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Abstract

We introduce a family of capital allocation rules based on the dual
representation for risk measures and inspired by the Aumann–Shapley
allocation principle. These rules extend some well known methods of
capital allocation for coherent and convex risk measures to the case of
non-Gateaux-differentiable risk measures. We also study their proper-
ties and discuss their suitability in the quasi-convex context.

Key words: Risk management, Capital allocation rules, Convex/quasi-
convex risk measures, Aumann–Shapley value, Gateaux differential.

1 Introduction

To face future uncertainty about their net worth, firms, insurance companies,
and portfolio managers often have to satisfy capital requirements, that is, to
hold an amount of riskless assets to hedge themselves. This fact then raises
the issue of how to share all this immobilized capital in an a priori fair way
among the different lines or business units (full allocation).
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As risk capital is commonly accepted in the literature to be modeled
through the use of risk measures [1], [12], [19], [25] ; capital allocation prob-
lems in risk management and the theory of risk measures are naturally
linked. On the other hand, fair allocation methods are also widely used in
cooperative game theoretic contexts, so borrowing methodologies and de-
sirable properties from this field appears to be a sensible choice. A first
analysis in this sense appears in [12].

Instead, an axiomatic approach based on the classical concept of the
Aumann–Shapley value [3] has been proposed in the work of Denault [14]
who models a capital allocation problem as a fuzzy cost game (see [2]),
defines a coherent allocation principle, and studies its link with coherent
risk measures as well as some game theoretic properties that are assumed
to define fairness in this case. All these papers (see also [7]) are based on
some assumptions of differentiability for the risk measure under considera-
tion (with respect to the weights of the sub-portfolios of a fixed portfolio or
with respect to the direction given by a portfolio with respect to another
portfolio). In the case of coherent and differentiable risk measures, there
is a diversification advantage (the risk of pooling is never greater than the
sum of the risks related to the single positions) that, thanks to Euler’s theo-
rem, can be fully subdivided among the business units based on each unit’s
marginal contribution to the overall risk. When, instead, there is a lack
of positive homogeneity, there is a need to find an alternative; this, among
others, is one of the issues addressed in the work of Tsanakas [35] (see also
[27] for a dynamic approach). Starting from Deprez and Gerber’s [15] work
on convex risk premiums, Tsanakas defines a capital allocation rule (CAR)
for Gateaux-differentiable risk measures inspired by the Aumann–Shapley
value [3], and studies its properties for some widely used classes of convex
risk measures, also providing explicit formulas. His analysis leaves open the
case of general non-Gateaux-differentiable risk measures (although he treats
some cases of distortion exponential risk measures, but it is easy to find other
meaningful examples of convex and quasi-convex non-Gateaux-differentiable
risk measures) as well as the study of quasi-convex risk measures, the im-
portance of which has been well recognized quite recently in the literature
(see [8], [17], and [23]). Another work that deals with non-differentiability,
but is limited to the coherent case, is [5]. The reader is also advised to refer
to [14] and [34] for further considerations on the topic.

The purpose of the present work is to try to plug these gaps, though
not in full generality. To this aim, we first consider the existence of capital
allocation schemes satisfying certain desirable properties in full generality
for the quasi-convex case, and then we define a family of CARs based on the
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representation theorems for risk measures, study their properties, and show
that they reduce to Denault’s and Tsanakas’ known allocation principles
under Gateaux differentiability. In the meantime, we discuss the suitability
of the use of quasi-convex risk measures for capital allocation purposes.
Throughout our analysis, we make use of tools of convex and quasi-convex
analysis, as those appearing in [9] and [36].

The paper is organized as follows: in Section 2 we define our setting and
recall some known facts about risk measures; in Section 3 we consider general
capital allocation schemes, while Section 4 is devoted to the introduction and
the study of our capital allocation principle à la Aumann–Shapley–Tsanakas.
Some examples are also discussed. Short conclusions are presented at the
end of the paper.

2 Preliminaries

Let (Ω,F , P ) be a probability space and assume that the space of all risky
positions’ profits and losses to be analyzed is given by L∞ = L∞(Ω,F , P ),
that is the space of all essentially bounded random variables on (Ω,F , P ).
Equalities and inequalities must be understood to hold P -almost surely. In
the following, we use the dual pair (L∞, L1) with the σ(L∞, L1)-topology.

A convex risk measure ρ : L∞ → R is a functional satisfying the following
properties.

Monotonicity: if X ≤ Y , P -almost surely, then ρ(X) ≥ ρ(Y ).

Convexity: ρ(αX + (1−α)Y ) ≤ αρ(X) + (1−α)ρ(Y ), for any α ∈ [0, 1] and
X,Y ∈ L∞.

Translation-invariance: ρ(X + c) = ρ(X)− c, for any X ∈ L∞ and c ∈ R.

Normalization: ρ(0) = 0.

A convex risk measure ρ also satisfying the following property is called
a coherent risk measure.

Positive homogeneity: ρ(bX) = bρ(X), for any X ∈ L∞ and b ≥ 0.

Both translation-invariance and convexity have been discussed in the
recent literature. By means of discounting arguments, El Karoui and Ra-
vanelli [18] proposed to replace translation-invariance with the weaker axiom
of cash subadditivity, thus introducing a wider class of risk measures.

In addition, Cerreia-Vioglio et al. [8] argued that, when translation-
invariance is no longer assumed, the correct formulation of diversification
is in terms of quasi-convexity instead of convexity. Hence, they introduced
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the so-called quasi-convex risk measures, i.e. risk measures ρ : L∞ → R
satisfying monotonicity, normalization, and

ρ(αX + (1− α)Y ) ≤ max{ρ(X); ρ(Y )},

for any X,Y ∈ L∞ and α ∈ [0, 1].
We now recall the dual representation of convex and quasi-convex risk

measures. In the following, P will denote the set of all probability measures
on (Ω,F) that are absolutely continuous with respect to P . Any probability
measure Q ∈ P will be identified with its Radon–Nikodym density dQ

dP .

• Convex case (see [19], [20], and [25]): any convex risk measure ρ :
L∞ → R that is continuous from below1 can be represented as

ρ(X) = max
Q∈P
{EQ[−X]− F (Q)} (1)

for some lower semi-continuous and convex penalty functional F :
L1 → [0; +∞] with infQ F (Q) = 0 where, with an abuse of notation,

F (Q) will stand for F
(
dQ
dP

)
.

• Quasi-convex case (see [31], [8], and [17]): any quasi-convex risk mea-
sure ρ : L∞ → R satisfying continuity from below can be represented
as

ρ (X) = max
Q∈P

K (EQ [−X] , Q) (2)

where K : R × P → R is a function that is upper semi-continuous,
increasing, and quasi-concave in the first variable.

3 Capital allocation

We now recall the classical definition of a CAR (see [14] and [26]).

Definition 1 Given a risk measure ρ on a linear space X , a capital alloca-
tion rule (CAR) is a map Λ : X × X −→ R such that Λ(X;X) = ρ(X) for
every X ∈ X .

When Λ(X;X) ≤ ρ(X) for any X ∈ X we call Λ an audacious CAR;
while when Λ(X;X) ≥ ρ(X) for any X ∈ X we call it a prudential CAR.

1We recall that a risk measure ρ is said to be continuous from below if for any sequence
(Xn)n≥0 such that Xn ↑ X it holds that ρ(Xn)→ ρ(X).
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When equality holds, this means that the capital allocated to X when
considered as a standalone portfolio is exactly ρ(X). As pointed out by
Brunnermeier and Cheridito [6] this might not always be needed, for example
when the capital is collected for monitoring purposes.

Given any portfolio X ∈ X , a portfolio Y ∈ X is called a sub-portfolio
of X, if X can be written as

X = Y + Z, (3)

with Z ∈ X .
The capital allocation problem deals with establishing how to assign

“fairly”the required capital to subunits (sub-portfolios from now on)X1, . . . , Xn

of a business unit (portfolio) X. In other words, given X and its capital re-
quirement ρ(X), the aim is to find a suitable rule Λ such that ρ(X) is entirely
and “optimally” split into ki = Λ(Xi;X), i = 1, . . . , n.

In the literature, it is usually required that the rule is linear with respect
to the first variable, that is, it satisfies the full allocation property:

ρ(X) = Λ(X;X) =
n∑
i=1

Λ(Xi;X), when X1 + · · ·+Xn = X.

Following the approaches of Delbaen [13], Denault [14], Buch and Dor-
fleitner [7], Kalkbrener [26], and Tsanakas [35], we aim to:

• define a CAR that extends the known marginal contribution and Aumann–
Shapley CARs to cover also quasi-convex risk measures, while main-
taining the game theoretic interpretation;

• include the case of non-Gateaux-differentiable risk measures.

Kalkbrener [26] also imposes what we here call no undercut: for every X,Y ∈
X ,

Λ(Y ;X) ≤ ρ(Y ).

Since Λ(Y ;X) can be interpreted as the capital allocated to the sub-portfolio
Y to hedge/cover the global portfolio X, the no undercut axiom just requires
that the capital allocated to Y to cover X should not exceed the capital
allocated in Y to cover Y itself. In the terminology of Tsanakas [35], no
undercut corresponds to the non-split requirement of Y from X.

In [26, Theorems 4.2 and 4.3], Kalkbrener shows the equivalence between
positive homogeneity and subadditivity of a risk measure and linearity and
no undercut properties of the corresponding CAR. Moreover, under the ad-
ditional assumption of Gateaux differentiability for the risk measure, he
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proves that Λ is exactly the gradient allocation rule (see, for example, [33]).
Thus, if we wish to investigate CARs for convex and quasi-convex (but not
coherent) risk measures maintaining the no undercut property, we must re-
linquish linearity and replace it with a weaker axiom. For this purpose, we
introduce the following axiom:

diversifying: for every X,Y, Z ∈ X and every λ ∈ [0, 1]

Λ(λX + (1− λ)Y ;Z) ≤ max{Λ(X;Z),Λ(Y ;Z)};

or the stronger axiom of:

s-diversifying: for every X,Y, Z ∈ X and λ ∈ [0, 1]

Λ(λX + (1− λ)Y ;Z) = λΛ(X;Z) + (1− λ)Λ(Y ;Z).

We observe that, in the case of a convex risk measure ρ, given for example
a portfolio X = X1 + X2, it could happen that ρ(X) > ρ(X1) + ρ(X2). In
this case, given a principle Λ that does not fully allocate the risk capital,
under the hypothesis of no undercut it turns out Λ(X;X) = ρ(X) > ρ(X1)+
ρ(X2) ≥ Λ(X1;X) + Λ(X2;X). We can imagine that the difference ρ(X)−
(Λ(X1;X)+Λ(X2;X)) constitutes an indistinct and undivided deposit/cost.
This justifies the introduction of the following axiom.

Definition 2 A CAR is said to have the sub allocation property if

Λ(X;X) ≥
n∑
i=1

Λ(Xi;X)

for every X and every X1, . . . , Xn such that X = X1 + · · ·+Xn.

As we shall see in the following, this can happen in the case of a CAR
based on the representation of a convex risk measure.

Proposition 3 If Λ : L∞ × L∞ → R is a CAR that satisfies the axioms of
no undercut and diversifying, then the associated risk measure ρ defined on
L∞ is quasi-convex. In contrast, if ρ is a convex and continuous from below
risk measure on L∞, then there exists a CAR Λρ satisfying the properties of
sub-allocation, no undercut, and diversifying.
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Proof. If Λ satisfies the properties of no undercut and diversifying, then,
for λ ∈ [0, 1] and X1, X2 ∈ L∞, we have

ρ(λX1 + (1− λ)X2) = Λ(λX1 + (1− λ)X2;λX1 + (1− λ)X2)

≤ max{Λ(X1, λX1 + (1− λ)X2),Λ(X2;λX1 + (1− λ)X2)}
≤ max{Λ(X1;X1),Λ(X2;X2)} ≤ max{ρ(X1), ρ(X2)}.

Hence, ρ is quasi-convex.
Vice versa, let ρ be a convex and continuous from below risk measure on

L∞.
For any X ∈ L∞, there exists Q = QX such that ρ(X) = EQX [−X] −

F (QX) = maxQ{EQ[−X]− F (Q)}. Set now

Λρ(Y ;X) , EQX [−Y ]− F (QX). (4)

It follows immediately that Λρ is a CAR.
To prove the sub-allocation property of Λρ take any X1, . . . , Xn ∈ L∞

such that
∑n

i=1Xi = X. Since F (QX) ≥ 0,

Λρ (X;X) = Λρ

(
n∑
i=1

Xi;X

)
= EQX

[
−

n∑
i=1

Xi

]
− F (QX)

≥
n∑
i=1

[EQX [−Xi]− F (QX)]

=

n∑
i=1

Λρ(Xi;X).

The no undercut property of Λρ is due to the representation of ρ and to the
optimality of the scenario QY . Indeed:

Λρ(Y ;Y ) = EQY [−Y ]− F (QY ) = max
Q
{EQ[−Y ]− F (Q)}

≥ EQX [−Y ]− F (QX) = Λρ(Y ;X).

Moreover, for any X,Y, Z ∈ L∞ and λ ∈ [0, 1], it holds

Λρ(λX + (1− λ)Y ;Z) = EQZ [−λX − (1− λ)Y ]− F (QZ)

= λ(EQZ [−X]− F (QZ)) + (1− λ)(EQZ [−Y ]− F (QZ))

= λΛρ(X;Z) + (1− λ)Λρ(Y ;Z)

≤ max{Λρ(X;Z); Λρ(Y ;Z)},
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so Λρ is diversifying.
Note that a CAR similar to (4) can be found in Kromer, Overbeck, and

Zilch [29], where they consider Λρ(Xi;X) = EQX [−Xi]− γiF (QX), with γi
weights summing up to one.

Proposition 4 If ρ : L∞ → R is a quasi-convex and continuous from below
risk measure, then there exists a CAR Λρ : L∞ × L∞ → R satisfying no
undercut and, for any X,X1, . . . , Xn ∈ L∞ such that

∑n
i=1Xi = X,

Λρ

(
n∑
i=1

Xi;X

)
≥ min

i=1,2,...,n
Λρ(nXi;X).

Hence, ρ(X) ≥ mini=1,2,...,n Λρ(nXi;X) for any X and Xi as above.

Proof. Let ρ be a quasi-convex and continuous from below risk mea-
sure on L∞. For any X ∈ L∞, there exists Q = QX such that ρ(X) =
K(EQX [−X], QX) = maxQK(EQ[−X], Q). Set now

Λρ(Y ;X) , K(EQX [−Y ], QX). (5)

It follows immediately that Λρ is a CAR.
No undercut of Λρ can be checked as in the convex case.
Take now any X1, . . . , Xn ∈ L∞ such that

∑n
i=1Xi = X. By quasi-

concavity of K in its first variable, it follows that

Λρ (X;X) = Λρ

(
n∑
i=1

Xi;X

)
= K

(
EQX

[
−

n∑
i=1

Xi

]
, QX

)

= K

(
EQX

[
− 1

n
(nX1)− · · · −

1

n
(nXn)

]
, QX

)
≥ min

i=1,2,...,n
K(EQX [−nXi], QX)

= min
i=1,2,...,n

Λρ(nXi;X).

4 Capital allocation à la Aumann–Shapley–Tsanakas

Given a portfolio X, most CARs subsume linearity: unfortunately, in the
absence of coherence and differentiability of the underlying risk measure,
the principles of marginality satisfying the full allocation property are not
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applicable. Thus, when going beyond the above-mentioned cases, the prob-
lem of sensible CARs is still open. To the best of the authors’ knowledge,
only the works of Biagini et al.2 [4], Boonen et al. [5], and Cheridito and
Kromer [10] propose capital allocation principles suitable for frameworks
of non-differentiability. A natural way to follow would be to rely on dual
representation theorems for risk measures, keeping in mind that both in the
convex and in the quasi-convex cases, these are nonlinear. Thus, the prob-
lem is that of combining the property of being a CAR with that of being
linear.

With this as a starting point, assume that ρ : L∞ → R is a convex risk
measure or ρ : L∞ → R is a quasi-convex risk measure. In both cases,
continuity from below is assumed. Hence, in the convex case we have

ρ (X) = max
Q∈P
{EQ[−X]− F (Q)} (6)

while in the quasi-convex case it holds

ρ (X) = max
Q∈P

K (EQ [−X] , Q) . (7)

Given X ∈ L∞, set

QX = QX,F ∈ argmaxQ∈P {EQ[−X]− F (Q)} (8)

or
QX = QX,K ∈ argmaxQ∈PK (EQ [−X] , Q) . (9)

We define the following family of maps ΛASρ : L∞ × L∞ → R

ΛASρ (Y ;X) ,
∫ 1

0
EQγX [−Y ] dγ, (10)

for every X,Y ∈ L∞.
If no ambiguity over the chosen risk measure ρ occurs, occasionally we

will simply write ΛAS instead of ΛASρ .
As we will show shortly, this approach is similar to that of Tsanakas

[35] who extended the Aumann–Shapley value [3] CAR under the assump-
tion of Gateaux differentiability. More precisely, for Gateaux-differentiable

2Although the paper of Biagini et al. [4] considers both quasi-convex and non-
differentiable risk measures, the authors’ approach is based on acceptance sets that are
completely different from that considered here.
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coherent and convex risk measures, Tsanakas [35] considered the following
CAR

ΛT (Y ;X) ,
∫ 1

0
Dρ(Y ; γX) dγ (11)

(the definitions of directional derivative Dρ(Y ; γX) and of Gateaux differ-
entiability will be recalled shortly). Differently from the approach above,
however, our approach is much more general for two reasons: first, because
it can be applied to a wider class of risk measures; second, it is also valid
for not necessarily Gateaux-differentiable risk measures.

In the following, we study the properties of Λ, with respect to those
requested for a CAR. To analyze our approach and its relation to that of
Tsanakas [35] in detail, for the reader’s convenience we recall some results
of convex analysis (here formulated on L∞ even if they are valid in more
general spaces) that will be useful in a while. For further details please refer
to Zălinescu [36], Ruszcynski and Shapiro [32], and Cheridito and Li [11].

Given a functional ρ (in our case a risk measure), the sub-differential
and the Greenberg–Pierskalla sub-differential of ρ at X ∈ L∞ are defined,
respectively, as

∂ρ(X) ,
{
ξ ∈ L1 : ρ(Y )− ρ(X) ≥ E[ξ(Y −X)] for any Y ∈ L∞

}
∂GPρ(X) ,

{
ξ ∈ L1 : E[ξ(Y −X)] < 0 for any Y ∈ L∞ s.t. ρ(Y ) < ρ(X)

}
,

while the directional derivative of ρ at X ∈ L∞ in the direction Y ∈ L∞, as

Dρ(Y ;X) , lim
t↓0

ρ(X + tY )− ρ(X)

t
.

Furthermore, ρ is said to be Gateaux differentiable at X with Gateaux
derivative ∇ρ(X) ∈ L1, if Dρ(Y ;X) = EP [Y∇ρ(X)] for any Y ∈ L∞. As a

consequence, Gateaux differentiability implies the existence of limt→0
ρ(X+tY )−ρ(X)

t .
Moreover, if ∇ρ(X) exists, then it is unique.

It is well known in convex analysis (see, for example, [32, Corollary 3.1])
that any convex and proper risk measure ρ : Lp → R̄ (with p ∈ [1,+∞)) is
continuous and its sub-differential ∂ρ(X) is non-empty for every X in the
interior of the domain of ρ. This result does not hold true in general for
the dual pair (L∞, L1). However, for convex risk measures ρ : L∞ → R
and X ∈ L∞ it holds that the sub-differential ∂ρ(X) has the following
representation (see [36, Theorem 2.4.2]):

∂ρ(X) = −argmaxQ∈P{EQ[−X]− F (Q)}.
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Also, under continuity of ρ in X, the Gateaux differentiability of ρ in X is
equivalent to the fact the ∂ρ(X) is a singleton {−Q∗} (see [36, Corollary
2.4.10]). Since, by hypothesis, ρ is continuous from below, for any given
X ∈ L∞ the maximum in (1) is attained at some Q∗, hence ∂ρ(X) is not
empty. Thus, the Gateaux-differentiable case yields a unique ΛAS .

If instead the risk measure ρ is quasi-convex, lower semi-continuous, and
continuous from below, by [31, Theorem 5.6], [9, Proposition 2], and [30,
Proposition 3], it holds:

∂GPN ρ(X) = −argmaxQK(EQ[−X], Q),

where ∂GPN ρ(X) stands for the normalized Greenberg–Pierskalla sub-differential,
that is ∂GPρ(X) ∩ {ξ ∈ L1 : E[ξX] = 1}. Under the assumptions of [9,
Corollary 2], it follows3 that ∂GPρ(X) = {−λ∇ρ(X);λ > 0}, hence the
normalized Greenberg–Pierskalla sub-differential is again a singleton.

Thus, without any further assumptions on ρ apart from convexity/quasi-
convexity and continuity from below, also in the non-differentiable case our
definition of capital allocation in (10) gives a variety of different possible
allocations all based on the same principle (for an illustrative example, see
Example 12). The choice of Q to be used can be made following different
criteria, e.g. as for pricing in incomplete markets: see, among many others,
Föllmer and Schweizer [21] and Frittelli [22].

Let us now study in detail the properties satisfied by our allocation rule
and its relation to that of Tsanakas [35].

Proposition 5 Let ρ : L∞ → R be a quasi-convex risk measure (in par-
ticular, a convex risk measure) satisfying continuity from below. Then the
principles ΛASρ are well-defined, diversifying, and linear.

Proof. The principles ΛASρ are well-defined since both in the quasi-
convex and in the convex case it holds that for any X ∈ L∞ and γ ∈ [0, 1],
there exist at least one QγX where the maximum in (6) and (7) is attained.
Furthermore,

ΛASρ (λX + (1− λ)Y ;Z) =

∫ 1

0
EQγZ [−λX − (1− λ)Y ] dγ

= λ

∫ 1

0
EQγZ [−X] dγ + (1− λ)

∫ 1

0
EQγZ [−Y ] dγ

≤ max{ΛASρ (X;Z),ΛASρ (Y ;Z)}.
3Note that the definition of Greenberg–Pierskalla ∂GP given by Cerreia-Vioglio et al.

[9] refers to super-differentials. Let us denote it by ∂superGP so to distinguish it from that
defined here. It is easy to check that −ξ ∈ ∂GP ρ(X)⇔ ξ ∈ ∂superGP (−ρ(X)).
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Linearity is straightforward.
The following results underline that, under the Gateaux-differentiability

assumption, our allocation principles reduce to that of Tsanakas [35] for
coherent and convex risk measures.

Proposition 6 (Coherent risk measures) If ρ : L∞ → R is a coherent
risk measure satisfying continuity from below, then every ΛASρ is a CAR
satisfying the no undercut property.

If ρ is Gateaux differentiable, then

ΛASρ (Y ;X) =

∫ 1

0
EQγX [−Y ] dγ =

∫ 1

0
Dρ(Y ; γX) dγ,

that is, our allocation principles coincide with that of Tsanakas [35].

Proof. By the assumptions on ρ it holds that ρ(X) = maxQ∈P EQ[−X]
for every X ∈ L∞ (see [12]). Since argmaxQEQ[−X] ≡ argmaxQEQ[−γX]
for any γ ∈ [0, 1] and X ∈ L∞, it is easy to check that

ΛASρ (X;X) =

∫ 1

0
EQγX [−X] dγ =

∫ 1

0
EQX [−X] dγ = ρ(X).

Hence, ΛASρ is a CAR. Furthermore, for any Y it holds

ΛASρ (Y ;X) =

∫ 1

0
EQγX [−Y ] dγ ≤

∫ 1

0
ρ(Y ) dγ = ρ(Y ).

If ρ is also Gateaux differentiable, then it is well known (see [12]) that
the directional derivative of ρ at X in the direction Y is given by

Dρ(Y ;X) = EQX [−Y ].

Hence,

ΛASρ (Y ;X) =

∫ 1

0
EQγX [−Y ] dγ =

∫ 1

0
Dρ(Y ; γX) dγ,

that is, our allocation principles coincide with that of Tsanakas.

Remark 7 Note that when the coherent risk measure ρ is continuous from
below and Gateaux differentiable, then our CARs reduce also to the gradient
allocation of Kalkbrener [26]. Indeed,

ΛASρ (Y ;X) = Dρ(Y ;X) =

∫ 1

0
Dρ(Y ; γX) dγ

(see [26, Theorem 3.1]).
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Proposition 6 underlines that the interpretation of the capital allocation
principle via games remains valid also with our approach.

Note that the game theoretic interpretation of the principle in the spirit
of Aumann and Shapley, which is evident in the differentiable case, can any-
way be extended: indeed, for a fixed γ ∈ [0, 1], the weight (or participation
degree) of the sub-coalition Y in the portfolio, or fuzzy coalition [2], [14] γX
is dQγX , so coalition Y is rewarded by the principle with the “sum”of its
expected contribution to all possible initial portfolios γX.

The following result emphasizes that our principles extend that of Tsanakas
[35] to more general risk measures.

Proposition 8 (Convex and quasi-convex risk measures) (a) (Con-
vex case) Let ρ : L∞ → R be a convex risk measure satisfying continuity
from below.

Then every ΛASρ is a CAR satisfying

ΛASρ (Y ;X) ≤ ρ(Y ) +AF (X) (12)

for any X,Y ∈ L∞, where AF (X) ,
∫ 1
0 F (QγX) dγ. Furthermore, ΛASρ (c,X) =

−c, for c ∈ R (riskless allocation).
Moreover, if ρ is also Gateaux differentiable, then ΛASρ reduce to the

allocation principle of Tsanakas [35].

(b) (Quasi-convex case) Let ρ : L∞ → R be a quasi-convex risk measure
satisfying continuity from below and such that ρ(X) ∈ R for every X ∈ L∞.

Then
ΛASρ (Y ;X) ≤ ρ(Y ) +MK(X;Y ) (13)

for any Y , where M = MK(X;Y ) =
∫ 1
0

(
EQγX [−Y ]−K(EQγX [−Y ];QγX)

)
dγ.

Proof. (a) Convex case: by the assumptions on ρ and by Proposition
5, each ΛASρ is well-defined. To verify that it is also a capital allocation we

only need to check that ΛASρ (X;X) = ρ(X).
Let X ∈ L∞ be arbitrarily fixed. By the assumptions on ρ, it follows

that G(γ) , ρ(γX) is a function G : [0, 1] → R that is convex in γ. Hence,
there exist G′−(γ), G′+(γ) for any γ ∈ [0, 1] and G′−(γ) 6= G′+(γ) at most for
countably many points.

By the hypothesis on ρ there exist QγX ∈ argmax {EQ[−γX]−F (Q)},
hence −QγX ∈ ∂ρ(γX). It follows that ρ(γX + tX)− ρ(γX) ≥ EQγX [−tX],

13



so

G′−(γ) = lim
t↑0

G(γ + t)−G(γ)

t
≤ EQγX [−X],

G′+(γ) = lim
t↓0

G(γ + t)−G(γ)

t
≥ EQγX [−X].

Hence, ∫ 1

0
G′−(γ)dγ ≤

∫ 1

0
EQγX [−X] dγ ≤

∫ 1

0
G′+(γ) dγ

Since the set {γ : G′−(γ) 6= G′+(γ)} has Lebesgue measure equal to zero,
then, by applying an argument similar to that of Kromer and Overbeck [27]
(see[27, Corollary 4.1] or [35, equation (1)]), we deduce that∫ 1

0
EQγX [−X] dγ =

∫ 1

0
G′+(γ) dγ =

∫ 1

0
G′−(γ) dγ =

∫ 1

0

dG

dγ
dγ = ρ(X).

Furthermore, it holds that

ΛASρ (Y ;X) =

∫ 1

0
EQγX [−Y ] dγ ≤

∫ 1

0
(ρ(Y ) + F (QγX)) dγ = ρ(Y ) +A(X)

for any Y ∈ L∞.
Moreover, if ρ is also Gateaux differentiable, it follows that ∂ρ(X) =

{−QX} and the Gateaux differential of ρ in X in the direction of Y is
precisely

Dρ(Y ;X) = EQX [−Y ],

Hence,

ρ(X) =

∫ 1

0
Dρ(X; γX) dγ =

∫ 1

0
EQγX [−X] dγ = ΛASρ (X;X),

where the first equality can be found in Kromer and Overbeck [27] and
Tsanakas [35]. Thus, in this case, the allocation principle is precisely that
of Tsanakas [35]. The riskless allocation property is trivial.

(b) Quasi-convex case: by the assumptions on ρ and by Proposition 5, ΛASρ
is well-defined. Moreover, it holds that

ΛASρ (Y ;X) =

∫ 1

0

(
EQγX [−Y ]−K(EQγX [−Y ];QγX) +K(EQγX [−Y ];QγX)

)
dγ

≤
∫ 1

0

(
EQγX [−Y ]−K(EQγX [−Y ];QγX) + ρ(Y )

)
dγ

= ρ(Y ) +MK(X;Y )
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for any Y ∈ L∞.

Note that, in the purely convex case, our allocation principle cannot
satisfy the no undercut property for every X,Y ∈ L∞ (see [26, Theorem 4.2
(a)] and also our Example 9). In the quasi-convex case, in contrast, the maps
need not necessarily define a CAR (ρ(X) 6= Λ(X,X)). As a consequence,
in this case the no undercut property can be fulfilled. In particular, this
happens when M ≤ 0, which is satisfied for instance when K(t;Q) ≥ t for
any Q and any t ∈ R.

Although the no undercut property is replaced by (12) and (13), the
interpretation of the aforementioned inequalities and of the related bounds
seems to be quite reasonable when one thinks about the motivation for the
introduction of convex risk measures. The financial key issue was indeed
that coherent risk measures do not take into account liquidity because of
the positive homogeneity axiom while convex risk measures do (see Föllmer
and Schied [19] and Frittelli and Rosazza Gianin [25]). Moreover, at the
level of dual representation the main difference between coherent and convex
risk measures consists of a penalty functional F , while between convex and
quasi-convex measures it consists of a more general functional K.

Going back to (12) and (13), on the one hand, it seems financially rea-
sonable that the upper bound of the capital allocation needed for Y as a
sub-portfolio of X should depend not only on Y but also on the whole X and
its size. This issue can possibly be avoided in the coherent case (because of
scaling invariance), but definitely not in the convex and quasi-convex cases
where the scale is important. On the other hand, it is not surprising that
such an additional dependence incorporates also the penalty functional F or
the more general K that distinguish convex or quasi-convex risk measures
from coherent risk measures.

4.1 Examples

We now illustrate through examples the behavior of our CAR for convex
and quasi-convex risk measures, as well as for non-Gateaux-differentiable
risk measures.

Notice that the key assumption of our approach is that the maximum in
(6) and (7) is attained. The assumption on continuity from below has been
made to guarantee that property. In the following examples, however, the
key assumption above is always automatically fulfilled.

15



Example 9 (Convex risk measures not satisfying the no undercut property)
Let Ω = {ω1;ω2} and

ρ(Z) = max
Q∈Q
{EQ[−Z]− F (Q)}

with Q = {P ;Q1}, F (P ) = 0, F (Q1) = 1, P (ω1) = P (ω2) = 1
2 , and

Q1(ω1) = 1
4 .

Take now

X =

{
0; ω1,
−8; ω2.

Hence, ρ(X) = 5 and QγX =

{
P ; 0 ≤ γ < 1

2 ,
Q1;

1
2 < γ ≤ 1.

. Consequently, ΛASρ (X;X) =

5 = ρ(X).
Suppose that X has two subunits corresponding to the following sub-

portfolios:

X1 =

{
2; ω1,

−12; ω2,
X2 =

{
−2; ω1,

4; ω2.

Note that X1 and X2 are countermonotone with X1 +X2 = X. It is easy to
check that ρ(X1) = 15

2 and ρ(X2) = −1 while

ΛASρ (X1;X) =

∫ 1

0
EQγX [−X1] dγ =

27

4
≤ ρ(X1),

ΛASρ (X2;X) =

∫ 1

0
EQγX [−X2] dγ = −7

4
≤ ρ(X2).

Therefore, for both X1 and X2 there is no incentive to split, indeed the
capital allocation required for Xi as a sub-portfolio is smaller than the capital
requirement as a position alone. Note also that ΛASρ (X1;X)+ΛASρ (X2;X) =
ρ(X).

Let us consider now a comonotone decomposition of X in sub-portfolios
by taking

Y1 =

{
2; ω1,
−5; ω2,

Y2 =

{
−2; ω1,
−3; ω2.

In the present case we get ρ(Y1) = 9
4 and ρ(Y2) = 5

2 , while

ΛASρ (Y1;X) =
19

8
> ρ(Y1),

ΛASρ (Y2;X) =
21

8
> ρ(Y2).
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Hence, there is an incentive to split Y1 and Y2 from the whole portfolio X.
In that case, Yi alone (i.e. not as sub-portfolio of X) would require a smaller
capital requirement. However, ΛASρ (Yi;X) ≤ ρ(Yi)+

∫ 1
0 F (QγX) dγ = ρ(Yi)+

1
2 (for i = 1, 2). Note also that ΛASρ (Y1;X) + ΛASρ (Y2;X) = ρ(X).

The incentive to split for at least a sub-portfolio was already guaranteed
by [26, Theorem 4.2 (a)]. Moreover, such a situation seems to occur for
comonotone decompositions. Investigations in this direction are beyond the
scope of the present paper and will be the subject of future work.

Example 10 (Case of a purely quasi-convex risk measure) Let Ω =
{ω1;ω2} and

ρ(Z) = max
Q∈Q

K(EQ[−Z], Q)

with Q = {P ;Q1}, P (ω1) = P (ω2) = 1
2 , Q1(ω1) = 1

4 , and K as below.
Take now

X =

{
12; ω1,
−8; ω2.

Let us consider the following examples that induce different situations
concerning Λ(X;X) and its relation with ρ(X).

1. Case 1: K(EQ[−Z], Q) = g(EQ[−Z]) with g(t) =


t+ 1; t < −1,

0; −1 ≤ t < 0,
t; t ≥ 0.

Hence, K(t, Q) ≥ t for any t ∈ R and ρ is monotone, quasi-convex,
continuous from above and such that ρ(0) = 0. It is also easy to
check that ρ(X) = 3, QγX ≡ Q1 for any γ ∈ [0, 1] and Λ(X;X) =∫ 1
0 EQγX [−X] dγ = 3 = ρ(X).

2. Case 2: K(EQ[−Z], Q) = g(EQ[−Z]) − F (Q) with g as above and
F (P ) = 0 and F (Q1) = 1

2 .

In that case, K(t, Q) ≷ t depending on t and Q and ρ is monotone,
quasi-convex, continuous from above and such that ρ(0) = 0. It is also

easy to check that ρ(X) = 5
2 , QγX =

{
P ; 0 < γ < 1

6
Q1;

1
6 ≤ γ < 1

, so

Λ(X;X) =

∫ 1/6

0
EP [−X] dγ +

∫ 1

1/6
EQ1 [−X] dγ =

13

6
< ρ(X).

3. Case 3: K(EQ[−Z], Q) = h(EQ[−Z]) with h(t) =


t; t < 0,
0; 0 ≤ t < 1,

t− 1; t ≥ 1.
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Hence, K(t, Q) ≤ t for any t ∈ R and ρ is monotone, quasi-convex,
continuous from above and such that ρ(0) = 0 and ρ(c) ≤ −c for any
c ∈ R. It is also easy to check that ρ(X) = 2, QγX ≡ Q1 for any

γ ∈ [0, 1] and Λ(X;X) =
∫ 1
0 EQγ [−X] dγ = 3 > ρ(X).

In this last case Λ is “locally”prudential. The same phenomenon hap-
pens, for every X, in the work of Brunnermeier and Cheridito on systemic
risk measures (see [6, Proposition 3.1]). In the case of prudential CAR, the
contribution of any subunit can be diminished according to some exogenous
principle, to obtain full allocation. When instead the allocation is auda-
cious, ΛASρ (X;X) =

∑
i ΛASρ (Xi;X) ≤ ρ(X), we can imagine that ρ(X)

is allocated to the Xi according to ΛASρ and ρ(X) −
∑

i ΛASρ (Xi;X) is an
unshared deposit that remains at the whole firm’s disposal.

Example 11 (Non-differentiable quasi-convex risk measure) Consider
the mean value premium principle (that is, the risk measure associated to
the certainty equivalent)

ρ(X) = `−1 (EP [`(−X)])

with ` strictly increasing and convex. It is well known (see, among others,
Cerreia-Vioglio et al. [8] and Frittelli and Maggis [24]) that it is a quasi-
convex and continuous from below risk measure.

Take now Ω = {ω1;ω2}, P (ωi) = 1
2 for i = 1, 2, X = 0, `(x) ={

x/2; x < 0
x; x ≥ 0

and a direction Y =

{
−1; ω1,

1; ω2.
In that case, we obtain

ρ(X + tY )− ρ(X)

t
=
ρ(tY )− ρ(0)

t
=

{
−1/4; t < 0,

1/4; t > 0.

Consequently, ρ is not Gateaux differentiable since limt→0
ρ(X+tY )−ρ(X)

t does
not exist.

Example 12 (Capital allocation for a non-differentiable convex risk measure)
Let Ω = {ω1;ω2;ω3} and

ρ(Z) = max
Q∈Q
{EQ[−Z]− F (Q)}

with Q as follows:
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P Q1 Q2

ω1 1/3 1/2 1/4

ω2 1/3 1/3 2/3

ω3 1/3 1/6 1/12

F (·) 0 1 1

Take now

X =


−3; ω1,

0; ω2,
9; ω3.

Let us consider Q = {P,Q1, Q2}. It is easy to check that ρ(X) = −1 and that

∂ρ(X) =
{
−dQ1

dP ;−dQ2

dP

}
, so ρ is not Gateaux differentiable. Furthermore,

QγX =

{
P ; 0 < γ < 1

2 ,
Q1, Q2;

1
2 < γ < 1.

Hence, for the CAR ΛQ1 obtained by choosing Q1 for γ ∈ (1/2; 1) we have

ΛQ1(X;X) =

∫ 1/2

0
EP [−X] dγ +

∫ 1

1/2
EQ1 [−X] dγ = −1 = ρ(X).

The same holds for ΛQ2 obtained by choosing Q2.
Note that R,S ∈ QγX on an interval (γ0; γ1) ⊂ [0, 1] with R 6= S and

γ0 6= γ1 holds if and only if both ER[−X] = ES [−X] and F (R) = F (S) hold
true.

For the previous argument, we may conclude that whenever

QγX =


Q∗1; on I1
Q∗2; on I2

...
...

Q∗n; on In

with Ii disjoint and not empty subsets of [0, 1], then ΛQ
∗
1,...,Q

∗
n(X;X) is in-

variant with respect to the choice of (Q∗1, . . . , Q
∗
n) ∈ Q∗1×· · ·×Q∗n. the same

does not hold true in general for ΛQ
∗
1,...,Q

∗
n(Y ;X) with Y a sub-portfolio of

X.
Consider, for instance,

Y1 =


−3; ω1,

1; ω2,
3; ω3,

Y2 =


0; ω1,
−1; ω2,

6; ω3,
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with Y1 + Y2 = X. Hence,

ΛQ1(Y1;X) =

∫ 1/2

0
EP [−Y1] dγ +

∫ 1

1/2
EQ1 [−Y1] dγ =

1

6
,

ΛQ2(Y1;X) =

∫ 1/2

0
EP [−Y1] dγ +

∫ 1

1/2
EQ2 [−Y1] dγ = −1

4
,

while

ΛQ1(Y2;X) = −7

6
; ΛQ2(Y2;X) = −3

4
.

As expected, ΛQi(Y1;X) + ΛQi(Y2;X) = ΛQi(X;X) for i = 1, 2. Fur-
thermore, it is easy to check that ρ(Y1) = −1

3 and ρ(Y2) = −5
6 , hence

ΛQ2(Y1;X) < ρ(Y1) < ΛQ1(Y1;X) and ΛQ1(Y2;X) < ρ(Y2) < ΛQ2(Y2;X).

5 Conclusions

In this paper, we have faced the problem of capital allocation using risk
measures that are convex/quasi-convex and possibly non-differentiable in
the sense of Gateaux.

The interest of treating the non-differentiable case was already evident in
the works of Boonen et al. [5], Denault [14], Tsanakas and Barnett [34], and
Tsanakas [35]. On the other hand, to the best of the authors’ knowledge,
ours is the first attempt to define a CAR with quasi-convex risk measures.

We have defined a family of principles based just on the dual representa-
tion theorems [8], [12], [20], [25] and that extend those of Denault [14] and
Tsanakas [35], by also maintaining the game theoretic interpretation linked
to the Aumann–Shapley value [3]. The non-uniqueness of the allocation
rule, due to the fact that we have dropped the Gateaux-differentiability as-
sumption, leaves open the question of how to choose the “most suitable”one.

From another standpoint, while the principles define a true CAR in the
convex case (in the sense that they all allocate to each portfolio X, when
considered as a sub-portfolio of itself, exactly its risk capital ρ(X)), the
same does not always happen in the quasi-convex case. In this case, we
have shown that the principles can behave in different ways, sometimes not
allocating the whole capital. This feature can possibly represent an element
of flexibility, which makes these schemes adoptable in various frameworks
such as that of capital allocation for systemic risk measures [6].
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