
An Application Specific Processor for Montecarlo Simulations

G. Danese, F. Leporati, M. Bera, M. Giachero, N. Nazzicari, A. Spelgatti
Dip. di Informatica e Sistemistica – University of Pavia – via Ferrata, 1

Tel. +39 0382 985350 – Fax +39 0382 985373 – e-mail: francesco.leporati@unipv.it

Abstract

In this paper we describe an Accelerator based
on FPGA technology and interfaced to an external
host computing system through standard bus
connections; it is conceived to accelerate double
precision floating point operations, present in the
energy calculation of Montecarlo (MC) Metropolis
particle system simulations. The Accelerator plays
the role of coprocessor giving a speed-up factor
equal to 4, with respect last generation PCs. The
proposed solution is based on COTS components
and shows good characteristics of scalability in
terms of clock frequency, memory capability and
number of computing units. Moreover, the
Accelerator can be also conceived as a part of a
computing system made up by a cluster of
accelerated workstations.

1. Introduction

Since their birth, computers have been
employed in simulation of physical phenomena.
Basically, two kinds of simulations are often used:
deterministic and statistical. The former ones try to
foresee the evolution of the system by calculating
some relevant physical equations. The latter ones
force the evolution of the system, through a random
modification of some internal parameters and by
evaluating the feasibility of the change imposed
through a suitable cost function which should
reproduce the answer of the system (i. e. the
evolution of the system energy like in a Montecarlo
simulation). This approach, however, requires long
computation times even though in the last years the
computing power of a typical processing system is
considerably increased: in fact if more and more
quick computers are nowadays available, also more
and more complex problems are dealt with,
demanding long simulations to be thoroughly
studied [1-2]. In this sense, scientists usually follow
three approaches:

• using supercomputers often optimising
particular operations; [3]

• running applications on clusters of
workstations, so realising a global system into
which the overall computing power could ideally
be the sum of the single ones; [4-6]

• implementing dedicated hardware systems
(accelerators) able to speed up those operations
which represent the core of the calculations done.
These systems are then embedded in PC or
workstations which drive their activity and manage
the results [7-9].

Moreover a hybrid approach consisting in
clusters of accelerated workstations is becoming
more and more diffused.

The project illustrated in this paper belongs to
this last category, aiming at the developing a
double precision floating point accelerator based on
FPGAs, to be inserted inside a PC. This accelerated
machine will be the first element of a cluster
dedicated to particle systems simulations,
consisting of commodity components (mother-
boards, disks, network controllers and I/O
interfaces). Each Processing Element will be
equipped with an FPGA-based accelerator board
charged to execute the heaviest routines of the
implemented applications. This architectural choice
is due to the wide use of double precision floating
point operations made in physical simulations,
since they require to appreciate also small
variations of the physical parameters under
analysis. While a general purpose computer could
employ several clock cycles to execute this kind of
calculations, a special purpose system can process
these operations in up to one clock cycle.
Moreover, a further sped-up can be achieved if a
cluster of accelerated system is realised .

The Accelerator has been implemented onto a
commercial FPGA board (Stratix Pro kit from
Altera) interfaced with a PC through an Ethernet
connection and features a speed-up equal to 4
running MC simulations on few thousands particle
systems with respect to a 3 GHz P4 processor.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Ram 2
MB

LanCom1

Flash
16 MB

Flash
8 MB

Nios

Interface

ACCEL. 1

ACCEL. 2

Cache 1

Cache 2

Cache 4

Cache 3 DMA

Hub

64

64 32

32

32 32 32

Altera board

FPGA
Stratix 1S40

Fig. 1 – The complete elaboration system

2. Simulation of dipolar systems

We implemented a Montecarlo-Metropolis
simulation [10] of a system of spins interacting
with an external applied field (due to their tensorial
polarizability) and among themselves (through
Induced Dipole-Induced Dipole interactions),
spatially located on a cubic lattice, free of rotating
but not of translating in the space.
Computationally, most of the effort is devoted to
the problem of calculating the local field Ei,loc at
the i-th lattice site, which is necessary to evaluate
the induced dipole on each particle. Since E i,loc is
the sum of the external field E0 and of the dipolar
fields of the neighboring particles, the calculation
involves intricate implicit equations, which we
computationally processed through iterative
refreshing of the whole set of the electric dipoles
induced on the spins. Since this is a necessary step
towards calculating the total energy of the system,
such dipole refreshing iterations had to be
performed at every Monte Carlo move.

On the other hand, simulations take
unacceptably long times even on the most recent
and powerful workstations ranging from a few
days up to some weeks depending on the size of
the simulated system. The core of the computation
is, in fact, the evaluation of the energy since,
according to the implemented algorithm,
equilibrium in a system with N particles is reached
through a sequence of moves, carried out by
randomly selecting a spin, changing its orientation
through a random angular displacement and by
evaluating the corresponding change in the energy.
Each move can be accepted or rejected depending
on the variation of the energy ∆U associated with
it. We simulated lattice systems with particles
ranging from a few hundreds up to 100.000
considering only first neighbor interactions, i. e.
the interaction between each spin and the six
closest ones in the X+, X-, Y+, Y-, Z+, Z-
directions.

3. Overview of the system architecture

To carry on our project, we chose a commercial
Altera board, which was conceived as a
development system able to work independently of
the PC. The board is equipped with a Stratix 1S40
FPGA component on which a 32 bit RISC CPU,
called Nios, is implemented; this processor is
programmable using C language and it is supplied
with basic libraries that allow an easy handling of
the following on board devices: 2 MB Ram, 8 MB

Flash Memory, 16 MB Compact Flash Memory,
100 Mb/s Ethernet Interface, 2 Serial ports.

The Nios processor plays the role of computing
supervisor, monitoring (external memory data
storing, interfacing …) and managing possible
errors during the elaboration. The Nios processor
consists of a fixed point calculation unit with 128
registers which is also charged with the calculation
of memory addresses. Its peculiarity is in its
parametric configurability through which the user
can modify data and instruction cache sizes, boot
address, register number and data bus width.
Moreover, the processor is able to manage external
interrupt request from those peripherals which can
be connected through a dedicated bus. Thanks to
this feature, we are able to connect the accelerating
units, memory handler and interface block to the
Nios.

The size of FPGA is large enough to host two
accelerating units (fig. 1), working concurrently.
The board is connected to the external world
through two channels: a serial port and the
Ethernet. The first one works as input/output
terminal for the Nios: through it we can test,
download and execute the Nios code. The Ethernet

interface is used to transfer input data and results.
Three areas were mapped onto the 8 MB Flash

memory: the first contains the default configuration
file for the FPGA; the second area contains a user
custom configuration file and the third is available
for other purposes: for instance, the Nios code may
be placed here, to be executed at the boot.

The 2 MB memory is used by the Nios to store
code and data of the user program and for system
use; the external 16 MB flash memory must contain
data for the elaboration; finally, four high speed

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Fig. 3 – The architecture of the microcode
sequencer

caches grant a constant data flow to the
accelerating units. At each step of elaboration, a
data sub-set is transferred in the first two caches for
the elaboration; in the meanwhile, the other caches
are filled with new data coming from the 16 MB
memory. At the end of the step, caches are
swapped and elaboration can continue; at the same
time data on the unused cache are stored in the 16
MB Memory. The transfers between 16 MB
memory and caches are carried out through DMA
managed by the Nios processor. At the end of the
elaboration, all needed data from a 16 MB memory
are retrieved and results sent to the PC.

All the devices present on the board work at a
100 MHz clock frequency which is not the
maximum one but an acceptable trade off between
the speed of the elaboration and the correct timing
of the devices.

The high-level architecture of the computational
unit is shown in fig. 2. The main functional
elements are:
• 2 accelerating units, working independently;
• a Cache Memory (4 banks), which can store

input data and results for the two accelerating
units;

• a Control Unit.
On the bottom part of the figure a bus devoted to

communication between Accelerator and Nios
processor ("sub bus") is represented.

3.1 Math Unit architecture

The Math Unit functional core is a double-
precision floating-point ALU, which integrates
both an adder and a multiplier operating in a
parallel fashion. Both devices are pipelined (9
stages for the adder and 15 for the multiplier) so

that high clock rates are achievable. Note that, in
the expected applications, accurate coding can

minimize the negative effects of such latency.
Together with the adder and the multiplier, the

ALU also contains 3 register banks, each able to
store 4 double-precision floating point numbers.
The banks are each tied to a particular purpose (one
is for input data, one for adder results and one for
multiplier results).

Like in many similar applications, to make
computing elements and storage space independent,
a FIFO memory for both inputs and outputs is
implemented (there are two FIFO queues on the
output since arithmetic results are separated from
logical ones).

The ALU operations are encoded in 37-bit
words, able to simultaneously trigger:
• either a sum or a comparison;
• a multiplication;
• a data fetch;
• 3 write operations to the internal register banks;
• the output of a result.

To achieve better performance with our specific
task, the operands of the adder can optionally be
multiplied by [-2, -1, 2] for the first operand, and [-
1, -0.5, 0.5] for the second one. In a similar way,
the multiplier result can be doubled, halved or
negated without extra clock cycles.

Since feeding the op-codes would require a large
and mostly wasted bandwidth (the code is
essentially cyclic, so that the same op-codes are
executed over and over again) the code sequences
are stored in a Microcode Sequencer. This device
stores the program sequences in an internal RAM
and associates to them a 6-bit op-code (this is much
like having a CPU with a micro-programmed
control unit whose code can be changed by the
application to define a custom instruction set).

Fig. 2 – Architecture of the computational
i i GA i

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

3.2 The Memory Manager

The Math Unit itself has no addressing
capabilities in either input or output channels, so
every memory I/O operation must be managed by
an external device. The Memory Manager is
deemed to that task. The Memory Manager is a
device, conceived for a specific application class:
those where most computations are performed on
data logically organized in three-dimensional
matrixes. Decoupling the allocation issues from the
computing algorithm, the Memory Manager
computes the memory addresses from semantic-
level inputs, such as addresses in the matrix domain
(X-Y-Z coordinates) or offsets between elements
(the matrix is supposed to be cyclic, so that e.g. the
leftmost element in a row is adjacent to the
rightmost element in the same row). This is of
extreme importance, since otherwise the same code
would require at least a recompilation to be
executed on matrixes with different sizes.

3.3 Sequencers

Inside the Accelerator, there are different
sequencers. Since these are rather similar to each
other, we'll describe one of them, the Microcode
Sequencer, shown in fig. 3.

As already stated, the Microcode Sequencer
converts a single 6-bit opcode into a sequence of
custom microinstructions. The logic required to
achieve this goal is somewhat simple.

All microcode sequences are stored in a RAM
area, shown in the lower right corner of the figure.
The last instruction of a sequence is marked with
an "end sequence" flag, while the first one is
referenced through a look-up table addressed by the
current op-code. A FIFO queue stores the program
to be executed (which is a sequence of 6-bit op-
codes). The "Sequencer Control" block acts as a
control unit and generates the address for the
Microcode RAM.

When a new instruction is to be executed, the
"Sequencer Control" gets the first microcode
address from the LUT. Then, until the last micro-
instruction is reached, it increments the Microcode
RAM address so that the micro-instructions are
properly generated.

4. Programming the Accelerator

As previously mentioned, the instruction sets for
the ALU and for the Memory Manager are fully
programmable to target the particular application

for which the Accelerator was used. Each
instruction consists on a microinstruction sequence
which specifies what operation should be
performed within a clock cycle. Since
microinstructions are binary words, programming
the Accelerator is not an easy task, therefore a set
of tools was conceived and realized, to simplify
sequence writing and testing, introducing some
automatic mechanisms. In the following these tools
are briefly described.

4.1 The sequence generation tool for the
Accelerator

With "Accelerator sequence" we mean a group
of 38 bit microinstructions that defines an
instruction for the Accelerator. Instead of writing
the binary profile of each microinstruction, we
defined a pseudo-assembly language that describes
the sequences and a tool that translates them into
code. As seen before, the Accelerator can perform,
in each clock cycle, various operations
(sum/comparison between floating point values, a
product between floating point values, 3 write
operations, data read operation, result write
operation).
The syntax we defined follows these rules:
• every microinstruction ends with a semicolon
• an asterisk indicates the end of a

microinstruction and the beginning of another
• a sequence of microinstructions must be

comprised within brackets
• a sequence of microinstructions must have a

name in the first line after the opening bracket,
and within double quotes

• proper keywords were defined to declare the
begin and the end of a program.
Five types of operations were conceived. In

particular, sum and multiplication support two
important features:
• if it is specified only one operand, the other one

is automatically set to the proper constant value
(0 or 1);

• on each operand a multiplicative constant
(clearly related to Montecarlo calculations),
selected between five, can be applied.

4.2 The software development environment

The development environment we realized to
program the Accelerator consists of three main
parts: a translator, a post-processor and a simulator.
The translator and the post processor are Perl

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

scripts, while the simulator is a Visual Basic
program.

The main function of the translator is to convert
a hand written program into 38-bit words binary
code, which can be processed by the Accelerator.
The name "translator" was chosen since the
program is not an assembler (there is not a one to
one correspondence between source code
instruction and the executed instruction) nor a
compiler (it manages a very low level written
source code). A post-processor was realized to
perform “general” tasks, like setting the end-of-
sequence bit in the last instruction of each
sequence, determining the number of sequences
and the operation count per each sequence,
reordering information to create a file containing
both binary and source code for the simulation.

Finally, a simulator was developed to check the
semantic correctness of the algorithm
implementation, without merging it into the
software structure managing the entire system
(Memory Manager, Virtual Cache Manager, and so
on). Three principal settings influence the way it
works:
• symbolic vs. numeric: when symbolic mode is

active, input data are treated as symbols, and
the produced output is a string that contains a
literal expression formally calculated.
Otherwise, when numeric mode is active, inputs
are used as numeric data and also outputs are
numeric.

• automatic vs. manual: in automatic mode,
simulator gets all inputs from a specified file,
which also contains the list of sequences to be
executed. In manual mode, there are two
different cases: in symbolic mode, simulator
generates a sequence of symbols (e.g. n0, n1,
n2, ...); in numeric mode a pop-up window asks
the user for every single data.

• continue vs. stop: at end of sequence: in the
former mode execution continues until every
input datum is used, in the latter mode
execution stops at every end of sequence.
Combining these options two principal

execution modes (step by step and run) can be
settled.

The simulator displays some information to the
user:
• the next microinstruction to be executed, both

in binary format and in source code;
• the sequence number and the microinstruction

number;
• data contained in register banks;
• data contained in multiplier and adder pipelines;

• output data;
• the number of clock cycles since the beginning

of execution.
Finally, all the described tools were “merged”

into an Integrated Development Environment
which allows to use them in an automatic way and
in particular it:
• provides a user-friendly graphical interface to

simplify code writing, translation and
simulation;

• provides an easy way to call functions and
menus, preventing the user from dealing with
complex syntactical details;

• allows source code editing;
• shows runtime errors and warnings;
• simplifies the creation of new projects,

managing the generation of all necessary files.

4.3 The sequence generation tool for the
Memory Manager

The Accelerator operates on data streams, so it
was necessary to develop a Memory Manager to
fetch data from memory and store results back.
Again, for sake of generality and reusability, we
conceived a pseudo-assembly language, to easily
write sequences for Memory Manager.

We provided the Memory Manager with less
support than the Accelerator (e.g.: no graphical
interface, no simulator), but we implemented a tool
able to automatically generate Memory Manager
sequences starting from the Accelerator ones.

The developed Memory Manager language
consists on five different microinstructions:
• INIT [X,Y,Z]: it defines the dimensions of the

matrices containing dipole coordinates and
moments (it is clearly related to Montecarlo-
Metropolis algorithm implementation);

• GVC [16 bits word]: it defines the cache
configuration and the synchronization between
the Accelerator and the host processor;

• R [address]: it reads data from memory and
sends them to the Accelerator;

• W [address]: it reads data from the Accelerator
and writes it into memory;

• Pointer Modification [pointer, new value]: it
sets a new value for the specified pointer.
At each clock cycle the Memory Manager can

modify a pointer and also performs a Read/Write
operation. To indicate the two operations which are
performed in parallel, the syntax uses the symbol "-
-", as shown below:

data read/write -- modify pointer

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

Physics simulations are often data-intensive and
data are used in a very regular way. In particular, in
our project, the dipole scanning patterns bring to a
fully predictable use of memory. This allows us to
implement an automatic sequence generation for
the Memory manager. The following generation
chain was thus implemented:

1) a C program generates diagonal scanning
patterns for a generic lattice. Patterns are expressed
through indexes that indicate dipole positions in the
simulation box with periodic boundary conditions.
The program generates three different files for
input data, output data and pointer management;

2) a Perl script elaborates the Accelerator
sequences by extracting I/O operations and
generating a file that contains filtered instructions
and some additional information:

3) another Perl script generates the Memory
Manager sequences joining information on input
data, output data and Accelerator operations. The
script checks the Accelerator instructions on a one
by one basis and identifies input/output ones; then,
it reads proper information from the correct file and
creates a Memory Manager instruction (a R/W
one), that will be put in a resulting file:

4) a third Perl script adds to this file, the pointer
modification instructions:

5) in the last step the translator generates the
binary profile of the instructions to be executed.

4.4 Control Unit language

No flow control tools are provided in the
Accelerator sequence set: this task is given to
Control Unit. We developed a simple language that
allows to implement loops, conditional or
unconditioned jumps, comparisons and counters,
and a translator to get binary code from source
code. A Control Unit program is usually a very
short code quite rarely modified.

4.5 Other instructions

In addition to previously mentioned instructions,
an Execute instruction was implemented to allow
the Accelerator to perform one or more sequences.
There are four independent units on board that can
execute a sequence: two ALUs and two Memory
Managers. Each of these units has a LUT addressed
with a six bit word that contains all the addresses of
the stored sequences. The Execute instruction
features the following syntax:

IST [MM2][ALU2][MM1][ALU1]

Each parameter is a 7 bit word: one bit indicates
if that unit is activated, the other six bits are the
address of the sequence that will be executed.

Finally, instructions were developed to manage
counters (initialization and working) which are
used to evaluate the performance in terms of
elaboration times, for synchronization and timing
purposes.

5. Energy evaluation implementation

In the previous section we described the
architecture of the Accelerator trying to highlight
how the design aims to make units working in
parallel. In this section we illustrate how the
physical application is implemented to introduce a
further level of parallelism in the elaboration, while
reducing the need for data communication between
the two accelerating units and the main processor.

Since the 85% of the calculations done in a
Montecarlo-Metropolis simulation concerns the

evaluation of the energy due to particle
interactions, the architecture implemented onto the
FPGA is mainly dedicated to that portion of the
program.

The global energy in the system is given by the
sum of single dipole energies which are, in turn,
due to the proper energy of the dipole plus that
coming from the interactions with first neighbor
dipoles (determining Induced Dipole – Induced
Dipole interactions). Each dipole is represented by
the three components of its moment and its energy
is due to a linear combination of these terms with
those of the other neighboring dipoles.

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

64 21
6

51
2

10
00

80
00

13
82

4
27

00
0

39
30

4
64

00
0

85
18

4

12
50

00

Dipole num ber

El
ab

or
at

io
n

tim
es

 (s
ec

)

Accelerator

Intel P4 - 1.7 GHz

Intel P4 - 3 GHz

Fig. 4 – Computing times for the energy
calculations performed on the FPGA based

accelerator and on 2 Intel P4 processors

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

6. Results

The entire system has been tested by executing
Montecarlo simulations of different size lattices
(4<ND<50, where ND is the number of dipoles on
each side of the cubic lattice).

Performance has been evaluated in terms of
speed-up with respect the execution of the same
simulation on Intel P4 processors with 1GB Ram
memory and in terms of FPGA occupation.
Simulation code was written in C language and
optimized using the Microsoft Visual C++
environment. The Accelerator elaboration times
were measured by means of the clock counters
implemented in the interface between Nios and the
coprocessor previously described.

In fig. 4 we show the execution times of the
energy calculation which is repeatedly executed
8*2*N*10000 times where 8 is the coefficient
responsible for the interaction settlement
(equilibration) and N is the dipole number: this
gives reason of the high computational load which
can lead (for big particle systems, e. g. 100000
dipoles) to wait months for results, if the simulation
should be performed on a PC. In the figure, the
computing times obtained for the same calculations
executed on Intel P4 processors with 3 GHz and 1.7
GHz frequency respectively are shown together
with those obtained by using the Accelerator. The
shape of the plots clearly depicts the quadratic
dependence on the particle number, since the
energy is due to the interactions among all the
particles. The speed-up factor (defined as the ratio
between the computing times of the 2 Intel
processors and that of the Accelerator) is presented
in fig. 5, and is increasing for the 1.7 GHz
processor due to cache effect, while for the most
performing Intel processor (3 GHz) sets around 2.
Considering that in the FPGA we used, other 2
accelerating units could be implemented, we can
reasonably state that a speed-up factor equal to 4
can be achieved in case of a “full” implementation
on the FPGA component we chose (Stratix
EP1S40). Further speed-up could be obtained if
other components of the Altera’s family (EP1S120
or Stratix2) should be employed.

The cost of each board we bought was nearly $
1200 (mid 2004): this represents an important
indication when predicting trade-off between a
cluster of workstations with respect to a cluster of
FPGA based accelerators. In practice, our work
indicates that each FPGA unit gives a
computational power 4 times greater, only doubling
costs with respect to a computational unit in a PC

cluster, providing the scientist with a COTS
desktop computing system on which he/she can run
simulations. Finally, these estimations could be
further enforced if an analogous work would be

performed on Stratix2 evaluation kits now available
from Altera.

7. Conclusions

The implemented prototype of the accelerated
computer dedicated to the simulation of interacting
particle systems satisfies the conditions discussed
in the introduction.

The cost of the prototype amounts to about
$1,200 per node, low enough to justify personal
interactive use. At present, the computing system is
not commercially available, but the assembling
phase does not require particular technologies, so
other prototypes can be easily built.

The interface services are satisfactory and can
be easily integrated with other functions specific to
any particular application.

The computing system is interesting both
because of its performance, which is comparable to
that offered by supercomputing services if more
accelerators should be assembled together, and
because of its ease of use.

Our work does not want to enter in competition
with other solutions but it clearly indicates that the
realization of cluster of accelerators is an
interesting way to achieve computing performance
with low costs like shown by [11] and [12].

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

64 21
6

51
2

10
00

80
00

13
82

4
27

00
0

39
30

4
64

00
0

85
18

4

12
50

00

Dipole number
Sp

ee
d

up

Speed up Acc. Vs P4 1.7 GHz

Speed up Acc. Vs. P4 3 GHz

Fig. 5 – Speed-up of the FPGA based
accelerator with respect the P4 Intel processors

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

A further improvement could be achieved by a
full custom ASIC implementation of the
Accelerator which is not justified at a prototyping
level while it allows a large scale manufacturing
with reduced costs. This would make available
several computing units connected in cluster
fashion by means of a point to point network,
providing the user with a great computing power
like in the case of the Grape project.

References

1. J. DONGARRA et al.: “High-Performance
Computing: Clusters, Constellations, MPPs, and
Future Directions”, IEEE Comp. in Science &
Engin., vol. 7(2), Mar-Apr 05, pp. 51-59.

2. P. MARSH: “High performance horizons”;
Computing & Control Engineering Journal, vol.
15(6), December-January 2004/2005, pp. 42-48.

3. D. G. FEITELSON: “The supercomputer industry in
light of the Top500 data”; IEEE Comp. in Science
& Engin., vol. 7(1), Jan-Feb 05, pp. 42-47.

4. M. K. GOBBERT: “Configuration and
Performance of a Beowulf Cluster for Large-Scale
Scientific Simulations”; IEEE Comp. in Science &
Engin., vol. 7(2), March-April 2005, pp. 14-26.

5. “Special Issue on GRID Computing”; Proceedings
of the IEEE, vol. 93(3), March 2005, pp. 692-697.

6. B. BOGHOSIAN et al., “Scientific applications of
grid computing”, IEEE Comp. in Science & Engin.,
vol. 7(5), Sept.-Oct. 2005, pp. 10-13.

7. http://www-zeuthen.desy.de/ape/html/.
8. T. FUKUSHIGE, P. HUT, J. MAKINO: “High-

Performance Special Purpose Computers in
Science”; IEEE Comp. Science and Engin. vol. 2,
1999, pp. 12-13.

9. JERRAYA, W. WOLF: “Multiprocessor systems on
chip”; Morgan Kaufmann, 2005.

10. N. METROPOLIS et al, “Equation of state
calculations by fast computing methods”; Journal of
Chem. Physics, vol. 21, June 1953, pp. 11-16.

11. A. CRUZ et al., “A Special Purpose Computer for
spin glass models”, Computer Physics Comm., vol.
133, n° 2-3, 2001, pp. 165-176

12. BELLETTI F. et al., “An adaptive FPGA
computer”, IEEE Comp. in Science & Engin., vol.
8(1), January-February 2006, pp. 41-49.

15th EUROMICRO International Conference on Parallel, Distributed and Network-Based Processing (PDP'07)
0-7695-2784-1/07 $20.00 © 2007

