increase hippocampal neurogenesis in rodents [66–68], and an increased number of hippocampal
neural progenitor cells (NPC) and granule neurons are reported in postmortem brain of depressed
patients undergoing antidepressant therapy [69]. In addition, several experimental studies demonstrate
that antidepressants can counteract the inhibitory effect of stress on ahNG in rodent models of
depressive-like disorder [70,71].

Among regulators of ahNG the NF-κB family of transcription factors has been receiving attention
from our and other laboratories [72–82]. In particular, we demonstrated the involvement of NF-κB
signaling pathways in the modulation of adult hippocampal neurogenesis in vivo [72] and in the
effects of several drugs that are endowed with proneurogenic and antidepressant activity both in vivo
and in vitro [78,79,82]. A few years ago, we showed that LAC is a very potent proneurogenic molecule
whose in vitro effects on neuronal differentiation of adult hippocampal neural progenitors (ahNPC)
are independent of its neuroprotective activity [8]. The in vitro proneurogenic effects of LAC appear
to be mediated by activation of the NF-κB pathway and subsequent NF-κB -mediated upregulation
of metabotropic glutamate receptor 2 (mGlu2) expression. Indeed, (i) LAC treatment of ahNPC
resulted in acetylation of p65 at lys(310) and in mGlu2 protein upregulation, and (ii) LAC-induced
mGlu2 expression could be abolished by interfering with NF-κB p65 nuclear translocation [8].
These results prompted us to evaluate LAC effects in vivo in adult mice. We showed that chronic
LAC administration blocks depressive-like behavior caused by unpredictable chronic mild stress
(UCMS) [8], a preclinical model with face validity and predictivity for human major depression.
The utilized dose (100 mg/kg, i.p.) was chosen for its clinical relevance since it corresponds to the
lowest recommended dose in humans (0.5 g/day) [83]. Furthermore, that dose regimen effectively
increased plasma levels of LAC in chronically treated mice [84]. LAC-mediated behavioral effects
correlated with upregulated expression of mGlu2 (and not mGlu3) receptor in hippocampi of stressed
mice [8]. Moreover, we demonstrated that chronic LAC treatment significantly increased ahNG [8].
Unlike mGlu2 effects, chronic LAC treatment correlated with increased hippocampal neurogenesis in
both stressed and unstressed mice [8]. In this respect, LAC is similar to classical antidepressants that
also promote neurogenesis in naive mice when chronically administered [65,66].

In the same year of our findings, a relevant paper confirmed and further extended these
observations by demonstrating LAC-mediated antidepressant effects not only following chronic
stress, but also in a genetic model of depression, namely Flinders Sensitive Line (FSL) rats [51]. Also in
this preclinical model, LAC increased NF-κB p65 acetylation, thereby enhancing mGlu2 receptor gene
expression not only in hippocampus but also in prefrontal cortex [51]. LAC antidepressant effects
were long lasting, being still present two weeks after drug withdrawal. On the contrary, in parallel
studies, the effects of a classical tricyclic antidepressant like chlorimipramine disappeared after drug
withdrawal. Even more strikingly, LAC exhibited antidepressant activity within 2–3 days following
administration, compared with 14 days required by chlorimipramine [51]. Of interest, we also observed
a remarkably rapid increase in the number of newly generated neurons in hippocampi of LAC-treated
mice [8]. In line with Cuccurazzu’s findings, Nasca and colleagues proposed that LAC promotes rapid
antidepressant responses, at least in part, via epigenetic mechanisms that may involve acetylation
of histone proteins and NF-κB p65, activating in turn mGlu2 receptor and BDNF gene expression.
Of note, a significant reduction of LAC in hippocampi and prefrontal cortex of FSL rats compared to
Flinders Resistant Line rats was recently reported, although it was not clear whether LAC mediated
antidepressant effects were linked to a correction of its deficiency in those brain regions [85].

Several critical aspects need to be highlighted and further discussed. First of all, LAC is
a non-specific acetylating agent and it is unlikely that its antidepressant and proneurogenic actions
are solely due to acetylation of nuclear proteins such as p65 and histones. It is possible that the
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drug acetylates other, even non-nuclear, target proteins. Further studies should be devoted to the
identification of those proteins, which may potentially suggest new pharmacological targets.

It should also be underlined that the idea that NF-κB and p65-mediated transcriptional activation
per se results in antidepressant or proneurogenic effects is challenged by opposite literature data.
Chronic stress augments NF-κB-dependent transcription in the hippocampus [73] and in Nucleus
Accumbens (NAc) [86]. In their elegant study, Koo and colleagues demonstrated a critical role for
NF-κB signaling in the cellular and behavioral effects of stress via proinflammatory cytokines [73].
Stress was shown to activate NF-κB signaling and decrease neural stem cell proliferation in the adult
hippocampus. Moreover depressive-like behavior induced by exposure to chronic stress appeared
to be mediated by NF-κB signaling; i.c.v. administration of NF-κB signaling inhibitors resulted in
antidepressant activity and prevented the negative effects of stress on hippocampal neurogenesis [73].
Similarly, genetic deletion of another member of the NF-κB family, the p50 subunit, a condition
that is associated with increased p65-mediated transcription, correlates with significantly decreased
hippocampal neurogenesis in adult mice [72]. On the other hand, we demonstrated that NF-κB
-mediated transcription is involved in both proneurogenic and antidepressant effects of other clinically
relevant drugs, such as α2δ1 ligands pregabalin and gabapentin [79].

The fact that both induction and prevention of depressive-like behavior and ahNG may rely
on activation of NF-κB signaling pathway is likely to reflect the complexity within that regulatory
system. The NF-κB protein family is composed of several members, in addition to p65, which can
combine to form dimers with different subunit composition which can be differentially activated and
exert distinct, even opposite, functions through activation of specific sets of gene targets [87–91].
The p65 as well as other NF-κB subunits can undergo different posttranslational modifications
in addition to acetylation, including ubiquitination, phosphorylation, sumoylation, nitrosylation,
and methylation [92]. It is possible that specific combination of posttranslational changes within p65
may ultimately dictate distinct NF-κB mediated transcriptional programs associated with induction of
depressive-like behavior or with antidepressant effects. In the future, it may be important to identify
the full set of NF-κB gene targets activated in the hippocampus and prefrontal cortex in response
to stress/LAC treatment, whose products may potentially represent novel biomarkers or targets in
mood disorders.

Last but not least, we do not want to infer that NF-κB p65 acetylation and increased mGlu2
gene transcription represent the only mechanisms underlying LAC pharmacological effects. Recent
literature data strongly support this idea. In the UCMS paradigm, LAC-mediated reversal of
depressive-like behavior was shown to activate a PI3K/AKT/BDNF/VGF signaling pathway [93].
Using endogenously depressed FSL rats, it has been recently reported that oral administration of
LAC results in antidepressant-like effects along with improved energy metabolism in the ventral
dentate gyrus (vDG) [85]. A detailed transcriptome analysis of vDG identified several metabolic
regulatory genes as potential key markers of LAC antidepressant responsiveness and, interestingly,
also of predisposition to depressive-like behaviour. More specifically, mineralcorticoid receptor (MR)
and leptin receptor (Lepr) transcripts appeared upregulated, whereas mGlu2 and NPY transcripts were
downregulated in vDG of FSL rats. Such changes were rapidly corrected by LAC treatment in drug
responsive animals [85]. LAC also corrected hyperinsulinemia and hyperglycemia in FSL rats [85].

Other literature data contribute to the concept of pleiotropicity of action for LAC antidepressant
effects. It has been proposed that LAC may act as an antidepressant via increased levels of the
glia-derived growth factor artemin [94]. Moreover, the drug can increase hippocampal levels of
noradrenaline and serotonin, well established positive modulators of adult neurogenesis [80,82,95].
The possibility that the effects of LAC on synaptic energy state may contribute to its antidepressant
effects has also been proposed [96]. Finally, regions other than hippocampus and prefrontal cortex may
represent the target of LAC pharmacological activity. For example, medial amygdala stellate neurons
have been suggested as a novel component in stress response, and LAC has been shown to promote
structural plasticity in these cells [97].
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5. Therapeutic Implications of LAC Unique Pharmacological Profile

Mood disorders are highly prevalent and disabling conditions. Despite a large number of
clinically available drugs, as of today, nearly two-thirds of individuals do not achieve full symptomatic
remission after treatment with conventional antidepressants [98]. In addition, in treatment responders
several weeks (2–6 w) of drug treatment are required to obtain clinical effects, a lag time which has
considerable implications ranging from high suicide risk to reduced compliance [98]. Even when
remission is achieved, the majority of individuals also suffer residual symptoms, including chronic
pain and cognitive impairment, which further contribute to the disease burden. At present, one clinical
study in dysthymic patients has proposed that LAC may be more rapid in its therapeutic effects
than the selective serotonin reuptake inhibitor fluoxetine. This finding is preliminary, but it is
quite interesting that in animal models, drug effects were also more rapid when compared to the
tricyclic antidepressant chlorimipramine [51]. Future studies in larger and more heterogenous patient
populations need to confirm this preliminary observation. The characteristic lag time in classical
antidepressant effectiveness has given impulse to the search for novel therapeutics with more rapid
effects. In such respect, the finding of ketamine as a rapid antidepressant in drug resistant patients
has been a major breakthrough [99–101]. Unfortunately, the drug is characterized by adverse effects
that limit its use [102]. Unlike ketamine, LAC has a high tolerability profile, and it is considered safe
in humans [62]. In principle, this could allow its employment even in patient subpopulations who
are very sensitive to the side effects associated with classical monoaminergic antidepressant drugs.
LAC clinical studies were mainly performed in elderly patients. A recent meta-analysis confirmed that
LAC is indeed more effective in older than in younger patients [61]. At present, no clear explanation
is available for such a peculiarity of LAC. Although research efforts are required to confirm these
findings, they suggest that LAC may represent a potential alternative to classical antidepressants.
In particular, the elderly population and patients with comorbid medical conditions that make them
vulnerable to adverse drug effects could represent an ideal subpopulation for LAC administration.
In the future, it may also be interesting to assess whether LAC may produce antidepressant effects in
subpopulations of drug-resistant patients.

LAC is currently marketed for treatment of neuropathic pain. Several studies, including
double-blind placebo-controlled studies, have shown that LAC may represent a consistent therapeutic
option for peripheral neuropathies [52,103]. As previously mentioned, LAC-mediated modulation
of mGlu2 gene expression via NF-κB p65 acetylation has been proposed as a major contributor to
its analgesic effects [7,50,56,103]. Recently, it has been shown that LAC, compared to other effective
analgesic drugs, can also result in a very long-lasting analgesic effect in experimental models of
both chronic inflammatory and neuropathic pain [53]. Once again, LAC long lasting effects were
associated with an increase in mGlu2 receptor protein levels in the dorsal horns of spinal cord [53].
These observations have important clinical implications in view of the possibility that the drug might
also reduce relapses in patients suffering from chronic pain. In light of the frequent comorbidity
between depression and chronic pain [104], LAC exerting antidepressant and analgesic effects via
common mechanisms (Figure 2) may represent an ideal treatment option.

In summary, for a long time there have been few drugs mechanistically distinct from classical
monoaminergic antidepressants for treatment of mood disorder. LAC represents a next-generation
antidepressant drug with novel mechanisms of action and high tolerability. Future investigations of
the detailed cellular and molecular mechanisms underlying LAC effects may help in the development
of potentially rapidly acting therapeutics and, in parallel, increase our current knowledge on the
pathophysiology of depressive disorders.
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