
Lightweight BWT and LCP Merging via the
Gap Algorithm?

Lavinia Egidi1 and Giovanni Manzini1,2

1 Computer Science Institute, DiSIT
University of Eastern Piedmont, Viale Teresa Michel, 11, I-15100, Alessandria Italy

2 Institute of Informatics and Telematics
CNR, Via Moruzzi, 1, I-56124, Pisa, Italy

Abstract. Recently, Holt and McMillan [Bionformatics 2014, ACM-
BCB 2014] have proposed a simple and elegant algorithm to merge the
Burrows-Wheeler transforms of a collection of strings. In this paper we
show that their algorithm can be improved so that, in addition to the
BWTs, it also merges the Longest Common Prefix (LCP) arrays. Because
of its small memory footprint this new algorithm can be used for the fi-
nal merge of BWT and LCP arrays computed by a faster but memory
intensive construction algorithm.

Keywords: Document Collections, String Indexing, Data Compression

1 Introduction and Related Works

The Burrows Wheeler transform (BWT) is a fundamental component of many
compressed indices and it is often complemented by the Longest Common Prefix
(LCP) array and a sampling of the Suffix Array [9,21]. Because of the sheer size
of the data involved, the construction of such data structures is a challenging
problem in itself. Although the final outcome is a compressed index, construction
algorithms can be memory hungry and the necessity of developing lightweight,
i.e. space economical, algorithms was recognized since the very beginning of the
field [4,19,20]. When even lightweight algorithms do not fit in RAM, one has to
resort to external memory construction algorithms (see [5,17,7,13] and references
therein).

Many construction algorithms are designed for the case in which the input
consists of a single sequence; yet in many applications the data to be indexed con-
sist of a collection of distinct items: documents, web pages, NGS reads, proteins,
etc.. One can concatenate such items using (distinct) end-of-file separators and

? Postprint version. The final publication is available at Springer via http://dx.doi.

org/10.1007/10.1007/978-3-319-67428-5_15. Partially supported by the Univer-
sity of Eastern Piedmont projects KITE and Behavioural Types for Dependability
Analysis with Bayesian Networks, PRIN grant 201534HNXC, and INdAM-GNCS
Project Efficient algorithms and techniques for the organization, management and
analysis of biological Big Data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio Istituzionale della Ricerca- Università del Piemonte Orientale

https://core.ac.uk/display/226226763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/10.1007/978-3-319-67428-5_15
http://dx.doi.org/10.1007/10.1007/978-3-319-67428-5_15

2 L. Egidi and G. Manzini

index the resulting sequence. However, using distinct separators is possible only
for small collections and from the algorithmic point of view it makes no sense
to “forget” that the input consists of distinct items: this additional information
should be exploited to run faster.

Recently, Holt and McMillan [10,11] have presented a new approach for com-
puting the BWT of a collection of sequences based on the concept of merging:
first the BWTs of the individual sequences are computed (by any single-string
BWT algorithm) and then they are merged, possibly in multiple rounds as in
the standard mergesort algorithm. The idea of BWT-merging is not new [6,23]
but Holt and McMillan’s merging algorithm is simpler than the previous ap-
proaches. For a constant size alphabet their algorithm merges the BWTs of two
sequences t0, t1 in O(n · avelcp01) time where n = |t0| + |t1| and avelcp01 is
the average length of the longest common prefix between suffixes of t0 and t1.
The average length of the longest common prefix is O(n) in the worst case but
O(log n) for random strings and for many real world datasets [14]. Note that
even when avelcp01 = O(log n) the algorithm is not optimal since BWT merging
can be done in linear time if there are no constraints on the space usage.

In this paper we show that the H&M (Holt and McMillan) merging algorithm
can be modified so that, in addition to the BWTs, it merges the LCP arrays as
well. The new algorithm, called Gap because of how it operates, has the same
asymptotic cost as H&M and uses additional space only for storing its additional
output, i.e. the LCP values. In our implementation, the Gap algorithm uses
only ≈ 1.5 bytes per symbol of workspace in addition to the input and the
output, making it interesting when the overall size of the collection is close to
the available RAM.

Our contribution in context. For a collection of documents of total size n
over a constant alphabet, the BWT and LCP arrays, as well as many compressed
indices, can be computed in O(n) time by first computing the Suffix Array (SA)
of the collection. The construction of the suffix array is a well studied problem
and there exist time/space optimal algorithms that work well in practice. The
problem with this approach is that the SA takes n log n bits of space while a
compressed index takesO(n) bits. Hence, going through the SA we can only build
indices much smaller than the available RAM. This implies that, in practice,
either we build multiple “small” indices, which must be queried independently,
or we use a larger machine for the construction of the index. Note that the
construction of compressed indices in linear time and O(n) bits of space is a
challenging and active area of research, see [1] and references therein, but at the
moment it has produced no practical algorithms.

Given this state of affairs, we propose the following practical approach for
the construction of the BWT and LCP arrays of a collection of documents. We
split the input collection into subcollections C1, . . . , Ck of roughly equal size
which are sufficiently small so that we can compute the BWT and LCP arrays
via the SA. Then, we merge all the BWTs and LCPs using the Gap algorithm
described in this paper. Since space is the main bottleneck, to compute the SA of
the subcollections we use the recently proposed gSACA-K algorithm by Louza et

Lightweight BWT and LCP Merging 3

al. [15,16] which runs in linear time, is extremely fast in practice, and uses only
2KB in addition to the space of the input and the output (gSACA-K is based on
the SACA-K algorithm from [22]). As we will see, this approach allows us to fully
exploit all the available RAM and to take advantage of the optimal and highly
engineered gSACA-K algorithm to do most of the job.

Among the construction algorithms proposed in the literature, the one most
similar to our approach is the one described by Sirén in [24] where a compressed
index is maintained in RAM and new collections are incrementally merged to
it. The two approaches share the idea that building index should not require
a specialized machine with a lot of RAM. The approach in [24] is specific for
that particular compressed index (which doesn’t use the LCP array), while ours,
providing the plain BWT and LCP arrays, can be more easily adapted to build
different flavors of compressed indices.

Another related result is the algorithm proposed in [2,3] which computes
(from scratch) the multi-string BWT and LCP in external memory. Given a
collection of m strings of the same length k, the algorithm first computes the
BWT of all length-` suffixes for ` = 1, 2, . . . , k and then, using an approach
inspired by the H&M algorithm, merges them to obtain the multi-string BWT
and LCP arrays. The algorithm accesses disk data sequentially and the reported
I/O volume is O(mkmaxlcp) where maxlcp is the maximum of the length of all
common prefixes (for the same input the I/O volume of the algorithm in [5]
is O(mk2)). Although our Gap algorithm is designed only to merge BWTs and
LCPs in internal memory, it also accesses its main data structures sequentially.
This feature suggests that it could be engineered to work in external memory
as well. Compared to [2,3] an external memory version of Gap would have the
advantages of supporting also strings of different lengths, and of exploiting any
available RAM to do some of the work with the highly efficient, indeed optimal,
internal memory algorithm gSACA-K. We plan to pursue this line of research in
a future work.

2 Notation

Let t[1, n] denote a string of length n over an alphabet Σ of size σ. As usual,
we assume t[n] is a symbol not appearing elsewhere in t and lexicographically
smaller than any other symbol. We write t[i, j] to denote the substring t[i]t[i+
1] · · · t[j]. If j ≥ n we assume t[i, j] = t[i, n]. If i > j or i > n then t[i, j] is the
empty string. Given two strings t and s we write t � s (t ≺ s) to denote that t
is lexicographically (strictly) smaller than s. We denote by LCP(t, s) the length
of the longest common prefix between t and s.

The suffix array sa[1, n] associated to t is the permutation of [1, n] giving the
lexicographic order of t’s suffixes, that is, for i = 1, . . . , n−1, t[sa[i], n] ≺ t[sa[i+
1], n]. The longest common prefix array lcp[1, n+ 1] is defined for i = 2, . . . , n by

lcp[i] = LCP(t[sa[i− 1], n], t[sa[i], n]); (1)

the lcp array stores the length of the longest common prefix between lexicograph-
ically consecutive suffixes. For convenience we define lcp[1] = lcp[n + 1] = −1.

4 L. Egidi and G. Manzini

lcp bwt context

-1 b $
0 c ab$
2 $ abcab$
0 a b$
1 a bcab$
0 b cab$
-1

lcp bwt context

-1 c •
0 • aabcabc•
1 c abc•
3 a abcabc•
0 a bc•
2 a bcabc•
0 b c•
1 b cabc•
-1

id lcp01 bwt01 context

0 -1 b $
1 0 c •
1 0 • aabcabc•
0 1 c ab$
1 2 c abc•
0 3 $ abcab$
1 5 a abcabc•
0 0 a b$
1 1 a bc•
0 2 a bcab$
1 4 a bcabc•
1 0 b c•
0 1 b cab$
1 3 b cabc•

-1

Fig. 1. LCP array and BWT for t0 = abcab$ and t1 = aabcabc•, and multi-string
BWT and corresponding LCP array for the same strings. Column id shows, for each
entry of bwt01 = bc•cc$aaaabbb whether it comes from t0 or t1.

The Burrows-Wheeler transform bwt[1, n] of t is defined by

bwt[i] =

{
t[n] if sa[i] = 1

t[sa[i]− 1] if sa[i] > 1.

bwt[1, n] is the permutation of t in which the position of t[j] coincides with the
lexicographic rank of t[j+ 1, n] (or of t[1, n] if j = n) in the suffix array. We call
such string the context of t[j]. See Figure 1 for an example.

The longest common prefix (LCP) array, and Burrows-Wheeler transform
(BWT) can be generalized to the case of multiple strings [5,18]. Let t0[1, n0] and
t1[1, n1] be such that t0[n0] = $0 and t1[n1] = $1 where $0 < $1 are two symbols
not appearing elsewhere in t0 and t1 and smaller than any other symbol. Let
sa01[1, n0+n1] denote the suffix array of the concatenation t0t1. The multi-string
BWT of t0 and t1, denoted by bwt01[1, n0 + n1], is defined by

bwt01[i] =

t0[n0] if sa01[i] = 1

t0[sa01[i]− 1] if 1 < sa01[i] ≤ n0
t1[n1] if sa01[i] = n0 + 1

t1[sa01[i]− n0 − 1] if n0 + 1 < sa01[i].

In other words, bwt01[i] is the symbol preceding the i-th lexicographically larger
suffix, with the exception that if sa01[i] = 1 then bwt01[i] = $0 and if sa01[i] =
n0 +1 then bwt01[i] = $1. Hence, bwt01[i] always comes from the string (t0 or t1)
containing the i-th largest suffix (see again Fig. 1). The above notion of multi-
string BWT can be immediately generalized to define bwt1···k for a family of

Lightweight BWT and LCP Merging 5

distinct strings t1, t2, . . . , tk. Essentially bwt1···k is a permutation of the symbols
in t1, . . . , tk such that the position in bwt1···k of ti[j] is given by the lexicographic
rank of its context ti[j + 1, ni] (or ti[1, ni] if j = ni).

Given the concatenation t0t1 and its suffix array sa01[1, n0 +n1], we consider
the corresponding LCP array lcp01[1, n0 + n1 + 1] defined as in (1) (see again
Fig. 1). Note that, for i = 2, . . . , n0 + n1, lcp01[i] gives the length of the longest
common prefix between the contexts of bwt01[i] and bwt01[i− 1]. This definition
can be immediately generalized to a family of k strings to define the LCP array
lcp12···k associated to the multi-string BWT bwt12···k.

3 The H&M Algorithm Revisited

In [11] Holt and McMillan introduced a simple and elegant algorithm, we call it
the H&M algorithm, to merge multi-string BWTs as defined above.

Given bwt1···k and bwtk+1 k+2 ···h the algorithm computes bwt1···h. The com-
putation does not explicitly need t1, . . . , th but only the (multi-string) BWTs
to be merged. For simplicity of notation we describe the algorithm assuming we
are merging two single-string BWTs bwt0 = bwt(t0) and bwt1 = bwt(t1); the
algorithm does not change in the general case where the input are multi-string
BWTs. Note also that the algorithm can be easily adapted to merge more than
two (multi-string) BWTs at the same time.

Computing bwt01 amounts to sorting the symbols of bwt0 and bwt1 according
to the lexicographic order of their contexts, where the context of symbol bwt0[i]
(resp. bwt1[i]) is t0[sa0[i], n0] (resp. t1[sa1[i], n1]). By construction, the symbols
in bwt0 and bwt1 are already sorted by context, hence to compute bwt01 we only
need to merge bwt0 and bwt1 without changing the relative order of the symbols
within the two input sequences.

The H&M algorithm works in successive phases. After the h-th phase the
entries of bwt0 and bwt1 are sorted on the basis of the first h symbols of their
context. More formally, the output of the h-th phase is a binary vector Z(h)

containing n0 = |t0| 0’s and n1 = |t1| 1’s and such that the following property
holds.

Property 1. For i = 1, . . . , n0 and j = 1, . . . n1 the i-th 0 precedes the j-th 1 in
Z(h) if and only if

t0[sa0[i], sa0[i] + h− 1] � t1[sa1[j], sa1[j] + h− 1] (2)

(recall that according to our notation if sa0[i] +h− 1 > n0 then t0[sa0[i], sa0[i] +
h− 1] coincides with t0[sa0[i], n0], and similarly for t1). ut

Following Property 1 we identify the i-th 0 in Z(h) with bwt0[i] and the j-th
1 in Z(h) with bwt1[j] so that to Z(h) corresponds to a permutation of bwt01.
Property 1 is equivalent to state that we can logically partition Z(h) into b(h)+1
blocks

Z(h)[1, `1], Z(h)[`1 + 1, `2], . . . , Z(h)[`b(h) + 1, n0 + n1] (3)

6 L. Egidi and G. Manzini

such that each block corresponds to a set of bwt01 symbols whose contexts are
prefixed by the same length-h string (the symbols with a context of length less
than h are contained in singleton blocks). Within each block the symbols of bwt0
precede those of bwt1, and the context of any symbol in block Z(h)[`j + 1, `j+1]
is lexicographically smaller than the context of any symbol in block Z(h)[`k +
1, `k+1] with k > j.

The H&M algorithm initially sets Z(0) = 0n01n1 : since the context of every
bwt01 symbol is prefixed by the same length-0 string (the empty string), there is
a single block containing all bwt01 symbols. At phase h the algorithm computes
Z(h+1) from Z(h) using the procedure in Figure 2. For completeness we report
in the Appendix the proof of the following lemma which is a restatement of
Lemma 3.2 in [11] using our notation.

1: Initialize array F [1, σ]
2: k0 ← 1; k1 ← 1 . Init counters for bwt0 and bwt1
3: for k ← 1 to n0 + n1 do
4: b← Z(h−1)[k] . Read bit b from Z(h−1)

5: if b = 0 then . Get symbol from bwt0 or bwt1 according to b
6: c← bwt0[k0++]
7: else
8: c← bwt1[k1++]
9: end if

10: j ← F [c]++ . Get destination for b according to symbol c
11: Z(h)[j]← b . Copy bit b to Z(h)

12: end for

Fig. 2. Main loop of algorithm H&M for computing Z(h) given Z(h−1). Array F is
initialized so that F [c] contains the number of occurrences of symbols smaller than c
in bwt0 and bwt1 plus one. Hence, the bits stored in Z(h) immediately after reading
symbol c are stored in positions from F [c] to F [c+ 1]− 1 of Z(h).

Lemma 2. For h = 0, 1, 2, . . . the bit vector Z(h) satisfies Property 1. ut

We now show that with a simple modification to the H&M algorithm it is
possible to compute, in addition to bwt01 also the LCP array lcp01 defined in
Section 2. Our strategy consists in keeping explicit track of the logical blocks
we have defined for Z(h) and represented in (3). We maintain an integer array
B[1, n0 + n1 + 1] such that at the end of phase h it is B[i] 6= 0 if and only if
a block of Z(h) starts at position i. The use of such integer array is shown in
Figure 3. Note that: (i) initially we set B = 1 0n0+n1−1 1 and once an entry in
B becomes nonzero it is never changed, (ii) during phase h we only write to B
the value h, (iii) because of the test at Line 4 the values written during phase
h influence the algorithm only in subsequent phases. We maintain also an array
Block id[1, σ] such that Block id[c] is the id of the block of Z(h−1) to which the
last seen occurrence of symbol c belonged.

Lightweight BWT and LCP Merging 7

1: Initialize arrays F [1, σ] and Block id[1, σ]
2: k0 ← 1; k1 ← 1 . Init counters for bwt0 and bwt1
3: for k ← 1 to n0 + n1 do
4: if B[k] 6= 0 and B[k] 6= h then
5: id← k . A new block of Z(h−1) is starting
6: end if
7: b← Z(h−1)[k] . Read bit b from Z(h−1)

8: if b = 0 then . Get symbol from bwt0 or bwt1 according to b
9: c← bwt0[k0++]

10: else
11: c← bwt1[k1++]
12: end if
13: j ← F [c]++ . Get destination for b according to symbol c
14: Z(h)[j]← b . Copy bit b to Z(h)

15: if Block id[c] 6= id then
16: Block id[c]← id . Update block id for symbol c
17: if B[j] = 0 then
18: B[j] = h . A new block of Z(h) will start here
19: end if
20: end if
21: end for

Fig. 3. Main loop of the H&M algorithm modified for the computation of the lcp values.
At Line 1 for each symbol c we set Block id[c] = −1 and F [c] as in Figure 2. At the
beginning of the algorithm we initialize the array B[0, n0 + n1] as B = 1 0n0+n1−1 1.

The following lemma shows that the nonzero values of B at the end of phase h
mark the boundaries of Z(h)’s logical blocks.

Lemma 3. For any h ≥ 0, let `, m be such that 1 ≤ ` ≤ m ≤ n0 + n1 and

lcp01[`] < h, min(lcp01[`+ 1], . . . , lcp01[m]) ≥ h, lcp01[m+ 1] < h. (4)

Then, at the end of phase h the array B is such that

B[`] 6= 0, B[`+ 1] = · · · = B[m] = 0, B[m+ 1] 6= 0 (5)

and Z(h)[`,m] is one of the blocks in (3). ut

Proof. We prove the result by induction on h. For h = 0, hence before the
execution of the first phase, (4) is only valid for ` = 1 and m = n0 + n1 (recall
we defined lcp01[1] = lcp01[n0 + n1 + 1] = −1). Since initially B = 1 0n0+n1−1 1
our claim holds.

Suppose now that (4) holds for some h > 0. Let s = t01[sa01[`], sa01[`]+h−1];
by (4) s is a common prefix of the suffixes starting at positions sa01[`], sa01[`+1],
. . . , sa01[m], and no other suffix of t01 is prefixed by s. By Property 1 the 0s and
1s in Z(h)[`,m] corresponds to the same set of suffixes. That is, if ` ≤ v ≤ m
and Z(h)[v] is the ith 0 (resp. jth 1) of Z(h) then the suffix starting at t0[sa0[i]]
(resp. t1[sa1[j]]) is prefixed by s.

8 L. Egidi and G. Manzini

To prove (5) we start by showing that, if ` < m, then at the end of phase
h−1 it is B[`+1] = · · · = B[m] = 0. To see this observe that the range sa01[`,m]
is part of a (possibly) larger range sa01[`′,m′] containing all suffixes prefixed by
the length h−1 prefix of s. By inductive hypothesis, at the end of phase h−1 it
is B[`′ + 1] = · · · = B[m′] = 0 which proves our claim since `′ ≤ ` and m ≤ m′.

To complete the proof, we need to show that during phase h: (i) we do
not write a nonzero value in B[`+ 1,m] and (ii) we write a nonzero to B[`] and
B[m+1] if they do not already contain a nonzero. Let c = s[1] and s′ = s[2, h−1]
so that s = cs′. Consider now the range sa01[e, f] containing the suffixes prefixed
by s′. By inductive hypothesis at the end of phase h− 1 it is

B[e] 6= 0, B[e+ 1] = · · · = B[f] = 0, B[f + 1] 6= 0. (6)

During iteration h, the bits in Z(h)[`,m] are possibly changed only when we are
scanning the region Z(h−1)[e, f] and we find an entry b = Z(h−1)[k], e ≤ k ≤ f ,
such that the corresponding value in bwtb is c. Note that by (6) as soon as k
reaches e the variable id changes and becomes different from all values stored in
Block id. Hence, at the first occurrence of symbol c the value h will be stored in
B[`] (Line 18) unless a nonzero is already there. Again, because of (6), during the
scanning of Z(h−1)[e, f] the variable id does not change so subsequent occurrences
of c will not cause a nonzero value to be written to B[`+1,m]. Finally, as soon as
we leave region Z(h−1)[e, f] and k reaches f+1, the variable id changes again and
at the next occurrence of c a nonzero value will be stored in B[m+1]. If there are
no more occurrences of c after we leave region Z(h−1)[e, f] then either sa01[m+1]
is the first suffix array entry prefixed by symbol c + 1 or m + 1 = n0 + n1 + 1.
In the former case B[m + 1] gets a nonzero value at phase 1, in the latter case
B[m+ 1] gets a nonzero value when we initialize array B.

This completes the proof. ut

Corollary 4. For i = 2, . . . , n0 + n1, if lcp01[i] = `, then starting from the end
of phase `+ 1 it is B[i] = `+ 1.

Proof. By Lemma 3 we know that B[i] becomes nonzero only after phase `+ 1.
Since at the end of phase ` it is still B[i] = 0 during phase ` + 1 B[i] gets the
value `+ 1 which is never changed in successive phases. ut

The above corollary suggests the following algorithm to compute bwt01 and
lcp01: repeat the procedure of Figure 3 until the phase h in which all entries in
B become nonzero. At that point Z(h) describes how bwt0 and bwt1 should be
merged to get bwt01 and for i = 2, . . . , n0 + n1 lcp01[i] = B[i] − 1. The above
strategy requires a number of iterations, each one takingO(n0+n1) time, equal to
the maximum of the lcp values, for an overall complexity ofO((n0+n1)maxlcp01),
where maxlcp01 = maxi lcp01[i]. In the next section we describe a much faster
algorithm that avoids to re-process the portions of B and Z(h) which are no
longer relevant for the computation of the final result.

Lightweight BWT and LCP Merging 9

4 The Gap Algorithm

Definition 5. If B[`] 6= 0, B[m+ 1] 6= 0 and B[`+ 1] = · · · = B[m] = 0, we say
that block Z(h)[`,m] is monochrome if it contains only 0’s or only 1’s. ut

Since a monochrome block only contains suffixes from either t0 or t1, whose
relative order and LCP’s are known, it does not need to be further modified.
This intuition is formalized by the following lemmas.

Lemma 6. If at the end of phase h bit vector Z(h) contains only monochrome
blocks we can compute bwt01 and lcp01 in O(n0 + n1) time.

Proof. By Property 1, if we identify the i-th 0 in Z(h) with bwt0[i] and the j-th
1 with bwt1[j] the only elements which could be not correctly sorted by context
are those within the same block. However, if the blocks are monochrome all
elements belong to either bwt0 or bwt1 so their relative order is correct.

To compute lcp01 we observe that if B[i] 6= 0 then by (the proof of) Corol-
lary 4 it is lcp01[i] = B[i] − 1. If instead B[i] = 0 we are inside a block hence
sa01[i−1] and sa01[i] belong to the same string t0 or t1 and their LCP is directly
available in lcp0 or lcp1. ut

Lemma 7. Suppose that, at the end of phase h, Z(h)[`,m] is a monochrome
block. Then (i) for g > h, Z(g)[`,m] = Z(h)[`,m], and (ii) processing Z(h)[`,m]
during phase h+ 1 creates a set of monochrome blocks in Z(h+1).

Proof. The first part of the Lemma follows from the observation that subsequent
phases of the algorithm will only reorder the values within a block (and possibly
create new sub-blocks); but if a block is monochrome the reordering will not
change its actual content.

For the second part, we observe that during phase h+ 1 as k goes from ` to
m the algorithm writes to Z(h+1) the same value which is in Z(h)[`,m]. Hence,
a new monochrome block will be created for each distinct symbol encountered
(in bwt0 or bwt1) as k goes through the range [`,m]. ut

The lemma implies that, if block Z(h)[`,m] is monochrome at the end of phase
h, starting from phase g = h+ 2 processing the range [`,m] will not change Z(g)

with respect to Z(g−1). Indeed, by the lemma the monochrome blocks created
in phase h + 1 do not change in subsequent phases (in a subsequent phase a
monochrome block can be split in sub-blocks, but the actual content of the
bit vector does not change). The above observation suggests that, after we have
processed block Z(h+1)[`,m] in phase h+1, we can mark it as irrelevant and avoid
to process it again. As the computation goes on, more and more blocks become
irrelevant. Hence, in the generic phase h instead of processing the whole Z(h−1)

we process only the blocks which are still “active” and skip irrelevant blocks.
Adjacent irrelevant blocks are merged so that among two active blocks there is
at most one irrelevant block (the gap that gives the name to the algorithm). The
overall structure of a single phase is shown in Figure 4. The algorithm terminates

10 L. Egidi and G. Manzini

1: if (next block is irrelevant) then
2: skip it
3: else
4: process block
5: if (processed block is monochrome) then
6: mark it irrelevant
7: end if
8: end if
9: if (last two blocks are irrelevant) then

10: merge them
11: end if

Fig. 4. Main loop of the Gap algorithm. The processing of active blocks at Line 4 is
done as in Lines 7–20 of Figure 3.

when there are no more active blocks since this implies that all blocks have
become monochrome and by Lemma 6 we are able to compute bwt01 and lcp01.

We point out that at Line 2 of the Gap algorithm we cannot simply skip an
irrelevant block ignoring its content. To keep the algorithm consistent we must
correctly update the global variables of the main loop, i.e. the array F and the
pointers k0 and k1 in Figure 3. To this end a simple approach is to store for each
irrelevant block the number of occurrences oc of each symbol c ∈ Σ in it and the
pair (r0, r1) providing the number of 0’s and 1’s in the block (recall an irrelevant
block may consist of adjacent monochrome blocks coming from different strings).
When the algorithm reaches an irrelevant block, F , k0, k1 are updated setting
k0 ← k0 + r0, k1 ← k1 + r1 and ∀c F [c]← F [c] + oc.

The above scheme for handling irrelevant blocks is simple and probably ef-
fective in most cases. However, using O(σ) time to skip an irrelevant block is not
competitive for large alphabets. A better alternative is to build a wavelet tree for
bwt0 and bwt1 at the beginning of the algorithm. Then, for each irrelevant block
we store only the pair (r0, r1). When we reach an irrelevant block we use such
pair to update k0 and k1. The array F is not immediately updated: Instead we
maintain two global arrays L0[1, σ] and L1[1, σ] such that L0[c] and L1[c] store
the value of k0 and k1 at the time the value F [c] was last updated. At the first
occurrence of a symbol c inside an active block we update F [c] adding to it the
number of occurrences of c in bwt0[Lo[c] + 1, k0] and bwt1[L1[c] + 1, k1] that we
compute in O(log σ) time using the wavelet trees. Using this lazy update mecha-
nism, handling irrelevant blocks adds a O(min(`, σ) log σ) additive slowdown to
the cost of processing an active block of length `.

Theorem 8. Given bwt0, lcp0 and bwt1, lcp1 the Gap algorithm computes bwt01
and lcp01 in O(log(σ)(n0+n1)avelcp01) time, where avelcp01 = (

∑
i lcp01[i])/(n0+

n1) is the average LCP of the string t01.

Proof. The correctness follows from the above discussion. For the analysis of the
running time we reason as in [10] and observe that the sum, over all phases, of the
length of all active blocks is bounded by O(

∑
i lcp01[i]) = O((n0 + n1)avelcp01).

Lightweight BWT and LCP Merging 11

In any phase, using the lazy update mechanism, the cost of processing an active
block of length ` is bounded by O(` log(σ)) and the time bound follows. ut

We point out that our Gap algorithm is related to the H&M algorithm as
described in [10, Sect. 2.1]: Indeed, the sorting operations are essentially the same
in the two algorithms. The main difference is that Gap keeps explicit track of
the irrelevant blocks while H&M keeps explicit track of the active blocks (called
buckets in [10]): this difference makes the non-sorting operations completely
different. An advantage of working with irrelevant blocks is that they can be
easily merged, while this is not the case for the active blocks in H&M. Of course,
the main difference is that Gap merges simultaneously BWT and LCP values.

If we are simultaneously merging k BWTs, the only change in the algorithm
is that the arrays Z(h) must now store integers in [1, k]; the overall running time
is still O(n log(σ)avelcp) where n =

∑
i ni is the size of the merged BWT and

avelcp is the average of the values in the merged LCP array.
We now analyze the space usage of Gap when merging k BWTs. Let n denote

the size of the merged BWTs. The arrays bwt1, . . . , bwtk take overall ndlog σe
bits. At the end of the computation, in O(n) time using Z(h) the merged BWT
can be written directly to disk or, using an in-place merging algorithm [8], over-
written to the space used by bwt1, . . . , bwtk. The array B stores lcp values hence
it can be represented in ndlogLe bits, where L = maxi ni. Note that B takes
the same space as the final merged LCP array, which indeed, at the end of the
computation, could be overwritten to it using Z(h) (the merged LCP can also
be written directly to the output file). In addition to the space used for BWT
and LCP values, the algorithm uses 2ndlog ke bits for the arrays Z(h) (we only
need 2 of them), and O(σ log n) bits for the arrays F and Block id.

The overall space usage so far is therefore n(dlog σe + dlogLe + 2dlog ke) +
O(σ log n) bits. The only additional space used by the algorithm is the one used
to keep track of the irrelevant blocks, which unfortunately cannot be estimated
in advance since it depends on the maximum number of such blocks. In the worst
case we can have Θ(n) blocks and the additional space can be Θ(nk log n) bits.
Although this is a rather unlikely possibility, it is important to have some form
of control on this additional space. We use the following simple heuristic: we
choose a threshold s and we keep track of an irrelevant block only if its size is at
least s. This strategy introduces a O(s) time slowdown but ensures that there
are at most n/(s + 1) irrelevant blocks simultaneously. In the next section we
experimentally measure the influence of s on the space and running time of the
algorithm and show that in practice the space used to keep track of irrelevant
blocks is less than 10% of the total.

Note that also in [10] the authors faced the problem of limiting the memory
used to keep track of the active blocks. They suggested the heuristic of keeping
track of active blocks only after the h-th iteration (h = 20 for their dataset).

12 L. Egidi and G. Manzini

Name Size GB σ Max Len Ave Len Max LCP Ave LCP

Pacbio 6.24 5 40212 9567.43 1055 17.99
Illumina 7.60 6 103 102.00 102 27.53
Wiki-it 4.01 210 553975 4302.84 93537 61.02
Proteins 6.11 26 35991 410.22 25065 100.60

Table 1. Collections used in our experiments sorted by average LCP. Columns 4
and 5 refer to the lengths of the single documents. Pacbio are NGS reads from a
D.melanogaster dataset. Illumina are NGS reads from Human ERA015743 dataset.
Wiki-it are pages from Italian Wikipedia. Proteins are protein sequences from Uniprot.
Collections and source files are available on https://people.unipmn.it/manzini/gap.

Name k gSACA-K s = 50 s = 100 s = 200
+Φ time space time space time space

Pacbio 7 0.46 0.41 4.35 0.46 4.18 0.51 4.09
Illumina 4 0.48 0.93 3.31 1.02 3.16 1.09 3.08
Wiki-it 5 0.41 — — — — 3.07 6.55
Proteins 4 0.59 3.90 4.55 5.18 4.29 7.05 4.15

Table 2. For each collection we report the number k of subcollections, the average
running time of gSACA-K+Φ in µsecs per symbol, and the running time (µsecs) and
space usage (bytes) per symbol for Gap for different values of the s parameter.

5 Experimental Results

We have implemented the Gap algorithm in C and tested it on a desktop with
32GB RAM and eight Intel-I7 3.40GHz CPUs. All tests used a single CPU. We
used the collections shown in Table 1. We represented LCP values using 1 byte for
Illumina, 2 bytes for Pacbio and Proteins, and 4 bytes for Wiki-it. We always used
1 byte for each BWT value. We used n bytes to represent a pair of Z(h) arrays
using 4 bits for each entry so that our implementation can merge simultaneously
up to 16 BWTs. We used the simple strategy for skipping irrelevant blocks, i.e.
we did not use wavelet trees to represent the input BWTs.

Referring to Table 2, we split each collection into k subcollections of size
less than 2GB and we computed the multi-string SA of each subcollection using
gSACA-K [15]. From the SA we computed the multi-string BWT and LCP arrays
using the Φ algorithm [12] (implemented in gSACA-K). This computation used 13
bytes per input symbol. Then, we merged the subcollections multi-string BWTs
and LCPs using Gap with different values of the parameter s which determines
the size of the smallest irrelevant block we keep track of. Note that for Wiki-it
s has no influence since the algorithm never keeps track of a block smaller than
σ+k. The rationale is that in our implementation skipping a block takes O(σ+k)
time, so there is no advantage in skipping a block smaller than that size.

From the results in Table 2 we see that Gap running time is indeed roughly
proportional to the average LCP. For example, Pacbio and Illumina collections
both consist of DNA reads but, despite Pacbio reads being longer and having

https://people.unipmn.it/manzini/gap

Lightweight BWT and LCP Merging 13

a larger maximum LCP, Gap is twice as fast on them because of the smaller
average LCP. Similarly, Gap is faster on Wiki-it than on Proteins despite the
latter collection having a smaller alphabet and shorter documents. gSACA-K
running time is not significantly influenced by the average LCP. If we compare
Gap with gSACA-K we see that only in one instance, Pacbio with s = 50, Gap is
faster than gSACA-K in terms of µsecs per input symbol. However, since Gap is
designed to post-process gSACA-K output, the comparison of the running time
is only important to the extent Gap is not a bottleneck in our two-step strategy
to compute the multi-string BWT and LCP arrays: the experiments show this is
not the case. We point out that on our 32GB machine, gSACA-K cannot compute
the multi-string SA for any of the collections since for inputs larger that 2GB it
uses 9 bytes per input symbol.

As expected, the parameter s offers a time-space tradeoff for the Gap algo-
rithm. In the space reported in Table 2, the fractional part is the peak space
usage for irrelevant blocks, while the whole value is the space used by the arrays
bwti, B and Z(h). For example, for Wiki-it we use n bytes for the BWTs, 4n
bytes for the LCP values (the B array), n bytes for Z(h), and the remaining
0.55n bytes are mainly used for keeping track of irrelevant blocks. This is a rel-
atively high value since in our current implementation the storage of a block
grows linearly with the alphabet size. For DNA sequences and s = 200 the cost
of storing blocks is less than 3% of the total without a significant slowdown in
the running time.

For completeness, we tested the H&M implementation from [10] on the Pacbio
collection. The running time was 14.57 µsecs per symbol and the space usage
2.28 bytes per symbol. These values are only partially significative for several
reasons: (i) H&M computes the BWT from scratch, hence doing also the work
of gSACA-K, (ii) H&M doesn’t compute the LCP array, hence the lower space
usage, (iii) the algorithm is implemented in Cython which makes it easier to use
in a Python environment but is not as fast and space efficient as C.

References

1. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In: STOC. pp. 148–193. ACM (2014)

2. Bonizzoni, P., Vedova, G.D., Nicosia, S., Previtali, M., Rizzi, R.: A new lightweight
algorithm to compute the BWT and the LCP array of a set of strings. CoRR
abs/1607.08342 (2016)

3. Bonizzoni, P., Vedova, G.D., Pirola, Y., Previtali, M., Rizzi, R.: Computing the
BWT and LCP array of a set of strings in external memory. CoRR abs/1705.07756
(2017)

4. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and check-
ing. In: Proc. 14th Symposium on Combinatorial Pattern Matching (CPM ’03). pp.
55–69. Springer-Verlag LNCS n. 2676 (2003)

5. Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP construction
for very large collections of strings. J. Discrete Algorithms 37, 17–33 (2016)

14 L. Egidi and G. Manzini

6. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. In: Proc. 9th Latin American Theoretical Informatics Sym-
posium (LATIN ’10). pp. 698–711. Lecture Notes in Computer Science vol. 6034
(2010)

7. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica (2011)

8. Geffert, V., Gajdos, J.: Multiway in-place merging. Theor. Comput. Sci. 411(16-
18), 1793–1808 (2010)

9. Gog, S., Ohlebusch, E.: Compressed suffix trees: Efficient computation and storage
of LCP-values. ACM Journal of Experimental Algorithmics 18 (2013), http://doi.
acm.org/10.1145/2444016.2461327

10. Holt, J., McMillan, L.: Constructing Burrows-Wheeler transforms of large string
collections via merging. In: BCB. pp. 464–471. ACM (2014)

11. Holt, J., McMillan, L.: Merging of multi-string BWTs with applications. Bioinfor-
matics 30(24), 3524–3531 (2014)

12. Kärkkäinen, J., Manzini, G., Puglisi, S.: Permuted longest-common-prefix array.
In: Proc. 20th Symposium on Combinatorial Pattern Matching (CPM). pp. 181–
192. Springer-Verlag, LNCS n. 5577 (2009)

13. Kärkkäinen, J., Kempa, D.: LCP array construction in external memory. ACM
Journal of Experimental Algorithmics 21(1), 1.7:1–1.7:22 (2016)

14. Léonard, M., Mouchard, L., Salson, M.: On the number of elements to reorder
when updating a suffix array. J. Discrete Algorithms 11, 87–99 (2012), http://dx.
doi.org/10.1016/j.jda.2011.01.002

15. Louza, F.A., Gog, S., Telles, G.P.: Induced suffix sorting for string collections. In:
DCC. pp. 43–52. IEEE (2016)

16. Louza, F.A., Gog, S., Telles, G.P.: Inducing enhanced suffix arrays for string col-
lections. Theor. Comput. Sci. 678, 22–39 (2017)

17. Louza, F.A., Telles, G.P., Ciferri, C.D.A.: External memory generalized suffix and
LCP arrays construction. In: CPM. Lecture Notes in Computer Science, vol. 7922,
pp. 201–210. Springer (2013)

18. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

19. Manzini, G.: Two space saving tricks for linear time LCP computation. In: Proc.
of 9th Scandinavian Workshop on Algorithm Theory (SWAT ’04). pp. 372–383.
Springer-Verlag LNCS n. 3111 (2004)

20. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction al-
gorithm. In: Proc. 10th European Symposium on Algorithms (ESA). pp. 698–710.
Springer Verlag LNCS n. 2461 (2002)

21. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1) (2007)

22. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alpha-
bets. ACM Trans. Inf. Syst. 31(3), 15 (2013)

23. Sirén, J.: Compressed suffix arrays for massive data. In: Proc. 16th Int. Symp.
on String Processing and Information Retrieval (SPIRE ’09). pp. 63–74. Springer
Verlag LNCS n. 5721 (2009)

24. Sirén, J.: Burrows-Wheeler transform for Terabases. In: IEEE Data Compression
Conference (DCC). pp. 211–220 (2016)

http://doi.acm.org/10.1145/2444016.2461327
http://doi.acm.org/10.1145/2444016.2461327
http://dx.doi.org/10.1016/j.jda.2011.01.002
http://dx.doi.org/10.1016/j.jda.2011.01.002

Lightweight BWT and LCP Merging 15

Appendix

Proof of Lemma 2: We prove the result by induction. For h = 0, δ = 0, 1
tδ[saδ[i], saδ[i] − 1] is the empty string so (2) is always true and Property 1 is
satisfied by Z(0) = 0n01n1 .

To prove the “if” part, let h > 0 and let 1 ≤ v < w ≤ n0 + n1 denote two
indexes such that Z(h)[v] is the i-th 0 and Z(h)[w] is the j-th 1 in Z(h). We need
to show that under these assumptions inequality (2) on the lexicographic order
holds.

Assume first t0[sa0[i]] 6= t1[sa1[j]]. The hypothesis v < w implies t0[sa0[i]] <
t1[sa1[j]] hence (2) certainly holds.

Assume now t0[sa0[i]] = t1[sa1[j]]. We preliminarily observe that it must
be sa0[i] 6= n0 and sa1[i] 6= n1: otherwise we would have t0[sa0[i]] = $0 or
t1[sa1[j]] = $1 which is impossible since these symbols appear only once in t0
and t1.

Let v′, w′ denote respectively the value of the main loop variable k in the
procedure of Figure 2 when the entries Z(h)[v] and Z(h)[w] are written (hence,
during the scanning of Z(h−1)). The hypothesis v < w implies v′ < w′. By
construction Z(h−1)[v′] = 0 and Z(h−1)[w′] = 1. Say v′ is the i′-th 0 in Z(h−1)

and w′ is the j′-th 1 in Z(h−1). By the inductive hypothesis on Z(h−1) we have

t0[sa0[i′], sa0[i′] + h− 2] � t1[sa1[j′], sa1[j′] + h− 2], (7)

The fundamental observation is that, being sa0[i] 6= n0 and sa1[i] 6= n1, it is

sa0[i′] = sa0[i] + 1 and sa1[j′] = sa1[j] + 1.

Since

t0[sa0[i], sa0[i] + h− 1] = t0[sa0[i]]t0[sa0[i′], sa0[i′] + h− 2] (8)

t1[sa1[j], sa1[j] + h− 1] = t1[sa1[j]] t1[sa1[j′], sa1[j′] + h− 2] (9)

combining t0[sa0[i]] = t1[sa1[j]] with (7) gives us (2).
For the “only if” part assume (2) holds. We need to prove that in Z(h) the

i-th 0 precedes the j-th 1. If t0[sa0[i]] < t1[sa1[j]] the proof is immediate. If
t0[sa0[i]] = t1[sa1[j]], we must have

t0[sa0[i] + 1, sa0[i] + h− 1] � t1[sa1[j] + 1, sa1[j] + h− 1].

By induction, if sa0[i′] = sa0[i] + 1 and sa1[j′] = sa1[j] + 1 in Z(h−1) the i′-th 0
precedes the j′-th 1. During phase h, the i-th 0 in Z(h) is written when processing
the i′-th 0 of Z(h−1), and the j-th 1 in Z(h) is written when processing the j′-th
1 of Z(h−1). Since in Z(h−1) the i′-th 0 precedes the j′-th 1 and

bwt0[i′] = t0[sa0[i]] = t1[sa1[j]] = bwt1[j′]

in Z(h) their relative order does not change and the i-th 0 precedes the j-th 1
as claimed. ut

	Lightweight BWT and LCP Merging via the Gap Algorithm

