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ABSTRACT 

Game designers spend a great deal of time developing balanced game experiences. However, 

differences in player ability, hardware capacity (e.g. network connections) or real-world 

elements (as in mixed-reality games), make it difficult to balance games for different players in 

different conditions. In this research, adaptive time-variant minigames have been introduced as a 

method of addressing the challenges in time balancing as a part of balancing players of games. 

These minigames were parameterized to allow both a guaranteed minimum play time (the 

minimum time to complete a minigames to address the fixed temporal constraints) and dynamic 

adaptability (the ability of adapting the game during the game play to address temporal variations 

caused by individual differences).  

Three time adaptation algorithms have been introduced in this research and the interaction 

between adaptive algorithm, game mechanic, and game difficulty were analyzed in controlled 

experiments. The studies showed that there are significant effects and interactions for all three 

factors, confirming the initial hypothesis that these processes were important and linked to each 

other. Furthermore, the studies revealed that finer temporal granularity leads to less-perceptible 

adaptation and smaller deviations in game completion times. The results also provided evidence 

that adaptation mechanisms allow accurate prediction of play time. The designed minigames 

were valuable in helping to balance temporal asymmetries in a real mixed-reality game. It was 

also found that these adaptation algorithms did not interrupt the overall play experience.
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CHAPTER ONE 
INTRODUCTION 

 

Video games became popular in the 1970s, when home computer games and 

different gaming consoles were introduced to the public. Many games are very successful 

– e.g., World of Warcraft1 has sold over 10 billion US dollars since 20042.  

Video games attract players with many different skill levels - from casual gamers 

to tournament champions - and game balance has received considerable attention as a 

way to make games challenging regardless of skill (e.g., [1, 2]). There are two main types 

of game balancing that are relevant to this work, outcome balancing and player 

balancing. Outcome balancing is concerned with ensuring that players of equal skill have 

an equal opportunity to win the game, regardless of their starting orientation or the setup 

of the game.  

Truly balanced multi-player games are rare. From outcome balancing perspective, 

chess is a well-known example of a (nearly) balanced game, because both players start 

the game with identical resources, and also start with similar positions. Interestingly, 

there is one aspect of the game that is unbalanced: there is an unavoidable asymmetry of 

the game mechanic where one player has to play first. 

                                                
1 The alternative video game blog. Available: www.digitalbattle.com (Accessed 7 April 
2013) 

2 The Wikipedia entry about Word of Warcraft. Available: 
www.wikipedia.org/wiki/Word_of_Warcraft  
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Several aspects of games have been investigated as potential means for 

accomplishing outcome balance, such as the available strategies for different character 

types in NeverWinter Nights 21. NeverWinter Nights is a Massive Multi-player Online 

Role Playing Game (MMORPG) in which players create customized characters to 

represent themselves and have the opportunity create a group with their characters to 

finish a set of missions. There are several different strategies in the game that players can 

perform given their avatars. Each strategy is unique in terms of visual effects and the way 

it should be performed, but the consequences of these strategies are all reasonably 

balanced to prevent a player receiving a huge advantage based on avatar choice. The 

allocation of initial resources in Age of Empires 32, and level of powers and damage in 

Mortal Kombat3, are other examples of different methods of outcome balancing. In Age 

of Empires, a player selects a specific tribe/race prior to the start of the game and receives 

a section of the game map, which offers a limited set of resources. Game designers can 

use these differences and resources for balancing purposes. In Mortal Kombat, players 

select their character before the game starts. Regardless of the character’s personality and 

features, game elements such as the level of power when hitting opponents and the 

amount of damage received from others are reasonably balanced. 

Although outcome balance is an important aspect of game design, it can also lead 

to problems in situations where players do not have equal skill levels. The “equality” in 
                                                
1 The official NeverWinter Nights 2 website. Available: http://nwn2.com/US/index.php 
(Accessed 12 April 2013) 

2 The official Age of Empires 3 website. Available: http://www.ageofempires3.com/ 
(Accessed 4 May 2013) 

3 The official Mortal Kombat website. Available: http://www.themortalkombat.com/age-
gate?redirect=/ (Accessed 18 April 2013) 
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outcome balancing refers to equality (or near-quality) of game resources and game 

opportunities for players with same the skill level. However, one of the factors that make 

multi-player games complex is the unavoidable difference in individual experience and 

skill. In such games, the other type of balancing method – player balancing – can be used 

to compensate for these differences and make it possible for any player to win. When 

players with different skills try to play a multi-player game, the experience can be 

problematic because players with more experience and expertise win proportionally more 

often, potentially making those with less experience unhappy. This situation may not be 

desirable for expert players either, because they can win games too easily. 

In general, the goal of player balancing is that games should be balanced not only 

in terms of fairness, in that players with greater skill should usually prevail, but also in 

terms of competitive flow, in that the game should provide an engaging and competitive 

experience for players even if they have different skill levels. This is player balancing, 

which is the main focus of this research. Player balancing makes sure that the game 

remains competitive even if two players have different skill levels.  

Some games have implemented mechanisms for player balancing. For example, 

real-world games such as golf or racing use handicaps or head starts to balance different 

skill levels. In the video game MarioKart1, power-ups are allocated unequally to players 

based on their standing in the race: players at the back of the pack will receive more (and 

better) power-ups that help them to stay competitive.  

In this thesis, I explore a mechanism that provides opportunities for player 

balancing – time. The focus is on the manipulation of time – that is, the amount of time 
                                                
1 The official MarioKart 7 website. Available: http://mariokart7.nintendo.com/ (Accessed 
11 May 2013) 



 

 4 

needed for players to complete activities in the game, such as obtaining resources, 

building units, moving to different locations or defeating an enemy – as a mechanism for 

player balancing in multi-player games. 

There are relatively few mechanisms for balancing players that are non-obvious 

and that do not interfere with the gameplay experience. For example, in NeverWinter 

Nights, some of the items are unavailable in some situations for expert players to make 

the game harder. Variable loading time of the weapons is another example of player 

balancing in NeverWinter Nights. As the player progresses in the game, the level of the 

player’s character is increased, resulting in more powerful weapons with shorter loading 

time. During the game play, the loading time varies based on the player’s performance, 

and in some situations, the same weapon is loaded faster for a novice player than an 

expert. Although this approach adjusts the balance of the game, it may not satisfy expert 

players because the manipulation is obvious.  

Another example is Diablo31 in which strength and the number of enemies 

surrounding the player varies based on the skill of the player: for an experienced player 

with good performance in the game, more enemies that are stronger will appear; 

conversely, for novice players, fewer weak enemies surround the player for fights. 

Time-based activities can be seen in many games: in race-based games such as 

Mario Kart, in games requiring synchronized motion between heterogeneous agents [3], 

in games employing rates of production such as StarCraft 22, and in games with ‘cool-

                                                
1 Official website for Diablo 3. Available: http://us.battle.net/d3/en/ (Accessed on 
January 2014) 

2 A portal to play Blizzard StartCraft 2. Available: http://us.battle.net/sc2/en/ (Accessed 
23 March 2013) 



 

 5 

down’ mechanics such as World of Warcraft1. In this thesis, I introduce a novel game 

balancing method that uses minigames as adaptable units that can manipulate the timing 

of larger tasks and actions in games and deliver a balanced solution for certain design 

goals.  

I focus on time as a balancing element because for game mechanics with a 

significant temporal component, the time taken for different activities is an obvious way 

that more-skilled players differentiate themselves from less-skilled players. For example, 

in Age of Empires, a professional player is able to quickly create an empire and start 

fighting with other nations, while a similar process takes much more time for a novice 

player. As a result, the less-skilled player will be beaten before getting a chance to build 

sufficient forces. 

Some issues of time balancing can be dealt with in game design (e.g., ensuring 

that faster units are less powerful), but two particular situations cannot be completely 

solved in design, leading to temporal asymmetries that must be addressed during play. 

First, individual differences in experience or skill mean that two players will take 

different amounts of time to complete particular tasks; this situation affects a wide variety 

of multi-player games. Second, some games – e.g., mixed-reality games [3] and pervasive 

games [4] – involve aspects of the real world that impose fixed temporal constraints. For 

example, the amount of time it takes for a player to run from one game area to another is 

determined by the size of the real-world game space, and cannot be changed in the design 

of the game; once the game rules are set and players take roles, it is not possible to 

dynamically change those rules determined by players in the middle of the game to 
                                                
1 A portal to play Blizzard World of Warcraft. Available: http://us.battle.net/wow/en/ 
(Accessed 21 March 2013) 
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address the unforeseen temporal inequalities that are raised during the gameplay. If the 

game space is fixed, the only way to balance the timing of tasks is to make the players 

faster, which is not usually possible. 

The time-based mechanisms and actions in the main game can be manipulated to 

balance players of different skill levels; however, directly manipulating the time or 

timing parameters of main game activities can be disruptive for players, and complex 

mechanics could be rendered unstable by the feedback loop created by the adaptation 

algorithm. 

An alternative approach is to manipulate time through activities that are outside 

the main game – such as through minigames that appear at various points within the 

game, but whose (usually simple) mechanics are different from the main game activities. 

Minigames are simple activities contained within a larger game, and are common in 

commercial titles (e.g., Mario Party, Sid Meier’s Pirates!, and Assassin’s Creed 2). 

Minigames can help designers balance temporal aspects because they can add time to a 

player’s main game task or reduce the time of the specific task in a mission. Figure 1 

shows some of the four-player minigames in Mario Party. In this game the configuration 

of each minigames depends on the overall progress of players, in which weaker players 

receive small advantage in the minigames to get a chance to catch up with stronger 

players and vice versa. In general, the balancing process is performed during the 

minigames without changing the configuration of the main game. However, the 

configuration of each minigames is set at the initiation time and remain constant during 

the game play. 
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In this research, a novel way of carrying out time balancing through the use of 

adaptive time-variant minigames (ATMs) will be introduced. ATMs are simple 

minigames contained within a larger game that balance temporal flow by adding varying 

amounts of time to a player’s main-game task or mission. For example, a player might 

have to complete a lock-picking minigame to break into a building – and the amount of 

time taken can be controlled by appropriate parameterization of the lock-picking 

activities. 

ATMs provide designers with considerable flexibility: in an ATM, the minigame 

is parameterized over a range of completion times, based on the game state and player 

skill. Minigames can be started as a part of traditional game mechanics, such as when a 

character casts a spell in World of Warcraft or when a production order is issued in 

StarCraft 2. The minigame would then spawn as part of the main-game mechanics. In 

order for the primary task to be completed, the minigame must be completed 

successfully. 

The ATM approach has several strengths: it decouples the balancing activity from 

the primary game play; it allows the creation of specific minigame-based interactions to 

mask the temporal adaptation; and it provides the designer with two primary mechanisms 

to alter balance: the initial difficulty level (often based on the state of the main game), 

and dynamic elements of the minigame adjusted during gameplay (often based on player 

performance in the minigame). 
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Figure 1.  List of minigames in Mario Party (Nontendojo.com) 

 
 

To test the efficiency of ATMs as tools for balancing game time, four different 

minigames were developed with three different balancing algorithms (Discrete balancing, 

Continuous balancing and State balancing); I then carried out three studies using these 

games.  

The first laboratory study examined whether the minigames were able to manage 

time correctly in isolation. This experiment used the simplest form of balancing 

algorithm, which adapted the minigames at only one point during the game play 

(Discrete). The second study tested the real-world effectiveness of ATMs in a real mixed-

reality game called Stealth Hacker. In the third study the effect of temporal adaptation 

granularity and game genre on time balancing abilities of ATMs was investigated. In this 

experiment all the balancing algorithms (Discrete, Continuous, State) were used and 

compared in terms of accuracy and user experience. Although this research was a limited 

trial, the results showed that the adaptive time-variant minigames were able to provide 
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temporal balance without detracting from the main game. These experiences with ATMs 

suggest that the underlying principle can be used more generally to assist designers with 

time balancing in a wide variety of multi-player games. 

This work provides three main contributions. First, it provides evidence that 

adaptive time-varying minigames are effective tools for time balancing. To show their 

effectiveness, the results of the experiments were analyzed in terms of enjoyment level 

and accuracy of completion times of the minigames. Second, it demonstrates the 

feasibility of ATMs in a real mixed-reality location-based game and that they were able 

to manage the time balancing of different tasks and activities in the game. Third, it shows 

the differences between three adaptive approaches with different adaptation granularities, 

and shows that the type and difficulty of the minigame had a substantial effect on the 

adaptation. Moreover, it demonstrates that Continuous balancing performed best both in 

terms of time manipulation and perceptibility. The results of this work provide new and 

valuable information for multiplayer game developers on the design, deployment, and 

evaluation of minigame-based techniques for time balancing. 

In the following chapters, the concept of time balancing in games will be 

described and the research methodology and experiments will be described. 

• In Chapter Two, a survey of related work will be presented which forms the 

foundation of this thesis. First, the general concept of game balance will be discussed; 

second, the different approaches in game balance will be discussed; and third, 

different time balancing methods in games will be discussed. 

• In Chapter Three, time balancing in computer games will be discussed. First, the 

concept of time in computer games will be explained. Second, parameters in games 
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that are related to game balance will be identified. Third, the concept of balancing 

time will be explained in detail and some of the common issues of time balancing will 

be reviewed. Fourth, minigames as separable, manageable games that are independent 

from the main game will be introduced. Fifth, the idea of time balancing using 

minigames will be discussed.  

• In Chapter Four, a model to record player progress during the game will be 

introduced. Later, three different balancing algorithms and their specification will be 

reviewed and compared. 

• Chapter Five is dedicated to the evaluation phase of the research. In this chapter, the 

performance information about the balancing algorithms discussed in Chapter Four 

will be presented. In this chapter, the main focus is the accuracy of the balancing 

algorithms and the noticeability of the different balancing methods and players’ 

experience. 

• Chapter Six presents a discussion of the most important outcomes of this work. 

Higher-level implications of the findings and issues related to the work as a whole are 

addressed. 

• Chapter Seven briefly summarizes the main contributions of this research and 

highlights potential future work that are possible as a result of this research. 
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CHAPTER TWO 
RELATED WORK 

 

One of the most important goals of designing video games is to generate 

interactive, and appealing, experience [5, 6]. Nowadays, video games are known as a 

major field of the entertainment industry [7]. A computer game is a form of play that lets 

players to decide how to manage their resource to reach a certain goal using game rules 

and mechanics. [8]. Each game is, in fact, a system, which has several components - such 

as players, objectives, procedures, rules, and resources - that are interacting together to 

reach a goal [9, 10].  

As Rollins and Adams state in On Game Design, “you need to keep the players in 

the balance sweet spot for as long as is practical in order to keep the game fun and let the 

underdogs have a chance to catch up. However, the major factor that determines winners 

should be player skill.” [11]. In fact, the goal of game balancing is to allow the best 

player to finish first, while keeping the competitive margin as small as possible. 

When players with different skill levels play games, they might lose flow because 

of feelings of incompetence or lack of challenge. Flow represents the feeling of energized 

and immersed in an activity that is enjoyable [12]. One aspect of flow in game design 

[13] is the degree to which a game provides an experience for players that has an 

appropriate level of challenge: If the difficulty of challenges of a game overpasses the 

experience and ability of players, they might feel frustrated and leave the game because 
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they cannot overcome the challenges of the game. On the other hand, if challenges of a 

game are too easy for players, they might lose their interest to play it and become bored. 

[14, 15, 16, 17, 18]. Challenge is a crucial part of every game [19]. Crispini [20] has 

discussed criteria to make a simple online game enjoyable and appealing. The results of 

his survey show that the essential criteria for an enjoyable game are diversity, challenge 

and unpredictability. 

The research domain of this thesis is balancing the timing of tasks and activities in 

multiplayer games using ATMs. To reach this goal, the following areas of research must 

be discussed: 

1. Time balancing of computer games is a subset of different types of game balancing, 

hence the concept of game balancing will be defined and its parameters and types will 

be identified as the first step. Different terms and definitions, described by other 

researchers, provide a detailed knowledge about what game balance means and why it 

is important. 

2. Game balancing methods vary in terms of game genre, number of players, frequency 

of executions of balancing algorithm and other parameters. Different game balancing 

methods of previous studies can provide insight into game balancing methods, best 

practices and key parameters that should be considered while designing a new game 

balancing method. 

3. A secondary focus is on time balancing in multi-player location-based mixed-reality 

games. There are many successful multi-player mixed-reality games that have 

exploited different game balancing methods to synchronize digital and real players in 

mixed-reality games. In this section, previous multi-player mixed reality games will 
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be discussed and different approaches in game balancing for these games will be 

reviewed. 

 

2.1 Game Balance in Computer Games 

Computer game balance is recognized as a design issue that has profound effects 

on enjoyment – mutually influencing challenge and user satisfaction [21, 22]. Game 

balancing is a common issue in every game regardless of the number of players and 

genre. Previous research divides the game design process into several sections, and game 

balance is declared as an early stage of the design process [11, 23]. If balancing issues 

cannot be addressed during the game design process, they will be postponed to the later 

phases and will be more difficult to be dealt with. For example in CatchBob! [24], the 

balance of the game was affected by lack of sufficient lines of sight in the game’s 

location, which could have been addressed earlier in the design phase of the game.  

In general, regardless of the method of balancing, traditional methods of game 

balancing, such as adjusting the difficulty of static pre-defined levels, are often labour-

intensive [25]. Bateman et al. [26] divided game balancing into “gameplay balancing” 

and “player balancing” to emphasize on the role of players’ skill and experience in game 

balance and suggested three different approaches: Matchmaking (grouping players by 

their abilities), Asymmetric Roles (assign different roles to different players based on their 

skill level and experience) and Difficulty Adjustment (adaptively adjust the difficulty of 

the challenges in the game). In fact, maintaining optimal game balance often needs to be 

a dynamic process because of the evolution of the player’s behavior and skill [27]. A 
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good example of this is the constant upgrading in World of Warcraft to match newly 

discovered/ created exploits.  

 

2.2 Different Mechanisms in Game Balancing 

A game balancing approach can be considered from two different aspects: the 

degree of adaptability of the overall approach of game balancing and actual game 

balancing algorithms employed to achieve the approach. Static game balancing and 

dynamic game balancing are the two primary approaches for the adaptability, which are 

considered here. Many game balancing algorithms are possible once an approach has 

been determined, and key implementations are discussed here. 

 

2.2.1. Dynamic Game Balancing vs. Static Game Balancing 

A primary issue in competitive games is that the different teams or players should 

have equal chances to win the game based on rules and starting positions [11]. Balancing 

fairness can involve manipulations of different game elements – for example, the 

capabilities and initial resources allocated to different player types such as Orcs and 

Humans in World of WarCraft. This type of balancing (called ‘static balancing’) is often 

carried out through repeated playtesting of the game mechanics and parameters [25], such 

as tuning the capabilities of individual weapons or units or armies [11].  

The idea of balancing a game dynamically during game play is not new [27]. 

Dynamic balancing, considers a fully continuous spectrum of play, from the starting point 

of the game to its end. In Dynamic game balancing the interaction of player or players 

with game affects the state of the game, and different units and parameters in the game 

configuration should be adapted based on the current state of the game [28] rather than at 
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the start of play based on player models. Variable frequency of enemies in Diablo 3 and 

variable power of enemies in Assassin’s Creed 4: Black Flag1 are examples of dynamic 

balancing during game play. 

 

2.2.2 Game Balancing using Playtesting 

One traditional way of balancing games is playtesting. The playtesting is 

performed by iteratively refining the value of penalties, awards, setting thresholds and 

other important game parameters until the game is deemed balanced from game both 

designer’s and players’ perspectives [29]. In playtesting, game designers select a 

statistical population (players) to play the game and iteratively refine important 

parameters of the game to reach an optimum static value. These optimum values can be 

set based on either statistical analysis of test results or by players’ answers to 

questionnaires.  

Playtesting is a time consuming process and it pushes designers to select small 

group of test players to achieve the final result faster and cheaper. Although reducing the 

size of test players decreases the overall time of playtesting, it diminishes the accuracy of 

the results. One big advantage of playtesting is that the target game is tested against the 

actual players. The results of playtesting provide a set of useful feedbacks about game 

difficulty, game mechanics, fun and etc., that game designers can take advantage of them; 

however there should be standard criteria about the testing processing. In fact, test 

players are statistical population that represents end users of the game. 

 
                                                
1 Official website of Assassin’s Creed 4: Black Flag. Available: 
http://assassinscreed.ubi.com/en-ca/home/index.aspx (Accessed January 2014) 



 

 16 

2.2.3. Game Balancing using Artificial Intelligence (AI) 

The quality of AI in video games has become an essential factor, which affects 

the sale results of games considerably [30]. AI in video games simulates the human 

intelligence and behaviour. However, most of the game players still prefer to play against 

real opponents (via a network) rather than smart AI-controlled ones [31]. Olesen has 

generated intelligent opponents in Real-Time Strategy (RTS) that are based on neuro-

evaluation methodologies. The goal of his study was to dynamically generate appropriate 

challenge level for players that match the skill of players [32]. Several previous 

approaches focused on the different game’s AI methods to address dynamic balancing. In 

Knock’Em [33], dynamic game balancing was achieved by generating intelligent agents 

with adaptive behaviour using Reinforcement Learning techniques. In Reinforcement 

Learning, the intelligent agent received reward or penalty for every action in the game 

and the value of each action is calculated by the sum of its rewards or penalties. After a 

period of time, the intelligent agent will be able to make improved decisions based on the 

experienced value of each decision. Hunicke [26] developed a game based on Half Life 21 

and explored computational and design requirements for a dynamic difficulty adjustment 

system using probabilistic methods. She tried to dynamically adjust the difficulty of the 

game based on the available items in the player’s inventory and found that the cost of 

each solution for difficulty adjustment is a key parameter to choose the best possible 

balancing method in the game. 

 
                                                
1 Official website for Half Life 2. Available: http://orange.half-life2.com/hl2.html 
(Accessed 7 November 2013) 
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2.2.4. Player Balance in Multi-Player Games 

There are four main ways that designers can balance competition in multiplayer 

games (also called player balancing [26]). First, a few methods exist for balancing 

competition without changing the game – for example, ranking systems and ladder 

tournaments help match players with opponents who have similar skill levels. The first 

attempt to provide rigour for ranking of measured entertainment level of board games 

was done by Lida [34]. He measured and ranked the entertainment level by introducing a 

general metric for different chess-like games. His metric was based on the possible 

moves and average length of game.  

Second, games can be designed so that a stronger player is given an explicit 

disadvantage, such as handicapping in golf, or weaker players receive advantage such as 

a head-start in playground games. In computational environments, games can also be 

designed with asymmetric roles, placing the stronger player at a disadvantage [35]. 

Although this strategy can be successful, the balancing mechanism is readily apparent to 

the players, potentially reducing the sense of fairness, which is a primary goal of a 

balancing scheme. 

Third, some games naturally evolve in such a way to make winning more difficult 

as the game progresses. For example, in 8-ball billiards, the leader has fewer balls to aim 

at, and more of their opponent’s balls to avoid [11].  

Fourth, some player balancing techniques dynamically alter the characteristics of 

game elements during play to even out the competition. This approach was used in a 

version of Pong that was intended to allow parents and children to play together: the 

game automatically adjusted a player’s capabilities (paddle size and movement speed) 

based on the current score [16]. A similar capability adjustment is seen in the ‘Fatboy’ 
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mode of Unreal Tournament, which adjusts the size of the avatars of players based on 

their kill-to-death ratio, making it easier to hit better players1. A third example is a 

method which provides differential targeting assistance using techniques such as target 

gravity or sticky targets [26]. The amount of assistance given to players is based on the 

score differential: as a player falls further behind, their targeting cursor becomes more 

attracted to the targets. A study of this technique showed that it increased competiveness, 

and that neither the strong nor weak players noticed the adaptation. 

  

2.2.5. Game Balancing using Player Satisfaction 

Cognitive user models of playing experience, which are based on user’s 

feedbacks, provide different possibilities for the design of digital interactive 

entertainment systems such as augmented reality games. Modeling of entertainment or 

user satisfaction may open different features of play for both game and players, that 

relates to the level of player’s satisfaction. Digital entertainment systems can then be 

adjusted for different users based on this relationship to dynamically leverage player 

satisfaction in real time [36]. Some of the previous methods have considered “user 

satisfaction” as the key element to deal with game balance and have categorized different 

game balance methods based on it [21]. User satisfaction is measured using results of 

different questionnaires and surveys that are being asked from participants before, in-

between or after the game play.  

 
                                                
1 Game review section of Game Revolution website. Available: 
http://www.gamerevolution.com/review/unreal-tournament (Accessed April 2013) 
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2.2.6. Game Balancing using Time 

The dynamic player balancing techniques described above all act on player 

capabilities; fewer techniques have explored adjustments to the time required for 

different player actions and tasks. One game genre that does frequently use time 

balancing is the racing genre – many racing games implement ‘catch-up’ or ‘rubber-

band’ effects [26] in which a slower player receives a speed boost. For example, Mario 

Kart provides the ‘Bullet Bill’ power-up only to players who are far behind the leaders, 

which dramatically increases speed without the need to steer. 

 

 2.3. Game Balancing in Multi-Player Mixed-Reality (MMR) Games 

Multi-player Mixed-reality games, which incorporate real and virtual components 

simultaneously, face particularly acute time balancing issues. Generally, the physical 

portion of the game relies on existing infrastructure such as buildings, roads, and bridges, 

and is difficult to modify; similarly, the behavior of real world participants is dictated by 

physics and human physiology and cannot be altered. The majority of time balancing 

must therefore take place in the virtual portion of the game. 

Balancing a mixed-reality game is naturally harder than previously mentioned 

genres because game designers have to synchronize virtual and real worlds and balance 

the game on each world. There are many parameters that should be considered while 

balancing a MMR game especially those that are imposed from the real world. In 

Treasure [37], players should pick up coins scattered around an urban area and put them 

into a virtual chest. Results of the game showed that the chance to load up the found 

coins was higher with a better network connection, resulting in an unbalanced advantage 

for a group of players with better network devices. In general, the level of the player’s 
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knowledge about the physical terrain of a mixed-reality game affects the balance of the 

game [38]. 

Several approaches have been proposed to balance mixed-reality games. For 

example, online players may play on a scaled-down representation of the real playground 

with speeds adjusted proportionally to be appropriate for this scale [3]. NetAttack [39] 

divided players based on their roles and balanced play, but did not balance the timing of 

different tasks and activities based on roles. In Manhattan Story Mashup [40], static 

minigames have been employed to implicitly manage game balance. Players were given a 

clue as a part of their ‘mission’ and were then asked to take a picture of the most related 

object within a cool-down timer, but the timer in the minigame is fixed, and variations in 

skill or the surrounding context do not change the duration. 

Most solutions to time balancing in MMR games have presumed that virtual 

interfaces are point-to-point mapped to the real world – that is, that virtual players play in 

simulacrums of the real playground. Timing is implicitly addressed by setting virtual 

locomotion speeds to be approximately equivalent to expected real world locomotion 

speed [41]. While straightforward and easy to implement, this assumption is overly 

limiting and constrains the design space for MMR games. 

A new type of time-balancing mechanism will be introduced that can be used in a 

wider variety of game types. This new mechanism uses adaptive time-variant minigames 

(ATMs) to adjust the time taken for main-game tasks that incorporate a minigame as part 

of the overall action. As stated in [42], “minigames are particularly attractive for time 

balancing because they are intended as short-duration activities, and can unobtrusively 
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and selectively delay specific players without unduly disrupting the overall gaming 

experience”. 

 

2.4. Summary 

In this chapter, some of the previous works in the game balancing domain were 

reviewed. As most of these works suggested, game balance is a crucial issue, which 

should be addressed in early stages of the game development process. There are many 

game balancing approaches that have positive and negative points. The general trend of 

game balancing methods was categorized into two major classes: Static game balancing 

and Dynamic game balancing. Previous literature shows that dynamic game balancing 

has been successful in many game balancing scenarios. By reviewing the possible 

approaches to perform the dynamic game balancing, it is determined that in none of the 

previous works except one case [40], minigames have been employed for game balancing 

purposes. Also it is found that most of the previous works did not use time as the primary 

element for game balancing. 
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CHAPTER THREE 
GAME BALANCE AND TIME 

 

The idea of time balance is based on the phenomenon that activities in many 

games (particularly in digital games) take specified amounts of time. Players perform 

different activities toward the narrative of the game to finish it. If there was a way to 

calculate the completion time of activities in games, it would be possible to use this 

completion time as a parameter to balance different activities in games. In general, the 

total completion time of an activity is influenced by parameters such as gaming skill, the 

game interface, the difficulty of the game and the underlying game mechanics. In this 

chapter, these parameters will be discussed in detail. 

In this research, the area of the game where time will be manipulated is that of 

minigames. Minigames are generally short, self-contained play experiences within a 

larger game framework, but with their own internal logic, game state, and mechanics 

[43].  Because minigames have their own internal mechanics, they can be configured 

independently of the main narrative or action, making them an attractive alternative for 

dynamic balancing. Minigames are particularly attractive for time balancing because they 

are intended as short-duration activities, and can unobtrusively and selectively delay 

specific players without unduly disrupting the overall gaming experience. In this chapter, 

a novel solution will be introduced to balance the timing of different activities in games 

using minigames. 
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In general, time balancing using minigames has four main steps: 

1. Identify the type of the game and potential issues relating to the balance of the game: 

The type of the game includes a set of specifications of the game such as the number 

of players (single player or multiplayer), game genre (fighting, maze, shooter, etc.), 

game mechanics (match pattern, find signal, etc.) and so on. Each game balance 

method has a set of parameters that let the balancing algorithm manipulate challenges 

and total difficulty level of the game based on its context. For example, in a multi-

player first person shooting game, resources such as weapons are shared and players 

compete to earn them, while in a multiplayer racing game, players compete to finish 

the race as quickly as possible. Hence, the first step is to determine the type of the 

game and the preferred balancing method. 

2. Design minigames that fit with the context of the game: Minigames are independent 

and can incorporate mechanics and design elements independent of the main game; 

however, immersion will likely suffer if there is design and mechanics inconsistency. 

For instance, it is not reasonable to put a silly minigame into a horror genre game, 

since this would adversely affect the overall mood; however, it does not mean that the 

type and genre of the minigame and the main game must necessarily be the same. 

One advantage in using minigames for game balancing is the required time for 

players to complete minigames, which can be used as a parameter to balance the main 

game. For example, a minigame can be started any time that the main game needs to 

be balanced1.  

                                                
1 The official website of The Legend of Zelda: Ocarina of Time 3d. Available: 
http://www.zelda.com/ocarina3d/ (Accessed April 2013) 
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3. Identify manipulable elements in the minigames and their relationships: As will be 

discussed later in this chapter, each game has several constitutive components that 

interact together through the game mechanics. When the game mechanic is chosen – 

such as match pattern, find signals and etc. - it is possible to mathematically calculate 

the required time for each component and eventually calculate the total required time 

for given scenarios. 

4. Find specific situations in the game state of the main game from which the chosen 

minigames should be triggered: Depending on the type of game and the balancing 

algorithm, it is possible to define trigger points in the main game, then select and run 

a minigame when the player reaches to these points. A trigger point is a specific 

situation in the main game, definable in the context of the main game and repeatable 

if the prerequisite situation is reached. Prior to starting the minigame, all the 

balancing variables, which are required to balance the main game, are passed to the 

selected minigame and the minigame loads the appropriate difficulty level based on 

received variables. Finally, the player returns to the main game after the minigame 

has finished. 

In the next sections the above steps will be investigated in detail. Also the concept 

of timing in games will be discussed and some examples of commercial games and 

different time parameters that game designers have used to manipulate the difficulty level 

of the game will be provided. Finally, the relation between time balancing of the games 

and minigames will be investigated. 
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3.1. The Concept of Time in Computer Games 

Play time represents the actual time taken to perform a specific activity in a game. 

In abstract games such as Checkers or Tetris, players play the game in real time and 

different moves can be thought of as happening instantaneously. The mathematical model 

for these games is based on finite-state machines where players start the game from an 

initial state and try to either reach the final state (or force the opponent to reach it) faster. 

Technically, most games are discrete finite-state machines. For example in Chess, the 

position of the pieces defines the state of the game. The initial state of the game is when 

all the pieces are arranged at their first positions in the chessboard. Then players try to 

proceed in the game by moving pieces to reach the final state as quickly as possible.  

In Quake III Arena1 as a first person shooter games or Unreal Tournament2 

players experience duality: the player exists in the real world and as a character in the 

game world [3]. As Juul [44] has suggested, using term event time to indicate the time of 

events happening in the game world distinct from the actions the player takes in the real 

world. 

In many games, the relation between play time and event time is presented as 

identical. For example in Quake III Arena, performing certain actions in the game such as 

moving the mouse instantly affects the world of the game. In fact, there is a small delay 

beyond human perception where the input alters the digital game state. SimCity3 – an 

                                                
1 Official Quake III Arena website. Available: 
http://www.idsoftware.com/gate.php?referer=%2Fgames%2Fquake%2Fquake3-arena 
(Accessed March 2013) 

2 Official Unreal Tournament website. Available: http://www.unrealtournament.com/ 
(Accessed December 2013) 

3 Official SimCity website. Available: http://www.simcity.com/ (Accessed March 2013) 
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open-ended city-building game - provides another example of the concept of play time 

and event time. Game events, such as building different units in the game, happen faster 

than in the real world, and minutes of real world playtime might equal to a year in the 

game world. The relationship between event time and play time can be characterized as 

a mapping; meaning that the play time and event time are coincided into a game world. In 

fact, the play time is mapped to the event time relative to the speed of the game. For 

example, constructing a house may takes two days in the game (event time) while it takes 

one hour in the real world (play time). 

Most action games tend to have a direct mapping of the play time to the event 

time to facilitate the feeling of urgency and action pacing. Some games such as The Sims1 

– a strategic life simulation game – let players to choose the speed of the game, which 

declares the relation between playtime and event time. As a result, the play time can be 

mapped to event time with a different relationships while consistent during the game 

play. 

The capacity to map play time to event time is critically important in games with 

different game worlds, particularly mixed-reality games.  In all of the above examples, 

the play time denotes the actual time that players spend performing an activity in the 

game and event time is the time taken for specific events in the game. Mixed-reality 

games also must account for the time that a player spends to complete game tasks in the 

real world. Mixed-reality is a term indicating games that include both real and virtual 

components at the same time, and consequently game events and tasks are divided into 
                                                
1 The official of The Sims website. Available: http://www.thesims.com/ (Accessed March 
2013) 
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two groups, Real events and Virtual events. Real events are those activities that a player 

performs in the real world, such as moving from one location to the other or taking a 

photo, and Virtual events are actions that are only defined in the game world, such as 

killing a virtual enemy, constructing a building or training an army.  

Game designers have almost absolute control over the timing of events that occur 

in the virtual world but almost no control over those that occur in the real world. In 

mixed-reality games, unpredicted events during the game play can possibly break the 

balanced connection between the real and virtual worlds and consequently collapses the 

whole game because the real world’s players or virtual world’s players (or both types of 

players) cannot proceed in the game.  

A fundamental requirement of MMR games is the ability to synchronize events in 

the two worlds (Real and Virtual) and map their events and activities to a shared 

component in the game. As it will be mentioned later in this chapter, there are several 

different ways to manipulate time of events in games, such as speeding up or slowing 

down the movement of certain pieces, but time in the real world is not manipulable by 

game designers and depends on players’ individual skills and random events. 

To address this issue, many game designers try to design a virtual world similar to 

the real world, meaning that they try to provide direct mapping between the virtual event 

time and real event time: For example, if a player moves from one location to another 

location in real world, the player’s representation in the virtual world of the game moves 

similarly but with a different speed. For example in Can You See Me Now [3] the virtual 

world is a simplified map, which is directly mapped from the real location of the game in 
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the real world and the speed of the avatars of players in the game is equal to a fraction of 

the actual speed of the players in the real world.  

It is possible to map the player’s movement in the real word, to a different action 

in the virtual world of the game, but still what matters is the mapping of these two worlds 

to each other. For example in Pop&Dodge1 when players jump in the real world, their 

avatars in the virtual world dodge the balls by sliding to right and left. Finding shared 

game elements between real and virtual worlds and identifying the appropriate mapping 

between the required time for real events and virtual events is a complicated process. 

Game designers try to reduce the complexity of the game activities and constrain them 

into a limited set of basic actions in the real world, such as moving in a playground or 

pressing a button. This simplification limits the creative scope of the game, because 

designers are limited to simple actions. Moreover, they are forced to use similar game 

worlds in both real and virtual modes. Using ATMs is a novel way to address this issue. 

Using ATMs not only makes the game more interesting and fun, but also solves the 

unavoidable temporal asymmetries that exist in any type of game, especially mixed-

reality games. 

 

3.2. Identification of Parameterizable Game Elements  

Time Complexity of an algorithm in computer science specifies the total amount 

of time required by the algorithm to be completed based on the length of its inputs [45], 

but in computer games, Complexity is the number of steps needed to solve an instance of 

a puzzle in a game. Consequently, when referring to time complexity of games, the total 
                                                
1 Official website of Pop&Dodge game. Available: 
http://digidointeractive.com/popanddodge (Accessed 12 March 2013) 
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time that is required to take all the necessary steps of a solution in a game is being 

referred. Time complexity of computer games varies with the state-space of the game, the 

possible set of states reachable from the current state. 

Games are usually complex activities that are divisible into several simpler tasks, 

allowing the measurement and manipulation of the total complexity by modifying the 

complexity of their constitutive tasks. The definition of time complexity in computer 

games proposes that the completion times in games can be measured by finding the 

number of required steps to reach the goal and summing the time of each step1.  

As described in the related work section, substantial research has been performed 

on using parameter manipulation or selection to generate games of a specific difficulty 

[46] or for balancing player abilities [47]. These parameterizable game elements can also 

have varying effects on how long the game takes to play. In Pong, for example, the speed 

of the ball has a relatively straightforward effect on the time needed to reach a set score, 

but the speed of the paddle has a more complex relationship with game time, as a faster 

paddle allows the player to reach more shots and extend the rally, but may also increase 

the number of player errors.  

In general, game size is one of the parameters that affect game time. Game size 

refers to the size of the game in terms of number of simultaneous ways of doing a 

specific task (Action Width) and the length of each task (Action Length). Action Width 

implies the number of available ways to perform an action in a game. For example in 

                                                
1 Lopez, M., Gameplay Design Fundamentals: Gameplay Progression. Available: 
http://www.gamasutra.com/view/feature/1771/gameplay_design_fundamentals_.php 
(Accessed March 2013) 
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Neverhood Chronicles1 - a point and click adventure game - the rat puzzle (Figure 2) 

offers several solutions simultaneously to the player. The goal of the game is to guide the 

mouse to the cheese and the number of possible paths directly affects the difficulty of the 

game. The Action Length implies the time that an atomic action in the game takes to be 

completed. For example, in the same game, there is a very long route that the player has 

to take to reach an important object in the game (Figure 3), requiring an unavoidable 

minimum round trip time of 6 minutes irrespective of players’ actions. 

 
Figure 2.  Neverhood Chronicles: The cheese and rat puzzle (www.joystiq.com) 

 

                                                
1 Official Neverhood game website. Available: http://www.neverhood.se/ (Accessed 
March 2013) 
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Figure 3.  Neverhood Chronicles: Long path to find a hidden object, which is required to 

complete the game. (www.joystiq.com)	
  
 

There are also situations in which game designers use repetitive simple tasks to 

increase the difficulty of the game. Figure 4 shows the final battle of Sonic 21 – a 

platform game in which the player characters are two hedgehogs move in the game by 

jumping, walking and running. As it is shown, the hedgehog, on the left of the scene, 

should jump over the giant robot, on the right side of the scene, to beat it. The giant 

receives damage on every jump. In this example, killing the giant is the overall mission 

and is done by repeating a smaller task (jumping repeatedly over the giant). When the 

player jumps over the giant, the game allocates damage and calculates the remaining life 

of the giant. Then it returns a value representing the remaining life of the giant and the 

color of the giant is changed to show the player how much progress has been made. The 

number of jumps is a fixed value which game designers, considering the desired 

                                                
1 Wikipedia entry for Sonic the Hedgehog 2. Available: 
http://en.wikipedia.org/wiki/Sonic_the_Hedgehog_2_(8-bit_video_game) (Accessed on 
March 2013) 
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difficulty, set before the play starts. Another example is Lost Planet1 (Figure 5) – a third 

person shooter game that happens on a fictional planet - where the player has to kill the 

giant worm by shooting its energy sources (big yellow dots). Every time the worm jumps 

out of the ice, a cool-down timer is started and the player has to shoot the worm’s energy 

sources, otherwise when the timer is up, the worm returns to the ice and those resources 

that are not destroyed completely will be reset, prolonging the battle. In this level of the 

game, the worm receives a wound in every shot of the player. The game receives the 

worm’s damage and calculates the level of the damage by accumulating all the worm’s 

wounds while it has been above the ice. It then breaks the worm’s resources to show the 

player how much progress has been made. If the total level of damage is more than the 

total health level of the worm, it is killed and player wins the battle. On the other hand, if 

the total level of damage is less than the total health level of the worm, and the cool-down 

timer is up, the game resets the damage level of the worm and it returns to the ice. 

 

 
Figure 4.  Sonic 2: Final boss scene. (www.deviantart.com) 

                                                
1 Official Capcom page for Lost Planet. Available: http://lostplanetcommunity.com/ 
(Accessed April 2013) 
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In this example the main action is killing the giant worm, which is divided into a 

number of subtasks, shooting the worm’s energy sources. Each subtask must be finished 

in a given time (while the worm is out of the ice). It is not specified that how many times 

the player has to shoot at the worm to kill it and complete the overall action, as this 

depends on the skill of the player. However, it is possible to specify a minimum time for 

a perfect marksman to complete the task, which introduces the concept of a minimum 

completion time for a game that has been used in ATMs, which will be discussed in 

Chapter four. 

 

Figure 5.  Lost Planet 1: Gigantic worm scene. (www.nwnews.net) 
 

In general, the level of control affects the difficulty level of the game. The control 

level measures how much control the player has over the character in the game. For 

example in Classic Mario1 – a single player platform game - the possible actions of 

Mario are limited to moving right, moving left, jumping and shooting (Figure 6). On the 

other hand, in NeverWinter Nights 2, the player controls one character in the game 

                                                
1 Official Mario website. Available: http://mario.nintendo.com/ (Accessed April 2013) 
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(Figure 7) with numerous options. In this game, players receive a set of actions, skills and 

weapons for their avatars. In every fight scene of the game, players are capable of 

choosing between several actions, skills and weapons, each of which has a specified level 

of damage. Each weapon has a specified amount of damage and speed, which lets game 

designers manipulate the total power of the weapon. Although a player controls only one 

character in the game, having several options for play increases the complexity of the 

game. 

 
 

Figure 6. Classic Mario (www.classic-retro-games.com)  
 

Most of the time, modifying one parameter of a complex action in a game will 

affect other aspects of play. In most situations when timing of tasks in a game is crucially 

important, it is hard to calculate the complex actions’ total time. Minigames, which 

typically have simple mechanics, can provide a method for specifying precise timing 

control within a larger game.	
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Figure 7.  NeverWinter Nights 2 (www.gamepressure.com) 

 
 

3.3. Game Balance as a General Concept 

As previously mentioned, “game balance” is a technical term representing the 

fairness of the game and should not be confused with subjective measures such as “fun”. 

The first step of game balancing is to recognize the balancing methods of the game. For 

example, in a single-player game, the term balance is mostly used to indicate whether the 

challenge level of the different tasks in the game is appropriate for the current players, 

whereas in multiplayer games balance indicates the overall fairness between players.  

Setting the challenge level is a fundamental game balance problem. Although it is 

possible to state that a challenge level should be higher for skilled players than novice 

players, it can be difficult to specify what is easy and what is hard for a particular game 

or game mechanic. The standard way to address challenge balancing is playtesting, 

because it reveals different players’ behaviours, but even playtesting is not a 
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comprehensive solution because not all players are exactly the same and not all strategies 

can be explored by playtesters for a complete game. 

One approach to this issue is to test the game with a wide range of test players. 

Usually playtesting gives game designers a chance to analyze players’ performance and 

create progress charts and statistics, but there is still one question that remains unsolved: 

because not all players are the same, how should different players be ranked with respect 

to the result of playtests? 

In multi-player games, players play together and the balancing concept changes. 

Multi-player games are naturally asymmetric which means different players of the game 

are not equal in terms of skill and experience, making multiplayer games harder to 

balance. Game designers often employ different game components to adjust the fairness, 

for example by changing the starting point, certain resources, or character’s state. In 

multi-player games where more than one strategy exists, the advantage of each strategy 

should be clearly balanced. Similar concepts work for resources in games as well; in a 

balanced game, the cost and benefit of resources in the game are fair, so controlling a 

particular resource would not destabilize the game balance. Two resource pools are 

balanced when they have similar cost and benefit for the players.  

In general there are four ways to balance games: 

1. By using the experience and instinct of the game designer; in this way the game 

designer tries to play the game several times until it feels right. Unfortunately this 

method is not reliable because, while an expert, the designer is biased. 

2. By calculating the relationships between the components of the game to ensure that 

every entity in the game has the appropriate cost and benefit: Although this method of 
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balancing is reliable in terms of the correctness of the formulas, it is hard to calculate 

all the possible situations of the most games. Additionally, any errors in assumptions 

underlying the formulation can cause the balance to fail catastrophically when 

violated.  

3. By playtesting the game: Similar to the first method, the designer keeps testing the 

game until most of the players have a reasonably good and fair experience. One 

drawback of this system is that playtests are usually time consuming. Additionally, 

the outcome of the experiments is dependent on how representative the test players 

are of the overall population.  

4. By dynamic balancing during game play: In this method the game starts with an 

initial setting, which has been acquired via one of the above approaches, and the rest 

of the balancing parameters are adjusted dynamically. 

 

3.4. Manipulation of Time in Games 

As mentioned previously, to use time balancing in games, a game designer should 

be able to assign completion time to a set of activities in the game, implying that there 

should be a time chart that shows how long specific activities in the game take. 

Obviously, better players should be able to complete the task faster than weaker players, 

but the variation of completion times should be modest to increase competitiveness, and 

the mean of these variations should coincide with the duration the designer desires. 

Although time manipulation can be used for many design elements in games (e.g., to 
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artificially synchronize player action [6]) the focus here is on time manipulation as a 

player-balancing tool.  

Minigames have several parameters that can be manipulated to speed up and slow 

down the playtime. Although there are several ways to manipulate the playtime such as 

changing the game size, these variations have side effects, meaning that if one component 

of the game is manipulated, all the other components of the game that are related to the 

modified component will be affected. For example, suppose that there are two games: 

one with numerous easy activities and the other with a few complex activities. It would 

be difficult to compare the playtimes of these games without empirical data.  

The simplest example involves controlling the scope of a repetitive task, such as 

shooting asteroids or aliens, where the number of times the task must be repeated 

changes. Another simple example is the manipulation of game physics (or physics 

analogues) to increase or decrease the speed of active components: for example, 

increasing the speed of falling bricks in Tetris can allow faster completion times because 

the blocks cross the screen faster. 

 

3.5. Minigames and Time Balance 

As a part of time balance using minigames, the designer must identify elements 

and mechanics in the minigame that affect completion time, and must determine the 

parameterization of those elements. Also, the designer must determine which elements 

should be adapted at the start of the minigame, and which can be adjusted dynamically 

during play. 

Minigame-based time balancing can be divided into two phases: a static phase and 

a dynamic phase. The static phase, which occurs before the minigame starts, sets the 



 

 39 

minigame’s parameters and mechanics to satisfy an anticipated time constraint – 

potentially determined by the main game state. For example, elements such as the size of 

the game, the number of levels to complete, or the starting difficulty can all be set before 

the minigame begins. To do this, one of the previously mentioned methods, such as 

experience of the game designer or playtesting, can be employed to determine this initial 

setting. In the dynamic phase, dynamic balancing is achieved by periodically comparing 

game state to an a priori desired state, and adjusting one or more parameters of game 

elements such that the completion time of the minigame will approach the desired time. 

Although time balancing of games with minigames sounds simple, it has several 

complexities that a game designer should address. Figure 8 shows the general concept of 

time balancing using minigames. As shown, two players with different skill play a multi-

player game together. Suppose that player A is much more skilled than player B, and the 

game starts at the same time for both players. The game is a simple running match and 

players have to finish the path as fast as possible. Every red point in the paths represents a 

station where players have to stop and rest.  

At each station, player will be given a minigame to play. Minigames start with an 

initial setting, the small rectangles tagged as “Static”, which have been set prior to the 

minigame. This is what the game designer has set based on experience, playtesting or 

mathematical calculations. This amount is consistent until the game is finished and can be 

used as initial difficulty level of the game. The dynamic part of the minigames, the 

rectangles with variable size and tagged as “Dynamic”, will be activated during the game 

play to help the weaker player and make the game harder for strong players. By changing 

the difficulty of the game dynamically, the game will be more challenging for the 
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stronger player, and less frustrating for the novice player. It is worth mentioning that the 

above setting is still subject to change. For example, if the game would be too easy for 

the weaker player, the adaptation mechanism makes it harder again. 

 

Figure 8.  General concept of game balancing using minigames 
 

Although the setting of the minigames in the above example is dynamically 

modifiable, it is also possible to change the frequency of the minigames during the main 

game. For instance, the game could trigger more minigames for the stronger player. To 

be able to change the difficulty level and the frequency of minigames, game designers 

should address the two following questions: 

1. How frequently should minigames be used? 
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2. How much change in the difficulty level of the minigames is appropriate? 

There are several ways these adaptation decisions can be made which will be 

discussed in the next chapter. 
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CHAPTER FOUR 
ATM: ADAPTIVE TIME-VARIANT MINIGAMES 

 

Two main issues regarding game time balancing using minigames are studied 

here: First, if minigames are used to perform the time balancing in a game, how often 

should minigames be updated? Second, how much should time vary within a single 

minigame? 

The following experiments were performed to evaluate these issues: 

1. Find the appropriate vs. frequency of adaptation, three different adaptation methods: 

Discrete (One-shot) balance, State balance and Continuous balance were 

investigated. 

2. Find the appropriate amount of manipulation in minigames’ game mechanics; 

parameters that affect player’s overall performance, the completion time, are 

tabulated: In this research the focus is on Aggressiveness, Number of Elements, and 

Interaction against noticeability of the modification. 

3. A progress-vs.-completion model called Temporal Exemplar was created to acquire a 

reusable model of players’ experience while playing the minigames.  

In this chapter the Temporal Exemplar Model is discussed first. Next, the 

effective parameters on players’ experience and three different balancing frequencies are 
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examined. Finally, four different minigames that are compatible with time balancing 

algorithms are presented and their performance when different balancing algorithms are 

employed will be discussed.  

 

4.1. Temporal Exemplar 

As mentioned previously, one of the issues common to every balancing algorithm 

is that the game designer does not know what constitutes as easy, medium and hard 

difficulty for the game. To address this issue and to be able to deliver a particular total 

completion time in minigames, the system must have a model of how long the minigame 

should take. This model can be as simple as a single completion time value or more 

complex if techniques such as continuous adaptation are to be used (discussed later in this 

chapter).  

To find how different players progress in the minigames, an exemplar model for 

each minigame was developed by asking eight people to play the minigames without any 

adaptation, and creating a time-vs.-progress model from the averaged data (see example 

in Figure 9). This figure is meant to present to the general concept of time-vs.-progress 

model and is not the actual model. Players were asked to finish the game as quickly as 

possible, using as few resources as possible. For instance, the exemplar model for a 

puzzle game records the average time for each puzzle piece to be placed correctly. 

Consequently, for a puzzle game with 20 pieces the exemplar model has 20 points and 

each point represents the average time of all test players to insert that specific piece of 

puzzle correctly. Hence the overall model shows the average progress of test players 

when there is no adaptation is employed. In the actual game play session, the progress of 

players is compared with the temporal exemplar model for every puzzle piece and the 
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overall progress will be calculated by adding all the completion times of previous pieces. 

Finally, it is possible to adjust the difficulty of the actual game based on the result of this 

comparison. 

Using the time-vs.-progress model, every point of the adaptation algorithm, which 

will be discussed later in this chapter, can be mapped to the model, allowing for the entire 

or a subsection of the minigame to be estimated. Expert design or mathematical 

derivation could also have been employed, but exemplar data was chosen as the least 

likely to confound subsequent experiments.  

 
Figure 9.  Sample Time-vs.-Progress model 

 
 

4.2. Important Parameters in Noticeability of Adaptation Algorithms  

The adaptive algorithm controls the type and magnitude of adaptations. These 

algorithms compare the player’s current performance to some model of desired 

performance. Within this general class, adaptive algorithms can still vary across several 

characteristics. For example: 
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• Aggressiveness: the algorithm can be more or less aggressive in correcting a disparity 

between the player and the ideal. For example, Bateman and colleagues noted that 

cautious adjustments were sometimes not able to make up a disparity before the game 

finished [26]. 

• Number of elements: algorithms can change a single parameter of a single game 

element at a time, or can change several simultaneously. Changing multiple elements 

can reduce the visibility of adaptation in game, but can also be more difficult to 

model. 

• Interaction with game narrative or appearance: algorithms may attempt to make their 

adaptations less noticeable by interacting with the game narrative – a change to an 

element’s parameter could be explained through additional narrative elements (e.g., 

there are more enemies to defeat because reinforcements have arrived; the ball is 

moving slower because a penalty brick was hit). 

 

4.3. Frequency of Adaptation Algorithm 

In addition to the characteristics of adaptation algorithm mentioned in previous 

section, the frequency at which adaptation decisions are made is a critical part of the 

adaptive algorithm. Game state adjustment could be continuous, such as the continuous 

adjustment of traffic load in Need For Speed: The Run1 to adapt the challenge level, or 

could be discrete, as with the preferential distribution of “power-ups” in Mario Kart. 

                                                
1 The official Need For Speed website. Available http://www.needforspeed.com/the-run 
(Accessed 4 Nov 2013) 
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Frequency of adaptation plays a major role in this process, because the granularity of 

adaptation can dramatically affect noticeability. 

 

4.3.1. Discrete (One-Shot) Balance 

In this method, players play the game with the starting parameters until a preset 

duration is exceeded, then a single immediate adjustment in balancing parameters occurs. 

The preset duration can be any value chosen by game designers. In this research, this 

balancing method was evaluated with two different targets: minimum completion time 

and average completion time.  

 
Figure 10.  Variation of game's configuration based on time 

 
 

In this case, the adaptation algorithm is employed only once, and it dynamically 

changes other components of the game to compensate for the latency of players (Figure 
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10). The adaptation algorithm starts when the minimum time (or any time which is set 

prior the game start) is passed. Some of the advantages of this method are: 

1. Discrete balancing is simple and easy to implement. It requires the least amount of 

information about the game state.  

2. It can provide a minimum completion time in conjunction with game mechanics 

because adaptation will not occur until a minimum time is reached. 

Although this method does provide a degree of dynamic balancing, it has the 

following shortcomings:  

1. The minigame takes a minimum amount of time to complete, which would reduce 

flexibility if a minimum time is undesirable. 

2. The adjustment may be too coarse, making it difficult for novice players, and also 

more likely to be noticed by players. 

These issues can be addressed by employing a fully dynamic adaptation that 

modifies the adaptable elements of the game as play proceeds. In the next two balancing 

methods, State balance and Continuous balance, the temporal adjustment without any 

minimum time constraint was employed. 

 

4.3.2. State Balance 

In State balance, a player’s performance is compared with an exemplar every time 

a particular game state changes (e.g., a subtask is completed). For example, in a puzzle 

game, players should assemble all the pieces successfully to finish the game. Putting each 
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piece of puzzle into its correct place is a subtask. In a state-based update, balancing 

parameters would be recalculated after every puzzle piece was placed. 

Using collected times for each state change, a progress-vs.-time model can be 

implemented (see section 4.1). The total completion time is then the sum of the 

completion times for each subtask. For example, in Figure 11, each milestone represents 

a successful piece placement in a puzzle game in the time-vs.-progress model and the 

black line shows how a new player has played the game. When the player reaches the 

first milestone, the State balance algorithm is called, which checks whether the players is 

ahead the time-vs.-progress model or not. If the player is faster than the reference, the 

State balance algorithm manipulates the game components and makes it harder, for 

example decreasing the mouse speed. If the player was initially slower than the model, 

the State balance algorithm makes the game easier to let the player progress faster. This 

process repeats at each milestone and tries to make the new player’s total completion 

time as close as possible to the total completion time recorded in the progress-vs.-time 

model. 

 

4.3.3. Continuous Balancing  

In Continuous balance, a player’s performance is compared with an exemplar at 

regular intervals (usually a factor of the game’s heartbeat - the speed at which the game is 

rendered) (Figure 12). The Continuous method is a balancing method with a finer 

granularity, able to detect a change in game state smaller than a subtask. This balancing 

method is called “Continuous” because the intervals employed were much smaller than 

human perception, appearing continuous to the player. In this method, similar to State 

balance, the progress-vs.-time model is used to decide how to balance the game. 
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Figure 11.  Time-vs.-Progress model for State Balancing: The player's time oscillates 

around the desired time that the designer set in design stage of the game 
 

 

Figure 12.  Time-vs.-Progress model for Continuous balancing 
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There are some differences between Continuous balance and State balance: 

1. In State balance, the granularity of the progress-vs.-time model (milestone in Figure 

11) is equal to every activity in the game that changes a subtask level element, for 

example placement a piece in its place in a puzzle game. The granularity in 

Continuous algorithm is usually a multiple of the game heartbeat, and balance is 

recalculated regardless of subtask state. 

2. In State balance, the balancing algorithm tries to make the game state as close as 

possible to progress-vs.-time model at the same milestone independent of total 

completion time. In Continuous balance, the algorithm compares the current state of 

the game with the progress-vs.-time model as frequently as possible and, if the 

difference is more than a threshold, the balancing algorithm manipulates the 

balancing parameters to compensate. 

 

4.4. Four Example Minigames 

Four minigames were used to test the efficacy of the balancing algorithms: 

Spinning Puzzle, Electris, Click-and-Hack, and Brickout. Each game has both static and 

dynamic balancing mechanisms. While the primary purpose was to evaluate the dynamic 

balancing algorithms, also evaluated two static balancing settings (deployed as two 

difficulty levels) for each minigame to ensure that the dynamic algorithms’ performance 

was not specific to a given starting configuration.  

All the games were implemented in C# using the XNA framework. Continuous 

updates were tied to the XNA game heartbeat, of 16.7 millisecond. Each game has 

manipulable components which game designers can use to modify the total completion 
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time of the minigame. In order to mask dynamic changes in game mechanics, the 

intensity of the change was reduced and the change was reflected gradually in the 

minigame. For example, if any change in the speed of a component in a minigame is 

required, it was performed linearly over a two-second period. Hiding these changes was 

required to make sure that players were not interrupted by sudden changes in game’s 

routines. 

 

4.4.1. Click-and-Hack 

Click-and-Hack is a variant of the fairground game “Whack-a-Mole.” Players 

must click on the “Hack” button and then quickly click on a computer image that appears 

at a seemingly random location on the screen (Figure 13). Click-and-Hack is essentially a 

Fitts’ Law task [48], where the difficulty of the challenge is proportional to the size of the 

target and the distance from the Hack button. 

Static and dynamic elements: The static balancing mechanism is the number of 

targets that must be clicked to complete the game. The combined distance-size tradeoff – 

generally termed the index of difficulty in Fitts’ law studies – is the dynamic balancing 

mechanism. 

Dynamic adaptation method: The target size and distance between the “Hack” 

button and targets were used as the adjustable parameters. In Discrete balancing, two 

different methods were tested: 
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Figure 13.  Click-and-Hack minigame: In this image, the player has clicked the "HACK" 

button and a new target (computer) has been appeared 
 

1. During normal game play, the computer can appear anywhere on the screen at a fixed 

size. After the minimum time is reached, the size of the target will be increased and 

the game gets easier for players. 

2. In general the game window was equally divided into three different areas: “Close”, 

“Middle” and “Far”. During the normal game play, the computer can appear 

anywhere in the “Middle area” (Figure 14). When the player is progressing more 

quickly than the exemplar and the average completion time of the minigames is 

reached, targets are drown from a distribution biased to provide more distant targets. 

When the player is slower than the exemplar and the average completion time of the 

minigame is reached, targets are drown from a distribution biased to provide closer 

targets. 
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3. Dynamic adaptation could be also accomplished by reducing the number of targets. 

For example, when the minimum time is reached, the game finishes and the player is 

led to believe that the goal has been accomplished; however this method was not 

investigated here. 

In the State Balancing algorithm, clicking on each computer changes the state of 

the game and causes the State Balancing algorithm to compare the player’s progress with 

the exemplar model. If the player is slower than the recorded time in the model, new 

target will appear in the “Close area” (shown in Figure 14) to make the game easier. If 

the player is faster than the corresponding sample in the exemplar model the next target 

will appear in the “Far area”, causing the game to be harder. These areas are obtained by 

dividing the available surface by three.  

 
Figure 14.  Click-and-Hack: There are three different areas: "Close",  "Middle" and "Far" 
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The Continuous balancing mode is similar to State balancing in this case, because 

it is not possible to modify the game balance any faster than State balancing algorithm 

without employing mouse trajectory modeling. To adjust the game balance in Click-and-

Hack the size of the targets, or the distance of the target from the fixed Hack button, is 

used, which can only update once a subtask has been completed. In both Continuous and 

State balancing methods, the threshold of the difference between player’s time and the 

equivalent time in temporal exemplar model was one second. 

 

4.4.2. Spinning Puzzle 

In the Spinning Puzzle game, players must align a series of disks to make a 

continuous path from a chip to a cooling fan. There is only one solution, so the game 

poses a similar gameplay challenge to a physical geometric puzzle (Figure 15). 

Static and dynamic elements: The static balancing mechanism is the number of 

disks in the puzzle. The dynamic balancing mechanism is the rotational speed of the 

pieces. 

Dynamic adaptation method: In this game, the rotational speed of the disks is 

modified dynamically in the game to adjust the balance. In all cases the speed begins at 

12°/s (Normal speed) and when needed, it increases to 18°/s (Fast speed) or decreases to 

8°/s (Slow speed).  
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Figure 15.  Spinning Puzzle: the player turns disks to plug the chipset on the left side to 

the cooling fan on the top right side. Red circles in each disk represent the pluggable 
point and yellow circles show the start and end points of the path 

 

Two methods of dynamic balancing were employed: 

1. During the normal game play, the rotational speed of the disk is Normal. When the 

minimum completion time of the minigame is reached, the rotation speed will be set 

to Fast speed to make the game easier.  

2. During the normal game play, the rotational speed of the disk is Normal speed. When 

the average completion time of the minigame is reached, the rotation speed will 

gradually be set to Fast speed to make the game easier, to hide this change from 

player. 

In the State Balancing algorithm, the rotation speed is recalculated every time a 

player moves a disk to the correct location. The number of recalculations for the State 

algorithm is therefore equal to the number of disks minus one (assuming that players do 
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not move a correctly placed disk to an incorrect position). If the difference of the current 

game play time for the correctly located disk and the recorded time for the same disk in 

the exemplar model exceeds the threshold (one second), the rotation speed will be set to 

Fast speed for the next disk. If the player is slower than the exemplar, the rotation speed 

will be set to Slow speed for the next disk. 

The Continuous algorithm measures the game state every 16 ms (equal to the 

heartbeat of the game) and updates the rotation speed at the same rate if necessary. The 

algorithm compares the current player’s game play time with the recorded time in the 

exemplar model and if this difference exceeds the threshold (one second), it changes the 

rotation speed. In this case, the State and Continuous cased are different because game 

State and subtask States are distinct. 

 

4.4.3. Electris 

Electris is a variant of falling brick games such as Tetris or Bejeweled. Electrical 

components fall from the top of the screen down changing their appearance sequentially 

with every downward step. The player must match a particular electric circuit shown at 

the top of the screen. Like most falling brick games, the bricks fall at a set rate from top 

to bottom. While the component falls, the player can move it to left and right with the 

arrow keys, and can commit the component by pressing spacebar, which causes the 

component to stop cycling and fall at a faster rate (Figure 16).  

Electris is distinct from the other games, because there is a substantial error cost. 

Once a component has been played, it cannot be removed easily. To remove an incorrect 

component, the player has to put another similar component next to the incorrect 

component to remove it, which may not be possible.  If there is no room beside the 
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incorrect component, it negates an entire row and requires the player to finish filling the 

row so they can begin a new row on top. 

Static and dynamic elements: The primary static balancing mechanism is the 

number of rows that must be completed. The primary dynamic balancing mechanism is 

the speed at which pieces fall after the spacebar is pressed. 

Dynamic adaptation method: In this game, the falling speed is changed to adjust 

the balance of the game. In all cases, pieces fall at a rate of 120 pixels/second (Normal 

Speed) and when it is required, this rate is increased to 360 pixels/second (Fast Speed) to 

let players to progress faster, or decreased to 80 pixels/second (Slow Speed) to prevent 

players from finishing the game too quickly. 

Similar to the previous minigames, in Discrete balancing two different methods 

were employed:  

1. In the normal setting, pieces fall at Normal speed until the minimum completion time 

of the minigame is exceeded, and then pieces fall at a Fast speed.  

2. In the normal setting, pieces fall at Normal speed until the average completion time of 

the minigame is exceeded, and then pieces fall at Fast speed. To intertwine the 

adaptation with the narrative, the color of the background varies (red for Fast, green 

for Normal, blue for Slow – Figure 17). The goal of this visualization is to hide the 

adaptation process from the player’s perspective. Players were told that the variation 

in falling speed is a random event in the minigame. 
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Figure 16.  Electris: The player is trying to create the same pattern as shown on top of the 

screen, but has made several mistakes and lost the very first rows 
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Figure 17.  Electris: On the left side the red background shows that the game’s speed has 

increased, while the blue background represents the slow mode of the game 
 

In the State Balancing algorithm, the falling speed is set based on the number of 

correct pieces placed when compared with the exemplar. Every time the player places a 

piece correctly, the State balancing algorithm compares the current play time of the game 

with recorded time in the exemplar model. If the player is slower than the model, the next 

rate of the falling for the next piece will be set to Fast speed. If the player is faster than 

the exemplar model, the rate of falling for the next piece will be set to Slow speed. 

In Continuous balancing algorithm, the current play time of the game is compared 

with the recorded time in the exemplar model on every 16 ms and the falling speed will 
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be adjusted based on the difference between these two times to one of the Fast, Normal, 

or Slow values. In State balance mode, the rate of the falling cannot be changed between 

placements of pieces. If a player places a piece slower than the exemplar model, the rate 

of falling will be set to Fast and it remains consistent until the next piece is placed 

correctly. In Continuous mode, based on whether the player is faster or slower than the 

exemplar model, the rate of falling will be adjusted. In both Continuous and State 

balancing methods, the threshold of the difference between player’s time and the 

equivalent time in temporal exemplar model was five seconds. 

 

4.4.4. Brickout 

In Brickout, the player must guide a bouncing ball such that it hits a series of 

bricks at the top of the screen. Bricks disappear when struck, and the game is complete 

once all the bricks have been eliminated (Figure 18).  Brickout represents a baseline for 

the other styles of adaptation because the brick count (and therefore the total distance 

travelled) and ball velocity represents the most direct mapping to total time as the ratio of 

distance and speed. 

Static and dynamic elements: The static balancing mechanism is the number of 

rows of bricks. The dynamic balancing mechanism is the speed of the ball.  

Dynamic adaptation method: In this game, the speed of the ball is changed to be 

able to adjust the balance of the game. Normally, the ball moves at 20 pixel/second 

(Normal speed). The Slow speed was 10 pixels/second and the Fast speed was 30 

pixels/second. 
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Figure 18.  Brickout minigame: The player guides the ball to bricks to eliminate them as 

fast as possible 
 

In Discrete balancing two methods were employed:  

1. When the game starts, the ball moves at Normal speed and when the player exceeded 

the minimum completion time, the algorithm increases the speed of the ball to let the 

player progress faster. 

2. The initial speed of the ball is set at Normal speed. When the player exceeded the 

average completion time of the minigame, the ball’s speed gradually increased to 

Fast. The ball’s color changes when the speed is adapted using the same scheme as 

the Electris background (Figure 19).  

In the State Balancing algorithm, every time a brick is hit, and the speed of the 

ball is changed on the rebound. If the player is slower than the recorded time in the 

exemplar model (one second threshold), the ball speed will be set at Fast, if the player is 
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faster than the recorded time in the exemplar model (one second threshold), the speed of 

the ball will be set at Slow. All the speed variations are reflected gradually in the game to 

hide the balancing process from the player’s perspective. 

In Continuous balancing, the speed of the ball is continuously and gradually 

adjusted based on the difference between the current play time and the recorded time in 

the exemplar model. In the State balance algorithm, the speed of the ball is adjusted when 

a brick is hit and remains consistent until the next brick is hit. In Continuous balancing, 

every time that the differences of the current play time and the corresponding recorded 

time in the exemplar model exceeds the threshold (one second), the speed of the ball is 

adjusted. 

 

4.5. Minigame Completion Times and Game Mechanics 

As mentioned earlier, each minigame includes two different types of elements: 

static elements and dynamic elements. Static elements of the minigames help game 

designers adjust the balance of the initial condition of games. For example if the game 

designer decides to use the Spinning Puzzle minigame, the number of disks can be used 

to set the difficulty of the minigame. The “static” term is used for these elements because 

they are set initially and are independent of a player’s subsequent performance in the 

game. 
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Figure 19.  Brickout minigame: in the top game the ball's color has changed to red to 

show the increased speed, while in the bottom image the ball is moving relatively slowly 
and its color is blue. 

 

On the other hand, the dynamic elements can be changed during game play and 

therefore the difficulty level of the minigames is adjustable. Table 1 shows all the static 

and dynamic elements of the minigames, elements that are used for initial settings and 

mathematic formulas that are required for all calculations. In principle, other components 

as diverse as play area or number of avatars or simultaneity of tasks could be utilized as 

manipulable parameters, but those parameters that were actually implemented are listed. 
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Table 1.  Minigame parameters and formulas. In all formulas “h” represents the height of 
the screen. 

Game Manipulable Components Initial Settings Adaptive Component Minimum 
Time 

Click-and- 
Hack 

Mouse speed (v), target size, 
number of targets (n), 

distance (x) 

Target size,  
# of targets Target size, distance 

2x!
v

!

!!!

 

Electris 

Piece speed (v),  
number of lines (N), 

Number of pieces in each line 
(n) 

Number of lines 
(N) Piece speed N !!

!
!
!!!   

Spinning 
Puzzle 

Rotation Speed (ω), number 
of disks (n), min. # turns 

required (θ) 

Number of 
disks Rotation speed 

θ!
ω

!

!!!

 

Brickout Number of bricks (n), speed 
of ball (v) Speed of ball Number of bricks 

2h!
v

!

!!!

 

 

4.6 Chapter summary 

In this chapter the Temporal Exemplar Model (progress-vs.-time model) was 

introduced.  Also the effect of parameters on players’ experience was investigated and 

three different balancing algorithms: Discrete balancing, State balancing and Continuous 

balancing, which presented three different approaches in frequency of balancing 

algorithms were introduced. Finally, four different minigames were presented that were 

compatible with the introduced time balancing algorithms and discussed their 

performance when different balancing algorithms are employed. In the next chapter, the 

performance of these balancing algorithms will be evaluated using the four different 

minigames introduced in this chapter. 
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CHAPTER FIVE 
EVALUATION 

 
 

In this chapter the performance information for ATMs will be provided. Also the 

key elements in time balancing will be identified and the design parameters will be 

reviewed. The following questions will be investigated to be able to evaluate the 

performance of ATMs: 

1. Were the minigames were playable?  

2. How fun was the players’ experience? 

3. Were the minigames able to deliver the desired time constraints using the three time 

balancing algorithms? 

4. Were the minigames able to balance the timing of tasks in a real game? 

To answer the above questions, the evaluation was divided into three phases:  

1. A laboratory study to examine whether it is possible to manipulate the completion 

time of minigames using a time balancing algorithms. The simplest of balancing 

algorithms, Discrete balancing, was evaluated for all four minigames in terms of 

performance and user experience. 
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2. An integrated study tested the performance of balanced games embedded within a 

larger game. It was interesting to see whether the larger game is still fun to play when 

balanced using minigames. 

3. The effect of intensity and frequency of the balancing algorithms crossed with 

different genres of game (shooter, puzzle, click-and-point) was evaluated by 

comparing all three balancing algorithms (Discrete, State and Continuous) together in 

terms of performance, noticeability of adjustments and perceived enjoyment of the 

minigames.  

 

5.1. Testing Discrete Balancing Algorithm using Adaptive Time-Variant Minigames 

Understanding whether time balancing algorithms are able to manipulate the 

completion time of the minigames is important because if time balancing algorithms 

cannot manipulate the completion time of the minigames, the impact of the type of 

adaptations is of limited interest. 

 

5.1.1. Goal 

The main goals of this phase of the experiment were as follows: 

1. Identify the performance of the Discrete balancing algorithm in controlling the total 

completion time of the minigames. The performance of the balancing algorithms will 

be investigated from different perspectives such as user experience and accuracy of 

balancing algorithm. 
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2. Determine the performance differences between different minigames in achieving 

balance. 

3. Determine the relationship between the difficulty level and the performance of the 

balancing algorithm. 

 

5.1.2. Method 

A group of 15 participants (10 male and 5 female, aged 22 to 33) was asked to 

play all the minigames. The experiment ran on a Dell 6500 laptop (Intel Core 2 Duo, 2.53 

GHz) with a 15-inch 1800x1200 display, and using a standard keyboard and mouse. 

Players were trained on each minigame at each difficulty level once to reduce training 

effects, and then further played each minigame once for every difficulty level both with 

and without Discrete adaption. The difficulty levels for each game are shown in Table 2. 

The difficulty parameters are the static elements of the minigames that were consistent 

during the game play. By initializing the value of these parameters prior to start of the 

minigames, it was possible to set the difficulty, and therefore, the minimum completion 

time of the minigames. 

As shown in Table 2, the number of difficulty levels for Spinning Puzzle and 

Click-and-Hack is not the same as for Electris, because it was possible to bias the result 

by setting the difficulty too high. As discussed in chapter 4.4.3, the penalty for error 

associated with Electris is high and setting the difficulty at a high level could lead to 

negative play experiences. Brickout was not used in this experiment because it was used 

for another purpose, which will be explained in section 5.2.2.1. 
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Participants were told that minigames would be used in a larger game in the future 

and were not told anything about the adaptation algorithms in the games. To hide the 

adaptation process from players, participants were told that the environments of the 

games are imaginary and the story of the main game will be in a mysterious, unknown 

world.  

Table 2.  Difficulty level of the minigames. The table shows the difficulty of the 
minigames with respect to their configuration. For example Spinning Puzzle with 4 disks 

(rings) is the easiest and 8 disks is the hardest configurations of this game 
Game Difficulty Parameter Value of Parameter 

Spinning Puzzle Number of rings 4,5,6,7,8 

Electris Number of rows 1,2,3 

Click-and-Hack Number of targets 10,20,30,40,50 

 
 

5.1.3. Analysis and Result 

This study was intended to verify that time of completion is controllable through 

the Discrete balancing algorithm using the static and dynamic elements of the minigames. 

The results showed that all the completion times were faster with adaptation, and linear 

with difficulty, albeit with a smaller slope. Results for the three tested games are shown 

in Figure 20. 

These results demonstrate three important properties of the adaptive minigames: 

• Minigames completion times increased linearly with difficulty. The more difficult the 

game is, the more time it takes for the player to finish. This fact, at first, sounds 

obvious but it is important for design. Furthermore, the linear increase means that the 

manipulation of initial estimated or minimum completion time is straightforward and 

predictable. 
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Although increasing the number of disks in Spinning Puzzle makes the game longer, 

the role of other parameters such as the initial offset degree for each disk should not 

be underestimated. These charts (Figure 20) indicate the change in completion time 

when changing one adaptive element of the minigame and keeping the rest constant. 

• There is a game-dependent decrease in completion times with adaption. In Figure 20, 

the lower line, marked with red circles shows the average completion time of the 

minigames for different difficulty levels. Although this decrease is not the same for 

different minigames, it establishes the functionality of the adaptation algorithms.  

• The means and variation of completion time of each of the games are different. The 

mean shows the expected completion time, since it is calculated over a range of 

players. Variation measures how far the completion times are spread from the mean 

value and indicates the degree of heterogeneity amongst players. The variation shows 

the differences in different players’ skills and experience. It is indicates that the 

completion times of different players vary based on parameters other than the level of 

the difficulty. For example, in Click-and-Hack, this range changes linearly with the 

difficulty level of the game, while in Spinning Puzzle it does not occur. In fact, Click-

and-Hack is a repetitive task, which is hidden within the narrative of the game, every 

subtask is a smallest and simplest possible activity in the game and the penalty of 

player’s mistakes is minimal. These reasons decrease the variation of completion time 

of the different players. On the other hand, Spinning Puzzle requires some thought 

and state of mind, which is highly dependent on the individual’s skills and 

experience. 
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Figure 20.  A: Average completion times for Spinning Puzzle for 5 different difficulty 
levels. B. Average completion times for Click-and-Hack for 5 different difficulties. C. 

Average completion times for Electris for 3 different difficulties (n=15). 
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5.2. Testing Discrete Balancing using A Real Game: Stealth Hacker 

As a part of the second evaluation phase, an experiment was run on a MMR 

game. A mixed-reality location-based game called Stealth Hacker, inspired by the 

playground game Cops and Robbers, was developed and ATMs were exploited to 

balance the timing of its components. Evaluation of the time balancing algorithms using a 

larger game was essential to establish whether the time balancing using adaptive time-

variant minigames can impact overall game balance.  

 

5.2.1. Goal 

The main goal of this phase of the experiment was to evaluate the performance of 

the adaptive algorithms in a larger game, in particular the user experience in terms of 

perceived enjoyment level of the game (and minigames), noticeability of the balancing 

algorithms, in both minigames and the main game, and the efficiency of the minigames at 

maintaining balance.  

 

5.2.2. Method 

 

5.2.2.1. A Multi-Player Location-Based Mixed-Reality Game: Stealth Hacker 

Stealth Hacker is a mixed-reality location-based game inspired by the playground 

game Cops and Robbers, played with several Cops and a single Hacker. The shared 

playground is a network of computers, which the Hacker attempts to infiltrate. The Cops 

navigate this playground physically, moving from computer to computer and scanning 



 

 72 

them with smartphones (Figure 21.A). The Hacker, fittingly, moves from computer to 

computer virtually, by navigating a simple avatar around a network diagram (Figure 

21.B).  

 
Figure 21.  Stealth Hacker interface: The real-world players’ interface on smartphone (A) 

and the virtual-world player’s interface on a standalone Personal Computer (PC) (B) 
 

The movement speed of the Hacker, fitting the narrative, is on the order of 

seconds, providing the feeling of zipping across the network from computer to computer. 

Cops, in contrast, move from computer to computer on foot, with elapsed times on the 

order of tens of seconds, fitting the Newtonian physics that governs motion in the real 

world. This asymmetry of spatial representation and navigation speed creates an 

interesting timing dichotomy: in the real world, the Cops predominantly spend time 

moving between nodes, but spend little time at each node, while the Hacker can transit 

between nodes quickly, and therefore must be forced to spend more game time at 

network nodes to maintain time balance.  

The Cops’ interface provides them with information on the location of their 

partners (both current location and planned movements), the last known location of the 
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Hacker, and a chat interface. When the Cops scan a computer, the program records the 

computer’s Bluetooth Media Access Control (MAC) address, and transmits it to the 

server wirelessly. The scanned computer does not actually contribute anything other than 

its Bluetooth address, because the server manages the game state, and the hacking and 

scanning are simulated as minigames on the smartphones or the Hacker’s PC. The Hacker 

tries to hack every computer in the network. Minigames are launched when the Hacker 

attempts to infiltrate a computer, and these minigames provide dynamic balance through 

guaranteed minimum and expected mean and maximum times at each node. 

In Stealth Hacker, one of three minigames (Click-and-Hack, Electris, or Spinning 

Puzzle) is allocated to an individual node when the Hacker arrives and attempts to break 

in to the computer at that node. The game choice and its initial complexity are based on 

the average real-world distance from the attacked computer to the two nearest Cops, 

based on an estimated foot speed of 4.95 ft/s1. Although Cops were allowed to run among 

different computers, this speed was assumed as their average speed because it was not 

possible to calculate the average speed of Cops inside of the university building. Two 

Cops were chosen - first to motivate the Cop players to go together to arrest the Hacker, 

and second, to balance the powers of the Hacker and the Cops. In fact, the game was 

designed in such a way that arresting the Hacker was most unlikely for a single Cop and 

at least two Cops had to cooperate to be able to catch the Hacker. The appropriate 

equation in Table 1 is used to calculate parameter settings for each game and that will 

provide a target completion time that matches the estimate of the Cops’ travel time (from 

the distance and speed heuristic). The Discrete adaptation was used to balance the game, 
                                                
1 Aspelin, K., Establishing Pedestrian Walking Speeds, A proposal submitted to Portland 
State University, 2005 
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which means that once the Hacker has played the minigame for the minimum time, the 

game adapts to allow the Hacker to finish whatever tasks remain as quickly as they are 

able, by increasing the speed of the adaptive component listed in Table 1. 

The Brickout game is given a special role. It is triggered if the Hacker is caught 

by one of the Cops. Catching the Hacker occurs if a Cop arrives at the same physical 

location as the Hacker’s virtual location, and ‘scans’ the computer. For every Cop that 

‘scans’ the Hacker during a single instance of the Brickout game, an additional row of 

bricks appears, making the game more difficult to complete. If the Hacker completes the 

game before a timer runs out, they escape back into the network. If the Hacker fails to 

complete the minigame, they are captured and the Cops win. 

The minimum game completion time for Brickout, as set by the ball speed, is 

slightly longer than the average physical transit time between any two physically adjacent 

nodes in the network. Well-organized teams of Cops therefore have the chance to ‘gang 

up’ on the Hacker by ensuring that reinforcements are sufficiently close. This special case 

demonstrates that minigames can be tuned to manipulate game balance based on user 

input as well as the initial game state. 

 

5.2.2.2 Game Balance in Stealth Hacker 

As mentioned previously, game balance in a mixed-reality game is critical, and 

ATMs were used as the main balancing mechanic, both to balance the timing of the tasks 

in the game, and to improve the enjoinment of the game for the players. In Stealth 

Hacker, Cops play the game in the real world while the Hacker plays in a virtual world. 

Obviously there is a huge difference between these two types of worlds that should be 

considered in the game balance: 
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• Cops can freely move in the real world and change their location, while the Hacker is 

limited to the virtual world of the game. 

• Cops can move with their desired speed (as fast as or as slow as they want) but the 

Hacker moves with a constant speed that the game designer has set prior to the game. 

• The Hacker moves from one computer to another without any obstacles while it is 

possible for Cops to be trapped by the potential obstacles of the real world such as 

dead ends, lack of signal coverage and locked doors. 

 

Figure 22.  Infrastructure of Stealth Hacker 
 

Stealth Hacker was implemented as a test bed to evaluate the performance of the 

ATMs. Although managing technical issues in MMR games is a challenging task, it is 

possible to address many of the timing issues by exploiting ATMs. The goal here was to 
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make the gameplay enjoyable for players. It would be easy to force a virtual player, the 

Hacker, to wait for the real players by arbitrarily pausing at nodes; however, watching 

loading bars is not generally regarded as a recreational experience. In Stealth Hacker, it is 

possible to check the game state continuously while the Hacker is in the middle of the 

hacking process and change the minigame’s game mechanic to reach balance.  

 

5.2.2.3. Implementation 

Stealth Hacker is implemented with C# .NET using Visual Studio 2010 and 

Android using OpenGL ES and Eclipse Helios. Stealth Hacker contains more than 12000 

lines of code for all game components. Figure 22 represents the infrastructure of the 

game. As shown in the figure, the game has two different sections; real and virtual, 

where Cops and the Hacker play. The mixed-reality engine of the game is responsible for 

executing the game play and synchronizing the real and virtual sides. When a Cop gets 

close enough to one of the computers, the Cop’s device detects the presence of a new 

location via the Bluetooth signal of the computers. The Cop’s device sends a request to 

the server including the state of the game (location of players), and asks for the latest 

update on the Hacker’s position. The server receives the Cop’s request and reflects it to 

the current state of the game in the database server of the game (based on Microsoft SQL 

Server) and updates the state of the game. The server then sends the Cop the updated 

game state. The Hacker’s system also frequently asks the server for the latest game state 

and represents it in the Hacker’s interface.  

Since time management and synchronization in multiplayer games is one of the 

most important factors that affect the game play, it was crucial to handle the timing of 
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tasks in both the real-world and the virtual-world. Moreover, location-based games are 

usually vulnerable to stochastic confounds such as interruptions in network coverage. 

 

 

Figure 23.  Class diagram of Stealth Hacker 
 

The system minimizes data transfer by eliminating worthless data transfers from 

the player-server communication (Figure 23).  For example, whenever a Cop asks the 

server for the latest update, the server checks the latest update time of the game state 

package received from the Cop with the most recent update of the game state in the 

server and answers to the Cop’s request only if these two states are different. The code 

below shows a sample of the XML message that is transferred between a Cop and the 

server: 

<Inspectors> 
<inspector id=”0” position=”0”> 
</inspector> 
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[...] 
<hacker position =”0”></hacker> 
<scan request=”0”></scan> 
<victory flag=”0”></victory> 

</Inspectors> 
 

 

5.2.2.4. Experiment 

A group of four players aged from 25 to 39 years played Stealth Hacker eight 

times. Each time a different participant played the Hacker, meaning each player played 

the Hacker twice. Prior to the real experiment, participants played a practice round to 

make sure that the system worked smoothly and players understood the narrative and 

mechanics of the game. The experiment was run in the Thorvaldson building of the 

University of Saskatchewan. Computers were arranged in two different floors of the 

building: 

• Three computers in a second floor laboratory 

• One computer in the third floor corridor 

• Three computers in a third floor laboratory 

 

5.2.3 Evaluation of the Stealth Hacker MMR Game 

To evaluate the subjective user experience during play, a survey was 

administrated (Appendix A). Players felt that the minigames were fun (mean rating 3.6 

out of 5), and added to the overall game (4 Yes, 0 No), which was also seen as fun (mean 

rating 4.25 out of 5). Also participants were asked to rate the percentage of time they 

spent playing minigames (mean 62.5%), which was substantially less than the value 
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measured from the logs (mean 79.8%), which may indicate that players were attracted by 

the minigames. 

The balance of opportunity and outcome were examined by determining the 

number of hacked systems per game and plotting an annotated node occupancy diagram 

for one of the shorter games played. The ‘number of hacked systems’ metric is a measure 

of overall balance because if the number is too small, it indicates that the Hacker had 

little chance of winning; if too large, it indicates dominance by the Hacker. The Hacker 

hacked all seven systems three times, winning the game, but still managed to hack at least 

3 and an average of 5.75 systems in the 5 losses. The dynamic timing balance achieved 

by the adaptive minigames is shown for a single game in Figure 24. 

In this figure, the dark boxes represent the Hacker playing a minigame and the 

numbered light boxes represent the three Cops while each number refers to one of the 

Cops. The length of each box represents the time that each player has spent in a location. 

The y-axis is the node location (one of the seven computers). Early in the game the Cops 

were near the Hacker, and the minigame engine spawned three relatively easy games. 

Once the Hacker moved to a more distant node, a much more difficult game was 

spawned, which the Hacker successfully completed. In the final game, a more difficult 

game was also spawned, as the Cops were initially far away, but rapidly converged on the 

location of the Hacker and trapped him with three consecutive rows of Brickout, shown 

by the occupancy of location 3 at the end of the game.  
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Figure 24.  Player locations and actions in a single Stealth Hacker game 

 

To verify that the minigame duration reflected the game state as the game 

evolved, an analysis was carried out and the results showed in Figure 24. This figure 

shows that in a single instance at least, the Cops were often proximate to the Hacker 

while the Hacker played the minigame. However, a single game does not provide 

compelling evidence of efficacy.  

Figure 25 shows every minigame played over all eight conditions (each column 

represents one round of the game while one of the players was the Hacker). In this chart, 

each point represents a specific time while a minigame is being played: 

• The red points are the “Actual Time” which show the time that has been taken for the 

player to finish the minigame. 
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• The blue points are the “Estimated Time” which is calculated by the game engine and 

represents the minimum time that it takes for two Cops to reach the Hacker. 

• The green points are the “Minimum Time” which represents the minimum 

completion time for the current minigame. 

As shown in the chart, the estimated average time for two Cops to reach the 

Hacker closely tracks the minimum calculated completion time of the minigame, 

demonstrating that the employed techniques have sufficiently high temporal resolution to 

capture variable game states. The actual time of completion follows the minimum values 

and shows variability both within and between subjects demonstrating the techniques 

provides game balance control without artificially limiting the game, by still allowing for 

player expertise and chance to play a role. 

 
Figure 25. Completion times for all minigames in the experiment 
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In general three outcomes were observed: players had positive experiences 

playing the game as the Hacker, the game remained balanced in opportunity if not 

outcome, and the minigame timing reflected the game state at the time of instantiation. 

 

5.3. Testing the Effect of Temporal Adaption Granularity and Game Genre on 
Abilities of Time Balancing Algorithms 

Only the Discrete balancing algorithm has been presented thus far, both 

individually and embedded within a larger world with a MMR game. The third study 

tests the performance of other balancing algorithms – State and Continuous – and 

compares their results. To test State and Continuous balancing algorithms a time-vs.-

progress model was required (see section 4.1). Hence, the third study is divided into two 

sections: 

1. In the first section, an experiment was run to record players’ data while playing 

minigames separately. The result of this experiment was used to create as temporal 

exemplar models for each minigame. 

2. In the second step, the balancing algorithms for all minigames were evaluated using a 

different pool of participants. 

 

5.3.1. Exemplar models 

The time-vs.-progress model represents the player’s thinking and reacting 

behaviour, and generally, the way that players are playing a game. Since the model is a 

step-by-step record of progress over time, it can be used to investigate the general 

balance of the game. The main goal of this phase of the study was to create the progress-
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vs.-time model from players’ data for each minigame and represent it as a function of 

time. To be able to perform the Continuous balancing and State balancing algorithms, it 

is important to have a model that describes players’ experience as a form of progress over 

time.  

A group of eight volunteer participants was recruited to play each of the game 

conditions. The average performance of the eight players within each game was recorded 

in a temporal exemplar model, similar to Figure 9 in section 4.1, where ‘performance’ 

was defined differently for the different games: time per disk in Spinning Puzzle, time 

per brick in Breakout, time per targeting action for Click-and-Hack, and time per piece 

for Electris. 

 

5.3.2. Testing the Effect of Temporal Adaptation Granularity and Game Genre on 
Abilities of Time Balancing Algorithm 

The goal of this to experiment is to investigate two main issues with time 

balancing algorithms: 

1. Accuracy in managing completion time -which addresses the following questions: 

Question 1: are the adaptive approaches more accurate than the non-adaptive 

condition? 

Question 2: which adaptive approach is most accurate?  

Question 3: does game type or difficulty level affect accuracy? 

2. Player experience – which contains the following questions: 
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Question 4: Were there differences in the players’ perception of the different adaptive 

approaches? 

Question 5: Did differences in adaptation alter the players’ enjoyment of the game? 

 

5.3.2.1. Method 

For this study, 24 test subjects were recruited (12 male and 12 female, average 

age of 27 years) from the university community. Participants were all experienced with 

mouse-and-windows software, and had a wide range of experience with video games (18 

played games rarely – less than 3 hours a week, 5 played regularly – between 3 to 10 

hours a week, and 1 played frequently – more than 10 hours a week). The study was 

carried out in a controlled environment using two systems, on a Windows 7 PC with a 

1920x1080 screen and a dual core laptop with 1280x800 resolution. Minigames were run 

full-screen, and were all controlled with a standard two-button optical mouse. The study 

software recorded all performance measures and questionnaire data was gathered using 

online forms. 

Participants played two versions of each of the four minigames described in 

section 4.4 (Click-and-Hack, Brickout, Electris, and Spinning Puzzle). One version had 

‘easy’ starting difficulty, and therefore a lower expected completion time, and one 

version had ‘medium’ difficulty and a longer expected time. The specific starting values 

for easy and medium were dependent on the type of game, and are shown in Table 3. 

Fatigue may lead to biased results so the difficulty of the minigames was set such 

that the experiment would be completed quickly. Participants played the eight different 

minigames (four game types and two difficulty levels) under the four different adaptation 
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approaches described in section 4.3 (No balancing, Discrete balancing, State balancing 

and Continuous balancing). 

Table 3. Different settings for all minigames in the experiment 

 
 

Each player was briefed on the different games and the procedure of the study. 

Players were told that different game configurations would be tested, but not what the 

differences between the conditions were or the ordering of the conditions. Similar to the 

first study – Testing Discrete balancing, players were told that minigames were going to 

be used in a bigger game and that the purpose of the experiment is to find the best 

parameter settings, so there could be some differences in the games. The players then 

played the eight minigames shown in Table 3 (four game types and two difficulty levels) 

with each of the four balancing algorithms. Players played all of the difficulties and 

balancing algorithms within each game in a different order, based on a Latin square 

design. 

After every game, participants were given a short questionnaire to determine their 

play experience and their impression of the perceptibility of the algorithms. Participants 

were asked to complete the questionnaire (Appendix B) right after the experiments to 

make sure that the participant’s memory of the game was fresh. Game state and all 

parameters associated with the time balancing algorithms were logged. Once the 
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participants had completed all games, they were given a final questionnaire on their 

experience and a brief demographic survey. 

 

5.3.2.2 Evaluation 

The study used a factorial within-participants design, with three factors: 

• Adaptation Algorithm: No-Balance, Discrete balancing, State balancing, Continuous 

balancing 

• Difficulty: Easy or Medium starting difficulty 

• Game: Click-and-Hack, Electris, Spinning Puzzle, Brickout.  

The order of presentation of the games, and the order of presentation for the 

difficulty and adaptation conditions within each game, were balanced using Latin square 

designs. The main dependent measures were game completion time and game 

performance (progress over time was also recorded for the adaptation mechanism and is 

also used in the analysis). Timing data gathered from computer logs were analyzed with 

three-way ANOVA tests; post-hoc tests were conducted using Tukey’s Honest 

Significant Difference (HSD). Survey results were analyzed using Friedman’s ANOVA 

for related samples. For all tests, α was set at 0.05. 
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5.3.2.3. Overall Completion Time 

The ultimate goal of ATMs is to provide game designers with the ability to deploy 

situation-dependent time-balancing minigames within a larger game, and maintain tight 

control over the minigame completion time by using dynamic adaption to move 

individual performances toward an exemplar. Figure 26 shows the completion time 

distributions for all conditions in the second experiment. 

Figure 26.  Completion time distributions for all minigames and all conditions with 
minimum, 25 percentile, median, 75 percentile and maximum values 

 

Within each game category, the Continuous adaptation is usually the minimum in 

time and variation, and No-Balance adaptation case is usually at maximum. The 

exception is Spinning Puzzle in easy mode (5 disks), which was dominated by a few 

notable outliers in the State case, where completion time was dominated by the difficulty 

of the puzzle, not the speed of the disks. In all cases the quartiles (represented by the 

extent of the box) and the 95% confidence interval (represented by the whiskers) are 

smallest for the Continuous case, indicating that player performance more closely 

adhered to the exemplar. 
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5.3.2.4. Accuracy in Managing Completion Time 

Accuracy was determined by subtracting the completion time for each different 

game from the desired time indicated by the exemplar model; this provides an error for 

each minigame. Given the four adaption scenarios examined – No-Balance, Discrete, 

State and Continuous – the adaptive cases – Discrete, State and Continuous – should 

converge toward the exemplar, and the No-Balance case depart from the exemplar. Given 

the nature of the games, there should be differences in the relation between the balancing 

algorithms and the completion time for different games and difficulty levels.  

The ANOVA showed significant main effects of all three primary factors on error 

amount (Algorithm: F3,69=14.67; Game: F3,69=48.27; Difficulty: F1,23=16.13, all p<0.001). 

A summary of mean error amounts for these factors is shown in Figure 27.  

The primary interest in following up these main effects was to find whether the 

adaptive approaches were more accurate than non-adaptive case (Q1) and to explore the 

most accurate adaptive balancing algorithm among all the adaptive algorithms (Q2). A 

Tukey’s HSD test showed that there were significant differences between the balancing 

algorithms (all p<0.05): all of the adaptation conditions had significantly lower error 

amounts than the No-Balance condition, and the Continuous algorithm had significantly 

lower error than Discrete and State; no other differences were found. 
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Figure 27.  Top: mean error, by game and algorithm. Bottom: mean error, by difficulty 
and algorithm (note that the overall average for each algorithm is shown in the final bar 

of each group) 
 

The ANOVA test also showed significant interactions between Algorithm and 

Game (F9,207=7.20, p<0.05), and between Algorithm and Difficulty (F3,69=4.19, p<0.05). 

Figure 28 summarizes these differences; as the figure indicates, the different algorithms 

performed differently on different games and difficulty levels. In particular, all 

algorithms performed better on Click-and-Hack than on the other games; and for some 

games (Spinning Puzzle and Brickout), differences between the algorithms were larger 

with the more difficult starting conditions, whereas for others (Electris), the differences 

were larger with the easy version of the game. These findings confirmed that there are 
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many hidden elements in games that should be considered during the balancing process 

as discussed in section 3.2. Some of these variables are adjustable by game designers, but 

there are several factors that are out of designers’ hands. For example, the reaction speed 

of the players, or the time it takes for different players to solve a puzzle in a game are 

outside of a designer’s control. 

Based on these results (Figure 26 and 27), the adaptation algorithm does have an 

effect on the results of balancing (Q1). Moreover, it is obvious that the choice of 

adaptation algorithm does affect accuracy, with Continuous having significantly lower 

error amount than other approaches (answer to Question 2). However, these results 

depend to some degree on both the type of game and the difficulty level (answer to 

Question 3). 

 

5.3.2.5. Player Performance under Adaptation 

Figure 28 shows the error times (actual completion times minus baseline 

exemplar time) for all of the adaptation algorithms for Spinning Puzzle (medium), and 

Brickout (medium). Figure 29 shows the performance and exemplar of a single player for 

the same pair of games. 

Each graph in Figure 28 shows the absolute error performance of an individual 

participant for the given game and level combination. Players are sorted by completion 

time in the No-Balance case. Several notable outliers are evident in the State adaptation 

case for the Spinning Puzzle game. These outliers are primarily due to feedback effects 

and the low frequency of State updates in the Spinning Puzzle game, which only 

calculates balance once a disk has been correctly positioned. Players who performed 
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particularly well on a particular piece are unduly punished with a speed reduction on the 

next piece, potentially dramatically increasing completion time. 

This performance oscillation is evident in Figure 29 (left), which shows the game 

performance for a single player overlaid on the exemplar. In Brickout (Figure 29- right) 

player performance follows the exemplar more closely, except for the Discrete balancing 

case. The Discrete algorithm shows a marked departure from the exemplar near the end 

of the game. This performance lag was due to the player missing the last brick, and 

having to bounce the ball back and forth over the width of the screen and back again to 

achieve the correct angle to strike the final brick and end the game, demonstrating that 

while adaptation can drive the player performance distribution towards a desired shape in 

aggregate, individual player performance still matters for the outcome of the game.  

In the State case, small oscillations in the exemplar and player performance 

feedback upon each other to drive increasingly larger swings in performance, culminating 

in a final completion time is substantially slower than the exemplar or the Continuous 

balancing (Figure 30). 
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Figure 28.  Error times for Spinning Puzzle - medium (top) and Brickout - medium 

(bottom) by person 
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Figure 29.  Performance and exemplar for a single example player for Spinning Puzzle - 

medium (left) and Brickout - medium (right). The bold line indicates the exemplar. 
 

 
Figure 30.  Spinning Puzzle (Medium- 6 rings) 

 
  

5.3.2.6. Player Experience 

The experiment established that minigames have useful properties for the 

parameterization of adaptation. However, appropriate balancing is of little utility if the 

adaptation algorithm destroys the game experience. To investigate the effects of different 

balancing techniques on player experience, participants were given the questionnaires 

after playing every condition and at the end of the session. Appendix B-1 indicates the 
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questionnaire that was given to participants after each set of minigames and appendix B-2 

show the final questionnaire that was given to participants at the end of the session.  

As a part of the results of the user study, the below statements were concluded: 

• Over 59% of the players felt that minigames were fun or very fun (Figure 31) in every 

condition but State balance, also 12% of players felt that minigames were not fun in 

every condition except State balance. In State balance case, 46% of the players stated 

that the games were fun, but 29% have felt that games were not fun. 

• A Friedman test of the responses to this question (see question 3 from appendix B-1) 

indicated no significant differences in level of fun between the different games, 

indicating either that adaptation algorithms did not affect player enjoyment of the 

game, or that the employed instrument was insufficiently precise to find the 

differences (Answer to Question 5).  

 
Figure 31.  The fun level of games by adaptation algorithm 

 
 

It is also important to determine the relative perceptibility of the adaptation 

algorithm in each game. At the end of the experiment participants were asked “Did you 

notice a difference in the game mechanics between the four versions of <Minigame>?” 

and “Did you notice that the game mechanics in <Minigame> would change based on 

your performance in the game?”  Since the first question refers to the different 
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configurations of each game in the experiment, and each configuration represents a 

unique balancing algorithm, discovering whether players have noticed the differences 

between three balancing algorithms and No-Balance method was of a greatest interest. 

The answer of this question indicates whether players have noticed that the games were 

manipulated. The second question targets the relation between the adaptation algorithms 

and players’ performance, which reveals the noticeability of the exploited game 

mechanics. The yes/no responses to these questions are plotted in Figure 32 A and B. 

These two important questions were, intentionally, postponed to the end of the session 

because if these questions would be asked after every set of minigames (every adaptation 

algorithm), players might have noticed that there should be an adaptation mechanism. 

The majority of participants noticed a difference in game mechanics between the 

four cases, although this is possibly due to the appearance changes in the games when 

adaptation was employed. The main reason of these variations in appearance is to hide 

the actual adaptation process and pretend that all the changes in the game mechanics 

come from visual effects. 

Figure 32. Perceptibility of adaptation algorithms (A). Perceptibility of game mechanics 
(B) 
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Participants were also asked after each game condition to comment on whether 

they noticed any changes within the game. The question was kept intentionally vague to 

avoid biasing the within-subjects design. For all the games, only three participants (for 

Continuous and State) and five participants (for Discrete) responded affirmatively. Most 

of those responses commented on the change in game appearance. No respondents noted 

that the game mechanics changes seemed to be tied to their performance. In the 

Continuous case, participants actively stated that changes in mechanic were unrelated to 

their performance. For example for the Continuous cases: 

“The background of Electris changes all the time during the game but it wouldn’t 

affect my performance.” 

“The colour changes are fine, but seem to coincide with speed reductions in the 

parts of the game I do not control.” 

“The color change in the middle of the Electris game does not have any 

significant meaning, and was initially misleading.” 

These comments are distinct from feedback for the State cases where all players 

noted that the change in display was related to the speed of the game, indicating that the 

larger, less frequent speed changes in the State case were more noticeable. 

“In Electris: I think the idea that the background colors changed was not bad but 

the speed kept changing too... made it less predictable.” 

“The blue is a nice touch, though it seems to indicate slower gameplay, so I found 

myself looking forward to the red.” 
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“I liked the change of ball color in the Brickout game, perhaps it indicated the 

speed of the ball”. 

Based on the survey results and participants’ comments, it is concluded that while 

some players noticed the change in the dynamic adaptation, none perceived that it was 

tied to their performance, indicating that dynamic adaptation was not noticeable in the 

experiment (Answer to Question 4).  

In fact, by changing the appearance of the minigames during the game play, 

participants thought that changes of the game mechanics are consequences of changes of 

the game appearance, not their performance. 
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CHAPTER SIX 
DISCUSSION 

 

6.1 Outcomes of the Studies 

My evaluations provide evidence for the efficacy of adaptive time-variant 

minigames as a mechanism for balancing time. In the first laboratory study the simplest 

form of balancing algorithm was used, the Discrete balancing algorithm, to manipulate 

the completion time of the minigames. This phase of the evaluation showed that it is 

possible to manipulate the completion time of minigames using time balancing 

algorithms. It also revealed that there are differences among players with various 

experience that lead to different overall completion times. The difference of player’s skill 

is important because it demonstrates that adaptive minigames alter but do not determine 

the game outcome. 

In the second phase of the experiment, the real world study, the performance of 

the Discrete balancing algorithm was tested which was employed in a real mixed-reality 

multi-player game, Stealth Hacker. The result of the study showed that the minigames, 

using the Discrete balancing algorithm, are enjoyable and are capable of balancing the 

large game, which they embedded within. In the third phase of the study the effect of the 

frequency of the balancing algorithms update was investigated by using all the balancing 

algorithms crossed with all the games. The results of this study showed that it is possible 

to improve the accuracy of the adaptation by changing certain parameters in adaptation 



 

 99 

algorithms and in particular, the connection between adaptation granularity and 

perceptibility was demonstrated. Results also showed that individual differences are still 

preserved. 

 

6.2 What other types of ATMs are possible? 

This work makes several contributions to the design and engineering of adaptive 

game mechanics. The idea of adaptive minigames can be applied much more widely than 

just the example systems demonstrated here. For example they can be used as time filters 

while levels are loading. The core elements of designing ATMs involve analyzing the 

time requirements for each game mechanic in the minigame, determining how the game 

can be parameterized to control completion time, and designing an adaptive algorithm for 

responding to run-time events.  

This process is applicable to a wide variety of game genres. For example, a search 

minigame (e.g., Where’s Waldo1) involves visual search as the main game mechanic. The 

time needed for visual search is a function of the number of items that must be searched, 

and the time needed to evaluate each item, allowing parameterization of items to the 

visual differences between the target and the distracters.  

Many possible game mechanics can be considered:  

• Pattern matching: includes recreating a previously shown pattern 

• Aiming: includes targeting and shooting 

• Pursuit tracking: includes purchasing a previously shown track step by 

step 
                                                
1 Official website of the Where’s Waldo: http://whereswaldo.com/index.html#home 
(visited on April, 2014) 
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• Short-term memory: includes repeating a set of related or unrelated event 

• Spatial memory: includes selecting the location of the previously shown 

items in the game.  

The timing profiles of some mechanics have been modeled (e.g., Fitts’ Law [48], 

Hick’s Law [49, 50], the Keystroke Level Model [51]), permitting the use of existing 

models as starting points for analyzing and parameterizing minigames. 

The time needed for minigame tasks involving cognition (e.g., calculation, 

reasoning, or mental rotation) will be more difficult to predict and will be subject to 

greater individual differences, and so are less useful for use within an ATM. However, 

even cognitive tasks could be modeled using empirical testing – that is, a mean time and 

a distribution around that mean can easily be found by asking a sample group to play the 

game during design and testing, such as the exemplar presented here.  

 

6.3 Explanation about Time-vs.-Progress Model 

As previously mentioned, The time-vs.-progress model represents the player’s 

thinking and reacting behaviour, and generally, the way that players are playing a game. 

Since the model is a step-by-step record of progress over time, it can be used to 

investigate the general balance of the game - for example if the total completion time of a 

game is strongly affected by only one element of the game for all players, it indicates that 

this element may not be functioning properly. This element could be a minigame, which 

is residing inside of a bigger game, or could be a specific task or activity inside of a game 

or minigame. Although there are many possible uses of progress-vs.-time model, the 

implementation was kept simple, suitable for the preliminary analysis performed here. 
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6.4 Explanation for the main results 

Accuracy of the adaptive methods. The results of the study showed that the 

adaptive algorithms performed well, and their success is a basic confirmation of the 

initial premise in this research – that the simpler mechanics of minigames can be 

analyzed and understood to the point where manipulation of completion time is possible. 

The overall completion times, mean errors and errors in different conditions and the in-

depth examinations of player progress (e.g., Figure 26, 27, 28 and 29) showed that the 

algorithms were effective in recognizing divergence from the desired time, and effective 

in altering the games to shift the player’s time toward the exemplar. 

Differences between game types. The adaptation methods performed differently 

for the different games. In Click-and-Hack, there was very little difference between any 

techniques, including no adaptation at all. In this case the game time is so well described 

by the underlying Fitts’ Law model that setting the static initial parameters may be 

enough to provide a particular time value. In contrast, time error in Electris was much 

larger and more varied across the different algorithms. In this game, the gameplay 

follows a much less linear path than Click-and-Hack, primarily due to the effects of 

making errors. These results indicate that the complexity of the game mechanics play a 

large role in the behavior of dynamic balancing algorithms such that some events in one 

game lead to a huge delay in completion of the game whereas in other games has much 

less effect on the overall completion time.  

The value of more-frequent adaptation. Making adaptation decisions more 

frequently (as in the Continuous and State algorithms) was less perceptible and caused 

fewer oscillations in the players’ performance. The significant oscillations evident in 
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some cases (e.g., for some players in Electris) suggests that effective time balancing may 

only be possible in simple games such as simple minigames. More complex games (i.e., 

most main games) have much more sophisticated mechanics, and are likely to exhibit 

non-linear behavior when adaptations are introduced. By constraining the adaptation to 

games with simple mechanics that respond linearly to an input parameter - the risk of 

complex and difficult-to-control behaviors disrupting game balance is reduced. 

Retaining individual differences. The studies also showed that employing an 

adaptive algorithm does not remove all variability from the games – as stated earlier, it is 

important to provide competitive balance but without negating the effects of player skill 

or game design. In the study results, there were larger variations between games and 

between difficulty levels than there were between algorithms. This is desirable because it 

demonstrates that the adaptation is not the dominant factor in determining completion 

time, and that designers have freedom to create the timing profiles they desire by 

appropriately choosing the game and difficulty level prior to instantiation. It is also worth 

noting that the Continuous algorithm did not disrupt game timing when the players’ 

performance was near the exemplar. Overall, the completion times still formed a 

distribution (albeit with significant variation in mean, and variance between games), with 

means driven towards the desired values specified by the exemplar.  

Cost vs. performance. Although the Continuous balancing method is chosen as 

the most accurate balancing method it is obviously a trade-off between the cost and 

performance of the balancing method. In specific situations, Continuous balancing is 

relatively expensive, where the cost of each algorithm can be calculated by the consumed 
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time of the Central Processing Unit (CPU) of the computer, since it evaluates the player’s 

performance and game state moment by moment. 

The performance of the Continuous adaptation. As mentioned earlier, one major 

step in time balancing using ATMs is to decide which adaptation algorithm should be 

carried out, for example Continuous or State; therefore, one important questions are the 

frequency at which the adaptation algorithm should be invoked during game play and the 

intensity that the adaptation algorithm performs on the adaptive components of the game. 

Since in each type of adaptation – Discrete, Continuous and State – the current state of 

the game is compared with a previously calculated exemplar, the frequency of the 

comparisons can affect the final result of the adaptation. With this in mind, regardless of 

its cost, it could be concluded that the Continuous adaptation is the best at any situation 

except when the cost of the balancing algorithm is crucially required to be low.  

The performance of an adaptation algorithm depends on other parameters such as 

game type, player type, frequency of adaptation and underlying game mechanics. 

Moreover, each algorithm should be hidden from the player while managing the game-

completion time. In fact, an adaptation algorithm that performs accurately is not 

necessarily the most desirable if it interferes with player experience. For example, 

consider an adaptation method which compares the elapsed time with an exemplar and 

when reaches a certain time, finishes the game suddenly. This method is accurate because 

the total completion time of the game will be exactly as specified, but the heavy-handed 

manipulation could destroy the gameplay experience for the player. 

Although one of the goals of this research is to investigate the role of temporal 

adaptation granularity and game genre in time balancing capabilities, the players’ game 



 

 104 

experience is implicitly addressed. While it is a reasonable hypothesis that a higher 

frequency adaptation leads to improved accuracy, it is still necessary to evaluate the 

players’ experience. In the third study of the evaluation phase of this research, 24 

participants were asked to play the 4 minigames with different configurations to 

determine the perceptibility of adaptation algorithms and game mechanics, and 

consequently to see how enjoyable these algorithms are for players. 

The adaptive algorithms were evaluated with respect to accuracy of completion 

time, and player experience. Player experience was further divided into the enjoyability 

of the game (fun), and the consenting perceptibility of the adaptation and adaptive 

mechanic. By considering the results in Figure 26 and Figure 27, the Continuous 

adaptation is the most accurate method among all other adaptation algorithms. Moreover, 

it deviated least from the desired completion time of all the algorithms. The more 

frequent operation of the mechanism dampens oscillation in players’ performance (Figure 

29) and consequently leads to smaller variations in game mechanics and is therefore less 

perceptible to the players (Figure 32).  

Since Continuous adaptation compares the current progress of the game with a 

previously obtained model, there should be a model with a sufficiently high temporal 

granularity and measurement accuracy to serve as a baseline. Generating these exemplar 

models (progress-vs.-time models) usually requires time and energy. To create exemplar 

models of games, researchers need to first, find all the effective elements of the game that 

impact the total completion time of the game, and second, run several experiments to 

record progress of several players during their gameplay and reflect all of them into one 
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model. This research used an exemplar that was derived from empirical data, which may 

be prohibitively expensive in commercial games. 

 

6.5 Application and Deployment 

Minigame-based time balancing can be employed in any game in which there are 

obvious breaks in pacing where a minigame can be inserted. This is often done in current 

mainstream games in a non-adaptive way with quick-time events (activities that should 

be performed in a given time or as quick as possible), where the primary gameplay 

mechanic is suspended and replaced with a rhythm/pattern-matching mechanic such as 

pressing a set of buttons on gamepad as quick as possible or recreate a previously shown 

pattern as quick as possible. While a more fulsome examination of the applicability of 

this approach is the subject of future work, an initial discussion is provided here of the 

applicability of the minigame time balancing mechanic to two general types of game 

interactions: races, and action timing.  

In race games, time is the final mediator. Whoever completes the challenge fastest 

– whether it is solving a puzzle, building a structure or navigating a maze – is the winner. 

Significant attention has been paid to providing balanced outcomes in racing games, from 

subtly increasing the top speed of the weaker player, to providing context sensitive 

power-ups based on position. Minigames could be used to help provide timing balance if 

the primary game mechanic provides for a break in the race. This could be a pit stop in a 

car-racing game, a locked door in a maze racing game, or the scheduled discipline 

switches in a triathlon. This type of timing intervention is analogous to the Stealth Hacker 

mixed reality game. In this case, designers could use games like Spinning Puzzle to 
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maximize potential control over the timing, or Electris to provide an additional time 

penalty for player with too many mistakes in the minigame. 

While racing games are based on time-to-completion, many other games, such as 

First Person Shooters, Real Time Strategy and Role-Playing Games are based to a large 

extent on relative rates, such as Damage-Per-Second (DPS) or power-to-build-time 

tradeoffs. Minigames could be spawned during changeover events, such as reloading a 

weapon or casting a spell to replace the fixed cool-down timers that are explicitly (for a 

spell in a MMORPG) or implicitly (through a reloading animation) rendered in existing 

games. This could be integrated into the game as an additional exercise in skill: players 

that can cast spells or reload their weapons faster would have a DPS advantage. Because 

of the tight timelines imposed by these small cool-down timers, designers would likely 

want to opt for low mean, low variation minigames such as Click-and-Hack to add small 

amounts of balance to regularly repeated actions, rather than large mean and variation 

games suitable for infrequent actions. It is easy to imagine a direct variant of Click-and-

Hack in a Massive Multiplayer Online game context where minigames would appear and 

players would have to click them in order to complete the spell. Mystic ruins locations, 

ancient location on the planet of the game, in Sonic 2 are a good example of this type of 

minigames where player enters and collects points and coins for recurring damages.  

 

6.6 Limitations and Future Work 

The limitations of this work relate to the relative youth of multiplayer balancing 

algorithms in general, and time-balancing algorithms in particular. In the following list, 

four primary shortcomings and the future work required to address them are highlighted.  
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1. Scope: Only a fraction of the proposed balance methodologies described in this work 

have been tested, which are in turn only a subset of all the possible minigame 

balancing mechanics. While this research demonstrates the feasibility of the 

approach, fertile ground remains for examining the breadth of applicability and 

generalizability of the concept. In particular, many game mechanics are based on 

psychometric principles (e.g., movement, memory-based recall) that have well-

studied models, and could be used to provide a better understanding of how particular 

kinds of game elements can predict completion time. 

2. Breadth: The analysis focused on the adaptation mechanics, and on examining the 

impact of integrating the minigames within a larger gaming context. Given that the 

viability of the integrated approach has been established in Stealth Hacker, this was a 

reasonable experimental methodology. Future work in this area involves 

consideration of how minigames can be designed to fit into the overall narrative of 

the main game, and how timing requirements can be identified within the main game 

and used as the initial conditions of the minigame. 

3. Sample Bias: As with any experiment involving human subjects, there is the 

possibility for sample bias. Obviously, the findings of this research will not hold for 

all players equally; in fact it is reasonable to hypothesize that competitive gamers 

would be more sophisticated at spotting small adjustments in game mechanics than 

the dedicated but not elite gamers studied here. Broader studies with different games 

and demographics could extend the results. 
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4. Baseline: In this research, only two simple variants of the exemplar model were 

examined. In the first experiment, and in the real world experiment, the case where 

the timing profile was entirely defined by the designer as the minimum required 

completion time was examined. In the second experiment, the advanced versions of 

the adaptation algorithms, the entirely empirical case where desired average time was 

based on play-tester performance was tested. In general, the focus in this research was 

on real-time mixed-reality multi-player games, although ATMs can be employed on 

other types of games and game genres. In the future, more sophisticated exemplar 

variants based on the synthesis of designer intuition and empirical metrics garnered 

during playtesting and by mining play logs after game deployment are expected.  

5. More evaluation with real games in the real world: The dynamic time adaptation 

algorithm presented in the real world experiment was somewhat crude, but accepted 

by players. The more elegant way would be testing the Stealth Hacker game in all 

situations and with all adaptation algorithms (Continuous and State). It is possible to 

record partial completion times of the players and use it as an exemplar in adaptation 

algorithms in a bigger game. Although an experiment was carried out to evaluate this 

effect with a simple version of the adaptation, the Discrete balancing algorithm, it is 

still not clear whether the performance of the players will be affected within a bigger 

game with other adaptation algorithms. 
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CHAPTER SEVEN 
SUMMARY 

 

In this work a novel approach was described for balancing timing in multiplayer 

games using adaptive time-variant minigames. There are three primary contributions to 

this research, already published at International Conference of Entertainment Computing 

(ICEC) 2011 [42] (nominated for the best paper) and the Entertainment Computing 

Journal 2013 [43]. The key contributions of this research was categorized in the 

following categories: 

• The concept of time balancing through ATMs. By instantiating ATMs outside the 

flow of the regular game it is possible to adapt the timing with strictly controlled 

mechanics without interrupting the depth of play or narrative of the main game. 

The first phase of the study (testing minigames in situ when the Discrete balancing 

algorithm was employed) showed that the minimum and expected completion times 

of the minigames were predictable. The results of this experiment (Figure 20) 

revealed three important properties: 

1. Minigames have linearly increasing mean time of completion with difficulty. 

2. There is a game-dependent decrease in completion times with adaption. 
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3. The means and variations of completion time of each of the games are 

significantly different indicating the presence of different players’ skill and 

experience. 

• Evidence for the efficiency of the ATMs. It was demonstrated that ATMs can provide 

a compelling experience for balancing a mixed-reality game, a particularly difficult 

time-balancing problem since computer players must be balanced against those in the 

real world. The second study with a real mixed-reality game, Stealth Hacker, showed 

that the minigames were enjoyable, and provided the balancing effects for which they 

were designed. This phase of the experiment also revealed the followings: 

1. Players had positive experiences playing the game as the Hacker 

2. The game remained balanced in opportunity if not outcome 

3. The minigame timing reflected the game state at the time of instantiation 

• Evidence for the interaction between adaptive algorithm, game mechanic, and game 

difficulty. As one of the results of this research, significant effects and interactions for 

all three factors were found, confirming the intuition that these processes are 

important and linked. It was also found that finer temporal granularity leads to less-

perceptible adaptation and smaller deviations in game completion times. A 

continuous time-based update strategy, coupled with design techniques meant to 

integrate or mask the adaptability led to average completion times tending toward the 

desired value, while minimizing player disruption. In particular, the following result 

were found based on the third phase of the experiment: 
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1. All of the adaptive algorithms were more effective than the non-adaptive condition in 

manipulating minigame completion time. 

2. The Continuous algorithm was significantly more accurate than all other algorithms, 

and State-based balancing was more accurate than Discrete. 

3. The Continuous algorithm had the lowest standard deviation of all algorithms. 

4. Participants noticed some changes to game parameters, but people did not notice the 

connection between the changes and their performance. 

5. The more frequent adaptation algorithms (Continuous and State) appeared to be less 

noticeable overall. 

6. The adaptive methods did not reduce participants’ subjective level of fun. 

 

7.1 Conclusion 

In this thesis, two major types of game balancing have been discussed; outcome 

balancing and player balancing, in which the main focus was on player balancing. 

Different techniques for balancing players were discussed such as manipulating game 

resources of players during game play or modifying starting times to deal with different 

skill levels of players. As the next step, the concept of time and time balancing in 

different computer game was discussed in detail and time balancing using ATMs was 

introduced as a possible opportunity to balance timing of different activities in games. 

As a part of time balancing using ATMs, four minigames were introduced – 

Click-And-Hack, Spinning Puzzle, Electris and Brickout – and three different balancing 
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algorithms were discussed – State balancing, Continuous balancing and Discrete 

balancing. Eventually, the different possibilities of integration of introduced balancing 

techniques into a number of gaming genres, including the popular Racing, RPG, RTS and 

MMORPG genres, were discussed.  

In the first evaluation phase of this research, minigames were examined in situ to 

show that it is possible to manipulate the timing of different activities in game using 

ATMs and deliver specific total completion time. In the second phase, ATMs were 

embedded within a larger game and results showed that the larger game was still fun to 

play. Eventually, the final phase of the evaluation examined the effect of intensity and 

frequency of the balancing algorithms crossed with different genres of game.  

As a result of the different experiments, it was demonstrated that these minigames 

can deliver different time constraints and can provide a compelling experience for 

balancing a mixed-reality game, a particularly difficult time-balancing problem since 

computer players must be balanced against those in the real world. Finally, it was 

indicated that different adaptation algorithms are effective in the results of the balancing 

and different balancing algorithms have different prerequisites and accuracies. Also, it 

showed that the employed dynamic balancing algorithms were not noticeable from 

player’s perspective, which is suitable for game designers. 

In the future, exploring the potential for balancing other game genres using this 

mechanism is expected. Additional minigame mechanics, more sophisticated adaptation 

algorithms and the integration within larger gaming contexts will be investigated. This 

work represents a strong foundation for the continued research, development and 

deployment of time-adaptive minigames. 
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APPENDIX A-1 
 

 

Participant ID: 

How interested are you in video games? 

Extremely interested 

Very much interested 

Moderately interested 

Slightly interested 

Not interested 

How do you evaluate your expertise in video games? 

Very high 

Above average 

Average 

Below average 

Very low 

Please state the types of games that you play (you may choose more than one) 

Action 

Adventure 

Role Playing Game 

Simulation 

Strategy 

Puzzle 

Other 
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How frequently do you spend playing video games? 

Once a week 

3-6 times a week 

Everyday 

Other 

	
  

	
  

 

How much time do you spend normally per game session playing the game 

without taking any breaks? 

Less than one hour 

Between 1 to 5 hours 

More than 5 hours 
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APPENDIX A-2 
 

 

Participant ID: 

Electris	
  

 

How fun was the game? 

Very funny  

Slightly funny 

Slightly boring 

Boring 

Can you comment on why or why not you thought the game was fun? 

	
  

	
  

	
  

	
  

 

How fun was the game? Please rate out of 5 (1=less fun, 5=more fun). 

 

How challenging was the game? 

Easy 

Normal 

Hard 

Nightmare 
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Can you comment on why or why not you thought the game was difficult? 

	
  

	
  

	
  

	
  

 

How long you think took for you to finish the game? 

Much shorter than what I expected 

Slightly less than what I expected 

As I expected 

Longer than what I expected 

Much longer than what I expected 

 

How long you think took for you to finish the game? (out of %100) 
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APPENDIX A-3 
 

 

Participant ID: 

BrickOut	
  

 

How fun was the game? 

Very funny  

Slightly funny 

Slightly boring 

Boring 

Can you comment on why or why not you thought the game was fun? 

	
  

	
  

	
  

	
  

 

How fun was the game? Please rate out of 5 (1=less fun, 5=more fun). 

 

How challenging was the game? 

Easy 

Normal 

Hard 

Nightmare 
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Can you comment on why or why not you thought the game was difficult? 

	
  

	
  

	
  

	
  

 

How long you think took for you to finish the game? 

Much shorter than what I expected 

Slightly less than what I expected 

As I expected 

Longer than what I expected 

Much longer than what I expected 

 

How long you think took for you to finish the game? (out of %100) 
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APPENDIX A-4 
 

 

Participant ID: 

Puzzle	
  

 

How fun was the game? 

Very funny  

Slightly funny 

Slightly boring 

Boring 

Can you comment on why or why not you thought the game was fun? 

	
  

	
  

	
  

	
  

 

How fun was the game? Please rate out of 5 (1=less fun, 5=more fun). 

 

How challenging was the game? 

Easy 

Normal 

Hard 

Nightmare 
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Can you comment on why or why not you thought the game was difficult? 

	
  

	
  

	
  

	
  

 

How long you think took for you to finish the game? 

Much shorter than what I expected 

Slightly less than what I expected 

As I expected 

Longer than what I expected 

Much longer than what I expected 

 

How long you think took for you to finish the game? (out of %100) 
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APPENDIX A-5 
 

 

Participant ID: 

Click-­‐and-­‐Hack	
  

 

How fun was the game? 

Very funny  

Slightly funny 

Slightly boring 

Boring 

Can you comment on why or why not you thought the game was fun? 

	
  

	
  

	
  

	
  

 

How fun was the game? Please rate out of 5 (1=less fun, 5=more fun). 

 

How challenging was the game? 

Easy 

Normal 

Hard 

Nightmare 
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Can you comment on why or why not you thought the game was difficult? 

	
  

	
  

 

 

 

How long you think took for you to finish the game? 

Much shorter than what I expected 

Slightly less than what I expected 

As I expected 

Longer than what I expected 

Much longer than what I expected 

 

How long you think took for you to finish the game? (out of %100) 
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APPENDIX B-1 
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APPENDIX B-2 
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