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Abstract: L-dopa–induced dyskinesia (LID) is a frequent motor complication of Parkinson’s disease
(PD), associated with a negative prognosis. Previous studies showed an association between
dopamine receptor (DR) gene (DR) variants and LID, the results of which have not been confirmed.
The present study is aimed to determine whether genetic differences of DR are associated with LID in
a small but well-characterized cohort of PD patients. To this end we enrolled 100 PD subjects, 50 with
and 50 without LID, matched for age, gender, disease duration and dopaminergic medication in
a case-control study. We conducted polymerase chain reaction for single nucleotide polymorphisms
(SNP) in both D1-like (DRD1A48G; DRD1C62T and DRD5T798C) and D2-like DR (DRD2G2137A,
DRD2C957T, DRD3G25A, DRD3G712C, DRD4C616G and DRD4nR VNTR 48bp) analyzed genomic
DNA. Our results showed that PD patients carrying allele A at DRD3G3127A had an increased risk
of LID (OR 4.9; 95% CI 1.7–13.9; p = 0.004). The present findings may provide valuable information
for personalizing pharmacological therapy in PD patients.
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1. Introduction

Levodopa-induced dyskinesia (LID) is a disabling motor complication of long-term levodopa
therapy in Parkinson’s disease (PD) [1,2]. The risk factors of LID include young age at PD onset, severe
degeneration of nigrostriatal neurons, longer exposure and higher total daily dose of levodopa [2].
The pathophysiology of LID is quite complex and not fully understood. Nonetheless, strong evidence
supports the contribution of dopamine as a major player in LID development [3–5].

The existence of profound inter-individual heterogeneity suggests that genetic predisposition may
be a relevant determinant of LID [2,6]. Several variants of DR genes have been detected, and their role
has been characterized in Alzheimer’s disease, schizophrenia, bipolar disorder, and addiction [7–9].
Work from our group showed that the TT genotype at DRD1 rs686 may predispose PD patients to
developing visual hallucinations (VHs) while subjects with GG at DRD1 rs4532 display a shorter time
to VHs [10]. A few studies explored the possible influence of DR variants on LID development in
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PD, but the reported results were not subsequently confirmed. One study showed that PD patients
carrying the rs6280 single nucleotide polymorphism (SNP) at DRD3 have earlier onset of peak dose
dyskinesia [11]. An additional, more recent report suggested a higher risk of LID in patients carrying
the TTCTA haplotype at the DRD2/ANKK1 region [12]. Finally, Kaplan and colleagues did not find
a significant correlation between SNPs at DRD2 and LID [13].

Due to the lack of confirmed results on the role of polymorphic DR variants in LID development,
the present pilot study was designed to further investigate DR genetics in a small but accurately
characterized cohort of Italian PD patients. To this end, we selected a panel of DR variants, giving
priority to the most frequent and functionally characterized ones, and compared the frequency of all
variants in two matched subgroups of PD patients with and without LID.

2. Results

Dopamine Receptor (DR) Genotypes

There were no significant differences in demographic and clinical characteristics between patients
with and without LID (Table 1). All DR alleles were in Hardy-Weinberg equilibrium (data not shown),
and we did not find any linkage disequilibrium between considered SNPs. The frequencies of DR
genotypes in patients with and without LID are shown in Table 2. Using Fisher’s exact test (recessive
model), we found that the risk of LID was, on average, 4.9 (95% CI 1.7–13.9) times higher in subjects
carrying the A allele in the rs6280 (25G>A) of the DRD3, p = 0.004. The same results were obtained
using dominant and codominant models (data not shown). This significant association was confirmed
by a two-way ANOVA test (p = 0.002). Moreover, we found a trend for an association between the
A allele in rs1800497 (2137G>A) and LID, p = 0.010; however, this association was not statistically
significant after the Bonferroni correction. No other SNP studied was associated with LID (Table 3).

Table 1. Demographic and clinical features of study population.

Feature No Dyskinesia Dyskinesia p

Number of subjects 50 50
Gender, male/female 28/22 28/22 na

Age at onset, mean ± SD 65.1 ± 5.6 63.3 ± 9.8 ns
Disease duration (years) mean ± SD 10.8 ± 4.2 12.1 ± 5.2 ns
Dyskinesia onset (years) mean ± SD na 7.6 ± 4.2 na

UPDRS III, mean ± SD *
ON 24 ± 10 23 ± 9 ns
OFF 29 ± 13 28 ± 12 ns

Hoehn and Yahr, median (range) * 3 (1–4) 3 (1–4) na
L-dopa treatment duration (years) mean ± SD 8.9 ± 3.4 9.6 ± 3.3 ns
Medication dose LED (mg/day), mean ± SD * 612.6 ± 242.6 741 ± 279.6 ns

* These variables were collected at time of event in patients with dyskinesia and at an equal time point from onset
in each paired patient without dyskinesia; ns: not significant; na: not applicable; SD: standard deviation.

Table 2. Dopamine Receptor (DR) Frequency in Parkinson’s disease (PD) patients with and
without dyskinesia.

Gene SNP Genotype
No Dyskinesia

Dyskinesia
Dyskinesia

Dyskinesia P (a) P (b) OR (95% CI)

DRD1 rs4532 A/A 11 (22%) 11 (22%) ns ns ns
A/G 21 (42%) 20 (40%)
G/G 18 (36%) 19 (38%)

rs686 C/C 17 (34%) 15 (30%) ns ns ns
C/T 25 (50%) 25 (50%)
T/T 8 (16%) 10 (20%)

DRD5 rs6283 T/T 33 (66%) 35 (70%) ns ns ns
T/C 13 (26%) 15 (30%)
C/C 4 (8%) 0 (0%)
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Table 2. Cont.

Gene SNP Genotype
No Dyskinesia

Dyskinesia
Dyskinesia

Dyskinesia P (a) P (b) OR (95% CI)

DRD2 rs1800497 G/G 36 (72%) 22 (44%) ns ns ns
G/A 11 (22%) 25 (50%)
A/A 3 (6%) 3 (6%)

rs6277 C/C 21 (42%) 11 (22%) ns ns ns
C/T 20 (40%) 28 (56%)
T/T 9 (18%) 11 (22%)

DRD3 rs6280 G/G 26 (52%) 9 (18%) 0.0001 0.0001 4.9 (2.0–12.2)
G/A 18 (36%) 21 (42%)
A/A 6 (12%) 20 (40%)

rs1800828 G/G 38 (76%) 39 (78%) ns ns ns
G/C 8 (16%) 11 (224%)
C/C 4 (8%) 0 (0%)

DRD4 nR VNTR 48 bp repetition 4/4 33 (66%) 31 (62%) ns ns ns
4/7 16 (32%) 18 (36%)
7/7 1 (2%) 1 (2%)

rs747302 C/C 39 (78%) 42 (84%) ns ns ns
C/G 11 (22%) 8 (16%)
G/G 0 (26.4%) 0 (0%)

Notes: (a), by χ2-test for trend; (b), by Fisher Exact Test. ns: not significant.

Table 3. Dopamine receptor (DR) gene variants analyzed in the study.

Receptor Gene Variant Change Frequency Effects Score

D1-like

D1 DRD1 rs4532 −48A>G 60 (%)

Association with nicotine dependence [14],
tobacco smoking in schizophrenia [15], and
alcohol dependence [16] and resistance to

schizophrenia treatment [17].

+1

rs686 62C>T 55 (%)

Higher DRD1 gene expression and association
with nicotine dependence [14], alcohol

dependence [17], and tobacco smoking in
schizophrenia [15].

+1

D5 DRD5 rs6283 978T>C 30 (%) na na

D2-like

D2 DRD2 rs1800497 2137G>A
(Taq1A) 15 (%) Lower striatal DR D2 density in healthy [18]. +1

rs6277 957C>T 50 (%)

Decreased DR D2 mRNA stability and
translation, and reduced dopamine-induced

up-regulation of DR D2 membrane expression
in vitro [19], and lower DR D2 expression in
cortex and thalamus of healthy subjects [20].

+1

D3 DRD3 rs6280 25G>A
(Ser9Gly) 60 (%)

Higher dopamine binding affinity in vitro [21],
association with alcohol dependence [22] and

heroin dependence [23].
−1

rs1800828 −712G>C 20 (%) na na

D4 DRD4 rs747302 −616C>G 10 (%)
No effect on DR D4 mRNA expression in

human post-mortem brain tissue samples [23],
and no association with heroin dependence [24].

na

7 48-base
pair VNTR 20 (%)

Trend toward reduced DR D4 mRNA expression
in human post-mortem brain tissue

samples [25], lower response to stimulants and
requirements of higher doses of

methylphenidate [26].

+1

Note: na: not applicable.

In Kaplan–Meier analysis, patients with DRD3 rs6280 AA and AG had significantly shorter
times to LID when compared with patients with the GG genotype (median 10 and 13, respectively,
vs. 18 years; log rank p = 0.005, see Figure 1). No other SNP studied was associated with the timing of
LID onset.
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Figure 1. Correlations between rs6280 (DRD G25A) and time to dyskinesia. * = p < 0.005.

3. Discussion

This study provides the first evidence in an Italian cohort of PD patients that DR variability may
predispose a person to LID. In fact, we found that the DRD3 G25A variant at rs6280 was independently
associated with LID development after adjusting for gender, age at PD onset, H&Y stage, and duration
of levodopa treatment. Furthermore, this variant was also associated with an earlier development of
LID. Our results confirm a previous observation showing an association between the G25A allele at
rs6280 DRD3 and an earlier onset of peak dose dyskinesia in Korean PD patients [11]. In addition,
we also replicated the negative findings of Kaplan and colleagues regarding the possible correlations
between SNPs at DRD2 and LID [13]. As regards the other DR SNPs analyzed in our study, there are
no previously published data on PD patients. Our findings are negative, but we cannot exclude that
one or more of such DR variations might show some relevance in other PD populations.

The precise mechanism through which the D3 receptor predisposes one to LID is open to
discussion. Data on monkey models of PD showed that D3 expression was more abundant in animals
with LID than in those without LID [27]. Furthermore, the DRD3 SNP rs6280 was shown to provide
a higher binding affinity to dopamine [21] but also a higher susceptibility to tardive dyskinesia
in patients with psychosis [28,29]. Dopamine receptor hypersensitivity may indeed be a possible
mechanism involved in LID development [30], and the higher frequency of the DRD3 G25A genotype
in PD patients with LID may be explained by a role of this variant in the sensitization process of the
basal ganglia circuitry.

Along with dopamine, a number of reports indicate that other signaling pathways may be of
relevance in the context of LID predisposition. Genetics of adenosine, serotonin, glutamic acid and
endocannabinoid receptors have been investigated [31], and the exclusive focus of our study on
dopamine receptor genetics may be seen as a limitation. Nonetheless, our purpose was to shed light
onto a series of previous hypotheses implying the genetics of dopamine pathways in LID predisposition.
Such hypotheses were intriguing, but had never been confirmed before.

The possibility that clinical differences in the two patient groups may have influenced the findings
of our study was carefully evaluated. Therefore, we performed a strict sample matching: for each
patient with LID we selected a paired patient with the same features, i.e., gender, age at onset, disease
duration, and therapy. Such a rigorous design had the downside of markedly restricting the sample
size. Indeed, the main limitation of our study lies in the relatively small number of enrolled patients,
which nonetheless reached the minimum estimated size to assess [10,32]. A further limitation is the
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candidate gene approach. Indeed, a more extensive analysis with direct sequencing of the five DRs
might add relevant information to uninvestigated variations possibly playing a role in the genetics
of LID.

4. Patients and Methods

4.1. Patients

We enrolled 100 consecutive patients with idiopathic PD: 50 patients who had experienced LID
during their disease course, and 50 who had never complained of LID. Patients were all Caucasian
Italian and were matched for age, gender, disease duration and treatment. The main features of the
study population are shown in Table 1. Patients were enrolled at the Movement Disorders Centers of
the University of Piemonte Orientale, Novara, and University of Insubria, Varese, Italy according to the
following inclusion criteria: (1) clinical diagnosis of PD according to the UK Parkinson’s Disease Society
Brain Bank criteria [33]; (2) age at onset >40 years; (3) active and longitudinal follow-up >4 years;
(4) treatment with levodopa; (5) reliable data concerning time of levodopa treatment initiation and
time of LID presentation. The study was approved by the local Ethics Committee (Novara, protocol
number 9606) and patients were enrolled after having read and signed an informed consent form [10].

Outcome measures were obtained retrospectively from clinical records, in the context of a larger
collaborative initiative aimed at identifying the genetic determinants of PD progression [10]. A review
of available data in routine clinical records of each center was performed and agreement was found on
the following evaluations: detailed collection of patients’ history, complete neurological examination,
Unified Parkinson’s Disease Rating Scale (UPDRS) score, Hoehn and Yahr (H&Y) stage, presence and
time to development of LID [10].

All patients had undergone a longitudinal follow-up with assessments every three to six months
performed by a neurologist expert in movement disorders. UPDRS score, H&Y stage, total L-dopa
daily dose equivalent (LED), were recorded at the time of the event in patients with LID and at an
equal time point from onset of PD in each paired patient without LID. LED was calculated according
to Tomlinson et al. [34].

4.2. Genotyping

Samples of 3 mL venous blood were collected from each patient and genomic DNA was obtained
using a standard DNA extraction protocol (Qiagen Inc., Hilden, Germany). The following DR variants:
rs4532 (−48A>G and rs686 (62C>T) in DRD1; rs1800497 (2137G>A) and rs6277 (957C>T) in DRD2;
rs6280 (25G>A) and rs1800828 (−712G>C) in DRD3; rs747302 (−616C>G), and 7 48-base pair VNTR in
DRD4; and rs6283 (978T>C) in DRD5 were analyzed by real time PCR using a GeneAmp 9700 PCR
System (ABI, Foster City, CA, USA) and pre-designed genotyping assays (ABI). The DRD4 7 48-base
pair variable number tandem repeat (VNTR) was examined using a previously published method [35].
An example of PCR curve for each SNP is included in Figure S1.

4.3. Statistics

Genotype frequencies were analysed by the two-way ANOVA test, χ2-test for trend or by the
Fisher’s exact test, as appropriate, and the odds ratio (OR) with 95% confidence interval (CI) was
calculated using dominant, codominant and recessive model. Kaplan–Meier (KM) plot was used
for correlations between patient genotype and time to LID. Curves were compared using Log-rank
(Mantel–Cox) test [10]. Bonferroni correction was applied when multiple comparisons were performed.
A p-value ≤ 0.005 was considered statistically significant [10]. Presence of linkage disequilibrium was
investigated using Haploview software [10].
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5. Conclusions

In conclusion, our data provide a solid base towards the personalization of PD treatment
since they may help in identifying fragile PD patients who would benefit from a less aggressive
dopaminergic treatment.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/2/242/s1.
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