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Abstract: Dopamine agonists have been shown to possess neuroprotective properties in 
different in vitro and in vivo experimental Parkinson’s disease models, because their 
capability to counteract- neuronal cell death. Here we update the molecular evidence 
underlying the wide pharmacological spectrum of dopamine agonists currently used for 
treating Parkinson’s disease patients. In particular, the mechanism of action of different 
dopamine agonists does not always appear to be restricted to the stimulation of selective 
dopamine receptor subtypes since at least some of these drugs are endowed with 
antioxidant, antiapoptotic or neurotrophic properties. These activities are molecule-
specific and may contribute to the clinical efficacy of these drugs for the treatment of 
chronic and progressive neurodegenerative diseases in which oxidative injury and/or 
protein misfolding and aggregation exert a primary role. However, despite increasing 
number of experimental results confirm their neuroprotective effects, further studies are 
needed to definitively confirm dopamine agonists as disease-modifying agents. 

Keywords: Alzheimer’s disease, amyolid fibril, amyotrophic lateral sclerosis, 
apomorphine, bromocryptine, disease-modifying therapy, dopamine, dopamine 
receptor agonists, Free radicals, neurodegeneration, neurogenesis, neuroimaginig, 
neuroprotection, oxidative stress, Parkinson’s disease, pergolide, pramipexole, 
protein aggregation, ropinirole, rotigotine, α-synuclein. 

INTRODUCTION 

Parkinson’s disease (PD) is the most common neurodegenerative movement 
disorder. Approximately 2% of the population older than 65 years suffer from this 
slowly progressive neurodegenerative disease. More than 90% of PD cases are  
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sporadic. The primary cause of the disorder is the progressive loss of the 
pigmentated DAergic neurons in the substantia nigra pars compacta (SNpc) 
accompanied by the appearance of intracytoplasmic inclusions known as Lewy 
bodies, containing aggregated alpha synuclein. Despite significant progress has 
been made in controlling the symptoms of the disease, a neuroprotective or 
disease-modifying therapy that can slow or stop disease progression has not yet 
been obtained. To date, the etiopathogenesis of nigral DAergic neuron loss in PD 
is unknown. However, the presence of ongoing oxidative stress as the result of 
inefficacious antioxidant defence mechanisms and generation of radical oxygen 
species (ROS) in the SNpc of the parkinsonian brain are considered to be 
important pathogenic mechanisms [1-3]. It should be noted that part of these free 
radicals are inevitably produced by DA metabolism in the brain either by enzymes 
through the action of monoamine oxidase-B or by auto-oxidation [4]. Other 
sources of increased radical production may be endogenous neurotoxins occurring 
in the brain like tetrahydroisoquinolines or exogenously administered neurotoxins 
like the widely used herbicide paraquat which have similar neurochemical 
properties like the well-known neurotoxin, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [5-7]. Moreover, it has been suggested that PD could 
be associated with excitotoxicity and apoptosis [8] and with a loss of neurotrophic 
factors [9, 10]. Finally, protein aggregation and misfolding have emerged as 
important mechanisms not only in PD, with -synuclein aggregating Lewy 
bodies, but also in many other neurodegenerative disorders, including as 
Alzheimer’s disease (AD). Therefore, an effective anti-parkinsonian therapy 
should interfere with the overall mechanisms that finally lead to the progressive 
DAergic death in the CSN. 

Levodopa combined with a peripheral DOPA-decarboxylase inhibitor and a 
COMT inhibitor is considered the therapy of choice for PD. Levodopa is nearly 
always effective, but has a high incidence of adverse effects with long term use, 
including response fluctuations (on/off phenomena) and dyskinesias. More 
recently DAergic agonists, acting directly at the receptor level, would be able to 
decrease the incidence of these motor complications [2, 3]. However it seems that 
these molecules are also endowed with the ability to modify the disease 
progression protecting neuron from degeneration. 

Here we update the knowledge about the potential effects of dopaminergic agonists 
in restoring the impaired DA function as well as in preventing neurodegenerative 
processes because of thier additional pharmacological properties. 
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NEUROPROTECTIVE AND NEURORESTORATIVE PROPERTIES OF 
DA AGONISTS 

The potential of DA agonists in inhibit intracellular death pathways and/or 
stimulate neuron regeneration may be a consequence of specific DA receptor 
stimulation or be completely independent from them. These additional 
pharmacological effects may enlarge the pharmacological spectrum of different 
DA agonists, contribute to slow down the progression of the neurodegenerative 
process, also involving sites of action distal from the nigro-striatal areas. 

Antioxidant Activity 

Increased oxidative stress is thought to be involved in nigral cell death, that is 
characteristic of PD. This oxidative stress may be further exacerbated by levodopa 
therapy. These mechanisms have been proven in vitro and in animal models, but 
their relevance in humans remains speculative [2, 3]. 

Most DA agonists have demonstrated protective properties in cell culture against 
a range of toxins, including DA, 6-hydroxydopamine (6-OH-DA), 1-metyl-4-
phenylpyridinium (MPP+) and hydroxy peroxide [2, 3, 11]. DA agonists also 
protect against toxin action in vivo, as shown in rodents receiving intrastriatal 
injection of 6-OH-DA or MPP+. As reported in details in the following chapters, 
at cellular level, independent groups have demonstrated decreased free radical 
production and an amelioration of DA neuronal loss following DA agonist 
treatment. 

Stimulation of Neurogenesis 

The neurotransmitter and its receptors appear early during ontogenesis and affect 
cell proliferation in the embryonic germinal zones [12, 13]. Interestingly, the 
regulation of neural stem cells by dopamine persists in the restricted brain areas 
where neurogenesis occurs in adulthood, particularly in the subventricular zone 
(SVZ) within the lateral wall of the lateral ventricles and in the subgranular zone 
of the hippocampus. Ongoing adult neurogenesis is currently believed to be an 
important form of neural plasticity, enabling organisms to adapt to environmental 
changes and possibly influencing learning and memory throughout life. On the 
other hand promotion of adult neurogenesis may offer a potential approach for 
replacing neurons or neuritic networks that degenerate or lose function during 
aging or in neuropathological settings, including Parkinson’s disease. This 
therapeuthic strategy is particularly intriguing since in post-mortem brains of 
individuals with Parkinson’s disease the numbers of neural precursor cells in 
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neurogenic regions are dramatically reduced [14]. In a very elegant study 
Hoglinger and co-authors [14] provided experimental evidence that the highly 
proliferative precursors cells located in the adult murine subependymal zone 
lining the lateral ventricle receive dopaminergic afferents. This innervation 
appears functionally relevant. Transient and bilateral dopaminergic denervation 
by administration of MPTP resulted in transient and bilateral decrease in the 
subependymal zone proliferation. Additionally, ablation of mesencephalic 
dopaminergic neurons of adult rats by stereotaxic injection of 6-OHDA into the 
nigrostriatal pathway resulted in the unilateral dopaminergic denervation of the 
subependymal zone as well as in the marked reduction in the number of 
proliferating precursors. Conversely, cell proliferation was restored by L-DOPA 
chronic infusion. Similar results were obtained in the hippocampal neurogenic 
region, which has been shown to receive a dopaminergic from the ventral 
tegmental area. More recently, the existence of a topographically organized 
projection from the SNpc to the SVZ was also demonstrated in primates [15], with 
the anteromedial SNpc projecting to the anteroventral SVZ and the posterolateral 
SNpc to the posterodorsal SVZ. 

The effects on precursor cell proliferation elicited by dopamine are likely to be 
mediated by D2-like receptors, since D2 and D3 receptors are expressed on neural 
stem/progenitors cells. As recently summarized by Joyce and Millan [16], 
different D3 receptor-preferring agonists augment mitogenesis in the SVZ. In 
particular, Van Kapen and associates demonstrated induction of neurogenesis 
leading to the regeneration of DAergic pathways, suggesting that this effect may 
participate to the restoration of DAergic nigrostriatal pathway and locomotor 
activity in rat model of PD [17, 18]. However, species-specific differences of D3 
receptors in regulating neurogenesis have been reported [19, 20]. A two-fold 
induction of cell proliferation in the SVZ and rostral migratory stream of the adult 
rats was demonstrated following icv administration of the dopamine D(3) receptor 
agonist, 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) for 2 weeks 
[17]. The same drug had no effect on mice [20, 21]. More robust are the data on 
the involvement of D2 receptors in regulating neurogenesis, based on both the use 
of D2-null mice and D2 agonists/antagonists [22]. 

Stimulation of Neurotrophic Factors 

One of the most convincing evidence for the role of neutrophic factors in PD is 
the study of Elsworth et al. [23]. They found that implantation of adeno-
associated virus type 2 encoding gial derived neurotrophic factor (AAV2-GDNF) 
in the normal monkey caudate nucleus induced overexpression of GDNF, that 
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persisted for at least 6 months after injection. In a 6-month within-animal 
controlled study, AAV2-GDNF enhanced the survival of fetal dopamine neurons 
by 4-fold, and increased the outgrowth of grafted fetal dopamine neurons by 
almost 3-fold in the caudate nucleus of MPTP-treated monkeys, compared with 
control grafts in the other caudate nucleus. GDNF is a potent neurotrophic factor 
that is crucial to the development, survival, and outgrowth of DA neurons [24, 
25]. GDNF is highly expressed in the developing rat striatum, yet its 
concentration is relatively low in the adult brain [26-28]. Several studies in the 6-
OH-DA lesioned striatum of rats have demonstrated improvements in survival and 
outgrowth of grafted fetal DA neurons when central injections of GDNF have 
been administered, or when GDNF overexpressing cells have been co-grafted to 
the striatum [29-35]. Other than GDNF, brain-derived neurotrophic factor 
(BDNF) is one of the major trophic factors for DAergic neurons [36-38]. 
Transplantation of modified fibroblasts or astrocytes that express BDNF into 
either the striatum or the midbrain attenuates 6-OH-DA-induced losses of 
nigrostriatal neurons [39, 40]. Also, BDNF can modulate dopaminergic 
neurotransmission in nigrostriatal neurons, as shown by elevated rotational 
behavior and increased turnover of dopamine in the striatum [41]. BDNF can 
promote functional recovery from 6-OHDA lesions following expression in 
striatal cells from an AAV vector [41]. These studies support the relevance of 
neurotrophic factors for a neurorestorative effect expected in the treatment of PD. 
As reported in the following chapters, some DA agonists have been found to 
stimulate either BDNF or GDNF in experimental cell cultures. These 
pharmacological effects may be useful to improve treatment for PD. 

Anti-Fibrillary Activity 

Several data suggest anti-fibrillary effects of DA agonists. The aggregation of -
amyloid peptide (A) and alpha-synuclein in the brain has been implicated as a 
critical step in the development of AD and LBD, respectively. Thus, in addition to 
antioxidant strategies, increasing evidence points to the possibility of achieving 
neuroprotection by DA agonists through inhibition of fibril formation [42]. 
DAergic agents were indeed found to dose-dependently inhibit generation of, as 
well as destabilize preformed, -amyloid fibrils [43]. Using fluorescence 
spectroscopy with thioflavin S, electron microscopy, and atomic force 
microscopy, the effects of selegiline, DA, pergolide, bromocriptine, and 
trihexyphenidyl on alpha-synuclein fibrils formation have been recently studied. 
All molecules except for trihexyphenidyl, dose-dependently inhibited the 
formation of alpha-synuclein fibrils. Moreover, these molecules dose-dependently 
destabilized preformed alpha-synuclein fibrils [44]. The anti-fibrillary actions 
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elicited by the DA agonists appear to be independent of DA receptor stimulation 
and detectable in cell-free systems. 

2. EXPERIMENTAL EVIDENCE FOR NEURORESCUE ACTIVITY 

Apomorphine 

Apomorphine, a non-ergoline DA receptor agonist, is a short-acting and non-
selective DA D1/D2 receptor agonist used for treating PD since many decades. 
Subcutaneous intermittent injections or continuous infusions of apomorphine have 
been proposed for the management of sudden, unexpected and refractory 
levodopa-induced “off” states in fluctuating PD [45]. The original evidence for 
neuroprotective and antioxidant effects of apomorphine, and other DA receptor 
agonists, is from Youdim’s group [46]. Rational for their pivotal studies was the 
relevance of ROS generation in the neurotoxicity associated with PD [1, 4]. Since 
compounds with a catechol structure have metal chelating properties and can act 
as reducing agents [47], it was attractive the idea that apomorphine may inhibit 
metal-catalyzed free radical processes and act as a radical scavenger. Studies on 
the effect of apomorphine on lipid peroxidation and protein carbonyl formation 
after ascorbate/iron-induced free radical formation in rat brain mitochondrial 
fractions clearly demonstrated the antioxidant properties of apomorphine in brain 
tissue [46, 48]. It has later been shown that apomorphine exhibited 
neuroprotection against DA depletion in 6-OH-DA lesioned-rats [49] and MPTP-
treated mice [50]. Furthermore, continuous subcutaneous infusion of apomorphine 
was found to rescue striatal DAergic terminals and increase the tyrosine 
hydroxylase and DA-transporter immunoreactivity against toxicity induced by 
MPTP in mice and enhanced the number of tyrosine hydroxylase-positive cells in 
the ventral tegmental area in partially 6-OH-DA-lesioned rats [51, 52]. It has also 
been observed that apomorphine increased the survival of cultured mesencephalic 
DAergic cells [53] suggesting trophic effects of apomorphine either in vivo or in 
vitro. The neuroprotective effect of apomorphine was further supported by the 
result of different pharmacological properties including antioxidant activity, 
potent iron chelating action, inhibition of lipid peroxidation, induction of 
neurotrophic factors and anti-inflammatory effects [46, 50, 54-56]. Specific brain 
gene expression changes have been reported in the chronic MPTP model in the 
late stage of degeneration, employing cDNA expression array, which indicate a 
domino cascade of events involved in in oxidative-stress, inflammatory processes 
AND signal transduction and glutamate toxicity that finally lead to neuronal cell 
death [57]. 
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Bromocryptine 

Bromocryptine is the first DA receptor agonist that has been approved for anti-
parkinsonian therapy since 1974 [58]. It was first used as adjunctive therapy to 
levodopa in patients experiencing motor fluctuations and later it was 
recommended as monotherapy in the early stage of the disease [59]. From the 
pharmacological point of view, bromocryptine was the first DA receptor agonist 
endowed with D2 receptor specificity to be described. Bromocryptine has been 
shown to protect mice and DAergic cells against 6-OH-DA and MPTP, and 
levodopa-induced cell loss, respectively; it also attenuated DA depletion in mouse 
striatum in response to methamphetamine [60-62]. The neuroprotective effect of 
bromocryptine was dependent on both its action as a D2 receptor agonist and its 
antioxidant capacity. In this context, it has been reported that bromocryptine is 
able to scavenge hydroxyl and superoxide radicals in vitro [61, 63] and to inhibit 
hydroxyl radical formation and lipid peroxidation in vivo [61]. There is evidence 
that excitotoxic mechanisms contribute to the pathogenesis of PD and that 
glutamate signaling could be an important mechanism for the death of 
dopaminergic neurons and trigger the induction of programmed cell death [64]. 
Bromocryptine has been shown to exert a protective effect against glutamate-
induced cytotoxicity in primary cultures of rat cortical or mesencephalic neurons 
[65] The neuroprotective effect was mediated via D2 receptors, because it was 
attenuated by domperidone, a D2 DAergic receptor antagonist. 

Pergolide 

Pergolide is a synthetic ergoline derivate that has been indicated in monotherapy 
as an efficacious treatment in patients with early stage PD. Several studies 
demonstated the neuroprotective effect of pergolide, observed either in vivo or in 
vitro [66-68]. The neuroprotective effect of pergolide has been shown to be 
mediated by free radical scavenging activity particularly hydroxyl radicals and 
nitric oxide and by decreasing phospholipid peroxidation [69, 70] suppressing 
apoptotic pathways through inhibiting of NF-B nuclear translocation [71] and 
stabilizing the mitochondrial function [68]. Data obtained in our laboratory 
demonstrated that pergolide protected SH-SY5Y neuroblastoma cells from cell 
death induced by H2O2 [72]. Unfortunately, peroglide therapy was associated with 
valvular heart fibrosis; for this reason it was withdrawn from sale in the United 
States and the European Medicines Agency has added new warnings and 
controindications to the product information [73-75]. 
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Ropinirole 

Ropinirole is a non-ergoline DA receptor agonist that exhibits a high affinity for 
the D2 and D3 receptor subtypes but little or no affinity for the D1 receptor [76, 
77]. Symptomatically, it was reported that ropinirole was as effective as 
bromocriptine in reducing motor complications and decreasing levodopa dose 
without increasing adverse events including dyskinesia [78]. Also, ropinirole 
monotherapy was effective in treating resting tremor in early PD [79], in reducing 
periodic leg movements and in improving sleep efficiency in patients with restless 
legs syndrome [76, 80]. These positive effects of ropinirole in PD are believed to 
be due to stimulation of the post-synaptic DA D2-type receptor [77]. In 
experimental models for PD, it has been found that ropinirole reversed the motor 
and behavioral deficits induced by MPTP in marmosets [77] and showed 
neuroprotective effect against 6-OH-DA in mice [78]. Activation of glutathion 
and glutathion-regulating enzymes such as glutathione peroxidase, glutathione 
reductase and glutathione transferase as well as activation of catalase and 
superoxide dismutase were principal neuroprotective mechanisms mediated by 
ropinirole [81, 82]. 

In clinical trials ropinirole reduced the long-term decline of striatal fluorodopa 
uptake compared to levodopa therapy indicating a preserving effect on terminal 
function of DAergic neurons [83, 90]. Previous in vitro study showed that 
ropinirole can promote the differentiation and survival of DAergic neurons, and it 
can upregulate the expression and secretion of GDNF and BDNF [84]. 
Considering the potential effects of ropinirole in neuroprotection, it has been 
suggested that ropinirole may have an anti-apoptotic effect through interfering 
with MAP kinase pathway and caspase-dependent pathway. Recent studies 
showed that ropinirole has neuroprotective effect against rotenone-induced 
apoptosis in both SH-SY5Y cells and primary mesencephalic cultures [85]. 
Exposure to rotenone significantly activated p-JNK, p-P38 and p-c-Jun in SH-
SY5Y cells. Activation of JNK and P38 was responsible for the inhibition of the 
anti-apoptotic protein Bcl-2, and the induction of phosphorylation of c-Jun, a 
nuclear transcription factor and a known target of JNK, which further promotes 
the release of cytochrome c from the mitochondria to the cytoplasm and it leads to 
caspase-9 activation [86-89]. Pretreatment with ropinirole inhibits p-JNK, p-P38 
and p-c-Jun expression, indicating that ropinirole may act at early stage of 
apoptosis. These effects appear to be mediated by neurotrophic factors GDNF and 
BDNF, since both of them were found to increase in the primary mesencephalic 
cultures after treatment with ropinirole and pramipexole [84, 91]. Ropinirole also 
increased GDNF in mouse astrocytes taken from whole brain [92] The anti-
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apoptotic effect of ropinirole can be suppressed by D2 and D3 receptor 
antagonists sulpiride and nafadotride. Nafadotride exhibited greater effect in 
blocking ropinirole mediated anti-apoptosis, suggesting that D3 receptor may play 
a significant role. 

Pramipexole 

Pramipexole (PPX), a non-ergot DA agonist, has been successfully applied to the 
treatment of early and severe PD. It appears efficacy in the reduction of motor 
fluctuations and, in association with levodopa, it allows a reduction of the dose of 
the latter. Furthermore, pramipexole is able to improve the affective 
symptomatology. Pramipexole exhibits an 8-fold higher affinity for D3 than D2 
little or no affinity for the D1 receptor. The neuroprotective effects elicited by this 
drug have been associated with different mechanism, such as antioxidant effects, 
mitochondrial stabilization or induction of the antiapoptotic Bcl-2 family. In 
particular, Le et al. [93] reported that pramipexole protected DAergic MES 23.5 
cell line against DA, 6-OH-DA and hydrogen peroxide-induced cytotoxicity 
possibly through antioxidant effects, and such neuroprotection was independent 
from DA receptor stimulation not being prevented by selective D2 or D3 
antagonists. Similar results were obtained by Fujta et al. [94] and Uberti et al. 
[95], who demonstrated that pramipexole inhibited generation of H2O2-induced 
reactive oxygen species in PC12 cells and SH-SY5Y neuroblastoma cells, 
respectively. In a recent study we showed that, in retinoic acid differentiated SH-
SY5Y cells, PPX preventing cell death inhibiting mithocondrial reactive oxygen 
and that these ability are held by both S (-) and R (+) enantiomers [96]. 

In a search for an appropriate cell model for studying neuroprotection, Presgraves 
et al. [97] characterized differentiation conditions of the SH-SY5Y neuroblastoma 
cell line for phenotypic markers of DAergic cells, Cells were differentiated with 
retinoic acid (RA), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and RA 
followed by TPA (RA/TPA). Interestingly, RA/TPA differentiated cells exhibited 
3-fold and 6-fold higher levels, respectively, of DA D2 and D3 receptors than 
undifferentiated or RA-differentiated cells. Pretreatment with pramipexole was 
protective against MPP+ in the RA/TPA differentiated cells but not in 
undifferentiated or RA differentiated cells. The neuroprotective effect of 
pramipexole was concentration-dependent and DA D2/D3 receptor dependent. In 
contrast, protection by pramipexole against DA was not DA receptor dependent. 

An additional mechanisms underlying protection by D2/D3 receptor agonist has 
been suggested to involve neurotrophic factors. To verify this hypothesis, the D3 
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receptor preferring agonists S32504 [(+)-trans-3,4,4a,5,6,10b-hexahydro-9-
carbamoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine] and pramipexole were 
utilized in a terminally differentiated neuroblastoma SH-SY5Y cell line exhibiting 
a DAergic phenotype [98]. The cytotoxic effects of MPP+ were stereospecifically 
antagonized by S32504 and by pramipexole, but not by their inactive 
stereoisomers, R(+) pramipexole and S32601, respectively. Neuroprotective 
effects afforded by S32504 and pramipexole were specifically antagonized by the 
selective D3 antagonists S33084, U99194A, and SB269652, and by the D2/D3 
antagonist raclopride. The preferential D2 receptor antagonist LY741626 was 
ineffective as the D1 antagonist SCH23390. 

BDNF potently protected against MPP+-induced neurotoxicity. Antibody directed 
against BDNF concentration-dependently blocked both the neuroprotective effects 
of BDNF and those of pramipexole and S32504 against MPP+. The protection 
afforded by BDNF was blocked by the P3K-AKT pathway inhibitor LY249002. 
Neuroprotective effects of pramipexole and S32504 against MPP(+) toxicity 
appear to be mediated by D3 receptors stimulation. Their actions also reflect 
downstream recruitment of BDNF and via a PK3-AKT pathway. 

PPX has been recently shown to promote adult neurogenesis in SVZ in an acute 
rat Parkinson’s disease model [99] and to increase the levels of brain-derived 
neurotrophic factor and glial cell line-derived neurotrophic factor in a mouse 
model of PD induced by ubiquitin-proteasome system impairment [100] 
furthermore, the PPX-induced neurogenesis was better characterized by Merlo et 
al. [101]; the authors showed that PPX is able to favor expansion and neuronal 
differentiation of neural progenitors from the adult SVZ, by both D2 and D3 
receptor-mediated mechanisms, which involves involves enhanced release of 
BDNF and subsequent activation of AKT. Finally, PPXwas demonstrated to 
inhibit the phosphorylation of α-synuclein with a mechanism independent of 
dopamine receptor activation, by inhibition of the ubiquitin proteasomal system. 
The phosphorylation of α-synuclein occurs in part at least through casein kinase 2, 
and PPX in turn reduces the phosphorylation of this enzyme, thereby inhibiting its 
activity [102]. 

Rotigotine 

Rotigotine is a non-ergoline dopamine agonist developed for the once daily 
treatment of Parkinson's disease (PD) which provides a 24-hour continuous 
treatment through a transdermal delivery system (patch), to obtain the reduction of 
motor fluctuation. Rotigotine acts as a full agonist at dopamine receptors, with the 
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highest affinity for the D3 receptor [103]. Rotigotine exerted its protective effects 
via dopamine receptor significantly reducing the production of superoxide 
radicals. In the acute MPTP mouse or progressive MPTP macaque model the 
agonist was shown to exert partial protective effects on dopaminergic nerve 
endings [104, 105]. Rotigotine treatment appears to protect dopaminergic neurons 
from cell death mediated by glutamate. In a very recent study, Oster et al. 
revealed the signalling pathways that are associated with rotigotine-induced 
neuroprotection against glutamate excitotoxicity, likely through the activation of 
the PI3K/Akt pathway followed by GSK-3β inactivation which was finally 
associated with an increased content of GSH [106]. 

3. PERSPECTIVES 

Dopamine Receptor Agonists in Clinical Trials 

The neuroprotective action of dopamine agonists has been demonstrated and 
repeatedly confirmed over the years by numerous studies in vitro and in vivo. 
However, some difficulties were encountered in translating these experimental 
results in a clinical benefit for the patients. 

Two clinical trails investigated the neuroprotective potential of DA using imaging 
end-points; the CALM-PD was a multicenter randomized double-blind controlled 
clinical trial enrolling subjects with early PD, randomly assigned to receive 
pramipexole or levodopa. Using -CIT SPECT scanning techniques, the study 
aimed to assess the uptake of radiolabeled -CIT [107, 108]. In pramipexole-
treated patients a reduction in -CIT uptake was observed, suggesting a 
neuroportective role of the DA. Likely, the REAL-PET trial, which compared 
ropirinole with levodopa for the 18F-dopa uptake in the putamen, showed less 
decrease in dopamine uptake in patient treated with ropinirole [109]. However, 
these studies are burdened by some important limitations, the most important the 
lack of a strong linkage to the clinical outcome, which did not differ significantly 
in DA treatment group compared with leovodopa treated patients [110, 111]. 
Confirming this limitation the PROUD study, recently designed to identify 
whether early versus delayed pramipexole initiation has clinical and neuroimaging 
benefits, has not reached the clinical endpoint [112]. 

Dopamine Agonists in Neurodegenerative Disease 

Because their antioxidant properties, DA has been proposed to be effective against 
other pathologies, beside PD, where oxidative stress is the main mechanism 
implicated in pathophysiology of the diseases. In fact, oxidative abnormalities 
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have been identified in several neurodegenerative diseases such as amyotrophic 
lateral sclerosis (ALS) and Alzheimer’s disease (AD). The treatment of patients 
affected by ALS with pramipexole reduced the systemic production of oxygen 
radicals, as demonstrated by measuring the levels of 2,3-dihydroxybenzoic acid 
(2,3-DHBA) in the blood, suggesting that pramipexole may interrupt free radical 
production in ALS [113]. However, in the phase 3 trial EMPOWER, 
dexpramipexole (the R (+) enantiomer of pramipexole) did not differ from 
placebo on any prespecified efficacy endpoint measurement [114]. An increasing 
amount of evidences suggest a central role of oxidative stress also in AD 
pathogenesis [115, 116]. Furthermore, many findings link free radical formation 
with excessive deposition of A derived from the amyloidogenic processing of 
the larger amyloid precursor protein [117-122]. DA agonists were found to be 
active in preventing A-inducedboth aggregation and ROS formation [22, 42-44, 
95]. We studied the role of free radical in the neurotoxic events caused by 
different A aggregation states, and investigated the neuroprotective effects of 
pramipexole in neuronal death induced by unaggregated, oligomeric and fibrils 
A species [95]. Increasing evidences suggest that protofibrillar aggregates of A 
recognized as diffuse plaques by neuropathological examination, are indeed the 
most toxic A species. Oligomers of A, rather than monomers or large fibrils, 
may form pores in the cell membrane, allowing influx of ions, that disrupt 
neuronal signaling and initiate cell death cascade [123, 124]. These data strongly 
support the hypothesis that each of the A aggregation state possesses different 
biological and pathological functions. We challenged the neuronal SK-SH5Y cell 
line with A1-42 peptide in different states of aggregation. Contrary to 
unaggregated peptide, oligomers and fibrils caused generation of ROS and this 
effect was inhibited by pramipexole in a DA receptors independent manner. The 
action of pramipexole on A activity is further supported by the data showing that 
pramipexole prevented the induction of caspase 3 activated by A25-35 [125]. 
These experimental data could acquire clinical significance in AD therapy; in fact, 
in a recent study, Koch et al. [126] demonstrated that dopamine agonists may 
restore the long term potentiation that is impaired or abolished in AD patients, 
thus providing novel implications for therapies based on dopaminergic 
stimulation. 

CONCLUSION 

The neuroprotective and neurorescue properties of dopamine agonists have been 
reconfirmed over the years in several in vitro and in vivo experimental models. 
These drugs are endowed with intrinsic and peculiar antioxidant, antiapoptotic, 
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neurotrophic and anti-fibril formation effects. These activities are molecule-
specific and may represent additional pharmacological properties contributing to 
the clinical efficacy in PD and in the other neurodegenerative disease, in which 
oxidative stress and protein aggregation play a decisive role. However, an 
unequivocal disease-modifying effect of these molecules is difficult to prove, 
because some obstacles including the incomplete understanding of the 
mechanisms underlying neuronal death and the imprecise definition of doses and 
endpoints in clinical trials. 

In conclusion, further studies to elucidate the PD pathogenesis and a better clinical 
trials design are needed to bridge the gap between the promising experimental results 
and the not yet optimal clinical efficacy of dopamine agonists. 
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GDNF = Glial derived neurothophic factor 
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MPP+ = 1-metyl-4-phenylpyridinium 

MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

PD = Parkinson’s disease 

PI3K = Phosphatidylinositol 3 kinase 

RA = Retinoic acid 

ROS = Radical oxygen species 
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