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Magnetic Resonance Imaging (MRI) is one of the most successful and powerful non-invasive 

diagnostic methods among the several in vivo imaging techniques available in clinical 

diagnostic and biomedical research. MRI has severeal advantages as an imaging modality, 

which also explains its gain and very rapid development. These are: lack of ionizing radiation 

for image acquisition, noninvasiveness with a high patient acceptability, excellent delineation 

of anatomic systems that arises from a high level of inherent contrast, outstanding temporal 

and spatial resolution, ability of application to virtually every part of the body.
[1]

 The use of 

contrast agents (CA) has become really important in improving the low intrinsic sensitivity of 

this method.
[2]

 Traditionally, the imaging procedures have been combined with the use of 

dedicated contrast media, to further enhance the visualization of morphology and physiology. 

This combination of imaging hardware and contrast media was of high importance for the 

development of modern clinical radiology. MRI is no different in this respect, and the contrast 

media used are based largely on complexes of f-elements. The complexes need to be endowed 

with high stability to avoid the in vivo release of toxic free metal ions.  

Even though inherent contrast in MRI can be manipulated to a much greater extent than in 

other imaging techniques, certain diagnostic questions cannot be answered easily and require 

the application of CAs. The contrast in an MR image is the result of a complex interplay of 

several factors, including instrumental parameters, proton density and the relative T1 and T2 

relaxation times of the imaged tissues. Because it is nearly impossible to change the water 

content of tissues, CAs on the market or in clinical or pre-clinical trials focus upon T1,2 

changes. Generally, the purpose is to reduce T1 in order to obtain an intense signal in short 

times and a better signal-to-noise ratio. These paramagnetic probes are essentially complexes 

of Gd (or Mn) due to the combination of high magnetic moment and favourable properties in 

terms of electronic relaxation. Well over 200 million patients have been dosed so far and the 

world market is estimated to be of the order of 1.2 billion/y. The solid-state structure, in vitro 

and in vivo properties of a large number of Gd
3+

-complexes have been investigated 

intensively in the last 20-25 years. 

 

Timeline of MRI imaging: 

The history of MRI imaging can be dated back in the late 19
th
 century when Nikola Tesla 

discovered the Rotating Magnetic Field in Budapest, Hungary (1882). This was a radical 

discovery in physics. In 1946, two scientists in the United States, independently of each other, 

described a physico-chemical phenomenon, which was based upon the magnetic properties of 

certain nuclei in the periodic system. This was Nuclear Magnetic Resonance, for short NMR. 
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The two scientists, Edward M. Purcell and Felix Bloch, were awarded the Nobel Prize in 

Physics in 1952. 

In 1955, Erik Odeblad and Gunnar Lindström from Stockholm published their NMR studies, 

with relaxation time measurements of living cells and excised animal tissue. 

In 1971 Raymond Damadian, a physician and experimenter working at Brooklyn's Downstate 

Medical Center reported that discovered that tumors and normal tissue can be distinguished in 

vivo by nuclear magnetic resonance because of the differences in the relaxation times. One of 

the greatest pioneers in the history of NMR is Paul Lauterbur. In March 1973, he published 

the first images of two tubes of water in Nature. 

In 1977-78, Raymond Damadian built the first MRI scanner, assisted by his two post-doctoral 

students, Michael Goldsmith and Larry Minkoff, at New York’s Downstate Medical Center. 

He recorded the first MRI scan of a healthy human body in 1977 and of a human body with 

cancer in 1978. 

In 1987, real time MR imaging of heart becomes its development. In 1991, Filler and 

colleagues describe imaging of axonal transport of superparamagnetic metal oxide particles, a 

technique that later becomes important in imaging of neural tracts. In 1993, functional MRI of 

the brain is introduced. In 1994, the first intraoperative MR unit developed by GE and 

Harvard is installed at the Brigham and Women's Hospital in Boston. In the 1990's, in 

addition to research centers and large hospitals, small distant hospitals and imaging centers 

started to exploit MRI principally for neuroimaging and locomotor system imaging. 

The use of contrast agents also started in the early 1980’s. Paul C. Lauterbur described the 

concept of using paramagnetic metal ions to enhance the contrast (and reduce acquisition 

times) of structures, in 1978. After injecting a manganese salt solution as contrast agent, he 

imaged five dogs with myocardial infarctions and was able to highlight them. 

In October 1983, Lauterbur's group published a major overview of paramagnetic contrast 

agents in MRI, addressing problems and questions involved in the development of CAs. 

The patent application for Gd-DTPA dimeglumine was submitted in July 1981. In 1984, 

Dennis H. Carr and Wolfgang Schörner reported the first images in men. In 1988, Gd-DTPA 

(Magnevist) became commercially available, followed shortly afterwards in 1989 by the 

macrocyclic Gd-DOTA (Dotarem) from Guerbet (France). A number of other agents entered 

the marketplace during the 1990s.
[3,4] 

Over the last decades, more than 800 potential MR contrast agents have been described in the 

literature or have been patented, but only a dozen are available on the market for clinical use. 
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Nowadays there are more than 60 million experiments are carried out in every year, and MRI 

is still the most rapidly developing diagnostic method. 

 

Classes of Contrast Agents: 

MRI contrast agents can be conveniently classified into five different classes:  

T1 agents, T2/T2 * agents, CEST agents, 
19

F-based agents and hyperpolarized probes. 

 

T1 agents: 

T1 agents are mainly represented by complexes of paramagnetic metal ions [Gd(III) or Mn(II)] 

that enhance the MR water signal intensity. These are also called positive CAs because they 

provide brighter images in T1w scans. The main benefits using T1 agents arise from the high 

versatility of this contrast mechanism that is affected by a large number of factors related to 

either structural and dynamic characteristics of the agent and biological aspects like the intra-

voxel distribution of the probe (e.g., intra/extra-vascular, intra/extra-cellular).
[5,6,7]

 All Gd-

based CAs have a low molecular mass of about 500 Da, are extremely hydrophilic complexes 

and are excreted unmetabolised in the urine. They have similar pharmacokinetic properties 

with similar plasma half-lives, and, due to their small size, extracellular Gd-based CAs are 

excreted almost exclusively by passive glomerular filtration through the kidneys with neither 

secretion nor reabsorption. However, protein binding GBCAs are also excreted to varying 

degrees by the hepatobiliary route. 

 

T2/T2* agents: 

T2/T2* agents are chemicals, mostly superparamagnetic nanoparticles made of iron oxides, 

capable to shorten the T2/T2* of water protons much more than T1. These complexes can be 

identified by the following molecular formula: Fe2
III

O3M
II
O, where M

II 
can be: Fe

2+
, Mn

2+
, 

Ni
2+

, Co
2+

, Mg
2+

. In solution, these complexes are assumed to be spherically symmetric 

solvated superparamagnetic iron-oxides (SPIO) nanoparticles. They can be classified into four 

groups based on their diameter. Oral-SPIO: 300 nm; Standard SPIO (SSPIO): 60-150 nm; 

Ultrasmall-SPIO (USPIO): 5 to 30 nm; and monocrystalline iron-oxide nanoparticles 

(MION): smaller than 10 nm. They are also referred to as negative CA because they decrease 

signal intensity, which results in darker images. Such nanoparticles possess a higher 

sensitivity than T1 agents that justifies their widespread use in MR-molecular imaging 

methods, particularly for cellular imaging.
[8]

 An obvious disadvantage is that the signal loss is 
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not desirable, particularly when the target site has an intrinsically low signal (e.g., lungs, 

hemorrhages). 

 

CEST agents: 

The family of CEST agents is constantly growing; the peculiarities of these systems could 

open new and interesting future perspectives for MRI agents in pharmacology research. The 

diamagnetic metal-free systems can eliminate the risks associated with the use of metal-based 

contrast agents. The acronym CEST stands for Chemical Exchange Saturation Transfer and 

identifies those chemicals that generate a MRI contrast via the transfer, transmitted by 

chemical exchange, of saturated (i.e., after irradiation with a frequency specified RF pulse) 

protons from the donor pool (CEST agent) to the acceptor pool (bulk water). The most 

important advantage of using CEST agents is that the rate of the contrast is only dependent on 

the concentration of the contrast agent and their mobile protons exchange rate. A good CEST 

agent should be characterized by:  

- fast proton exchange in physiological pH and temperature 

- high chemical shift difference (Δω) among the mobile protons and the water protons 

- small toxicity, good solubility and small osmolality  

Endogenous metabolites with exchangeable protons including many endogenous proteins with 

amide protons, glycosaminoglycans, glycogen, myo-inositol, glutamate, creatine and several 

others have been identified as potential in vivo endogenous CEST agents. 

Paramagnetic lanthanide ions that induce large hyperfine shifted resonances in close protons 

are particularly useful for CEST contrast because high Δω values allow access to a wider 

variety of faster exchanging chemical systems. Lanthanide-based agents of this type are 

referred to as PARACEST agents.
[6] 

 

Heteronuclear agents: 

CEST agents share the frequency-encoded contrast property with those agents containing 

MRI detectable nuclei different from protons. Among them, two classes deserve to be 

mentioned here because they comprise compounds already approved for use in humans or in 

advanced clinical trials: 
19

F agents and hyperpolarized probes. 

 

19
F agents: 

19
F nuclei are the most sensitive nuclear spins after protons and hence can be detected by MRI 

without isotopic enrichment. The detection sensitivity is similar to CEST agents (few mM). 
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Consequently,
19

F agents are almost solely represented by nanosystems, where 

perfluorocarbon nanoparticles (PFCs) are by far the most commonly used.
[9] 

The important 

advantage of fluorinated agents over the other types of contrast media systems from the 

possibility to correlate straightly the MR signal to the agent concentration, thus enabling the 

quantification of selected biomarkers and/or drugs transported at the site of interest.
[10] 

 

Hyperpolarized probes: 

This class of MRI agents is by far the most sensitive one. These agents have some similarity 

with PET tracer, not only for the distinguished sensitivity, but also for the setback of the 

signal they generate (caused by the return back to the thermal polarization) that occurs on the 

timescale of the T1 of the polarized spin. Hence, one restriction in the use of hyperpolarized 

probes is the loss of the signal over time that requires fast injection and rapid accumulation at 

the target site.
[11] 

 

Design of new contrast agents: 

A contrast agent for MR must have the ability to change efficiently the T1 and/or T2 in tissues 

at low (μM to mM) concentrations with acceptable tolerance. The following points summarize 

the most important features of paramagnetic MRI contrast agents. 

 

High Relaxivity: 

The efficiency of the contrast agents is described by the parameter relaxivity (r1p), which is 

defined as the paramagnetic enhancement of the longitudinal relaxation rate (1/T1) of the 

water protons in 1mM aqueous CA solution. The value of the relaxivity is the combination of 

the inner, -second and the outer sphere contributions. The inner sphere contribution represents 

the transfer of the paramagnetic relaxation effect to the bulk via the exchange of directly 

coordinated water molecule(s) to the paramagnetic ion. The second sphere contribution arises 

from water molecules hydrating the complex (via hydrogen-bonding interactions) with a 

relatively long residency time, whereas the long-range interaction involving solvent molecules 

diffusing next to the complex represents the outer sphere term. 

Relaxivity is the most important property of contrast agents. Each agent’s fundamental ability 

to reduce T1 and/or T2 is referred to as its ‘‘relaxivity,’’ r1p and r2p. An agent with a higher 

relaxivity will lower the T1 and/or T2 more at equivalent concentrations than an agent with a 

lower relaxivity. Higher relaxivities are associated with larger molecular weight ligands, and 

higher relaxivity means that lower dose is enough to reach good resolution. 
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High Stability: 

Stability in this case means two different stabilities. One is thermodynamic stability and the 

other is kinetic inertia (commonly referred to as kinetic stability). Both of them are important 

to avoid toxicity problems. In general, thermodynamics describes the energy necessary to 

break the bonds between the metal ion and its chelating ligand and release the free metal ion 

(dissociation) independently from time. Kinetic stability refers to the rate at which 

dissociation occurs. Thermodynamic stability can be described quantitatively by the 

thermodynamic stability constant Ktherm (value given on a logarithmic scale, with larger values 

representing exponentially tighter binding) and the conditional thermodynamic stability 

constant Kcond. Ktherm is independent of pH, while Kcond is conditional, specifically reported in 

this context at physiologic pH. Kcond is therefore more useful than Ktherm to describe 

thermodynamic stability also in in vivo or ex vivo conditions.
[13]

 Kinetic stability is 

characterized by the dissociation rate constants of the Gd chelates, a measure of how rapidly 

equilibrium is reached or how fast the Gd ion is released from a Gd(III) chelate
 
when 

thermodynamic conditions are such that release can occur.
[14]

 In this case slower dissociation 

means higher kinetic inertness and more stable complex. 

 

Specific Biodistribution: 

Tissue specificity refers to the distribution of contrast agents to some organs or tissues with a 

higher concentration than to others, lowering the required contrast agent dose, and/or 

increasing the sensitivity of lesion detection. Currently, there are agents that use hepatobiliary, 

renal, or both routes of excretion.
[15] 

 

Rapid Clearance: 

MRI contrast agents should clear out rapidly and completely from the body after injection and 

subsequent imaging. This is necessary to prevent chronic toxicity due to the slow deposit of 

dissociated free metal ions in specific tissues or organs.  

 

Low Osmolality and Viscosity: 

Osmolality reflects the concentration of dissolved particles in a contrast agent's formulation. 

Most Gadolinium Based CAs are formulated at 0.5 M because of the need for rapid 

administration and therefore necessarily have some hyperosmolality relative to plasma. When 

used at clinical, approved doses, Gadolinium based CAs have a small total body osmotic load 
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(0.5–2 mOsm/L compared to blood osmolality of 300 mOsm/L), i.e., much lower than that of 

iodinated contrast media. There are preclinical data showing the deleterious effect of high 

osmolality in the case of Gadolinium based CAs and cases of extravasated Gadolinium based 

CAs have been described.
[16,17]

 Viscosity is a measure of the "thickness" and internal 

resistance to motion of a fluid. Formulations producing lower osmolality and viscosity may 

have improved dose tolerance and offer formulation flexibility, particularly for rapid bolus 

administration via a power injector. 

 

Low Toxicity: 

Contrast agents should have low acute toxicity, not producing side effects, such as allergic 

reactions and changes in normal serum parameters. Typically, ratios of >30 between rodent 

LD50 and human doses are sought. Problems in terms of chronic tolerance of agents should 

be nonexistent. Care regarding special patient populations such as those with renal 

impairment is of high importance. 

Nephrogenic systemic fibrosis (NSF) is a serious late adverse reaction associated with 

exposure to Gadolinium based CAs in patients with renal insufficiency or on dialysis.
[18,19]

 

NSF is a rare, progressive, usually fatal disease characterized by skin thickening, painful joint 

contractures, and fibrosis of multiple organs including the lungs, liver, muscles, and heart. 

Basically all cases that has been documented have occurred in patients with chronic severe 

renal insufficiency who have received gadolinium contrast.
[20]

 Therefore, researchers started 

to find an alternate solution for Gd. Complexes of Mn(II) can represent a possible solution. 

Manganese(II) shares several advantageous properties with gadolinium(III): high spin (five 

unpaired electrons), fast water exchange kinetics and slow electronic relaxation. Although 

Gadolinium has seven unpaired electrons and a larger magnetic moment, the water exchange 

rates on Mn
2+

 complexes are sufficiently fast not to limit relaxivity. Another advantage is that 

manganese is an essential metal ion and then the organism has developed a mechanism to 

remove the Mn(II) from the living system; a serum concentration of 0.5–1.2 μg/L
[21]

 is 

essential for normal development and body function. Despite the important biological role of 

Mn
2+

, large doses of this metal ion are neurotoxic (LD50 = 0.22 mmol/kg for rat).
[22,23] 

Humans overexposed to Mn
2+

 can suffer from neurological disorders, which results in a form 

of Parkinsonism termed manganism,
[24]

 likely caused by the damage of basal ganglia.
[25] 

In comparison with Gd
3+

, Mn
2+

 is less paramagnetic and has a lower charge and lower ionic 

radius. These differences lead to synthesize different ligands with a structure suitable for 

stable Mn
2+

complexation. Depending on the denticity and rigidity of the ligand (open chain, 
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macrocycle, benzene ring included), Mn
2+

 has common coordination numbers of 6 or 7 in its 

complexes. In order to act as an efficient CA, a Mn
2+

 chelate has to allow direct coordination 

of water molecule(s) to the metal ion. The outer-sphere contribution to relaxivity is even 

lower than that for a Gd
3+

 complex with a higher spin. In fact, a problem with Mn-based 

contrast agents could be the lack of inner sphere water molecule, which is essential for use as 

MRI contrast agent. The relation between ligand geometry and coordination number is hardly 

predictable. Hexadentate ligands can form complexes with both coordination numbers 

{[Mn(NOTA)]
–
 CN = 6, [Mn(EDTA)(H2O)]

–
 CN = 7} and rigid pentadentate aza-crown-

ethers can form pentagonal-bipyramidal complexes with CN = 7.  

The complex needs to have also high thermodynamic stability and kinetic inertness. In 

general, the thermodynamic stability of Mn
2+ 

complexes is lower in comparison to that of 

Gd
3+

 analogues, because of the lower charge of the Mn
2+

 ion. Kinetic inertness is another 

important issue for safe in vivo application of CAs. In general most of the Mn(II) complexes 

of open-chain ligands were found to be kinetically too labile for in vivo use. Macrocyclic 

Mn(II) complexes have been reported to have reasonably high thermodynamic stability and 

kinetic inertness. 

 

Paramagnetic enhanced relaxation rate: 

In the presence of paramagnetic media, the theory of the solvent nuclear relaxation was 

developed by Solomon, Bloembergen, Morgan and others.
[26-31] 

The paramagnetic complexes 

are able to reduce both the T1 and T2 relaxation times of solvent nuclei in the region where 

they are present. The observed relaxation rate (1/Ti,obs) is the sum of the diamagnetic (1/Ti,d) 

and the paramagnetic relaxation rates (1/Ti,p): 

 

pidiobsi TTT ,,,

111
           i=1, 2                                         (1) 

 

The diamagnetic term (1/Ti,d) respects to the contribution of the diamagnetic environment 

(generally the water) to the observed relaxation rate in the absence of paramagnetic solute.  

The paramagnetic term (1/Ti,p) represents the “catalytic” effect of the paramagnetic substances 

on the relaxation rate of solvent nuclei. The 1/Ti,p values are directly proportional to the 

concentration of the paramagnetic complexes ([M]): 

 



 
10 

][
11

,

,,

Mr
TT

pi

diobsi

           i=1, 2                                      (2) 

The relaxivity is usually given in terms of the increase in the longitudinal relaxation rates of 

water protons. The specific chemical interactions are generally realized by the coordination of 

the water molecule(s) in the empty coordination site(s) of the metal ion (ri,p
is
 inner-sphere) 

and by the translation diffusion of the water molecules in the surrounding of the paramagnetic 

complexes (ri,p
os

 outer-sphere). The third type of interaction is linked to the approximately 

long residence time of the water molecules in the proximity of the paramagnetic centers due 

to the hydrogen bond formation with the strongly polarized functional groups (e.g. 

carboxylate or phosphonate) of ligands used for the complexation of metal ions. The 

contribution of these processes to the overall relaxation enhancement is called second-sphere 

relaxivity (ri,p
ss

). The observed paramagnetic relaxation rate (ri,p) of water protons may be 

considered as the sum of the inner- (ri,p
is
), outer- (ri,p

os
) and second-sphere (ri,p

ss
) contribution 

of the paramagnetic complexes:
 

 

ri,p = ri,p
is
  +  ri,p

os
  +  ri,p

ss
                     i=1,2                     (3) 

 

The inner-sphere relaxation mechanism is governed by the chemical exchange between the 

coordinated water protons and the bulk water. The longitudinal and transversal inner-sphere 

relaxation time of water protons are given by: 
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where q, M (corresponding to the inverse of water exchange rate 1/kex), 1/T1M, 1/T2M and M 

are the number of the inner-sphere water molecules, the lifetime of the water molecules in the 

inner coordination sphere of the paramagnetic metal ion, the longitudinal and transversal 

relaxation rate of the inner sphere water protons and the chemical shift difference between the 

inner-sphere and bulk water, respectively. According to the Solomon-Bloembergen theory 

developed for the simple paramagnetic aqua ions, the relaxation rate of the inner-sphere water 
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protons are originated from the sum of the dipole-dipole (DD) and scalar/contact (SC) terms. 

The dipole-dipole interaction is affected by the modulation of the proton spin – electron 

vector, whereas the scalar term is only influenced by the electron spin relaxation and the 

water exchange. The dipole-dipole and scalar relaxation rates of the inner-sphere water 

protons are given by the Eqn.(6) – (11): 
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where I, g, B, rMnH, S, A/ħ, I and S  are the nuclear gyromagnetic ratio of proton, the 

Landé-factor for the free electron (2.0023), the Bohr magneton, the distance between the 

proton and the metal ion, the electron spin quantum number (5/2 for Mn
2+

), the 

hyperfine/scalar coupling constant between the unpaired electrons of the paramagnetic ion 

and the protons of the inner-sphere water molecule, the Larmor frequencies of the proton and 

electron (S=658.21I), respectively. The correlation times (ci and ei) which characterize the 

relaxation of the inner-sphere water protons are expressed as follows: 

 

MieRci T 

1111
                      i=1, 2                     (12) 
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Mieei T 

111
                          i=1, 2                     (13) 

 

where R, T1e and T2e are the reorientation time of the metal – proton vector (rotational 

correlation time), the longitudinal and transversal  electronic relaxation times of the metal ion. 

Since the interaction between the Mn
2+

 ion and the donor atoms is predominantly ionic in 

nature, the scalar coupling between the protons of the inner-sphere water molecule and the 

electrons of the Mn
2+

 ion is very weak (to the best of our knowledge the value of the A/ħ 

value is unknown). On the other hand, the contribution of the e2/(1+S
2e2

2
) term can be 

neglected at higher frequencies (>10 MHz). By taking into account these considerations, the 

scalar contribution to the overall relaxation rate of the inner sphere water protons is very 

small.  

According to the Bloembergen-Morgan model,
[26]

 the magnetic field dependence of 

the electronic relaxation times (T1e and T2e) of the paramagnetic ions is interpreted by the 

variation of the transient zero-field splitting (ZFST) of the electronic spin states resulted in by 

the interaction of the ligand fields of the solvent molecules and the donor atoms participating 

in the coordination of the metal ion. The magnetic field dependence of the electronic 

relaxation times are given by the following equations: 
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where 
2
 and v are the mean-square ZFST energy and the correlation time for the modulation 

of the zero-field splitting interaction. The complete paramagnetic enhanced inner-sphere 

relaxation theory can be obtained by the combination of Eq. 4 and 5 with the Solomon-

Bloembergen (Eqs. 6 – 11) and Bloembergen-Morgan (Eqs. 14 and 15) models which are 

referred to as the Solomon-Bloembergen-Morgan (SBM) theory. According to the SBM 

theory, the various determinants of the inner-sphere proton relaxivity can be taken into 

account separately. Eqs. 4 – 15 clearly indicate that the relaxation enhancement of the inner-

sphere water protons is limited by the residence time of the inner-sphere water molecule 
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under the slow exchange conditions (M>>T1M) and by the relaxation rate of water protons 

directly coordinated to the paramagnetic center in the fast exchange condition (M<<T1M). 

Moreover the relaxation time of the water protons (T1M) is also influenced by the rate of the 

exchange between the coordinated and the bulk water molecules, the rotational correlation 

time (R) and the electronic relaxation time of the paramagnetic center (T1e, Eq. 14). The 

variation of the Mn – H distances (rMnH in Eqs. 7 and 10) and the hydration number (q in Eq. 

4 and 5) strongly affects the inner-sphere relaxivity. In order to obtain an easy overview of the 

effects of these parameters, the inner-sphere relaxivity have been calculated as a function of 

water exchange (1/M) and the rotational correlation rates (1/R) by using fixed v and 
2
 

values (Fig. 1A). These model calculations were also performed by the simulation of the 

inner-sphere relaxivities as a function of v and 
2
 at constant 1/M and 1/R values (Fig. 1B 

and C). The prediction of the inner-sphere relaxivity values were made at 0.47 and 1.41 T 

field strength. Figure 1 clearly shows that the exchange rate of the inner-sphere water 

molecule, the reorientation correlation time and the electron relaxation time strongly influence 

the value of the inner-sphere relaxivity, which decreases with the increase of the field 

strength. In order to obtain the maximum relaxivity value, the reorientation correlation time 

must be increased (R10
9
 s

-1
) whereas the exchange rate of the inner sphere water molecule 

(1/M) must be within the 3 - 3010
7
 s

-1
 range. The maximum of the inner-sphere relaxivity of 

the low molecular mass monohydrated Mn(II)-complexes is around 3.5 mM
-1

s
-1

 at 0.47 and 

1.41 T field strength (Fig. 1A). With the use of the M=10 ns and R=100 ps values, the 

maximum of the inner-sphere relaxivity (r1p
in

=3.5 mM
-1

s
-1

) can be obtained at 
2
<110

19
 s

-2
 

mean-square ZFST energy value (Fig. 1B). However, the elongation of the reorientation 

correlation time (R = 33 ns) results in the large variation of the maximum inner-sphere 

relaxivity as a function of v and 
2
 values at different field strength (Fig. 1C). At 0.47 T, the 

plateau of the relaxivity (r1p
in

=125 mM
-1

s
-1

) can be achieved at 
2
<410

18
 s

-2
 mean-square 

ZFST energy. However, the inner-sphere relaxation enhancement of the monohydrated 

Mn(II)-complex endowed with the slow reorientational correlation time (R = 33 ns) shows 

the maximum curve as a function of v and 
2
 values at 1.41 T field strength. The maximum 

of the r1p
in

 is about 46 mM
-1

s
-1

 which can be attained at 1.41 T in the 
2
=2 – 8 10

19
 s

-2
 and 

v=0.4 – 20 ps parameter range (Fig 1C). 
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Figure 1. r1p
is
 values as a function of log(1/M) and log(1/R) (A) and as a function of 

log(1/v) and log

for R=10 ps (B) and R=33 ns (C) (q=1; rMnH=2.75 Å) 
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Hydration number of Mn(II)-complexes: 

 The contribution of the paramagnetic metal ions to the inner-sphere relaxivity values is 

directly proportional to the number of the water molecules (q) directly coordinated to the 

metal ion (Eq. 4). The aqua complex of Mn
2+

 ion contains six inner-sphere water molecules, 

which results in a high enhancement of the relaxation rate due to the fast exchange between 

the inner-sphere and the bulk water molecules. By taking into account the known 

biochemistry
[32]

 and chemical properties of Mn
2+

-ion, the free Mn
2+

 can interact with 

enzymes
[32,33]

 and the Ca
2+

 or Mg
2+

 binding sites of proteins
[34,35]

 and nucleic acids
[36]

 which 

limit the in vivo application of the Mn(II)-salts (e.g. MnCl2 or MnSO4) in the MRI 

investigations, and as we mentioned before the free Mn
2+

 ion is neurotoxic. Therefore, the 

highly stable and kinetically inert polyamino-polycarboxylate complexes of Mn(II), which 

prevent the release of Mn
2+

 ion, are proposed to use in biological systems. 

Mn(II)-complexes are generally formed with the open-chain and macrocyclic polyamino-

polycarboxylate ligands (Scheme 1). The coordination number, the q values, the relaxivity, 

the water exchange rate and the reorientational correlation time of the Mn(II)-complexes are 

presented in Table 1. The open-chain chelating agents are generally the derivatives of EDTA 

and DTPA ligands. The detailed 
17

O-NMR, relaxometric and X-ray diffraction studies in 

solution and solid state indicate that the coordination number of the Mn
2+

-ion is 7 with one 

inner-sphere water molecule in the Mn(EDTA) and in the EDTA derivative complexes.
[2]

 

However, the relaxivity of the Mn(DEBPN) complex is double of  that of Mn(EDTA), which 

was explained by the coordination of two or three water molecules directly to the Mn
2+

-ion.
[37]

 

The DTPA ligand is octadentate which hinders the direct coordination of the water molecule 

to the Mn
2+

-ion.
[38]

 The relaxation enhancement observed for the Mn(DTPA)-derivatives is 

derived from the outer- and second-sphere contributions.
[38]

  

The coordination number of the Mn(II)-complexes formed with macrocyclic 

polyamino-polycarboxylate ligands is 6, 7 or 8, determined by the size of the macrocyclic ring 

and the nature of the donor atoms. The Mn(II)-ion is hexacoordinated with no inner-sphere 

water molecule in the complexes formed with the nine-membered NOTA and its derivative 

ligands.
[39,40]

 The coordination number of the Mn(II)-ion is 6 in the Mn(II)-complexes of the 

dimeric ENOTA
[41]

 and 9-aneN2O-2P ligands
[42]

 which contain one inner-sphere water 

molecule per Mn(II)-center. Interestingly, the relaxometric studies of the Mn(9-aneN2O-2A) 

complex indicate the hydration equilibrium between the 6 and 7 coordinatated Mn(II) with 

one and two inner-sphere water molecules. 
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The 12-membered macrocyclic ligands used for the complexation of Mn
2+

-ion are 

generally the DOTA and its derivative ligands furnished with the reduced number of donor 

atoms. The coordination number of the Mn(II)-ion is 6 with no inner-sphere water molecule in 

the Mn(DOTA),
[38],

 Mn(DO3A)
[43]

 and Mn(1,4-DO2A)
[44]

 and Mn(1,7-DO2A) complexes 

(80% of Mn(1,4-DO2A) is presented in monohydrated form in solution, so CN=7).
[45]

 The 

gradual replacement of the acetate pendant arms of DOTA with amide groups results in the 

formation of Mn(II)-complexes with seven (e.g. Mn(DO3AM), Mn(DO3AM-cyOH)) and 

eight coordinated (Mn(DOTAM) Mn(II)-ions with no water molecule directly coordinated to 

the metal center.
[38]

 Similarly to the DOTA derivatives, the coordination number of the 

Mn(II)-ion is 6 in the Mn(12-pyN4A) and Mn(12pyN4P) complexes with one inner-sphere 

water molecule.
[46]

 

The structure of the Mn(II)-complexes of aza- or aza-oxa crown ethers are generally 

pentagonal-bipyramidal (CN=7) with two inner-sphere water molecules in the axial 

positions.
[47]

 However, the nature of the donor atoms, the size and rigidity of the macrocyclic 

ring may influence the coordination number of the Mn(II)-ion. In the Mn(II)-complexes of 

15-aneN5, 17-pydienN5, 18-pydienN5 and 15-pyaneN5, the Mn(II) is six-coordinated with an 

inner-sphere water molecule, whereas the Mn(II)-ion is heptacoordinated with two inner-

sphere water molecules in the complexes of 15-pydienN5, 16-pydienN5, 16-pyaneN5 and 

(NH2Et)2-15-pydienN5.
[47]

 The Mn(II)-complexes of the 15-membered macrocyclic 15-

pyN3O2 and 15-pyN5 ligands are bis-hydrated with heptacoordinated Mn(II)-ion.
[48]

 Similar 

structural phenomena were identified in the Mn(II)-complexes of porphyrins.
[49,50] 

The heptadentate AAZTA ligand can be regarded as a combination of open-chain and 

macrocyclic ligands, which represent the formation of the relatively flexible coordination 

cage wrapping around Mn
2+

-ion.
[51]

 Because of the seven donor atoms, the coordination 

sphere of the Mn(II) is fully occupied in the Mn(AAZTA). The replacement of the acetate 

pendant arm with hydrogen or methyl group in the exocyclic imino-diacetate fragment of 

AAZTA results in the hexadentate AAZ3A, AAZ3AMA and MeAAZ3A ligands which can 

form Mn(II)-complexes in different hydration states. The hydration number of the 

Mn(AAZ3A)-derivative complexes are varied from 0.64, 0.32 and to 0.24 for the 

Mn(AAZ3A), Mn(MeAAZ3A) and Mn(AAZ3MA), which indicate that the coordination 

number of the Mn(II) are changed from mainly 7 to mainly 6 due to the different structural 

rigidity of the Mn(II)-complexes.
[51]
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Table 1. The relaxivity (r1p, 20 MHz),  the coordination number (CN), the number of the 

inner-sphere water molecules (q), the water exchange rate (kex
298

) and the reorientational 

correlation time (τR
298

) for the Mn(II)-complexes. 

 r1p (25/37C; 

mM
-1

s
-1

) 

CN q kex
298

 (10
7
 s

-1
) τR

298
 (ps) 

[Mn(H2O)6]
2+[44] 7.4/6.76 6 6 2.1 30 (308 K) 

Mn(NTA)
-[45] 

 6 2 150  

Mn(EDTA)
2-[45] 3.08

 
7 1 47.1 57 

Mn(CyDTA)
2-[47] 3.47

 
7 1 14  

Mn(PhDTA)
2-[46] 

 7 1 35  

Mn(TMDTA)
2-[48] 2.2

 
 7 1 13  

Mn(EDTA-BOM)
2-[49] 3.6 7 1 9.3 83.7 

Mn(EDTA-(BOM)2)
2-

[49] 
4.3 7 1 13 110.8 

Mn(diPHEDTA)
2-[50] 5.8 7 1 23  

Mn2(ENOTA)
[51] 3.39/2.71 6 1/Mn

2+ 
5.5 85 

Mn(1,4-DO2A)
[45] 2.1 7/6  0.87 113.4 46 

Mn(DO1A)
[45] 2.4 6 1 595.7 22 

Mn(9-aneN2O-2A)
[35] 2.83/2.30 6/7 1/2 119 22 

Mn(9-aneN2O-2P)
[52] 5.08/4.29 6 1 1.20 103 

Mn(12-pyN4A)
[53] 2.39/1.94 6 1 303 23 

Mn(12-pyN4P)
[53] 2.84/2.32 6 1 177 39 

Mn(15-pyN3O2)
2+[54] 4.48/3.61 7 2 0.38 40.3 

Mn(15-pyN5)
2+[54]

 3.56/3.13 7 2 6.9 28.3 

Mn(AAZ3A)
-[55] 2.49 6/7 0.64 4.7 50 

Mn(MeAAZ3A)
-[55] 2.01 6/7 0.32 12.6 50 

Mn(AAZ3MA)
-[55] 1.90 6/7 0.24 13.3 51 
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Mn
2+

 - H distance: 

 The effect of the Mn
2+

 - H distance (rMnH) on the relaxation rate of inner-sphere water protons 

governed by dipole-dipole interaction between the electron and nuclear spins are clearly 

indicated in Eqs. 7 and 10. In order to visualize the effects of the Mn
2+

 - H distance, the inner-

sphere relaxivity have been calculated as a function of rMn-H by using the fixed values of 
2
, 

M, R and v (Figure 2). 

 

 

 

 

 

 

 

 

 

 

Figure 2. The logarithmic inner-sphere relaxivity values (log r1p
is
) as a function of rMn-H at 20 

MHz (, ◊) and 60 MHz (■, □). (
2
=110

19
 s

2
; M=10 ns, R=100 ps (open symbols), R=33 

ns (filled symbols) and v=20 ps) 

 

As shown in Figure 2, the inner-sphere relaxivity increases by about 50% with the 0.2 

Å decrease of the rMn-H distance due to the dependence of the 1/Ti
DD

 on the sixth power of the 

rMn-H. The reduction of the rMn-H distance can be promoted by two ways: i) the increase of the 

tilt angle of the Mn
2+

  O-H bond; ii) the increase of the electron delocalisation towards of the 

ligand or the residual charge of the Mn(II)-ion. The first possibility could be achieved by the 

H-bond formation between the coordinated water molecule and the strongly polarised donor 

groups attached to the appropriate side of the ligand, which distorts the angle of Mn
2+

  O-H 

bond. The second variation might be controlled by the engage of the unsaturated C – C into 

the ligand backbone or the substitution of the charged donor groups with neutral donor atoms. 

In this order, there is an intense scrutiny to optimize the structural feature of the polyamino-

polycarboxylate ligands for the complexation of Mn
2+

.  

In spite of the important role of the Mn
2+

 - H distance, it is difficult to obtain the rMn-H 

values experimentally because the tilt angle of the Mn
2+

 – O-H bond is not well defined in 
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solution. The rMn-H values are generally deduced from the Mn
2+

 – OH2 distance that can be 

determined more easily. The Mn
2+

 – OH2 distances obtained from the solid-state X-ray 

structure are used to estimate the rMn-H value in solution. The average Mn
2+

 – OH2 and Mn
2+

 – 

OH2 distances of the [Mn(H2O)6]
2+

 and Mn(II)-complexes determined by X-ray diffraction 

studies in solid-state are presented in Table 2. 

 

Table 2. The rMn-O and rMn-H distances of the Mn(II)-complexes determined by X-ray 

diffraction studies in solid state. 

 rMn-O (Å) rMn-H (Å) Ref. 

[Mn(H2O)6]
2+

 2.17   2.68 53 

Mn(EDTA) 2.24 2.84 56 

Mn(CyDTA) 2.27 2.79 56 

Mn(PhDTA) 2.24 2.80 57 

Mn(DEBPN) 2.16 2.76 37 

Mn2(ENOTA) 2.14 2.75 41 

Mn(15-pyN3O2) 2.23; 2.29 2.76; 2.77; 2.79; 2.80 
48 

Mn(15-pyN5) 2.30; 2.27 2.77; 2.86; 2.74; 2.98 

Mn(15-pydieneN5) 2.22 2.75 
58 

 Mn(15-pyaneN5) 2.28; 2.24 2.78, 2.70 

 

The solid-state structure of the Mn(EDTA), Mn(CyDTA), Mn(PhDTA), Mn(15-

pyN3O2), Mn(15-pyN5), Mn(15-pydieneN5) and Mn(15-pyaneN5) complexes of 

heptacoordinated Mn(II) reveals that the rMn-O and rMn-H distances of the coordinated water 

molecules are 2.23 - 2.30 and 2.74 – 2.98 Å, respectively (Table 2). The X-ray analysis of the 

hexacoordinated Mn(II)-complexes ([Mn(H2O)6]
2+

 and Mn2(ENOTA)) indicate that the Mn
2+

 

– OH2 and Mn
2+

 – OH2 distances are 2.14 – 2.17 and 2.68 - 2.75 Å, respectively (Table 2). 

The comparison of the rMn-O and rMn-H values of heptacoordinated Mn(DEBPN) and 

Mn(EDTA) complexes (Mn(EDTA): rMn-O=2.24 Å, rMn-H=2.84 Å; Mn(DEBPN): rMn-O=2.16 

Å, rMn-H=2.76 Å) shows that the replacement of the charged carboxylates with non-charged 

ester and pyridine groups results in the decrease of the Mn
2+

 – OH2 and Mn
2+

 – OH2 distances 

due to the higher residual charge on the Mn(II)-ion. 
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Chapter 2 

 

Outline of the thesis 

 

The main goal of this thesis is the characterization in aqueous solutions of new Mn(II) 

complexes as MRI probes. Our investigation included thermodynamic, kinetic and detailed 
1
H 

and 
17

O NMR relaxometric measurements. We have taken into account Mn-complexes 

belonging to two different main types of structural units. 

One encompasses the Mn(II) complexes containing the pentadentate coordinating units 6,6-

((methylazanediyl)bis(methylene))dipicolinic acid. We considered several derivatives of the 

monomeric DPAMA ligand, including mono-, bi- and trinuclear bis-hydrated complexes 

(Chapter 4). In addition, we investigated a number of derivatives featuring different side arms 

and a couple of lipophilic derivatives (Chapter 5). All these complexes represent a fairly 

homogeneous series that has allowed us to obtain useful information on the relationship 

between the molecular structure, the thermodynamic stability and the relaxation parameters.  

The other class of complexes are those containing the macrocyclic unit cyclen and two 

coordinating pendant arms. These macrocyclic derivatives have been studied in detail, 

considering the chemical nature of the pendant arms, their relative position (cis/trans), the 

possible presence of isomers with different states of hydration, the kinetic and thermodynamic 

stability of the complexes and their relaxometric properties (Chapter 6). The synthesis of two 

novel derivatives bearing hydrophobic pendant groups enabled the investigation of the 

binding association with human serum albumin (Chapter 7). 

 

The global set of experimental results has allowed us to deepen our understanding of the 

chemistry of Mn(II) complexes as potential MRI probes. We are confident that the new 

information gained will help in the future design and development of more effective and safer 

MRI contrast enhancing agents. 
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Scheme 1. Ligands investigated in Chapters 4 and 5. 
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Scheme 1. Ligands investigated in Chapters 6 and 7. 
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Chapter 3 

 

Experimental techniques 
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Fast Field Cycling (FFC) NMR Relaxometry: 

Field-cycling NMR relaxometry is the preferred technique for obtaining the frequency (or 

magnetic field) dependence of relaxation times (or equivalently of relaxation rates). For this 

reason it is also known as nuclear magnetic relaxation dispersion (NMRD).The relaxation of a 

nuclear magnetic spin in general is a function of experimental parameters such as 

temperature, pressure, sample composition and magnetic field, B0. Changing thermodynamic 

parameters, like the temperature, influences the physical or chemical state of the sample under 

investigation. Change of the magnetic field, however, has typically no influence on the 

chemistry of the sample. It is therefore a useful tool for separation of different interaction 

mechanisms and dynamic processes influencing the relaxation behavior. Fast Field Cycling 

(FFC) NMR relaxometry is an important analytical tool for NMR research and material 

characterization in both industrial and academic environments and has been successfully used 

in a wide range of fields. For example in: pharmaceutical, food, oil, gas and petroleum 

industry. FFC NMR relaxometry is a non-destructive low-field magnetic resonance method, 

which is performed in the range of a few kHz up to around 100 MHz, depending on the 

instrument. The information obtained is connected to the molecular dynamics of a material or 

complex substance through the characterization of the nuclear spin-lattice constant 1/T1 over a 

large range of magnetic field strengths, which is carried out on the same instrument 

(relaxometer). The technique is excellent in revealing information on slow molecular 

dynamics, which can only be done at very low magnetic field strengths. Examples of 

important molecular dynamics information that can be obtained through FFC NMR 

relaxometry: 

 • Characterization of rotational dynamics 

• Identification of the presence of paramagnetic substances 

• Evaluation of MRI CAs (coordination number, kinetics of exchange, electronic 

relaxation, correlation times in the spectrum of re-orientation and diffusional dynamics 

of molecules) 

• Determination of aggregation states of complex biomolecules such as proteins 

 

The magnetic field dependence of 1/T1 of a substance or material is shown in the graphical 

form as a Nuclear Magnetic Resonance Dispersion (NMRD) profile (Figure 1). 
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Figure 1. NMRD profile of a Mn(II) complex at 25 (black) and 37 °C (red) 

 

The relaxation rate 1/T1 of a substance or material will tend to change when there is a 

variation in molecular dynamics, which may be caused by: 

• change of state (e.g. solid to liquid; complex systems phase change, such as liquid 

crystals) 

• concentration changes (e.g. effect on aggregation states of biomolecules) 

• temperature changes 

• viscosity changes 

• paramagnetic impurities 

FFC NMR relaxometry is a non-destructive method requiring a small amount of a solid or 

liquid sample (enough to fill a standard 10mm NMR tube to a volume of around 1cm
3
) with 

no other form of preparation required. 

 

The basic FFC NMR experiment consists of cycling the Zeeman field, B0, which is applied to 

the sample, through three different values. In the first instance, a high magnetic field, Bpol 

(polarization field), is applied to pre-polarize the sample in order to boost signal intensity. The 

sample is then allowed to relax in a second field, Brelax (relaxation field), which can be set to 

any desired value, including zero. Finally, the field is set to the detection field, Bacq 

(acquisition field), for signal acquisition.
[1] 
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Figure 2. Working of FFC NMR
[1] 

 

Changes in the relaxation rate, 1/T1, of a substance or material, are sometimes not evident at 

single magnetic field strengths, but when studied over a wide range of magnetic field 

strengths, as with FFC NMR relaxometry, changes are easier to identify as they are often 

more visible with the NMRD profile, especially at the lower magnetic field strengths. 

 

 

Figure 3. The SmarTracer FFC-NMR relaxometer. 

 

 

17
O NMR measurements: 

In the 
17

O NMR measurements we measure the temperature dependence of the 
17

O NMR 

longitudinal and transverse relaxation rates as well as the chemical shifts of aqueous solutions 

of the Mn(II) complexes. The observed acceleration of the relaxation rates and the observed 

shift of the resonance frequencies can be described by the formulas developed by Swift and 
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Connick 
[2] 

for 1/T2 and Δω, the chemical shift difference, and by Zimmermann and Brittin
[3] 

for 1/T1. 

The detailed equations are in Chapter 4. 

 

 

Figure 4. The superconductive magnet of the 500 MHz NMR spectrometer 

 

pH-potentiometric titrations: 

There are several ways to determine stability and protonation constants. In this work, we used 

direct pH-potentiometric titrations. The pH-potentiometry with a suitable ion-selective 

electrode can be a possibility to determine components (metal ion, ligand) equilibrium 

activity. A pH-potentiometric titration is one of the most common way to determine stability 

constants. The ligands are usually weak bases, so in the lack of metal ion the ligand is in a 

protonated form in a quite range pH-region. During the forming of the metal complexes a 

proton is removed from the coordinated group. Thanks to that with an indirect pH effect, we 

can use pH-potentiometry. The system is showing the difference in the pH during the 

measurement. In a pH-potentiometric titration, a generally used glass-electrode can be used 

between pH 1.7 and 11.8. The complexes stability constants can be calculated from the fit of 

the titration curves. For the calculation, it is necessary to know the ligand protonation 
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constants, and every other type of side effect that can have an influence of the complex’s 

formation. For example, we can calculate the stability constant with a general equation (Eq 1). 

 

;rqp HLMrHqLpM                                   
rqp

rqp

HLM

HLM

pqr ][][][

][
                     

 

 

 

 

 

 

Figure 5. Titration curves of the well-known H3DO3A (1), and H4DOTA (2) ligands. 

 

 

Figure 6. The automatic pH-potentiometric titrator. 
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Chapter 4 

 

Bis-Hydrated Mn
2+

 

Complexes with the 

picolinate binding unit 
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Introduction: 

Earlier we already mentioned that the application of Mn
2+

 complexes as MRI CAs was 

envisaged in the early times of MRI, in the late 1970s.
[1,2]

 As a result of these pioneering 

studies a Mn
2+

-based CA, mangafodipir trisodium (Mndpdp, TESLASCAN, Scheme 1) was 

approved for clinical use. More recently, a mixture of MnCl2, alanine and vitamin D3, 

denoted as CMC-001, has been proposed as a CA for visualization of liver and bile, and it is 

currently undergoing phase III clinical trials.
[3]

 Furthermore, preclinical safety assessment of 

Mndpdp serendipitously revealed superoxide dismutase activity, a useful property that can be 

potentially exploited for the treatment of several pathological conditions characterized by 

oxidative stress (i. e. cancer treatment, acute myocardial infarction…).
[4]

 An important 

advantage of Mn
2+

 CAs over the traditional Gd
3+

 counterparts is the lower toxicity of free 

Mn
2+

, which is highlighted by the formulation of CMC-001. On the other hand, the lower 

effective magnetic moment of Mn
2+

 complexes with respect to Gd
3+

 analogues generally 

results in lower relaxivities of the Mn
2+

 complexes.
[5]

 An obvious strategy to increase 

relaxivity is to increase the number of water molecules coordinated to the paramagnetic ion 

(q), as the inner-sphere contribution to relaxivity is directly proportional to q. This approach 

has been successfully used to increase the relaxivities of Gd
3+

 complexes, although generally 

reducing the denticity of the ligand to increase the hydration number results in lower 

thermodynamic stabilities of the complexes.
[6]

 Some attempts have also been made to obtain 

bis-hydrated Mn
2+

 complexes as potential MRI contrast agents, but the expected relaxivity 

gain was not observed due to a low exchange rate of the coordinated water molecule with the 

bulk water.
[7]

 A second advantage of Mn-based contrast agents is that, in principle, they can 

be used as redox-sensitive MRI probes, providing that a suitable ligand stabilizes both Mn
2+

 

and Mn
3+

.
[8,9] 
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Scheme 1. Ligands mentioned in the chapter. 

 

We decided to explore these issues and thus we have undertaken a study of the complexes 

based on a well-defined structural unit, the potentially pentadentate ligand dpama. So, we 

investigated the potential of the Mn
2+

 complex of H2dpama, mX(H2dpama)2 and 

mX(H2dpama)3. These ligand form, mono- bi- and trinuclear Mn
2+

 complexes potentially 

containing two water molecules coordinated to each metal center. These complexes are 

expected to display enhanced relaxivities, as well as relatively high affinities towards human 

serum albumin (HSA). In this chapter, we describe a detailed characterization of the Mn
2+

 

complexes with these three ligands using 
1
H relaxometry and 

17
O NMR measurements. 

Furthermore, the ligand protonation constants and stability constants of the metal complexes 

were determined using potentiometric measurements. Cyclic voltammetry experiments were 

also carried out to investigate the relative stability of the Mn
2+

 and Mn
3+

 complexes. The 

hexadentate ligand H2bcpe was reported
 
earlier.

[10]
 It forms rather stable complexes with 

different divalent and trivalent metal ions.
[11,12]

 Given the ability of Mn
2+

 complexes to form 

both six- and seven-coordinate complexes in aqueous solution, we have also checked whether 
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the [Mn(bcpe)] complex contains a coordinated water molecule or not by using 
1
H 

relaxometric measurements and X-ray diffraction studies. 

 

Synthesis: 

Prof. Carlos-Platas Iglesias, at the Departamento de Química Fundamental, Universidade da 

Coruña, performed the syntheses of the ligands. The H2dpama was synthesized in two steps. 

First step was a reaction of 6-chloromethylpyridine-2-carboxylic acid ethyl ester (1)
 
with 

methylamine chlorohydrate in the presence of K2CO3,
[13] 

 followed by hydrolysis of the ethyl 

ester groups in 6 M HCl (Scheme 2). The desired ligand was isolated as the chlorohydrate salt 

with a yield of 66% over the two steps. This represents a 2.6-fold increase with respect to the 

yield reported previously for the analogous ligand derived from ethylamine.
[14] 

Ligand 

mX(H2dpama)2 was prepared in 76% yield following a similar procedure by reaction of 1 

with 1,3 phenylenedimethanamine (3) followed by acid hydrolysis of the ester groups. 

Reaction of H2dpama and mX(H2dpama)2 with Mn(ClO4)2·6H2O in the presence of 

triethylamine resulted in the formation of the charge neutral complexes 

[Mn(dpama)(H2O)2]·2H2O and [mX(Mn(dpama)(H2O)2)2]·6H2O, respectively, which were 

isolated in 65% yield. The synthesis of mX(H2dpama)3 (Scheme 3) was achieved in two steps 

by reaction of benzene-1,3,5-triyltrimethanamine (1b) and 6-chloromethylpyridine-2-

carboxylic acid ethyl esther (2b) in the presence of K2CO3, and subsequent hydrolysis of the 

ethyl ester groups in 6M HCl. Reaction of the ligand with MnCl2·4H2O in the presence of 

trimethylamine produced the desired charge neutral complex. The synthesis of H2bcpe was 

achieved by following the previously reported procedure.
[10]

 Reaction of H2bcpe with 

Mn(ClO4)2·6H2O in the presence of trimethylamine provided the charge neutral [Mn(bcpe)] 

complex, which was isolated in 60% yield The high-resolution mass spectra (ESI
+
) and 

analytical data confirm the formation of the desired neutral complexes (Figure 1-4). 
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Scheme 2. Synthesis of H2dpama and mX(H2dpama)2 

 

 

 
 

 

Scheme 3. Synthesis of mX(H2dpama)3. 
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Figure 1. Observed (left) and calculated (right) mass spectral isotopic distribution for the 

fragment [Mn(dpama)+H]
+
 obtained from a solution of the complex in a 

H2O:CH3CN:MeOH mixture. 

 

 

 
 

Figure 2. Observed (left) and calculated (right) mass spectral isotopic distribution for the 

fragment [(mX(Mndpama)2+Na]
+
 obtained from a solution of the complex in a 

H2O:CH3CN:MeOH mixture. 

 

 

 
 

Figure 3. Observed (left) and calculated (right) mass spectral isotopic distribution for the 

fragment [Na2mX(Mndpama)3]
2+

 obtained from a solution of the complex in a H2O:MeOH 

1:1 mixture. 
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Figure 4. Observed (left) and calculated (right) mass spectral isotopic distribution for the 

fragment [Mn(Hbcpe)]
+
 obtained from a solution of the complex in a H2O:MeOH 1:1 

mixture. 

 

 

Aiming to obtain information on the solution structure of the [Mn(dpama)(H2O)2] complex 

we turned our attention to theory.  Prof. Carlos-Platas Iglesias carried out the DFT 

calculations and X-ray diffraction analyses. I report a representative figure of the optimized 

geometry and X-ray diffraction analyses of the Mn(II) complexes.  

  

Figure 5. Optimized geometry of the [Mn(dpama)(H2O)2]·4H2O complex obtained with DFT 

calculations performed in aqueous solution at the TPSSh/SVP level. (left) Average bond 

distances (Å) of the Mn
II
 coordination environment: Mn-Owater 2.205(1); Mn-OCOO 2.335(64); 

Mn-Namine 2.569; Mn-NPY 2.287(9). Optimized geometry of the 

[mX(Mn(dpama)(H2O)2)3]·12H2O complex obtained with DFT calculations performed in 

aqueous solution at the TPSSh/SVP level.(right) Average bond distances (Å) of the Mn
2+

 

coordination environment: Mn-Owater 2.213(19); Mn-OCOO 2.315(58); Mn-Namine 2.620(6); 

Mn-NPY 2.280(14). Hydrogen atoms, except those of water molecules, have been omitted for 

simplicity. 
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Figure 6. View of the X-ray structure of the [Mn(bcpe)] complex. Water molecules and 

hydrogen atoms are omitted for simplicity. The ORTEP plot is at the 30% probability level. 

Bond distances: Mn(1)-O(1), 2.1771(12); Mn(1)-O(3), 2.1783(12); Mn(1)-N(1), 2.1919(15); 

Mn(1)-N(4), 2.1948(15); Mn(1)-N(2), 2.3046(14); Mn(1)-N(3), 2.3217(14) Å. 

 

Ligand protonation constants and stability constants of the metal complexes:  

The protonation constants (logKi
H
) of the previously mentioned ligands investigated in this 

chapter have been determined by pH-potentiometry in 0.15 M NaCl. The values of the 

constants and standard deviations are listed in Table 1. The protonation constants are defined 

by eq 1: 

 

 Hi-1L  +   H
+
     HiL 

]L][Η[Η

L][Η
Κ

1i

iΗ

i 



           i=1, 2,…, 8.                                         (1) 

 

Table 1. Protonation constants of ligands bcpe
2-

, dpama
2-

, mX(dpama)2
4-

, mX(dpama)3
6-

 and 

picolinate (0.15 M NaCl, 298 K) 

 dpama
2- 

mX(dpama)2
4- 

mX(dpama)3
6- 

bcpe
2- 

Picolinate
a 

logK1
H 

7.82(1) 7.77(1) 7.73(1) 8.83(2) 5.25 

logK2
H 

3.71(2) 6.49(1) 6.82(1) 6.22(3) 0.92 

logK3
H 

2.61(2) 4.24(2) 6.06(1) 3.27(3) - 

logK4
H

 - 3.45(2) 4.31(1) 2.03(3) - 

logK5
H

 - 2.93(2) 3.70(1)  - 

logK6
H

 - 2.24(2) 3.30(1)  - 

logK7
H

 - - 2.79(1)  - 

logK8
H

 - - 2.36(1)  - 

   1.01(3)   

∑logKi
H 

14.14 27.13 38.09 20.36 6.17  

 
a 
Taken from ref. 15. 
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By taking into account the protonation constants and protonation scheme of picolinic 

acid,
[15]

 we can presume that the first and second protonation constants of dpama
2-

 correspond 

to the amine nitrogen and the carboxyl groups of the picolinate fragments, respectively. The 

first and second protonation constants of mX(dpama)2
4-

 are related to the protonation of the 

amine nitrogen atoms, whereas subsequent protonations of the ligand take place at the 

carboxylate groups. Also in the case of mX(dpama)3
6-

, the logK1
H
, logK2

H
 and logK3

H
 values 

are also attributed to the protonation of the amine nitrogen atoms, while subsequent 

protonation processes take place at the carboxylate groups of the picolinate residues. 

The difference between successive protonation constants of identical and independent 

coordination sites are expected to follow the statistical factor,
[16]

 which predicts a difference 

between two successive identical protonation sites of logK
H
= logK1

H
- logK2

H
 = 0.6. In the 

case of three independent protonation sites this factor reduces to logK
H
= 0.5. The second 

protonation constant of mX(dpama)2
4-

 is ca. 1.3 logK units lower than logK1
H
. This difference 

is larger than that expected for the statistical factor, which is explained by the repulsive 

electrostatic interaction between the protonated amine nitrogen atoms in the bis-protonated 

species. Similarly to the mX(dpama)2
4-

 ligand, the differences between logK1
H
, logK2

H
 and 

logK3
H
 of mX(dpama)3

6-
 are larger than expected according to the statistical factor. However, 

the protonation of the carboxylate groups of mX(dpama)2
4-

 characterized by logK
H
 =logK3

H
 

– logK4
H
 = 0.8, as well as those of mX(dpama)3

6-
 given by logK

H
 =logK4

H
 – logK5

H
 = 0.6, 

approach the behavior expected according to the statistical factor. This is likely related to the 

longer distances between the involved protonation sites in comparison to the amine nitrogen 

atoms. Comparison of the ∑logKi
H
 of dpama

2-
 (14.14), ∑logKi

H
/2 of dimeric 

mX(dpama)2
4-

 (13.56) and ∑logKi
H
/3 of trimeric mX(dpama)3

6-
 (12.36) indicates that the total 

basicity of dpama
2-

 is higher than that of the average basicity of the dpama
2-

 units in 

mX(dpama)2
4-

 and mX(dpama)3
6-

. 

The protonation constants determined for bcpe
2-

 in 0.15 M NaCl are almost identical to 

those determined previously using a 0.1 M (Me4N)(NO3) ionic strength.
[10]

  

The first and second protonation processes occur at the amine nitrogen atoms of the ligand, 

while the third and fourth protonation constants are assigned to the protonation of the 

carboxylate groups of the picolinate part. 

The stability and protonation constants of Mn
2+

 complexes formed with bcpe
2-

, dpama
2-

, 

mX(dpama)2
4-

 and mX(dpama)3
6-

 were determined by pH-potentiometric titration. Moreover, 

we have also determined the stability and protonation constants of the Zn
2+

 and Cu
2+
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complexes with dpama
2-

. The metal-to-ligand concentration ratios were 1:1, as well as 2:1 and 

3:1 in the case of mX(dpama)2
4-

 and mX(dpama)3
6-

. The stability and protonation constants of 

the metal complexes are defined by eq 2: 

 

pM
2+

   +   qH
+
   +   rL

n-
      [MpHqLr]

n-(q+2p)-  

                               
rqp2

rqp
pqr

]L[]H[]M[

]LHM[


                    (2) 

  

Table 2. Stability and protonation constants of Mn
2+

 complexes formed with bcpe
2-

, dpama
2-

, 

mX(dpama)2
4-

 and mX(dpama)3
6-

 ligands (0.15 M NaCl and 298 K). 

 bcpe
2- 

dpama
2- 

mX(dpama)2
4- 

mX(dpama)3
6- 

logK101 (MnL) 10.63(2) 10.13(2) 11.60(6) 10.99(9) 

logK111 (MnHL) 3.42(7) 2.57(4) 6.50(4) 7.23(9) 

logK121 (MnH2L)   3.61(2) 6.11(7) 

logK131 (MnH3L)   2.56(1) 4.07(6) 

logK141 (MnH4L)    3.29(3) 

logK151 (MnH5L) 

logK201 (Mn2L) 

logK211 (Mn2HL) 

logK301(Mn3L) 

logK311(Mn3HL) 

   

8.43(2) 

 

 

 

2.73(4) 

9.17(9) 

6.00(9) 

8.51(4) 

2.54(3) 

logK1-11(MnH-1L)  11.09(4) 10.41(8)  

 

 

 

Table 3. Stability and protonation constants of Zn
2+

 and Cu
2+

 complexes formed with the 

bcpe
2-

 and dpama
2-

 ligands (0.15 M NaCl, 298 K). 

 Zn
2+

:dpama
2-

 Cu
2+

:dpama
2-

 Zn
2+

:bcpe
2-

 Cu
2+

:bcpe
2-

 

log101 (ML)
 11.75(1) 13.32(4)

a 
17.53(2) 19.846(9)

a 

logK111 (MHL)
 

1.51(2)
 

3.60(4) 2.07(2) 1.45(3) 

logK121 (MH2L)  1.40(4)   

logK1-11(MH-1L) 9.18(6) 9.53(4)   

logK1-21(MH-2L) 11.16(7) 11.60(6)   
a
 Determined by spectrophotometry. 
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The stability constants and protonation constants of the metal complexes are reported in 

Tables 2 and 3. The logK101 values determined for the four Mn
2+

 complexes are really similar. 

Which shows that the pentadentate dpama
2-

 ligand and the di- and tri-nucleating 

mX(dpama)2
4-

 and mX(dpama)3
6-

 ligands provide metal complexes with stabilities that are 

very similar to that of the complex with the hexadentate ligand bcpe
2-

, with log101 values in 

the range 10.1 – 11.6. 

The stability of the Mn
2+

 complex of the pentadentate ligand dpama
2-

 is very similar to that 

of the complex with the hexadentate ligand bcpe
2-

. The stability constants of the mononuclear 

Mn(dpama), mX(Mndpama)2 and mX(Mndpama)3 complexes are analogous, indicating that 

in all cases the Mn
2+

 ion is coordinated by a dpama
2-

 unit characterized by similar metal ion 

affinity. Since the mononuclear mXMn(dpama)2 and (mX(dpama)3Mn) complexes have one 

and two non-coordinated dpama
2-

 units, the free donor atoms can be protonated with the 

formation of several protonated MnHiL species (mX(dpama)2: i=1 – 3; mX(dpama)3: i=1 – 5). 

The protonation constants of mononuclear mXMn(dpama)2 and mXMn (dpama)3 complexes 

(Table 2) are comparable to the corresponding logKi
H
 values of the free ligands (Table 1). 

The stability constants of the dinuclear (mX(Mndpama)2), (mXMn2(dpama)3) and 

trinuclear mX(Mndpama)3 complexes are very similar and somewhat lower than the logK101 

values of the mononuclear mXMn(dpama)2 and mXMn(dpama)3 entities (Table 2). A recent 

study has reported virtually identical stability constants for the mono- and bi-nuclear Mn
2+

 

complexes of ditopic do3a-based ligands containing a long spacer separating the two metal 

binding units.
[17]

 Thus, the slightly lower stability constants of the dinuclear and trinuclear 

Mn
2+

 complexes of mX(dpama)2 and mX(dpama)3 might be explained by the electron 

withdrawing effect caused by the coordination of Mn
2+

 to a dpama
2-

 unit on the non-

coordinated amine nitrogen atom of the neighbor dpama
2-

 moiety. If we study the  logK101 

value of Mn(dpama) (10.13) with the log201/2 value of dinuclear Mn2(mX(dpama)2) (10.01) 

and log301/3 value of trinuclear Mn3(mX(dpama)3) (9.56), we can assume that the average 

Mn
2+

 affinities of the dpama
2-

 units in the mono-, bi- and trimeric ligands decrease in the 

following order: dpama
2-

>mX(dpama)2
4-

> mX(dpama)3
6-

. 
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Figure 7. Species distribution diagrams of the Mn
2+

- dpama ([Mn
2+

]=[dpama]=1.0 mM)  

system (0.15 M NaCl, 298 K). 
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Figure 8. Species distribution diagram of the Mn

2+
- mX(dpama)2 system at metal-to-ligand 

ratio of 1:1 ([mX(dpama2)]=1.0 mM, 0.15 M NaCl, 298 K) (A), and Mn
2+

-mX(dpama)2 

([Mn
2+

]= 2 mM, [mX(dpama)2]=1.0 mM) (B). 
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Figure 9. Species distribution diagrams of the Mn
2+

-mX(dpama)3 systems at metal-to-ligand 

ratio of 1:1 (A), 2:1 (B) and 3:1 (C) ([mX(dpama3)]=1.0 mM, 0.15 M NaCl, 298 K). 
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Figure 10. Species distribution diagram of the Mn

2+
 - bcpe system at metal-to-ligand ratio 1:1 

([bcpe]=1.0 mM, 0.15 M NaCl, 298 K) 

 

The stabilities of the Mn
2+

, Cu
2+

 and Zn
2+

 complexes are following the Irving-Williams order 

(Mn
2+

 < Cu
2+

 > Zn
2+

).
[18]

 However, the stability of the [Cu(bcpe)] complex is 9 orders of 

magnitude higher than that of [Mn(bcpe)], while the Zn
2+

 complex is about 7 orders of 

magnitude more stable than the Mn
2+

 one. In the case of the dpama
2-

 complexes the stabilities 

of the Zn
2+

 and Cu
2+

 complexes are only 1.6 and 3.2 logK units higher than that of the Mn
2+

 

analogue. These results show that the pentadentate dpama
2-

 ligand is suprisingly well 

preorganized to provide a seven-coordinate Mn
2+

 complex with pentagonal bipyramidal 

coordination. Pentagonal bipyramidal coordination is much more less favorable for Cu
2+

 and 

Zn
2+

 complexes,
[19]

 which likely results in a modest increase of complex stability of the latter 

complexes with respect to Mn
2+

. 

The species distribution of the Mn
2+

 - dpama, Mn
2+

 - mX(dpama)2 and Mn
2+

 - mX(dpama)3 

systems have been calculated by taking into account the equilibrium constants of Tables 1 and 

2 (Figure 7-10). The dissociation of [Mn(dpama)] occurs below pH ~ 5, while it represents the 

major species in solution up to pH ~ 11. However, at pH>8.5 deprotonation of the complex 

takes place with the formation of a MnH-1L species, likely as a result of the coordination of a 

OH
- 

anion to the Mn
2+

-ion. The [mX(Mndpama)2] and [mX(Mndpama)3] complexes 

dissociate below pH ~ 4, which results in the formation of complex species with reduced 

nuclearity. No evidence for the formation of hydroxo complexes was found in any of these 

cases. 
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Relaxometric studies: 

The efficiency of a paramagnetic complex as a CA in vitro is often and conveniently 

evaluated by its proton relaxivity, r1p, which is defined as the relaxation enhancement of water 

protons normalized to a 1 mM concentration of the paramagnetic metal ion. The r1p values 

determined for [Mn(bcpe)] and [Mn(dpama)] in the pH range ~10.0-5.0 (20 MHz, 25 ºC) are 

fairly constant (Figure 11). Below pH 5.0 relaxivity progressively increases due to the 

dissociation of the complex and formation of [Mn(H2O)6]
2+

,
[20]

 in agreement with the 

speciation diagrams obtained from equilibrium data. The relaxivity measured for [Mn(bcpe)] 

is rather low (1.4 mM
-1

 s
-1

 at 25 ºC, 20 MHz, pH 7.47), and compares well to those measured 

for [Mn(do3a)]
-
, [Mn(dtpa)]

3-
 and [Mn(1,7-do2a)], which lack inner-sphere water molecules 

(1.3 – 1.5 mM
-1

 s
-1

 at 25 ºC and 20 MHz).
[21]

 Thus, the relaxivity observed for [Mn(bcpe)] can 

be attributed to the outer-sphere mechanism, in full agreement with the X-ray structure of the 

complex described above. The relaxivity (r1p) measured for [Mn(dpama)] at 20 MHz and 298 

K (pH = 7.3) amounts to 5.32 mM
-1

 s
-1

. This value is ca. 60% higher than those measured 

under the same conditions for small Mn
2+

 complexes containing one coordinated water 

molecule (i. e. r1p = 3.3 mM
-1

 s
-1

 for [Mn(edta)]
2-

, Figure 12, Table 4).
[21]

 Interestingly, the 

relaxivity measured for [Mn(dpama)] is also higher than those determined for bis(aquated) 

seven-coordinate Mn
2+

 complexes with neutral pentadentate macrocyclic ligands (r1p = 3.5-

4.5 mM
-1

 s
-1

, 20 MHz, 25 ºC),
[22]

 or most commercially available Gd
3+

-based contrast agents 

(r1p = 4-5 mM
-1

 s
-1

, 20 MHz, 25 ºC).
[23]

 A further improvement of the relaxivity is observed 

for [(mX(Mndpama)2], which presents a r1p value (8.63 mM
-1

 s
-1

, 20 MHz, 25 ºC) higher than 

those usually observed for small Gd
3+

 bisaqua complexes for example Gd(do3a) and 

Gd(aazta)
-
.
[6d]

 The high relaxivity values determined for [Mn(dpama)] and [(mX(Mndpama)2] 

can only be explained by the presence of two water molecules in the inner coordination sphere 

of the metal ion. 
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Figure 11. Plot of the relaxivity (20 MHz; 25 ºC) of the [Mn(bcpe)] and [Mn(dpama)] 

complexes as a function of pH. 

 

 

 

Figure 12. Plot of the relaxivity, r1p, for selected Gd
3+

 and Mn
2+

 complexes at 20 MHz and 

298 K. 

 

To gain more insight into the physicochemical parameters that govern the relaxivities 

observed for [Mn(bcpe)] and [Mn(dpama)] we recorded 
1
H nuclear magnetic relaxation 

dispersion (
1
H NMRD) profiles of aqueous solutions of these complexes in the proton Larmor 

frequency range 0.01−70 MHz, corresponding to magnetic field strengths varying between 

2.34310
-4

 and 1.645 T (Figure 13). The relaxivity of [Mn(dpama)] decreases with increasing 

temperature, this behavior  is typical for small chelates in which fast rotation of the complex 

in solution limits proton relaxivity. Furthermore, the 
1
H NMRD profiles of [Mn(dpama)] 

show a single dispersion between 1 and 10 MHz, which rules out any scalar contribution to 
1
H 
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relaxivity.
[20,24]

 Since the inner-sphere contribution to relaxivity depends upon a relatively 

large number of parameters, we have also measured reduced transverse 
17

O NMR relaxation 

rates and chemical shifts of an aqueous solution of [Mn(dpama)] (3.89 mM, pH = 7.2). These 

data provide independent information about some important parameters that control 
1
H 

relaxivity, especially the exchange rate of the coordinated water molecule(s) ( 298

exk ). The 1/T2r 

values increase with decreasing temperature, which is typical of systems in the fast-exchange 

regime. Despite, the changeover between the fast and slow exchange regimes can be observed 

in the temperature dependence of the chemical shifts (Figure 14), as also observed for the 

[Mn(edta)]
2-

 complex.
[21] 

 

 

Figure 13. 
1
H NMRD profiles recorded at different temperatures for [Mn(bcpe)] and 

[Mn(dpama)]. The lines represent the fit of the data as explained in the text. 
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Table 4. Parameters obtained from the simultaneous analysis of 
17

O NMR and 
1
H NMRD 

data. 

 bcpe
2- 

dpama
2-

 mX(dpama)2
4- 

mX(dpama)3
6-

 edta
4-

 
b 

r1p at 25/37 ºC / mM
-1

 s
-1 b

 1.4/1.2 5.3/4.2 8.6/6.1 11.4/8.3 3.3/2.8 
298

exk /10
6
 s

-1
  306 + 16 306

a 
306

a 
471 

H
‡
 kJ mol

-1
  28.1 + 2.2 28.1

a 
28.1

a 
33.5 

298
R /ps  47.8 + 0.9 95.8 + 1.8 136 + 3.0 57 

Er/kJ mol
-1

  25.3 + 0.6 27.3 + 0.7 31.6 + 1.0 21.8 
298

v /ps 19.9 + 0.9 39.2 + 5.6 57.6 + 7.0 27.7 + 3.4 27.9 

v/kJ mol
-1

 3.7 + 0.7 1.0
a
 1.0

a
 1.0

a
 1.0

a 

298
MnHD /10

-10
 m

2
 s

-1
 

21.8 + 0.2 22.4
a 

22.4
a 

22.4
a 

23.1 

DMnHE /kJ mol
-1

 
21.6 + 0.2 17.3

a 
17.3

a 
17.3

a 
18.9 

2
/10

19
 s

-2
 9.0 + 0.5 2.38 + 0.39 1.48 + 0.25 3.26 + 0.50 6.9 

AO//10
6
 rad s

-1
 

 
-45.8 + 0.8 

 
 -40.5 

rMnH/Å 
 

2.74
a 

2.74
a 

2.74
a 

2.83
a 

aMnH/Å 3.6
a 

3.6
a 

3.6
a 

3.6
a 

3.6
a
 

q
298 

0 2
a 

2
a 

2
a 

1
a 

a
 Parameters fixed during the fitting procedure. 

b 
Ref. 21. 

 

 

Figure 14. Reduced transverse (blue ) 
17

O NMR relaxation rates and 
17

O NMR chemical 

shifts (red ) measured for [Mn(dpama)] at 11.74 T. The lines represent the fit of the data as 

explained in the text. 

 

The 
1
H NMRD profiles of [Mn(bcpe)] were analyzed by using the Freed model,

[25]
 which 

accounts for the outer-sphere contribution to relaxivity. The distance of closest approach for 
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the outer-sphere contribution aMnH was fixed at 3.6 Å, while the remaining parameters were 

allowed to refine freely during the fitting procedure. The parameters characterizing the 

electron spin relaxation, the electronic correlation time for the modulation of the zero-field-

splitting interaction (V), its activation energy (EV) and the mean square zero-field-splitting 

energy (2
), take values that are similar to those reported for [Mn(edta)]

2-
 and other Mn

2+
 

complexes.
[7,21,26,27]

 Furthermore, the values obtained for the diffusion coefficient, 298
MnHD , and 

its activation energy, 
DMnHE , are close to those reported for the self-diffusion of water 

molecules in pure water (2.3·10
-9

 m
2
·s

-1
 and 17.3 kJ mol

-1
).

[74]
 Thus, we conclude that the 

value of 3.6 Å assumed for aMnH is reasonable. 

A simultaneous fitting of the 
1
H NMRD and 

17
O NMR data of [Mn(dpama)] was carried out 

by taking into account both the outer- and inner-sphere contributions to relaxivity.  

From the measured 
17

O NMR transversal relaxation rates and angular frequencies of the 

paramagnetic solutions, 1/T1, 1/T2 and , and of the acidified water reference, 1/T1A, 1/T2A and 

A, one can calculate the reduced relaxation rates, 1/T1r, 1/T2r and reduced chemical shifts 

(Eq. (3) – (4)), where 1/T2m is the relaxation rate of the bound water and m is the chemical 

shift difference between bound and bulk water, m is the mean residence time or the inverse of 

the water exchange rate kex and Pm is the mole fraction of the bound water.
[28,29] 
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The outer sphere contributions to the 
17

O relaxation rates and chemical shifts have been 

considered to be negligible in the present study. m is determined by the hyperfine or scalar 

coupling constant, A/, according to Equation (5), where B represents the magnetic field, S is 

the electron spin (S = 5/2 for high-spin Mn(II) complexes) and gL is the isotropic Landé g 

factor.
[75] 

 

   m
B

B3


g S S B

k T

AL ( )1


                                          (5) 



 
50 

The exchange rate is supposed to assume the Eyring equation. In Eq. (6) S
‡
 and H

‡
 are the 

entropy and enthalpy of activation for the water exchange process, and kex
298

 is the exchange 

rate at 298.15 K. 

 

         
2981 1 1

exp exp
R 298.15 298.15

B ex
ex

m

k T S H k T H
k

h RT R T

       
        

    

‡ ‡ ‡

              (6) 

 

In the transverse relaxation the scalar contribution, 1/T2sc, is the most important, Eq. (7). 1/s1 

is the sum of the exchange rate constant and the electron spin relaxation rate. 
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The measured longitudinal proton relaxation rate, R1
obs 

is the sum of a paramagnetic and a 

diamagnetic contribution as expressed in Eq. (9), where r1p is the proton relaxivity: 

 

    )]([11111 IIMnrRRRR p
dpdobs                                     (9) 

 

The relaxivity can be divided into an inner and an outer sphere term as follows: 

 

 1 1 1is osr r r                                                        (10) 

 

The inner sphere term is given in Eq. (11), where q is the number of inner sphere water 

molecules.
[30] 
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The longitudinal relaxation rate of inner sphere protons, 1/T1m
H
 is expressed by Eq. (12): 
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where rMnH is the effective distance between the electron charge and the 
1
H nucleus, I  is the 

proton resonance frequency and S is the Larmor frequency of the Mn(II) electron spin. 
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The longitudinal and transverse electronic relaxation rates, 1/T1e and 1/T2e are expressed 

by Eqs. (14)-(16), where V is the electronic correlation time for the modulation of the zero-

field-splitting interaction, EV the corresponding activation energy and 
2
 is the mean square 

zero-field-splitting energy. We assumed a simple exponential dependence of V versus 1/T as 

written in Eq. (16). 
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The outer-sphere contribution can be described by Eq. (17) where NA is the Avogadro 

constant, and Jos is its associated spectral density function.
[25,31] 
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where 1,2j  , 
MnH

MnH
MnH

D

a
2

 . 

 

The diffusion coefficient for the diffusion of a water proton away from a Gd(III) complex, 

DGdH, is assumed to obey an exponential law versus the inverse of the temperature, with an 

activation energy EGdH, as given in Eq. (19). DGdH
298

 is the diffusion coefficient at 298.15 K. 
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In line with the results obtained for [Mn(bcpe)], the distance of closest approach for the 

outer-sphere contribution aMnH was fixed at 3.6 Å during the fitting procedure, while 298
MnHD  

and DMnHE  were set to the values obtained for the self-diffusion of water molecules in pure 

water. Furthermore, the distance between the proton nuclei of the coordinated water 

molecules and the Mn
2+

 ion (rMnH) was fixed at 2.74 Å, which corresponds to the average 

Mn···H distance obtained from our DFT calculations. Number of water molecules in the inner 

coordination sphere of Mn
2+

 was fixed to q=2. The parameters obtained from the fittings are 

listed in Table 4, while the curve fits are shown in Figures 13 and 14. 

The measured water exchange rate for [Mn(dpama)] (kex
298

=3.1 10
8
 s

-1
) is close to that 

reported for [Mn(edta)(H2O)]
2-

 (kex
298

=4.7 10
8
 s

-1
),

[21]
 and one order of magnitude faster than 

that determined for the aquated ion [Mn(H2O)6]
2+

 (kex
298

=2.8 10
7
 s

-1
).

[20]
 The value obtained 

for the 
17

O hyperfine coupling constant (AO/ħ=-45.810
6
 rads

-1
) is similar to those typically 

observed for Mn
2+

 complexes (-3110
6
 to -4310

6
 rad·s

-1
).

[32]
 Theoretical DFT calculations 

carried out following previously reported methodology
[33,20]

 provide Aiso values of -48.110
6
 

rad·s
-1

 and -52.510
6
 rad·s

-1
 for the two coordinated water molecules, which present nearly 

identical Mn-O distances (2.206 and 2.205 Å). The excellent agreement between the 
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experimental and calculated AO/ħ values clearly confirms that the [Mn(dpama)] presents two 

coordinated water molecules. 

 

 

Figure 15. 
1
H NMRD profiles recorded at different temperatures for 

[mX(Mn(dpama)(H2O)2)2] and [mX(Mn(dpama)(H2O)2)3]. The lines represent the fit of the 

data as explained in the text. 

 

The 
1
H NMRD profiles of the [mX(Mn(dpama)(H2O)2)2] and [mX(Mn(dpama)(H2O)2)3] 

complexes were also recorded at different temperatures (Figure 15). The relaxivities measured 

at high fields (>20 MHz) for the mono-, bi- and tri-nuclear complexes follow a linear 

correlation (R
2
 > 0.9999) with their molecular weight (Figure 16.). At high fields the 

rotational dynamics (R) plays a major role in determining the relaxivity because both the 

exchange lifetime (M) and the electronic relaxation times are much longer than R. The 
1
H 

NMRD profiles recorded at three different temperatures could be fitted by fixing the structural 

parameters and those related to diffusion and water exchange to the values obtained for 
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[Mn(dpama)] (Table 4). Thus, only four parameters were allowed to vary during the fitting 

procedure: R, v, Er, and 
2
. Reasonably good fits of the relaxivity data were obtained using 

this procedure, which suggests that the water exchange of coordinated water molecules does 

not vary significantly in this series of complexes. The results of the fits are clearly showing 

that increasingly long R values are the main responsible for the increase of relaxivity with 

molecular weight. 

 

 
Figure 16. Plot of the relaxivity (20 MHz; 25 ºC) of the [Mn(dpama)], [mX(Mndpama)2] and 

[mX(Mndpama)3] complexes as a function of the molecular mass. The line represents the 

linear fit of the data. 

 

Human Serum Albumin (HSA) binding studies: 

 

The stability of the [Mn(dpama)] complex was first assessed by measuring its proton 

relaxivity (25 ºC, 20 MHz) as a function of pH. The relaxivity remains constant within a 

rather wide pH range from 10.3 to 5.5, while below pH~5.5 r1p increases due to the stepwise 

dissociation of the complex and gradual Mn
2+

 release (Figure 17.). The stability with time of 

[Mn(dpama)] was assessed by relaxometric measurement (0.47 T, 37 ºC) of a 0.98 mM 

solution of the complex in a lyophilized serum of human origin (Seronorm
TM

), which is 

normal human serum without added preservatives and therefore contains endogenous levels of 

the different serum components. The complex proved to be stable for more than 120 h (Figure 

18.), as only very small and negligible fluctuations in the relaxation rate data were detected, 

well within the experimental error (±3-4%). 
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Figure 17. Proton relaxivity of [Mn(dpama)] (20 MHz, 25 ºC) recorded as a function of pH. 

 

 
Figure 18. Proton relaxation rate at 0.47 T and 310 K of a 0.98 mM solution of [Mn(dpama)] 

in Seronorm
TM

 as a function of time. 

 

 

The proton relaxivity measured in Seronorm
TM

 at 0.47 T and 37 ºC (11.14 mM
-1

 s
-1

) was 

found to be significantly higher than that observed in pure water (4.17 mM
-1

 s
-1

). This 

prompted us investigate the interaction of the complex with HSA, which is the most common 

protein present in human blood plasma, through the well-established proton relaxation 

enhancement technique.
[34]

 Addition of HSA to an aqueous solution of [Mn(dpama)] (0.285 

mM, pH 7.2, 310 K) induces a significant increase of the observed longitudinal relaxation rate 

of water proton nuclei of the solution (Figure 19). The least-squares fit of the relaxometric 

titration data provide an association constant of 3372 + 138 M
-1

, with a calculated relaxivity 

for the fully bound form of 12.2 + 0.8 mM
-1

 s
-1

. The 
1
H nuclear magnetic relaxation 

dispersion (NMRD) obtained for the fully bound form presents a peak in the region 8-60 
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MHz, which is characteristic of slowly tumbling systems with long rotational correlation 

times (Figure 20). This confirms that [Mn(dpama)] binds to HSA, which slows down the 

rotation of the complex in solution. However, the overall relaxivity determined for the fully 

bound form is relatively low when compared to other Mn
2+

 complexes that bind HSA,
[35]

 with 

a rather small relaxivity gain with respect to that of the complex in pure water. Moreover, the 

peak in the NMRD profile is rather broad and significantly lower than that typical of 

paramagnetic adducts with HSA.  

 

 

Figure 19. Changes in the observed longitudinal relaxation rates of water protons observed 

upon addition of HSA to solutions [Mn(dpama)] (0.285 mM) and [(mX(Mndpama)2] (0.151 

mM) complexes. The solid lines represent the least-squares fits of the data according to a 1:1 

binding isotherm. 
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Figure 20. NMRD profiles recorded at 37 ºC for the [Mn(dpama)] and [(mX(Mndpama)2] 

complexes and their fully bound forms to HSA. Note the break in the ordinate axis introduced 

for better visualization. 

 

Rather, the shape of the profile and the value of r1p corresponding to the maximum of the 

peak are more similar to those of q=0 Gd
3+

- and Mn
2+

 chelates bound to HSA.
[1,36]

 This 

suggests that protein binding results in the replacement of the two water molecules 

coordinated to Mn
2+

 by donor groups contained in residues of the protein.
[37] 

In light of the 

results obtained for [Mn(dpama)], we hypothesized that a dimeric analogue of this complex 

could bind HSA while leaving a complex unit exposed to the solvent, which should result in a 

sizeable inner-sphere contribution to 
1
H relaxivity.  

The 
1
H NMRD profile of [(mX(Mndpama)2] is characteristic of a Mn

2+
 complex with a low 

molecular weight, with a single dispersion at 1-10 MHz. Titration of 0.151 mM solution of 

[(mX(Mndpama)2] with HSA (pH = 7.2, 37 ºC) indeed confirmed the binding of the complex 

to the protein with an association constant of 1125 ± 35 M
-1

 (Figure 19). This association 

constant is somewhat lower than that obtained for [Mn(dpama)], which indicates that the 

association with the protein is hindered by the presence of the mX(Mndpama) unit. However, 

the relaxivity of the fully bound form at 20 MHz and 37 ºC (39.0 ± 1.3 mM
-1

 s
-1

) is very high, 

confirming that one of the (Mndpama) moieties is exposed to the solvent providing a 

significant response in terms of relaxivity. Furthermore, the NMRD profile obtained for the 

fully bound form (Figure 20) is characteristic of a slowly tumbling species with sizeable 

inner-sphere contribution to relaxivity. It should be noted that this value of r1p represents an 

average between that of a Mn
2+

 ion with q=0, which contributes to the relaxivity with only the 
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outer- and second-sphere mechanisms, and that of a q=2 Mn
2+

 ion whose contribution (inner-

sphere) is largely dominant. Assuming in first approximation that the contribution of the q=0 

Mn
2+

 is similar to that of [Mn(dpama)]-HSA (12.2 mM
-1

 s
-1

), then we can estimate a 

relaxivity for the second Mn
2+

 of ca. 66 mM
-1

 s
-1

. 

The binding interaction of [mX(Mn(dpama)(H2O)2)3] has been also investigated through the 

same proton relaxation enhancement (PRE) technique. Similarly, to several previous cases, 

the data were fitted to a 1:1 binding isotherm even though the presence of multiple affinity 

sites on HSA cannot be excluded. Titration of a 0.055 mM solution of 

[mX(Mn(dpama)(H2O)2)3] with HSA (pH = 7.2, 20 MHz and 310 K) confirmed the binding 

of the complex to the protein with an association constant of 1286 ± 55 M
-1

 (Figure 21; Table 

5), a value very similar to that assessed for the dimeric derivative. As for 

[mX(Mn(dpama)(H2O)2)2], also the relaxivity of the adduct (45.2 ± 0.6 mM
-1

 s
-1

) is 

remarkably high, in line with the reasonable assumption that also in this case a single 

chelating unit is involved in the binding, while the other two are freely accessible to solvent 

and responsible for the relaxivity increase. The value of r1
b
 is the average relaxivity per Mn

2+
 

ion, while the molecular relaxivity (per complex) is 135.6 mM
-1

 s
-1

. If we assume for the unit 

with q = 0 (that embedded in the hydrophobic pocket of HSA) the same value of r1
b
 found per 

[Mn(dpama)], then each q = 2 unit is characterized by a relaxivity of about 62 mM
-1

 s
-1

. This 

value is quite comparable to that calculated previously for [mX(Mn(dpama)(H2O)2)2]. 

 

 
 

Figure 21. Plot of the water proton longitudinal relaxation rate of a solution of 

[mX(Mn(dpama)(H2O)2)3] (0.055 mM) as a function of HSA concentration at 20 MHz, 310 K 

and pH = 7.2. The line through the data has been calculated with the parameters of Table 5.  
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Figure 22. 
1
H NMRD profiles for [mX(Mn(dpama)(H2O)2)3] free (bottom) and fully bound to 

HSA (top) at 310 K and pH = 7.2. 

 

The NMRD profile of the trinuclear complex has been measured for 0.055 mM complex 

solution in the presence of 1.7 mM HSA at 310 K. Under these conditions, ca. 68% of the 

complex is bound to the protein. The calculated profile corresponding to the fully bound form 

is reported in Figure 22 (the r1
b
 values are expressed per Mn). The profile is characteristic of a 

slowly tumbling system with a pronounced peak around 30 MHz and a large relaxivity 

enhancement over the free complex due to the slow rotation and fast exchange conditions 

(long R and short M values).  

Table 5. Best-fit parameters obtained from the analysis of the 
1
H relaxometric titrations (20 

MHz; 310 K) of the Mn
2+

 complexes with HSA. 

 

 dpama
2-

 mX(dpama)2
4-

 mX(dpama)3
6-

 

n·KA (M
-1

) 3372 ± 138 1125 ± 35 1286 ± 85 

r1p
b
 (mM

-1
 s

-1
) 12.2 ± 0.8 39.0 ± 1.3 45.2 ± 0.6 

r1p
f
 (mM

-1
 s

-1
)

a 
4.2 6.1 8.3 

a
r1p

f
 is the relaxivity of the free complex 

 

Conclusions: 

We have investigated a series of ligands containing pentadentate-coordinating units designed 

for pentagonal bipyramidal coordination around Mn
2+

, thanks to the presence of two 

coordinated water molecules. This imparts remarkably high relaxivities to the solutions of the 



 
60 

corresponding Mn
2+

 complexes. Furthermore, these relaxivities are further improved by 

interaction with HSA, particularly in the case of the trinuclear Mn
2+

 complex. This property is 

very interesting for MRI visualization of blood vessels, as well as to improve the residence 

time of the agent in the blood pool. The Mn
2+

 complexes formed with this family of ligands 

present moderate thermodynamic stabilities. Although this may not be a very serious 

limitation due to the far better safety profile of Mn
2+

 compared to Gd
3+

, it is important to 

design and develop Mn
2+

 complexes that, while maintaining these favorable relaxometric 

properties, exhibit improved characteristics of kinetic inertia. 

 

Experimental: 

General. Chemicals were purchased from commercial sources and used without further 

purification. SiO2 (Fluka, pore size 60 Å, 70-230 mesh) was used for preparative column 

chromatography. 
1
H and 

13
C NMR spectra were recorded at 25 ºC on a Bruker Avance 500 

MHz spectrometer. High resolution ESI-TOF mass spectra were recorded using a LC-Q-q-

TOF Applied Biosystems QSTAR Elite spectrometer in the positive mode. Elemental 

analyses were carried out on a ThermoQuest Flash EA 1112 elemental analyzer. IR spectra 

were recorded using a Bruker Vector 22 spectrophotometer equipped with a Golden Gate 

Attenuated Total Reflectance (ATR) accessory (Specac). 

Equilibrium measurements. All the equilibrium measurements were conducted at a constant 

ionic strength maintained by 0.15 M NaCl at 298 K. For determining the protonation 

constants of the bcpe
2-

, dpama
2-

, mX(dpama)2
4-

 and mX(dpama)3
6-

 ligands pH-potentiometric 

titrations were performed with 0.2 M NaOH using 0.002 M ligand solutions. The stability and 

protonation constants of Mn
2+

 and Zn
2+

 complexes were determined by pH-potentiometric 

titrations. The metal to ligand concentration ratios were 1:1 for bcpe
2-

 and dpama
2-

, 1:1 and 

2:1 for mX(dpama)2
4-

 and 1:1, 2:1 and 3:1 for mX(dpama)3
6-

 (the concentration of the ligand 

was generally 0.002 M). For the calculation of the equilibrium constants the mL base – pH 

data were used, obtained in the pH range 1.7–12.0. The pH-potentiometric titrations were 

carried out using a 785 DMP Titrino titration workstation with the use of a Metrohm- 

6.0233.100 combined electrode. The titrated solution (8 mL) was thermostated at 25 °C. The 

samples were stirred and to avoid the effect of CO2, N2 gas was bubbled through the 

solutions. The titrations were performed in the pH range 1.7–12.0. For the calibration of the 

pH meter, KH-phthalate (pH = 4.002) and borax (pH = 8.970) buffers were used. For the 

calculation of the H
+
 concentration from the measured pH values, the method proposed by 
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Irving et al. was used.
[38]

 A 0.01 M HCl (0.15 M NaCl) solution was titrated with the 0.2 M 

NaOH and the difference between the measured and calculated pH values was used to 

calculate [H
+
] from the pH values determined in the titration experiments. 

The stability constants of the [Cu(bcpe)] and [Cu(dpama)] complexes have been determined 

by spectrophotometry, with the use of the competition reactions taking place between the 

concerned ligand (bcpe
2-

 or dpama
2-

) and egta
4-

 for Cu
2+

 complexation in the pH range 6.8 – 

7.2. The concentration of Cu
2+

 and bcpe
2-

 (or dpama
2-

) in the 8 samples was 3 mM, while the 

concentration of egta was varied between 0 mM and 8 mM. The molar absorptivity of CuCl2 

and the complexes [Cu(dpama)], [Cu(bcpe)] and [Cu(EGTA)]
2-

 were determined in 1.5 mM, 

3.0 mM and 4.5 mM solutions. The absorbance and pH values were determined in the 

samples after the equilibrium was reached (the time needed to reach the equilibria was 

determined by spectrophotometry). Spectrophotometric measurements were made between 

700 and 800 nm at 11 wavelength values. The spectrophotometric measurements were 

recorded with the use of 1.0 cm cells using a Cary 1E spectrophotometer at 298 K. For the 

calculation of the equilibrium constants, the PSEQUAD program was used.
[84] 

  

1
H NMRD and 

17
O NMR measurements. The water proton longitudinal relaxation rates as a 

function of pH (20 MHz) were measured with a Stelar Spinmaster Spectrometer FFC2000 

(Mede, PV, Italy) on about 0.6-2.0 mM aqueous solutions. The exact concentrations of Mn
2+

 

ions were determined by measurement of bulk magnetic susceptibility shifts of a tBuOH 

signal on a Bruker Avance III spectrometer (11.7 T). The 
1
H T1 relaxation times were 

acquired by the standard inversion recovery method with typical 90° pulse width of 3.5 μs, 16 

experiments of 4 scans. The temperature was controlled with a Stelar VTC-91 airflow heater 

equipped with a calibrated copper–constantan thermocouple (uncertainty of ±0.1 °C). The 

proton 1/T1 NMRD profiles were measured on a fast field-cycling Stelar SmartTracer 

relaxometer over a continuum of magnetic field strengths from 0.00024–0.25 T 

(corresponding to 0.01–10 MHz proton Larmor frequencies). Additional data points in the 

range 15–70 MHz were obtained on a Stelar Relaxometer equipped with a Bruker WP80 

NMR electromagnet adapted to variable-field measurements (15–80 MHz proton Larmor 

frequency). Variable-temperature 
17

O NMR measurements were recorded on a Bruker Avance 

III spectrometer (11.7 T) equipped with a 5 mm probe and standard temperature control unit. 

An aqueous solution of the complex (4 mM) containing 2.0% of the 
17

O isotope (Cambridge 

Isotope) was used. The observed transverse relaxation rates were calculated from the signal 

width at half-height.  
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Chapter 5  

 

Developing the Family of 

Picolinate Ligands for Mn
2+

 

Complexation 
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Introduction: 

 

In general, the design of Mn
2+

-based MRI contrast agents represents a challenge for 

coordination chemistry. Indeed, a Mn
2+

 complex should fulfil a number of requisites to 

become a potential candidate as a contrast agent:  

i) a high thermodynamic and kinetic stability to avoid the release of the toxic Mn
2+

 ion. The 

lack of a crystal field stabilization energy associated with the high-spin d
5
 configuration 

results in rather low thermodynamic stabilities of Mn
2+

 complexes, which are also generally 

rather labile with respect to complex dissociation;
[1]

  

ii) the presence of at least one water molecule coordinated to the metal ion that exchanges 

rapidly with the bulk water, thereby imparting an efficient pathway to accelerate the 

relaxation rates of water proton nuclei. It is worth noting that Mn
2+

 chelates with high 

thermodynamic stability such as [Mn(DOTA)]
2-

 and [Mn(DO3A)]
-
 do not contain coordinated 

water molecules;
[2]

  

iii) a good redox stability to avoid the oxidation of Mn
2+

 to Mn
3+

, which generally provides 

lower relaxivities. However, redox Mn
2+

/Mn
3+

 potentials accessible to biologically relevant 

reducing agents can be potentially exploited to design redox-activated MRI probes.
[3,4] 

Based on the previous results, we decided to expand the family of ligands containing 

picolinate groups by investigating the pentadentate ligand H2DPAPhA and the hexadentate 

derivative H3DPAA. The latter ligand was reported previously by M. Mazzanti and studied in 

the context of Gd
3+

 MRI CAs.
[5]

 Furthermore, we also examined two lipophilic derivatives of 

H2DPAMA and H2PhDPAMA, which contain a dodecyl side chain attached to the amine 

nitrogen atom of H2DPAMA or a hexyl chain at the aniline function of H2DPAPhA, 

respectively. These lipophilic derivatives were designed to form micelles in solution and to 

bind HSA in a non-covalent fashion. Both effects are expected to increase the observed 

relaxivity by slowing down the rotation of the complex in solution. We report the synthesis 

and acid-base properties of the ligands, the stability constants of the Mn
2+

 complexes in 

solution, and a full physicochemical characterization of the chelates using 
1
H and 

17
O 

relaxometric techniques and theoretical (DFT) calculations. 
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Scheme 1. Structures of the ligands presented in this chapter.
 

 

 

Synthesis of the Ligands: 

Prof. Carlos Platas Iglesias provided the ligands discussed in this chapter, which were 

synthesized following the two-step procedure shown in Scheme 2. The first step consisted in 

the reaction of 6-chloromethylpyridine-2-carboxylic acid ethyl ester with the appropriate 

amine in the presence of K2CO3 as a base. It is worth mentioning that the reactions with 

anilines required rather harsh conditions involving heating for prolonged periods and addition 

of catalytic KI. The ester intermediates were isolated in rather good yields (65-72%) after 

purification with column chromatography. Hydrolysis of the methyl ester groups (and the 

amide group of the precursor of H3DPAA) provided the target ligands as the hydrochloride 

salts with good overall yields (52-61%). 
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Scheme 2. Synthesis of the ligands.
 

 

 

Ligand protonation constants and stability constants of the Mn
2+

 complexes: 

 

The protonation constants of the DPAPhA
2-

 and DPAA
3-

 were determined by potentiometry, 

in 0.15 NaCl. The ligand protonation constants are defined as in Eq 1. 

 

 Hi-1L  +   H
+
     HiL 

]L][Η[Η

L][Η
Κ

1i

iΗ

i 



           i=1, 2,…, 8.                                         (1) 

 

The protonation constants, with their corresponding standard deviations are listed in Table 1. 

For the DPAA
3-

 four protonation constants could be determined, indicating the stepwise 

protonation of the amine nitrogen atom and all the three carboxylate groups of the ligand. The 

first two protonation constants of DPAA
3-

 are very similar to DPAMA
2- 

ligand. These 

protonation processes are assigned to the protonation of the amine nitrogen atom (K1
H
) and 

one of the carboxylate groups of the picolinate arms (K2
H
). The first protonation constant of 

DPAPhA
2-

 (logK1
H
 = 5.48(4)) is ca. two orders of magnitude lower than those determined for 

DPAA
3-

 and DPAMA
2-

, in line with the lower basicity of anilines compared to aliphatic 

amines.
[7]

 In the case of DPAPhA
2-

 four protonation constants could be determined, indicating 

the protonation of the aniline nitrogen atom, two carboxylate groups and likely a nitrogen 

atom of a pyridine moiety. 
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Table 1. Ligand protonation constants and stability and protonation constants of the 

corresponding Mn
2+

 complexes determined using potentiometric titrations (25 ºC, 0.15 M 

NaCl).
b 

 

 DPAA
3-

 DPAPhA
2-

 DPAMA
2- 

 EDTA
4- a

 

logK1
H
 7.26(2) 5.48(4) 7.82 10.17 

logK2
H
 3.90(3) 4.51(4) 3.71 6.11 

logK3
H
 3.29(2) 4.28(4) 2.61 2.68 

logK4
H
 1.77(2) 2.70(4)   

∑logKi
H
 16.22 16.97 14.14  

     

logKMnL 13.19(5) 9.55(1) 10.13 13.88 

logKMnLH 2.90(6) 4.84(1) 2.57  

logKMnLH2  2.51(1)   

logKMLOH 11.97(6)  11.09  

pMn
c 

8.98 7.27 7.28 7.95 
a 
Data from reference 6. 

b
 Defined as –log[Mn]free with pH = 7.4, [Mn

2+
] = [L] = 10

-5
 M. 

 

As a result, the DPAA
3-

 and DPAPhA
2-

 ligands present very similar overall basicities, as 

estimated by the ∑logKi
H
 values (i = 1-4). The protonation constants determined for 

DPAA
3-

 in 0.15 M NaCl are in general good agreement with those reported by Mazzanti in 

0.1 M KCl (logK1
H
 = 7.33, logK2

H
 = 3.8 and logK3

H
 = 2.9).

[5] 

The stability and protonation constants of the Mn
2+

 complexes of DPAA
3-

 and 

DPAPhA
2-

 were determined by using direct potentiometric pH-titrations. The stability 

constants and protonation constants of the complexes are defined in Eqs 2 and 3: 

 

]][[

][

LM

ML
KML                                                                   (2) 

 

                         
]][[

][

1






HLMH

LMH
K

i

i

LH i
            with i = 1, 2                          (3) 

The titration curve of the Mn
2+

/DPAA
3-

 system evidenced the formation of a hydroxo 

complex characterized by protonation constant KMLOH defined as: 
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])][([

][



HOHML

ML
KMLOH

                                          (4) 

The stability constant of the [Mn(DPAMA)] complex is higher than [Mn(DPAPhA)]  which is 

likely related to the weaker coordination of the aniline nitrogen atom of DPAPhA
2-

 compared 

to the amine nitrogen atom of DPAMA
2-

. The presence of an additional carboxylate group in 

DPAA
3-

 increases the stability of the Mn
2+

 complex by three orders of magnitude with respect 

to DPAMA
2-

. As a result, the stability constant of the [Mn(DPAA)]
-
 complex (logKML = 

13.19(5)) is close to the EDTA analogue (logKML = 13.88).
[8] 

 

 

 

 

Figure 1. Species distribution diagrams calculated for the H3DPAA:Mn
2+

 (top) and 

H2DPAPhA:Mn
2+

 (bottom) systems. [L] = [Mn
2+

] = 10
-3

 M. 
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Figure 1 presents the species distribution diagrams calculated using the equilibrium 

constants reported in Table 1. The [Mn(DPAA)]
-
 species is the most abundant in a wide range 

of pH from ca. 2.8 to 11.4. The formation of the hydroxo [Mn(DPAA)(OH)]
2-

 species occurs 

above pH ~ 10, while below pH ~ 5.0 the protonation of the complex is observed. 

Dissociation of the complex takes place at a rather low pH, with only 5.6% of the manganese 

under the form of [Mn(H2O)6]
2+

 at pH 2.0. 

The dissociation of [Mn(DPAPhA)] starts at higher pH than for [Mn(DPAA)]
-
, as 27.8% of 

the complex is dissociated at pH 2.0. However, the degree of dissociation of the complex at 

pH 2.0 is even higher in the case of [Mn(DPAMA)] (77.7%). [Mn(DPAPhA)] forms 

protonated species at higher pH (< 7.0). 

A comparison of the thermodynamic stabilities of complexes with different ligands is more 

properly given by the pMn values (pMn = -log[Mn
2+

]free) defined using the conditions 

suggested by Drahos
[9]

 (pH = 7.4, [Mn
2+

] = [L] = 10
-5

 M). The pMn values calculated for 

[Mn(DPAMA)] and [Mn(DPAPhA)] are almost identical (7.3, Table 1) and somewhat lower 

than that of [Mn(EDTA)]
2-

. The latter complex serves as a reference for potential MRI 

applications, as [Mn(EDTA)]
2-

 derivatives have been successfully used for in vivo MRI 

studies.
[10]

 Interestingly, the [Mn(DPAA)]
-
 complex presents a pMn value one order of 

magnitude higher than [Mn(EDTA)]
2-

 and very close to that reported for [Mn(DOTA)]
2-

,
[11]

 

which highlights its remarkable thermodynamic stability at physiological pH. 

 

 

1
H NMRD and 

17
O NMR studies of the [Mn(DPAPhA)] and [Mn(DPAA)]

-
 complexes:  

The relaxivity determined for [Mn(DPAA)]
-
 at pH 7.4 (25 ºC, 20 MHz) is 3.6 mM

-1
 s

-1
, a 

value that is close to that reported to monohydrated complexes such as [Mn(EDTA)]
2-

 (3.3 

mM
-1

 s
-1

 at pH 7.4, 25 ºV and 20 MHz). The r1p value for [Mn(DPAPhA)] under the same 

conditions (6.7 mM
-1

 s
-1

) is remarkably higher, which indicates the presence of two 

coordinated water molecules (Fig 2). 
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Figure 2. Plot of the 
1
H relaxivities (20 MHz, 25 ºC) of [Mn(DPAPhA)] and [Mn(DPAA)]

-
 as 

a function of pH. 

 

The relaxivity of [Mn(DPAA)]
-
 remains fairly constant (r1p = 3.60 + 0.15 at 25 ºC, 20 MHz)) 

in a broad pH range from 2.5 to 11.5. Below pH 2.5 relaxivity increases due to the 

dissociation of the complex and formation of [Mn(H2O)6]
2+

, while the slight decrease in 

relaxivity observed at pH > 11.5 is attached to the formation of a hydroxo complex. Thus, the 

pH dependence of r1p is in perfect agreement with the speciation in solution obtained from 

potentiometric measurements (Fig 1). 

The relaxivity of [Mn(DPAPhA)] is constant in the pH range 5.9-10.2, dropping quickly at 

more basic pH due to the dissociation of the complex and precipitation of Mn(OH)2.
[12]

 
1
H 

relaxivity decreases from 6.7 at pH 5.9 to 6.1 at pH 3.3. This effect can be attributed to the 

formation of the protonated [Mn(HDPAPhA)]
+
 species (logKMnLH = 4.84(1), see above). 

Dissociation of the complex below pH ~ 2.7 is responsible for the slight increase in relaxivity 

under acidic conditions. 

Proton nuclear magnetic relaxation dispersion (
1
H NMRD) profiles were recorded in the 

proton Larmor frequency range 0.01−70 MHz (corresponding to magnetic field strengths 

varying between 2.34310
-4

 and 1.645 T) of aqueous solutions [Mn(DPAPhA)] and 

[Mn(DPAA)]
-
 (Fig 3). The relaxivities of both complexes decrease with increasing 

temperature, as expected for small chelates in which fast rotation in solution limits proton 

relaxivity. The NMRD profiles present a single dispersion in the range 1 - 10 MHz, which 

excludes rules out a sizeable scalar contribution to 
1
H relaxivity.

[13,14] 

Reduced transverse 
17

O NMR relaxation rates of aqueous solutions of the [Mn(DPAPhA)] 

and [Mn(DPAA)]
-
 complexes were recorded to gain more insight into the physicochemical 
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parameters that govern the relaxivities of these systems (Fig 4). The 1/T2r values increase with 

decreasing temperature, reach a maximum and then decrease at lower temperatures. This is 

typical of systems that present a changeover from a fast exchange regime at high temperatures 

to a slow exchange at low temperatures.
[15]

 The lower temperature at which the maximum 

1/T2r value is observed for [Mn(DPAA)]
-
 (ca. 15 ºC) compared with [Mn(DPAPhA)] (~23 ºC) 

is indicative of a somewhat faster water exchange rate in the former. 

A simultaneous fitting of the 
1
H NMRD and 

17
O NMR data of the two complexes was 

carried out by using the method previously detailed in Chapter 4. Since the NMRD and 
17

O 

NMR data depend upon a relatively large number of parameters some of them had to be fixed 

during the fitting procedure to achieve a reliable analysis. The distance of closest approach for 

the outer-sphere contribution aMnH was fixed at 3.6 Å during the fitting procedure, while the 

distances between the proton nuclei of the coordinated water molecules and the Mn
2+

 ion 

(rMnH) were fixed at values corresponding to the average Mn···H distances obtained from 

DFT calculations (2.756 and 2.782 Å for [Mn(DPAA)]
-
 and [Mn(DPAPhA)], respectively). 

The number of water molecules in the inner coordination sphere of Mn
2+

 was fixed to q=2 for 

[Mn(DPAPhA)] and q=1 for [Mn(DPAA)]
-
. The diffusion coefficient, DMnH

298 , and its activation 

energy, EDMnH, were fixed to the values for the self-diffusion of water molecules in pure 

water.
[16]

 The parameters obtained from the fittings are provided in Table 9, while the curve 

fits are shown in Figures 3 and 4. 

The water exchange rate determined for [Mn(DPAA)]
-
 (kex

298
=12.610

7
 s

-1
) is about twice 

that measured for [Mn(DPAPhA)] (kex
298

=5.610
7
 s

-1
). Both complexes present lower water 

exchange rates than [Mn(EDTA)]
2-

,
[17]

 approaching that determined for the aquated ion 

[Mn(H2O)6]
2+

 (kex
298

=2.810
7
 s

-1
).

[14]
 DFT calculations performed in aqueous solution at the 

TPSSh/TZVP level provide some insight into the different water exchange rates determined 

for [Mn(dpaPha)] and [Mn(dpaa)]
-
 (Fig 5). In these calculations, we included two second-

sphere water molecules involved in hydrogen bonding with each coordinated water molecule, 

while bulk solvent effects were considered using a polarized continuum model. This mixed 

cluster/continuum approach was shown to provide accurate Mn-Owater distances and 
1
H and 

17
O hyperfine coupling constants of the coordinated water molecules. The optimized 

geometries of the [Mn(DPAPhA)(H2O)2]·4H2O and [Mn(DPAA)(H2O)]
-
·2H2O systems 

indicate pentagonal bipyramidal coordination environments around the Mn
2+

 ion. The 

equatorial plane of the bipyramid is delineated by the amine nitrogen atom and the donor 

atoms of the picolinate units. In the case of [Mn(DPAPhA)(H2O)2]·4H2O two coordinated 



 
73 

water molecules occupy the apical positions, while for [Mn(DPAA)(H2O)]
-
·2H2O the apical 

positions contain a coordinated water molecule and an oxygen atom of the acetate group of 

the ligand.  

 

 

Table 2. Parameters obtained from the simultaneous analysis of 
17

O NMR and 
1
H NMRD 

data.
a
 

 [Mn(DPAA)]- [Mn(DPAPhA)] [Mn(DPAMA)] [Mn(EDTA)]2-b [Mn(H2O)6]
2+ 

r1p at 25/37 ºC / 

mM-1 s-1 b 
3.5/2.7 6.6/5.1 5.3/4.2 3.3/2.8  

𝑘𝑒𝑥
298/ 107 s-1 12.6 + 0.5 5.6 + 0.6 30.6 47.1 2.82 

H‡ / kJ mol-1 42.7 + 1.0 27.2 + 2.3 28.1 33.5 45.6 

𝜏𝑅
298 / ps 47.6 + 0.2 81.0 + 0.5 47.8 57 30.0 

Er / kJ mol-1 22.8 + 0.4 27.0 + 2.6 25.3 21.8 16.7 

𝜏𝑉
298/ ps 19.4 + 0.2 15.6 + 0.1 39.2 27.9 10.0 

Ev / kJ mol-1 1.0a 1.0a 1.0a 1.0a 14.6 

𝐷MnH
298  / 10-10 m2 s-1 22.4a 22.4a 22.4a 23.1 23.0a 

EDMnH / kJ mol-1 17.3a 17.3a 17.3a 18.9 29.7 

2 / 1019 s-2 5.5 + 0.2 11.5 + 0.4 2.38 6.9 0.6 

AO/ħ/ 106 rad s-1 -31.5 + 0.6 -25.0 + 0.6 -45.8 -40.5 -34.6 

rMnH/Å 2.756a 2.782a 2.74a 2.83a 2.83 

aMnH/Å 3.6a 3.6a 3.6a 3.6a 3.6 

q298 1a 2a 2a 1a 6 

a
 Parameters fixed during the fitting procedure.

 b 
Data from Ref 17 

 

 

 

(A) (B) 
 

Figure 3. 
1
H NMRD profiles recorded at different temperatures for [Mn(DPAA)]

-
 and 

[Mn(DPAPhA)]. The lines represent the fit of the data as explained in the text. 
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 (A)  (B) 

 

Figure 4. Reduced transverse 
17

O NMR relaxation rates versus reciprocal temperature 

measured for [Mn(DPAA)]
-
 and [Mn(DPAPhA)] at 11.74 T. The lines represent the fit of the 

data as explained in the text.  

 

 (A)  (B) 

 

Figure 5. Structures of the [Mn(DPAA)(H2O)]
-
·2H2O and [Mn(DPAPhA)(H2O)2]·4H2O 

systems obtained with DFT calculations (TPSSh/TZVP). Calculated bond distances (Å): 

[Mn(DPAA)(H2O)]
-
·2H2O, Mn-N(1), 2.314; Mn-N(2), 2.521; Mn-N(3), 2.316 ; Mn-O(1), 

2.289; Mn-O(2), 2.291; Mn-O(1w), 2.288; Mn-O(3), 2.131; Mn-O(4w). 

[Mn(DPAPhA)(H2O)2]·4H2O, Mn-N(1), 2.285; Mn-N(2), 2.885; Mn-N(3), 2.268; Mn-

O(1), 2.225; Mn-O(2), 2.289; Mn-O(1w), 2.250; Mn-O(3); Mn-O(4w), 2.237. 

 

Prof. Carlos-Platas Iglesias performed the DFT calculations briefly described here. The 

calculated Mn-Owater distances involving the coordinated water molecule(s) are 2.288 Å for 

[Mn(DPAA)(H2O)]
-
·2H2O and 2.237 and 2.250 Å for [Mn(DPAPhA)(H2O)2]·4H2O. Thus, 

the Mn-Owater distance in [Mn(DPAA)(H2O)]
-
 is significantly longer than those of the 

complex with dpaPha
2-

, revealing a weaker binding of the coordinated water molecule in the 
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former. Water exchange in these seven-coordinated complexes is expected to follow a 

dissociatively activated mechanism, the rate determining step being the rupture of the 

Mn-Owater bond to give a six-coordinated transition state. Thus, the strongest is the Mn-Owater 

bond the slowest is expected to be the water exchange process. Similar trends correlation the 

strength of the Gd-Owater bonds and the corresponding water exchange rates were observed for 

nine-coordinate Gd
3+

 complexes undergoing dissociatively activated water exchange 

processes.
[18] 

The values obtained for the 
17

O hyperfine coupling constants are in the low part of the range 

typically observed for Mn
2+

 complexes (AO/ = 25 10
6
 to 47  10

6
 rad s

-1
), being very similar 

to the value reported for [Mn(H2O)6]
2+

 and other small complexes.
[19]

 Concerning the 

parameters related to the electron spin relaxation of the metal ion (the electronic correlation 

time for the modulation of the zero-field-splitting interaction, v, and the mean square zero-

field-splitting energy, 2
), the parameters obtained from the analysis of NMRD and 

17
O NMR 

data are similar to those obtained for other Mn
2+

 complexes (Table 2). 

 

Characterization of the lipophilic derivatives [Mn(DPAHPhA)] and [Mn(DPADA)]:  

The critical micelle concentration (cmc) of [Mn(DPAHPhA)] and [Mn(DPADA)] was 

investigated by using relaxometric measurements at 20 MHz and 25 ºC.
[20]

 The paramagnetic 

relaxation enhancement of water proton nuclei (R1
obs

) increased linearly with the 

concentration of [Mn(DPAHPhA)] complex in the range 0.07-0.61 mM (Figure 6.). The slope 

of the linear plot provides a relaxivity of the non-aggregated form of 4.1 mM
-1

 s
-1

. This value 

is consistent with that obtained from NMRD studies, which confirm the lack of self-

aggregation of the complex under these conditions (Figure 7.). Precipitation of the complex 

was observed at higher concentrations, thus preventing cmc determination. Surprisingly, the 

relaxivity determined for [Mn(DPAHPhA)] is considerably lower than that of the bis-hydrated 

[Mn(DPAPhA)] complex (6.6 mM
-1

 s
-1

), which suggests that the introduction of the hexyl 

chain in the ligand scaffold lowers the hydration number of the complex. 
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Figure 6. Determination of the CMC of the [Mn(DPAHPhA)] at 20 MHz and 298 K. 

 

 

Figure 7. 
1
H NMRD profile recorded at 298K for [Mn(DPAHPhA)] The line represent the fit 

of the data as explained in the text. 

 

The R1
obs

 values measured from solutions of [Mn(DPADA)] present two linear ranges with 

an inflection point at a complex concentration of ~0.1 mM (Figure 8.). The analysis of the 

data provides a cmc of 96(9) M with relaxivity values of r1p = 5.3 mM
-1

 s
-1

 and r1p = 8.5 

mM
-1

 s
-1

 for the non-aggregated and aggregated forms, respectively. The cmc determined for 

[Mn(DPADA)] is similar to that reported for a charge neutral Eu
3+

 complex having a C12 alkyl 

chain (67 M),
[21]

 but considerably lower than the one determined for a similar system having 

negatively charged hydrophilic head units (4.5 mM).
[22]

 These results suggest that repulsive 

electrostatic interactions among the negatively charged head units are detrimental for the 

formation of micelles. 
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The relaxivity of [Mn(DPADA)] below the cmc (r1p = 5.3 mM
-1

 s
-1

) is lower than that of 

[Mn(DPAMA)], which suggests that the incorporation of the C12 alkyl chains to the ligand 

skeleton lowers the hydration number of the complex. As expected, the NMRD profile 

recorded below the cmc is typical of a small Mn
2+

 complex (Figure 9.). The best-fit analysis 

confirms these qualitative observations. The NMRD profile below cmc is well reproduced by 

fixing to one the number of inner sphere water molecules, at a distance of 2.782 Å and with a 

residence lifetime of 10 ns (298 K). The relaxivity is limited by the rotational dynamics even 

though the parameter τR assumes a value of 123 ps, more than twice that of [Mn(EDTA)]
-
 and 

[Mn(DPAA)]
-
. The longer τR reflects the presence of the pendant aliphatic chain and its effect 

is apparent from the nearly vanished field-dependence of relaxivity at high frequencies. The 

electronic relaxation parameters assume typical values: V = 21.4 ps and 2
 = 8.1×10

19
 s

-2
. 

Conversely, above the cmc the NMRD profile presents a pronounced peak around 30 MHz 

that is characteristic of slowly tumbling systems. The NMRD at high field (> 3 MHz) was 

fitted using the Lipari-Szabo approach, which separates the global and local motions of the 

system.
[23]

 The analysis was performed by using as adjustable parameters those describing 

electron spin relaxation (v and 2
), the correlation times describing global (RG) and local 

(RL) motions and the generalized order parameter S
2
, which takes a value of 0 if the internal 

motion is isotropic and a value of S
2
 = 1 if the motion is completely restricted. The hydration 

number was fixed to q = 1, the Mn···H distance (2.74 Å), the distance of closest approach of a 

second-sphere water molecule (aMnH = 3.6 Å) and diffusion coefficient (𝐷MnH
298

 = 2.24 10
-10

 m
2
 

s
-1

) were fixed to reasonable values (Table 2). The results of the fit provided RG = 5 ns and 

RL = 95 ps, with S
2
 = 0.27, indicating that relaxivity is limited by local rotational flexibility 

(Table 3).
[24]

 Analysis of the NMRD profile recorded at 37 ºC provides very similar results 

(Figure 10.). 
1
H relaxivity decreases upon increasing temperature, which indicates that the 

exchange rate of the coordinated water molecule is not limiting r1p. 
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Figure 8. Determination of the CMC of the [Mn(DPADA)] at 20 MHz and 298 K. 

 

 

 

Figure 9. 
1
H NMRD profiles recorded at 25 ºC for [Mn(dpada)] above and below the cmc. 

The red line represents the fit of the data above cmc using the Lipari-Szabo approach. 

 

Table 3. Selected parameters obtained from the analysis of the NMRD profiles using the 

Lipari-Szabo approach (25 ºC).
a
 

 Mn(DPADA)
a 

Mn(DPADA)+HSA
b 

Mn(DPAHPhA)+HSA
c 

r1p (20 MHz) 8.5 ± 0.1 15.5 + 0.3 45.5 + 1.4 

RG (ns) 5.5 ± 0.7 50 (fixed) 50 (fixed) 

RL (ps) 91 ± 3 306 ± 10 1235 + 52 

S
2 

0.27 ± 0.01 0.26 ± 0.01 0.43 + 0.2 

KA / M
-1 

- 1.3 + 0.4  10
5 

7.1 + 0.1  10
3
 

av = 49 + 8 ps; 
2
 = 5.4 + 0.6 s

-2
. 

b v = 22 + 9 ps; 
2
 = 1.0 + 0.6 s

-2
.
c
 v = 18 + 8 ps; 

2
 = 0.84 

+ 0.04 s
-2
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Figure 10. 
1
H NMRD profiles recorded at 37 ºC for [Mn(dpada)] 

 

 

Interaction of the lipophilic derivatives [Mn(DPAHPhA)] and [Mn(DPADA)] with HSA: 

We measured the interaction of [Mn(DPAHPhA)] and [Mn(DPADA)] with by measuring the 

R1
obs

 values of a diluted solution of the complex as a function of protein concentration at a 

constant frequency and temperature. R1
obs

 increases with the concentration of the protein, 

because of the increase in the fraction of bound complex that is characterized by a slower 

reorientational motion. The analysis of the titration data (fitted to a 1:1 binding isotherm) 

affords the association constant KA, the number of equivalent and independent binding sites n 

(assumed to be 1) and the relaxivity of the bound form. The titration profile obtained for 

[Mn(DPAHPhA)] shows a rather sharp inflection point, which is indicative of a rather high 

stability constant (Figure 11). On the contrary [Mn(DPADA)] provides a smooth titration 

profile characteristic of a smaller association constant. Inspection of the titration profiles also 

shows that the relaxivity of the bound form is considerably higher in the case of 

[Mn(DPAHPhA)]. The fit of the data confirms these qualitative observations (Table 3). The 

association constant determined for [Mn(DPADA)] (7.1 x 10
5
 M

-1
) is 1-2 orders of magnitude 

higher than those determined for Mn
2+

 complexes containing benzyloxymethyl groups, and 

ca. 550 times higher than that obtained for [Mn(DPAHPhA)]. These results suggest that a 

lipophilic C12 alkyl chain provides a stronger interaction with the protein than 

benzyloxymethyl and 4-hexylphenyl moieties. This could be related to a better ability to 

penetrate inside the hydrophobic binding cavity of HSA.
[25]
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Figure 11. Changes in the observed longitudinal relaxation rates of water protons observed 

upon addition of HSA to solutions of the lipophilic [Mn(DPAHPhA)] (0.096 mM) and 

[Mn(DPADA)] (0.095 mM) complexes (25 ºC). The red lines represent the fit of the data to a 

1:1 binding isotherm. 

 

The analysis of the NMRD profiles recorded for the [Mn(DPAHPhA)] and [Mn(DPADA)] 

complexes fully bound to HSA (Figure 12) are characteristic of slowly tumbling species. The 

relaxivity of [Mn(DPADA)] at ca. 20 MHz and 25 ºC (45.5 mM
-1

 s
-1

) is close to those 

observed for HSA adducts of Mn
2+

 complexes containing benzyloxymethyl groups, while the 

relaxivity of [Mn(DPADA)] under the same conditions is much lower (15.5 mM
-1

 s
-1

). The 

analysis of the NMRD profiles using the Lipari-Szabo model (Table 3) clearly indicate that an 

increased local flexibility is responsible for the lower relaxivity of the adduct formed between 

[Mn(DPADA)] and HSA, as demonstrated by the lower values of τRL and S
2
. Thus, the alkyl 

C12 chain provides strong interactions with the protein, but its flexibility prevents attaining 

high relaxivities. 
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Figure 12. 
1
H NMRD profiles obtained at 25 ºC for the adducts formed by [Mn(DPADA)] 

and [Mn(DPAHPhA)] with HSA. The red lines represent the fit of the data above cmc using 

the Lipari-Szabo approach. 

 

Conclusions: 

We have characterized a new series of pentadentate ligands that contain a pentadentate 6,6'-

(azanediylbis(methylene))dipicolinic acid binding motif that can be easily functionalized with 

groups containing additional donor atoms or lipophilic chains. The hexadentate ligand 

DPAA
3-

 forms a Mn
2+

 complex with stability comparable to that of EDTA
4-

, although this 

decreases the hydration number of the complex from 2 to 1, which results in lower proton 

relaxivities. On the other hand, the pentadentate DPAPhA
2-

 and DPAMA
2-

 form bis-aquated 

Mn
2+

 complexes in solution. An interesting and unexpected result obtained in this study is the 

likely reduction of the hydration number upon incorporating aliphatic chains into the ligand 

scaffold. The lipophilic derivatives form rather stable adducts with HSA, particularly when 

incorporating a flexible dodecyl chain. However, the relaxivity of the bound form is partially 

quenched due to the contribution of relatively rapid local motions. 

These experimental results allow extending the number of Mn
2+

 systems that have been 

characterized in the search for alternative systems to the classical Gd
3+

-based MRI contrast 

agents. We have shown that the relaxivities of Mn
2+

 complexes can be modulated by changing 

the hydration number or introducing lipophilic units in the ligand scaffold, very much like in 

the case of Gd
3+

 complexes. The relaxivities of the adducts formed with HSA are also 

comparable to those attained with lipophilic Gd
3+

 agents 
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Experimental Section: 

 

Materials and Methods. All reagents and solvents were commercial and used without further 

purification. SiO2 (Fluka, pore size 60 Å, 70–230 mesh) was used for preparative column 

chromatography. 
1
H and 

13
C NMR spectra were recorded at 25ºC on Bruker Avance 300 MHz 

and Bruker Avance 500 MHz spectrometers. High resolution ESI-TOF mass spectra were 

recorded using a LC-Q-q-TOF Applied Biosystems QSTAR Elite spectrometer in the positive 

mode. Elemental analyses were carried out on a ThermoQuest Flash EA 1112 elemental 

analyser. IR spectra were recorded using a Bruker Vector 22 spectrophotometer equipped 

with a Golden Gate attenuated total reflectance (ATR) accessory (Specac). 

 

Equilibrium measurements. All the equilibrium measurements were conducted at a constant 

ionic strength maintained by 0.15 M NaCl at 298 K. For determining, the protonation 

constants of the ligands pH-potentiometric titrations were performed with 0.2 M NaOH using 

0.002 M ligand solutions. The stability and protonation constants of Mn
2+

 complexes were 

determined by pH-potentiometric titrations. The metals to ligand concentration ratios were 

1:1. For the calculation of the equilibrium constants the mL base – pH data were used, 

obtained in the pH range 1.7–12.0. The pH-potentiometric titrations were carried out using a 

785 DMP Titrino titration workstation with the use of a Metrohm- 6.0233.100 combined 

electrode. The titrated solution (8 mL) was thermostated at 25 °C. The samples were stirred 

and to avoid the effect of CO2, N2 gas was bubbled through the solutions. For the calibration 

of the pH meter, KH-phthalate (pH = 4.002) and borax (pH = 8.970) buffers were used. For 

the calculation of the H
+
 concentration from the measured pH values, the method proposed by 

Irving et al. was used. 
[26]

 A 0.01 M HCl (0.15 M NaCl) solution was titrated with the 0.2 M 

NaOH and the difference between the measured and calculated pH values were used to 

calculate [H
+
] from the pH values determined in the titration experiments. For the calculation 

of the equilibrium constants the PSEQUAD program was used.
[27]

 

 

1
H NMRD and 

17
O NMR Measurements. The proton 1/T1 NMRD profiles were measured 

on a fast field-cycling Stelar SmartTracer relaxometer (Mede, Pv, Italy) over a continuum of 

magnetic field strengths from 0.00024 to 0.25 T (corresponding to 0.01-10 MHz proton 

Larmor frequencies). The relaxometer operates under computer control with an absolute 

uncertainty in 1/T1 of ± 1%. The temperature control was carried out using a Stelar VTC-91 
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airflow heater equipped with a calibrated copper–constantan thermocouple (uncertainty of 

±0.1 K). Additional data points in the range 20-70 MHz were obtained on a Stelar 

Relaxometer equipped with a Bruker WP80 NMR electromagnet adapted to variable-field 

measurements (15-80 MHz proton Larmor frequency). The exact complex concentration was 

determined by the BMS shift method at 11.7 T. Relaxometric HSA titrations were performed 

on the Stelar Relaxometer at 0.47 T (20 MHz) and 25 °C on dilute aqueous solutions at 

neutral pH. 
17

O NMR measurements were recorded on a Bruker Avance III spectrometer 

(11.7 T) equipped with a 5 mm probe and standard temperature control unit. Aqueous solution 

of the complexes (ca. 6-10 mM) containing 2.0% of the 
17

O isotope (Cambridge Isotope) were 

used. The observed transverse relaxation rates were calculated from the signal width at half-

height. 
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Chapter 6  

 

Bisamide Derivative of 

[Mn(1,4-DO2A)] 
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Introduction: 

The number of publications on Mn
II
-based Magnetic Resonance Imaging (MRI) contrast 

agents (CAs) as an alternative to those based on Gd
III

 has dramatically increased in recent 

years.
[1,2]

 Several new chelators, open-chain or macrocyclic, with a variable number and 

typology of donor atoms have been proposed for the complexation of Mn
2+

 ions.
[3,4,5,6]

 Unlike 

Gd
III

-based contrast agents for which a large set of dissociation kinetic data is available,
[7] 

in 

the case of Mn
II
 complexes this important information is often lacking and studies are less 

systematic. It was recently shown that macrocyclic MnNOTA and MnDOTA chelates possess 

considerable kinetic inertia but, in both cases, the central metal ion lacks a water molecule in 

its inner coordination sphere (q = 0).
[8] 

For a water molecule to have access to the 

paramagnetic centre, the chelator should not have more than six donor atoms and this makes it 

more difficult the probe design. Studying the relationship between relaxometric properties of 

Mn
II
-chelates and their thermodynamic stabilities, M. Botta and co-workers have recently 

reported a detailed 
1
H and 

17
O NMR relaxometric and computational study on a series of Mn

II
 

complexes with cyclen-based (cyclen = 1,4,7,10-tetraazacyclododecane) ligands bearing one, 

two and three acetate pendant arms (DO1A, 1,4- and 1,7-DO2A, DO3A, respectively, Scheme 

1).
[9]

 While in aqueous solution Mn(DO3A) reproduces the behaviour of Mn(DOTA) and is a 

q = 0 complex, the Mn
II
 complex with the pentadentate DO1A contains one bound water 

molecule (q = 1). However, the most interesting result was that Mn(1,7-DO2A) is 

predominantly six-coordinate (q = 0) whereas Mn(1,4-DO2A) is present as a mixture of a 

seven- (ca. 87%) and six-coordinate species (ca. 13%) with one or no coordinated water 

molecule, respectively. Accordingly, the relaxivity of Mn(1,4-DO2A) is about 40% greater 

than that of Mn(1,7-DO2A). In order to obtain useful information about the coordination 

ability of different donor groups linked to the same macrocyclic scaffold, we decided to carry 

out the 1,4-substitution on cyclen with N,N-dimethylacetamide groups to obtain the 

hexadentate ligand 1,4-DO2AM (Scheme 1). The aim is the investigation of the differences in 

thermodynamic stability, kinetic inertness and 
1
H and 

17
O NMR relaxometric behaviour of the 

Mn
II
 complex as compared to the related carboxylate derivative Mn(1,4-DO2A). The main 

reason behind the choice of the N,N-dimethylacetamide pendant arms is the improved kinetic 

stability typically exhibited by Gd
III 

complexes with amide donor groups. In fact, it is well 

recognized that the replacement of acetate for amide donor groups slows down the rate of the 

dissociation reactions of the Ln-DOTA-like complexes.
[10,11]

 This property has been attributed 

to both the decreased negative charge of the complex which hinders the protonation and then 
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the acid-catalysed dissociation and to the low basicity of the amide oxygen atom which makes 

proton transfer to the ring nitrogen very unlikely.
[11]

 Moreover, the presence of neutral amide 

coordinating groups and the formation of a cationic Mn
II
 complex should impact its 

relaxometric properties.
[12]

 We are particularly interested in evaluating the water exchange 

rate (kex = 1/τM) of Mn(1,4-DO2AM) by 
17

O NMR techniques in order to ascertain the 

influence on this key parameter of the chemical nature of the donor group. Since the 
298

kex 

value of Mn(1,4-DO2A) is particularly high (1.1 × 10
9
 s

-1
),

[9] 
2.4 times faster than that found 

for [Mn(EDTA)]
2-

, it is important to evaluate the effect of the amide coordination on kex. We 

report the synthesis of the bis-amide derivative of 1,4-DO2A and the equilibrium, kinetics and 

relaxometric properties of [Mn(1,4-DO2AM)]
2+

 in close comparison with those of the parent 

Mn(1,4-DO2A). 

 

 

Scheme 1. The structure of 1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A and DOTA ligands 

discussed in this chapter. 

 

Synthesis: 

1,4-DO2AM was synthesised in one step starting from 1,4,7,10-tetraazacyclododecane 

(cyclen) following the same protocol used for the synthesis of 1,4-DO2A (Scheme 2).
[13]

 1.5 

equivalents of 2-chloro-N,N-dimethylacetamide were reacted with cyclen in CHCl3 in the 

presence of excess triethylamine. The final product was obtained in about 20% yield after 
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semi-preparative HPLC-MS purification and was characterized by ESI-MS spectrometry and 

1
H and 

13
C NMR spectroscopy. 

 

Scheme 2. Synthesis of 1,4-DO2AM 

Solution equilibrium studies: 

Protonation equilibria. The protonation constants of 1,4-DO2AM, defined by Eq. (1), were 

measured by pH-potentiometric titration and 
1
H-NMR spectroscopy in 0.1 M KCl aqueous 

solution.  

 

 Hi-1L  +   H
+
     HiL 

]L][Η[Η

L][Η
Κ

1i

iΗ

i 



           i=1, 2,…, 8.                                         (1) 

 

The protonation sequence of 1,4-DO2AM was determined by 
1
H-NMR spectroscopy, 

recording the chemical shift variations of the non-labile protons as a function of pH. The 
1
H-

NMR titration curves (Figure 1) display pronounced chemical shift changes over well-defined 

pH ranges. These are associated with the various protonation steps of the ligand. Because the 

protonation/deprotonation processes are fast on the NMR time scale, the chemical shifts of the 

observed signals represent a weighted average of the shifts of the different species involved in 

a specific protonation step (Eq. (2)):
[14]

  

 

          
LH

HiobsH
ix  )(                                                      (2) 

 

where H(obs) is the observed chemical shift of a given signal, xi and H(obs)
HiL

 are the molar 

fractions and the chemical shift of the involved species, respectively. The fitting of the data of 

Figure 1 according to Eq. (2) gave the results reported in Table 1, where the molar fractions xi 

and the concentration of the different protonated species are expressed in terms of the 

protonation constants Ki
H
.  
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In the 
1
H-NMR spectrum of 1,4-DO2AM at pH=9.6 (Figure 1), the protons of the acetamide 

arms give rise to three singlets (e, f, g), whereas relatively broad multiplets are associated with 

the methylene protons of the macrocyclic ring (a, b, c, d). The addition of one equivalent of 

acid to the deprotonated 1,4-DO2AM results in a downfield shift of the NMR signals 

corresponding to a, b, c, d and e, whereas the chemical shift of the N-methyl protons f and g 

slightly decreases in higher  pH range. The second protonation process causes the downfield 

shift of the peaks of e and ring protons (a-d), while the chemical shift values of f and g remain 

unchanged in the pH range 7.5 – 10. By considering the effects of the first and second 

protonation steps on the chemical shifts, we can safely assume that the first protonation occurs 

on the N1/N2 atoms of the macrocycle (the protonation involves partially both N-atoms). The 

second protonation takes place on the unsubstituted N3 (or N4) atom along with a shift of the 

former proton to afford a bis-protonated species on N1–N4 or N2–N3. This shift allows a better 

charge separation and is quite typical of DOTA- and DTPA-like ligands. The logKi
H
 values of 

1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A and DOTA, are listed in Table 1. Standard 

deviations (3) are shown in parentheses. 

 

 

 

 

 

 

 

 

 

 

Figure 1. 
1
H-NMR spectra of 1,4-DO2AM (A) at 400 MHz and the chemical shifts of the 

different protons as a function of pH (B). (A: pH=9.6; B: a (●), b (), c (□), d (), e (),f 

(▲) and g (■), [1,4-DO2AM]=0.01 M, 0.1 M KCl, 25C).  
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Table 1. Protonation constants of 1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A and DOTA at 

25C in 0.1 M KCl. 

 1,4-DO2AM 1,4-DO2A
[a]

 1,7-DO2A
[a]

 DO3A
[b]

 DOTA
[b]

 

I 0.1 M KCl 

Method pH-pot. 
1
H-NMR pH-pot. pH-pot. pH-pot. pH-pot. 

logK1 10.14(2) 10.34(9) 11.40 11.66 11.99 11.41 

logK2 8.38 (4) 8.64 (4) 9.58 9.75 9.51 9.83 

logK3 - - 3.74 4.06 4.30 4.38 

logK4 - - 1.65 1.78 3.63 4.63 

logK5 - - - - 1.84 1.92 

logK6 - - - - - 1.58 

logKi
H
 18.52 18.98 26.37 27.25 31.26 33.75 

          [a]Ref15. [b]Ref16 

Comparison of the protonation constants of 1,4-DO2AM with those of the related ligands 1,4-

DO2A, 1,7-DO2A, DO3A and DOTA indicates that the logK1
H
 and logK2

H
 values of 1,4-

DO2AM are lower by 1.5 logK unit. In general, the presence of an amide group in open-chain 

or macrocyclic amino-polycarboxylate ligands decreases the basicity of the amine N-

atoms.
[17,18]

 The lower protonation constants of 1,4-DO2AM can be explained by the 

replacement of the carboxylate pendant arms with the amide groups which form weaker H-

bond with the protonated ring nitrogens. The logKi
H
 value of 1,4-DO2AM is significantly 

lower than that of 1,4-DO2A, 1,7-DO2A, DO3A and DOTA due to the absence of protonable 

carboxylate groups. By taking into account the lower value of logKi
H
 for 1,4-DO2AM, a 

lower stability for the 1,4-DO2AM complexes compared to the related 1,4-DO2A, 1,7-DO2A, 

DO3A and DOTA complexes is to be expected. 

 

Complexation properties.  

The stability and protonation constants (KML and KMHiL, defined by Eqs. (3) and (4) with i=1, 

2, 3) characterizing the formation of 1,4-DO2AM, 1,4-DO2A and 1,7-DO2A complexes with 

Ca
2+

, Mn
2+

 and Zn
2+

 were calculated from the pH-potentiometric titration data obtained at 1:1 

metal to ligand concentration ratios (25 ºC, 0.1M KCl).  
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]][[

][

LM

ML
KML                                                                   (3) 

  
]][[

][

1






HLMH

LMH
K

i

i

LH i
    with i = 1, 2             (4) 

Moreover, the corresponding values of KML and KMHiL for the Cu
2+

 complexes were 

determined by UV-VIS spectrophotometry (Table 2). 

Table 2. The stability (logKML) and protonation (logKMHiL) constants of metal complexes 

formed with 1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A and DOTA (0.1 M KCl, 25C). 

 1,4-DO2AM 1,4-DO2A
 

1,7-DO2A DO3A
[a] 

DOTA
[a] 

CaL  8.62 (3) 8.86 (5) 12.57 16.11 

CaHL - - - 4.60 3.67 

MnL 12.64 (5) 15.22 
[b] 

15.07 
[b] 

19.34 19.33 

MnHL - 4.15 (2) 4.48 (2) 3.69 4.09 

MnH2L - - - 3.02 3.70 

ZnL 15.59 (4) 18.03 (3) 18.86 (4) 21.57 20.21 

ZnHL  3.58 (4) 4.23 (2) 3.47 4.12 

ZnH2L  1.65 1.78 2.07 3.49 

CuL 21.38 (3) 24.43 (1) 24.24 (5) 25.75 24.83 

CuHL - 2.95 (3) 3.06 (6) 3.65 4.12 

CuH2L - - - 1.69 3.57 

CuH3L - - - - 0.87 

                          [a]Ref16. [b]Ref15 

We calculated of the equilibrium constants. The best fitting of the experimental data (volume 

of KOH added vs. pH) was obtained by assuming the formation of ML complexes with 1,4-

DO2AM and ML and MHL species with 1,4-DO2A and 1,7-DO2A. In the case of the Cu-

complexes, the equilibrium reaction (5) was investigated over the [H
+
] range 0.01 – 1.0 M 
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([H
+
]0.1 M; [H

+
]+[K

+
]=0.1 M), assuming the formation of Cu

2+
, CuL, CuHyL and HxL 

species (1,4-DO2AM: x=2, y=0; 1,4-DO2A, 1,7-DO2A: x=3, 4; y=0, 1).  

 

                 Cu
2+

 + HxL [Cu(HyL)] + (x-y)H
+
                      (5) 

 

Some characteristic absorption spectra and the species distribution of the Cu
2+

-1,4-DO2AM, 

Cu
2+

-1,4-DO2A and Cu
2+

-1,7-DO2A systems with the maxima of the absorption spectra (max 

values) are shown in Figures 2 and 3. Noteworthy, the metal complexes of 1,4-DO2AM show 

a significantly lower stability as compared to the corresponding complexes with 1,4-DO2A 

and 1,7-DO2A (logKML = 2.5 – 3.0). The difference with DO3A or DOTA complexes is 

even larger. A similar effect was reported for DOTA-tetramide complexes which are 

characterized by stability constants approxametly 6-7 logK units lower than those of the 

corresponding DOTA complexes.
[19]

 The lower stability constants of the 1,4-DO2AM metal 

complexes can be accounted for by the significantly lower basicity (logKi
H
) of the ring N-

atoms. 

 
Figure 2. Absorbtion spectra of Cu

2+
–1,4-DO2AM (A), Cu

2+
–1,4-DO2A (B) and Cu

2+
–1,7-

DO2A systems ([Cu
2+

]=[1,4-DO2AM]=[1,4-DO2A]=[1,7-DO2A]=1.5 mM, [H
+
] = 1.0 M, 

0.60 M, 0.31 M, 0.10 M, 0.050 M, 0.025 M and 0.01 M, [H
+
]+[K

+
]=0.1 M in the last 4 

samples,  l=1 cm, 25 C). 

We determined the protonation constants of [Cu(1,4-DO2A)] and [Cu(1,7-DO2A)] by 

spectrophotometric titrations of the complexes in the pH range 1.7 – 6.0, in this pH range 

mono-protonated and deprotonated complexes are present. The species distribution diagram 
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and the maxima of the absorption spectra (max values) of Cu
2+

-1,4-DO2AM, Cu
2+

 - 1,4-

DO2A and Cu
2+

 - 1,7-DO2A systems are shown as functions of pH in Figure 3. 

 

Figure 3. Species distribution and the max values (♦) of Cu
2+

- 1,4-DO2AM (A), Cu
2+

- 1,4-

DO2A (B) and Cu
2+

 - 1,7-DO2A (C) system as a function of pH. ([Cu
2+

]=[1,4-DO2A]=[1,7-

DO2A]=1.0 mM, 0,1 M KCl, 25 C). 

 

Transmetallation kinetics: 
 
Because of the toxicity of free metal ions and ligands, the study of the dissociation kinetics of 

the metal complexes used in medical diagnosis and/or therapy has a great relevance since the 

products of the dissociation.
[7]

 Typically, the dissociation of MnDOTA-like complexes is very 

slow and occurs via proton-assisted pathways whereas the presence of endogenous metal ions 

like Zn
2+

 and Cu
2+

 has a minor influence on the dissociation rates.
[8,15]

 While the rates of the 

metal exchange reactions occurring between [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)] and Zn
2+

 

and Cu
2+

 ions were previously investigated,
[3,4,5,6]

 in this work we studied the kinetic inertness 

of [Mn(1,4-DO2AM)] by focusing on the metal exchange reactions with high Zn
2+

 

concentrations (10 – 40 fold excess) in order to form pseudo-first order conditions (Eq. (6)). 

These reactions were followed by relaxometry at 20 MHz and 25C in the pH range 4.5 – 6.5.  

 

MnL  +   Zn
2+

    ZnL   +   Mn
2+

                                            (6) 
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As a pseudo-first-order process, the reaction rate is expressed by the Eq. (7) where kd is a 

pseudo-first-order rate constant, [MnL]t and [MnL]tot are the concentrations of the MnL 

species at time t and the total concentration of the complex, respectively. 

 

to td

t ]LnM[
dt

]LnM[d
k

                                       (7) 

 

The calculated pseudo-first order rate constants for the transmetallation reaction of [Mn(1,4-

DO2AM)]
2+

 and Zn
2+

 as a function of [H
+
] are shown in Figure 4. 

 

 

Figure 4. kd values of the transmetallation reactions between [Mn(1,4-DO2AM)]
2+

 and Zn
2+

 

([MnL]=1.0 mM, [Zn
2+

]=10 mM (), 20 mM (), 30 mM () and 40 mM (), 0.1 M KCl, 

25C) 

The dissociation rates of [Mn(1,4-DO2AM)]
2+

 are shown in Figure 4. The dissociatin rates are 

directly proportional to the H
+
 concentration and independent of the concentration of the 

exchanging Zn
2+

 ions. The increase in the kd values with increasing [H
+
] can be interpreted in 

terms of a rate determining step consisting of the proton assisted dissociation of [Mn(1,4-

DO2AM)]
2+

 followed by a fast reaction between the free ligand and the Zn
2+

 ion. The 

dependence of kd on [H
+
] can be expressed as a first-order function of [H

+
] which indicates 

that the exchange can take place by proton-independent (Eq. (8)) and proton assisted (Eq. (9)) 

pathways. 

MnL   Mn
2+

    +   H2L                                              (8) 
 

k0 
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MnL  +   H
+
     Mn

2+
    +   HxL                                   (9) 

 

k0 and k1 are the rate constants characterizing the dissociation of [Mn(1,4-DO2AM)]
2+

 

through spontaneous and proton-assisted reaction pathways, respectively. By considering all 

the possible pathways and the rate of transmetallation of [Mn(1,4-DO2AM)]
2+

 (Eq. (7)), the 

pseudo-first-order rate constant (kd) can be expressed by Eq. (10). 

 

      ]][[][
][

10

 HMnLkMnLk
dt

tMnLd
                                         (10) 

By taking into account the total concentration of the complex ([MnL]tot = [MnL]), the pseudo-

first-order rate constant (kd) can be expressed as follows:  

][10

 Hkkkd                                                    (11) 

The parameters k0 and k1 were calculated by fitting the experimental data in Figure 4 to Eq. 

(11). The rate constants characterizing the transmetallation reaction of [Mn(1,4-DO2AM)]
2+

 

with Zn
2+

 and the half-life of dissociation (t1/2 = ln2/kd) of the complex calculated at pH=7.4 

are listed in Table 3 and compared with the corresponding values reported for Mn(1,4-

DO2A), Mn(1,7-DO2A) and Mn(DOTA). 

 

Table 3. Rate constants and half-lives for the dissociation reactions of [Mn(1,4-DO2AM)]
2+

, 

[Mn(1,4-DO2A)],  [Mn(1,7-DO2A)] and [Mn(DOTA)]
2-

 (pH=7.4; 0.1 M KCl; 25C). 

 1,4-DO2AM 1,4-DO2A
[a] 

1,7-DO2A
[a] 

DOTA
[b] 

k0 (s
-1

) - - - 1.8x10
-7 

k1 (M
-1

s
-1

) 8.7±0.5 99 84 0.04 

k2 (M
-2

s
-1

) - 1.5x10
6 

2.5x10
6
 1.6x10

3
 

logKMnLH 
- 4.15 4.48 4.26 

kd (s
-1

) pH=7.4 3.5x10
-7 

3.9x10
-6 

3.3x10
-6 

2.6x10
-6 

t1/2 (h) pH=7.4 556 49.4 58.3 1070 

                  [a] Ref 15. [b] Ref 8 

The rate constant k0 is very small and the associated error is relatively large, to suggest that 

the spontaneous dissociation of [Mn(1,4-DO2AM)] does not give a sizeable contribution to 

the transmetallation reaction. The data presented in Table 3 also show that the k1 value, i.e. 

k1 
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the rate of proton-assisted dissociation of [Mn(1,4-DO2AM)], is one order of magnitude 

lower than that of [Mn(1,4-DO2A)] or [Mn(1,7-DO2A)]. In the latter complexes, most likely 

the dissociation occurs by protonation at one of the carboxylate groups. After that the proton 

is transferred to the ring nitrogen forcing the release of Mn
2+

 from the coordination cavity. 

The replacement of the protonable carboxylate groups with non-protonable amide groups does 

not allow the formation of the protonated MnHL intermediate. Thus, it can be assumed that 

the proton assisted dissociation of [Mn(1,4DO2AM)]
2+

 takes place by protonation of the ring 

N-atom followed by dissociation of the Mn
2+

 ion. Finally, the half-life (t1/2) of dissociation of 

[Mn(1,4-DO2AM)]
2+

 is ca. 50% lower than that measured for [Mn(DOTA)]
2-

 and 

significantly higher than those reported for of [Mn(1,4-DO2A)] or [Mn(1,7-DO2A)]. Notably, 

in acidic condition the dissociation reaction of [Gd(DOTA)]
-
 takes place more than 5 times 

faster than for [Gd(DOTTA)]
3+

 (DOTTA = 1,4,7,10-tetrakis[(N,N-

dimethylcarbamoyl)methyl]-1,4,7,10-tetraazacyclododecane] ([Gd(DOTA)]
-
: t1/2 = 68 h; 

[Gd(DOTTA)]
3+

: t1/2 = 384 h;  [HNO3] = 2.5 M, 25°C), which clearly confirms that the 

replacement of acetate with bismethyl-amide groups improves the kinetic inertness of the 

metal-complexes with DOTA-like ligands.
[10]

 

 
1
H and 

17
O NMR relaxometric studies: 

 

We performed the measurmnet of the proton relaxivity of [Mn(1,4-DO2AM)]
2+

 as a function 

of pH, temperature and magnetic field strength. Together, this information allows to obtain a 

comprehensive picture of the relaxometric properties the complex and to understand the 

changes in the molecular parameters following the transformation of the carboxyl groups into 

amide groups. At neutral pH and 25°C, the measurement of r1p at 60 MHz provides the value 

of 2.2 mM
-1

 s
-1

, which compares well with the corresponding value for [Mn(1,4-DO2A)], 

namely 2.0 mM
-1

 s
-1

.
[9]

 These values are roughly intermediates between that associated with a 

q = 1 complex ([Mn(EDTA)]
2-

) and that of a complex without water molecules in the first 

coordination sphere (q = 0; [Mn(1,7-DO2A)]) (Figure 5). The small difference between the 

values of r1p of [Mn(1,4-DO2A)] and [Mn(1,4-DO2AM)]
2+

 can be attributed to the small 

difference in their molecular masses that dictates the value of the rotational correlation time. 

Therefore, these findings suggest that [Mn(1,4-DO2AM)]
2+

 in aqueous solution shows a 

behaviour very similar to [Mn(1,4-DO2A)], which is characterized by the presence of a 

hydration equilibrium involving q = 1 and q = 0 complex species. In our previous study we 

estimated an "effective" q value of 0.87 (± 0.01) for [Mn(1,4-DO2A)].
[9]

 In the absence of 

further experimental evidence, we attribute the same value also to [Mn(1,4-DO2AM)]
2+

. 
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Figure 5. Plot of the 
1
H relaxivity, r1p, for selected Mn(II) complexes at 20 and 60 MHz and 298 K. 

The behaviour of r1p with pH reproduces quite closely the main features found for [Mn(1,4-

DO2A)] and [Mn(1,7-DO2A)].
[9] 

The relaxivity is constant over the pH range 12 to 6, where 

complete formation of the metal complex occurs, then it increases rather sharply to reach a 

new plateau at pH lower than ca. 3. Such an increase is clearly associated with the progressive 

release of the Mn(II) ion as a result of the protonation of the basic sites of the chelator. The 

lower stability of [Mn(1,4-DO2AM)]
2+ 

is reflected in the slightly higher pH value in which 

the increase of r1p begins. The pH dependence of the relaxivity is reported in Figure 6, 

together with the species distribution diagram for the Mn
2+

/1,4-DO2AM system. 

 

 

Figure 6. Plot of 
1
H relaxivity r1p at 20 MHz and 298 K for [Mn(1,4-DO2AM)]

2+
 and the 

species distribution diagram of the Mn
2+

/1,4-DO2AM system as a function of pH ([Mn
2+

] = 

[1,4-DO2AM] = 1 × 10
−3

 M, [KCl] = 0.1 M, 20 MHz, 25 °C). 

The (NMRD) profile, has been measured at 283, 298 and 310 K over the proton Larmor 

frequency range 0.01-70 MHz, corresponding to magnetic field strengths varying between 
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2.34310
-4

 T and 1.645 T (Figure 7A). The profiles have the typical shape of rapidly 

tumbling, low molecular weight complexes, featuring a region of constant relaxivity at low 

fields, a single dispersion around 6-8 MHz and another plateau, not well defined, in the region 

at high fields (> 20 MHz).
[20] 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. (A) 1/T1 
1
H NMRD profiles for [Mn(1,4-DO2A)]

2+
 at pH = 7.2 and 283 K (blue 

squares); 298 K (black circles); 310 K (red triangles). The solid lines represent the results of 

the best fitting to the experimental data (Table 3). Temperature dependence of the reduced 

water 
17

O NMR transverse relaxation rates (B) and chemical shifts (C) at 11.75 T and pH = 

7.2 for a 4.8 mM solution. 

The relaxivity decreases by increasing temperature over the entire frequency range, which 

indicates that water exchange (kex = 1/M) in and out of the coordination site does not 

represent a limiting factor. Rather, the fast rotation of the complex in solution determines and 

controls the value of the relaxivity. This is clearly shown by the temperature dependence of 

A B 

C 
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r1p at 20 MHz over the range 280 - 341 K. At neutral pH, the relaxivity of the complex 

increases exponentially with lowering temperature (Figure 8), following the behaviour of 

systems in the fast-exchange regime (the exchange lifetime, M, is much shorter than the 

longitudinal relaxation time of the bound water protons, T1M), such as the Mn(II) complexes 

of AAZTA-like ligands.
[21]

  

Detailed information on the water exchange kinetics is obtained by measuring and analysing 

the temperature dependence of the 
17

O NMR transverse relaxation rate (R2) and paramagnetic 

shift (Δω) (Figure 7B and C).
[20]

 The data were collected at 14.1 T on a 4.8 mM solution of 

the complex at neutral pH and analysed according to the well-established set of Swift-

Connick equations.
[22]

 The reduced R2 (1/T2r) and Δω values are reported in Figure7B and 

%C, respectively. The increase of 1/T2r with decreasing temperature over a wide range of 

values indicates the occurrence of a relatively fast rate of water exchange, as for 

[Mn(EDTA)]
2-

.
[9]

  

The relaxometric data, 
1
H NMRD and 

17
O NMR, were fitted simultaneously according to the 

established theory of paramagnetic relaxation expressed in terms of the well known Solomon-

Bloembergen-Morgan
[23] 

and Freed’s
[24]

 equations for the inner- (IS) and outer
 
sphere (OS) 

proton relaxation mechanisms, respectively, and of the Swift-Connick theory for 
17

O 

relaxation. The IS contribution to r1p is determined by the number q of bound water molecules 

and their rate of exchange (kex), the molecular rotational correlation time (R), and the 

electronic relaxation times (T1,2e) of Mn
II
.
[17]

 The OS term depends on T1,2e, the relative 

diffusion coefficient between the complex and the water molecules (D) and their distance of 

closest approach, a. The Swift-Connick equations depend on a number of parameters, among 

which the most relevant are:
[22]

 i) those associated with T1,2e, i.e. the trace of the square of the 

zero-field splitting tensor, 2
; the correlation time describing the modulation of the zero-field 

splitting, V, and its activation energy, EV; ii) the enthalpy, H
#
, of activation for the water 

exchange process; iii) the hyperfine Mn-
17

Owater coupling constant, A/ħ. Given the large 

number of parameters, we need to fix the value of some of them according to reasonable 

estimates: q was fixed to 0.87; the distance between the metal ion and the protons of the 

bound water molecule, r, was fixed to 2.83 Å; a and D were set to 3.6 Å and 2.3×10
-5

 cm
2
 s

-1
 

(at 25°C), respectively; EV was fixed to 1.0 kJ mol
-1

. To ER (activation energy for the 

rotational motion of the complex) and ED (activation energy of D) were assigned the same 

values found for [Mn(1,4-DO2A)]: 19.1 and 17.3 kJ mol
-1

, respectively. The relevant best-fit 
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parameters are listed in Table 4 and compared with those of related Mn(II) complexes of 

similar size. 
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Figure 8. Temperature dependence of the longitudinal water proton relaxivity at 20 MHz and 

pH = 7 

 

Table 4. Parameters obtained from the simultaneous analysis of 
1
H NMRD profiles and 

17
O 

NMR data (14.1 T) for the Mn
2+

 complexes of 1,4-DO2AM and related ligands 

Parameters 1,4-DO2AM
 1,4-DO2A

[9] 
DO1A

[9] 
EDTA

[9] 

r1/mM
-1

s
-1

 2.5 2.1 2.4 3.3 
298

kex /×10
6
 s

-1
 111 ± 6 1134 5957 471 

2
 /×10

19 
s

-2
 51 ± 8 48.1 12.8 6.9 

298V / ps 5.5 ± 0.2 4.4 13.9 27.9 
298R / ps 53 ± 3 46 22 57 

ΔH
#
/kJ mol

-1
 39.8 ± 0.7 29.4 17.6 33.5 

A/ħ/10
6
 rad s

-1
 39.0 ± 0.4 43.0 39.4 40.5 

q 0.87 0.87 1 1 

rMn–H / Å 2.83 2.83 2.83 2.83 

 

 

The electron relaxation parameters, 2
 and V, are nearly identical for the both hexadentate 

macrocyclic complexes and this is indicative of quite similar solution structures, as expected. 

The rotational correlation time is slightly longer, about 15%, for [Mn(1,4-DO2AM)]
2+ 

and in 

perfect agreement with its larger molecular weight. This result confirms the dominant role of 
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the rotational dynamics in determining the relaxivity of the small metal chelates at high 

magnetic field strengths. Then, the difference in the r1p values between the two chelates is 

fully accounted for by their different R values. In the case of [Mn(EDTA)]
2- 

the higher values 

of both R and q are responsible of the higher r1p.
[9] 

The rate of water exchange is markedly lower, about one order of magnitude, thus 

representing the parameter most influenced by the nature of the donor groups. Accordingly, 

the enthalpy of activation is sensibly higher. For Gd(III) chelates the replacement of 

carboxylates with amides results in slower rates of water exchange due to a combination of 

lower steric encumbrance, decreased electron density at the metal centre and reduced overall 

negative charge of the complexes.
[7,10,25]

 Likewise, these factors seem to play a significant role 

also for the Mn(II) chelates, being the magnitude of the resulting effect quite comparable.  

 

Dynamic NMR study: 

Some insights into the structural and dynamic properties of [Zn(1,4-DO2AM)]
2+

, as a 

diamagnetic analogue of [Mn(1,4-DO2AM)]
2+

, have been investigated by 
1
H-NMR 

spectroscopy in aqueous solution. The solution structure of [Zn(1,4-DO2AM)]
2+

 is expected 

to be similar to that of the corresponding [Mn(1,4-DO2A)], investigated at the solid state by 

X-ray diffraction method and in solution by density functional theory (DFT) calculations.
[9,26]

 

Crystallographic data reveal the formation of a dimeric [Mn(1,4-DO2A)]2 complex in which 

the coordination geometry around each Mn(II) ion can be described as a distorted 

monocapped trigonal prism where the two triangular faces, formed by two ring N- and the 

carboxylate O-atoms, are nearly parallel (distortion angle is 1.8) and the capping positions 

are occupied by two bridging carboxylate O donor atoms.
[26]

 The optimized geometries of the 

complexes [Mn(1,4-DO2A)] and [Mn(1,4-DO2A)(H2O)] obtained from DFT calculations 

highly resemble that found in the solid state: a trigonal prism and a monocapped trigonal 

prism, respectively, comprised of two parallel (distortion angle is 5.4) triangular faces 

defined by two ring N- and the carboxylate O-atoms.
[9]

  

We assume that the predominant species in solution of [Zn(1,4-DO2AM)]
2+

 corresponds 

closely to that of [Mn(1,4-DO2A)]. In the 
1
H-NMR spectra of [Zn(1,4-DO2AM)]

2+
 obtained 

at 273 K, the signals associated with the protons of the cyclen ring give rise to unresolved 

multiplets, whereas an AB multiplet (-CH2-) and two singlets (-CH3) are attributed to the 

protons of the acetamide pendant arms. By increasing temperature, the bands of the AB 

multiplet broaden, coalesce (T = 288 K) and then merge into a single resonance (Figure 9). 
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This fluxional behaviour is likely to be associated with the processes of de-coordination and 

rotation of the acetamide arms (Scheme 3).  

 

 

 

 

 

 

 

 

 

Figure 9. Experimental (left) and calculated (right) 
1
H-NMR spectra (400 MHz) of the e 

protons in [Zn(1,4-DO2AM)]
2+

 as a function of temperature. 

 

 
 
 
 
 
 

 
 
 

Scheme 3. Arms rotation process in [Zn(1,4-DO2AM)]
2+ 

 

A complete line-shape analysis allows extracting the kinetic parameters of the dynamic 

process. The proton NMR spectral data were collected at eighteen different values of 

temperature, in the range 273-343 K (Figure 9). The limiting value of the transverse 

relaxation time (T2) has been calculated from the line width of the g and f proton signals at 
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273 K (T2 = 0.07 s), because of its temperature independence below 283 K. In the simulation a 

chemical shift difference, n
°
, between the e protons signals of 61.8 Hz was considered. 

From the temperature dependence of the calculated rate constants (kex=1/) characterizing the 

dynamic process the activation parameters were assessed using the Eyring equation (Figure 

10). The activation parameters for [Zn(1,4-DO2AM)]
2+

 are listed in Table 5. 
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Figure 10. Eyring plots for determining the activation parameters of the de-coordination and 

the arm rotation processes in [Zn(1,4-DO2AM)]
2+ 

 

Table 5. Rate constant and activation parameters for the de-coordination and arm rotation 

processes of [Zn(1,4-DO2AM)]
2+

 obtained from the line-shape analysis of the 1H-NMR 

spectra. 

 [Zn(1,4-DO2AM)]
2+ 

H

 / kJ·mol

-1
 54.4 (8) 

S

 / J·mol

-1
K

-1
 -14 (2) 

G
298

 / kJ·mol
-1

 50.2 (8) 

k
298

 / s
-1

 328 (5) 

 

 

The value of G
298

 is markedly lower than that found (G
298

 = 68.2 kJ mol
-1

) for the 

racemisation processes of the terminal N atoms in [Lu(DTPA-bis-propylamide)], in spite of a 

higher H
 

value.
[17]

 This suggests that the dynamic process occurring in [Zn(1,4-DO2AM)]
2+

 

might require the concerted inversion of the macrocyclic ring, which is typically characterized 
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by high activation enthalpies. For example, in LnDOTA-like complexes H

  values are ca. 

59 – 69 kJ·mol
-1

.
[25] 

 

Conclusions: 

The replacement of two negatively charged acetate groups with neutral acetamide arms has a 

marked influence on the solution properties of the corresponding Mn
II
 chelates. The 

thermodynamic stability decreases by about 2.5 logKML units because of the lower basicity of 

the nitrogen atoms of the macrocyclic ring. On the other hand, the kinetic inertness of the 

cationic complex [Mn(1,4-DO2AM)]
2+

 is significantly greater than that of the related 

carboxylates analogues. The half-life for dissociation is ca. one order of magnitude longer 

than that measured for [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)]. 

The relaxometric properties are only marginally influenced by the chemical modification of 

the ligand, with the exception of the rate of water exchange which decreases by more than one 

order of magnitude with respect to the value found for [Mn(1,4-DO2A)]. This effect is well 

known and documented in the case of Gd
III

 chelates. The relevant difference is that in the case 

of the Mn
II
 complexes examined in the present work the kex values never assume values as 

short as to limit the relaxivity. So, improved kinetic inertness of Mn
II
 chelates can be attained 

without a negative impact on the relaxivity. Clearly, a further effort is necessary to combine 

elevated kinetic inertness and relaxivity with high thermodynamic stability. 

Experimental Section: 

General: All chemicals were purchased from Sigma-Aldrich Co. and were used without 

further purification. The concentration of the MnCl2, ZnCl2, CaCl2 and CuCl2 solutions were 

determined by complexometric titration with standardized Na2H2EDTA and xylenol orange 

(ZnCl2), murexid (CuCl2), Patton-Reader (CaCl2) and Eriochrome Black T (MnCl2) as 

indicators.  The concentration of the 1,4-DO2AM, 1,4-H2DO2A
[10]

 and 1,7-H2DO2A
[24]

 was 

determined by pH-potentiometric titration in the presence and absence of a 50 fold excess of 

CaCl2. The pH-potentiometric titrations were made with standardized 0.2 M KOH solution. 

1
H and 

13
C NMR spectra were recorded on a Bruker DRX 400 (9.39 T) and Bruker Avance III 

(11.74 T) spectrometers. Chemical shifts are reported relative to TMS and were referenced 

using the residual proton solvent resonances. Electrospray ionization mass spectra (ESI MS) 

were recorded on an SQD 3100 Mass Detector (Waters), operating in positive or negative ion 

mode, with 1% v/v HCOOH in methanol as the carrier solvent. HPLC analyses were carried 
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out on a 1525EF Waters liquid chromatograph equipped with Waters 2489 UV/vis and Waters 

SQD 3100 MS detectors and using a Waters Atlantis® T3 RPC18 column (150 mm × 4.6 

mm, 5 μm). Preparative HPLC separations were carried out using a Waters Atlantis
®

 T3 OBD 

RPC18 column (100 mm × 19 mm, 5 μm) and a Waters FCIII fraction collector.  

Synthesis of DO2AM: Cyclen (0.3 g, 1.7 mmol) was dissolved in CHCl3 (15 mL) and 

triethylamine (10 eq., 2.42 mL, 17.5 mmol) was added. Then, 2-chloro-N,N-

dimethylacetamide (1.5 eq., 0.488 g, 2.6 mmol) dissolved in CHCl3 (5 mL) was added 

dropwise to the solution over a period of 4 hours. After stirring overnight at room 

temperature, the solvent was removed using a rotary evaporator. The solid product was 

dissolved in CH2Cl2 (20 mL) and washed with water (3 x 15 mL). Finally, the aqueous phase 

was washed with CH2Cl2 (3 x 15 mL). The resulting aqueous solution was dried and the crude 

product was then purified by semi-preparative HPLC-MS (Solvent A: H2O TFA 0.1%; 

Solvent B: MeOH; 0-2 min 5% B then gradient 5-40% B in 7 min; Flow 20 mL/min; retention 

time: 4.6 min) to obtain 90 mg of a pale yellow oil (0.26 mmol, 20.2% yield). Analytical 

HPLC: (Solvent A: H2O TFA 0.1%; Solvent B: MeOH; 0-1 min 5% B then gradient 5-100% 

B in 19 min; flow 1 mL/min; retention time: 6.35 min). ESI-MS (m/z): found 343.3 [M + H
+
] 

(calc. for C16H35N6O2: 343.5). 
1
H-NMR  (D2O, 500 MHz): δ 3.81 (s, CH2CO, 4H), 3.18-3.05 

(m, NCH2 ring, 16H), 2.88 and 2.86 (s, NCH3, 12H); 
13

C-NMR (D2O, 125 MHz): δ 169.8 

(C=O), 55.9 (CH2), 55.5 (CH2), 53.3 (CH2), 44.5 (CH2), 43.3 (CH2), 37.4 (CH3), 37.0 (CH3). 

Equilibrium measurements: The protonation constants of 1,4-DO2AM, the stability and 

protonation constants of the Mn
2+

-, Ca
2+

-, Zn
2+

- and Cu
2+

-complexes formed with the 1,4-

DO2AM, 1,4-DO2A and 1,4-DO2A ligands have been determined by pH-potentiometry and 

UV-VIS-spectrophotometry. The pH-potentiometic titrations were performed at 1:1 metal-to-

ligand concentration ratio (the concentration of the ligand was generally 0.002 M). In 

calculating the equilibrium constants, the best fitting of the 80-150 mL NaOH – pH and mL 

KOH - pH data pairs have been obtained by assuming the formation of ML and MHL 

complexes in the pH range of 1.7-12.0. The equilibrium constants were calculated with the 

program PSEQUAD.
[27]

 For the pH measurements and titrations, a Methrohm 888 Titrando 

titration workstation and a Metrohm 6.0233.100 combined electrode were used. Equilibrium 

measurements were carried out at a constant ionic strength (0.1 M KCl) in 6 mL samples at 25 

C. The solutions were stirred, and N2 was bubbled through them. The titrations were made in 

the pH range of 1.7-12.0. KH-phthalate (pH=4.005) and borax (pH=9.177) buffers were used 
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to calibrate the pH meter. For the calculation of [H
+
] from the measured pH values, the 

method proposed by Irving et al. was used.
[28]

 A 0.01M HCl solution was titrated with the 

standardized KOH solution in the presence of 0.1 M KCl ionic strength, respectively. The 

differences between the measured (pHread) and calculated pH (-log[H
+
]) values were used to 

obtain the equilibrium H
+
 concentration from the pH values, measured in the titration 

experiments. The ion product of water was determined from the same titrations (HCl/KOH) in 

the pH range of 11.5-12.0.The stability constants of [Cu(1,4-DO2AM)]
2+

, [Cu(1,4-DO2A)] 

and [Cu(1,7-DO2A)] have been determined by VIS-spectrophotomtry studying the Cu
2+

 - 1,4-

DO2AM, Cu
2+

 - 1,4-DO2A and Cu
2+

 - 1,7-DO2A systems at the absorption band of Cu
2+

 

complexes in the [H
+
] range 0.01 – 1.0 M. For these experiments 7 samples were prepared 

(73 mL) in which the concentration of Cu
2+

 and ligands was identical ([Cu
2+

]=[L]=2.0 mM). 

The total H
+
 concentration was adjusted by addition of calculated amount of 2.0M HCl 

([H
+
]0.1 M, [H

+
]+[K

+
]=0.1 M). The samples were kept at 25C for a week. The absorbance 

values of the samples were determined at 11 wavelengths (575, 595, 615, 635, 655, 675, 695, 

715, 735, 755 and 775 nm). For the calculations of the stability and protonation constants of 

the [Cu(1,4-DO2AM)]
2+

, [Cu(1,4-DO2A)] and [Cu(1,7-DO2A)], the molar absorptivities of 

Cu
2+

, CuL and CuHL species were determined by recording the spectra of 1.5 mM, 3.0 mM 

and 5.0 mM solutions of CuCl2, [Cu(1,4-DO2AM)]
2+

, [Cu(1,4-DO2A)] and [Cu(1,7-DO2A)] 

in the pH range 1.5 – 6.5 (0.1M KCl, 25°C). The protonation constants of [Cu(1,4-DO2A)] 

and [Cu(1,7-DO2A)] complexes were also determined by pH-potentiometric titrations at 1:1 

metal-to-ligand concentration ratio. The spectrophotometric experiments were performed with 

a Cary 1E spectrophotometer in a 1 cm quartz cuvette at 25C. 

Kinetic studies: The rates of the metal exchange reactions of [Mn(1,4-DO2AM)]
2+

 with Zn
2+

 

was followed by measuring the water proton relaxation rates (1/T1) of the samples with a 

Bruker MQ20 Minispec spectrometer owing to the large differences in the relaxivities of 

[Mn(1,4-DO2AM)]
2+

 (r1p=2.51 mM
-1

s
-1

) and that of free Mn
2+

 (r1p=8.0 mM
-1

s
-1

) at 20 MHz 

and 25 C. The longitudinal relaxation times were measured by the ‘inversion recovery’ 

method (180 - - 90) by using 8 different  values. The measurements were made with 2.0 

mM [Mn(1,4-DO2AM)]
2+

 solution in the presence of 10 to 40 fold excess of Zn
2+

. The 

temperature was maintained at 25 C and the ionic strength of the solutions was kept constant 

(0.15 M NaCl and 0.1 M KCl). For keeping the pH values constant, N-methylpiperazine (pH 

range of 4.1 – 5.2) and piperazine (pH range of 4.7 – 6.6) buffers (0.01 M) were used. The 

pseudo-first-order rate constants (kd) were calculated with the use of the Eq. (12) 
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e
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e

1

0

1

t

1
RRRR 

 tde
k

)(                                                   (12) 
 

where R1
0
, R1

t
, and R1

e
 are the relaxation rate (1/T1) values at the start, at time t, and at 

equilibrium of the reactions, respectively. The calculations were performed using the 

computer program Micromath Scientist, version 2.0 (Salt Lake City, UT, USA). 

NMR measurements: 
1
H-NMR measurements were performed by a Bruker DRX 400 

spectrometer (9.4 T) equipped with Bruker VT-1000 thermocontroller and a BB inverse z 

gradient probe (5mm). The protonation processes of the 1,4-DO2AM ligand were followed by 

1
H- NMR spectroscopy. A 0.01 M solution of the ligand in H2O was prepared for these 

experiments (D2O was added to the samples in capillary). The pH was adjusted by stepwise 

addition of KOH and/or HCl solutions (both prepared in H2O). The structural behaviour and 

the dynamic processes of the [Zn(1,4-DO2AM)]
2+

 complexes were followed by 1D (
1
H and 

13
C) and 2D (COSY, NOESY and HSQC) NMR spectroscopy. In 

13
C-NMR spectroscopy 

proton decoupling was used with an inverse gated decoupling pulse program. The [Zn(1,4-

DO2AM)]
2+

 complexes were prepared in D2O ([ZnL]=0.01 M, pD=7.4). The COSY, 

NOESY, HSQC and HMBC spectra were collected by using gradient pulses in the z direction 

with the standard Bruker pulse programs. For NOESY spectra the mixing time (D8) was 300 

ms. Spectra were analysed with Bruker WinNMR software package. 

1
H and 

17
O NMR relaxometric measurements: The proton 1/T1 NMRD profiles of [Mn(1,4-

DO2AM)]
2+

 aqueous solutions ([MnL] ~ 1.0 mM) were measured on a fast field-cycling 

Stelar SmartTracer relaxometer over a continuum of magnetic field strengths from 0.00024 to 

0.25 T (corresponding to 0.01-10 MHz proton Larmor frequencies). Additional data points in 

the range 15-70 MHz were obtained on a Bruker WP80 NMR electromagnet adapted to 

variable-field measurements (15-80 MHz proton Larmor frequency) Stelar Relaxometer. 

Variable-temperature 
17

O NMR measurements were recorded on a Bruker Avance III (11.7 T) 

spectrometer equipped with a 5 mm probe and standard temperature control units. Aqueous 

solution of the [Mn(1,4-DO2AM)]
2+

 complex (~5 mM) containing 2.0% of the 
17

O isotope 

(Cambridge Isotope) were used. The observed transverse relaxation rates were calculated 

from the signal width at half-height. 
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Chapter 7 

 

Hexadentate Macrocyclic 

Ligands for Mn(II) 

Complexation 
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Introduction: 

Many ligands based upon 1,4,7,10-tetraazacyclododecane (cyclen) and containing different 

types and numbers of pendant coordinating functionalities were investigated in the last 

decades, due to several successful applications of their metal complexes.
[1]

 For example, 

lanthanide complexes of such ligands have proved useful as magnetic resonance imaging 

(MRI) contrast agents, 
[2]

 NMR shift reagents,
[3]

 in vivo temperature reporters,
[4]

 and catalysts 

in RNA cleavage.
[5]

 The properties of these complexes are mainly connected with the 

chemical properties and number of pendant groups. The acetic acid group (-CH2CO2H) is 

probably the most common functionality, since cyclen-based ligands containing similar 

groups form metal complexes characterized by high thermodynamic stability and marked 

kinetic inertness towards dissociation, hence favouring their use for in vivo applications.
[6]

 

The formation of manganese(II) complexes with polyaminopolycarboxylic ligands based 

upon 1,4,7,10-tetraazacyclododecane (cyclen) has been studied in aqueous solution by means 

of potentiometric and microcalorimetric techniques affording logK, ∆H° and T∆S° values for 

the complexation reactions. The ML complexes present high stability constants, due to both 

favourable enthalpic and entropic contributions; with the unique exception of DOTA 

(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), the entropic term is prevalent. The 

1,4-DO2A (1,4,7,10-tetraazacyclododecane-1,4-diacetic acid) forms a more stable complex 

than the 1,7-DO2A isomer.
[7] 

In this chapter we discuss two newly synthesized ligands and we investigate in detail their 

Mn(II) complexes. We performed thermodynamic, kinetic studies and we report their ability 

to enhance water (
1
H and 

17
O) relaxation times. Our plan was to synthesize two new ligands 

maintaining the thermodynamic and kinetic stability properties of the [Mn(1,4-DO2AM)]
2+

 

(Chapter 6), while increasing its relaxivity by suitable modification of the molecular structure. 

We have introduced two benzyl groups either on the amino groups of cyclen (1,4-BzDO2AM) 

or on the two acetamide pendant arms (1,4-DO2AMBz). The presence of two hydrophobic 

moieties favors the formation of adducts with Human Serum Albumin (HSA)
[8]

 through non-

covalent interactions. We know that such macromolecular adducts are characterized by large 

enhancement in the relaxivity thanks to the reduced rotational tumbling in solution.
[1a]

 Of 

course we need to make sure the chemical modification does not change the hydration state of 

the complexes (q). 
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Scheme 1. The structure of the ligands 1,4-DO2AMBz, 1,4-DO2AM, 1,4-BzDO2AM, 1,4-

DO2A, DOTA and 1,7-DO2A, discussed in this chapter. 

 

Synthesis: 

The 1,4-DO2AMBz was synthesized in a two-step reaction. First, the sidearm was 

synthesized from 2-bromoacetyl bromide and benzyl amine 
[9]

, after that, the sidearm was 

added to cyclen. The final product was obtained in about 20% yield after semi preparative 

HPLC-MS purification and was characterized by ESI-MS spectrometry and 
1
H and 

13
C NMR 

spectroscopy. The 1,4-BzDO2AM was synthesized starting from 1,4,7,10- 

tetraazacyclododecane (cyclen) following the same protocol used for the synthesis of 1,4-

dibenzyl-1,4,8,11-tetraazacyclotetradecane 
[10]

, after that the intermediates and N,N-dimethyl 

2-chloroacetamides reaction led to the final product in about 20% yield. 
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Scheme 2. Synthesis of 1,4-DO2AMBz 

 

 

Scheme 3. Synthesis of 1,4-BzDO2AM 
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Solution equilibrium studies: 

Protonation equilibria. The protonation constants of 1,4-DO2AMBz and 1,4-BzDO2AM 

ligands, defined by Eq. (1), were determined by pH-potentiometry in 0.1 M KCl aqueous 

solution. The logKi
H
 values of 1,4-DO2AMBz and 1,4-BzDO2AM ligands are listed and 

compared with those of 1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A and DOTA in Table 1. 

Standard deviations (3) are shown in parentheses. 

 

 Hi-1L  +   H
+
     HiL 

]L][Η[Η

L][Η
Κ

1i

iΗ

i 



           i=1, 2,…, 8.                                         (1) 

 

 

The protonation scheme of DO2AM ligand is well known and it has been fully characterized 

with both 
1
H-NMR

 
spectroscopy and pH-potentiometry methods.

 
Because of the similarities 

of 1,4-BzDO2AM, 1,4-DO2AMBz and 1,4-DO2AM, we may assume that the first 

protonation occurs on the N1/N2 atoms of the macrocycle (the protonation involves partially 

both N-atoms). The second protonation takes place on the un-substituted (1,4-DO2AMBz) or 

benzyl-substituted (1,4-BzDO2AM) N3 (or N4) atom along with a shift of the former proton to 

Table 1. Protonation constants of 1,4-BzDO2AM, 1,4-DO2AMBz, 1,4-DO2AM, 1,4-DO2A, 

1,7-DO2A, and DOTA at 25C in 0.1 M KCl 

 1,4-

BzDO2AM 

1,4-

DO2AMBz 

1,4-

DO2AM
[a] 

1,4-

DO2A
[b] 

1,7-

DO2A
[b]

 

DOTA
[c]

 

 0.1 M KCl 

logK1 11.11(1) 9.62(3) 10.14 11.40 11.66 11.41 

logK2 8.22(4) 6.90(5) 8.38 9.58 9.75 9.83 

logK3   - 3.74 4.06 4.38 

logK4   - 1.65 1.78 4.63 

logK5   - - - 1.92 

logK6   - - - 1.58 

logKi
H
 19.33 16.52 18.52 26.37 27.25 33.75 

[a] Ref 11 [b] Ref 12 [c]Ref 13 
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afford a bis-protonated species on N1–N4 or N2–N3. This shift of protons allows a larger 

charge separation, which is well known to occur during the protonation of tetraaza 

macrocyclic ligands.  

Comparison of the protonation constants of 1,4-BzDO2AM and 1,4-DO2AMBz with those of 

the 1,4-DO2AM indicates that the logK1
H
 value of 1,4-BzDO2AM is slightly higher, whereas 

the logK1
H
 and logK2

H
 values of 1,4-DO2AMBz are significantly lower than those of the 1,4-

DO2AM. In general, the nature of the substituents on the amide group of macrocyclic amino-

polycarboxylate ligands can influence the basicity of the ring N-atoms.
[14]

 The lower 

protonation constants of 1,4-DO2AMBz can be explained by the electron withdrawal effect of 

the benzyl group on the amide pendant arm results in the lower basicity of the ring nitrogens. 

The total basicity (logKi
H
) of 1,4-BzDO2AMBz is comparable whereas the logKi

H
 value of 

1,4-DO2AMBz is significantly lower than that of 1,4-DO2AM ligand. By taking into account 

the logKi
H
 values, a lower stability for the 1,4-DO2AMBz complexes can be expected in the 

comparison with the related complexes of 1,4-DO2AM ligand. 

 

Complexation properties: 

The stability constants of the Mn
II
-complexes formed with 1,4-BzDO2AM and 1,4-

DO2AMBz ligands are defined by Eq. (2).  

]][[

][

LM

ML
KML                                                             (2) 

 

The stability constants of the 1,4-BzDO2AM and 1,4-DO2AMBz complexes have been 

calculated from the titration curves obtained at 1:1 metal to ligand concentration ratios. The 

best fitting of the experimental data (volume of KOH added vs. pH) was obtained by using the 

model which includes the formation of ML species in equilibrium. However, the titration data 

of the Mn
2+

 - 1,4-BzDO2AM and Mn
2+

 - 1,4-DO2AMBz systems indicate base consuming 

process at pH>8.5. This process characterized by KMLH-1 equilibrium constants, can be 

interpreted by assuming the hydrolysis of the metal ion (the coordination of OH
-
 ion to Mn

II
 

center) according to Eq. (3). 

]H][MLH[

]ML[

1

MLH 1 






K
                                                                 (3) 
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The logKMnL and logKMnLH-1 values of Mn(1,4-BzDO2AM), Mn(1,4-DO2AMBz) complexes 

obtained by pH-potentiometry are listed and compared with those of Mn(1,4-DO2AM), 

Mn(1,4-DO2A), Mn(1,7-DO2A), Mn(DO3A) and Mn(DOTA) in Table 2. 

Table 2. The stability (logKML) and protonation (logKMLH-1) constants Mn
II
-complexes 

formed with 1,4-BzDO2AM, 1,4-DO2AMBz, 1,4-DO2AM, 1,4-DO2A, 1,7-DO2A, DO3A 

and DOTA (0.1 M KCl, 25C). 

 1,4-

BzDO2AM 

1,4-

DO2AMBz 

1,4-

DO2AM
[a] 

1,4-

DO2A
[b] 

1,7-

DO2A
[b] 

DOTA
[c] 

MnL 11.54 (4) 10.72(3) 12.64 15.22[b] 15.07[b] 19.33 

MnHL - - - 4.15[b] 4.48[b] 4.09 

MnH2L - - - - - 3.70 

MnLH-1 10.44(5) 9.44(7) - - - - 

[a] Ref 11 [b] Ref 12 [c]Ref 13 

 

The stability constants of the Mn
II
-complexes formed with the 1,4-BzDO2AM and 1,4-

DO2AMBz are about 1 and 2 orders of magnitude lower than that of Mn(1,4-DO2AM), 

respectively. The lower logKML value determined for Mn(1,4-DO2AMBz) complex is not 

surprising, since the total basicity of 1,4-DO2AMBz is lower by 2 logK unit than that of 1,4-

DO2AM ligand. However, the stability constant of Mn(1,4-BzDO2AM) complex is 

significantly lower than it can be expected by taking into account the logKi
H
 values 

presented in Table 1. Because of the similar basicity of the N donor atoms in 1,4-BzDO2AM 

and 1,4-DO2AM ligands, it can be assumed that the presence of the bulky benzyl substituents 

on the N2 and N3  sterically hinder the optimal arrangement of two amide oxygen and four 

ring nitrogen donor atoms around the relatively small Mn
II
-ion (82 pm). Because of the lower 

stability of Mn(1,4-BzDO2AM) and Mn(1,4-DO2AMBz) complexes, the hydrolysis of Mn
II
-

ion takes place by the formation of MnLH-1 species (Eq. (3)) at basic pH range.  

It should be noted that MnL complexes formed with 1,4-BzDO2AM, 1,4-DO2AMBz and 1,4-

DO2AM ligands are characterized with significantly lower stability than Mn(1,4-DO2A), 

Mn(1,7-DO2A), Mn(DO3A) and Mn(DOTA) complexes. The lower logKML values of the 

Mn
II
-complexes formed with 1,4-DO2A-bisamide ligands can be explained by the 

significantly lower basicity (logKi
H
) of the ring N-atoms due to the replacement of the 

charged carboxylate groups with the non-charged amide pendant arms.  
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Transmetallation kinetics 

The metal-complexes used in vivo, must have high kinetic inertness, because the products of 

their dissociation, both the free metal ion and the ligand are toxic.
[15] 

 Nowadays it has been 

realized that, in the in vivo applications of metal-complexes, the kinetic stability is more 

important that the stability constant.
[16]

 Body fluids are very complex systems and the in vivo 

study of the rate of dissociation reactions of metal-complexes would be difficult. However, 

the results of in vitro studies may provide important information concerning the kinetic 

behavior of the complexes under in vivo conditions. The kinetic stabilities of complexes are 

characterized either by the rates of their dissociation measured in 0.1 M HCl or by the rates of 

transmetallation reaction, occurring in solutions with Zn
2+

 or Cu
2+

.
[11,12,17]

 Generally, the 

dissociation of MnDOTA-like complexes take place slowly via the proton-assisted 

dissociation of Mn
II
-complexes whereas the presence of endogenous metal ions like Zn

2+
 and 

Cu
2+

 has essentially no effect on the dissociation rates.
[11,12,18] 

The rates of the metal exchange 

reactions of [Mn(1,4-DO2AM)], [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)] with Zn
2+

 and Cu
2+

 

ions were previously investigated.
[11,12]

 For the direct comparison of the kinetic properties of 

[Mn(1,4-BzDO2AM] and [Mn(1,4-DO2AMBz)] with those of [Mn(1,4-DO2AM)], [Mn(1,4-

DO2A)] and [Mn(1,7-DO2A)],  the same method and identical conditions were used as in the 

study of [Mn(1,4-DO2AM)], [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)].
[11,12]

 The rates of the 

transmetallation reactions of [Mn(1,4-BzDO2AM] and [Mn(1,4-DO2AMBz)] with the use of 

Zn
2+

 as exchanging metal ion  (Eq. (4)) were studied by relaxometry at 20 MHz and 25C in 

the pH range 4.5 – 6.5.  

 

 MnL  +   Zn
2+

    ZnL   +   H2L
2+

                                   (4) 

 

In the presence of 10 and 20 fold excess of the Zn
2+

-ion the transmetallation can be treated as 

a pseudo-first-order process and the rate of reactions can be expressed with the Eq. (5).  

 

                                                 (5) 

 

where kd is a pseudo-first-order rate constant and [MnL]t and [MnL]tot are the concentrations 

of the MnL species at time t and the total concentration of the complex, respectively.  The 

calculated pseudo-first order rate constants for the transmetallation reaction of [Mn(1,4-

BzDO2AM)]
2+

, [Mn(1,4-DO2AMBz)]
2+ 

and Zn
2+

 as a function of [H
+
] are shown in Figure 1. 

totd

t ]LnM[
dt

]LnM[d
k
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Figure 1. kd values of the transmetallation reactions of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

 with Zn
2+

 ([MnL]=0.5 mM, [Zn
2+

]=10 mM () and 20 mM (); 0.1 M KCl, 

25C) 

 

As it can be seen in Figure 1, the transmetallation rates of [Mn(1,4-BzDO2AM)]
2+

 and 

[Mn(1,4-DO2AMBz)]
2+

 are directly proportional to the H
+
 concentration and independent of 

the [Zn
2+

]. The increase in the kd values with increasing [H
+
] can be interpreted in terms of the 

relatively slow proton assisted dissociation of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

, followed by a fast reaction between the free ligand and the exchanging Zn
2+

 

ions. The dependence of kd on the [H
+
] can be expressed as a first-order function of [H

+
] by 

taking into account the proton-independent (Eq. (6)) and proton assisted (Eq. (7)) pathways. 

 

MnL    Mn
2+

    +   H2L                                             (6) 

 

MnL  +   H
+
    Mn

2+
    +   HxL                                        (7) 

 

k0 and k1 are the rate constants characterizing the spontaneous and proto-assisted dissociation 

of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

, respectively. By considering all the 

possible pathways and the rate of transmetallation of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

 (Eq. (5)), the pseudo-first-order rate constant (kd) can be expressed by Eq. (8). 

 

                                       (8) 
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By taking into account the total concentration of the complex ([MnL]tot = [MnL]), the pseudo-

first-order rate constant (kd) can be expressed as follows:  

 

 kd = k0   +   k1[H
+
]                                                         (9) 

 

The k0 and k1 rate constants were calculated by fitting the experimental data presented in 

Figure 1 to Eq. (9). The rate constants and the dissociation half-lives at pH=7.4 (t1/2 = ln2/kd) 

characterizing the transmetallation reaction of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

 with Zn
2+

 are listed and compared with the corresponding values reported for 

[Mn(1,4-DO2AM)]
2+

, [Mn(1,4-DO2A)], [Mn(1,7-DO2A)] and [Mn(DOTA)] in Table 3.  

 

 

Table 3. Rate constants and half-lives at pH=7.4 for the dissociation reactions of [Mn(1,4-

BzDO2AM)]
2+

, [Mn(1,4-DO2AMBz)]
2+

, [Mn(1,4-DO2AM)]
2+

, [Mn(1,4-DO2A)],  [Mn(1,7-

DO2A)] and [Mn(DOTA)]
2-

 complexes (0.1 M KCl, 25C). 

 Mn(1,4-

BzDO2AM) 

Mn(1,4-

DO2AMBz) 

Mn(1,4-

DO2AM)
[a] 

Mn(1,4-

DO2A)
 [b]

 

Mn(1,7-

DO2A)
 [b]

 

Mn(DOT

A) 
[c] 

k0 (M
-1

s
-1

) (-9±8)10
–6

 (-1±5)10
–7

 -6  10
–7

   1.8  10
–7

 

k1 (M
-1

s
-1

) 36 ± 2 38 ± 2 8.7 99 84 0.04 

k2 (M
-2

s
-1

)    1.5  10
6
 2.5  10

6
 1.6  10

3
 

logKMnLH    4.15 4.48 4.26 

kd (s
-1

) 

pH=7.4 
1.410

-6
 1.510

-6
 3.510

-7
 3.9 10

-6
 3.3  10

-6
 2.6 10

-6
 

t1/2 (h) 

pH=7.4 
136 126 556 49.4 58.3 1070

 

[a] Ref 11 [b] Ref 12 [c]Ref 18 

 

 

The data presented in Table 3 also show that the obtained k0 values are very low and the error 

in them is very high, indicating the unimportance of the spontaneous dissociation of the 

[Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

. The k1 rate constants characterizing the 

proton-assisted dissociation of the Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

  

complexes are about 4 times higher than that of the [Mn(1,4-DO2AM)]
2+

 and about three 

times smaller than those of [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)] complexes. It is generally 

accepted that the proton assisted dissociation of Mn
II
-complexes of DOTA-like ligands 

possessed by carboxylate pendant arms takes place by the protonation at one of the 

carboxylate group, which is more likely followed by the transfer of proton to the ring nitrogen 

with the release of Mn
2+

 from the coordination cavity.
[12,18] 

Since the replacement of the 

protonable carboxylate groups with non-protonable amide groups does not allow the 
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formation of the protonated MnHL intermediate, it can be assumed that the proton assisted 

dissociation of Mn
II
-complexes formed with DO2A-bisamides takes place by protonation of 

the ring N-atom followed by dissociation of the Mn
2+

 ion. By taking into account the k1 values 

of Mn(1,4-BzDO2AM)]
2+

, [Mn(1,4-DO2AMBz)]
2+

 and [Mn(1,4-DO2AM)]
2+

, it can be 

assumed that the protonation of the ring N-atom in [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

 occur more easily, which might be explained by the weak interactions 

between the donor atoms of 1,4-BzDO2AM and 1,4-DO2AMBz ligands and Mn
II
-ion. This 

hypothesis has been confirmed by the lower stability constants of [Mn(1,4-BzDO2AM)]
2+

 and 

[Mn(1,4-DO2AMBz)]
2+

 complexes (Table 2). The half-life (t1/2) of dissociation of [Mn(1,4-

BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

 calculated for pH=7.4 is about four times lower 

than that measured for [Mn(1,4-DO2AM)]
2+

 but remain significantly higher than those 

reported for of [Mn(1,4-DO2A)] or [Mn(1,7-DO2A)]. 

 

1
H and 

17
O NMR relaxometric studies. 

 

The relaxometric characterization of the two complexes begins with the measure of the pH 

dependency of the relaxivity. The overall behaviour follows quite closely that observed for 

[Mn(1,4-DO2AM)]
2+

. The relaxivity is constant over the pH range 12 to 5, where complete 

formation of the metal complex occurs, and then it shows a sharp increase up to pH ca. 3-4, 

where another range of constant r1p is formed. These results confirm that the introduction of 

the benzyl groups either on the macrocycle or on the pendant arms does not alter significantly 

the stability of the complexes. The pH dependence of the relaxivity for both complexes is 

reported in Figure 2. 

 

Figure 2. Plot of the relaxivity (20 MHz; 25 ºC) of the [Mn(1,4-BzDO2AM)]
2+

 (left) and 

[Mn(1,4-DO2AMBz)]
2+

 (right) complexes as a function of pH.  
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The r1p values of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

 as measured at 25°C, 

20 MHz and neutral pH are 3.8 and 3.5 mM
-1

 s
-1

, respectively. These values are considerably 

higher than that of [Mn(1,4-DO2A)] and [Mn(1,4-DO2AM)]
2+

, suggesting that both 

complexes feature one coordinated water molecule and an enhanced inner sphere relaxivity 

associated with their larger size (longer R). 

The NMRD profiles have been measured at 298 and 310 K over the proton Larmor frequency 

range 0.01-70 MHz, corresponding to magnetic field strengths varying between 2.34310
-4

 T 

and 1.645 T (Figure 3). As typical for low molecular weight complexes, the profiles have a 

rather simple functional form consisting of a region of constant relaxivity at low fields, a 

simple dispersion around 6-8 MHz, and another region at high fields (> 20 MHz) where the 

relaxivity tends to flatten out.  

 

 

Figure 3.
 1

H NMRD profiles recorded at different temperatures for [Mn(1,4-BzDO2AM)]
2+

 

(left) and [Mn(1,4-DO2AMBz)]
2+

 (right). The lines represent the fit of the data as explained 

in the text. 

 

As for the parent complex, also in this case the relaxivity decreases by increasing temperature 

over the entire frequency range, clearly indicating that both Mn(II) chelates are in the fast-

exchange regime and that r1p is only limited by the rotational correlation time.  

Also in this case a quantitative assessment of the water exchange kinetics has been gained 

through the measurements and analyses of the temperature dependence of the 
17

O NMR 

transverse relaxation rate (R2) and paramagnetic shift (Δω) (Figure 4 A and B). The 

experimental data were measured on a high-resolution NMR spectrometer, operating at 14.1 

T, on aqueous solutions of the complexes (2-7 mM) at neutral pH. The data were then 

analysed according to the well-established set of Swift-Connick equations. The reduced R2 

(1/T2r) and Δω values are reported in Figure 4A and 4B, respectively. As for the parent 



 
121 

complex (see Chapter 6), the increase of 1/T2r with decreasing temperature over a wide range 

of values represents a clear indication of a fast rate of exchange for the coordinated water 

molecule, in agreement with the qualitative conclusions obtained from the analysis of the T-

dependent NMRD profiles. 

 
 

 
 

Figure 4. Reduced transverse (A) 
17

O NMR relaxation rates and 
17

O NMR chemical shifts (B) 

measured for[Mn(1,4-DO2AMBz)]
2+

 (left) and [Mn(1,4-BzDO2AM)]
2+ 

(right) at 11.74 T. 

The lines represent the fit of the data as explained in the text 

 

The 
1
H NMRD and 

17
O NMR data were fitted simultaneously according to the established 

theory of paramagnetic relaxation expressed in terms of the Solomon-Bloembergen-

Morgan
[19] 

and Freed’s
[20]

 equations for the inner- (IS) and outer
 

sphere (OS) proton 

relaxation mechanisms, respectively, and of the Swift-Connick theory for the 
17

O relaxation. 

Following a well-established practice, due to the large number of relaxation parameters some 

of them were fixed to reasonable values: q was fixed to 1; the distance between the metal ion 

and the protons of the bound water molecule, r, was fixed to 2.83 Å; a and D were set to 3.6 

Å and 2.3×10
-5

 cm
2
 s

-1
 (at 25°C), respectively; EV was fixed to 1.0 kJ mol

-1
. To ER (activation 

energy for the rotational motion of the complex) and ED (activation energy of D) were 

A

B 

A 

B 
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assigned the same values found for [Mn(1,4-DO2A)]: 19.1 and 17.3 kJ mol
-1

, respectively. 

The relevant best-fit parameters are listed in Table 4 and compared with those of related 

macrocyclic Mn(II) complexes. 

 

Table 4. Parameters obtained from the simultaneous analysis of 
17

O NMR and 
1
H NMRD 

data. 

Parameters 
1,4-

BzDO2AM 

1,4-

DO2AMBz 

1,4-

DO2AM 

1,4-

DO2A[21] 

r1 / mM-1 s-1 3.8 3.5 2.5 2.1 
298kex /×106 s-1 253 ± 9 175 ± 5 111 ± 6 1134 

2 /×1019 s-2 20 ± 2 20 ± 1 51 ± 8 48.1 

298V / ps 13 ± 1 11 ± 1 5.5 ± 0.2 4.4 

298R / ps 96 ± 2 85 ± 3 53 ± 3 46 

ΔH# / kJ mol-1 14.4 ± 1.1 24.6 ± 0.8 39.8 ± 0.7 29.4 

A/ħ / 106 rad s-1 31.0 ± 0.4 33.0 ± 0.3 39.0 ± 0.4 43.0 

q 1* 1* 0.87 0.87 

rMn–H / Å* 2.83 2.83 2.83 2.83 

a / Å* 3.6 3.6 3.6 3.6 

* fixed during the fit 

 

 

The electron relaxation parameters, 2
 and V, are very similar for the both macrocyclic 

complexes and similar to the values for the parent complex. This represents a strong 

indication of the occurrence of strictly analogous solution structures for the three complexes. 

The rotational correlation time R assumes the value of 96 and 85 ps for [Mn(1,4-

BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

, respectively. This nicely reflects the increased 

molecular mass of the benzylic derivatives over the parent complex and confirms the limiting 

role of the rotational dynamics to the relaxivity of the complexes. In addition, the difference 

in the r1p and R values between the two chelates is well accounted for by their slightly 

different molecular masses.
 

The rates of water exchange are about are about two times higher than for [Mn(1,4-

DO2AM)]
2+ 

and approximately half that of [Mn(EDTA)]
2-

. So, the introduction of 

hydrophobic substituents impacts not only the rotational dynamics but also the water 

exchange dynamics of the complexes, likely by influencing the relative energy values of their 

six- and seven-coordinate states. 
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Human Serum Albumin (HSA) binding studies. 

The presence of hydrophobic groups allows the complexes to bind HSA. The binding 

interaction has been investigated through the well-established proton relaxation enhancement 

(PRE) technique that consists in measuring the increase of the water proton longitudinal 

relaxation rate (R1) as a function of increasing concentration of the protein at 20 MHz and 298 

K (Figure 5). R1 is enhanced by the increase of the fraction of bound complex, characterized 

by a decreased reorientational motion. The fitting of the experimental data to the theoretical 

values calculated based on the established theory provides the values of the thermodynamic 

association constant, KA, the number of the equivalent and independent binding sites, n, and 

the relaxivity of the resulting paramagnetic metallo-protein, r1
bound

. All the data were fitted to 

a 1:1 binding isotherm even though the presence of multiple affinity sites on HSA cannot be 

excluded for these complexes. The affinity of the complexes for the protein is influenced by 

the position of the pendant hydrophobic moieties: KA is ca. 3.9×10
3
 M

-1
 for [Mn(1,4-

BzDO2AM)]
2+

 and 1.9×10
3
 M

-1
 for [Mn(1,4-DO2AMBz)]

2+
. 

 

 

Figure 5. Changes in the observed longitudinal relaxation rates of water protons observed 

upon addition of HSA to solutions of the [Mn(BzDO2AM)]
2+

 (0.139 mM) and 

[Mn(DO2AMBz)]
2+

 (0.199 mM) complexes. The solid lines represent the least-squares fits of 

the data according to a 1:1 binding isotherm. 

Table 5. Best-fit parameters obtained from the analysis of the 
1
H relaxometric titrations (20 

MHz; 298 K) of the Mn
2+

 complexes with HSA.
 

 [Mn(1,4-DO2AMBz)]
2+

 [Mn(1,4-BzDO2AM)]
2+

 

n·KA (M
-1

) 1964 ± 342 3909 ± 583 

r1p
b
 (mM

-1
 s

-1
) 27.4 ± 1.4 18.5 ± 0.7 

r1p
f
 (mM

-1
 s

-1
)

 
3.5 3.8 
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These values are 2-3 times higher than similar data reported for Gd(III) complexes bearing 

analogous targeting groups.
[22] 

However, the Gd-chelates (anionic) and these Mn(II) 

complexes (cationic) differ for the overall charge. The r1p
bound

 (20 MHz and 298 K) values 

show a difference: 18.5 mM
-1

 s
-1

 for [Mn(1,4-BzDO2AM)]
2+

 and 27.4 mM
-1

 s
-1 

for [Mn(1,4-

DO2AMBz)]
2+ 

(Table 5). Clearly, the relative position of the benzylic groups in the two 

complexes influences the motional coupling between the paramagnetic unit and the protein. 

One hypothesis is that the presence of the two hydrophobic groups on the coordinating 

acetamide moieties limits the degree of local motions involving the coordination cage (longer 

effective rotational correlation time) and thus increases relaxivity. 

Conclusions: 

The chemical modification of the basic structure of DO2AM, with the introduction of two 

benzyl groups either on the macrocycle or on the pendant arms, has strong effect on various 

properties of the corresponding Mn(II) complexes.  

- Both complexes show higher r1p values. The increase of molecular mass seems to be 

translated entirely into a corresponding increase of relaxivity, thus suggesting a rather 

compact structure characterized by an isotropic tumbling motion. 

- The high relaxivity values suggest the presence of one bound water molecule, although we 

cannot exclude the presence of a small population of the q=0 isomer. In any case, the 

hydration state of the parent complex did not decrease upon the chemical modification. 

- The rate of water exchange has increased by a factor of ca. two as compared to the value of 

MnDO2AM. This is not easy to explain without additional information on the mechanism of 

exchange, because the overall charge of the complexes and their coordination geometries did 

not change. Probably, steric interactions between the hydrophobic substituents and the 

coordinated water molecule might be involved. 

- As for the corresponding Gd(III) chelates, the presence of the hydrophobic pendant groups 

enables the formation of non-covalent adducts with HSA. The affinity constants and the 

relaxivity values of the adducts are quite comparable to those typical of the analogous Gd(III) 

complexes. 

- The thermodynamic stability constants decreased by nearly one logK. Moreover, the kinetic 

inertness of the modified complexes sensibly reduced, as shown by the t1/2 values, ca. 5 times 

lower than for MnDO2AM.  
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This last point is quite disappointing because the lower stability of the complexes attenuates 

to some extent the advantages obtained in terms of relaxation efficiency. Clearly, more efforts 

are necessary to find a better compromise between safety and efficiency for the Mn-based 

MRI probes.  

Experimental Section: 

General: All chemicals were purchased from Sigma-Aldrich Co. and were used without 

further purification. The concentration of the MnCl2, and ZnCl2 solutions were determined by 

complexometric titration with standardized Na2H2EDTA and xylenol orange (ZnCl2), and 

Eriochrome Black T (MnCl2) as indicators. The concentration of the 1,4-BzDO2AM, and 1,4-

DO2AMBz was determined by pH-potentiometric titration in the presence and absence of a 

50 fold excess of CaCl2. The pH-potentiometric titrations were made with standardized 0.2 M 

KOH solution. 
1
H and 

13
C NMR spectra were recorded on a Bruker DRX 400 (9.39 T) and 

Bruker Avance III (11.74 T) spectrometers. Chemical shifts are reported relative to TMS and 

were referenced using the residual proton solvent resonances. Electrospray ionization mass 

spectra (ESI MS) were recorded on an SQD 3100 Mass Detector (Waters), operating in 

positive or negative ion mode, with 1% v/v HCOOH in methanol as the carrier solvent. HPLC 

analyses were carried out on a 1525EF Waters liquid chromatograph equipped with Waters 

2489 UV/vis and Waters SQD 3100 MS detectors and using a Waters Atlantis® T3 RPC18 

column (150 mm × 4.6 mm, 5 μm). Preparative HPLC separations were carried out using a 

Waters Atlantis
®
 T3 OBD RPC18 column (100 mm × 19 mm, 5 μm) and a Waters FCIII 

fraction collector.  

Synthesis of 1,4-DO2AMBz:2-bromoacetyl bromide (1 mL, 11.5 mmol) and benzyl amine 

(1.14mL, 10.4 mmol) were dissolved in CH2Cl2 (10 mL) and triethylamine (0.88 mL, 6.26 

mmol) was added at 0 °C. The reaction mixture was stirred at 0 
o
C for 1 h, and then allowed 

to warm to room temperature. 15 ml of water was added and the aqueous layer was extracted 

with 4x 15 ml CH2Cl2. The combined organic layer was washed with 50 ml 5% HCl, water, 

50 ml saturated NaHCO3, and brine. The organic layer was dried over MgSO4 and then 

filtered. The solvent was removed in vacuum and the product 3 was purified by flash 

chromatography Petroleum ether 7:3 Ethyl acetate on silica gel. ESI-MS (m/z): found 228.0 

[M + H
+
]. We used the sidearm without other characterization.

[23]
 After that cyclen (0.28 g 1.6 

mmol) and K2CO3 (0.33 g 2.4 mmol) was dissolved in ACN (15 ml) and the product 3 (0.74 g 
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3.3 mmol) was added dropwise. The mixture was heated to reflux for 24 h. The resulting 

aqueous solution was dried and the crude product was then purified by semi-preparative 

HPLC-MS (Solvent A: H2O TFA 0.1%; Solvent B: MeOH; 0-2 min 10% B then gradient 10-

100% B in 18 min; Flow 20 mL/min; retention time: 6.3 min) to obtain 140 mg of an orange 

oil 5 (0.26 mmol, 18.2% yield). ESI-MS (m/z): found 467.5 [M + H
+
] (calc. for C26H38N6O2: 

466.5). 
1
H-NMR (D2O, 500 MHz): δ 3.22 (σ CH2NH 4H) 3.05 (s, CH2CO, 4H), 2.85-2.65 (m, 

NCH2 ring, 16H), 7.51-7.41 (m, CHAr, 10H); 
13

C-NMR (D2O, 125 MHz): δ 171.4 (C=O), 

131.0 (CH), 129.1 (CH), 57.7 (CH2), 53.5 (CH2), 53.0 (CH2), 50.0 (CH2), 48.9 (CH2), 36.6 

(CH2) 

 

Synthesis of 1,4-BzDO2AM:Cyclen (0.5 g 2.9 mmol) was dissolved in ethanol (15 ml) and 

diethyl oxalate (585 μL 4.3 mmol) was added dropwise. The mixture was heated to reflux for 

24 h and then the solvent was removed in vacuum. We characterized the intermediate with 

mass chromatography: ESI-MS (m/z): found 227.2 [M + H
+
]. The product 3 (0.64 g 2.8 

mmol) was dissolved in ACN (15 ml) and benzyl bromide (840 μL 7.0 mmol) and K2CO3 

(2.35 g 17 mmol) were added to the mixture. The mixture was heated to reflux for 24 h and 

then the solvent was removed in vacuum. The crude product 5 was dissolved in CH2Cl2 (20 

ml) and washed with water (3x15 ml). The product was purified by flash chromatography 

(DCM 98:2 MeOH, silica gel). ESI-MS (m/z): found 407.5 [M + H
+
].  The product 5 was 

dissolved in 5 M NaOH (20 ml) and was stirred on 100 °C for 24 h.  The solvents volume was 

rotavaporated to smaller amount (10 ml) and washed with CH2Cl2 (3x20 ml); after that the 

organic phase was washed with water (3x20 ml). The organic layer was dried over MgSO4 

and then filtered. The organic solvent was then removed in vacuum. ESI-MS (m/z): found 

353.5 [M + H
+
]. The intermediate was used without any further characterization.

[24]
The 

product 6 (0.17 g 0.5 mmol) and K2CO3 (0.63 g, 4.5 mmol) were suspended in ACN (10 ml) 

and N,N-dimethyl 2-chloroacetamide (105 μL 1.01 mmol) was added dropwise. The mixture 

was stirred for 24 h and then the solvent was removed in vacuo. The crude product 8 was 

purified by flash chromatography (DCM:MeOH 99:1, silica gel) to obtain a pale yellow oil.  

(0.46 mmol, 15.9 % yield). ). ESI-MS (m/z): found 523.5 [M + H
+
] (calc. for C30H46N6O2: 

522.5). 
1
H-NMR (D2O, 500 MHz): δ 4.31 (σ CH2 4H) 3.18 (s, CH2CO, 4H), 3.51 (s CH3 12H) 

2.01-2.28 (m, NCH2 ring, 16H), 7.30-7.37 (m, CHAr, 10H); 
13

C-NMR (D2O, 125 MHz): δ 

172.5 (C=O), 137.8 (CH), 126.5.0 (CH), 127.0 (CH), 127.6 (CH) 49.5 (CH2), 50.1 (CH2), 

50.6 (CH2), 51.2 (CH2), 51.9 (CH2), 55.0 (CH2) 41.9 (CH3) 
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Equilibrium measurements: The protonation constants of 1,4-BzDO2AM and 1,4-

DO2AMBz the stability and protonation constants of the Mn
2+

-complexes formed with the 

1,4-BzDO2AM and 1,4-DO2AMBz ligands have been determined by pH-potentiometry. The 

pH-potentiometic titrations were performed at 1:1 metal-to-ligand concentration ratio (the 

concentration of the ligand was generally 0.002 M). For the calculation of the equilibrium 

constants the mL base – pH data were used, obtained in the pH range 1.7–12.0.. The 

equilibrium constants were calculated with the program PSEQUAD.
[25]

 For the pH 

measurements and titrations, a Methrohm 888 Titrando titration workstation and a Metrohm 

6.0233.100 combined electrode were used. Equilibrium measurements were carried out at a 

constant ionic strength (0.1 M KCl) in 8 mL samples at 25 C. The solutions were stirred, and 

N2 was bubbled through them. The titrations were made in the pH range of 1.7-12.0. KH-

phthalate (pH=4.005) and borax (pH=9.177) buffers were used to calibrate the pH meter. For 

the calculation of [H
+
] from the measured pH values, the method proposed by Irving et al. 

was used.
[26]

 A 0.01M HCl solution was titrated with the standardized KOH solution in the 

presence of 0.1 M KCl ionic strength, respectively. The differences between the measured 

(pHread) and calculated pH (-log[H
+
]) values were used to obtain the equilibrium H

+
 

concentration from the pH values, measured in the titration experiments. The ion product of 

water was determined from the same titrations (HCl/KOH) in the pH range of 11.5-12.0. 

Kinetic studies: The kinetic inertness of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

 were characterized by the rates of the exchange reactions taking place 

between the MnL complexes and Zn
2+

.  The rates of the metal exchange reactions of [Mn(1,4-

BzDO2AM)]
2+

 and [Mn(1,4-DO2AMBz)]
2+

 with Zn
2+

 was followed by measuring the water 

proton relaxation rates (1/T1) of the samples with a Stelar Relaxometer equipped with a 

Bruker WP80 NMR electromagnet adapted to variable-field measurements (15-80 MHz 

proton Larmor frequency. The kinetic measurements were performed on the Stelar 

Relaxometer at 0.47 T (20 MHz) and 25 °C owing to the large differences in the relaxivities 

[Mn(1,4-BzDO2AM)]
2+

 (r1p=3.83 mM
-1

s
-1

) and [Mn(1,4-DO2AMBz)]
2+

 (r1p=3.47 mM
-1

s
-1

) 

and that of free Mn
2+

 (r1p=8.0 mM
-1

s
-1

). The longitudinal relaxation times were measured by 

the ‘inversion recovery’ method (180 - - 90) by using 8 different  values. The 

measurements were made with 1.0 mM of [Mn(1,4-BzDO2AM)]
2+

 and [Mn(1,4-

DO2AMBz)]
2+

  solution in the presence of 10 to 20 fold excess of Zn
2+

. The temperature was 

maintained at 25 C and the ionic strength of the solutions was kept constant (0.15 M NaCl 

and 0.1 M KCl). For keeping the pH values constant, N-methylpiperazine (pH range of 4.1 – 
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5.2) and piperazine (pH range of 4.7 – 6.6) buffers (0.01 M) were used. The pseudo-first-

order rate constants (kd) were calculated with the use of the Eq. (10) 

                                                          
e

1

e

1

0

1

t

1
RRRR 

 tde
k

)(                                              (10) 

 

where R1
0
, R1

t
, and R1

e
 are the relaxation rate (1/T1) values at the start, at time t, and at 

equilibrium of the reactions, respectively. The calculations were performed using the 

computer program Micromath Scientist, version 2.0 (Salt Lake City, UT, USA). 

1
H NMRD and 

17
O NMR measurements. The water proton longitudinal relaxation rates as a 

function of pH (20 MHz) were measured with a Stelar Spinmaster Spectrometer FFC2000 

(Mede, PV, Italy) on about 0.6-2.0 mM aqueous solutions in non-deuterated water. The exact 

concentrations of Mn
2+

 ions were determined by measurement of bulk magnetic susceptibility 

shifts of a tBuOH signal on a Bruker Avance III spectrometer (11.7 T). The 
1
H T1 relaxation 

times were acquired by the standard inversion recovery method with typical 90° pulse width 

of 3.5 μs, 16 experiments of 4 scans. The reproducibility of the T1 data was ±5%. The 

temperature was controlled with a Stelar VTC-91 airflow heater equipped with a calibrated 

copper–constantan thermocouple (uncertainty of ±0.1 °C). The proton 1/T1 NMRD profiles 

were measured on a fast field-cycling Stelar SmartTracer relaxometer over a continuum of 

magnetic field strengths from 0.00024–0.25 T (corresponding to 0.01–10 MHz proton Larmor 

frequencies). The relaxometer operates under computer control with an absolute uncertainty 

in 1/T1 of ±1%. Additional data points in the range 15–70 MHz were obtained on a Stelar 

Relaxometer equipped with a Bruker WP80 NMR electromagnet adapted to variable-field 

measurements (15–80 MHz proton Larmor frequency). 

Variable-temperature 
17

O NMR measurements were recorded on a Bruker Avance III 

spectrometer (11.7 T) equipped with a 5 mm probe and standard temperature control unit. An 

aqueous solution of the complex (4 mM) containing 2.0% of the 
17

O isotope (Cambridge 

Isotope) was used. The observed transverse relaxation rates were calculated from the signal 

width at half-height. 
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Summary  

The main objective of this thesis was the detailed characterization of homogeneous series of 

Mn(II) complexes to assess the possibility of using Mn-based systems as an alternative to Gd 

(III)-based MRI probes. There is a need to expand the available limited library of compounds 

so far investigated to achieve better and more reliable information on the correlation between 

solution structure and molecular relaxation parameters. This is key to enhance the efficacy 

(relaxivity) of the probes. Moreover, it is very important to obtain accurate information 

relating to thermodynamic stability and kinetic inertia of the complexes. This is key to 

develop safe probes for in vivo use.  

A contrast agent for MRI must have the ability to catalyze efficiently the T1 and/or T2 

relaxation in tissues at low (μM to mM) concentrations and with acceptable tolerance. The 

following points summarize the most important features of paramagnetic MRI contrast agents. 

 high relaxivity 

 high kinetic and thermodynamic stability 

 rapid clearance 

 low toxicity 

 specific biodistribution/accumulation 

 low osmolality and viscosity 

Our studies focused on the first two points: thermodynamic and kinetic measurements 

combined with detailed 
1
H and 

17
O NMR relaxometric investigations.  

 

Two main classes of complexes were addressed in the thesis.  

1) The first is represented by the Mn(II) complexes containing the acyclic pentadentate 

coordinating unit 6,6-((methylazanediyl)bis(methylene))dipicolinic acid (H2dpama).  

 

 

H2dpama 

 

I investigated mono-, bi- and trinuclear bis-hydrated complexes. Furthermore, several other 

derivatives bearing different pendant moieties were considered and analyzed.  
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2) The second general class of complexes I dealt with are those based on the macrocyclic 

scaffold of cyclen (1,4,7,10-tetraazacyclododecane). In particular, I focused on the exadentate 

ligands containing two acetamide side arms (1,4-DO2AM) and their derivatives containing 

hydrophobic pendant groups.  

 

 

1,4-DO2AM 

Chapter 4 reports the characterization of the Mn(II)-complexes of dpama
2-

, mX(dpama)2
4-

, 

mX(dpama)3
6-

 and bcpe
2-

. The ligands contain the pentadentate coordinating unit designed for 

pentagonal bipyramidal coordination around Mn
2+

 thanks to the presence of two coordinated 

water molecules. The high hydration number (q=2) imparts remarkably high relaxivities to the 

Mn
2+

 complexes. Furthermore, these relaxivities are further improved by interaction with 

HSA, particularly in the case of the bi- and trinuclear complexes. These multimeric 

complexes show that it is possible to develop low molecular weight Mn
2+

 chelates that may 

represent viable alternatives to Gd-based MRI probes. Their relaxometric properties, in both 

the free form and bound to HSA, are fully comparable or better than those shown by the Gd
3+

 

complexes commonly used in the clinical practice.  

The Mn
2+

 complexes formed with this family of ligands present moderate thermodynamic 

stabilities. Although this may not be a very serious limitation due to the far better safety 

profile of Mn
2+

 compared to Gd
3+

, it is still relevant to continue the search for complexes that 

exhibit improved characteristics of kinetic inertness with respect to complex dissociation. 

 

In Chapter 5 we expanded the family of ligands containing the picolinate group by 

considering the pentadentate ligand H2DPAPhA and the hexadentate derivative H3DPAA. 

Furthermore, we also investigated two lipophilic derivatives of H2DPAMA and 

H2PhDPAMA, which contain a dodecyl side chain attached to the amine nitrogen atom of 

H2DPAMA or a hexyl chain at the aniline function of H2DPAPhA, respectively. These 

lipophilic can be incorporated into micelles or liposomes, for the preparation of lipid magnetic 

nanoprobes. These complexes are also able to bind HSA in a non-covalent manner. The 

hexadentate ligand DPAA
3-

 forms a complex with Mn
2+

 with stability and relaxivity 
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comparable to that of [Mn(EDTA)(H2O)]
2
. On the other hand, the pentadentate ligands 

DPAPhA
2-

 and DPAMA
2-

 form bis-aquated Mn
2+

 complexes in solution. The r1p value of 6.7 

mM
-1

 s
-1 

measured for [Mn(DPAPhA)] at pH 7.4 (25 ºC, 20 MHz) is considerably high, which 

indicates the presence of two coordinated water molecules. The results obtained have shown 

that the relaxivities of Mn
2+

 complexes can be modulated by changing the hydration number 

or introducing lipophilic units in the ligand scaffold, very much like in the case of Gd
3+

 

complexes. The adducts formed with HSA have also relaxivities comparable to those attained 

with lipophilic Gd
3+

 agents. 

 

In Chapter 6 I discussed the synthesis and characterization of the hexadentate ligand 1,4-

DO2AM and its Mn(II) complex. The replacement of two negatively charged acetate groups 

with neutral acetamide arms has a marked influence on the solution properties of the 

corresponding Mn
II
 chelates. The thermodynamic stability decreases by about 2.5 logKML 

units because of the lower basicity of the nitrogen atoms of the macrocyclic ring. On the other 

hand, the kinetic inertness of the cationic complex [Mn(1,4-DO2AM)]
2+

 is significantly 

greater than that of the related carboxylates analogues. The half-life for dissociation is ca. one 

order of magnitude longer than that measured for [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)]. 

The relaxometric properties are only marginally influenced by the chemical modification of 

the ligand, with the exception of the rate of water exchange which decreases by more than one 

order of magnitude with respect to the value found for [Mn(1,4-DO2A)].  

The main conclusion from this study is that the kinetic inertness of Mn
II
 chelates can be 

improved without a negative impact on the relaxivity. Clearly, further efforts are necessary to 

combine the elevated kinetic inertness and relaxivity with high thermodynamic stability. We 

hope that the results of this study can provide some clues to achieve this ambitious goal. 

 

Chapter 7 presents the results of the synthesis and complete characterization of two novel 

ligands bearing benzyl pendant groups: 1,4-BzDO2AM, and 1,4-DO2AMBz. We performed 

thermodynamic, kinetic and relaxometric (
1
H and 

17
O) studies. The chemical modification of 

the basic structure of 1,4-DO2AM did not changed significantly the thermodynamic stability 

and also the kinetic stability remains relatively high, with a the half-life (t1/2) of dissociation 

significantly higher than that reported for [Mn(1,4-DO2A)] and [Mn(1,7-DO2A)]. The r1p 

values of the two complexes are considerably higher than those of [Mn(1,4-DO2A)] and 

[Mn(1,4-DO2AM)]
2+

, arising from the presence of one coordinated water molecule associated 

with a larger molecular size (longer R). The presence of hydrophobic groups allows the 
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complexes to bind HSA. The affinity of the complexes for the protein is influenced by the 

position of the pendant hydrophobic moieties: KA is ca. 3.9×10
3
 M

-1
 for [Mn(1,4-

BzDO2AM)]
2+

 and 1.9×10
3
 M

-1
 for [Mn(1,4-DO2AMBz)]

2+
. Both the affinity constants and 

the relaxivity values of the adducts are quite comparable to those typical of the analogous 

Gd(III) complexes. Unfortunately, the thermodynamic stability constants decreased by nearly 

one logK. Moreover, the kinetic inertness of the modified complexes sensibly reduced, as 

shown by the t1/2 values, ca. 5 times lower than for MnDO2AM. 

All the r1p and logKMnL values of the Mn(II)-complexes investigated in this thesis are plotted 

in Figure 1 and 2. In the logKMnL table we also show the stability values of the [Mn(1,4-

DO2A)], [Mn(1,7-DO2A)] and [Mn(EDTA)]
2-

 for comparison. 

 

Scheme 1. Structures of the ligands shown in Figure 1. 
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Figure 1. r1p values at 25 °C of the investigated Mn(II)-complexes as a function of their 

molecular weight. 

 

 

Figure 2. logKMnL values of the complexes investigated during the doctoral thesis. 

A 

B 

C 

D 

G 

E 
H 

J 

K 

I 

F 

0

2

4

6

8

10

12

200 400 600 800 1000 1200

r 1
p
 (

m
M

-1
 s

-1
) 

Mw (g/mol) 

q=2 

8

9

10

11

12

13

14

15

16

lo
g

 K
 /

 M
n

L
 

q=1 



 
136 

Acknowledgements: 
 

First of all I would like to thank to Prof. Mauro Botta for his supervision. He invited me back 

to Italy after I could spent 3 months during my master studies and do my PhD studies at the 

Università degli Studi del Piemonte Orientale “Amedeo Avogadro”. I would like to thank his 

continuous support in my work, his useful advices to solve problems in the lab during the last 

few years and his help in the adaptation in the new country. 

I wish to express my gratitude to Prof. Imre Tóth for the possibility of working in Debrecen. 

In the „Rare-earth” research group I sincerely thank to Dr. Zsolt Baranyai, who was my 

“supervisor” during the time what I spent in Debrecen, and he also helped me in the 

thermodynamic, kinetic studies and also during the phase of writing the thesis. 

A special acknowledgement goes to Prof. Carlos Platas-Iglesias, who made the synthesis of 

the ligands in Chapters 4 and 5, and performed DFT calculations and X-ray diffraction 

analyses. 

I would like to thank also to Prof. Lorenzo Tei, who introduced me to the organic work in the 

lab, and helped me during the synthesis in my work. I would like to thank also the Dr. Claudio 

Cassino and Dr. Fabio Carniato for their help in the 
17

O and 
1
H-NMR studies.  

In the Debrecen group I would like to thank to Katalin Takács for her technical help, and to 

László Zékány for his help in the dynamic NMR studies, and to everyone else in both groups 

who helped me to realize my thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
137 

List of Publications 

 

1) Attila Forgács, Martín Regueiro-Figueroa, José Luis Barriada, David Esteban-Gómez, 

Andrés de Blas, Teresa Rodríguez-Blas, Mauro Botta, and Carlos Platas-Iglesias 

Mono-, Bi-, and Trinuclear Bis-Hydrated Mn
2+

 Complexes as Potential MRI 

Contrast Agents, Inorg. Chem., 2015, 54, 9576. DOI: 

10.1021/acs.inorgchem.5b01677 

 

2) Lorenzo Tei, Zsolt Baranyai, Luca Gaino, Attila Forgács, Adrienn Vágner, Mauro 

Botta, Thermodynamic stability, kinetic inertness and relaxometric properties of 

monoamide derivatives of lanthanide(III) DOTA complexes. Dalton Trans., 2015, 

44, 5467. DOI: 10.1039/c4dt03939d 

 

3) Attila. Forgács, Lorenzo. Tei, Zsolt. Baranyai, Imre. Tóth, László. Zékány, Mauro 

Botta. Bisamide Derivative of [Mn(1,4-DO2A)]: Solution Thermodynamic, 

Kinetic and NMR Relaxometric Studies. Eur. J. Inorg. Chem., 2016, 1165. DOI: 

10.1002/ejic.201501415 

 

4) Zoltán. Garda, Attila. Forgács, Ferenc. Kálmán. Kálmán, Sarolta. Timári, Imre. Tóth, 

Zsolt. Baranyai, Lorenzo. Tei, Zoltán. Kovács, Gyula. Tircsó. Physico-chemical 

properties of Mn
II

 complexes formed with cis- and trans-DO2A: thermodynamic, 

electrochemical and kinetic studies. J. Inorg. Biochem., 2016, 163, 206. DOI: 

10.1016/j.jinorgbio.2016,07.018. 

 

5) Attila Forgács, Rosa Pujales-Paradela, Martín Regueiro-Figueroa, Laura Valencia, 

David Esteban-Gómez, Mauro Botta and Carlos Platas-Iglesias Developing the 

Family of Picolinate Ligands for Mn
2+

 Complexation, Dalton Trans., 2017 

(accepted) 

 

 

 

 



 
138 

Oral Presentation: 

 

Attila Forgács, Zsolt Baranyai, Lorenzo Tei, Imre Tóth, Mauro Botta. Solution 

thermodinamic, kinetic  and relaxometric studies of the DO2A-bisamide Mn(II) complex. 

Hungarian Chemical Society. 49th Complex Chemistry Colloquium. Siófok, Hungary 28 

May 2015. 

 

Posters: 

 

1. Attila Forgács, Mauro Botta, Carlos Platas-Iglesias. Multinuclear NMR 

Relaxometric Study of Picolinate Containing Mn
II
 Complexes. XLIII National 

Congress on Magnetic Resonance, Bari. 22-24 September 2014. 

2. Attila Forgács, Lorenzo Tei, Zsolt Baranyai, Tóth Imre,
 
Mauro Botta. Solution 

thermodynamic, kinetic and relaxometric studies of the DO2A-bisamide Mn(II) 

complex. COST TD1004 Final Annual Meeting, Belgrade, Serbia. 10-11 

September 2015. 

3. Attila Forgács, Mauro Botta, and Carlos Platas-Iglesias. Bis-Hydrated Mn
II
 

Complexes as MRI probes: a 
1
H and 

17
O NMR Study. XLV National Congress on 

Magnetic Resonance, Modena. 5-7 September 2016. 

 


