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Nearly Periodic Facts in Temporal
Relational Databases
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Abstract—Despite the huge amount of work devoted to the treatment of time

within the relational context, few relevant temporal phenomena still remain to

be addressed. One of them is the treatment of “nearly periodic events”, i.e.,

events/facts that occur in intervals of time which repeat periodically (e.g., a

meeting occurring twice each Monday, possibly not at regular times). Nearly

periodic events are quite frequent in everyday life, and thus in many applicative

contexts. Their treatment within the relational model is quite challenging, since it

involves the integrated treatment of three aspects: (i) the number of repetitions, (ii)

their periodicity, and (iii) temporal indeterminacy. Coping with this problem requires

an in-depth extension of current temporal relational database techniques. In this

paper, we introduce a new data model, and new definitions of relational algebraic

operators coping with the above issues. We ascertain the properties of the new

model and algebra, with emphasis on the expressiveness of our representation

model, on the reducibility property, and on the correctness of the algebraic

operators.

Index Terms—Temporal databases, database design, modeling andmanagement
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1 INTRODUCTION

TIME is pervasive of reality. Many database approaches cope
with it. Since the 80’s, the scientific community has highlighted
that time has a special status with respect to the other data, and
dedicated techniques have to be devised to deal with it within
the relational database context [1]. Since the 80’, the scientific com-
munity has proposed hundreds of approaches to cope with time
in temporal relational databases (TDB in the following; see, e.g.,
[2], [3]). Many TDB approaches focus on individual occurrences of
facts, whose time of occurrence (valid time [4]) is exactly known.
However, in many real world applications, one has to cope with
facts/events that repeat several times. Tuzhilin and Clifford [5]
distinguished among (1) “strongly periodic” events, occurring at
equally distant intervals of time (e.g., Mondays, weeks); (2)
“nearly periodic” events, occurring at regular intervals of time,
but not necessarily at equally distant intervals (e.g., a person
going to the cinema once each week –and thus at regular inter-
vals–, but not necessarily in the same day –thus, not at equally
distant intervals); (3) “intermittent” events, which occur repeat-
edly in time, but without any regularity (e.g., a man visiting a
pub “periodically”, meaning that the visits can be quite irregu-
lar). While several approaches considered the first class above,
and the recent approach in [6] focused on the third class, the
second class has been neglected by the TDB literature yet.
Nearly periodic facts occur in many different domains. In such a
sense, they can be thought as a domain-independent phenome-
non that takes place whenever the periodicity does not consti-
tute the valid time of the fact, but just characterizes periodic
intervals of time containing the valid times of the instances of
the facts. Additionally, we also consider the possibility that
the facts occur more than once in each periodic interval (as in
Example 1, considering the melphalan treatment), and that the
number of repetitions may be approximated by a minimum and
a maximum value (as in Example 2).

Example 1. The therapy for multiple mieloma is made by six
cycles of 5-day treatment, each one followed by a delay of 23
days (for a total time of 24 weeks). Within each cycle of 5 days, 2
inner cycles can be distinguished: the melphalan treatment, to
be provided twice a day, for each of the 5 days, and the predni-
sone treatment, to be provided once a day, for each of the 5 days.

Example 2. Each working day from 1/2/2015 to 30/6/2015, Ann
attended between 2 and 4 classes of the Computer Science
Program.

In many cases, as in the above examples, the exact time of facts is
not known, and can only be approximated, so that temporal indetermi-
nacy [14] has to be faced. Additionally, many facts and human
activities are periodically repeated in time, and repetitions are
expressed in a temporally indeterminate way. For instance, cases
like Examples 1 and 2 above arise in many tasks (e.g., scheduling,
planning, office automation) and domains, ranging from the
description of medical treatments (see Example 1) to the recording
of human activities (see Example 2), from manufacturing (e.g., 100
machines are produced each working hour) to auditing (e.g., between 10
and 20 phone calls have been registered each hour, from 1/1/2015 to 8/1/
2015) and monitoring (e.g., John had between 70 and 80 heart-beats per
minute from 30/6/2015 at 8:00 to 30/6/2015 at 9:30). In all such
domains, it is quite unrealistic to pretend that the exact time of
each episode (each one of the repetitions) is exactly known. For
instance, in the therapy for multiple myeloma, only the periodicity
and number of repetitions of melphalan and prednisone adminis-
tration can reasonably be specified, and not the exact time of each
administration. Similar considerations hold for all the other
domains elicited above. However, despite their diffusion, dealing
with nearly periodic facts in the relational context is a new goal in
TDBs. In TDBs, only strongly periodic events (see, e.g., the survey by
Terenziani [7]) have been considered, plus a very recent approach
coping with intermittent events [6].

Coping with nearly periodic events requires the joint treat-
ment of: (i) the number (called cardinality) of repetitions (in each
instance of the periodicity), (ii) the periodicity, and (iii) temporal
indeterminacy, since the instances of the periodicity are not the
exact valid times of the repetitions, but just time intervals con-
taining them1. In the current TDB literature, the above phenom-
ena have only been faced independently of each others (see
Section 5). In Section 2 we show that coping with issues (i), (ii),
and (iii) together is a challenging problem, requiring an in-
depth extension of current TDB techniques (as shown in Sec-
tion 4, where Property 5 clarifies the differences between cur-
rent algebrae and our extended one). In this paper, we extend
the current TDB literature to cope with such phenomena.
Proofs, as well the definitions of the auxiliary functions
(Extt; Gran�, and fragments), are reported in the digital library
as supplementary material, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2016.2585483.

2 MAIN PROBLEMS AND SOLUTIONS

We aim at identifying a data model and relational algebraic operators
to cope with nearly periodic facts (like the ones in Examples 1 and
2 above) in relational TDBs. This is a challenging and innovative
goal, since an integrated treatment of phenomena (i), (ii), and (iii)
above must be devised.
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1. Notably, this aspect sharply distinguishes strongly periodic facts from
nearly periodic ones, since in the former the instances of the periodicity are
exactly the valid time of each repetition (so that no temporal indeterminacy occurs),
while in the latter they are just intervals containing them (and thus temporal inde-
terminacy occurs). The main difference with respect to intermittent facts is that
such facts are repeated but not at periodic time, so that periodicity has not to be
faced.

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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used: one tuple for each occurrence of the fact could be inserted
in the same relation. However, duplicates are space-consuming,
and cannot cope with the case in which the exact number of repe-
titions is unknown (as in Example 2). We thus propose a compact
“intensional” solution, where numeric attributes are used to rep-
resent the number of repetitions of a fact in each instance of a
periodicity.

The second phenomena is periodicity. There is a trivial way to
cope with periodic data, namely by explicitly storing all of them.
Such an approach, usually called “extensional” (or “explicit”),
reduces periodic data to standard non-periodic ones. E.g., a stan-
dard “extensional” approach represents Ex.1 above using, for
each patient, 90 tuples, modeling 60 melphalan applications, and
30 prednisone applications. Despite its simplicity, the extensional
approach has a main disadvantage: it is very expensive in terms
of physical disk I/O’s, due to the high storage size. Also, the
extensional approach is not possible in case the exact number of
repetitions is unknown (as in Example 2). For such reasons, as,
e.g., in [8], [9], [10], [11], [12], [13], we propose an “intensional”
representation of periodic facts. Our algebraic operators directly
operate on such a representation, providing a compact intensional

representation as a result. Our result is directly computed only on
the basis of the input intensional representation, without resorting
to its extension. This procedure is efficient since it only requires a
manipulation on a compact representation, but demands a proof
of correctness (see Property 4 below): we have to prove that the
intensional manipulation provides the same results that would be
obtained by operating on the extensions (i.e., on the explicit
repetitions).

The third phenomenon is temporal indeterminacy [14]. Indeed, in
Example 2, each working day is not the exact time when a class
takes place: it is a span of time containing the classes. Such a form
of temporal indeterminacy makes the definition of relational alge-
braic operators quite challenging, as shown below. Consider, for
instance, Example 3 below, and suppose we want to know

Q1) when did both Ann and John had a drug administration?

Example 3. Each day from 1/1/2016 to 10/1/2016, Ann had 3 or 4
administrations of drug X, and John had 3 administrations of
drug Y.

In each day, different scenarios are possible. Two of them are
shown in Fig. 1 (where Ann’s administrations are red, and we con-
sider 4 administrations, and John’s ones are in blue). Scenarios (a)
and (b) show two extreme situations: in (a) the cardinality of the
intersection is the maximum possible between four and three inter-
vals (i.e., six). In (b) the intersection is empty (its cardinality is zero).

Abstracting from the specific example, even in case two peri-
odic facts occur over the same (or intersecting) instances of a peri-
odicity (e.g., on the same days in Ex.3), since we don’t know the
exact temporal location of the facts (but just the instance of the peri-
odicity containing them), we cannot know (i) the exact location of
the intersections (but just the instance of periodicity containing
them), and (ii) the exact number of the intersections, but just a min-
imum (zero in the example) and maximum (six in the example)
bound for them. Indeed, the example in Fig. 1 demonstrates that,

even in case the exact input cardinalities are known, the cardinali-
ties obtained after the application of relational operators may only
be bounded by a minimum and a maximum value. However, we
stress that such a behaviour is not due to our choice of the data
model and algebraic operators, but is an intrinsic feature of the
phenomena we cope with. In the rest of the paper, the above ideas
are detailed.

3 DATA MODEL

Tuples are associated with valid time (for the sake of brevity, trans-
action time is not considered in this paper). The timeline is parti-
tioned into granules of a chosen basic granularity. As is BCDM [4;
Chap.X] (which is the semantic model underlying many TDB
approaches, including the “consensus” TSQL2 [4]), the time
domain is totally ordered and is isomorphic to the subsets of the
domain of natural numbers. The domain of valid times DVT is
given as a set DVT ¼ ft1; t2; . . . ; tkg of granules.

To provide an implicit (“intensional”) representation of perio-
dicities (elsewhere called periodic granularities), we start from the
below definition and property, taken from [15], and widely used
within the TDB community:

Definition 1 (Periodic Granularity). A periodic granularity H is a
granularity periodic with respect to the bottom granularity G.

Property 1 (Finite Representation). A periodic granularity H can be
finitely described in terms of granules of G providing the following
information:

(1) the finite sets S0; . . . ; Si�1 of indexes of G each one describing
the composition of one of the n repeating non-empty granules
of H;

(2) the number of granules in which the pattern (1) repeats
(3) the indexes of the first and last non-empty granules in H,

if their value is not infinite.

Example 4. Consider, for instance, the definition of school-days
(e.g., from hour 9 to hour 13, from Monday to Friday) in the
frame time from day 1 to day 100. Let us indicate with G(1) the
first hour of day 1 and let us suppose that day 1 is a Monday.

(1) {{9, 10, 11, 12, 13}, {33, 34, 35, 36, 37}, {57, 58, 59, 60, 61},
{81, 82, 83, 84, 85}, {105, 106, 107, 108, 109}}

(2) 168
(3) [9, 2389]

Our relational representation of each periodicity is based on
Property 1. The periodicity is represented through three tempo-
ral attributes: Ppat (periodic pattern) indicates the first compo-
nent above, as a set of time intervals (e.g., {[9,13], [33,37],
[57,61], [81,85], [105,109]} considering Ex.4), PrepT (periodic repe-
tition time) the second component (e.g., 168, i.e., the number of
hours constituting a week, in Ex.4), and FT (frame time) the
frame of time of interest (e.g., [1, 2400] in Ex.4; notice that
[9,2389] can be easily deducted from [1, 2400] and the other
two components of the definition). Two additional attributes, N
and M, are introduced to model the minimum and maximum
number of occurrences of the nearly periodic fact in each
instance of the periodicity.

Definition 2 (NP Relation and Tuple). The schema of a “NP”
(nearly periodic) temporal relationR¼ðA1; . . . ;AnjN;M;PrepT;
Ppat;FTÞ consists of an arbitrary number of non-temporal attributes
A1; . . . ;An, encoding some fact, of a minimal cardinality attribute N
(domainN), of a maximal cardinality attribute M (domainNþ), an attri-
bute PrepT (domain Nþ) representing the number of granules in which
the periodic pattern repeats, an attribute Ppat representing the pattern
(for the sake of simplicity, and with no loss of generality, we assume that

Fig. 1. Different scenarios for Q1.
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through a temporal element [4] on the domain 2DVT�DVT , and of an
attribute FT representing a frame time (i.e., a non-empty time interval,
on the domain DVT �DVT). Thus, a “NP tuple” x ¼ ða1; . . . ;
anjn1;m1; d; p; fÞ in an NP relation r(R) on the schema R consists of a
n-tuple of values for the non-temporal attributes associated with a mini-
mum cardinality n1, a maximum cardinality m1, a natural number d
(the value of PrepT) a notempty set p ðp ¼ f½s1; e1�; . . . ; ½sj; ej�gÞ of
ordered and disjoint time intervals, and a time interval f ¼ ½s; e�
such that: (i) n1 � m1;n1 � 0; m1 > 0; (ii) d � ðej� s1Þ, (iii)
s1 � e1 < 	 	 	 < sj � ej, and (iv) s � e. x represents the fact that there
are between n1 and m1 occurrences of the fact a1; . . . ; an in each
interval ½k � dþ si; k � dþ ei� such that ½si; ei� 2 p; k 2 Z, and
½k � dþ si; k � dþ ei� 
 f .

As an example, consider the relation ADMINNP modelling drug
administrations at the granularity of days. The schema of ADMINNP

is<Patient, Drug j N,M, PrepT, Ppat, FT>. The first two tuples rep-
resent the melphalan (“Mel”) and prednisone (“Pre”) administra-
tions to Sue, starting her treatment on 2/1/2016, the other two
tuplesmodel Example 3. Day “1” represents 1/1/2016.

Notation 1. Given a tuple x defined on the schema R ¼ ðA1; . . . ;
AnjN;M;PrepT;Ppat;FTÞ, we denote by A the set of attributes
A1; . . . ;An: x½A� denotes the values of the A attributes in x, while
x½Y�ðY 2 fN;M;PrepT;Ppat;FTgÞ denotes the value of attribute Y
in the tuple x.

3.1 Expressiveness and Consistent Extension Properties

Property 2 grants that our representation is expressive enough: it
can represent all periodic granularities (i.e., periodicities), as
defined in the TDB literature. We can thus represent nearly periodic
facts occurring at any periodicity (i.e., at any level of granularity).

Property 2 (Expressiveness). Our data model can represent periodic
granularities, as defined in [15].

Nearly periodic facts are inherently temporally indetermi-
nate facts, since the exact time of occurrence of each repetition
is not known. Recently, Anselma et al. [17] have proposed a
family of data models and algebrae to cope with different
forms of temporal indeterminacy (but not with cardinality and
periodicity). In particular, in the ITE approach [17], a (possibly
non-convex) set of granules GS is used to represent the valid
time of a tuple, meaning that the tuple may hold at any possi-
ble subset of the granules in GS. Our data model is a consistent
extension of the “ITE” model.

Property 3. “ITE” relations can be modelled by NP relations in our
approach.

E.g., the NP tuple < Mary;Xj1; 1; 7; f½1; 7�g; ½1; 7�g > in our
approach represents the fact that Mary had a drug administra-
tion of the drug X during the first week of 2016. To model a
single fact, the minimum and maximum cardinalities are set to
“1”, FT correspond to the valid time, Ppat coincides with FT
and PrepT with its duration.

Notice also that, since we do not model the exact valid time
of nearly periodic facts (which is unknown), but just the

instances of periodicity containing them, and the number of
occurrences in such instances, our model applies to both the
case in which facts are durative and punctual (i.e., to both
“states” and “events” [4]).

4 TEMPORAL RELATIONAL ALGEBRA

Codd defined as complete any query language that is as expressive
as his set of five relational algebraic operators: relational union ð[Þ,
relational difference (–), selection ðsP Þ, projection ðpAÞ, and Carte-
sian Product ð�Þ [18]. We propose a temporal extension of Codd’s
operators to query the data model in Section 3. Several temporal
extensions to Codd’s operators have been provided in the TDB lit-
erature [16]. In most cases, such extensions behave like standard
non-temporal operators on the non-temporal attributes, and
involve the application of set operators on the temporal attributes.
For instance, in TSQL2 “consensus” approach, (i) Cartesian Prod-
uct involves pairwise concatenation of the values of non-temporal
attributes and pairwise intersection of their temporal values, (ii)
difference r-s operates in the standard way on non-temporal attrib-
utes, and make the difference of valid times (by subtracting from
each tuple f2r the valid times of all the tuples f 0 2 s value equivalent
[4] to it), and (iii) relational union, non-temporal selection, and pro-
jection operate in the standard way on the non-temporal part, and
do not operate on the temporal part.

4.1 Relational Algebra for Irregular Repetitions

We ground our approach on such a “consensus” background,
extending the algebraic operators to cope with the new attrib-
utes. In the rest of the paper, we use the superscript “NP”
(Nearly Periodic) for our operators, while [;\;�, denote stan-
dard set operators. We preliminarily define the set
VE INT ðv; t1; sÞ, and the function Extt. In the following,
“fxn . . .g” stands for “all x’s such that”.

Definition 3 (VE_INT: Set of Value Equivalent Tuples). Given
two relations r and s defined over the schema R ¼ ðA1; . . . ;
AnjN;M;PrepT;Ppat;FTÞ, and a tuple f ¼< vjn1;m1; d1; p1; t1 >

2 r, we define VE INT ðf ½A1; . . . ;An�; f ½FT �; sÞ ¼ ff 0nf 0 2 s ^
f 0½A1; . . . ;An� ¼ f½A1; . . . ;An� ^ f½FT� \ f 0½FT� 6¼ �g as the set of all
and only the tuples f 0 in s that are value equivalent to f and whose
frame time temporally intersects the frame time f[FT].

Definition 4 (Temporal Extension Extt(p,d,I)). Given a periodic
pattern p, a periodic repetition time d, and a time interval
I; Exttðp;d; IÞ is the set of all time intervals obtained by making
explicit all the repetitions of p in I.

As an example, Exttðf½2; 2�; ½3; 3�; ½4; 4�; ½5; 5�; ½6; 6�g; 28; ½2; 169�Þ
denotes the set f½2; 2�; ½3; 3�; ½4; 4�; ½5; 5�; ½6; 6�; ½30; 30�; ½31; 31�; ½32; 32�;
½33; 33�; ½34; 34�; ½58; 58�; . . . ; ½146; 146�g of all the time intervals
(denoting a single day) in which prednisone has been administered
to Sue.

In the definition of difference, we also use the function frag-
ments. fragmentsðt; ft1; . . . ; tngÞ provides in output an ordered list
of intervals, obtained by partitioning the time interval t into non-
overlapping covering parts, having as endpoints the starting and
ending points of t and of t1; . . . ; tn. As a simple example, fragments
([50, 100], {[30, 70], [60, 80], [50,120], [20,150}) ¼ {[50, 60), [60, 70),
[70, 80), [80, 100]}. Since, as in TSQL2, our union, projection and
non-temporal selection do not modify the temporal attributes, we
do not report them in Definition 5.

Definition 5 (Temporal Algebraic Operators). Let rNP and sNP

denote NP relations in our model having the proper schema (A stands
for the set of non-temporal attributes).

rNP�NPsNP ¼ f< v1 	 v2jn;m;d;p; t > n9r1 2 rNP ^ 9s1 2
sNP ^ v1 ¼ r1 A½ � ^ v2 ¼ s1 A½ � ^ n ¼ 0 ^m ¼ r1 M½ � þ s1 M½ � � 1 ^

TABLE 1
Relation ADMINNP

Patient Drug N M PrepT Ppat FT

Sue Mel 2 2 28 {[2,2],[3,3],[4,4],[5,5],[6,6]} [2,169]
Sue Pre 1 1 28 {[2,2],[3,3],[4,4],[5,5],[6,6]} [2,169]
Ann X 3 4 1 {[1,1]} [1,10]
John Y 3 3 1 {[1,1]} [1,10]
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d ¼ lcmðr1½PrepT�; s1½PrepT�Þ ^ t ¼ r1½FT� \ s1½FT� ^ t 6¼� ^ p ¼
ðExttðr1½Pper�; r1½PrepT�; ½startðtÞ; startðtÞ þ d�Þ \ Exttðs1½Pper�;
s1½PrepT �; ½startðtÞ; startðtÞ þ d�ÞÞg

rNP �NP sNP ¼ f< vjn;m;d;p; t > n
9r1 2 rNP ^ n ¼ r1½N� ^m ¼ r1½M� ^ d ¼ r1½PrepT� ^ p¼ r1½Pper� ^
t ¼ r1½FT� ^ VE INT ðr1½A�; r1½FT�; �sNP Þ ¼ �Þ _ 9r1 2 rNP^
VE INT ðr1½A�; r1½FT�; sNPÞ ¼ s1; . . . ; sng ^ 9 f 2 fragmentsðr1½FT�;
fs1½FT �; . . . ; sn½FT �gÞ ^ VE INT ðr1½A�; f; sNPÞ ¼ fs01; . . . ; s0kg^ n ¼
0 ^m ¼ r1½M� þP

si2fs01 ;...;s0kg
si½M� ^ p ¼ ðExttðr1½Pper�; r1½PrepT�;

½startðfÞ; startðfÞ þ d�Þ � ðExttðs01½Pper�; s01½PrepT�; ½startðfÞ;
startðfÞ þ d�Þ [ . . . [ Exttðs0k½Pper�; s0k½PrepT�; ½startðfÞ; startðfÞþ
d�ÞÞÞg
As motivated above, all our algebraic relational operators oper-

ate in the standard way on the non-temporal attributes. Consider-
ing Cartesian Product ð�NPÞ, for each pair of tuples (one from rNP

and one from sNP) the output is a tuple which has as non-temporal
part the concatenation of the two non-temporal parts, and as tem-
poral part the intersection of the temporal parts. In our approach,
the intersection is obtained by (i) intersecting the frame times and
(ii) intersecting the periodic patterns over a period of time which
starts at the intersection of the frame times, and whose periodic
repetition time is the repetition time of the output periodicity, i.e.,
the least common multiple (lcm) of the duration of the two input pat-
terns. As discussed in Section 2, the minimum cardinality is 0 (see,
e.g., Fig. 1b), and the maximum cardinality is the sum of the two
input maximum cardinalities, minus 1 (see, e.g., Fig. 1a).

In the definition of temporal difference rNP�NPsNP we have to
manage (as in TSQL2) the fact that an unpredictable number of
value-equivalent tuples may be present in the input relations. Intui-

tively speaking, each tuple x 2 rNP (x has the form

< vjn1;m1; d1; p1; t1 > ) which has no value-equivalent tuple in sNP

intersecting its frame time is simply reported unchanged in output.

Otherwise, the set of all the tuples x1; . . . ; xn in sNP value equivalent
to x that intersect x0s frame time (i.e., t1) must be retrieved (VE_INT
function). The frame time t1 of x is split into “fragments” (i.e., sub-
intervals) by the frame times of x1; . . . ; xn (function fragments). There
is an output tuple for each one of such fragments. For each one of

these fragments f, only the value-equivalent tuples y1; . . . ; yk in sNP

that cover it must be considered. The frame time of the output tuple is
f, the periodic repetition time d is the least commonmultiple (lcm) of the
repetition time of x and the repetition times of y1; . . . ; yk, and the peri-
odic pattern is the pattern obtained bymaking the difference between

the extension (Extt function) of the pattern p1 of x (over the time inter-
val starting at the start of f, and with duration d), and the union of the
extensions of the patterns of y1; . . . ; yk (over the time interval starting
at the start of f, and with duration d). The minimum cardinality is 0,
since the valid times of all repetitions of x can be “covered” by the
valid times of tuples y1; . . . ; yk. The maximum cardinaliy is the sum
of all the maximum cardinalities (i.e., the maximum cardinalitym1 of
x plus the maximum cardinalities of y1; . . . ; yk. This is due to the fact
that the difference between a pair of time intervals may generate a
maximumof two time intervals).

As an example, (Q1) in Section 2 can be asked as follows:

ðsNP
patient¼AnnðADMINNPÞÞ�NPðsNP

patient¼JohnðADMINNPÞÞ

4.2 Properties of the Algebra

As motivated in Section 2, since our algebraic operators perform an
intensional manipulation of the representation, a proof of correctness
is required. Since we bothmanipulate (i) time intervals (the instances
of our intensional representation of periodicity) and (ii) cardinalities
(the number of occurrences of the fact within each time interval), we
need to consider both in the proof. To deal with the correctness of the
issue (i), we introduce the “extension” operator Ext. For each tuple, it

adopts the function Extt to make explicit the set S of all the repetitions
of a periodic pattern in a frame time, and gives in output a new
(value-equivalent) tuple for each one of the intervals in S.2

Definition 6 (Extension ExtðrNPÞ). Given a NP relation rNP defined
on the schema R ¼ ðA1; . . . ;AnjN;M;PrepT;Ppat;FTÞ, and given
R0 ¼ ðA1; . . . ;AnjTÞ the corresponding schema in the extensional
(e.g., TSQL2) model,

Ext rNP
� � ¼ fzn9x 2 rNP; 9I 2 Extt x Ppat½ �; x PrepT½ �; x FT½ �ð Þ ^ z A½ �

¼ x A½ � ^ z T½ � ¼ Ig

Property 4(a) (Correctness of the Manipulation of Time
Intervals). Our extended algebraic operators, operating on the
intensional temporal model, operate correctly on time intervals:
for each algebraic operator OpNP in our approach,

ExtðrNPOpNPsNPÞ ¼ ExtðrNPÞ Op ExtðsNPÞ, where Op is the oper-
ator in an extensional approach (e..g., TSQL2) corresponding

to OpNP.

Property 4(b) (Correctness of the Manipulation of Cardinali-
ties). Our extended algebraic operators provide as output the correct
cardinalities.

Reducibility is fundamental for all TDB approaches, to grant
that the new operators, which extend simpler operators to cope
with new phenomena, reduces to simpler operators when the new
phenomena are disregarded [4], [16]. Since we cope with repeti-
tions for which the exact valid time is not known, it is appropriate
to reduce our approach to a TDB approach coping with temporal
indeterminacy, specifically to the “ITE” approach [17] (see also
Section 3.1). First, we define a reduction operator RITE. In the fol-
lowing, we use the auxiliary function Gran�ðfI1; . . . ; IngÞ that takes
in input a set of (convex) time intervals, and returns the granules it
contains (e.g., Gran�ðf½3; 5�; ½7; 8�gÞ ¼ f3; 4; 5; 7; 8g).

The reduction operator RI
ITE is defined as follows.

Definition 7. RI
ITE. Let rNP a NP relation, defined on the schema

R ¼ ðA1; . . . ;AnjN;M;PrepT;Ppat;FTÞ, let R0 ¼ ðA1; . . . ;AnjTÞ
BE the corresponding schema in the ITE model, where T 2 2DVT , and I
a time interval.

RI
ITE rNP

� � ¼ fzn9x 2 rNPz A½ � ¼ x A½ � ^ x M½ � > 0 ^ z T½ �
¼ Gran� Extt x Ppat½ �; x PrepT½ �; x FT½ �ð Þ� � \Gran� Ið Þg

Given the above definition, Property 5 holds.

Property 5 (Reducibility to ITE). Our algebra is reducible to ITE’s
algebra, i.e., for each time interval I;RI

ITEðrNPOpNPsNPÞ ¼
ðRI

ITEðrNPÞ OpITE RI
ITEðsNPÞÞ, where OpNP and OpITE represent

corresponding relational operators in our algebra and in the ITE
algebra respectively.

Since they manipulate the implicit representation, it is worth
reporting the complexity of our operators (see the supplementary
material, available online for a detailed analysis).

Property 6 (Complexity of Algebraic Operators). Union, projec-
tion and non-temporal selection behave like traditional operators.
Cartesian product operates in a time proportional to the product of the
number of tuples of the input relations. For each pair of tuples, tempo-
ral intersection is performed in a time linear in the number of intervals
in the periodic pattern. Difference, as regards the nontemporal part,
behaves like standard difference. As regards the temporal component,

2. For the sake of clarity, here we simplify our approach, considering the case
in which the minimum and maximum cardinalities are both equal to one. In the
Supplementary Material, available online, we generalize such a definition.
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difference can involve a computation which is exponential in the num-
ber of value-equivalent tuples.

Such an exponential factor is not due to our approach: in any
approach in which the (intervals in the) periodic patterns are
explicitly represented, the union of n periodic patterns involves
the evaluation of a number of intervals which may grow in an
exponential way with respect to n.

5 RELATED WORKS

Despite their relevance, nearly periodic events have not been studied
by the TDB literature yet, except by Clifford et al. [5], where they are
defined, and an abstract (not relational) representation has been pro-
vided for them. Differently from [5], we provide a relational repre-
sentation for them (considering also cardinalities, not coped with in
[5]), and an algebra operating on it, and studying its properties.
To cope with nearly periodic events, we have proposed the first
integrated TDB approach considering together (i) cardinality of repeti-
tions, (ii) periodicity, and (iii) temporal indeterminacy. Such three
issues have been coped with only separately in the previous
TDB literature.

In TDB, periodicity has been studied to deal with “strongly per-
iodic” events (see, e.g., [5], [7]). Different approaches have been
proposed to cope in an intensional way with periodicity. They can
be divided into three mainstreams (the terminology is derived
from [8], [9]): (i) Deductive rule-based approaches, using deductive
rules. For instance, Chomicki and Imielinsky [10] dealt with peri-
odicity via the introduction of the successor function in Datalog;
(ii) Constraint-based approaches, using mathematical formulae and
constraints (e.g., [11]); Symbolic approaches, like, e.g., the ones by
Leban et al., [12] and Terenziani [13], providing symbolic lan-
guages to cope with temporal periodicity in a compositional way.

The cardinality of repetitions (but not their periodicity) has been
recently addressed by Terenziani [6], who proposed the only TDB
approach coping with “intermittent events” [5]. [6] provides both a
relational representation model and an algebra for them, and stud-
ies the reducibility of the algebra.

A survey of TDB approaches to temporal indeterminacy has
recently been provided in [14]. Dyreson and Snodgrass [19] and
Dekhtyar et al. [20] have proposed probabilistic approaches.
Recently, Anselma et al. [17] have introduced a family of algebraic
approaches coping with different forms of temporal indetermi-
nacy. Our model is a consistent extension of the ITE approach in
[17] (see Property 3), and, if we disregard repetitions, our algebra
can be reduced to ITE’s one (Property 5).

6 DISCUSSION AND CONCLUSIONS

Despite their importance, our approach is the first one coping with
nearly periodic events in the relational TDB area, providing a rela-
tional representation and an algebra for them. We have studied the
expressiveness of our representation of periodicity, as well as the
reducibility and the correctness of our relational algebra, thus pro-
viding the first comprehensive and theoretically-grounded
approach to nearly periodic events in the relational context.

In our previous work, we have extended the relational model to
cope with strongly periodic [13] and intermittent [6] facts. In our
future work we plan to devise an homogeneous relational frame-
work in which all types of repeated events (see [5]) are managed
together. To achieve such a goal, we plan to propose (i) conversion
operators, to switch from (relational models of the) different types
of repetitions, and (ii) relational algebraic operators, applying to
different types of relations (e.g., Cartesian Product between an NP
relation and a strongly periodic relation).

Finally, temporal indeterminacy in nearly periodic facts may
involve a degree of fuzziness about the distribution of fact

instances into the time intervals containing them. To model such a
phenomenon, in our future work, we envision the possibility of
extending our approach with fuzzy logic or probabilities.
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