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Abstract. In this paper we investigate the use of the mean field tech-
nique to analyze Continuous Time Bayesian Networks (CTBN ). They
model continuous time evolving variables with exponentially distributed
transition rates depending on the parent variables in the graph. CTBN
inference consists of computing the probability distribution of a subset
of variables, conditioned by the observation of other variables’ values
(evidence). The computation of exact results is often unfeasible due to
the complexity of the model. For such reason, the possibility to perform
the CTBN inference through the equivalent Generalized Stochastic Petri
Net (GSPN ) was investigated in the past. In this paper instead, we ex-
plore the use of mean field approximation and apply it to a well-known
epidemic case study. The CTBN model is converted in both a GSPN and
in a mean field based model. The example is then analyzed with both
solutions, in order to evaluate the accuracy of the mean field approxima-
tion for the computation of the posterior probability of the CTBN given
an evidence. A summary of the lessons learned during this preliminary
attempt concludes the paper.

Acronym list:
BN Bayesian belief Network
CIM Conditional Intensity Matrix
CTBN Continuous Time Bayesian Network
DAG Directed Acyclic Graph
GSPN Generalized Stochastic Petri Net
MFM Mean Field Model
SIR Susceptible-infected-recovered model

1 Introduction

Temporal probabilistic graphical models allow for a factorization of the state
space of a process, resulting in improved modeling and inference features. Usu-
ally such models are based on graph structures and analyzed according to the
principles of the Bayesian theory. When time is considered continuous, Contin-
uous Time Bayesian Networks (CTBN ) [11] allows to represent variables whose
behavior depends on their parent variables.
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Actually, exact inference in large CTBN may often be impractical, so ap-
proximations through message-passing algorithms on cluster graphs [14, 10], or
through sampling [7, 8] have been proposed. The generation of large models
arises in several applications, such as biological process modeling or reliability
analysis of distributed systems where a numerous collection of similar entities or
subcomponents influence their behavior by interacting with each others.

In [6] the authors propose to perform inference on a CTBN by describing it
in terms of a Generalized Stochastic Petri Nets (GSPN ) [1] according to a set of
translation rules and inference algorithms. In this paper instead, we investigate
an alternative type of approximation grounded on the mean field theory [4, 13]
which allows computing the exact behaviour of this kind of models when the
number of entities tends to infinity, and provides an approximation in case the
number of entities is large enough. Exploiting the decoupling assumption [5], i.e.
that many-to-many stochastic interacting systems can be analyzed as one tagged
stochastic entity interacting with a single deterministic one, allows solving each
submodel in isolation and avoiding the construction of a large state space with
a significant reduction in the computational effort of the analysis.

The main goals of the paper are: 1) exploring mean field application to CTBN
models where the conditional dependencies between variables are defined over a
reduced set of neighbor ones; 2) studying the impact of such approximation to
the results of the inference computations.

To this end, Section 2 introduces the main concepts of CTBN and mean
field theory used in the paper. Section 3 describes a well-known case study of
epidemic propagation and presents the resulting models expressed in terms of a
CTBN its conversion into GSPN and its mean-field approximation. Section 4
briefly illustrates the two main inference tasks in CTBN namely prediction and
smoothing, focusing in the computation of the former through evaluation of the
GSPN and the mean field model (MFM ). Section 5 presents the evaluation of the
accuracy of the results of the inference provided by the mean field approximation.
Finally, Section 6 concludes the paper with a discussion of the effectiveness of
the approach and proposes further directions of the work.

2 Preliminary notions

2.1 Continuous Time Bayesian Networks

Probabilistic graphical models for reasoning about processes that evolve over
time, allow for a factorization [9] of the state space of the process, resulting in
better modeling and inference features. Such models are usually based on graph
structures, grounded on the theory of Bayesian Networks (BN ). When time is
taken into account, the main choice concerns whether to consider it as a discrete
or a continuous dimension. In the second case, CTBN have been firstly proposed
in [11, 12] and then refined in [14].

Following the original paper [11], a CTBN is defined as follows: let V =
{X1, . . . , Xn} be a set of discrete variables, a CTBN over X consists of two com-



ponents. The first one is an initial distribution P 0
V over V . The second component

is a continuous-time transition model specified as:

– a directed graph G whose nodes are X1, . . . , Xn (Pa(Xi) denotes the parents
of Xi in G);

– a Conditional Intensity Matrix (CIM) QXi|Pa(Xi) for every Xi ∈ V . The
CIM of a variable Xi provides the transition rates1 for each possible pair of
values of Xi, given any possible combination of the parent nodes’ values.

In other words, each node (variable) Xi incorporates a Continuous Time
Markov Chain (CTMC) having as many states as the possible values of Xi; in
the CTMC, the state transition rates depend on the current values of the parent
nodes of Xi (Pa(Xi)). With respect to standard BN having an acyclic graph
structure (DAG), cycles are instead permitted in CTBN where a node (variable)
Xi, ancestor of Xj , can be reachable from Xj . A cycle could be even composed
by one node Xi: Xi ∈ Pa(Xi).

2.2 Mean field theory

Let us consider a generic model of N ∈ N identical interacting objects, where
each of them has a state and interacts with others according to the Marko-
vian property, i.e. the evolution of the system depends only on the collection of
states at the current instant of time. The object with index n ∈ {1, 2, . . . , N}
is represented by the stochastic process {XN

n (t)} which take values in the set
S = {0, . . . , k − 1} with K = |S| the number of different states. The complete
system can be described by a multinomial stochastic process:

Y N (t) = (XN
1 (t), . . . , XN

N (t)),

with a state space of KN elements. Assuming that the objects are indistinguish-
able, it is sufficient to keep track of the proportion of objects in each state. These
values define a related stochastic process MN (t) = (M0(t), . . . ,MK−1(t)) called
the occupancy measure which elements are defined as:

MN
i (t) =

1

N

N∑
n=1

1{XN
n (t)=i}, i ∈ S

where the indicator function 1{XN
n (t)=i} is 1 if XN

n (t) = i, 0 otherwise. A state
of such process is denoted by m = (m0, . . . ,mK−1) where mi is the fraction of
objects in state i.

Under very general assumptions [2], the mean field convergence result states
that when the number of objects N goes to infinity the occupancy measure
converges to a deterministic limit u(t) (the so-called mean field), thus for each
local state i the fraction of objects in state i at time t is known with probability

1 In the following we will assume an exponential distribution for the sojourn time in
a given state and constant transition rates.



one. Moreover, Sznitman proofs the Mean Field Independence, or Propagation
of Chaos theorem [15] that allows to perform the following approximation:

Pr(XN
1 (t) = i1, . . . , X

N
N (t) = in) ≈ ui1

(
t

N

)
· . . . · uin

(
t

N

)
(1)

where uij are the components of the deterministic limit u(t). Equation 1 ex-
ploits the decoupling assumption to approximate the behavior of the multinomial
stochastic process as a product of the components of the deterministic limit.

3 A motivating case study

In this section we present a well-known susceptible-infected-recovered (SIR)
model which will be used as a running example for showing how to: 1) describe it
by a CTBN to be converted into GSPN ; 2) apply the mean field approximation.

We consider a system of N nodes, each node may be in three possible states:
susceptible (S), infected (I) or recovered (R). The nodes are vertex of a 2D torus
graph, as shown in Figure 1(b), so that each of them is connected with their
nearest neighbors and, when belonging to edges, with their corresponding nodes
on the opposite edges of the grid. We denote by Xi(v, t) ∈ [0, 1] the probability
that node in position v is in state i ∈ {S, I,R} at time t. By definition, for each
v and t, we have that XS(v, t) +XI(v, t) +XR(v, t) = 1.

The dynamic of the system is ruled by a set of exponential transitions as
following. A susceptible node can become infected from an external source, with
rate α, or from its neighbors, with a rate ρ times the number of current infected
nearest neighbors η(v, t). An infected node becomes recovered at rate β and a
recovered one turns to susceptible at rate γ. The resulting CTMC is depicted in
Figure 1(a).

S

I

R

β

γ

α+η(v, t)*ρ

Fig. 1. a) The incorporated CTMC and b) the CTBN for the SIR model with bidi-
rectional dependencies in a 2D torus graph.

3.1 The CTBN model

The description of the SIR model as a CTBN (Fig. 1.b) is straightforward:
the current state of the nodes in position vj are mapped to variables Vj with



values 0, 1, 2, corresponding to the states S, I, R, respectively. Each variable
(node) of the CTBN model incorporates the CTMC shown in Fig. 1.a, where
the state transitions having a null rate are not depicted. The initial probability
distribution of each variable is shown in Table 1.a. The stochastic behavior of
each node is conditioned by the values of the variables representing its nearest
neighbors. In particular, the current rate of the transition from state 1 (S) to 2
(I) is dependent on the number of current infected nearest neighbors. We can
define the CIM according to the value η(v, t), as shown in Table 1.b. The other
state transitions (from I to R, and from R to S) have a constant (independent)
rate (Table 1.b).

Vj Prob

0 (S) 1
1 (I) 0
2 (R) 0

0 → 1 (S → I) 2 → 3 (I → R) 3 → 1 (R→ S)

η(v, t) Rate
k (α+ kρ) β γ

(a) (b)

Table 1. a) Initial probability distribution for all variables Vj and b) the corresponding
CIM . The values of k range over all possible numbers of infected neighbors; for a 2D
torus graph in the interval [0; 4].

3.2 The equivalent GSPN model

GSPN have two different sets of transitions, namely temporal, with an exponen-
tially distributed delay, and immediate transitions, without any delay, the latter
having priority over the former. According to the conversion rules described
in [6], each node Vj of the CTBN (Fig. 1) can be converted into the GSPN
shown in Fig. 2. The variable Vj is mapped to place Vj

2, and the value of the
variable is mapped into the marking (number of tokens) of the corresponding
place. In particular, the marking of the place Vj can be equal to 1, 2, or 3, the
same values that the variable V can assume in the CTBN. They correspond to
the states S, I, R, respectively.

The initialization of Vj is modelled by the immediate transitions TIn1, TIn2,
and TIn3. Such transitions are all initially enabled to fire by the place Vj init,
with the effect of setting the initial marking of the place V to 1, 2, or 3. The
probability of these transitions to fire corresponds to the initial probability dis-
tribution of the variable Vj (Table 1.a).

The variation of the marking of the place Vj is determined by the timed
transitions TSet1, TSet2, and TSet3. The transition TSet1 is enabled to fire
when the place Vj contains three tokens; the effect of its firing is setting the

2 To improve readability in Fig. 2 the subscripts that specify the position in the torus
graph of the places and transitions are omitted.



marking of Vj to 1. Therefore TSet1 represents the state changing from R to
S. The transition TSet2 instead, can fire when the marking of the place Vj is
equal to 1 (state S), and turns it to 2 (state I). Finally TSet3 can fire when the
marking of V is 2 (I), and changes it to 3 (R).

The conversion of the complete CTBN generates a GSPN composed by as
many instances of the model in Fig. 2 as the number of nodes in the CTBN. In
the CTBN a transition rate of a variable can depend on the values of the parent
variables representing the neighbour nodes in the case study. In the equivalent
GSPN the corresponding firing rate depends on the markings of the places
representing the parent variables. In Fig. 2, the firing rates of TSet1 and TSet3
are constant; the firing rate of TSet2 instead, is marking-dependent, and in
particular it changes according to the number of “parent” places Vi (i 6= j)
currently containing 2 tokens (i.e. the number of infected neighbours). This is
expressed in Table 1.b.

2

2

timed transition

immediate transition

place

oriented arc

inhibitor arc

TSet2

TSet1

TSet3

3

2 3

3 4

TIn1

TIn3

TIn2 VV_init

Fig. 2. The GSPN corresponding to the CTBN of the SIR model.

3.3 The mean field based model

Let us define {X̂i(v, t)}, with i ∈ {S, I,R} and v the vertex of the 2D torus
graph, the mean field approximated process of the model described at the begin
of Section 3. The rates of transitions I → R and R→ S are defined as the original
model, whereas the time and location dependent rate χ(v, t) of the transition
S → I of the node v is defined as:

χ(v, t) = λ+ ρ

 ∑
v′∈Neigh(v)

X̂I(v, t)

 (2)

whereNeigh(v) is the set of the nearest neighbors of the node v. Thus, differently
from the CTBN model, this rate does not depend on the current exact number
of infected neighbors, but on the sum of probabilities that they are infected. The
dynamic of the whole process is described by a collection of N 3-by-3 matrices



Q(v, t) and can be computed by solving the following system of coupled nonlinear
non-homogeneous differential equations:

X̂i(v, 0) = Xi(v, 0) (3)

dX̂i(v, t)

dt
= X̂i(v, t)Q(v, t). (4)

In this way, the construction of the whole state space is avoided by locally solv-
ing with standard numerical techniques the process in each node and taking into
account the dependencies between neighbors through the mean field approxima-
tion. The approach were used to analyze the Markovian agent models [3] and can
be seen as a variation of the fast simulation technique proposed by Le Boudec
in [4] where the process is solved by analysis, instead of stochastic simulation.

4 Inference algorithms

Standard inference tasks in temporal probabilistic models are prediction and
smoothing. Prediction consists in computing the probability of a future state,
given past evidence (a special case occurs when the last evidence time point and
the query time are the same, and is called Filtering or Monitoring). Smoothing
is the task of estimating a past state, given all the evidence up to now.

If CTBN is converted into GSPN inference can be performed on the GSPN.
For instance, computing the probability of a given CTBN variable assignment
X = xi at time t, will correspond to compute the probability of having i tokens
at time t in the place modeling X in the GSPN. In a similar way, the same
probability can be computed on the MFM equivalent to the GSPN. Therefore ad-
hoc algorithm can be defined in order to perform prediction or smoothing on the
GSPN or MFM. For the sake of brevity, we provide the prediction algorithm [6].

4.1 Prediction Inference

The prediction task consists in computing P (Qt|et1 , . . . , etk) which is the pos-
terior probability at time t of a set of queried variables Q ⊆ (D ∪ I), given
a stream of observations (evidence) et1 , . . . , etk from time t1 to time tk with
t1 < . . . tk < t. Every evidence etj consists of a (possibly different) set of instan-
tiated variables. Prediction can then be implemented by repeatedly solving the
transient of the corresponding GSPN (or MFM ) at the observation and query
times. Of course, any observation will condition the evolution of the model, so
the suitable conditioning operations must be performed before a new GSPN (or
MFM ) resolution. The pseudo-code for the prediction procedure is shown in
Fig. 3, and is explained in details in [6].

5 Results

Let us start by computing the state probability trends of the node in location
v0 = (0; 0), i.e. the upper-left corner of the grid, assuming all nodes start in



Procedure Prediction
INPUT: a set of queried variables Q, a query time t, a set of temporally labeled evidences
et1 , . . . etk with
t1 < . . . tk < t
OUTPUT: P (Qt|et1 , . . . etk )
- let t0 = 0;
for i = 1 to k {

- solve the GSPN transient at time (ti − ti−1);
- compute from transient, pi(j) = Pr{Xj |eti} for Xj ∈ D ∪ R;
- update the weights of the immediate init transitions of Xj according to pi(j);

}
- solve the GSPN transient at time (t− tk);
- compute from transient, r = Pr{Q};
- output r;

Fig. 3. The prediction inference procedure.

state S at time 0. In Fig. 4 the results computed by solving the GSPN are
compared with the MFM for two configurations of the parameters: C1 := {α =
0.1, β = 0.1, γ = 0.01, ρ = 0.05} and C2 := {α = 0.1, β = 0.1, γ = 0.1, ρ =
0.05} h−1. The model with N = 9 nodes has a global state space of 49 = 262144
elements, however increasing the grid raises the size of the global state space at
416 = 4294967296 an almost intractable dimension for the analysis of the GSPN
model. Therefore the computations were limited to N = 9 and were performed
on a laptop equipped with an Intel Core i5 − 2450M CPU at 2.5 GHz, 3 MB
SmartCache and 6GB RAM and took a few seconds to solve both the GSPN
and MFM.

We can observe that the accuracy of the mean field approximation in Fig. 4(a)
is good except for discrepancies in the transient phase during the time interval
[5; 15] with a maximum absolute error of εt = 0.054423 and a a maximum ab-
solute error in steady state of εs = 0.0050022. The approximation achieved
with configuration C2 and shown in Fig. 4(b) is less satisfactory with a maxi-
mum absolute error in transient phase of εt = 0.053713, but in steady state of
εs = 0.017347.
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Fig. 4. Comparison between CTBN and MFM of the infection propagation with pa-
rameter configurations: a) C1 and b) C2.



Concerning prediction inference, let us focus on the configuration C1 and
assume that at time t0 = 0 h. all nodes are in a susceptible state and then at time
t1 = 3 h. we observe the nodes in locations {(0; 1), (1; 0), (1; 1)} infected. Using
the procedure described in Section 4.1 we can compute the state probabilities of
the node in the upper-left corner v0 = (0; 0) and its right neighbor v1 = (0; 1) at
time t2 = 4, 5 h. given the evidence. The inference is performed by the analysis
of both the GSPN and the MFM and the results are shown in Table 2 and 3,
respectively. The results show a quite good match with a maximum absolute
error between corrispondent values of εt = 0.099402.

Time [h] Prv0{S|ev} Prv0{I|ev} Prv0{R|ev} Prv1{S|ev} Prv1{I|ev} Prv1{R|ev}
0 1 0 0 1 0 0
3 0.668589 0.277077 0.054324 0 1 0

4 0.502876 0.408654 0.088464 0.008766 0.888542 0.102685
5 0.385592 0.482107 0.132290 0.008507 0.805611 0.185871

Table 2. Probabilities for prediction inference computed with the GSPN model (ev is
the current accumulated evidence).

Time [h] Prv0{S|ev} Prv0{I|ev} Prv0{R|ev} Prv1{S|ev} Prv1{I|ev} Prv1{R|ev}
0 1 0 0 1 0 0
3 0.582287 0.353869 0.063844 0 1 0

4 0.410119 0.484022 0.105859 0.000441 0.903973 0.095586
5 0.286190 0.556308 0.181044 0.001519 0.817438 0.157502

Table 3. Probabilities for prediction inference computed with the MFM (ev is the
current accumulated evidence).

6 Conclusions

In this paper, we investigated the use of the mean field technique to analyze
CTBN, with the goal of computing the probability distribution of a subset of
variables in absence and in presence of evidence. In particular, we applied mean
field approximation to a well-known epidemic case study; the results have been
compared with GSPN analysis output, another way to deal with CTBN, obtain-
ing a satisfactory accuracy.
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