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Abstract

Estrogen responsive breast cancer cell lines have been extensively studied to characterize transcriptional patterns in
hormone-responsive tumors. Nevertheless, due to current technological limitations, genome-wide studies have typically
been limited to population averaged data. Here we obtain, for the first time, a characterization at the single-cell level of the
states and expression signatures of a hormone-starved MCF-7 cell system responding to estrogen. To do so, we employ a
recently proposed model that allows for dissecting single-cell states from time-course microarray data. We show that within
32 hours following stimulation, MCF-7 cells traverse, most likely, six states, with a faster early response followed by a
progressive deceleration. We also derive the genome-wide transcriptional profiles of such single-cell states and their
functional characterization. Our results support a scenario where estrogen promotes cell cycle progression by controlling
multiple, sequential regulatory steps, whose single-cell events are here identified.
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Introduction

Cellular responses to estrogens are characterized by a

transcriptional activation and/or repression of specific subsets of

genes, whose characterization will provide essential information on

the molecular and genomic pathways of the hormone-responsive

breast cancer (BC) phenotype. To this aim, estrogen responsive

BC cell lines are useful model systems because of their deep

transcriptional similarities with ERa-expressing breast tumors

[1,2]. Their response to estrogens has, thus, been deeply studied to

try to characterize the structure of the process, and many

advancements have been made. Nevertheless, a genome-wide

quantitative analysis of the system at the single cell level is still

lacking. This is related to an intrinsic limitation of current major

time course genome-wide assays. In fact, time course data based

on technologies such as microarray and RNA-seq can only capture

population averaged expression levels. Yet, even if cells have been

perfectly synchronized at the initial time point of the time-course,

they will rapidly become a heterogeneous mixture because of the

intrinsic stochasticity of cell state transitions. As a result, while such

high-throughput techniques allow for a genome-wide character-

ization of the transformation of the population, they do not

directly provide information on the cell states and expression

signatures at the single-cell level.

To circumvent the above problems, we employ a quantitative

analysis method capable to exploit population average data, e.g.,

microarray, and to dissect the single-cell events involved in the

process. The method was previously used to investigate repro-

gramming of mouse embryonic fibroblasts into induced pluripo-

tent stem cells over four weeks [3]. Here we consider a different

biological system, a BC model, characterized by a much shorter

time scale, 32 hours.

In our approach, the dynamics of a single-cell is described, via a

Markov model, as a sequence of transitions between a network of

different single-cell states. In this way, the cell distribution over the

states and the population averaged, genome wide transcriptional

levels can be derived in terms of the single-cell state transcriptional

profiles and the transition rates across the states. Conversely, by

fitting the population data, e.g., microarray data, the single cell

states and transition rates can be obtained, thus providing a

description of the system at a single-cell level.

More precisely, in the approach used here, the single-cell

dynamics is described by a continuous time/discrete state Markov

model. Coupling this approach with the use of advanced statistical

methods and subsequent statistical analysis, we can determine, for

the first time in a quantitative manner: i) the most likely number of

single-cell states occurring in the BC estrogen-response process; ii)

the transcriptional profiles of such single-cell states and their

marker genes; iii) the key functional activities occurring in each
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single-cell state; and iv) the cell residence times and transition rates

across the network of states. Here, in particular, we investigate the

response to estrogen of a breast cancer MCF-7 cell model. We

consider one of the largest available microarray time-course

dataset of a MCF-7 hormone-starved system exposed to estrogen

along 32 hours [4].

Cell Systems and Datasets
The system considered here has been developed by Cicatiello

et al. [4] who reported an extensive microarray dataset consisting

in the time-course expression profiling of hormone-starved MCF-7

and ZR-75.1 model cells exposed to estrogen across 32 hours. The

microarray data, including 12 time points, were extracted for 4960

noise-filtered genes, differentially expressed during the time-course

assay [4]. In particular, a subset of 1270 genes has been shown to

share a similar transcriptional response to estrogen in the two cell

lines as described in Ref. [4]. They are referred to as common

‘‘estrogen-regulated’’ (E2R) genes. Cicatiello et al. [4] also

performed ChIP-seq experiments to identify primary targets of

ERa which led to the identification of 218 primary target genes

(below named ‘‘primary genes’’), i.e., E2R genes having an ERa
binding site within 10 kb from the transcription starting site (TSS).

Finally, by matching the target sequences of transcription factors

encoded by the primary genes with the sequences of E2R genes,

11 genes encoding transcription factors (‘‘primary TF genes’’) that

affected expression levels of downstream genes were identified in

that study.

The Model

In the approach considered here [3], we assume that upon

activation a cell visits a sequence of n states (Fig. 1A). We outline

here the method considered and refer to Text S1 for further

details. In our model the transitions between the single cell states

are stochastic and described by a continuous-time Markov process.

Although more complex cases can be considered (see [3] for

technical details and discussion), for simplicity we focus here on

linear state networks, with n states. The dynamics of a cell is

defined by the transition rates, wj,jz1, between all pairs of

consecutive states j and jz1, and the single-cell states by their

expression signatures: we indicate with bij the expression of gene i

in state j. In our notation we name k the total number of genes,

i.e., i[f1,:::,kg. To be precise, since gene expressions still

fluctuates in single cells, our state expressions refer to a single-

cell average level [5,6]. In the following we also use the symbol, bj
to represent the vector of the gene expressions for state j[f1,:::,ng
(1A).

Fig. 1B illustrates an example of the changes occurring in a cell

population which results from the transition at the single cell level:

while all cells are synchronized in state 1 at t1~0, at t2 we see that
about 30% of cells have transited to state 2, i.e., the probability to

find a cell in state 2 is p2(t2)^30%, while a few cells have already

reached the third state. At t3 the population is highly heteroge-

neous with about 30% of cells being in each of state 1, 2 and 3 (i.e.,

p1(t3)^p2(t3)^p3(t3)^30%). A microarray measure in such a

heterogeneous population will capture the average expression of

Figure 1. A schematic overview of the Markov model. (A) The dynamics of a single-cell is modeled as a sequence of transitions between n
different cell states, via a Markov model, following [3]. The transition rate of a cell from state j to state jz1 is named wj,jz1 , and the single-cell gene
expression levels in state j are named bj (i.e., bj is a vector with the state transcriptional profile): in the example, genes in red (green) are up-regulated

(down-regulated) in the corresponding state. (B) Population properties. An initially homogeneous cell population becomes heterogeneous because
of the intrinsic stochasticity of cells which distribute over the different states. Microarray time course data record the average expression of genes at
time t, x(t). The Markov model (panel a) can connect the single-cell behavior to the population behavior. As illustrated in the rightmost column of the
figure, by use of the single-cell transition rates, wj,jz1 , and state transcriptional profiles, bj , the time-dependent cell distribution across the states, pj(t),

and the predicted average transcriptional profile, x̂x(t), can be derived. Conversely, by fitting the microarray data, x(t), with the model predictions,
x̂x(t), the properties of the single-cell states (the bj9s) and transition rates (wj,jz19s) can be extracted. Note that, in general, the average expressions,

x(t), are different from the state profiles, bj , as seen in the example.

doi:10.1371/journal.pone.0088485.g001

Cell States in the Estrogen Response of MCF7 Cells

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88485



the genes, x(t), across the single-cell states which have been

populated. Yet, the crucial point is that the average expression,

x(t), in general does not represent faithfully the single-cell state

profiles. For instance, as illustrated in the example of Fig. 1B,
gene 1 is highly expressed in state 1 while its expression drops

sharply in the transition to state 2. However, the measure of its

expression on the heterogeneous population is still comparatively

high at time t2 so that information is lost in the mixture of cell

states. As we explain below, our method of analysis allows

addressing these issues and dissecting the dynamics at a single-cell

level.

The transition rates, w~ w1,2,:::,wn{1,nð Þ define univocally the

dynamics of the cell population via the master equation of the

Markov process:

dpj(t)

dt
~wj{1,jpj{1(t){wj,jz1pj(t) j~1,:::,n ð1Þ

Here pj(t) indicates the fraction of cells in state j at time t (and,

in our notation, w0,1~wn,nz1~0). The master equation can be

exactly integrated and the analytic form of pj(t) can be obtained as

a function of the rates w (Text S1). The parameters, bj , of the

state expression profiles are ‘‘static’’ (i.e., they do not change over

time) representing the features of the fixed single-cell states. The

entire set of the model parameters is indicated below with

h~ w,b1,:::,bnð Þ.
The population-averaged expression x̂xi(t; h) of gene i at time t

predicted by the model is, thus, given by:

x̂xi(t; h)~p1 tð Þbi1zp2 tð Þbi2z:::zpn tð Þbin i~1,:::,k

~
Xn
j~1

pj t;wð Þbij
ð2Þ

where in the last line we have explicitly shown the dependence of

the probabilities pj on the transition rates.

In general, in a linear network of n states (Fig. 1A), the model

parameters are the n{1 transition rates, wj,jz1, and nk state-

specific expression levels of the genes, bij . Suppose we have the

expression level of k genes across T time points (in our notation

xi(t) is the measured expression of gene i at time t): if the number

of the model unknown parameters, n{1znk, is less than the

number of data, kT , we can fit the data and derive the single-cell

parameters. More precisely, we can infer the model parameters, h,
by fitting the measured gene expressions, x(t), with the model

predictions, x̂x(t; h): xi(t)~x̂xi(t; h) Vi[f1,:::,kg and Vt[ft1,:::,tTg.
The model fitting algorithm used in our study is summarised in the

Methods section and discussed in greater detail in Text S1.

Methods

Data
We considered the microarray dataset from Cicatiello et al. [4],

deposited in the ArrayExpress database (http://www.ebi.ac.uk/

microarray-as/ae/) with accession numbers E-TABM-742 and E-

MTAB-131, consisting in time-course expression profiling of

hormone-starved MCF-7 and ZR-75.1 exposed to estrogen across

32 hours. RNA was extracted before stimulation (t~0) and at

1,2,4,6,8,12,16,20,24,28,32 hours of exposition. Data were

preprocessed as in Cicatiello et al. [4], where the procedure is

described in details. In brief, data were normalized with Quantile

[7] normalization and only genes having a detection p-value

ƒ0:05 in at least one time point were considered. To identify

differentially expressed genes we used the ILLUMINA DiffScore.

The selected genes have DiffScore ƒ{40 or §40, corresponding

to a p-value of 10{4, in at least one time point with respect to the

control (t~0). This procedure led to identify 4960 and 4106 noise-

filtered genes responding to estrogen respectively in MCF-7 and

ZR-75.1 cell lines.

We focus on transcription data as they are currently available,

but our method can be applied to consider other time-varying

data, such as epigenetic data, or important information on

chromatin organization [8–10], to directly identify state-specific

epigenetic signatures and spatial conformations along with

expression patterns (to this aim other specific models can be

associated to the present one [11,12], along with other state-

defining properties [13]).

Model Fitting
As the model is characterized by a large set of parameters, a

least-squares fit can be inadequate to reliably estimate its

parameters, h [14]. Thus, we employed a maximum-a-posteriori

approach (MAP), where available prior knowledge is used to

regularize the estimation. The MAP estimate is obtained by

maximizing the posterior density p(hDxi(t)) (i.e., the probability

density over parameters h given the observed data) with respect to

the parameters. Using Bayes’ theorem the posterior can be written

as

p(hDxi(t))~
p(xi(t)Dh)p(h)

p(xi(t))
ð3Þ

Figure 2. The number of single-cell states in the MCF-7 response to estrogen. (A) The mean squared error of the model fit to the microarray
data decreases as function of the number of states: as expected, when the number of parameters increases, the quality of the fit improves. (B) The
condition number is a measure of the similarity of the transcriptional profiles of the states. It increases as function of the number of states, n,
highlighting that over-fitting also increases with n. A good balance between fit quality and over-fitting must be found. (C) The model posterior
probability, derived by a Bayesian approach, has a peak at n~6, which shows that a model with six states strikes a good balance between fit-to-data
and model parsimony.
doi:10.1371/journal.pone.0088485.g002
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where p(xi(t)Dh) and p(h) are the likelihood function and the prior

distribution. The first takes into account the evidence in the data

whereas the second expresses the uncertainty about model

parameters before observing the data. Our choice of the prior

distribution over model parameters takes into account the

lognormal-like distribution of gene expressions observed in

microarray and RNA-seq assays.

In particular, we considered gene-specific gaussian noise over

predicted log expression levels with variance that is proportional to

the variability over time in the data (Text S1). In this framework,

log-expression profiles are fitted with the same relative error across

different genes and the maximization of the posterior is equivalent

to the minimization of the sum of squares

RSSL hð Þ~
X
ip

ẑzi tp; h
� �

{zi(tp)
� �2

zl
X
ij

logbij
� �2 ð4Þ

where the sum over p runs over the microarray time points, the

sum over i over the genes, and j over the states; ẑzi t; hð Þ and zi(t)
are the z-scores of log(x̂xi t; hð Þ) and log(xi(t)) respectively. The

Figure 3. The single-cell transition rates and state transcriptional profiles in the MCF-7 response to estrogen. (A) Representation of the
n~6 state model (chosen using our model selection methods, see Fig. 2) and its parameters, with the color code adopted in the following figures.
(B) The predicted single-cell transition rates, wj,jz1 (and their inverse, the average times of transitions), between the different single-cell states. In the
response to estrogen, the first state transition of cells appears to occur on a scale of about 2 hours, while the dynamics decelerates later on. (C) The
predicted cell population dynamics, i.e., the fraction of cells in the different states as a function of time, pj(t). It emerges that after 32 hours (the
duration of the microarray experiment) about 40% of the population has still not reached the final state. (D) Single-cell predicted transcriptional
profiles (i.e., the bj with j[f1,:::,6g). The heat map shows the log2 fold changes with respect to the first state. Large groups of genes are seen to

change their expression from state to state. (E) Details of the state profiles (fold change) of the 11 primary transcription factor (PTF) genes identified
in Ref. [4]. Genes highlighted in yellow (blue) are found in the microarray data to be on average up-regulated (down-regulated) after estrogen-
stimulation during the time-course. As visible, a much finer expression pattern is revealed by the analysis of their expression across the single-cell
states.
doi:10.1371/journal.pone.0088485.g003
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first part of eq.(4) takes into account the goodness of the fit while

the second part considers the penalty introduced by the prior. The

parameter l controls the extent of the penalization and was

calibrated over the data.

Minimization of the RSSL (4) is a hard computational task

given the high dimensionality of the data and model parameters as

well as the non-linear analytical relationship between the

population dynamics and rate parameters. We circumvented this

problem by first determining the transition rates (which are

common to the entire gene system) on a smaller subset of genes

which captures the dynamical response of the whole system [3].

To select those representative genes, we clustered z-scores of log-

transformed time-course data using k-means. Replacing each gene

within a cluster with the gene that best represents that cluster, we

obtained a less complex form for the RSSL, characterized by a

lower number of parameters. We minimized such a reduced form

to obtain transition rates and then we went on to minimize the

original RSSL with those fixed transition rates on a per-gene basis.

We considered an initial set of 256 representative genes after

checking that starting from larger initial sets does not lead to

different results in terms of population dynamics. Optimizations

were performed in MATLAB R20012b with the function lsqnonlin.

Further details concerning the identification of the initial set, the

derivation of the reduced RSSL and the inference of parameters

are given in the Text S1.

Bayesian Model Selection
To address the selection of the number of states of the model,

we trade off fit-to-data against model complexity by employing a

quantitative Bayesian framework, which we illustrate here. First of

all, the goal of this analysis is to obtain a posterior distribution over

the models, i.e. over the number of states. Indicating with Mn the

model with n states, and considering log-transformed time-course

data, yi(t)~ log xi(t), the posterior P MnDxi(t)ð Þ can be written as

P MnDyi(t)ð Þ~ p yi(t)DMnð Þp Mnð Þ
p yi(t)ð Þ !p yi(t)DMnð Þ ð5Þ

where we have applied the Bayes theorem and we have considered

a flat prior over models, and p yi(t)DMnð Þ is the model marginal

likelihood. In particular, we considered normal observational noise

over yi(t) and chose weakly informative priors over model

parameters (see Text S1). Introducing the extended set of

parameters h0~ s1,b1,:::,sn,bn,wf g, where s2i is the noise variance
for gene i, the marginal likelihood can be calculated as an integral

over the parameters

p yi(t)DMnð Þ~
ð
dh0p(yi(t)DMn,h

0)p(h0DMn) , ð6Þ

where p(h0DMn) and p(yi(t)DMn,h
0) are the prior distribution of h0

and the likelihood of the model respectively. Computing the

Figure 4. Fits to gene expression time-course data. The fit to some key genes, comprising the 11 primary transcription factors identified by
Cicatiello et al. [4] and other important estrogen-responsive genes [1,2], are shown: black circles represent time-course (standardized) data while
green lines represents the gene expression predicted by the six-state model.
doi:10.1371/journal.pone.0088485.g004

Figure 5. The single-cell transition rates in the ZR-75.1 system. Results of the six-state model for time course data in hormone-starved ZR-
75.1 cells responding to estrogen stimulation are shown for comparison with the MCF-7 system of Fig. 3. (A) Cell population dynamics. (B) Rates and
mean times of transitions. In ZR-75.1 the response to estrogen is initially one order of magnitude faster than in MCF-7.
doi:10.1371/journal.pone.0088485.g005

Cell States in the Estrogen Response of MCF7 Cells
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marginal likelihood (6) is a hard computational task that involves

the integration over the high dimensional space of the model

parameters. As described in the following, we used a Markov chain

Monte Carlo (MCMC) algorithm known as annealed importance

sample (AIS) [15].

Annealed Importance Sampling
The integral eq.(6) is very hard to compute given the high

dimensionality of the integration domain. To perform the

integration of our marginal likelihood we considered a MCMC

algorithm known as annealed importance sampling (AIS) [15].

MCMC algorithms from statistical physics are widely used in

Bayesian Inference [16,17]. In particular, AIS combines the ideas

of ‘annealing’ and ‘importance’ sampling providing low-variance

unbiased estimators and enjoying an improved rate of conver-

gence with respect to a naive MC scheme. In the following we very

briefly outline the algorithm while for further details about the

method we refer the interested reader to [15,17,18].

For simplicity of notation, in the following do not explicitly

indicate the conditioning on the model Mn. Let

0~c0vc1v:::vcM~1 be a strictly increasing sequence of real

numbers. The annealing bridges the prior and posterior distribu-

Figure 6. Marker genes in the MCF-7 system. In each state of a six-state model, genes are ranked by their state-expression fold change with
respect to the first state. Here, only the top 50 are shown along with their ranking in the other states. For the top genes of state 2 also the rank
assigned considering a maximum fold change criterion over the time course is shown for comparison (separated column). The state-based ranking
criterion highlights marker genes which would otherwise pass unnoticed.
doi:10.1371/journal.pone.0088485.g006
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tions by introducing M{1 additional distributions:

pm(h)~p(yi(t)Dh)cmp(h). The inverse of c plays the role of a

temperature. Let Tm indicate the kernel of the Markov chain

having pm(h) as equilibrium distribution. Using the AIS method,

the marginal likelihood of eq.(6) can be written as

p(yi(t)DMn)&
1

N

XN
a~1

exp
XM
m~1

cm{cm{1ð Þlog p yi(t)Dh(a)m

� �� �( )
ð7Þ

where N is the number of parallel chain runs, h(a)1 is sampled

directly from the chosen priors whereas h(a)m with mw1 is sampled

from Tm{1(hDh
(a)
m{1). In order to update the model parameter

values we considered a Metropolis-within-Gibbs scheme, which

provides a faster rate of convergence with respect to a Metropolis-

Hastings approach [19]. To test convergence, we looked at the

evolution of our estimate of p yi(t)DMnð Þ while increasing the

number of parallel chains. Further details about the Gibbs

sampling, our MCMC scheme and how we tested convergence

are given in the Text S1.

State Functional Signatures
To characterize the inferred states in terms of cell functional

activities, we first identified the set of up-regulated genes for each

state and then performed a functional enrichment analysis on

those sets. A gene was defined as up-regulated in state j if its

expression fold change between state j and state 1 is greater than

1:5. To perform the enrichment analysis, we used the standard

DAVID (Database for Annotation, Visualization and Integrated

Discoveries) software tool [20,21] where we considered the whole

set of noise-filtered genes (4960) as background and set the

significance threshold at 5% FDR.

Results

Number of States
Our first aim was to quantify the most likely number of states

that MCF-7 cells visit across 32 hours after estrogen stimulation.

This is a model selection problem and requires finding the best

trade-off of fit-to-data against model complexity. Indeed, while

models with a few states give poor fits to the data, models with too

many states risk to overfit by introducing artifactual states not

bearing any biological information. To address the selection of the

number of states, we first empirically examine how fit quality and

overfitting depend on the number of states and second we trade off

fit-to-data against model complexity by employing a quantitative

Bayesian framework.

In the empirical analysis, we looked at the mean squared error,

i.e. the distance between the expression data and the model fitted

values, and the degree of similarity between the different states for

an n-state model as a function of n in order to monitor the fit-to-

data performance and the overfitting respectively (Fig. 2A,B).
More precisely, to empirically quantify the effects of overfitting, we

recorded the condition number of the expression matrix bij , which

is a measure of the similarity of the state profiles with each other,

as a function of n (Text S1). Above six states we observe marginal

improvements in the quality of the fit and a steep increase in the

similarity of the inferred states.

To confirm this empirical observation we considered the full

Bayesian approach presented in Methods, which has been shown

to be effective and principled approach to address model selection

[17,22,23]. With this analysis we determine the posterior

distribution of models over their number of states (Fig. 2C), i.e.
the probability of having a certain number of states given the

evidence in the data. While this is comparatively high for the five

or the seven state model, interestingly, the posterior probability

has a peak at six states. This suggests that a six-state model strikes a

good balance between fit-to-data and model parsimony for the

system considered here and in the following we present our

findings obtained by employing such a model.

Cell Transition Rates and Population Dynamics
A pictorial representation of the six-state model is given in

Fig. 3A, where the color code used in the rest of our paper figures

is also set. Fig. 3B–E summarize its key parameters which we now

discuss: the predicted state transition rates and the single-cell state

genome-wide gene expression profiles.

We first discuss the model cell transition rates and the

corresponding population dynamics, i.e., the single-cell events

involved in the oestrogen response of the MCF-7 cells, and the

resulting population behaviour. As can be seen by the average

transition times (Fig. 3B), we find that the response of MCF-7

cells to estrogen is characterized by a faster early dynamics

followed by a progressive deceleration. In fact, the transition from

the initial state to the first intermediate state occurs with a mean

time of 2.0 hours while the successive transitions are increasingly

slower, the transition to the final state takes on average 16.5 hours.

The population of state 1 is halved after roughly 2 hours of

Figure 7. Estrogen responding genes per state. Among the entire gene set considered in the MCF-7 cell experiment, 1270 also responded in
ZR-75.1 cells. These are referred to as common ‘estrogen-regulated genes’ (E2R genes) in [4]. ‘Primary genes’ are their subgroup having a ERa
transcription factor binding site within 10 kb around the TSS. The figures show how E2R and primary genes are responding across the single-cell
states of a six-state model. (A) Fraction of up-regulated and down-regulated E2R genes. (B) Fraction of first-responding E2R genes, i.e., of genes that
respond for the first time in a given state. (C) and (D) show the analogous pattern of primary genes.
doi:10.1371/journal.pone.0088485.g007
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exposure to estrogen, while the fraction of cells being in state 1

becomes virtually 0 after 8 hours (Fig. 3C). States 2, 3, 4 and 5

peak respectively at 2, 5, 10 and 20 hours. We find that at t~32

hours only 58% of cells have reached the sixth, final state while

36% and 6% of cells are still respectively in states 5 and 4.

Figure 8. Single-cell state functional signatures in the MCF-7 system. The GO terms enriched among up-regulated genes in each single-cell
state are shown (in the six-state model). Only terms that are significant within 5% false discovery rate (FDR) are shown (the 5% FDR threshold is
shown as dark red line in the bar). Terms in grey are not significantly enriched. The processes activated in the sequence of states appear to well
describe the events characterizing the mitogenic response associated to ER-a.
doi:10.1371/journal.pone.0088485.g008
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To provide an example of the quality of our fitting procedure, in

Fig. 4 we show the fit to 16 genes comprising the 11 primary

transcription factors identified by Cicatiello et al. [4] and other

important estrogen-responsive genes [1,2].

The ZR-75.1 cell line system. The other model of breast

cancer cells studied by Cicatiello et al. [4], ZR-75.1, is known to

share with MCF-7 a similar, yet faster transcriptional response to

estrogen, including, for example, cyclin genes and thus reflecting a

more rapid cell cycle start and progression [4,24]. We applied the

six-state model to the ZR-75.1 dataset as well and found a very

good fit, highlighting, indeed, a faster dynamics for earlier states in

ZR-75.1 in comparison to MCF-7. For instance, the first transition

takes places in only 0.3 hours rather than 2 hours (Fig. 5).

Single-Cell State Transcriptional Profiles
State-specific gene expressions, i.e., the transcriptional profiles

of the states, were determined for all the 4960 noise-filtered genes

differentially expressed during the time-course assay of Ref. [4], by

use of the fitting procedure described in the Methods section. In

Fig. 3D the fold change of the whole set of genes is shown across

the six states: in a given state, genes in red (green) are up-regulated

(down-regulated) with respect to state 1. Fig. 3D also highlights

that the states have very distinct transcriptional signatures, with a

substantial fraction of genes (around 50%) changing from up- to

down-regulated with respect to the neighboring states.

Fig. 3E collects a subgroup of genes of Fig. 3D: it shows the

details of the state profiles of the 11 primary transcription factor

(PTF) genes highlighted in Ref. [4]. In that work, it was found that

5 PTF genes (marked by a yellow background in Fig. 3E) were on
average up-regulated after estrogen stimulation during the time-

course, whereas the other 6 (marked with a blue background) were

down-regulated. Our analysis is consistent with such an overall

observation, however, it reveals finer details of the expression

behavior of those genes across the different states, which are more

complex than either a simple up-regulation or down-regulation.

For instance, the two transcription factors E2F2 and E2F1 are

found to peak at state 2 and 5, but are otherwise down-regulated.

Marker Genes. We also identified the state-specific marker

genes. In each state, genes were ranked by their fold change with

respect to state 1. In Fig. 6 we list the top 50 ranked genes in each

state and we show for comparison also their rank in the other

states. Ranking based on the state features is different from other,

more conventional criteria. For example, for the top genes of state

2 we also show their ranks assigned with respect to their maximum

fold change across temporal expression profiles, defined as the

ratio of the maximum to the minimum expressions across the time

profile. There are some genes having a low-medium rank with

respect to the maximum fold change, but with a very high rank

using our criterion. The behaviour of a few important marker

genes are illustrated in the Discussion section below.

Primary genes. We also looked at the response of important

set of genes identified in the original paper by Cicatiello et al. [4].

In particular we considered the set of 1270 genes responding to

estrogen in both MCF-7 and ZR-75.1 cell lines (named common

‘estrogen regulated genes’ (E2R)), and its subset of 218 primary

genes (i.e., the subset having a ERa transcription factor binding

site within 10 kb of the TSS). We show the fraction of responding

up-regulated and down-regulated genes across the single-cell states

in those two sets (Fig. 7A,C). The two groups of genes have very

similar trends: the number of genes either up-regulated or down-

regulated increases in successive states, as expected, and the

fractions of down-regulated genes are almost always larger than

those of up-regulated ones. In Fig. 7B,D, we show, for the two

sets, the fraction of genes that first-respond in each state. In our

notation, a gene is ‘responding’ if it is either up-regulated or down-

regulated whereas it is ‘first-responding’ in state j if it responds in

state j but it has not responded in any previous states. More than

60% of genes have responded first in states 1 and 2 in both sets.

The characteristics of a few specific primary genes are illustrated in

the Discussion section below.

State Functional Signatures
In order to characterize the biological functional signatures of

the predicted single-cell states, we conducted a state-specific

enrichment analysis of GO terms [25] proceeding as discussed in

Methods. The biological processes significantly enriched in the

different states (Fig. 8) are found to be strikingly well linked to the

mitogenic effects of estrogens, whose cascade can be here dissected

across the specific states. This is illustrated in the Discussion

section below. These results confirm that the inferred cellular

states capture timing and nature of known cellular responses to

estrogen and provide a more detailed view of the dynamics of

these processes.

Discussion

Current high-throughput RNA profiling techniques, such as

microarray and RNA-seq, provide the tools to study cell

transitions on a genome-wide scale. However, they return data

averaged over heterogeneous populations, hiding the possibility to

characterize expression at the single-cell level. High-throughput

single-cell assays are being currently developed but are still in their

initial stages. Thus, we considered here a general quantitative

model [3] that allows reconstructing from population-averaged

time-course data, e.g., microarray data, a genome-wide charac-

terization of the dynamics of single cells. The model describes, via

Markov processes, the scenario where cells undergo stochastic

transitions across multiple states. By fitting time-course data, the

expression signatures of the states that cells visit during their

transitions and the rates that characterize such transitions are then

derived.

Here, we have employed such an analysis method to investigate,

in particular, the estrogen response of hormone-starved MCF-7

cells, a model of breast cancer widely used to characterize the

estrogen response in breast tumors [26–28]. We considered one of

the largest available microarray dataset [4] on hormone-respon-

sive genes identified in human breast cancer cells. Our findings are

fully consistent with previous results, and we reveal new insights on

the transcriptional dynamics at the single-cell level in the response

to estrogen. Although time-course epigenetic data and other time-

course data, when available, can be included in the model [3] and

important pieces of information, such as chromatin three-

dimensional folding and organization [9], could be taken into

consideration, we here have only considered microarray time-

course data. Furthermore, in the nucleus and cytoplasm of real

cells, a number of other effects and complications arise which are

likely to play important roles on the system behavior as found in

the study of other complex fluids (see, e.g., [29–33] and ref.s

therein).

Nevertheless, in the simplified framework considered here, we

have shown that the dynamic estrogen response of MCF-7 cells

can be described using six single-cell states across the 32 hours

after stimulation. The dynamics across those states is characterized

by a faster early response to the initial stimulus, occurring on a

scale of 2 hours, followed by a progressive deceleration of the

transitions (Fig. 3B,C): at 32 hours 40% of the population is still

not in the mitotic state, which is the last state in this description.
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Our analysis has derived the genome-wide transcriptional

profiles of the states (Fig. 3D), revealing the fine details of the

expression behavior across the different states. A focal case study

has been the group of the 11 primary transcription factor (PTF)

genes highlighted in Ref. [4]. For instance, we find that E2F2 and

E2F1 peak at state 2 and 5, but are otherwise down-regulated

(Fig. 3E). In estrogen-responsive BC cell lines, these proteins are

able to promote G1-S transition [24,34] and their overexpression

causes hormone-independent proliferation and antiestrogen-resis-

tance [35]. An other example is up-regulation of the retinoic acid

receptor subtype RARA in states 2–5 with respect to state 1

(Fig. 3E). This confirms its high expression in ER-positive BC

cells, where the protein encoded by this gene has been shown to

accumulate as consequence of ER-mediated trans-activation of the

RARA-1 gene promoter [36]. The overlapping between RARA

binding sites and those of ERa throughout the genome results in

crosstalk between this two molecules leading to the regulation of

cancer-associated genes [37].

We also identified the genes marking the inferred states (Fig. 6).
In our top 50 ranked state-specific marker genes, we find many

genes known to play a key role in the estrogen response, the

hormone-responsive breast cancer phenotype and tumor response

to endocrine therapy. Among all, it is worth mentioning the FOS

and MYC genes, top rank members in state 2, that are known to

promote cell replication in response to extracellular signals,

including estrogen, driving quiescent cells into the cell cycle,

activating key cell cycle genes such as cyclins D1, D2, E and A,

CDK4, E2F1 and E2F2. The same is true for TFF1 and GREB1

in state 4. The TFF1/ps2 protein is a member of the trefoil protein

family, found to be expressed in human breast carcinomas and

involved in controlling expansion or contraction of the ductular

system through its mitogenic properties. The ATF/CREB family

plays a role in breast cancer and is considered to be an effective

therapeutic target gene. Some members of this gene family are

protective against breast cancer but others such as ATF4, ATF5,

and CREB, promote breast cancer pathology. In fact, CREB can

contribute to malignancy of breast epithelia inducing transcription

of aromatases that, in turn, lead to increased estrogen levels

establishing a vicious cycle in the tissue. As an example of positive

feedback regulation, estrogen causes CREB to bind and activate

the cyclin D1 promoter [38]. By activating cyclin D1, which causes

cells to progress through the cell cycle, activation of CREB

represents a central event in phase transitions. Furthermore,

dominant negative CREB has been shown to block the

transcription of the estrogen-responsive BCL-2 gene in MCF7

cells [39]. Since this protein blocks apoptosis, this suggests an

additional role for a mid-G1 event. The few examples considered

here suggest the utility of our model in identifying genes playing a

critical role in breast cancer development and progression and the

time of their action. Moreover, we find that the model identifies

state-specific genes that would have been ignored by considering a

standard criterion as maximum fold change. This is the case of

TFAP2C, whose overexpression highlights the key role in invasive

breast cancer correlating with a poorer response to anti-hormone

therapy and reduced patient survival [40].

Our functional enrichment analysis of state-specific GO terms

provides a full characterization of the inferred states (Fig. 8). Our

findings are not only consistent with the known picture of estrogen

acting as potent mitogen, but they provide, for the first time, new

insights on the cellular functional activities at the single-cell level.

In particular, the terms enriched in state 2 are involved in

angiogenesis, which could be associated with the in vivo phenom-

enon of the ‘‘angiogenesis switch’’ [41], an alteration in the

balance of naturally occurring endothelial growth factors and

inhibitors [42]. Following the switch to an angiogenic phenotype,

endothelial cells must then proteolytically degrade the extracellular

matrix that surrounds them, migrate and proliferate, form

capillary structures, and anastamose into a vascular network that

characterizes the transition of a tumor from a dormant state to a

malignant state [43]. A variety of activities related with RNA

processing becomes enriched in state 3 and persists in state 4,

including processing of non-coding RNAs. State 4 is also

characterized by lipid metabolic and biosynthetic processes.

DNA replication, repair and recombination mark state 5, which

coincides with the S phase, while in state 6 fully fledged mitosis

related terms are enriched. The emerging picture is that state 2, 3

and 4 correspond to three subphases of the G1 phase of the cell

cycle, whereas states 5 and 6 can be more directly associated

respectively to the S phase and mitosis. The functional roles

assigned to the different predicted states are fully consistent with

previous studies on the estrogen response of MCF-7 cells, and they

match well the known intervening phases of the cell cycle. For

example, we find that more than 40% of the entire population is in

interphase between 16 and 28 h, which is precisely the time that

MCF-7 cells need to enter the S phase [4,24,44]. Moreover, in

previous studies [4] it was noticed that genes involved in mitosis

show maximal response between 28 and 32 h.

Interestingly, the single-cell states identified here are consistent

with the ratchet-like model proposed for estrogen stimulation of

cell proliferation, which foresees a permissive effect of the

hormone on multiple, sequential cell cycle restriction points

[45]. Indeed, our method allowed identification of estrogen target

genes involved in each of these transitions, providing for the first

time a genetic explanation also for the dynamics of breast cancer

cell responses to antiestrogen drugs, such as those described for the

selective estrogen receptor down-regulator ICI 182,780/Faslodex,

a pure antihormone used for treatment of these tumors [28]. In

this respect, these results identify multiple genes whose mutation

might cause perturbation of one or more cell states resulting in

estrogen-independent cell cycle progression, one of the key events

believed to cause the resistance to antihormones observed in~30%
breast cancer patients undergoing these therapies.

In conclusion, we have considered a stochastic model of the

events characterizing single-cell transitions during the estrogen

response of a breast cancer model, MCF-7 cells. Our methods

allow to identify the single-cell states intervening during the

processes, by using only population-averaged time-course data,

such as microarray or bulk RNA-Seq data. Interestingly, it

recapitulates the key known biology facts about the system and, for

the first time, sheds light on the single-cell events and on the states

transversed in the process. Our approach could be similarly

applied to other cell transitions and could easily accommodate

additional data types, such as epigenetic data.

Supporting Information

Text S1 Supplementary methods section presenting in
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