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Abstract

We study here a model for a strand passage in a ring polymer about a randomly chosen lo-
cation at which two strands of the polymer have been brought \close" together. The model
is based on �-SAPs, which are unknotted self-avoiding polygons in Z3 that contain a �xed
structure � that forces two segments of the polygon close together. To study this model,
the Composite Markov Chain Monte Carlo (CMCMC) algorithm, referred to as the CMC
�-BFACF algorithm, that I developed and proved to be ergodic for unknotted �-SAPs
in my M. Sc. Thesis [150], is used. Ten simulations (each consisting of 9:6 � 1010 time
steps) are performed and the results from a statistical analysis of the simulated data are pre-
sented. To this end, a new maximum likelihood method, based on previous work of Berretti
and Sokal [7], is developed for obtaining maximum likelihood estimates for the growth
constants and critical exponents associated with the numbers of unknotted (2n)-edge �-
SAPs, p�n (�); unknotted (2n)-edge successful-strand-passage �-SAPs, p

�
n (�; s); unknotted

(2n)-edge failed-strand-passage �-SAPs, p�n (�; f); and after-strand-passage knot-type-K
unknotted successful-strand-passage �-SAPs, p�n (Kj�; s). The maximum likelihood esti-
mates are consistent with the result (proved here) that these growth constants are all equal,
and provide evidence that the critical exponents are all equal.

We then investigate the question, \Given that a successful local strand passage occurs
at a random location in a (2n)-edge, knot-type K �-SAP, with what probability will the
�-SAP have knot-type K 0 after the strand passage?". To this end, the CMCMC data is
used to obtain estimates for 1 � p�n (�j�; s)=(p�n (�; s), the probability of knotting given a
(2n)-edge successful-strand-passage �-SAP, and p�n (Kj�; s)=p�n (�; s), the probability of an
after-strand-passage knot-type K polygon given a (2n)-edge unknotted successful-strand-
passage �-SAP. The computed estimates numerically support the unproven conjecture
that these probabilities, in the n!1 limit, go to a value lying strictly between 0 and 1.
We further prove here that the rate of approach to each of these limits (should the limits
exist) is less than exponential.

We conclude with a study of whether or not there is a di�erence in the \size" of an un-
knotted successful-strand-passage �-SAP whose after-strand-passage knot-type is K when
compared to the \size" of an unknotted �-SAP whose knot-type does not change after
a strand passage. The two measures of \size" used are the expected lengths of, and the
expected mean-square radius of gyration of, subsets of �-SAPs. How these two measures
of \size" behave as a function of a polygon's length and after-strand-passage knot-type is
investigated.
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Chapter 1

Introduction

The work presented in this thesis is inspired by two open questions. The first question

was proposed by D. W. Sumners at the 1998 Program in Mathematics and Molecular

Biology Short Course held in Berkeley, California from June 22 to July 3:

Problem 1.1 If a local strand passage occurs at a random location within a ring polymer

with knot-type K, with what probability will the ring polymer be transformed into a ring

polymer with knot-type K ′?.

The second question is motivated by Problem 1.1, that is

Problem 1.2 Is there any difference in the “size” of a ring polymer whose knot-type

changes after a local strand passage at a random location when compared to those ring

polymers whose knot-type does not change after the strand passage?

Problem 1.1 is motivated (cf. Section 1.1) by trying to better understand a particular

enzyme’s action on DNA. The first step in addressing Problems 1.1 and 1.2 is to model

the entanglement complexity of a ring polymer, that is to model a local strand passage

occurring at a random location within a ring polymer with a fixed knot-type. The model

used in this work to study Problems 1.1 and 1.2 was developed by the author in his M.Sc.

thesis [150]. This model, defined precisely in Section 2.1, is from here-on-in referred to

as the Local Strand Passage Model for Ring Polymers with fixed knot-type K or simply

the Local Strand Passage (LSP) Model. Because self-avoiding polygons (defined in Section

1.3) on the simple cubic lattice have been used since the 1960’s to model ring polymers

[53], the LSP Model is a self-avoiding polygon model. For K = φ, the unknot, to

address Problem 1.1 using the LSP Model, the proportion of (2n)-edge unknotted self-

avoiding polygons associated with the LSP Model (Θ-SAPs) which have knot-type K ′ after

a successful strand passage must be determined. This proportion is denoted
pΘ
2n(K ′|φ,s)

pΘ
2n(φ,s)

.
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Properties of pΘ
2n(K ′|φ, s) and pΘ

2n(φ, s) are explored in Chapter 2. In Chapters 2 through

7 a new technique, that is based on the LSP Model and is designed to address Problems 1.1

and 1.2, is presented. This new approach can be viewed as a new general technique for

investigating similar models.

Being consistent with the view that this work provides a new general technique for

investigating similar models, the document will be structured as follows. Chapter 1 first

provides an overview of the thesis. Then the remainder of the chapter is dedicated to

outlining the motivation for the work and providing the basic terminology and theory that

are required to formulate and study the thesis problems. Chapters 2 through 7 include a

demonstration of how this new technique can be used to address Problems 1.1 and 1.2 for

the case where the initial ring polymer is unknotted.

In Chapter 2, the reader is introduced to the Local Strand Passage Model that the

author developed in [150]. The chapter then presents proofs of new theoretical results re-

garding the growth rates for pΘ
2n(∗), the number of (2n)-edge Θ-SAPs having a certain prop-

erty ∗, and presents conjectures regarding the possible relationships amongst the growth

rates of pΘ
2n(∗) for different properties ∗. An example of such a property is the property

that an after-strand-passage unknotted Θ-SAP has knot-type K ′ and, for this property,

pΘ
2n(∗) = pΘ

2n(K ′|φ, s). Then assuming pΘ
2n(∗) has a particular asymptotic (n → ∞) form

which is defined in terms of a critical exponent αΘ
∗ , the chapter includes conjectures re-

garding the relationships amongst the exponents αΘ
∗ , for different properties ∗. Next

several different probabilities that can be defined using pΘ
2n(∗) (for example

pΘ
2n(K ′|φ,s)

pΘ
2n(φ,s)

) are

introduced and possible asymptotic (n→ ∞) forms for these probabilities are conjectured.

These probabilities are of the type that allow Problem 1.1 to be addressed. To address

Problem 1.2 for K = φ, the unknot, the chapter concludes by introducing two measures for

the “size of a knot” in a Θ-SAP and by posing several conjectures and questions (regarding

how these measures behave as polygon length increases) that will be explored numerically

throughout the remainder of this thesis.

Because numerically investigating the conjectures and questions posed in Chapter 2

requires computer simulation, Chapter 3 focuses on simulating the LSP Model. The back-

ground material necessary to develop a Composite Markov Chain Monte Carlo (CMCMC)

algorithm to study the LSP Model is first provided. Then the Θ-BFACF algorithm and

its CMCMC implementation (to be referred to as the CMC Θ-BFACF algorithm) that
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were developed in [150] to study the LSP Model are reviewed. The chapter ends with the

details of a simulation consisting of ten replications of the CMC Θ-BFACF algorithm.

Chapter 4 discusses several techniques that can be used to determine whether the data

generated from a Markov Chain Monte Carlo (MCMC) algorithm is sampled from the

desired equilibrium distribution. To this end, three methods for estimating the amount

of time a simulation takes to reach its equilibrium distribution are presented. Because of

the correlation that exists between the states of a Markov chain, methods for determining

the number of time steps that must pass between two states before the two states can

be considered essentially independent are also provided. The chapter then provides an

algorithm for determining which data generated can be considered “reliable” and discusses

how certain functions of the data might be expected to behave. The techniques and

algorithms presented throughout the chapter are then applied to the data generated using

the CMC Θ-BFACF algorithm. The results of these applications are analyzed, discussed,

and used to verify the consistency of the data generated and the programs written to

analyze the data.

Having verified the consistency of the CMC Θ-BFACF data, the focus of the fifth

chapter is the design and implementation of a new maximum likelihood estimation method,

based on the method introduced by Berretti and Sokal [7], that uses the CMC Θ-BFACF

data to estimate unknown parameters in the CMC’s equilibrium distribution. This method

is referred to as Composite Markov Chain Maximum Likelihood Estimation (CMC MLE).

To this end, the notation, definitions, and theorems required throughout the chapter are

first reviewed. A procedure for estimating the required length of a CMCMC simulation

to achieve a given confidence interval width is then discussed. The remainder of the

chapter then focuses on the new CMC MLE technique. First a CMC MLE technique

is developed, including how to estimate the corresponding (1 − α) · 100% margin of error

and the systematic error associated with each of the parameters estimated. The chapter

concludes by applying the CMC MLE technique to the CMC Θ-BFACF data and uses

the estimates generated to numerically verify some of the facts and conjectures posed in

Chapter 2 regarding the growth rates of pΘ
2n(∗) and the exponents αΘ

∗ , respectively.

Chapter 6 focuses on using the CMC Θ-BFACF data to study the fixed-n and limiting

transition probabilities (that are introduced in Chapter 2). One method for estimating the

fixed-n transition probabilities is presented and two methods for estimating the limiting
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transition probabilities are discussed and compared. The method for estimating the fixed-

n transition probabilities and the better of the two methods for estimating the limiting

transition probabilities are then applied to the CMC Θ-BFACF data. The chapter ends

by presenting the estimated limiting transition probabilities.

The seventh chapter is a preliminary discussion of the two measures of the “size of a

knot” in a self-avoiding polygon that are used to study Problem 1.2 and are introduced in

Chapter 2. The CMC Θ-BFACF data is first used to explore the validity of the conjectures

posed and to answer the questions asked in Chapter 2 regarding the first measure of the

“size of a knot”, that is the length of the undirected self-avoiding walks (as introduced in

Section 2.2.3) comprising a Θ-SAP. The CMC Θ-BFACF data is then used to test the

validity of the conjectures posed and to answer the questions asked in Chapter 2 regarding

the second measure of the “size of a knot”, that is the mean-squared radii of gyration

of the undirected self-avoiding walks comprising a Θ-SAP. A method for estimating the

parameters in the asymptotic form of the expected mean-squared radius of gyration of

the undirected self-avoiding walks is then outlined and used to estimate these parameters.

These estimates are then used to explore the conjectures and questions posed in Chapter

2 regarding the parameters in these asymptotic forms. The final discussion in the chapter

begins by presenting a second method for estimating the parameters in the asymptotic

form of the expected mean-squared radius of gyration of the undirected self-avoiding walks

and ends with a comparison of the two methods.

Chapter 8 begins with a summary of the thesis. It then provides directions that remain

to be explored. Appendix A provides additional information that is either referred to or

used repeatedly throughout the thesis. Appendix B includes some of the sequences of

data that are used in Chapters 6 and 7.

Before the work laid out in the above outline is presented, a question that comes to

mind is “Why is Problem 1.1 of interest?”. This question is answered in the next section.

1.1 Motivation

The definitions in this and the subsequent paragraph are based on the discussion of poly-

mers in [103]. A polymer is a molecule formed by combining small molecular units, called

monomers, into long chains via chemical bonds. The number of chemical bonds available
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to a monomer is called the functionality of the monomer . A polymer that is made of a

string of bonded monomers, each of which has functionality two, is either terminated at

each of its ends by a monomer with functionality one or its ends bond to each other. These

polymers are respectively called linear and ring polymers. A molecule that is formed by

combining different kinds of monomers (called comonomers) is called a copolymer . A

linear copolymer is a copolymer that is comprised of a string of bonded comonomers with

functionality two that is terminated on both ends by a comonomer with functionality one.

A polymer is said to be in dilute solution with a good solvent if it is more favourable for

the (co)monomers of the (co)polymer to be surrounded by solvent molecules rather than

other (co)monomers (either from the same or from another (co)polymer). For (co)polymers

in dilute solution, the excluded volume is the region surrounding each (co)monomer in which

the probability of finding another (co)monomer is zero.

A single strand of a DNA (deoxyribonucleic acid) molecule [6] is an example of a linear

copolymer because the strand is comprised of four distinct, functionality-two, monomers,

which are referred to as nucleotides. The four types of nucleotides each have three com-

ponents: a sugar; a phosphate; and one of the bases adenine, guanine, thymine, and

cytosine. A single strand of DNA is formed when the sugar molecule in one nucleotide

binds to the phosphate molecule in the subsequent nucleotide. To form double-stranded

DNA, two single strands of DNA are bound together via hydrogen bonding, a different

kind of bonding than to what the functionality refers.

In the early 1960’s, there was much interest in studying the DNA of viruses, in particular

polynoma, a DNA tumor virus [31, 159, 168]. In [31], Dulbecco and Vogt showed that

polynoma’s DNA must be a closed circular ring polymer. In fact, the circular nature of

polynoma’s DNA is not a rare occurrence in nature; it is now commonly accepted that

the DNA of most bacteria and viruses is circular [160] and the DNA of most animals and

plants is linear. In 1976, Liu et al. [94] first observed knots in single-stranded circular

DNA. Figure 1.1 provides two examples of circular DNA that is knotted. Both examples

are in fact trefoils and were originally published in [86]. Although the DNA of plants

and animals is linear, it is susceptible to topological constraints similar to those that affect

circular DNA because linear DNA is attached at several points to a protein scaffold and is

highly self-entangled and compacted within the nucleus of a cell [6].

Whether the topological constraints are the result of the DNA being circular or being
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Figure 1.1: Examples of circular DNA that are right and left-handed tre-
foils. Reproduced from [86] with permission from the author.

linear and attached to a protein scaffold, the constraints can interfere with metabolic

processes, such as DNA replication and transcription [18]. In order for the DNA illustrated

in Figure 1.1 to be replicated, the DNA first must be unknotted and unwound and then,

near the end of the replication process, the mother and daughter strands of DNA, which

are linked together, must be unlinked. The replication process requires a solution to these

entanglement and linking problems. It just so happens that the solutions to both these

problems are an enzyme. Experimental evidence indicates that the enzyme needed to

unknot and unwind the DNA strand is the same enzyme which unlinks the two replicated

strands of DNA [137, 165]. This enzyme belongs to the group of enzymes referred to as

topoisomerases [6].

Topoisomerases are enzymes that act locally (via a strand passage) on either single

or double stranded DNA. The topoisomerase enzyme initiates the passage of one segment

of DNA through another strand of DNA by first binding to the DNA strand, breaking

the DNA strand, passing a second strand of DNA through the opening, and then sealing

the break [6]. It is this action of the topoisomerase which unwinds and unlinks the DNA

during the replication process. In essence, the topoisomerase enzymes are responsible

for unknotting, unlinking, and maintaining the proper supercoiling of DNA during the

replication process. These enzymes have the ability to, through local actions on the DNA

molecule, alter the global properties of the molecule. In fact, the result of this very local

strand passage is a possible change in the topology of the DNA molecule. This prompted

researchers to look for ways, in vitro and in silico, to study these changes in topology

within DNA molecules.

Much in vitro experimental work has been conducted to study DNA topology and the
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relationship between the topoisomerase enzymes and DNA topology, cf. [130, 133, 138, 140,

164] for a few examples. Mann [106] experimentally showed that human topoisomerase

IIα enzymes very efficiently unknot DNA molecules whose knot-type is either a 5-crossing

or 7-crossing twist knot. (A twist knot and its clasp region are defined in Definition 1.12

of Section 1.2.) Her experimental work suggested that the enzyme preferred to act on the

clasp region of the twist knot; the consequence of such an interaction was that the DNA

was unknotted.

To further explore the results of Mann’s experimental work, Liu et al. [96] created a

lattice model to study how the local geometry of the strand passage site impacts the after-

strand-passage knot-type. Whether the enzyme acts at random locations on the DNA is

still an open question in molecular biology but Mann’s experimental work [106] and Liu

et al.’s [96] simulation of their lattice model suggest that the topoisomerase enzymes are

not acting at locations completely chosen at random. Understanding exactly how the

topoisomerase enzymes perform the unknotting task with a seemingly high rate of success

is still an open problem in molecular biology. The work embodied in this thesis approaches

the problem from a direction that differs from that presented in [96]. Instead of modelling

the unknotting of a knotted ring polymer via strand passages (as in [96]), this work models

the knotting of unknotted ring polymers via a strand passage about a fixed location in an

unknotted polygon and studies some statistics (and their dependence on polygon length

as the length tends to infinity) associated with this model.

The interest in knotting in long ring polymers is not just a recent consequence of

trying to better understand the DNA replication process. The interest first appeared

about a decade after Watson and Crick [167] proposed their model for the structure of

DNA. Knotting in long ring polymers was first discussed by Frisch and Wasserman in

1961 [39] and by Delbruck in 1962 [24]. In both of these papers, the authors conjectured

that the knotting probability was one for infinitely long ring polymers, that is:

Conjecture 1.1.1 ([39, 24]) For a randomly closed chain of length n, the knot probability

tends to unity as n tends to infinity.

The above conjecture, now referred to as the Frisch-Wasserman-Delbruck Conjecture,

was proved in 1988 by Sumners and Whittington [149] and independently in 1989 by Pip-

penger [129] using self-avoiding polygons (SAPs) (defined in Definition 1.3.2 of Section 1.3)
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in Z
3 by showing that exponentially few sufficiently long self-avoiding polygons embedded

in Z
3 are unknotted. (For the precise result proved by Sumners and Whittington in [149],

cf. Theorem 1.3.5 in Section 1.3.) Soteros, Sumners, and Whittington [145] extended the

results of [149] in several directions. In particular, they showed that all but exponentially

few sufficiently long self-avoiding polygons in Z
3 are highly composite knots, with any

knot-type appearing numerous times in the prime knot factorization (cf. Section 1.2 for

the definitions of prime and composite knots).

In addition to the above theoretical results, much numerical work has been completed

in order to estimate the rate of increase of the knotting probability with polymer length.

The first detailed in silico work studying models of knotted ring polymers was conducted

in 1974 by Vologodskii et al. [163] using an off-lattice model. The first detailed in silico

studies using lattice models of ring polymers did not follow for more than a decade later

because the algorithms commonly used at the time to simulate self-avoiding polygons were

generally either computationally inefficient or were known to not sample from the entire

sample space. In 1969, Lal [89] proposed an algorithm (referred to here as the “Pivot

Algorithm”) for simulating fixed length lattice polygons, but at the time, the algorithm’s

efficiency was unknown. Although estimates for the knotting probability with respect to

lattice polygon length were computed by Michels and Wiegel in 1982 [112] and 1986 [113],

further estimates were not computed until the 1990’s (Janse van Rensburg and Whittington

in 1990 [67], Deguchi and Tsurusaki in 1994 [20], E. Orlandini, M. C. Tesi, E. J. Janse

van Rensburg, and S. G. Whittington in 1998 [125], and Janse van Rensburg in 2002 [65],

as just a few examples) because it was not until 1988 and 1990 respectively that Dubins

et al. [30] and Madras et al. [102] proved that the Pivot Algorithm was a very efficient

algorithm for simulating lattice polygons.

Then, in [148], Sumners bridged the topological and molecular biological worlds by

showing that the mathematical construct of a knot can be used to characterize, and hence

study, the actions of the topoisomerase enzyme via the unknotting number of a knot, that is

the minimum number of crossing changes that must be implemented to convert a knot into

the unknot. In 1996, Darcy [18] defined a strand-passage metric on knot-types to be the

minimal number of strand passages necessary to convert knot K1 into K2. The importance

of this metric for studying the actions of topoisomerases with DNA is that, in addition to

providing the minimum number of times topoisomerase enzymes must implement a strand
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passage to change one knot into another knot, the metric provides a tool for determining

every possible sequence of steps necessary to transform one knot-type into another knot-

type.

Because DNA-topoisomerase interactions can produce a variety of knots by performing

strand-passages in DNA, the results of Sumners and Darcy can be combined to identify the

possible knot-types that can result from the DNA-topoisomerase interactions. In other

words, the combined results of Sumners and Darcy can be used to identify the possible

knot-types that can result after a single strand passage occurs at a location within a ring

polymer (relevant to Problem 1.1).

The first step in addressing Problem 1.1 is to model a local strand passage occurring

at a random location within a ring polymer with a fixed knot-type. This model is the

LSP Model mentioned in the Introduction. To define the LSP Model, some definitions and

terminology are needed and hence are presented throughout the remainder of this chapter.

1.2 What is a Knot?

Unless otherwise referenced, the discussion in this section is based on [136]. To precisely

define a knot, let

S
1 := {(x1, x2) ∈ R

2 :
√
x2

1 + x2
2 = 1} (1.1)

be the unit circle and, for two sets A and B and the map g : A→ B, let the notation g(A)

represent the set

g(A) :=
⋃

x∈A

{g(x)} ⊆ B. (1.2)

Then any map k from S1 to R3, k : S1 → R3, is said to be an embedding of the unit circle

into Euclidean 3-space. A subset K ⊂ R3 is said to be a knot if K is homeomorphic to S1,

that is if there exists an embedding k of the unit circle into Euclidean 3-space such that

k is a homeomorphism satisfying k(S1)=K. Denote such an embedding of S1 into R3 by

(k; S1,R3), or briefly by k, and denote the resulting knot by K. If a direction was initially

associated with S1 then the resulting knot is said to be an oriented knot . Refer to Figure

1.2 for an illustration of the definition of the knot K.

Two knots F and G (with respective associated homeomorphisms f and g) are said to

be equivalent if there is a homotopy h : R3× [0, 1] → R3 such that h(f(S1), 0) = f(S1) = F,

h(f(S1), 1) = g(S1) = G, and h(R3, t) is a homeomorphism for every t ∈ [0, 1] . This
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a

bc

g

hi

k

S
1 K

Figure 1.2: S
1 is the unit circle in R

2 centered at (0, 0) and K is the
knot resulting from applying the map k : S

1 → R
3 such that, for example,

k(a) = g, k(b) = i, and k(c) = h.

equivalence relation partitions the set of all knots in R3. The resulting equivalence classes

of knots are referred to as knot-types. Two knots F and G are said to be distinct if F and

G are not equivalent, that is F and G do not have the same knot-type.

A polygonal knot in R3 is a knot embedded in R
3 that is the union of a finite number

of closed linear segments called edges. The endpoints of these linear segments are referred

to as vertices. A knot in R3 that is not a polygonal knot is simply referred to as a

non-polygonal knots.

In order to work with knots more effectively, it is useful to convert a three dimensional

knot into a two dimensional representation. To create a two dimensional rendering of

a knot K, some terminology and theorems are required. The following definitions and

theorems have been adapted from [128]. Suppose K is the knot in R3 defined by the

embedding (k; S1,R3) and ϕ is the projection ϕ : R3 → R2 defined by ϕ((x, y, z)) = (x, y)

for (x, y, z) ∈ R3. A point a ∈ ϕ(K) is called a multiple point if ϕ−1(a) ∩K consists of

more than one point. The order of a ∈ ϕ(K) is the cardinality of ϕ−1(a) ∩K. A double

point in ϕ(K) is a point with order 2. The projection ϕ of a knot K is said to be regular if

there are only a finite number of multiple points in ϕ(K), each of which is a double point.

If K is a polygonal knot, the projection ϕ of K is said to be regular if there are only a

finite number of multiple points in ϕ(K), each of which is a double point, and if no double

point in ϕ(K) is the image of a vertex of K.

A knot K is considered to be in regular position if there exists a regular projection of

K onto the xy-plane. The next theorem states that it is always possible to transform a

polygonal knot into a polygonal knot in regular position.

Theorem 1.2.1 ([128]) If K is a polygonal knot, then there is an arbitrarily small rota-
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tion of R
3 onto R

3 that maps K into a polygonal knot in regular position.

Theorem 1.2.1 leads to the following corollary.

Corollary 1.2.1 ([128]) Every polygonal knot is equivalent to a polygonal knot in regular

position.

Suppose K is a knot in regular position. Then each double point in the regular pro-

jection of K is the image of two points in the original embedding. The locations of the

double points in the regular projection are called crossings. For a particular crossing in the

regular projection, there are two associated points in the original embedding. The point in

the original embedding whose z-coordinate is larger is said to be an overcrossing and the

other point is said to be an undercrossing . The segment of the projection going through

an overcrossing (undercrossing) is called an overcrossing (undercrossing) segment.

A knot projection [8] is a regular projection of a knot K such that, at every crossing,

the overcrossing segments and the orientation of the knot are marked. The image resulting

from the knot projection of the knot K is called the knot diagram of K. Then the crossing

number of a knot is the minimum number of crossings that appears in any knot diagram of

the knot. Figure 1.3 contains illustrations of the knot diagrams of three distinct knots. If

the number of crossings appearing in a knot diagram of a knot K is equal to the crossing

number of K, then the knot diagram is referred to as a minimal knot diagram.

(a) (b) (c)

Figure 1.3: Examples of some common knots. The knot-type of a knot
whose knot diagram is illustrated in (a) is referred to as the unknot. The
knot-type of a knot whose knot diagram is illustrated in (b) is referred to
as the right-handed trefoil. The knot-type of a knot whose knot diagram is
illustrated in (c) is referred to as the figure 8.

The knot-type of a knot whose knot diagram is illustrated in Figure 1.3 (a) is referred

to as the unknot and is denoted φ. The knot-type φ is referred to as the trivial knot-type.
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Any other knot-type is referred to as a non-trivial knot-type. Similarly a knot whose

knot-type is φ is referred to as a trivial knot, and a knot whose knot-type is non-trivial is

referred to as a non-trivial knot. From this point forward, any reference to a knot in a

figure will refer to a knot whose knot diagram is illustrated in the figure.

Suppose F andG are two oriented knots. The connect sum of F and G, denoted F#G,

is the knot resulting from placing F and G side by side and joining them as illustrated in

Figure 1.4 in such a manner that the orientation is preserved in the sum. The reader is

referred to [136] for a precise mathematical definition of F#G.

+ =

F + G = F#G

Figure 1.4: The connect sum of two knots F and G.

A knot is said to be composite if it can be represented as the connect sum of two non-

trivial knots [17]. A knot that cannot be expressed as the connect sum of two non-trivial

knots is referred to as prime [17]. In Figure 1.4, the knots labelled F and G are prime

knots and the knot labelled F#G is composite.

For a given knot projection, suppose that, for a given crossing i in the knot projection,

crossing i is relabelled so that its undercrossing segment becomes an overcrossing segment

and its overcrossing segment becomes an undercrossing segment. This switching of an

undercrossing segment with its overcrossing segment (and vice versa) at a crossing in a

knot projection is referred to as a strand passage.

Consider a knot K in regular position whose knot diagram has n crossings. A knot

K∗ corresponding to the knot diagram formed by implementing a strand passage at each

of the n crossings in the knot diagram of K is said to be a mirror image of K. If K and

K∗ are equivalent, then the knot K is said to be achiral . If no homotopy exists such that

K and K∗ are equivalent, then K is said to be chiral . For the knots whose knot diagrams
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are presented in Figure 1.3, the trefoil (cf. Figure 1.3 (b)) is chiral and the figure 8 (cf.

Figure 1.3 (c)) is achiral. Suppose K is a chiral knot. Then the knot-type of K is referred

to as a chiral knot-type. If K is an achiral knot, then the knot-type of K is referred to as

an achiral knot-type.

SupposeK is an oriented knot in regular position and D is a knot diagram of K. When

traversing D in the direction imposed by the orientation of K, if a crossing has the form

as illustrated in Figure 1.5, then the crossing is referred to as a positive (or right-handed)

crossing. Otherwise, the crossing is said to be a negative (or left-handed) crossing.

Figure 1.5: A right-handed (or positive) crossing.

Suppose K is a knot in regular position with chiral knot-type. Then the knot-type of

the sets of knots that are homotopic to K and K∗ are denoted c+i and c−i , where c is the

crossing number of K, i represents the i’th distinct knot-type (as defined in Rolfsen’s Knot

Table [136]) having crossing number c, and in this work the + or − in this work is assigned

as follows. If a minimal knot diagram of K only contains positive crossings then its knot-

type is c+i and K∗ has knot-type c−i [117]; if a minimal knot diagram of K only contains

negative crossings then its knot-type is c−i and K∗ has knot-type c+i [117]; and otherwise

the reader is referred to Liang and Mislow’s algorithm [92] for the +/− classification of the

knots K and K∗. In this work, if K has knot-type c+i then K is referred to as a positive

(or right-handed) knot. If K has knot-type c−i then K is referred to as a negative (or

left-handed) knot. For the purposes of this work, only chiral knots will be said to exhibit

“handedness”. For example, any knot that is equivalent to a knot whose knot diagram is

illustrated in Figure 1.3 (b) has knot-type 3+
1 .

The notation 3+
1 (also referred to as a right-handed trefoil) indicates that the minimum

number of crossings in a knot projection of a right-handed trefoil is three and the tre-
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foil (either right-handed or left-handed) was arbitrarily denoted to be the first knot-type

whose minimal projection has three crossings. Further to this, Figure 1.3 (b) provides an

illustration of a knot diagram corresponding to a knot whose knot-type is a right-handed

trefoil. When a knot-type is achiral or chirality is not important, the superscripts + and

− are dropped and the knot-type is simply denoted ci. For example, the knot-type of

a knot, whose knot diagram is illustrated in Figure 1.3 (c), is referred to as the figure 8

and is denoted 41. The knot-types of the knots (ignoring chirality) whose knot projections

minimally consist of five crossings are referred to as 51 and 52. Refer to Figure 1.6 for

the knot diagrams of knots with knot-type 51 and 52. Note that although the subscripts

assigned to each knot-type were initially assigned arbitrarily, they have since been adopted

as convention [2].

(a) (b)

Figure 1.6: The knot-type of a knot whose knot diagram is illustrated in
(a) is referred to as 51. The knot-type of a knot whose knot diagram is
illustrated in (b) is referred to as 52.

Let ϕ1 and ϕ2 be two knot projections. ϕ1 and ϕ2 are said to be equivalent projections

(as opposed to equivalent knots) if there exists a finite sequence of moves, referred to as the

Reidemeister moves [135], which transforms ϕ1 into ϕ2 and vice versa. A Reidemeister

move is one of three moves that can be used to change the positioning of the crossings in a

knot projection. The first Reidemeister move, denoted Ω1, allows a twist to be added to or

removed from a knot, as illustrated in Figure 1.7. The second Reidemeister move, denoted

Ω2, allows two crossings to be added to or removed from a knot, cf. Figure 1.8. The final

Reidemeister move, denoted Ω3, allows a strand of a knot on one side of a crossing to slide

to the opposite side of the crossing, cf. Figure 1.9.
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Figure 1.7: Reidemeister I Move (Ω1).

Figure 1.8: Reidemeister II Move (Ω2).

It can be shown that two knots K1 and K2 have the same knot-type if and only if a

knot projection of K1 is equivalent to a knot projection of K2 [136], that is, if and only

if there is a finite sequence of Reidemeister moves that transforms the knot projection of

K1 into the knot projection of K2. Because determining such a sequence of Reidemeister

moves (if one exists) is not particularly easy, an efficient knot-type identification algorithm

(that is, an algorithm more efficient than trying to find a sequence of Reidemeister moves)

is desired. Such an algorithm, regardless of the initial presentation of the knot, should

correctly identify the knot-type of the knot. Perhaps an easier route (rather than trying

to determine a sequence of Reidemeister moves) for identifying the knot-type of a knot is

Figure 1.9: Reidemeister III Move (Ω3).
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to look for quantities ρi, such that ρi(K1) = ρi(K2) for all equivalent knots K1 and K2.

Any such quantity ρi is referred to as a knot invariant .

Although knot invariants do not necessarily uniquely identify the knot-types of knots,

they can help reduce the problem of knot identification. One of the simplest knot invariants

is the Alexander Polynomial [2]. Other knot invariants include the Jones Polynomial [77],

the Kauffman Bracket Polynomial [81], and the HOMFLY Polynomial [38]. Because the

Alexander Polynomial is to be used in this work, the algorithm for generating the Alexander

Polynomial of a given knot will be discussed next.

1.2.1 Alexander Polynomials

Using the following procedure [163], the Alexander Polynomial of an arbitrary knot K can

be determined.

1. Construct a knot projection ϕ(K) of K.

2. Arbitrarily mark “0” on ϕ(K) at a location which is not a multiple point. From this

“0” assign a direction in which to traverse the contour of ϕ(K).

3. Starting at “0”, move along the contour of ϕ(K) in the preassigned direction until

reaching the first undercrossing. Label this undercrossing “1”. Continue along the

contour of ϕ(K) in the preassigned direction labelling each consecutive undercrossing

“2”, “3”, . . . , “n”, where n is the total number of distinct undercrossings, until one

returns to the starting point “0”. Denote undercrossing “i” by ui.

4. The part of the contour lying between uk−1 and uk, for k = 2, . . . , n, is said to be

the kth-overcrossing generator and is denoted xk, and the part of the contour lying

between un and un+1 = u1 is said to be the 1st-overcrossing generator and is denoted

x1.

Define xn+1 = x1, that is the (n+ 1)th-overcrossing generator is the 1st-overcrossing

generator.

5. Classify the n undercrossings into the two categories: Type I and Type II, based on

the direction of the overcrossing generator above each undercrossing, cf. Figure 1.10

(a) and (b).
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Figure 1.10: (a) is a Type I (negative) undercrossing and (b) is a Type II
(positive) undercrossing.

6. Let jg, for j = 1 to n, be the subscript of the overcrossing generator at the j’th

undercrossing. For example, for the Type II undercrossing in Figure 1.10 (b), kg = i.

Every knot projection can be expressed as a sequence of undercrossings, each of

whose type (I or II) and overcrossing generator label is known. This qualitative

description of a knot projection can be converted into an (n × n)-matrix referred

to as the Alexander Matrix, denoted M(∆(t)), by letting the jth row of M(∆(t))

represent the jth undercrossing.

7. To construct M(∆(t)), let aij represent the (i, j)’th element of M(∆(t)).

(a) Set M(∆(t)) = 0, where 0, that is an n×n-matrix consisting entirely of zeroes.

(b) If, for all i, j ∈ {1, . . . , n},

i. ig = j or ig = j + 1, regardless of the undercrossing type, then, in M(∆(t)),

set

aj,j = −1, aj,j+1 = 1.

ii. If uj is a Type I, cf. Figure 1.10 (a), undercrossing, and ig 6= j and ig 6=
j + 1, then, in M(∆(t)), set

aj,j = 1, aj,j+1 = −t, aj,ig = t− 1.

iii. If uj is a Type II, cf. Figure 1.10 (b), undercrossing, and ig 6= j and

ig 6= j + 1, then, in M(∆(t)), set

aj,j = −t, aj,j+1 = 1, aj,ig = t− 1.

8. To construct the Alexander Polynomial ∆(t) from M(∆(t)),
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(a) calculate the determinant of any [(n− 1) × (n− 1)] minor of M(∆(t)),

(b) multiply the determinant by ±t−m, where m is the smallest integer such that

the resulting product is a polynomial in t, and the sign of t−m is chosen in such

a manner that the coefficient of the leading term of the resultant product is

positive.

The Alexander Polynomials for knots with the same knot-type have been proven to

be the same [2, 116], but two knots having the same Alexander Polynomial do NOT

necessarily have the same knot-type. For instance, in the above construction of the

Alexander Polynomial, note that the assignment of undercrossings (and therefore the type

of each undercrossing) was dependent only on the direction chosen to traverse the contour

of the knot. Since this direction was chosen arbitrarily, the relationship between the rows

of the corresponding Alexander matrix and the type of each undercrossing is also arbitrary.

Therefore, as long as the chosen direction remains fixed for the computation of the matrix

for the entire knot, interchanging the type of undercrossing for all undercrossings in the

knot does not change ∆(t). Hence ∆(t) cannot distinguish between a knot and its mirror

image. In fact, it is known that the Alexander Polynomial fails to distinguish the difference:

1. between a knot and its mirror image (for example, the Alexander Polynomials of a

trefoil and its mirror image are identical);

2. between some complex knots and the unknot (for instance the pretzel knot denoted

(-3 5 7), as seen in Figure 1.11, and the unknot) [1]; and

3. between some particular complex knots. For instance 811 has the same Alexander

Polynomial as the composite knot-type 3+
1 #61 [126].

Note that the only knot-types that are of concern to this work have unknotting number

one, that is those knots which can be transformed into the unknot via ONE strand passage,

and that every unknotting number one knot is a prime knot. Also, for this work, note

that because only right-handed knots are generated by the CMC Θ-BFACF Algorithm (as

defined in Section 3.4 of Chapter 3), a knot does not need to be distinguished from its mirror

image. Finally, note that because in this work no Θ-SAP is observed to have a length

greater than 7000 and because in [173], Yao et al. estimate N (φ) to be (2.5 ± 0.3) × 105

(where N (φ) is the polygon length for which the unknot dominates the sets of SAPs with
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Figure 1.11: The Pretzel Knot (-3 5 7).

lengths less than N (φ)), very few complex knots are expected. Hence, for this work,

the Alexander Polynomial is a suitable knot-type identifier and from this point forth, the

superscripts + and − will be dropped from the notation for the different knot-types unless

the chirality dependence is explicitly needed.

1.2.2 Unknotting Number One Knots

Examples of unknotting number one knots include the unknot, the trefoil, and the figure

8. The complete list of unknotting number one knots (up to and including 8 crossings)

and their associated Alexander Polynomial is given in Table 1.1.

A special class of unknotting number one knots are the twist knots.

Definition 1.2.1 ([136]) Given any n ∈ Z, a twist knot is a knot which is formed by a

twist region with |2n| crossings all of the same sign as (−1)n and a clasp consisting of two

positive crossings, cf. Figures 1.12(a) and 1.12(b).

In Figures 1.12(a) and 1.12(b), the two crossings aligned vertically near the top of the

knot projection form the clasp of the twist knot. The |2n| crossings aligned horizontally

near the bottom of the knot projection form what is referred to as the twist region of the

twist knot.

The trefoil and the figure 8 are the two simplest non-trivial twist knots consisting of

a twist region containing two crossings. If the crossings in this twist region are positive,

then the twist knot is a trefoil, cf. Figure 1.13. Otherwise if the crossings in the twist
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Table 1.1: The Alexander Polynomial and its corresponding evaluations at
t = −1 and t = −2 for the unknotting number one knots with up to and
including eight crossings.

Knot ∆(t) ∆(-1) ∆(-2) Knot ∆(t) ∆(-1) ∆(-2)

31 t2−t+ 1 3 7 89

t6−3t5+5t4−7t3

+5t2−3t+ 1
25 323

41 t2−3t+ 1 5 11 810

t6−3t5+6t4−7t3

+6t2−3t+ 1
27 343

52 2t2−3t+ 2 7 16 811

2t4−7t3+9t2

−7t+ 2
27 140

61 2t2−5t+ 2 9 20 813

2t4−7t3+11t2

−7t+ 2
29 148

62

t4−3t3+3t2

−3t+ 1
11 59 814

2t4−8t3+11t2

−8t+ 2
31 158

63

t4−3t3+5t2

−3t+ 1
13 67 8+

16

t6−4t5+8t4−9t3

+8t2−4t+ 1
35 433

72 3t2−5t+ 3 11 25 817

t6−4t5+8t4−11t3

+8t2−4t+ 1
37 449

76

t4−5t3+7t2

−5t+ 1
19 95 8+

18

t6−5t5+10t4−13t3

+10t2−5t+ 1
45 539

77

t4−5t3+9t2

−5t+ 1
21 103 820 t4−2t3+3t2−2t+ 1 9 49

81 3t2 −7t+ 3 13 29 821 t4−4t3+5t2−4t+ 1 15 77

87

t6−3t5+5t4−5t3

+5t2−3t+ 1
23 307
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(a) (b)

Figure 1.12: (a) is a twist knot formed from a twisted region with |2n|
positive crossings. (b) is a twist knot formed from a twisted region with |2n|
negative crossings. In Figures (a) and (b) the portion of the knot contained
in the circle is referred to as the clasp and the portion of the knot contained
within the ellipse is referred to as the twist region.

(a) (b)

Figure 1.13: (a) is a knot diagram of a trefoil drawn in the form of the
definition of a twist knot with 2 positive crossings in the twist region. (b) is
a knot diagram that is commonly used to represent a trefoil.

region are negative, then the twist knot is the figure 8, cf. Figure 1.14.

It can be seen from Figure 1.12 that if a strand passage is implemented at one of the

crossings in the twist region, the knot-type of the resulting knot is a twist knot with 2

fewer crossings in the twist region. Further, it can be seen from Figure 1.12 that if a

strand passage occurs in the clasp region of a twist knot, the knot-type of the resulting

after-strand-passage knot is always the unknot. In the case of the trefoil and the figure 8,

it can be seen from Figures 1.13 and 1.14 respectively that a strand passage in the twist

region leads to, after the strand passage, a knot whose knot-type is the unknot.

Because a strand passage in the clasp region unknots a twist knot in only one strand

passage, it is believed that the twist knots play a particularly important role in molecular

biology [106]. When the topology of a DNA molecule is a twist knot, the twist region

corresponds to the supercoils of the DNA molecule and the clasp region results from a
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(a) (b)

Figure 1.14: (a) is a knot diagram of a figure 8 drawn in the form of the
definition of a twist knot with 2 negative crossings in the twist region. (b)
is a knot diagram that is commonly used to represent a figure 8.

strand passage of two segments of the DNA molecule. In [106], Mann’s experimental work

suggested that human topoisomerase IIα enzymes preferred to act on the clasp region of

the twist knot; the consequence of such an interaction was that the DNA was unknotted.

In order to better understand the human topoisomerase IIα enzyme-twist knot DNA

interaction, Liu et al. [96] created a lattice model to study how the local geometry of the

strand passage site impacts the after-strand-passage knot-type. As the work presented in

this thesis is also based on a model of a ring polymer on the simple cubic lattice (to be

defined formally in the next section), the next section provides an overview of modelling

polymers on the simple cubic lattice.

1.3 Lattice Models of Polymers

To define any lattice model of a polymer, the following definitions from [46] are required.

Let x := (x(1), x(2), ..., x(d)) ∈ Rd, the d-dimensional Euclidean space and define, for

x,y ∈ Rd,

x · y :=

d∑

i=1

x(i)y(i) (1.3)

(the Euclidean dot product) and

||x||r := r

√√√√
d∑

i=1

[x(i)]r. (1.4)

If r = 2 in Equation (1.4), then Equation (1.4) represents the Euclidean norm.

As defined in [172], define a graph (directed graph) G to be the pair G := (V(G), E(G)),

where V(G) is a set and E(G) is a set of unordered (ordered) pairs of elements from V(G).
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V(G) and E(G) are respectively the vertex set and edge (arc) set of G. The elements of

V(G) are called the vertices or sites ofG and the elements of E(G) are called the edges (arcs)

or bonds of G. The d-dimensional hyper-cubic lattice, or equivalently the d-dimensional

integer lattice, is the infinite graph embedded in R
3, whose vertex set, denoted V(Zd), is Zd

and whose edge set E(Zd), is given by E(Zd) = {{x,y}|x,y ∈ V(Zd), ||x − y||1 = 1}. For

convenience, from this point on, Z
d will be used to denote the d-dimensional hypercubic

lattice. Z
2 is called the square lattice and Z

3 is called the simple cubic lattice.

Many interesting graphs and graph embeddings can be defined in Z
d. The work em-

bodied in this thesis focuses on two specific types of embeddings. The first type is the set

of all self-avoiding walks in Z
d beginning at site x and ending at the site y.

Definition 1.3.1 ([103]) An n-step self-avoiding walk (SAW) u in Zd beginning at site

x and ending at the site y is defined to be a directed graph embedding u = (V(u), E(u))

in Zd consisting of a sequence of n distinct arcs in Zd, E(u) = ((u0,u1), (u1,u2), . . . ,

(un−2,un−1), (un−1,un)), and a corresponding sequence of n + 1 distinct vertices in Zd,

V(u) = (u0,u1,u2, . . . ,un−1,un), such that the vertices ui ∈ Zd for i = 0, ..., n, u0 = x,

un = y, and for each i = 0, ..., n− 1 the arc (ui,ui+1) joins two nearest neighbour vertices

in Zd (i.e. ||ui+1 −ui||1 = 1). The length of the self-avoiding walk u is denoted |u| and is

defined to be the number of arcs in E(u).

The second type of graph embedding relevant to this work is the set of all self-avoiding

polygons in Zd. A self-avoiding polygon (SAP) in Z
d can be viewed as a simple closed

curve embedded in Z
d that never intersects itself and has neither a starting point nor an

orientation specified. More precisely:

Definition 1.3.2 A (2n)-edge self-avoiding polygon (SAP) ω, for n ≥ 2, is defined to

be a graph embedding ω = (V(ω), E(ω)) in Zd consisting of a set of 2n distinct edges in

Zd, E(ω) = {{ω0,ω1} , {ω1,ω2} , . . . , {ω2n−2,ω2n−1} , {ω2n−1,ω0}}, and a corresponding

set of 2n distinct vertices in Zd, V(ω) = {ω0,ω1,ω2, . . . ,ω2n−2,ω2n−1}, such that for all

i = 0, 1, ..., 2n − 2, ||ωi − ωi+1||1 = 1 and ||ω2n−1 − ω0||1 = 1. It should be noted that the

length of the SAP ω is denoted |ω| and is defined to be the number of edges in E(ω).

Definition 1.3.3 For a SAP ω in Zd, ω is referred to as a rooted polygon if one of its

vertices is designated as the root of ω. If no vertex of ω is specified as the root, then ω is

referred to as an unrooted polygon.
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Rooted SAPs are of particular interest to this work because Θ-SAPs are rooted SAPs.

Since the late 1940’s [114, 127], self-avoiding walks have been used to model linear

polymers in dilute solution and since the early 1960’s [53], self-avoiding polygons have

been used as lattice models for ring polymers in dilute solution. The standard underlying

assumptions required to model a linear/ring polymer in dilute solution with a good solvent

using a self-avoiding walk (SAW)/self-avoiding polygon (SAP) are [154]:

1. the vertices of the SAW/SAP represent the monomers of the linear/ring polymer;

2. the edges of the SAW/SAP represent the chemical bonds between the monomers;

3. the self-avoidance property of the SAW/SAP represents the effect of the excluded

volume;

4. the excluded volume property is assumed to dominate all other interactions so that

interactions between a polymer and itself and a polymer and the solvent can be

ignored;

5. all polymer configurations with the same number of monomers are considered equally

likely; and

6. the polymer is considered to be isolated from other polymers in the solution and is

therefore unaffected by the other polymers in the solution.

For the Local Strand Passage Model of this thesis, two further assumptions are made.

One assumption is that the location of the strand passage in the polymer has already been

chosen and the other assumption is that the two strands of the polymer have already been

brought close together. The specific details of the LSP model are presented in Chapter

2.

In order to study the LSP Model, some definitions and properties related to self-avoiding

walks and self-avoiding polygons are needed. One of the reasons self-avoiding walks are

included in this discussion, even though it has already been stated that a self-avoiding

polygon model is going to be used, is that many of the asymptotic properties of self-

avoiding polygons can be derived from those for self-avoiding walks. Therefore sufficient

terminology and information about the properties of self-avoiding walks must be presented

so that the properties of self-avoiding polygons can be better understood.
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Define C d
n (x,y) to be the set of n-step SAWs in Z

d beginning at site x ∈ Z
d and ending

at site y ∈ Z
d. Denote the n-step SAWs whose end is not specified but still begin at site

x ∈ Z
d by

C
d
n (x) :=

⋃

y∈Zd

C
d
n (x,y) (1.5)

and define C d
n := C d

n (0). Note that C d
n is nothing but the set of all n-step self-avoiding

walks in Z
d that start at the origin. Now define the set of all SAWs in Z3 that start at

the origin by

C :=
⋃

n≥0

C
3
n . (1.6)

Let Pd
n denote the set of all n-step self-avoiding polygons in Zd. Unless otherwise

specified, from this point forward the term walk will be used synonymously with SAW and

the term polygon will be used synonymously with SAP. If an orientation of a polygon in

Zd is specified, the SAP is said to be directed. Let Qd
n be the set of all n-step directed

self-avoiding polygons in Zd that are rooted at the origin.

An interesting question regarding the set of all SAWs (SAPs) is “How many distinct

SAWs (SAPs) of length n can exist in Zd?”, where two SAWs (SAPs) are considered distinct

if one SAW (SAP) cannot be obtained from the other by some translation. In order to

discuss this question in detail, the following notation is needed. Define cdn(x,y), cdn and

pd
n respectively to be the number of n-step SAWs starting at site x ∈ Zd and ending at site

y ∈ Zd; the number of n-step SAWs in Zd starting at the origin and whose end site is not

specified; and the number of distinct n-edge SAPs in Zd. Now define cn := c3n, pn := p3
n,

and pn(K) to be the number of distinct n-edge SAPs in Z
3 that have knot-type K. Let

qd
n be the number of n-edge SAPs in Zd that are rooted at the origin. Because SAPs can

only consist of an even number of edges,

pd
n =





0, if n is odd

pd
n, if n is even

(1.7)

and

qd
n =





0, if n is odd

qd
n, if n is even.

(1.8)

To determine qd
2n, note that, for each unrooted (2n)-edge SAP in Zd, there are 2n

possible ways of rooting, and then translating, the SAP so that the root is the origin.
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Therefore the number of rooted (2n)-edge SAPs in Z
d, [103], is

qd
2n = 2npd

2n. (1.9)

One method for determining cdn and pd
2n for a fixed dimension d is to simply count

the number of distinct SAWs, cdn, and SAPs, pd
2n, for each value of n. Tables 1.2 and 1.3

respectively present the number of distinct n-step SAWs starting at the origin (for d ∈
{2, 3, 4, 5, 6} and n ∈ {0, 1, 2, 3, 4, 5, 6}) and (2n)-edge unrooted SAPs (for d ∈ {2, 3, 4, 5, 6}
and n ∈ {2, 3, 4, 5}). The values in Table 1.2 for d = 2 are taken from [110]; for d = 3 are

Table 1.2: The number cdn of distinct n-step SAWs starting at the origin.

n
d = 2

[110]

d = 3

[51]

d = 4

[33]

d = 5

[33]

d = 6

[33]

0 1 1 1 1 1

1 4 6 8 10 12

2 12 30 56 90 132

3 36 150 392 810 1452

4 100 726 2696 7210 15852

5 284 3534 18584 64250 173172

6 780 16926 127160 570330 1887492

taken from [51]; and for d ∈ {4, 5, 6} are taken from [33]. The values in Table 1.3 for d = 2

Table 1.3: The number pd
2n of distinct unrooted (2n)-edge SAPs.

2n
d = 2

[50]

d = 3

[33]

d = 4

[33]

d = 5

[33]

d = 6

[33]

4 1 3 6 10 15

6 2 22 76 180 350

8 7 207 1434 5170 13545

10 28 2412 32616 186856 679716

are taken from [50]; and for d ∈ {3, 4, 5, 6} are taken from [33].

26



Using exact enumeration to determine the values for cdn and pd
2n is a very CPU inten-

sive problem. Because current enumeration algorithms rely on the available computational

power to implement the algorithm, for fixed dimension d, enumerating cdn and pd
2n, even for

moderately small values of n, would currently take years. For instance, p2
2n has now been

enumerated up to n = 55, that is p2
110 =97,148,177,367,657,853,074,723,038,687,712,338,567,772

[73], and p2n has been enumerated only up to n = 16, that is p32 = 53,424,552,150,523,386

[13]. Hence using current enumeration techniques to completely characterize the behaviour

of cdn and pd
2n as n → ∞, is not feasible. But, back in 1954, Hammersley and Morton de-

termined part of the asymptotic form (as n→ ∞) of cdn, that is they proved the following

result.

Theorem 1.3.1 (Hammersley and Morton [54]) For every natural number d ≥ 2, the

following limit exists:

κ(d) := lim
n→∞

n−1 log cdn, (1.10)

where κ(d) is referred to as the connective constant for self-avoiding walks in Z
d.

The existence of κ(d) for every natural number d ≥ 2, implies that cdn increases expo-

nentially in n. The quantity

µ(d) := eκ(d) (1.11)

is referred to as the growth constant for self-avoiding walks in Zd.

In 1961, Hammersley also determined part of the asymptotic form (as n→ ∞) of pd
2n.

He proved that the connective constant for self-avoiding polygons in Zd is equal to the

connective constant for self-avoiding walks in Zd, that is he proved the following result.

Theorem 1.3.2 (Hammersley [53]) For every natural number d ≥ 2,

lim
n→∞

(2n)−1 log pd
2n = κ(d). (1.12)

The upshot of Theorem 1.3.2 is two-fold. For fixed dimension d, pd
2n increases exponen-

tially in 2n, and cdn and pd
2n both grow at the same exponential rate. In Z3, the growth

and connective constants, µ(3) and κ(3), from this point forward, will simply be denoted

µ and κ, respectively.

Because this work focuses on knotting probabilities and because the concept of a knot

only makes sense in R3, the discussion will be restricted to the set of SAPs in Z3. Let Pn
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be the set of all n-edge SAPs in Z
3 and define the set of all SAPs in Z

3 to be

P :=
⋃

4≤n∈N

Pn. (1.13)

Now let Pn(K) be the set of n-edge SAPs in Z
3 that have knot-type K and define the set

of all SAPs in Z
3 that have knot-type K to be

P(K) :=
⋃

4≤n∈N

Pn(K). (1.14)

For the set of SAPs that have knot-type K, define pn(K) to be the number of distinct

n-edge SAPs in Z
3 that have knot-type K. Now define qn(K) to be the number of n-edge

SAPs in Z
3 that are rooted at the origin and have knot-type K. Combining Equation (1.8)

with the result of an argument similar to that which was used to obtain Equation (1.9)

yields

qn(K) =





0, if n is odd

npn(K), if n is even.
(1.15)

Equation (1.15) yields that studies of p2n(K) can be used directly to study q2n(K). Be-

cause Θ-SAPs are rooted SAPs, subsets of the polygons counted by p2n(K) can be used

to study the number of (2n)-edge knot-type K Θ-SAPs. Hence the discussion turns to

studies of p2n(K).

In [26], Diao proved that the smallest non-trivial knot that can be embedded in Z3 has

24 edges and that the knot-type of every 24-edge non-trivial knotted SAP is the trefoil.

In fact, Diao determined enumeratively that p24(31) = 3496 [27]. Diao also proved that

in order to embed any other non-trivial knot (other than the trefoil) in Z3, the resulting

SAP would have to have at least 26 edges. In [83], Kim et al. proved that the smallest

figure eight that can be embedded in Z3 has 30 edges. Refer to Figures 1.15 and 1.16

respectively for an example of a 24-edge trefoil and a 30-edge figure 8 embedded in Z3.

In order to investigate the exponential growth of p2n(K), one useful tool is Kesten’s

Pattern Theorem. In order to state Kesten’s Pattern Theorem for SAWs in Z3, some

definitions based on [82] are required. The first definitions required are that of a cube and

a pattern as defined in Zd.

Definition 1.3.4 (Kesten [82]) A d-dimensional cube D is a set of lattice points of the

form

D =
{

x ∈ Z
d : bi ≤ x(i) ≤ bi + b, for i = 1, .., d

}
, (1.16)
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Figure 1.15: A 24-edge SAP whose knot-type is 31.

Figure 1.16: A 30-edge SAP whose knot-type is 41.

where b1, b2, ..., bd are integer values and b is a positive integer.

Definition 1.3.5 (Kesten [82]) A pattern P = (V(P ), E(P )) is a directed graph embed-

ding in Zd consisting of a sequence of n distinct arcs in Zd, where E(P ) = ((P 0,P 1),

(P 1,P 2), . . . , (P n−2,P n−1), (P n−1,P n)) and a corresponding sequence of n distinct ver-

tices in Zd, V(P ) = (P 0, P 1, P 2, . . . , P n−1, P n).

Definition 1.3.6 (Kesten [82]) A pattern P is said to occur at the j’th step of a self-

avoiding walk w if there exists a vector v ∈ Zd such that wj+k = P k + v for every

k = 0, ..., n.

Now that a pattern has been defined, two very special types of patterns can be defined.

To this end, recall that C d
n is the set of all n-step self-avoiding walks w ∈ Zd such that
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w0 = 0 and that Qd
n is the set of all n-step directed self-avoiding polygons in Z

d that are

rooted at the origin.

Definition 1.3.7 For fixed n ∈ N\{1} and given ω ∈ Qd
2n, consider the walk u (self-

avoiding except for the last vertex) that is formed by starting at the origin and following

along the arcs as specified by their orientation. A pattern P is said to occur at the j’th

step of ω if it occurs at the j’th step of u.

Definition 1.3.8 (Kesten [82]) Given k ≥ 0 and a pattern P , let cdn [k, P ] (qd
2n [k, P ])

denote the number of elements in C d
n (Qd

2n) for which P occurs at no more than k different

steps. Let C d
n (P )⊆ C d

n (Qd
2n(P )⊆ Qd

2n) for which P occurs at the 0’th step. P is said

to be a proper front pattern if C d
n (P )6= {} (Qd

2n(P )6= {}) for all sufficiently large n. P is

said to be a proper internal pattern if for every k there exists an element in C d
n (Qd

2n) such

that P occurs at k or more different steps.

Definition 1.3.9 (Kesten [82]) Suppose Q is a cube in Z
d and P is an m-step pattern

in Zd such that P 0 and P m are corners of Q and P i ∈ Q for all i = 0, 1, ...,m. (P,Q)

occurs at the j’th step of a self-avoiding walk (directed rooted SAP) w if there exists a

vector v ∈ Zd such that wj+k = P k + v for every k = 0, ...,m and wi is not in Q+ v for

every i < j and every i > j +m. For k ≥ 0, let cdn [k, (P,Q)] (qd
2n [k, (P,Q)]) denote the

number of elements in C d
n (Qd

2n) for which (P,Q) occurs at no more than k different steps.

Definitions 1.3.4 through 1.3.9 allow the theorem, that is now referred to as the Kesten

Pattern Theorem for SAWs, to be stated precisely.

Theorem 1.3.3 (Kesten Pattern Theorem for SAWs [82]) (a) Let Q be a cube in

Zd and P be a pattern in Zd as in Definition 1.3.9. Then there exists an a > 0 such that

lim sup
n→∞

(
cdn [an, (P,Q)]

)1/n
< µ(d). (1.17)

(b) For any proper internal pattern P as in Definition 1.3.8, there exists an a > 0 such

that

lim sup
n→∞

(
cdn [an, P ]

)1/n
< µ(d). (1.18)
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Basically Kesten’s Pattern Theorem states that if a given pattern can possibly occur

three times in a SAW, then it must occur at least an times in all but an exponentially

small fraction of sufficiently large n-step SAWs, for some a > 0, cf. [82]. In [149], Sumners

and Whittington adapted Theorem 1.3.3 to the set of all self-avoiding polygons. Their

resulting theorem, referred to from-here-on-in as the Pattern Theorem for all Polygons, is

stated below.

Theorem 1.3.4 (Pattern Theorem for all Polygons [149]) (a) Let Q be a cube in

Z
3 and P be a pattern in Z

3 as in Definition 1.3.9. Then there exists an a > 0 such that

lim sup
n→∞

(
q32n [2an, (P,Q)]

)1/2n
< µ. (1.19)

(b) For any proper internal pattern P in Z3 as in Definition 1.3.8 and for 0 ≤ k ∈ Z, let

q32n [k, P ]) denote the number of elements in Q3
2n for which P occurs at no more than k

different steps. Then there exists an a > 0 such that

lim sup
n→∞

(
q32n [2an, P ]

)1/2n
< µ. (1.20)

The pattern illustrated in Figure 1.17 is referred to as a tight trefoil pattern and has

been redrawn from [149]. It can be seen from Figure 1.17 that if this tight trefoil pattern

is transformed into a SAP with the fewest number of edges, the resulting SAP is a trefoil.

In fact, using this tight trefoil pattern and the Pattern Theorem for all Polygons, Sumners

and Whittington proved the following result.

Figure 1.17: A tight trefoil pattern.
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Theorem 1.3.5 (Sumners and Whittington [149])

lim
n→∞

(2n)−1 log p2n(φ) := κφ < κ (1.21)

and hence the probability that an (2n)-edge self-avoiding polygon is knotted, that is 1− p2n(φ)
p2n

goes to unity as 1 − e−2αn+o(n) when n→ ∞ and α = κ− κφ > 0.

The proof of the strict inequality in Equation (1.21) of Theorem 1.3.5 relies on the Pattern

Theorem for all Polygons. Theorem 1.3.5 itself implies that the unknot is asymptotically,

exponentially rare in the set of all self-avoiding polygons in Z
3, that is, as the length of a

self-avoiding polygon in Z
3 tends to infinity, the probability of the polygon being unknotted

tends to zero. This implies that the knotting probability goes to one, confirming the Frisch-

Wasserman-Delbruck Conjecture (cf. Conjecture 1.1.1) for Z
3.

Soteros, Sumners, and Whittington [145] extended the results of Sumners and Whit-

tington [149] in a number of directions. They proved a weaker result for polygons with

non-trivial knot-type K, that is

kK := lim inf
n→∞

log p2n(K)

2n
≤ lim sup

n→∞

log p2n(K)

2n
=: κK < κ = log µ. (1.22)

Note that it is not known whether kK = κK for any non-trivial knot-type K. They also

proved that all but exponentially few sufficiently long polygons in Z3 are highly composite

knots, with any knot-type appearing numerous times in the prime knot factorization. For

polygons with knot-type K, the following result can be proved [145]:

κφ ≤ κK . (1.23)

Although it is believed that [125]

κφ = κK , (1.24)

proving the inequality

κφ ≥ κK (1.25)

remains an open question.

A consequence of Theorem 1.3.2 is that p2n grows exponentially in n, where n ∈ N\{1}.
In fact, for the set of all SAPs in Z3, it is believed that there exist constants A,α, µ,B,

and ∆, and a function gp (with gp(2n) = O(n−1) such that p2n (as n→ ∞) has the scaling

form [125]

A (2n)α−3 µ2n

(
1 +

B

(2n)∆
+ gp(2n)

)
, (1.26)

32



where A is the amplitude, µ = eκ is the previously discussed growth constant, α is referred

to as the entropic critical exponent, and ∆ is the exponent for the dominant correction due

to scaling term referred to as a confluent exponent. Sumners and Whittington’s result in

Theorem 1.3.5 shows that p2n (φ) (for n ∈ N\{1}) grows at an exponential rate that is less

than the growth rate for p2n and hence, by the extension of Equation (1.26), Orlandini

et al. [125] proposed that there exist constants Aφ, αφ, µφ, Bφ, and ∆φ, and a function gφ

(with gφ(2n) = O(n−1)) such that p2n (φ) (as n→ ∞) scales like

Aφ (2n)αφ−3 µ2n
φ

(
1 +

Bφ

(2n)∆φ
+ gφ(2n)

)
, (1.27)

where Aφ is the amplitude, µφ = eκφ , αφ is the corresponding entropic critical exponent,

and ∆φ is the exponent for the dominate correction due to scaling term.

Now assuming that kK = κK in Equation (1.22), Orlandini et al. [125] extended the

scaling form given by Equation (1.26) to the number of (2n)-edge SAPs with knot-type

K. They proposed that there exist constants AK , αK , µK , BK , and ∆K , and a function gK

(with gK(2n) = O(n−1)) such that p2n (K) (as n→ ∞) scales like

AK (2n)αK−3 µ2n
K

(
1 +

BK

(2n)∆K
+ gK(2n)

)
, (1.28)

where AK is the amplitude, µK = eκK , αK is the corresponding entropic critical exponent,

and ∆K is the exponent for the dominate correction due to scaling term.

The relationship between αφ and αK is also unknown, but αK is believed to be a

function of αφ and the knot-type K [125] , that is, it is conjectured that

αK = αφ + nK , (1.29)

where nK is a constant which depends only on the knot-type K and is thought to be

the number of prime factors in the prime factor decomposition of the knot-type K [125].

There is no rigorous proof of this relationship, only estimates that do not contradict the

form given by Equation (1.29) [125].

There has been much numerical work completed, which, based on the above scaling

form assumptions, has lead to estimates for α, µ, µK , αK , and ∆K for K ∈ {φ, 31, 41} .
For instance, Clisby et al. [13] used exact enumeration and series analysis to estimate µ

and θ to be

µ = 4.6840431 ± 0.00001

θ = −0.76798 ± 0.00016,
(1.30)
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where

θ = α− 1. (1.31)

Because Diao [26] showed that the smallest knotted SAP is a trefoil with 24 edges, all

values of p2n = p2n(φ) for all the enumerated values up to and including n = 11. Since

p2n has only been enumerated up to SAPs of length 32 (that is up to n = 16), there is not

enough enumeration data available to estimate κK for K = 31, let alone for knots with

more than three crossings. Hence exact enumeration techniques have not lead to useful

estimates for κK , for any non-trivial knot-type K. In order to estimate κK , some other

approach, such as a Monte Carlo approach, must be used.

Orlandini et al. [125] presented Monte Carlo estimates for the growth constants of the

more common knot-types. They reported

µK =





4.6852 , if K = ∅, (the unknot),

4.6832 , if K = 31, (the trefoil),

4.6833 , if K = 41, (the figure eight),

(1.32)

which are considered accurate to the second decimal place. Based on these estimates, the

µK ’s are equal to the second decimal place and are possibly independent of the knot-type

K.

In [125], Orlandini et al. also estimated αφ using Monte Carlo data. They estimated

αφ = 0.27 ± 0.02 (1.33)

and, for every K,K ′ ∈ {31, 41, 62} , their numerics support

αK = aK ′ 6= αφ (1.34)

and

αK = αφ + 1, (1.35)

which is consistent with Equation (1.29) since nK = 1 for the three prime knot-types 31, 41,

and 62.

1.4 Generating Functions and Probability Distributions

Define the ordinary generating function for a sequence (an)∞n=0 by

χ(z) :=

∞∑

n=0

anz
n (1.36)
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and define the critical point for χ(z) to be its radius of convergence. Let S (∗) denote

the set of SAPs that have some desired property ∗ and suppose s2n(∗) is the number of

(2n)-edge SAPs that have some desired property ∗. Then, Q∗(z), the ordinary generating

function for (s2n(∗))∞n=0, is defined to be

Q∗(z) :=
∞∑

n=0

s2n(∗)z2n. (1.37)

Assuming µ∗ := limn→∞
2n
√
s2n(∗) exists and 0 < µ∗ <∞, then the critical point for Q∗(z)

is the radius of convergence of Q∗(z) and is given by

z∗ :=
1

limn→∞
2n
√
s2n(∗)

=
1

µ∗
. (1.38)

For example, the ordinary generating function for (pd
2n)∞n=0 is defined as

Qd(z) :=

∞∑

n=0

pd
2nz

2n =
∑

ω∈P

z|ω|, (1.39)

where the critical point for Qd(z) is [25]

zp(d) :=
1

limn→∞
2n

√
pd
2n

=
1

µ(d)
. (1.40)

In [49], using exact enumeration data, Guttmann determined the following estimates for

zp(d):

zp(d) ≈





0.2135, d = 3,

0.1477, d = 4,

≤ 1/d, for all d.

(1.41)

For a second example, the ordinary generating function for (p2n(φ))∞n=0 is defined as

Qφ(z) :=

∞∑

n=0

p2n(φ)z2n =
∑

ω∈P(φ)

z|ω|, (1.42)

where the critical point for Qφ(z) is given by

zφ :=
1

limn→∞
2n
√
p2n(φ)

=
1

µφ
. (1.43)

Now if the standard assumptions required to model a ring polymer in dilute solution

with a good solvent using a self-avoiding polygon (as discussed in [154] and outlined in

Section 1.3) are made, then for a canonical ensemble in which the number of monomers
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2n is fixed, at equilibrium, the polymer’s configuration W is given by a specific property-∗
(2n)-edge SAP ω ∈ S (∗) with probability

Pr(W = ω : |W | = 2n) :=
1

s2n(∗) , (1.44)

where |W | denotes the number of edges in W .

If it is further assumed that the size of the polygon is allowed to vary, that is for a grand

canonical ensemble [103], then the probability that a polymer has conformation ω ∈ S (∗)
is given by the equation

Pr(W = ω) :=
z|ω|∑∞

j=0 s2j(∗)z2j
(1.45)

where z is referred to as the fugacity of the system. The denominator of Equation (1.45) is

the normalization factor (also referred to as the partition function) [103]. Any probability

distribution that can be expressed in the form given by Equation (1.45) is referred to as a

Boltzmann distribution.

If the properties of large polymers are of interest, then the distribution given by Equa-

tion (1.45) can be reweighted so that larger probabilities are associated with larger poly-

gons, that is πω(z), the probability that (at equilibrium) a polymer’s configuration W is

given by a specific property-∗ SAP ω ∈ S (∗), is given by

πω(z) :=
f(|ω|)z|ω|
Q(z)

, (1.46)

where z such that 0 < z < z∗ is fixed, Q(z) :=
∑∞

j=0 f(2j)s2j(∗)z2j , and f(n) is a poly-

nomial in n. Any probability distribution that can be expressed in the form given by

Equation (1.46) is referred to as a modified Boltzmann distribution. Furthermore, π2n(z),

the probability that the polymer’s conformation, W , is given by a (2n)-edge property-∗
SAP ω ∈ S (∗), is given by

π2n(z) :=
f(2n)s2n(∗)z2n

Q(z)
. (1.47)

Now, if N is a random variable representing the length of a SAP W chosen randomly

according to the probability mass function {π2n(z) : for every integer n ≥ 0}, then it can

be easily verified that, for β := log(z), the expected value of N is given by

E[N ] =
∂

∂β
logQ(eβ) (1.48)

and the variance of N is given by

var(N) =
∂2

∂β2
logQ(eβ). (1.49)
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Consequently, the fugacity z = eβ controls the expected length of the polygon where the

expectation is with respect to the probability mass function {π2n(z) : for every integer

n ≥ 0}.

1.5 The Size of a Knot in Z3

Precisely defining what is meant by the phrase “the size of a knot in a SAP” is not an

easy problem. Much work has been done in this area in an attempt to define the phrase

[48, 80, 107, 108, 111, 125, 141]. Of these studies, those with results that directly apply

to the work in this thesis are summarized next.

In [125], Orlandini et al. define the size of the knot in a knotted polygon by intersecting

the knotted polygon with spheres that divide it into two arcs in such a manner that one

arc will be knotted (when the arc is closed by an arc on the sphere) and will have the same

knot-type as the original SAP. The “length of the knot” in a particular polygon is then

characterized by the length of such a knotted arc in the smallest such sphere. Now, for n

even and ω ∈ Pn(K), define mK,n(ω) to be the length of the knot as just defined. Then,

for W chosen at random from P2n(K), the expected value of mK,2n(W ) is

E [mK,2n(W )] :=
1

p2n(K)

∑

ω′∈P2n(K)

mK,2n(ω′). (1.50)

The average length of the knot in a polygon in P2n(K) is said to grow at the same rate

as the length of the polygon if there exists ζ > 0 such that, as n→ ∞,

E [mK,2n(W )]

2n
→ ζ. (1.51)

Furthermore, the average length of the knot in a polygon in P2n(K) is said to grow at a

rate less than the length of the polygon, if, as n→ ∞,

E [mK,2n(W )]

2n
→ 0. (1.52)

Another definition of the size of a knot in a SAP was presented in [107]. In [107],

Marcone et al. define the “length of a knot” in a knotted (2n)-edge SAP ω by dividing

ω into two walks at various locations and closing the ends of the walks with an off-lattice

path that is chosen to minimize the risk of modifying/disentangling the knotted portion.

If m′
K,2n(ω), the “length of the knot” in a (2n)-edge polygon, is the length of the smallest
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walk in a (2n)-edge SAP ω such that the off-lattice closure results in a knot with the same

knot-type as ω, then E
[
m′

K,2n(W )
]
, the expected length of a knot in a randomly chosen

polygon W from P2n(K), is given by

E
[
m′

K,2n(W )
]

:=
1

p2n(K)

∑

ω′∈P2n(K)

m′
K,2n(ω′). (1.53)

In [107], Marcone et al. hypothesize that in the good solvent regime, as n→ ∞,

E
[
m′

K,2n(W )
]
∼ (2n)t , (1.54)

where t ≃ 0.75 and that E
[
m′

K,2n(W )
]

is independent of the knot-type K. Their numerics

support this hypothesis for the knot-types {31, 41, 51} .
In addition to using the average length to characterize the length of a knot, another

measure for determining the size of a knot is to determine how much volume in space a

knotted SAP occupies. One measure of this is the radius of gyration of a SAW (SAP).

The square radius of gyration of a SAW (SAP) ω in Z
3, denoted r2 (ω) , is defined to

be

r2 (ω) :=
1

|ω|

|ω|−1∑

i=0

(
[X (ωi) −XM (ω)]2 + [Y (ωi) − YM (ω)]2 + [Z (ωi) − ZM (ω)]2

)
,

(1.55)

where X(x), Y (x), and Z(x) are respectively the first, second, and third coordinates of

the vertex x and XM (ω) , YM (ω) , and ZM (ω) are respectively the first, second, and third

coordinates of the vertex corresponding to the center of mass of ω. Note that

XM (ω) :=
1

|ω|

|ω|−1∑

i=0

X (ωi) (1.56)

and that YM (ω) and ZM (ω) are determined similarly. Given a fixed positive integer n

and a set Sn ⊆ C 3
n (or Pn) such that 0 < |Sn| < ∞, the mean-square radius of gyration

of the elements in Sn is defined to be

r2(Sn) :=
1

|Sn|
∑

ω∈Sn

r2(ω). (1.57)

Given a fixed even positive integer m, let π(m) := { πn|m : n ≥ m} denote the

probability mass function for the length of a randomly selected element from S , given

that the length is greater than or equal to m. When either S ⊆ C or S ⊆ P, the
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mean-square radius of gyration of the elements in S , r2
π(m)(S ), is defined as

r2π(m)(S ) :=
∞∑

n=m/2

r2(S2n)π2n|m. (1.58)

Recall from Section 1.3 that P is the set of all self-avoiding polygons in Z
3 and that

pn is the number of distinct n-edged SAPs in P. Then r2(P2n), the mean-square radius

of gyration of the polygons in P2n, is defined to be

r2(P2n) =
1

p2n

∑

ω∈S :|ω|=2n

r2 (ω) . (1.59)

Now, given any real values a, b, c, and d and a function r(n) = O(n−1), define

Rn(a, b, c, d, r) := an2b
(
1 + cn−d + r(n)

)
. (1.60)

It is expected that there exist real-valued constants AR, ν, BR, and ∆ and a function rR

with rR(n) = O(n−1) such that r2(P2n) has the asymptotic form [125], as n→ ∞,

r2(P2n) ∼ R2n(AR, ν,BR,∆, rR), (1.61)

where AR is referred to as an amplitude; ν is referred to as a metric exponent ; and ∆

is referred to as the confluent exponent. The scaling forms for pn and r2(Pn) are not

rigorously proved but there are field theoretic ([47], [90], and [105]) and numerical evidence

([97]) supporting the validity of their asymptotic form.

In 1949, Flory [37] proposed a method for predicting ν in three dimensions. In 1969,

Fisher [32] observed that Flory’s method could be extended to predict ν in other dimen-

sions. The values of ν as predicted using Flory’s method are

νF lory =





1 if d = 1

3/4 if d = 2

3/5 if d = 3

1/2 if d ≥ 4

(1.62)

where d is the dimension. The values of νF lory for d = 1 and d ≥ 5 are known to be

correct; the values for d = 2 and d = 4 are believed to be correct; but the value of νF lory

for d = 3 is believed to be too large. Field theoretic computations [47] and Monte Carlo

simulations [97] for d = 3 estimate ν to be 0.5882±0.0010 and 0.5877±0.0006 respectively

and ∆ to be 0.478 ± 0.010 and 0.56 ± 0.53 respectively.
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In [125] it was assumed, in analogy with Equation (1.61), that, for each knot-type

K there exist real-valued constants AR(K), ν(K), BR(K), and ∆R(K) and a function

rR(K) with rR(K)(n) = O(n−1) such that, for polygons in P2n(K), r2(P2n(K)), the

mean-square radius of gyration, has the asymptotic form, as n→ ∞,

r2(P2n(K)) ∼ R2n(AR (K) , ν (K) , BR (K) ,∆R (K) , rR(K)). (1.63)

Also in [125], the following Monte Carlo estimates for the metric exponents ν(K) and

amplitudes AR (K) were given:

ν (K) =





0.588 ± 0.008 if K = φ

0.599 ± 0.008 if K = 31

0.603 ± 0.010 if K = 41

0.586 ± 0.010 if K = 62

0.604 ± 0.020 if K = 31#31

0.596 ± 0.012 if K = 31#41

(1.64)

and

AR (K) =





0.103 ± 0.028 if K = φ

0.1032 ± 0.0016 if K = 31

0.0967 ± 0.0022 if K = 41

0.0842 ± 0.0012 if K = 62

0.0889 ± 0.0042 if K = 31#31

0.089 ± 0.012 if K = 31#41.

(1.65)

The estimates in Equation (1.64) are consistent with the best estimate for ν = 0.5882 ±
0.0010 for SAPs and SAWs based on field theoretic computations [47]. They consequently

support the hypothesis that the metric exponent ν is independent of knot-type. In [125],

the authors argue that the estimates in Equation (1.65) support the hypothesis that the

amplitudes are independent of knot-type.

1.6 The Probability of Knotting

Much attention has been given to determining the probability of knotting in a ring polymer.

Various studies, based on both lattice [21, 22, 23, 65, 61, 67, 124, 125, 149, 150, 151, 153] and

off-lattice [36, 93, 163] models, have been implemented to investigate these probabilities.
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Table 1.4: Monte Carlo estimates for 1 − Pr2n(φ) for 2n ∈
{200, 400, 800, 1200, 1600}, as presented in [67].

2n 1 − Pr2n(φ)

200 (3.80 ± 1.60) × 10−4

400 (2.42 ± 0.44) × 10−3

800 (4.26 ± 0.69) × 10−3

1200 (9.40 ± 2.60) × 10−3

1600 (1.20 ± 0.27) × 10−2

Define the probability that an (2n)-edge SAP has knot-type K to be Pr2n(K). Then

Pr2n(K) =
p2n (K)

p2n
. (1.66)

One of the first numerical studies estimating Pr2n(φ) as a function of polygon length 2n

was published in 1990 [67]. In [67], Janse van Rensburg and Whittington use a Monte Carlo

algorithm based on the pivot algorithm to estimate 1−Pr2n(φ), the probability of an (2n)-

edge polygon being knotted (according to Equation (1.66)). A summary of their estimates

is provided in Table 1.4. The estimates in Table 1.4 are increasing as a function of n.

Janse van Rensburg and Whittington [67] show that the estimates in Table 1.4 support

the conclusion of Theorem 1.3.5, that is, that all but exponentially few sufficiently large

SAPs in Z3 are knotted. Hence this supports the Frisch-Wasserman-Delbruck Conjecture

(cf. Conjecture 1.1.1) for Z3.

Now recall from Section 1.3 that the proposed scaling forms (as n → ∞) for p2n and

p2n(K) are respectively

A (2n)α−3 µ2n

(
1 +

B

(2n)∆
+ gp(2n)

)
(1.67)

and

AK (2n)αK−3 µ2n
K

(
1 +

BK

(2n)∆K
+ gK(2n)

)
. (1.68)

Then Pr2n(K), the probability that a (2n)-edge SAP has knot-type K, scales like

AK (2n)αK−3 µ2n
K

(
1 + BK

(2n)∆K
+ gK(2n)

)

A (2n)α−3 µ2n
(
1 + B

(2n)∆
+ gp(2n)

)

≃ AK

A
(2n)αK−α

(
µK

µ

)2n

, for n sufficiently large. (1.69)
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Table 1.5: The estimates for Pr2n(K) as computed in [173]. Error bars are
one standard deviation.

2n Pr2n(φ) Pr2n(31) Pr2n(41)

500 0.99849(0.00025) 0.00147(0.00024) 0.00003(0.00003)

1000 0.99640(0.00038) 0.00344(0.00037) 0.00009(0.00006)

1500 0.99430(0.00048) 0.00541(0.00046) 0.00024(0.00010)

2000 0.99208(0.00056) 0.00752(0.00055) 0.00027(0.00010)

2500 0.98965(0.00064) 0.00985(0.00062) 0.00038(0.00012)

3000 0.98787(0.00069) 0.01157(0.00068) 0.00040(0.00012)

In fact, Deguchi and Tsurusaki [21, 22, 23] show (based on numerical results) that

C(K) (2n)M(K) exp

(
− 2n

N (K)

)
(1.70)

is a suitable scaling form for Pr2n(K) using off-lattice Gaussian and rod-bead models. In

[173], Yao et al. numerically show that, for sufficiently large n, Equation (1.70) is also a

suitable scaling form for the knotting probability of polygons modelled on the simple cubic

lattice, where C(K) is the amplitude ratio
AK

A
in Equation (1.69), M(K) = αK − α, and

µK

µ
= exp

(
− 1

N (K)

)
. The quantity N (K) is referred to as the characteristic length of

knot-type K. For example, N (φ) is the characteristic length of the unknot and N (φ) is

the polygon length for which unknots dominate the set of all SAPs for polygon lengths

less than N (φ). In [173], Yao et al., estimate N (φ) to be (2.5 ± 0.3) × 105 and estimate

Pr2n(K) as presented in Table 1.5

From the estimates for Pr2n(φ) in Table 1.5, Pr2n(φ) is decreasing as n increases and,

from Theorem 1.3.5, Pr2n(φ) → 0 exponentially as n → ∞, but at what exponential rate

does Pr2n(φ) → 0 as n→ ∞? In other words, what is the value of κ− κφ? In [65], Janse

van Rensburg estimated κ−κφ ≈ (4.15±0.32)×10−6 using Monte Carlo simulated polygons

in Z3 with lengths up to 4000 edges. Janse van Rensburg’s estimate for the difference

κ−κφ suggests that κ and κφ differ in the sixth decimal place. Hence, estimating κφ and

being able to distinguish it from an estimate for κ is extremely difficult to do numerically.

From the estimates for Pr2n(φ) in Table 1.5, the probability of knotting (as a function

of polygon length) can be estimated. These estimates for the probability of knotting

(based on the numerics presented in Table 1.5) are presented in Table 1.6. The estimates
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Table 1.6: Monte Carlo estimates for 1 − Pr2n(φ) for 2n ∈
{500, 1000, 1500, 2000, 2500, 3000} from [173].

2n 1 − Pr2n(φ)

500 (1.51 ± 2.50) × 10−3

1000 (3.60 ± 0.38) × 10−3

1500 (5.70 ± 0.48) × 10−3

2000 (7.92 ± 0.56) × 10−3

2500 (1.035 ± 0.064) × 10−2

3000 (1.213 ± 0.069) × 10−2

for the probability of knotting presented in Table 1.6 are increasing as a function of n.

It was not until relatively recently [36, 61, 93, 96] that people began numerically

studying the probability of knotting after a local strand passage has been performed and

the corresponding transition knotting probabilities (the probability that an after-strand-

passage polygon has knot-type K ′ given that one starts with a knot-type K polygon). Let

Pr2n(K ′|K, s) denote the transition knotting probability characterized by starting with

an (2n)-edge knot-type K polygon and ending, after a successful strand-passage, with a

knot-type K ′ polygon, and define, if the limit exists,

Pr(K ′|K, s) := lim
n→∞

Pr2n(K ′|K, s). (1.71)

Note that Pr(K ′|K, s), provided it exists, is referred to herein as the limiting transition

knotting probability from K to K ′.

In [36], an off-lattice simulation of a freely jointed isolateral 33-edge polygon was per-

formed in which two non-consecutive vertices of the polygon were randomly selected such

that the second vertex chosen could be located no more than eight consecutive edges along

the polygon from the first vertex. Then, the segment between these two chosen vertices

was rotated through a uniformly random selected angle from −180◦ to 180◦. 20,000 of

these moves were performed and the outcome of each move was only accepted if no strand

passage occurred as a result of the rotation. Then after the 20, 000 moves, another move

was performed and accepted if a single strand passage occurred. This procedure was

repeated for a total of 20, 000 times for each of the knot-types with up to and including

six crossings. (Note that the after-strand-passage knot-type of each generated polygon
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Table 1.7: The transition knotting probabilities estimated using the off-
lattice strand passage model from [36].

Transition Probability

φ→ φ 0.9457

φ→ 31 0.0454

φ→ 41 0.0073

φ→ 52 0.0012

need not be an unknotting number one knot-type.) The relative frequencies (referred

to as transition knotting probabilities) were estimated for the transitions from knot-type

Ki to knot-type Kj after a strand passage. Table 8.3 presents the transition knotting

probabilities from K to K ′ (denoted K → K ′) estimated using the model of Flammini et

al. [36].

In 2006, Liu et al. [96] further explored the concept of transition knotting probabilities.

They investigated the transition knotting probabilities as a function of the before-strand-

passage local geometry of a juxtaposition of two segments of a polygon in Z3 via virtual

strand passages. (Virtual strand passages are implemented by replacing the before-strand-

passage structures with graphs of after-strand-passage structures that can be embedded

in R3 but not in Z3.) Figures 1.18 (a) and (b) provide illustrations of the graph embed-

dings that Liu et al. [96] define as a hooked juxtaposition and a semi-hooked juxtaposition

respectively. Figure 1.19 provides illustrations of the three graph embeddings that Liu et

al. [96] refer to as the free juxtapositions.

For 500-edge SAPs, the authors estimated the probability of knotting when a strand

passage occurred about the hooked juxtaposition (cf. Figure 1.18 (a)) to be 0.0139. They

found that strand passages about a hooked juxtaposition (when compared to strand pas-

sages about the semi-hooked and free juxtapositions) tended to decrease the after-strand-

passage knot-probability thus increasing the transition knotting probability from being

knotted to unknotted. They also found that strand passages about a free juxtaposition

tended to increase the after-strand-passage knot-probability thus decreasing the transition

knotting probability from being knotted to being unknotted. In [93], Liu and Chan de-

veloped an off-lattice model which they used to study, among other questions, the impact

of the strand passage site juxtaposition on the probability of knotting. They concluded
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(a) (b)

Figure 1.18: (a): The hooked juxtaposition structure and (b): the semi-
hooked juxtaposition from [96].

that certain characteristics of their model is approximated by the Liu et al. [96] model.

The LSP Model (presented in Section 2.1 of this thesis) specifies another juxtaposition

about which a strand passage in a SAP can be implemented. At the crossing where a strand

passage is implemented, a strand passage changes the crossing type and hence can actually

change the knot-type of the original polygon. The LSP Model is used to investigate the

probability of the formation of distinct knot-types after a strand passage is implemented.

This allows the probability of knotting and the transition knotting probabilities to be

estimated for the LSP Model. It should be pointed out however that in addition to a

different juxtaposition being used, another key difference between the structure used in

the LSP Model and those studied in [96] is that the LSP Model structure was designed

so that a strand passage can be modelled in Z3 as opposed to the virtual strand passages

used in [96]. Obtaining a better understanding of the differences between the LSP Model

and the model presented in [96] is future work (cf. Section 8.2).

In [61], Hua et al. present another lattice model for studying transition knotting prob-

abilities. They developed a new strand-passage algorithm that generates a Markov chain

whose state space is the set of knot-types with 8 or fewer crossings. For a fixed average

polygon length L and fixed non-negative integer e, the one-step transition probability ma-

trix (denoted PL±e) for this Markov chain was estimated using the relative frequencies for

the transitions from knot-type Ki to knot-type Kj after a single strand passage at randomly

chosen crossings in the knot projections of BFACF-generated (cf. Section 3.1) polygons in

Z3 with lengths in [L − e, L + e] having knot-type Ki. The knot diagram corresponding
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(c)

(a) (b)

Figure 1.19: The three free juxtapositions from [96].

to the knot projection is represented using Dowker-Thistlethwaite (DT) code (cf. [29] for

a detailed discussion regarding the DT code representation of a knot diagram). These

transition knotting probabilities were then used to study the evolution of the knot-type

resulting after repeated strand passages. For example, using their algorithm for L = 100

and e = 4, for a randomly chosen unknotted polygon whose expected length is 100, Hua

et al. estimate that the probability of knotting given one successful strand passage is

0.148 and that the corresponding transition knotting probabilities are as stated in Table

1.8. Whether or not the transition knotting probabilities presented in Table 1.8 can be

compared to the corresponding probabilities estimated in Chapter 6 of this work is left as

future work (cf. Section 8.2).

Though each of the works [36, 61, 93, 96] study knotting probabilities and/or transition

knotting probabilities, the work presented throughout the remainder of this document

differs significantly from the work presented in each if [36, 61, 93, 96] in several key aspects.
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Table 1.8: The one-step transition knotting probabilities estimated using
the lattice strand passage model from [61].

Transition Probability

φ→ φ 0.852

φ→ 31 0.061

φ→ 41 0.022

φ→ 52 0.002

Firstly, strand passages implemented in the LSP Model are implemented in Z
3. The

strand passages in each of [36, 61, 93, 96] could not be implemented in Z
3. Secondly, this

work investigates the limiting probability of knotting and the limiting transition knotting

probabilities associated with the LSP Model. None of the works [36, 61, 93, 96] investigated

limiting probabilities. Thirdly, this work investigates two different measures of the “size”

of Θ-SAPs and presents new conjectures (supported by simulation data) related to each

of these measures of the “size”. Consequently the LSP model is a model which has many

properties that are of interest. In the next chapter, the LSP Model and some of these

interesting properties are discussed.
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Chapter 2

Modelling a Local Strand Passage

in a Ring Polymer

To investigate the effects of a local strand passage at a random location in a ring

polymer with fixed knot-type K, it is assumed that two of the strands of the polymer

have been brought “close” together at a random location. These polymers will be from

here-on-in referred to as pinched ring polymers. A SAP in Z3, that has fixed knot-type

K and that contains a fixed structure representing two “strands” of the polygon being

“close” together, is then used to represent the conformations of these pinched polymers.

From this point forward, any reference to a self-avoiding polygon will be to a self-avoiding

polygon in Z3 and any illustration of a self-avoiding polygon will be drawn according to

the axis system defined by Figure 2.1.

z

y

x

Figure 2.1: The axis system used to illustrate graph embeddings in Z3.

This chapter first reviews the SAP model of pinched polymers that was developed in

[150]. Then, in Section 2.2, some new theoretical results regarding the growth constants

associated with subsets of Θ-SAPs are proved. The section also provides heuristic argu-

ments supporting several new conjectures regarding the critical exponents αΘ
∗ (as defined

in Equation (2.84)), regarding the scaling forms for the fixed-n strand passage probabili-

ties, and regarding the possible values for the limiting strand passage probabilities. The

section concludes by presenting several conjectures and questions regarding the “size” of
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the Θ-SAPs used in the Local Strand Passage Model.

2.1 A Simplified Model of Strand Passage

To model the “pinched” portion of the ring polymer, the SAPs used will be required to

contain a specific pattern Θ(a, b, c) fixed at (a, b, c) ∈ Z
3, or Θ for short, where Θ is defined

by the graph embedding Θ := (V(Θ), E(Θ)) in Z
3 with vertex set

V(Θ) = {(a+ 1, b, c), (a, b, c), (a − 1, b, c), (a, b − 1, c − 2), (a, b − 1, c− 3),

(a, b, c − 3), (a, b + 1, c− 3), (a, b + 1, c − 2)}
(2.1)

and edge set

E(Θ) = {{(a+ 1, b, c), (a, b, c)} , {(a, b, c), (a − 1, b, c)} ,
{(a, b− 1, c − 2), (a, b − 1, c− 3)} , {(a, b− 1, c− 3), (a, b, c − 3)} ,
{(a, b, c − 3), (a, b + 1, c− 3)} , {(a, b+ 1, c− 3), (a, b + 1, c− 2)}},

(2.2)

as illustrated in Figure 2.2.

*

**
*

**
* *

A

B
C

D

E F G

H

Figure 2.2: The fixed strand passage structure Θ in which open and empty
circles represent the vertices of Θ and open bonds represent the edges of Θ.
Dashed lines and circles containing asterisks represent, respectively, lattice
edges and vertices that Θ does not occupy. The circles containing asterisks
represent the vertices in the set Vs(Θ). Vertex A = (a + 1, b, c); Vertex
B = (a, b, c); Vertex C = (a − 1, b, c); Vertex D = (a, b − 1, c − 2); Vertex
E = (a, b − 1, c − 3); Vertex F = (a, b, c − 3); Vertex G = (a, b + 1, c − 3);
and Vertex H = (a, b+ 1, c− 2).
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Because Θ represents the location in a SAP where a strand passage is to be attempted,

from this point forward, a SAP with knot-type K which contains the fixed pattern Θ will

be referred to as a before-strand-passage polygon and Θ will be referred to as the before-

strand-passage structure. Note that Θ-SAPs (to which have already been referred) are

nothing but before-strand-passage polygons that contain Θ(0, 0, 0).

To model a strand passage at a chosen location in a ring polymer with knot-type K,

define the after-strand-passage structure Θs(a, b, c) fixed at (a, b, c) ∈ Z3, or Θs for short,

by the graph embedding Θs := (V(Θs), E(Θs)) in Z
3 with vertex set

V(Θs) := {(a+ 1, b, c), (a + 1, b, c − 1), (a + 1, b, c − 2), (a, b, c − 2),

(a− 1, b, c − 2), (a− 1, b, c − 1), (a − 1, b, c), (a, b − 1, c − 2),

(a, b− 1, c − 1), (a, b, c − 1), (a, b + 1, c− 1), (a, b + 1, c − 2)}

(2.3)

and edge set

E(Θs) := {{(a+ 1, b, c), (a + 1, b, c − 1)} , {(a+ 1, b, c − 1), (a + 1, b, c − 2)} ,
{(a+ 1, b, c − 2), (a, b, c − 2)} , {(a, b, c − 2) , (a− 1, b, c− 2)} ,
{(a− 1, b, c − 2) , (a− 1, b, c − 1)} , {(a− 1, b, c − 1) , (a− 1, b, c)}
{(a, b− 1, c− 2), (a, b − 1, c− 1)} , {(a, b− 1, c− 1), (a, b, c − 1)} ,
{(a, b, c− 1), (a, b + 1, c − 1)} , {(a, b+ 1, c− 1), (a, b + 1, c − 2)}},

(2.4)

as illustrated in Figure 2.3.

Now consider a before-strand-passage polygon ω. Because of how the strand passage

is to be performed in ω, it will be “successful” if and only if the vertices (cf. the vertices

in Figure 2.2 that are represented by circles containing asterisks) in the set

Vs (Θ) := {(a+ 1, b, c − 1), (a + 1, b, c − 2), (a, b, c − 1), (a, b, c − 2),

(a− 1, b, c − 1), (a− 1, b, c − 2), (a, b − 1, c − 1), (a, b + 1, c− 1)},
(2.5)

are not end points of any edge in E(ω). A strand passage is said to be viable in ω if no

vertex in Vs (Θ) is an end point of an edge in E(ω). If a vertex in Vs (Θ) is an end point

of an edge in E(ω), then the strand passage in ω is not viable and the attempted strand

passage is said to be an unsuccessful strand passage. If a strand passage in ω is viable, then

the before-strand-passage structure Θ can be removed from ω and can be replaced by the

after-strand-passage structure Θs to yield a new polygon ωs. When a strand passage in a

polygon is viable, the original polygon ω will be referred to as a successful-strand-passage
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Figure 2.3: The after-strand-passage structure Θs in which open and empty
circles represent the vertices of Θs and open bonds represent the edges of Θs.
The circles containing asterisks are vertices in Θ not occupied by Θs. Dashed
lines represent lattice edges not occupied by Θs. Vertex A = (a + 1, b, c);
Vertex B = (a, b, c); Vertex C = (a − 1, b, c); Vertex D = (a, b − 1, c − 2);
Vertex E = (a, b−1, c−3); Vertex F = (a, b, c−3); Vertex G = (a, b+1, c−3);
and Vertex H = (a, b+ 1, c− 2).

polygon and the transformed polygon ωs will be referred to as the resulting after-strand-

passage polygon. When a strand passage in ω is not viable, ω will be referred to as an

unsuccessful-strand-passage polygon or a failed-strand-passage polygon. Figure 2.4 (a) is

an illustration of a 14-edge polygon containing the structure Θ in which a strand passage

is viable. Figure 2.4 (b) is an illustration of the polygon resulting from replacing the

structure Θ in Figure 2.4 (a) with the after-strand-passage structure Θs.

Note that the strand passage structure was constructed so that there is enough space for

a strand of the polygon to occupy one or more of the vertices in the set {B+(0, 0,−1), B+

(0, 0,−2)} (the set of vertices that lie between the upper and lower part of the structure).

Allowing space for such a strand to pass through the structure Θ is required to ensure the

irreducibility of the Monte Carlo algorithm used to study the Local Strand Passage Model

of this thesis (cf. Section 3.3 and [150] for a discussion of this algorithm). Note however

that, if indeed either of the vertices in the set {B + (0, 0,−1), B + (0, 0,−2)} is occupied

by the before-strand-passage polygon, then a strand passage about Θ is not viable.
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(a) (b)

Figure 2.4: (a) Example of a 14-edge unknotted SAP in Z3 that contains
the structure Θ and a strand passage is possible about Θ. The circles con-
taining asterisks are vertices occupied by Vs(Θ). Dashed lines represent
lattice edges not occupied by the SAP or Θs. (b) The 18-edge unknotted
SAP in Z

3 that results when a strand passage is implemented in the SAP
in (a) . The circles containing asterisks are vertices that were occupied by
the 14-edge before-strand-passage polygon that are not occupied by 18-edge
after-strand-passage polygon. Dashed lines represent lattice edges not oc-
cupied by the SAP . In both (a) and (b), open and empty circles represent
the vertices of the SAPs and open bonds represent the edges of the SAPs.
Vertex A = (a+ 1, b, c); Vertex B = (a, b, c); Vertex C = (a− 1, b, c); Vertex
D = (a, b − 1, c − 2); Vertex E = (a, b − 1, c − 3); Vertex F = (a, b, c − 3);
Vertex G = (a, b+ 1, c − 3); and Vertex H = (a, b+ 1, c− 2).

The next section provides the conjectures and questions that are explored numerically in

Chapters 5, 6, and 7. More specifically, the next section provides new results regarding the

growth constants associated with subsets of Θ-SAPs. The section also provides conjectures

for the critical exponents αΘ
∗ (as defined in Equation (2.84)), for the scaling forms for the

fixed-n strand passage probabilities, for the possible values for the limiting strand passage

probabilities, and regarding the “size” of the Θ-SAPs used in the LSP Model.
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2.2 Theoretical Results Corresponding to the LSP Model

Two classes of before-strand-passage polygons can be defined based on Θ. These two

classes are relevant to the Monte Carlo algorithm used to study the LSP Model (cf. Section

3.3 and [150]). To define these two classes, the definition of an undirected self-avoiding

walk (uSAW) in Z
d is required.

Definition 2.2.1 For any n ≥ 0, a graph embedding υ = (V(υ), E(υ)) in Zd consisting of n

distinct edges in Z
d, E(υ) = {{u0,u1}, {u1,u2}, . . . , {un−2,un−1}, {un−1,un}}, and n+ 1

distinct vertices in Z
d, V(υ) = {u0 = x,u1,u2, . . . ,un−1,un = y}, where ||ui+1−ui||1 = 1,

is referred to as an undirected self-avoiding walk υ. The vertices x and y are referred

to as the terminal ends (vertices) of υ.

Definition 2.2.2 Let W (x,y) be the set of all uSAWs in Z
3 with terminal ends x and y.

Referring to Figure 2.5, for any before-strand-passage polygon ω consider the uSAW ̟

contained in ω that does not contain B and has terminal vertices A and C. If ̟ contains

an uSAW that does not contain F and has terminal vertices C and D, then ω is defined to

be in the first class (cf. Figure 2.5 (a)). Otherwise ω is defined to be in the second class.

Figure 2.5 (a) below provides an illustration of a SAP in the first class and Figure 2.5 (b)

provides an illustration of a SAP in the second class.

Based on these two classes, the set of before-strand-passage polygons can be partitioned

into the following two distinct sets.

Definition 2.2.3 Given (a, b, c) ∈ Z3, define PΘ (K : CD,AH) to be the set of self-

avoiding polygons in P(K) that can be decomposed into the fixed structure Θ, as illustrated

in Figure 2.2, and two uSAWs w− and w+, where w− and w+ are mutually avoiding,

w− ∈ W (C,D), w+ ∈ W (A,H), V(w−) ∩ V(Θ) = {C,D}, and V(w+) ∩ V(Θ) = {A,H}.
Note that A = (a+ 1, b, c), C = (a− 1, b, c), D = (a, b− 1, c− 2), and H = (a, b+ 1, c− 2).

Then let PΘ
n (K : CD,AH) be the set of n-edge SAPs in PΘ (K : CD,AH) .

Definition 2.2.4 Given (a, b, c) ∈ Z3, define PΘ (K : CH,AD) to be the set of self-

avoiding polygons in PΘ(K) that can be decomposed into the fixed structure Θ, as illus-

trated in Figure 2.2, and the two uSAWs w− and w+, where w− and w+ are mutually avoid-

ing, w− ∈ W (C,H), w+ ∈ W (A,D), V(w−)∩V(Θ) = {C,H} , and V(w+)∩V(Θ) = {A,D}.
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Figure 2.5: (a) is an example of a SAP in the first class of SAPs containing
Θ. (b) is an example of a SAP in the second class of SAPs containing Θ.
Open and empty circles represent the vertices of the SAP and open bonds
represent the edges of the SAP. The circles containing asterisks are vertices
in Vs(Θ). Dashed lines represent lattice edges not occupied by the SAP.
Vertex A = (a+ 1, b, c); Vertex B = (a, b, c); Vertex C = (a− 1, b, c); Vertex
D = (a, b − 1, c − 2); Vertex E = (a, b − 1, c − 3); Vertex F = (a, b, c − 3);
Vertex G = (a, b+ 1, c − 3); and Vertex H = (a, b+ 1, c− 2).

Note that A = (a+ 1, b, c), C = (a− 1, b, c), D = (a, b− 1, c− 2), and H = (a, b+ 1, c− 2).

Then let PΘ
n (K : CH,AD) be the set of n-edge SAPs in PΘ (K : CH,AD) .

Because the length of any SAP must be even,

P
Θ(K : CH,AD) =

⋃

n∈N

P
Θ
2n(K : CH,AD) (2.6)

and

P
Θ(K : CD,AH) =

⋃

n∈N

P
Θ
2n(K : CD,AH). (2.7)

In [150], Szafron proved the following result regarding PΘ(φ : CD,AH) and PΘ(φ :

CH,AD) using the mapping f : Z3 → Z3 defined by

f(x, y, z) := (2a− x, y, z), (2.8)

where a is the x-coordinate of the point at which the structure Θ(a, b, c) is fixed.
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Theorem 2.2.1 (Szafron [150]) Given (a, b, c) ∈ Z
3, let 7 ≤ n be any natural number.

Then for every ω′ ∈ PΘ
2n(φ : CD,AH) there exists a unique ω ∈ PΘ

2n(φ : CH,AD) and

for every ω ∈ PΘ
2n(φ : CH,AD) there exists a unique ω′ ∈ PΘ

2n(φ : CD,AH), that is

∣∣PΘ
2n(φ : CD,AH)

∣∣ =
∣∣PΘ

2n(φ : CH,AD)
∣∣ . (2.9)

Note that throughout this work, the empty-set will be denoted by {} rather than by ∅

in order to minimize any confusion that might arise between using the symbol ∅ for the

empty-set and using the symbol φ for the unknot.

Combining Theorem 2.2.1 with the facts that, for any natural number n ≥ 14,

P
Θ
n (φ : CH,AD) ∩ P

Θ
n (φ : CD,AH) = {} (2.10)

and

P
Θ(φ : CH,AD) ∩ P

Θ(φ : CD,AH) = {}, (2.11)

results in the following two corollaries.

Corollary 2.2.1 For any natural number n ≥ 14,

∣∣PΘ
n (φ : CH,AD) ∪ P

Θ
n (φ : CD,AH)

∣∣ = 2
∣∣PΘ

n (φ : CH,AD)
∣∣ = 2

∣∣PΘ
n (φ : CD,AH)

∣∣ .
(2.12)

Corollary 2.2.2

∣∣PΘ(φ : CH,AD) ∪ P
Θ(φ : CD,AH)

∣∣ = 2
∣∣PΘ(φ : CH,AD)

∣∣ = 2
∣∣PΘ(φ : CD,AH)

∣∣ .
(2.13)

Note that Theorem 2.2.1 and Corollaries 2.2.1 and 2.2.2 and their respective proofs can

be generalized to any knot-type K by changing any reference to φ in them to knot-type

K. Also, without loss of generality, in the remainder of this thesis the discussion will be

restricted to the choice of (a, b, c) = (0, 0, 0) in Definition 2.2.5; any reference to Θ will

imply Θ(0, 0, 0); and any reference to Θs will imply Θs(0, 0, 0).

Definition 2.2.5 For each knot-type K, define PΘ(K) := PΘ(K : CD,AH) where A =

(1, 0, 0); C = (−1, 0, 0); D = (0,−1,−2); and H = (0, 1,−2).

Definition 2.2.6 Define K Θ(K) to be the set of all knot-types K ′ that can result when a

successful strand passage about Θ is implemented on the elements of PΘ(K).
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Definition 2.2.7 For each knot-type K, let PΘ(K, s) be the set of all SAPs in PΘ(K)

for which strand passage is viable. Then define

P
Θ(K, f) : = P

Θ(K)\PΘ(K, s); (2.14)

and, for each knot-type K ′ ∈ K Θ(K), define PΘ(K ′|K, s) to be the set of all SAPs in

PΘ(K, s) that have knot-type K ′ after Θ is replaced with Θs.

Given any knot-type K, note that PΘ(K, f) is the set of all SAPs in PΘ(K) for

which strand passage is not viable, that is has failed. The following definition specifies

the notation that will be used to refer to respectively the set of, and the number of, n-

edge Θ-SAPs in PΘ(K), PΘ(K, s), PΘ(K, f), and, for each knot-type K ′ ∈ K Θ(K),

PΘ(K ′|K, s).

Definition 2.2.8 For each knot-type K, let PΘ
n (K) be the set of n-edge polygons in

PΘ(K); PΘ
n (K, s) be the set of n-edge polygons in PΘ(K, s); PΘ

n (K, f) be the set of

n-edge polygons in PΘ(K, f); and PΘ
n (K ′|K, s), for each knot-type K ′ ∈ K Θ(K), be the

set of n-edge polygons in PΘ(K ′|K, s). Now define pΘ
n (K) to be the number of polygons in

PΘ
n (K); pΘ

n (K, s) to be the number of polygons in PΘ
n (K, s); pΘ

n (K, f) to be the number

of polygons in PΘ
n (K, f); and pΘ

n (K ′|K, s) to be the number of polygons in PΘ
n (K ′|K, s).

Given any knot-type K, a question that arises regarding the sets PΘ
2n(K), PΘ

2n(K, s),

PΘ
2n(K, f), and, for each knot-type K ′ ∈ K Θ(K), PΘ

2n(K ′|K, s), is “For each ∗ ∈ Φ(K),

does there exist a positive integer nΘ
∗ such that PΘ

2n(∗) 6= {} for all n ≥ nΘ
∗ ?”, where

Φ(K) := {K, (K, s), (K, f)} ∪ K †(K) and K †(K) is defined by

K
†(K) :=

⋃

K ′∈K Θ(K)

{
(K ′|K, s)

}
. (2.15)

Note that when K = φ, Φ(K) is simply denoted Φ. In order to answer this question, the

following definitions and algorithm for concatenating two polygons are required.

To define the top (last) and bottom (first) vertices of a polygon in Z3, the con-

cept of lexicographic ordering for vertices in Z3 needs to be defined. For the vertices

a = (a(1), a(2), a(3)) and b = (b(1), b(2), b(3)) ∈ Z3, define a ≺ b (that is a precedes

b lexicographically) if for some j, 1 ≤ j ≤ 3, a(j) < b(j) and, for all i = 1, . . . , j − 1,

a(i) = b(i). Then the top (last) vertex in a set S ⊆ Z3 is defined to be the vertex b ∈ S
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such that for all a ∈ S\ {b}, a ≺ b and the bottom (first) vertex in a set S ⊆ Z
d is defined

to be the vertex a ∈ S such that for all b ∈ S\ {a}, a ≺ b. If a ≺ b, a is said to be

smaller than b lexicographically.

Now suppose G = (V (G) , E (G)) is a graph embedding in Z
3 and let bG be the bottom

vertex in V (G) and tG be the top vertex in V (G). Define the new set of vertices M(G)

to be

M(G) =

{(
g(1) + h(1)

2
,
g(2) + h(2)

2
,
g(3) + h(3)

2

)∣∣∣∣ for all {g,h} ∈ E(G)

}
. (2.16)

Note that M(G) consists of the vertices which are the midpoints of the edges in E(G). Let

mb be the bottom vertex in M(G) and let mt be the top vertex in M(G). Then define

the top (last) edge in E (G) to be the edge incident on tG whose midpoint is mt and the

bottom (first) edge in E(G) to be the edge incident on bG whose midpoint is mb.

With the above definitions, two polygons ω and ω′ in Z3 can be concatenated to form

a new polygon ω ◦ ω′, where ω ◦ ω′ is formed as follows. The following concatenation

algorithm is from [103] and will be referred to as the concatenation algorithm for two

SAPs.

Algorithm 2.2.1 (Concatenation Algorithm for two SAPs [103]) Let ω be a poly-

gon in Z3 with top vertex tω and let ω′ be a polygon in Z
3 with bottom vertex bω′ . Let the

top edge in ω be denoted {t1, t2} and the bottom edge in ω′ be denoted {b1, b2}. Rotate

ω′ appropriately (a 0◦-rotation is allowed) so that after the rotation the edge {b1, b2} is

parallel to the edge {t1, t2} . Denote the after-rotation polygon as ω′′ and the edge {b1, b2}
after the rotation as

{
b′1, b

′
2

}
. Now apply the appropriate translation to ω′′ so that the

edge
{
b′1, b

′
2

}
gets translated to the edge {(t1(1) + 1, t1(2), t1(3)) , (t2(1) + 1, t2(2), t2(3))} .

Delete the edges {t1, t2} and
{
b′1, b

′
2

}
from ω and ω′′, respectively, and add the new edges

{t1, (t1(1) + 1, t1(2), t1(3))} and {t2, (t2(1) + 1, t2(2), t2(3))} to obtain an (|ω| + |ω′|)-edge
polygon denoted by ω ◦ ω′. We say that ω′ is concatenated to ω, and that ω and ω′ are

concatenated at the edges {t1, t2} and {b1, b2} to form the polygon ω ◦ω′. If the knot-type

of ω is K and the knot-type of ω′ is K ′, then the knot-type of ω ◦ ω′ is K#K ′.

The next theorem yields that concatenation in a Θ-SAP never occurs at an edge in Θ.

Theorem 2.2.2 The bottom (top) edge of the structure Θ(0, 0, 0) is never the bottom (top)

edge of a Θ-SAP.
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Proof. Note that the bottom edge of Θ is the edge bΘ := {(−1, 0, 0), (0, 0, 0)} and the top

edge of Θ is the edge tΘ := {(0, 0, 0), (1, 0, 0)}. Suppose that ω is a Θ-SAP. Then ω must

contain one of the edges in eω(bΘ) := {{(−2, 0, 0), (−1, 0, 0)}, {(−1,−1, 0), (−1, 0, 0)},
{(−1, 1, 0), (−1, 0, 0)}, {(−1, 0, 0), (−1, 0,−1)}, {(−1, 0, 0), (−1, 0, 1)}}. Since every edge

e ∈ eω(bΘ), contains a vertex that is lexicographically less than or equal to (−1, 0, 0) (the

bottom vertex of Θ), the edge bΘ cannot be the bottom edge of ω. Since ω was chosen

arbitrarily, the bottom edge of the structure Θ(0, 0, 0) is never the bottom edge of a Θ-

SAP. A similar argument can be used to show that the top edge of the structure Θ(0, 0, 0)

is never the top edge of a Θ-SAP.

Suppose that a Θ-SAP is to be concatenated with a SAP. One consequence of Theorem

2.2.2 is that the only way that the Concatenation Algorithm for two SAPs can possibly alter

the structure Θ is if the Θ-SAP needs to be rotated or translated during the concatenation

process, that is if the Θ-SAP is the polygon denoted ω′ in the Concatenation Algorithm

for two SAPs. The following corollary results when a Θ-SAP is not the polygon ω′ in the

concatenation algorithm.

Corollary 2.2.3 (Θ-preserving concatenation) For even positive integers m ≥ 4 and

n ≥ 4, for each ω ∈ PΘ
n (K) and ω′ ∈ Pm(K ′),

ω ◦ ω′ ∈ P
Θ
m+n(K#K ′). (2.17)

The specific concatenation in Corollary 2.2.3 from here-on-in will be referred to as Θ-

preserving concatenation. Figure 2.6 illustrates a Θ-preserving concatenation that involves

concatenating a 10-edge SAP to a 14-edge Θ-SAP to form a 24-edge Θ-SAP.

Now, for a fixed knot-type K, to answer the question “For each ∗ ∈ Φ(K), does there

exist a positive integer nΘ
∗ such that PΘ

2n(∗) 6= {} for all n ≥ nΘ
∗ ?”, if a single (2N)-

edge property-∗ Θ-SAP can be found for each ∗ ∈ Φ(K), then Θ-preserving concatenation

can be used to create a (2N + 2k)-edge property-∗ Θ-SAP for each integer k ≥ 2 simply

by concatenating a SAP from P2k(φ) to this property-∗ Θ-SAP. Consequently showing

that PΘ
2n(∗) 6= {} for all sufficiently large integers n requires finding a single (2N)-edge

property-∗ Θ-SAP for some positive integer N .

Theorem 2.2.3 For a fixed knot-type K, PΘ(K) 6= {}, PΘ(K, s) 6= {}, PΘ(K, f) 6= {},
and, for each knot-type K ′ ∈ K Θ(K), PΘ(K ′|K, s) 6= {}.
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Figure 2.6: A 10-edge SAP and a 14-edge Θ-SAP are concatenated using
a Θ-preserving concatenation to form a 24-edge Θ-SAP.

Proof. For this entire proof, suppose that the knot-type K has been fixed and define

nK to be the smallest length of a SAP in P(K). Then to show that PΘ(K) 6= {} and

PΘ(K, s) 6= {}, choose any (nK)-edge SAP in P(K). Call this SAP ω. Use Θ-preserving

concatenation to concatenate ω to the Θ-SAP in Figure 2.4 (a) to obtain a (nK +14)-edge

Θ-SAP in PΘ
nK+14(K, s) ⊆ PΘ

nK+14(K). Similarly to show that PΘ
nK+14(K, f) 6= {},

use Θ-preserving concatenation to concatenate ω to the Θ-SAP in Figure 2.7 to create

a (nK + 14)-edge Θ-SAP in PΘ
nK+14(K, f). Hence PΘ(K) 6= {}, PΘ(K, s) 6= {}, and

PΘ(K, f) 6= {}.

For a fixed knot-type K ′ ∈ K Θ(K), an outline of the proof that PΘ(K ′|K, s) 6= {} is

as follows. Fix a knot-type K ′ ∈ K Θ(K). In [18], it is shown that there exists a knot-type

K knot in R3 that has a regular projection and has the property that, after a single strand

passage about a crossing cΩ in this regular projection, the resulting knot has knot-type

K ′. Let Ω be such a knot in R3. Now embed Ω in Z3 using the algorithm of Diao et al.

discussed in [28]. Call this embedding ω and denote the crossing in ω that corresponds to

cΩ by cω. Note that ω ∈ P(K). Using the constructions found in Section 5.4.1 of [150] ,

the configuration of ω around cω can be altered in such a way that cω can be converted into

Θ and a strand passage is possible about Θ. The polygon resulting from this conversion is

a polygon in PΘ(K ′|K, s). Hence PΘ(K ′|K, s) 6= {}.
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Figure 2.7: A 14-edge SAP that contains the structure Θ for which strand
passage is not viable. Open and empty circles represent the vertices of the
SAP and open bonds represent the edges of the SAP. The circles containing
asterisks are vertices not occupied by the SAP. Dashed lines represent lattice
edges not occupied by the SAP. Vertex A = (a+1, b, c); Vertex B = (a, b, c);
Vertex C = (a−1, b, c); Vertex D = (a, b−1, c−2); Vertex E = (a, b−1, c−3);
Vertex F = (a, b, c − 3); Vertex G = (a, b + 1, c − 3); and Vertex H =
(a, b+ 1, c − 2).

Then the following is a corollary to Theorem 2.2.3.

Corollary 2.2.4 For each knot-type K and every ∗ ∈ Φ(K), there exists a positive integer

nΘ
∗ such that PΘ

2n(∗) 6= {} for all n ≥ nΘ
∗ /2.

Definition 2.2.9 For each knot-type K, nΘ
K , n

Θ
(K,f), n

Θ
(K,s), and, for each knot-type K ′ ∈

K Θ(K), nΘ
(K ′|K,s) are respectively the smallest lengths of a Θ-SAP in PΘ(K), PΘ(K, f),

PΘ(K, s), and, for each K ′ ∈ K Θ(K), PΘ(K ′|K, s).

Note that, for each ∗ ∈ {φ, (φ, s) , (φ, f) , (φ|φ, s)} ,

nΘ
∗ = 14. (2.18)

Recall from Section 1.3 that in [26], Diao proved that the smallest non-trivial knotted SAP

in Z3 has 24 edges. Since the trefoil is one of the knot-types in K Θ(φ) and since an after-

strand-passage polygon is four edges larger than its corresponding before-strand-passage

polygon, for each non-trivial knot-type K ′ ∈ K Θ(φ),

nΘ
(K ′|φ,s) ≥ 20. (2.19)
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An interesting question resulting from Corollary 2.2.4 is “For each knot-type K and

every ∗ ∈ Φ(K), how does pΘ
2n (∗) grow as n → ∞?”. To explore this question, first note

that for each knot-type K, Definitions 2.2.8 and 2.2.9 give the following three inequalities:

for n ≥ nΘ
(K,s), p

Θ
n (K, s) ≤ pΘ

n (K) , (2.20)

for n ≥ nΘ
(K,f), p

Θ
n (K, f) ≤ pΘ

n (K) , (2.21)

and, for each knot-type K ′ ∈ K Θ(K) and for n ≥ nΘ
(K ′|K,s),

pΘ
n

(
K ′|K, s

)
≤ pΘ

n (K, s) . (2.22)

The purpose of the following discussion is to establish upper and lower bounds for the

number of SAPs in the specific subsets of PΘ(K) described in Definition 2.2.8 in terms

of the number of SAPs in Pn(K). To this end, using the quantities defined in Definitions

2.2.8 and 2.2.9, the following lemma shows that, for all n ≥ nΘ
K , p

Θ
n (K) is bounded above

by a function of pn (K) and hence both pΘ
n (K, s) and pΘ

n (K, f) are bounded above by the

same function of pn (K) .

Lemma 2.2.1 For any fixed knot-type K and for all n ≥ nΘ
K ,

pΘ
n (K) ≤ npn (K) . (2.23)

Proof. Let K be any fixed knot-type. For n ≥ nΘ
K , when n is odd, pΘ

n (K) = pn (K) = 0

and Inequality (2.23) is trivially true. Now, if n is even, by definition, PΘ
n (K) ⊆ {ω ∈

Pn(K)|ω contains the origin (0, 0, 0)}, and the number of SAPs in Pn (K) that contain

the origin is exactly the number of n-edge SAPs with knot-type K that are rooted at the

origin (which is npn(K)). Hence

pΘ
n (K) ≤ npn (K) for all n ≥ nΘ

K . (2.24)

The next goal is to establish that, for n ≥ max{nΘ
K , nK +14}, pΘ

n (K) is bounded below

by a scalar multiple of the number of (n − 14)-edge SAPs with knot-type K. The next

lemma uses Θ-preserving concatenation to show that, for n ≥ max{nΘ
K , nK +14}, a specific

scalar multiple of pn−14 (K) provides a lower bound for pΘ
n (K) , that is:
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Lemma 2.2.2 For any fixed knot-type K and for all n ≥ max{nΘ
K , nK + 14},

1

2
pn−14 (K) ≤ pΘ

n (K) . (2.25)

Proof. Given any fixed knot-type K and n ≥ max{nΘ
K , nK + 14}, if n is odd, then

pn−14 (K) = pΘ
n (K) = 0 and hence Inequality (2.25) holds. Now suppose n is even. Let

ω′ ∈ Pn−14(K). Let ω ∈ PΘ
14(φ). Then, by Corollary 2.2.3, ω ◦ ω′ ∈ PΘ

n (K). Because

a non-zero rotation might have been used in the concatenation process, it is possible that

two different SAPs counted in pn−14(K) (when concatenated with ω ∈ PΘ
14(φ)) yield the

same SAP in PΘ
n (K). Also note that there exist polygons in PΘ

n (K) that cannot be

formed by such a concatenation. Combining these two facts gives

pn−14 (K) ≤ 2pΘ
n (K) , (2.26)

which implies Inequality 2.25 holds for all n ≥ max{nΘ
K , nK + 14}.

It can also be shown that, for n ≥ max{nΘ
(K,s), nK + 14}, a specific scalar multiple of

pn−14 (K) provides a lower bound for pΘ
n (K, s) , that is:

Corollary 2.2.5 For any fixed knot-type K and n ≥ max{nΘ
(K,s), nK + 14},

1

2
pn−14 (K) ≤ pΘ

n (K, s) . (2.27)

Proof. Given any fixed knot-type K and n ≥ max{nΘ
(K,s), nK + 14}, if n is odd then

pn−14 (K) = pΘ
n (K, s) = 0 and hence Inequality (2.27) holds. Now suppose n is even. Let

ω′ be an (n− 14)-edge polygon with knot-type K. Let ω be a 14-edge unknotted Θ-SAP

in which a strand passage is possible about Θ. Now using these definitions for ω and ω′

and following the proof of Lemma 2.2.2, the corollary follows.

Figure 2.8 illustrates the 28-edge after-strand-passage polygon that results when Θ-

preserving concatenation is used to concatenate a 10-edge SAP to a 14-edge successful-

strand-passage Θ-SAP.

The following corollary provides a lower bound for pΘ
n (K, f) .

Corollary 2.2.6 For any fixed knot-type K and for all n ≥ max{nΘ
(K,f), nK + 14},

1

2
pn−14 (K) ≤ pΘ

n (K, f) . (2.28)
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(a) (b)

(c)

Figure 2.8: (a) two SAPs F and G, respectively, where F is the 10-edge
SAP and G is the 14-edge SAP that contains Θ in which a strand passage is
viable. (b) F and G are concatenated using Θ-preserving concatenation to
form a 24-edge SAP that contains the structure Θ in which a strand passage
is viable. (c) The 28-edge SAP that results from implementing a strand
passage in the SAP illustrated in (b).

Proof. Given any fixed knot-type K and n ≥ max{nΘ
(K,f), nK + 14}, if n is odd, then

pn−14 (K) = pΘ
n (K, f) = 0 and hence Inequality (2.28) holds. If n is even, let ω be a

14-edge unknotted Θ-SAP in which a strand passage is not viable (such as the Θ-SAP

illustrated in Figure 2.7). Let ω′ be an (n − 14)-edge polygon with knot-type K. Then

using these definitions of ω and ω′ and following the proof of Lemma 2.2.2 the corollary

follows.

It can also be shown that, for each K ′ ∈ K Θ(K) and n ≥ nΘ
(K ′|K,s)+4, a specific scalar

multiple of pn−nΘ
(K′|K,s)

(φ) provides a lower bound for pΘ
n (K ′|K, s) , that is:
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Lemma 2.2.3 For any fixed knot-type K, for each K ′ ∈ K Θ(K) and n ≥ nΘ
(K ′|K,s) + 4,

1

2
pn−nΘ

(K′|K,s)
(φ) ≤ pΘ

n

(
K ′|K, s

)
. (2.29)

Proof. Given any fixed knot-type K, fix K ′ ∈ K Θ(K). For n ≥ nΘ
(K ′|K,s) +4, if n is odd,

then pn−nΘ
(K′|K,s)

(φ) = pΘ
n (K ′|K, s) = 0 thus supporting Inequality (2.29). If n is even,

let ω be an
(
nΘ

(K ′|K,s)

)
-edge polygon in PΘ(K ′|K, s). Let ω′ be any

(
n− nΘ

(K ′|K,s)

)
-edge

unknotted polygon. Then using these definitions of ω and ω′, the argument used in the

proof of Lemma 2.2.2 proves the lemma. The basic idea of this proof (for the case where

K = φ and K ′ = 101) is illustrated in Figure 2.9.

x

y

z

Figure 2.9: The concatenation of a successful-strand-passage unknotted
Θ-SAP with an unknotted SAP and the post-concatenation after-strand-
passage polygon whose knot-type is 101.

Lemmas 2.2.1, 2.2.2, and 2.2.3 and Corollaries 2.2.5 and 2.2.6 provide relationships

between the number of SAPs in specific subsets of P(K) and PΘ(K), but how do the

numbers of (2n)-edge Θ-SAPs in subsets of PΘ(K) (that is pΘ
2n (K) , pΘ

2n (K, f) , pΘ
2n (K, s),

and pΘ
2n (K ′|K, s)) behave asymptotically as n → ∞? This question is explored in the

following section.

2.2.1 Connective Constants

Because PΘ(φ) ⊂ P(φ), an interesting question is “What, if any, are the relationships

between the “growth rates” of p2n(φ), pΘ
2n (φ) , pΘ

2n (φ, f) , and pΘ
2n (φ, s) (as defined in Def-
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inition 2.2.8 with K = φ)?”. A second interesting question is “How do pΘ
2n (φ) , pΘ

2n (φ, f) ,

and pΘ
2n (φ, s) individually grow as n → ∞?”. These two questions and the concept of

“growth rate” are addressed next in Theorem 2.2.4. Before stating the theorem, recall

from Section 1.3 that

lim
n→∞

(2n)−1 log p2n(φ) = κφ. (2.30)

Then:

Theorem 2.2.4 For the set of unknotted Θ-SAPs,

I. the growth rate for pΘ
2n (φ) is given by lim

n→∞
(2n)−1 log pΘ

2n (φ) = κφ;

II. the growth rate for pΘ
2n (φ, s), given by κΘ

(φ,s) := lim
n→∞

(2n)−1 log pΘ
2n (φ, s) , exists;

III. the growth rate for pΘ
2n (φ, f), given by κΘ

(φ,f) := lim
n→∞

(2n)−1 log pΘ
2n (φ, f) , exists; and

IV. κΘ
(φ,s) = κΘ

(φ,f) = κφ.

Proof. Part I: Combining Lemmas 2.2.1 and 2.2.2 yields, for all n ≥ 9, the double

inequality:
1

2
p2n−14 (φ) ≤ pΘ

2n (φ) ≤ (2n) p2n (φ) . (2.31)

Now taking logarithms of Inequality (2.31), dividing by 2n, and taking the limit as n→ ∞
yields

lim
n→∞

(2n)−1 log p2n−14 (φ) ≤ lim
n→∞

(2n)−1 log pΘ
2n (φ) ≤ lim

n→∞
(2n)−1 log p2n (φ) , (2.32)

which, using Equation (1.21), can be rewritten as

κφ ≤ lim
n→∞

(2n)−1 log pΘ
2n (φ) ≤ κφ, (2.33)

thus proving Part I of the theorem.

Part II: Combining Lemma 2.2.1, Inequality (2.20), and Corollary 2.2.5 and following the

proof of Part I of this theorem yields that κΘ
(φ,s) exists and satisfies

κΘ
(φ,s) = κφ, (2.34)

thus proving Parts II and part of Part IV of the theorem.
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Part III: Combining Lemma 2.2.1, Inequality (2.21), and Corollary 2.2.6 and following the

proof of Part I of this theorem yields that κΘ
(φ,f) exists and satisfies

κΘ
(φ,f) = κφ, (2.35)

thus proving Part III and the remainder of Part IV of the theorem.

With the n → ∞ behaviour of pΘ
2n (φ) , pΘ

2n (φ, s) , and pΘ
2n (φ, f) established, the dis-

cussion turns to the question “For each K ∈ K Θ (φ) , how does pΘ
2n (K|φ, s) (defined in

Definition 2.2.8) behave as n→ ∞?”. This question is addressed in the next theorem.

Theorem 2.2.5 For each K ∈ K Θ(φ), the “growth rate” for pΘ
2n (K|φ, s) , given by

κΘ
(K|φ,s) := lim

n→∞
(2n)−1 log pΘ

2n (K|φ, s) , exists. (2.36)

Moreover

κΘ
(K|φ,s) = κφ. (2.37)

Proof. For fixed K ∈ K Θ(φ) and each n ≥ (nΘ
(K|φ,s) + 4)/2, combining Inequality (2.22)

and Lemma 2.2.3 yields the double inequality

1

2
p2n−nΘ

(K|φ,s)
(φ) ≤ pΘ

2n (K|φ, s) ≤ pΘ
2n (φ, s) . (2.38)

After first taking logarithms, then dividing by 2n, and finally taking the limit as n → ∞,

the above double inequality yields

lim
n→∞

log p2n−nΘ
(K|φ,s)

(φ)

2n
≤ lim

n→∞

log pΘ
2n (K|φ, s)

2n
≤ lim

n→∞

log pΘ
2n (φ, s)

2n
, (2.39)

which is equivalent to

κφ ≤ lim
n→∞

log pΘ
2n (K|φ, s)

2n
≤ κΘ

(φ,s) = κφ, (2.40)

where the last inequality follows from Theorem 2.2.4. Equation (2.40) thus yields the

existence of κΘ
(K|φ,s) and that

κΘ
(K|φ,s) = κφ. (2.41)

A consequence of Theorem 2.2.5 is the fact that, for each K ∈ K Θ (φ) , pΘ
2n (K|φ, s)

grows at the same exponential rate as p2n (φ) and this rate does not depend on K, the

knot-type of the after-strand-passage polygons.
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Because the existence of the connective constant κK for any non-trivial knot-type K is

still an open question, the best results regarding the exponential growth rates of pΘ
2n (K),

pΘ
2n (K, s), and pΘ

2n (K, f) are the inequalities stated below in Theorem 2.2.6. In order to

succinctly write the inequalities in Theorem 2.2.6, the following definitions are required.

For each non-trivial knot-type K, define

κΘ
K := lim sup

n→∞
(2n)−1 log pΘ

2n (K) , (2.42)

κΘ
(K,s) := lim sup

n→∞
(2n)−1 log pΘ

2n (K, s) , (2.43)

κΘ
(K,f) := lim sup

n→∞
(2n)−1 log pΘ

2n (K, f) , (2.44)

κΘ
(K ′|K,s) := lim sup

n→∞
(2n)−1 log pΘ

2n

(
K ′|K, s

)
, (2.45)

kΘ
K := lim inf

n→∞
(2n)−1 log pΘ

2n (K) , (2.46)

kΘ
(K,s) := lim inf

n→∞
(2n)−1 log pΘ

2n (K, s) , (2.47)

kΘ
(K,f) := lim inf

n→∞
(2n)−1 log pΘ

2n (K, f) . (2.48)

and, for each K ′ ∈ K Θ(K),

kΘ
(K ′|K,s) := lim inf

n→∞
(2n)−1 log pΘ

2n

(
K ′|K, s

)
, (2.49)

Theorem 2.2.6 For each non-trivial knot-type K with κΘ
K , κ

Θ
(K,s), (κΘ

(K ′|K,s),

K ′ ∈ K Θ(K)), κΘ
(K,f), k

Θ
K , k

Θ
(K,s),

(
kΘ
(K ′|K,s),K

′ ∈ K Θ(K)
)
, and kΘ

(K,f) as defined, re-

spectively, by Equations (2.42)-(2.48), and kK and κK defined by Inequality (1.22), the

following inequalities hold:

kK ≤ kΘ
K ≤ κΘ

K ≤ κK , (2.50)

kK ≤ kΘ
(K,s) ≤ κΘ

(K,s) ≤ κK , (2.51)

kK ≤ kΘ
(K,f) ≤ κΘ

(K,f) ≤ κK , (2.52)

and, for each K ′ ∈ K Θ(K),

κφ ≤ kΘ
(K ′|K,s) ≤ κΘ

(K ′|K,s) ≤ κΘ
K . (2.53)

Proof. Inequality (2.50) follows from combining the inequalities specified in Lemmas

2.2.1 and 2.2.2 with the result of Soteros et al [145] stated in Inequality (1.22).

Inequality (2.51) follows from combining the inequalities specified in Corollary 2.2.5, In-

equality (2.20), and Lemma 2.2.1 with the result of Soteros et al [145] given by Inequality
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(1.22). Inequality (2.52) follows from combining the inequalities specified in Corollary 2.2.6,

Inequality (2.21) and Lemma 2.2.1 with the result of Soteros et al [145] stated in In-

equality (1.22). Inequality (2.53) follows directly from Inequalities (2.20) and (2.22) and

Lemma 2.2.3.

It is conjectured [125, 145] that:

Conjecture 2.2.1 ([125, 145]) For each non-trivial knot-type K,

kK = κK . (2.54)

Then if Equation (2.54) is assumed to be true, then the following are direct conse-

quences.

Consequence 2.2.1 Assuming Conjecture 2.2.1 is true, for each non-trivial knot-type

K with κΘ
K , κ

Θ
(K,s), κ

Θ
(K,f), k

Θ
K , k

Θ
(K,s), and kΘ

(K,f) as defined, respectively, by Equations

(2.42)-(2.44) and Equations (2.46)-(2.48), and kK and κK defined by Inequality (1.22),

the following statement is true.

kΘ
K = κΘ

K = kΘ
(K,s) = κΘ

(K,s) = kΘ
(K,f) = κΘ

(K,f). (2.55)

Conjecture 2.2.2 For each non-trivial knot-type K with κΘ
K , κ

Θ
(K ′|K,s), k

Θ
K , and kΘ

(K ′|K,s)

as defined, respectively, by Equations (2.42), (2.45), (2.46), and (2.47), and kK and κK

defined by Inequality (1.22), the following statements are true. For each K ′ ∈ K Θ(K),

kΘ
K = kΘ

(K ′|K,s) = κΘ
(K ′|K,s) = κΘ

K . (2.56)

Proving Conjectures 2.2.1 and Consequences 2.2.1 and 2.2.2 remain open questions. Though

the validity of Consequences 2.2.1 and 2.2.2 are not going to be explored in this thesis, the

algorithms developed in this thesis can be used to numerically compare the growth rates

stated in the consequences.

In addition to being interested in how pΘ
2n(K), pΘ

2n(K, s), pΘ
2n(K, f), and pΘ

2n(K ′|K, s)
grow as a function of n, other interesting quantities can be defined in terms of pΘ

2n(K),

pΘ
2n(K, s), pΘ

2n(K, f), and pΘ
2n(K ′|K, s). Some of these quantities will be discussed in the

next section.
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2.2.2 Probabilities Associated with the Local Strand Passage Model

In this section two different kinds of probabilities associated with the Local Strand Passage

Model are presented. First the conditional probability mass function for the length of a

random unknotted Θ-SAP is presented. Then the conditional probabilities associated

with strand passage are discussed.

The Conditional Probability Mass Function for the Length of an Unknotted

Θ-SAP

The partition function for the LSP Model (to be denoted Q̆(q, z,M)) is defined as follows.

Given a fixed positive even integer M, a positive integer q, and a real value z,

Q̆(q, z,M) :=
∞∑

n=M

(n− 6)nq−1pΘ
2n(φ)z2n (2.57)

=
∑

ω∈PΘ:|ω|≥M

(|ω| − 6) |ω|q−1 z|ω|. (2.58)

A corollary of Theorem 2.2.4 is:

Corollary 2.2.7 For each fixed positive even integer M and fixed positive integer q, the

radius of convergence of Q̆(q, z,M), denoted zΘ, is zΘ = 1/µφ, where µφ = eκφ and κφ is

defined by Equation (1.21).

Given a fixed positive even integer M , a fixed positive integer q, and a positive real-

valued z < zΘ, then using Q̆(q, z,M), the conditional probability mass function for a

random W ∈ PΘ(φ) such that |W | ≥ M can be defined as follows. For each ω ∈ PΘ(φ)

such that |ω| ≥M,

π̆ω(q, z,M) := Pr(W = ω|q, z,M) (2.59)

:=
(|ω| − 6) |ω|q−1 z|ω|

Q̆(q, z,M)
. (2.60)

Hence the conditional probability mass function for the length of a random W ∈ PΘ(φ)

being 2n edges given that |W | ≥M is

π̆2n|M (q, z) := Pr(|W | = 2n|q, z,M) (2.61)

:=
(2n− 6) (2n)q−1 z2npΘ

2n(φ)

Q̆(q, z,M)
, (2.62)
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and the conditional probability mass function for the length of a randomly chosen (2n)-edge

SAP in PΘ(φ) given that 2n ≥M is given by the set

π̆z(q,M) := {π̆2n|M (q, z) : for every integer n ≥M/2}. (2.63)

Suppose that f : PΘ(φ) → R is a function which assigns the same value to polygons in

PΘ(φ) that have the same length. Then the expected value of f with respect to π̆z(q,M)

is

Eπ̆z(q,M) (f(ω)) :=
∑

n≥M/2

f2nπ̆2n|M (q, z), (2.64)

where f2n := f(ω) when |ω| = 2n. Note that if M = 14, then the following notation will

be used:

Q̆(q, z) := Q̆(q, z, 14); (2.65)

π̆ω(q, z) := Pr(W = ω|q, z,M = 14); (2.66)

and

π̆2n(q, z) := Pr(|W | = 2n|q, z,M = 14). (2.67)

Probabilities Associated with a Strand Passage

In this section, a fixed length ensemble is considered. Given a fixed length 2n, for each

knot-type K, the quantities pΘ
2n(K), pΘ

2n(K, s), pΘ
2n(K, f), and pΘ

2n(K ′|K, s), for each K ′ ∈
K Θ(K), can be used to define the quantities that are to be referred to as the strand

passage probabilities. More specifically, given any knot-type K, for all n ∈ N such that

n ≥ nΘ
(K,s)/2, define

PrΘ2n(K, s) :=
pΘ
2n (K, s)

pΘ
2n (K)

(2.68)

to be the probability of a successful strand passage in a (2n)-edge, knot-type K, Θ-SAP ;

for all n ∈ N such that n ≥ nΘ
(K,f)/2, define

PrΘ2n(K, f) :=
pΘ
2n (K, f)

pΘ
2n (K)

(2.69)

to be the probability of a failed strand passage in a (2n)-edge, knot-type K, Θ-SAP ; and

for each K ′ ∈ K Θ(K) and all n ∈ N such that n ≥ nΘ
(K ′|K,s)/2, define

PrΘ2n(K ′|K, s) :=
pΘ
2n (K ′|K, s)
pΘ
2n (K, s)

(2.70)
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to be the probability of a knot-type K ′, after-strand-passage SAP given a (2n)-edge, knot-

type K, successful-strand-passage Θ-SAP. For each property ∗ ∈ Φ(K), the probabilities

PrΘ2n(∗), for all n ∈ N such that n ≥ nΘ
∗ /2, are to be referred to as the fixed-n probabilities

for property ∗.
The following limits, if they exist, are referred to as the limiting strand passage proba-

bilities:

PrΘ(K, s) := lim
n→∞

PrΘ2n(K, s), (2.71)

PrΘ(K, f) := 1 − lim
n→∞

PrΘ2n(K, f), (2.72)

and, for each K ′ ∈ K Θ(K),

PrΘ(K ′|K, s) := lim
n→∞

PrΘ2n(K ′|K, s). (2.73)

More specifically, PrΘ(K, s) is the limiting probability of a successful strand passage in a

knot-type K Θ-SAP ; PrΘ(K, f) is the limiting probability of a failed strand passage in a

knot-type K Θ-SAP ; and PrΘ(K ′|K, s) is the limiting probability of a knot-type K ′ after-

strand-passage SAP given a knot-type K successful-strand-passage Θ-SAP . From this point

forward PrΘ(K, s) will be referred to as the limiting successful strand passage probability

for knot-type K; PrΘ(K, f) will be referred to as the limiting failed (unsuccessful) strand

passage probability for knot-type K; and PrΘ(K ′|K, s) will be referred to as the limiting

(K → K ′)-transition knotting probability. Furthermore, the notation PrΘ(∗) will denote

the limiting probability associated with property ∗.
Several questions regarding the limiting probabilities arise. First, “Do the limits defin-

ing them exist?”. Second, “If the limiting probabilities exist, what are their values?”.

Finally, “If the limiting probabilities exist, how quickly do the fixed-n probabilities ap-

proach their limit?”. These three questions will now be explored in the case where K = φ.

With K = φ in Equations (2.68-2.70), the following is a consequence of Theorems 2.2.4

and 2.2.5.

Corollary 2.2.8 For each K ′ ∈ K Θ(φ),

lim
n→∞

log PrΘ2n(φ, s)

2n
= lim

n→∞

log PrΘ2n(φ, f)

2n
= lim

n→∞

log PrΘ2n(K ′|φ, s)
2n

= 0. (2.74)

Proof. For each n ≥ nΘ
(φ,s)/2, after taking logarithms and dividing both sides by 2n, the

definition of the probability PrΘ2n(φ, s) (given by Equation (2.68) with K = φ) becomes

log
(
PrΘ2n(φ, s)

)

2n
=

log pΘ
2n (φ, s)

2n
− log pΘ

2n (φ)

2n
. (2.75)
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Now taking the (n→ ∞)-limit of Equation (2.75) yields

lim
n→∞

log
(
PrΘ2n(φ, s)

)

2n
= lim

n→∞

log pΘ
2n (φ, s)

2n
− lim

n→∞

log pΘ
2n (φ)

2n
, (2.76)

which by Theorem 2.2.4 is equivalent to

lim
n→∞

log
(
PrΘ2n(φ, s)

)

2n
= κφ − κφ = 0. (2.77)

Thus PrΘ2n(φ, s) and consequently PrΘ2n(φ, f) (by its definition) do not grow exponentially.

Using a similar argument with Theorem 2.2.5 instead of Theorem 2.2.4 yields, for any

K ′ ∈ K Θ(φ),

lim
n→∞

log
(
PrΘ2n(K ′|φ, s)

)

2n
= κφ − κφ = 0, (2.78)

which implies that PrΘ2n(K ′|φ, s) does not grow exponentially.

From Equations (2.71)-(2.73), the limiting probabilities for K = φ, assuming the limits

exist, are

PrΘ(φ, s) := lim
n→∞

PrΘ2n(φ, s), (2.79)

PrΘ(φ, f) := lim
n→∞

PrΘ2n(φ, f) = 1 − lim
n→∞

PrΘ2n(φ, s), (2.80)

and, for each K ′ ∈ K Θ(φ),

PrΘ(K ′|φ, s) := lim
n→∞

PrΘ2n(K ′|φ, s). (2.81)

In reality, the existence of these limiting probabilities is an open question. The best

that can be done is to explore numerically the issue of their existence. Assuming that

the limiting probabilities do exist, Corollary 2.2.8 implies that the rates at which these

limiting probabilities are approached are less than exponential. Further to this, because the

smallest trefoils in Z3 have 24-edges [26], the smallest figure 8’s in Z3 have 30-edges [83], and

the lengths of the smallest SAPs with prime knot-type K seemingly are increasing in the

crossing number of a knot with knot-type K, it is suspected that PrΘ2n(φ|φ, s) decreases to

PrΘ(φ|φ, s) and, for each non-trivial K ′ ∈ K Θ(φ), PrΘ2n(K ′|φ, s) increases to PrΘ(K ′|φ, s).
To this end, the following is conjectured.

Conjecture 2.2.3 PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K ′|φ, s), for each K ′ ∈ K Θ(φ), exist.

Furthermore,

I. the fixed-n probabilities PrΘ2n(φ, s) and, for each non-trivial K ′ ∈ K Θ(φ), PrΘ2n(K ′|φ, s)
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increase to their respective limits PrΘ(φ, s) and PrΘ(K ′|φ, s) at a rate that is less than

exponential.

II. the fixed-n probabilities PrΘ2n(φ, f) and PrΘ2n(φ|φ, s) decrease to their respective limits

PrΘ(φ, f) and PrΘ(φ|φ, s) at a rate that is less than exponential.

Note that the validity of Conjecture 2.2.3 is explored numerically in Chapter 6.

In order to discuss the question “If the limiting probabilities exist, what are their

values?”, assume, for the rest of this section, that the limiting probabilities PrΘ(φ, s),

PrΘ(φ, f), and, for each K ′ ∈ K Θ(φ), PrΘ(K ′|φ, s) exist, and define the following notation.

Given a, b, c, d, h, and a function g (with g(n) = O(n−1)), define

Fn(a, b, c, d, h, g) := anbecn
(
1 + dnh + g(n)

)
. (2.82)

It is conjectured (cf. Equation (1.26)) that there exist real-valued constants A,α, µ,B,∆,

and a function gp(n) = O(n−1), such that, for sufficiently large integer values of n, the

number of (2n)-edge SAPs is given by

p2n = F2n(A,α− 3, log µ,B,−∆, gp). (2.83)

For each property ∗ ∈ Φ (recall that Φ := {φ, (φ, s), (φ, f)} ∪ K †(φ)), assume that pΘ
2n(∗)

has a similar scaling form to that of p2n. This leads to the conjecture that, for each

property ∗ ∈ Φ, there exist real-valued constants AΘ
∗ , α

Θ
∗ , κ

Θ
∗ , B

Θ
∗ ,−∆Θ

∗ and a function gΘ
∗

(with gΘ
∗ (n) = O(n−1)) such that, for sufficiently large integer values of n, the number of

(2n)-edge property-∗ Θ-SAPs is given by

pΘ
2n(∗) = F2n(AΘ

∗ , α
Θ
∗ , κ

Θ
∗ , B

Θ
∗ ,−∆Θ

∗ , g
Θ
∗ ). (2.84)

Since Theorems 2.2.4 and 2.2.5 yield, for each K ′ ∈ K Θ(φ),

κφ = κΘ
(φ,s) = κΘ

(φ,f) = κΘ
(K ′|φ,s), (2.85)

the scaling form for pΘ
2n (∗), for sufficiently large integer values of n, is conjectured to be:

Conjecture 2.2.4 For every ∗ ∈ Φ, there exist real valued constants AΘ
∗ , α

Θ
∗ , κφ, B

Θ
∗ ,

and −∆Θ
∗ and a function gΘ

∗ (with gΘ
∗ (n) = O(n−1)) such that for sufficiently large integer

values of n,

pΘ
2n (∗) = F2n(AΘ

∗ , α
Θ
∗ , κφ, B

Θ
∗ ,−∆Θ

∗ , g
Θ
∗ ). (2.86)
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Assuming Conjecture 2.2.4 is true has the following consequence for the fixed-n prob-

abilities given by Equations (2.68)-(2.70) with K = φ.

Consequence 2.2.2 Suppose that Conjecture 2.2.4 is true. Then, for ∗ ∈ {(φ, s), (φ, f)} ,

PrΘ2n(∗) =
F2n(AΘ

∗ , α
Θ
∗ , κφ, B

Θ
∗ ,−∆Θ

∗ , g
Θ
∗ )

F2n(AΘ
φ , α

Θ
φ , κφ, B

Θ
φ ,−∆Θ

φ , g
Θ
φ )

=
AΘ

∗

AΘ
φ

(
(2n)αΘ

∗ −αΘ
φ

)

1 +BΘ

∗ (2n)−∆Θ
∗ + gΘ

∗ (2n)

1 +BΘ
φ (2n)−∆Θ

φ + gΘ
φ (2n)


 , (2.87)

and, for ∗ ∈ K †(φ),

PrΘ2n(∗) =
F2n(AΘ

∗ , α
Θ
∗ , κφ, B

Θ
∗ ,−∆Θ

∗ , g
Θ
∗ )

F2n(AΘ
(φ,s), α

Θ
(φ,s), κφ, B

Θ
(φ,s),−∆Θ

(φ,s), g
Θ
(φ,s))

=
AΘ

∗

AΘ
(φ,s)

(
(2n)

αΘ
∗ −αΘ

(φ,s)

)

 1 +BΘ

∗ (2n)−∆Θ
∗ + gΘ

∗ (2n)

1 +BΘ
(φ,s) (2n)

−∆Θ
(φ,s) + gΘ

(φ,s)(2n)


 , (2.88)

where the quantities
AΘ

∗

AΘ
φ

, for ∗ ∈ {(φ, s), (φ, f)} , and
AΘ

∗

AΘ
(φ,s)

, for ∗ ∈ K †(φ), are referred

to as amplitude ratios.

Assuming that PrΘ2n(∗) has the form given by Equations (2.87) and (2.88), substituting

Equations (2.87) and (2.88) into Equations (2.79)-(2.81) has the following consequence for

the limiting strand passage probabilities.

Consequence 2.2.3 Suppose that Conjecture 2.2.4 is true. Then, for ∗ ∈ {(φ, s), (φ, f)} ,

PrΘ(∗) =
AΘ

∗

AΘ
φ

lim
n→∞

(
nαΘ

∗ −αΘ
φ

)
, (2.89)

and

PrΘ(∗) =
AΘ

∗

AΘ
(φ,s)

lim
n→∞

(
n

αΘ
∗ −αΘ

(φ,s)

)
, for ∗ ∈ K

†(φ). (2.90)

If Conjecture 2.2.4 holds, PrΘ(∗), for ∗ ∈ Φ, is finite when lim
n→∞

(
nαΘ

∗ −αΘ
φ

)
and lim

n→∞

(
n

αΘ
∗ −αΘ

(φ,s)

)

are finite, which requires knowing that αΘ
∗ − αΘ

φ ≤ 0, for ∗ ∈ {(φ, s), (φ, f)} , and knowing

that αΘ
∗ − αΘ

(φ,s) ≤ 0, for ∗ ∈ K †(φ). Combining the facts stated in Inequalities (2.20)-

(2.22) with the assumption that Conjecture 2.2.4 holds has the following consequence.

Consequence 2.2.4 Suppose Conjecture 2.2.4 is true. Then,

I. αΘ
φ ≥ αΘ

(φ,s) ;

II. αΘ
φ ≥ αΘ

(φ,f); and

III. for each ∗ ∈ K †(φ), αΘ
(φ,s) ≥ αΘ

∗ .
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Now assuming that both Consequences 2.2.3 and 2.2.4 are true results in PrΘ(∗) being

one of two values (cf. Consequence 2.2.5).

Consequence 2.2.5 Suppose that Consequences 2.2.3 and 2.2.4 hold. Then, for ∗ ∈
{(φ, s), (φ, f)} ,

PrΘ(∗) =





0, if αΘ
∗ < αΘ

φ

AΘ
∗

AΘ
φ

, if αΘ
∗ = αΘ

φ ,
(2.91)

and, for ∗ ∈ K †(φ),

PrΘ(∗) =





0, if αΘ
∗ < αΘ

(φ,s)

AΘ
∗

AΘ
(φ,s)

, if αΘ
∗ = αΘ

(φ,s).
(2.92)

To determine which of these two values is PrΘ(∗) (under the assumption that Conse-

quences 2.2.3 and 2.2.4 hold), one further result is required.

Given any ǫ > 0 and any proper pattern P (cf. Definition 1.3.8 in Section 1.3) that can

occur in an unknotted SAP, let p2n(≤ ⌊2ǫn⌋ , P |φ) be the number of (2n)-edge unknotted

SAPs in Z
3 that contain at most ⌊2ǫn⌋ occurrences of the pattern P . Then the required

result, which will be referred to in this work as the Pattern Theorem for Unknotted SAPs,

is stated in the following conjecture.

Conjecture 2.2.5 (Pattern Theorem for Unknotted SAPs) For any proper pattern

P, there exists ǫ > 0 such that

lim sup
n→∞

log p2n(≤ ⌊2ǫn⌋ , P |φ)

2n
< κφ. (2.93)

In other words, if the Pattern Theorem for Unknotted SAPs holds, then the number of

(2n)-edge unknotted SAPs in Z3 that contain more than ⌊2ǫn⌋ occurrences of the proper

pattern P, that is p2n(φ)−p2n(≤ ⌊2ǫn⌋ , P |φ), grows at the same exponential rate as p2n(φ).

Although proving the Pattern Theorem for Unknotted SAPs is still an open question, it is

believed to be true [64, 125]. Therefore, for the purposes of this discussion, the Pattern

Theorem for Unknotted SAPs is assumed to be true.

Figures 2.10 (a) and (b) are illustrations of two proper patterns that can occur in an

unknotted SAP. If the pattern in Figure 2.10 (a) occurs in an unknotted SAP in Z3,

the unknotted SAP becomes (after an appropriate translation) an element of PΘ(φ, f) ⊆
PΘ(φ). Similarly, if the pattern in Figure 2.10 (b) occurs in an unknotted SAP in Z3,
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the unknotted SAP becomes (after an appropriate translation) an element of PΘ(φ, s) ⊆
PΘ(φ). Because either of these patterns can occur in an unknotted SAP an arbitrary

number of times, both patterns are proper patterns for unknotted SAPs. Note that, for

any polygon which contains one of these two patterns several times, the polygon can be

translated so that the vertex labelled B in any one of these pattern occurrences becomes

the origin. Hence assuming Conjecture 2.2.5 is true has the following consequence.

*

*
*

*
*

A

B

C

D

E F G

H

K

J

*

*

**

*

A

B

C

D

E F G

H

K

J

(a) (b)

Figure 2.10: Two 14-edge proper patterns that contain the structure Θ.
A strand passage is not viable in the pattern illustrated in Figure (a) and
is viable in the pattern illustrated in Figure (b). Open circles and open
bonds represent the vertices and edges of the pattern. The circles containing
asterisks are vertices not occupied by the pattern. Dashed lines represent
lattice edges not occupied by the pattern. The vertices labelled A, B, C,
D, E, F, G, and H are vertices in Θ.

Consequence 2.2.6 Assuming Conjecture 2.2.5 is true, there exist positive constants

ε(φ,s), ε(φ,f), N(φ,s), and N(φ,f), such that, for every integer n ≥ N(φ,s),

ε(φ,s)np2n(φ) ≤ pΘ
2n(φ, s) (2.94)

and, for every integer n ≥ N(φ,f),

ε(φ,f)np2n(φ) ≤ pΘ
2n(φ, f), (2.95)

where Inequalities (2.94) and (2.95) result from arguments similar to those presented in

[63].

76



Given an unknotted (2n)-edge Θ-SAP that contains the pattern P (the pattern dis-

played in Figure 2.10 (b)), by replacing Θ with Θs in P, the resulting after-strand-passage

SAP is unknotted and is an element counted in pΘ
2n(φ|φ, s). Hence there exist positive

constants ε(φ|φ,s) and N(φ|φ,s), such that, for every integer n ≥ N(φ|φ,s),

ε(φ|φ,s)np2n(φ) ≤ pΘ
2n(φ|φ, s), (2.96)

where Inequality (2.96) results from arguments similar to those presented in [63]. Similarly,

for each K ′ ∈ K Θ(φ), creating a suitable pattern for which a strand passage about the

structure in the pattern yields an after-strand-passage polygon whose knot-type is K ′, has

the following consequence.

Consequence 2.2.7 Assuming Conjecture 2.2.5 is true, then, for each K ′ ∈ K Θ(φ) there

exist positive constants ε(K ′|φ,s) and N(K ′|φ,s), such that, for every integer n ≥ N(K ′|φ,s),

ε(K ′|φ,s)np2n(φ) ≤ pΘ
2n(K ′|φ, s), (2.97)

where Inequality (2.97) results from arguments presented in [63].

Inequalities (2.20)-(2.22) and Lemma 2.2.1, combined with Inequalities (2.94)-(2.97),

yield, for every integer n ≥ max{N(φ,f), N(φ,s), max
K ′∈K Θ(φ)

{N(K ′|φ,s)}}, the inequalities

ε(φ,s)np2n(φ) ≤ pΘ
2n(φ, s) ≤ pΘ

2n(φ) ≤ 2np2n(φ), (2.98)

ε(φ,f)np2n(φ) ≤ pΘ
2n(φ, f) ≤ pΘ

2n(φ) ≤ 2np2n(φ), (2.99)

ε(φ|φ,s)np2n(φ) ≤ pΘ
2n(φ|φ, s) ≤ pΘ

2n(φ) ≤ 2np2n(φ), (2.100)

and

ε(K ′|φ,s)np2n(φ) ≤ pΘ
2n(K ′|φ, s) ≤ pΘ

2n(φ) ≤ 2np2n(φ). (2.101)

Further assuming that, for sufficiently large integer values of n, the forms of pΘ
2n(φ),

pΘ
2n(φ, s), pΘ

2n(φ, f), and pΘ
2n(K ′|φ, s), for each K ′ ∈ K Θ(φ), are given by Equation (2.86),

yields the following two consequences.

Consequence 2.2.8 Assuming that αφ, as defined in Equation (1.27), exists, that Con-

jecture 2.2.5 (the Pattern Theorem for Unknotted SAPs) holds, and that Conjecture 2.2.4

is true, then

αΘ
φ = αφ − 2. (2.102)
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Consequence 2.2.9 Assuming that Conjecture 2.2.5 (the Pattern Theorem for Unknotted

SAPs) holds and that Conjecture 2.2.4 is true, then for each K ′ ∈ K Θ(φ),

αΘ
φ = αΘ

(φ,s) = αΘ
(φ,f) = αΘ

(K ′|φ,s). (2.103)

Note that the amplitudes AΘ
φ , A

Θ
(φ,s), A

Θ
(φ,f), and AΘ

(K ′|φ,s), for each K ′ ∈ K Θ(φ), are

all positive constants, that
∑

K ′∈K Θ(φ)

PrΘ(K ′|φ, s) = 1, (2.104)

and that

PrΘ(φ, s) + PrΘ(φ, f) = 1. (2.105)

Hence the limiting probabilities PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K ′|φ, s), for each K ′ ∈
K Θ(φ), must all be greater than zero and strictly less than one. Furthermore, assum-

ing that Conjecture 2.2.3 and Consequences 2.2.3 and 2.2.9 are true has the following

consequence for the limiting strand passage probabilities given by Equations (2.89) and

(2.90).

Consequence 2.2.10 Assuming that Conjecture 2.2.3 and Consequences 2.2.3 and 2.2.9

are true, then the limiting strand passage probabilities are given by the following amplitude

ratios:

PrΘ(φ, s) =
AΘ

(φ,s)

AΘ
φ

, (2.106)

PrΘ(φ, f) =
AΘ

(φ,f)

AΘ
φ

, (2.107)

and, for each K ′ ∈ K Θ(φ),

PrΘ(K ′|φ, s) =
AΘ

(K ′|φ,s)

AΘ
(φ,s)

. (2.108)

Furthermore, the limiting strand passage probabilities all lie in the interval (0, 1) .

The final question that was posed in this section but has not been addressed yet, is

“What is the scaling form for PrΘ2n(∗), for ∗ ∈ Φ\{φ}?”. A consequence of assuming that

both pΘ
2n(∗) and pΘ

2n(φ) have a scaling form as given by Equation (2.86), and of assuming

that Consequence 2.2.9 is true is that the scaling form for PrΘ2n(∗) for ∗ ∈ Φ\{φ} is given

as follows.
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Consequence 2.2.11 Assuming that Conjecture 2.2.4 and Consequence 2.2.9 are true,

for sufficiently large positive integers n, a suitable scaling form (as n→ ∞) for PrΘ2n(∗) is,

for ∗ ∈ {(φ, s), (φ, f)},
AΘ

∗

AΘ
φ

+
(
B′Θ

∗

)
(2n)−∆′Θ

∗ + g∗1(2n), (2.109)

where

g∗1(2n) = O(min
{

(2n)−1 ,max
{
(2n)−∆Θ

φ , (2n)−∆Θ
∗

}}
), (2.110)

and, for ∗ ∈ K †(φ), is
AΘ

∗

AΘ
(φ,s)

+
(
B′Θ

∗

)
(2n)−∆′Θ

∗ + g∗2(2n), (2.111)

where

g∗2(2n) = O(min
{
(2n)−1 ,max

{
(2n)

−∆Θ
(φ,s) , (2n)−∆Θ

∗

}}
). (2.112)

The conjectures and consequences involving the critical exponents presented throughout

this section are explored numerically in Chapters 4 and 5. The conjectures and conse-

quences regarding the fixed-n and the limiting strand passage probabilities are explored

numerically in Chapter 6.

2.2.3 The Size of a Θ-SAP

Another open question regarding the Θ-SAPs in PΘ
2n(φ) is “For ω ∈ PΘ

2n(φ), how do the

lengths of the uSAWs w+ and w− (as defined in Definition 2.2.3) compare (on average) to

each other?”. A possible answer to this question is formally stated later in Conjecture 2.2.7.

Before introducing Conjecture 2.2.7, some definitions and results are first required.

Definition 2.2.10 Suppose ω, ω′ ∈ P are two SAPs such that |V(ω) ∩ V(ω′)| = 1 and

E(ω)∩E(ω′) = {}. Then the graph embedding (V(ω)∪V(ω′), E(ω)∪E(ω′)) in Z3 is called a

Figure-of-Eight graph, or Figure-of-Eight for short and the vertex in V(ω)∩V(ω′) is called

the contact point of the Figure-of-Eight. The two SAPs that are connected via the contact

point of a Figure-of-Eight are referred to as the loops of the Figure-of-Eight. Let F8(n, k)

be the set of n-edge Figure-of-Eights that consist of one loop with k-edges and the other loop

with (n− k)-edges, for k ≥ n− k, and define f8(n, k) to be the number of Figure-of-Eights

in F8(n, k) (up to translation).

Figure 2.11 depicts an element of F8(10, 6), that is a 10-edge Figure-of-Eight with

contact point C that has one loop of length six and the other loop of length four. In
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general, if ̺8 is a (2n)-edge Figure-of-Eight having one of its loops larger than the other

loop, then the length of the larger loop must be bounded strictly below by n and above

by 2n. Hence the length of the larger loop is O(n). But why is the discussion focussing

on Figure-of-Eights? The following lemma relates certain polygons in PΘ(φ) to Figure-

of-Eights.

C

Figure 2.11: A Figure-of-Eight with contact point C and one loop of length
six and one loop of length four.

Lemma 2.2.4 Every polygon in PΘ(φ, s) can be converted into a Figure-of-Eight.

Proof. For fixed (0, 0, 0) ∈ Z3, define the graph embedding Θ8:=(V(Θ8), E(Θ8)) in Z3 to

be the graph embedding with vertex set

V(Θ8) = {(0, 0, 0), (1, 0, 0), (1, 0,−1), (−1, 0,−1),

(0, 0,−2), (−1, 0, 0), (0,−1,−2), (0,−1,−1), (0, 0,−1),

(0, 1,−1), (0, 1,−2), (0,−1,−3), (0, 0,−3),

(1, 0,−2), (−1, 0,−2), (0, 1,−3)},

(2.113)

and edge set

E(Θ8) = {{(1, 0, 0), (1, 0,−1)} , {(1, 0,−1), (0, 0,−1)} ,
{(0, 0,−1) , (−1, 0,−1)} , {(−1, 0,−1) , (−1, 0, 0)} ,
{(0,−1,−2), (0,−1,−1)} , {(0,−1,−1), (0, 0,−1)} ,
{(0, 0,−1), (0, 1,−1)} , {(0, 1,−1), (0, 1,−2)}}.

(2.114)

Θ8 is illustrated in Figure 2.12.

Now, since strand passage is viable for every ω ∈ PΘ(φ, s), the pattern Θ in every
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ω ∈ PΘ(φ, s) can be replaced with the pattern Θ8. Let ̟ be the graph embedding

obtained from a polygon ω ∈ PΘ(φ, s) by replacing Θ with the pattern Θ8. The vertex

(0, 0,−1) ∈ V(Θ8) becomes the contact point for ̟. Starting at the contact point of

̟ and travelling in the direction induced by moving to the vertex (−1, 0, 0), the walk

connecting the vertex (−1, 0, 0) to the vertex (0,−1,−2) can be traversed. Continuing in

this direction, the vertex (0,−1,−1) will eventually be visited, followed immediately by

a return to the contact point. Hence the undirected version of the path just described

defines a self-avoiding polygon. Let this SAP be ̟+. Similarly, if the path starting

at the contact point of ̟ is traversed in the direction induced by moving to the vertex

(0, 1,−1), the contact point will also eventually be revisited. At this point, the undirected

version of the path traversed defines a self-avoiding polygon. Call this SAP ̟−. Since

̟+ and ̟− are two self-avoiding polygons in which V(̟+) ∩ V(̟−) = {(0, 0,−1)}, ̟ is

a Figure-of-Eight. Because ω was chosen arbitrarily, the lemma is proved.

A

B

C

D

E F G

H

Figure 2.12: The Figure-of-Eight pattern Θ8 that converts an unknotted
successful-strand-passage polygon into a Figure-of-Eight. Open and empty
circles represent the vertices of Θ8 and open bonds represent the edges of
Θ8. Dashed lines represent lattice edges not occupied by Θ8.

In [125], Orlandini et al. provide a heuristic argument supporting the following conjec-

ture.
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Conjecture 2.2.6 ([125]) For sufficiently large even n, the set of all Figure-of-Eights in

Z
3 is dominated by Figure-of-Eights with one large loop (length is O(n)) and one small

loop.

Now recall that the set PΘ(φ, s) is the set of self-avoiding polygons that can be de-

composed into the fixed structure Θ and the uSAWs w− and w+, where w− and w+ are

mutually self-avoiding, w− ∈ W (C,D), w+ ∈ W (A,H), V(w−) ∩ V(Θ) = {C,D} , and

V(w+) ∩ V(Θ) = {A,H}, where vertices A,C,D, and H are those vertices illustrated in

Figure 2.12. For each ω ∈ PΘ(φ), define w+(ω) := w+ and w−(ω) := w− where w+ and

w− are defined in Definition 2.2.3. w+ (ω) is loosely referred to as the uSAW on the right

of ω and w− (ω) is loosely referred to as the uSAW on the left of ω.

Suppose the two uSAWs w+ (ω)and w− (ω)in ω ∈ PΘ
2n(φ)satisfy |w+ (ω)| 6= |w− (ω)| .

If w(ω)is the larger of the two uSAWs w+ (ω)and w− (ω), then

n− 3 < |w(ω)| ≤ 2n − 6, (2.115)

and hence its length is O(n). Also note that combining Lemma 2.2.4 with the arguments

that lead to Conjecture 2.2.6 suggests the following regarding SAPs in PΘ(φ, s).

Conjecture 2.2.7 Assuming Conjecture 2.2.6 is true, then PΘ(φ, s) is dominated by

polygons ω in which one of |w− (ω)| and |w+ (ω)| is large (whose length is O(n)) and the

other is small (whose length is O(1)).

Because of the design of the structure Θ, all Θ-SAPs, not just those in PΘ(φ, s), are

figure-of-eight-like. Thus the following conjecture can be posed regarding SAPs in PΘ(φ).

Conjecture 2.2.8 PΘ(φ) is dominated by polygons ω in which one of |w− (ω)| and |w+ (ω)|
is large (length O(n)) and the other is small (whose length is O(1)).

If Conjectures 2.2.7 and 2.2.8 are true, then PΘ(φ, s) and PΘ(φ) are dominated by

polygons comprised of one large and one small uSAW. From this point forward, any refer-

ence to a “large” loop in an (2n)-edge Figure-of-Eight or a “large” uSAW in an (2n) -edge

Θ-SAP will refer to a loop or uSAW whose length is O(n), but, what is meant by the term

“small”?

In [111], Metzler et al. provide one particular quantification for the large and small

loops in Conjecture 2.2.6. They argue that, based on their model for d = 3, for a randomly
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chosen n-edge Figure-of-Eight, the expected length of the large loop and the expected

length of the small loop scale according to the power-law relations given in the following

conjecture.

Conjecture 2.2.9 ([111]) In d = 3, a randomly chosen n-edge Figure-of-Eight consists of

one large and one small loop such that the expected length of the large loop scales according

to the power-law relation n1 and the small loop is strongly localized, that is the expected

length of the small loop is O(1).

The average lengths of uSAWs w+ (ω) and w− (ω) in a Θ-SAP ω generated by the CMC

Θ-BFACF simulation are explored in Chapter 7.

The discussion now turns to addressing the question “What other characteristics do

the uSAWs comprising polygons in PΘ(φ) have?”. In order to introduce and discuss some

of these characteristics, the following definitions are required.

Define the “big right-side (2n)-edge Θ-SAPs” to be

B
+
2n :=

{
ω ∈ P

Θ
2n(φ) : |w+(ω)| > n− 3

}
; (2.116)

the “big left-side (2n)-edge Θ-SAPs” to be

B
−
2n :=

{
ω ∈ P

Θ
2n(φ) : |w−(ω)| > n− 3

}
; (2.117)

the “small right-side (2n)-edge Θ-SAPs” to be

S
+
2n :=

{
ω ∈ P

Θ
2n(φ) : |w+(ω)| < n− 3

}
; (2.118)

the “small left-side (2n)-edge Θ-SAPs” to be

S
−
2n :=

{
ω ∈ P

Θ
2n(φ) : |w−(ω)| < n− 3

}
; (2.119)

the “equal-sided (2n)-edge Θ-SAPs” to be

E
+
2n :=

{
ω ∈ P

Θ
2n(φ) : |w+(ω)| = n− 3

}

=
{
ω ∈ P

Θ
2n(φ) : |w−(ω)| = n− 3

}

:= E
−
2n := E2n; (2.120)

and the “unequal-sided (2n)-edge Θ-SAPs” to be

E
c
2n := P

Θ
2n(φ)\E2n.
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Note that, for every even integer n ≥ 8, E2n = {} and that, for every odd integer n ≥ 7,

E2n 6= {}. Further note that for an arbitrary (2n)-edge SAP ω ∈ PΘ(φ), if

1. |w+(ω)| < |w−(ω)| then |w+(ω)| < n− 3 < |w−(ω)|, ω ∈ S
+
2n and ω ∈ B

−
2n, and hence

S
+
2n = B

−
2n; and

2. |w+(ω)| > |w−(ω)| then |w−(ω)| < n− 3 < |w+(ω)|, ω ∈ B
+
2n and ω ∈ S

−
2n, and hence

B
+
2n = S

−
2n.

Using these facts and a suitable mapping (as defined in the proof of the following

theorem), the following result holds.

Theorem 2.2.7 For every positive n ≥ 7,

1.
∣∣B+

2n

∣∣ =
∣∣B−

2n

∣∣ .
2.

∣∣S +
2n

∣∣ =
∣∣S −

2n

∣∣ .

Proof. Consider the mapping f : Z
3 → Z

3 defined by

f(x, y, z) := (−x,−y, z) (2.121)

and consider any (2n)-edge SAP ω ∈ B
+
2n. Then f(ω), where f(ω) is the SAP that

results when f is applied to the vertices and edges in ω, will be an (2n)-edge SAP in B
−
2n.

Similarly, for every (2n)-edge SAP ω ∈ B
−
2n, f(ω) will be an (2n)-edge SAP in B

+
2n. Thus

Part (1) of this theorem holds, that is
∣∣B+

2n

∣∣ =
∣∣B−

2n

∣∣. Part (2) of this theorem follows

analogously by the proof of Part (1).

Combining these two properties with Theorem 2.2.7 implies that the sets B
+
2n and S

+
2n

can be used without loss of generality to study the properties of the uSAWs comprising

polygons in PΘ
2n(φ). Hence for the remainder of this chapter, for every positive even

integer n, define Bn := B+
n and Sn := S +

n . Also define

B :=
⋃

n

B2n, (2.122)

S :=
⋃

n

S2n, (2.123)

E :=
⋃

n

E2n, (2.124)

and

E
c := P

Θ(φ)\E . (2.125)
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Now, for every positive integer n ≥ 7 and for each property ∗ ∈ Φ\{φ}, define E2n(∗) to

be the set of Θ-SAPs in E2n that have property ∗, B2n(∗) to be the set of Θ-SAPS in B2n

that have property ∗, S2n(∗) to be the set of Θ-SAPs in S2n that have property ∗, and

E c
2n(∗) to be the set of Θ-SAPs in E c

2n that have property ∗. Then

B(∗) :=
⋃

n

B2n(∗), (2.126)

S (∗) :=
⋃

n

S2n(∗), (2.127)

E (∗) :=
⋃

n

E2n(∗), (2.128)

and

E
c(∗) := P

Θ(∗)\E (∗). (2.129)

Finally, for every integer n ≥ 7 and ∗ ∈ Φ, define

wE(2n) := |E2n| , (2.130)

wS(2n) := |S2n| , (2.131)

wB(2n) := |B2n| , (2.132)

w∗
E(2n) := |E2n(∗)| , (2.133)

w∗
S(2n) := |S2n(∗)| , (2.134)

and

w∗
B(2n) := |B2n(∗)| . (2.135)

With these definitions, properties regarding the number of Θ-SAPs, and the average

lengths and the average radii of gyration of the uSAWs in the Θ-SAPs in B2n, S2n, and

E2n can be explored.

The Number of Θ-SAPs in B2n, S2n, and E2n

The following three theorems determine the rate at which wB(2n), wS(2n), and wE(2n),

respectively, increase with even n.

Theorem 2.2.8 For the number of Θ-SAPs in B2n where n ≥ 7, the growth rate is given

by

lim
n→∞

logwB(2n)

2n
= κφ. (2.136)
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Proof. For integers n ≥ 7, because B2n ⊆ PΘ
2n(φ),

wB(2n) ≤ pΘ
2n (φ) . (2.137)

For integers n ≥ 9, using Θ-preserving concatenation to concatenate a (2n−14)-edge SAP

in P2n−14(φ) to a 14-edge Θ-SAP in PΘ
14(φ), such as the SAP illustrated in Figure 2.4

(a), yields a (2n)-edge SAP in PΘ
2n(φ) that is in B

−
2n. Therefore, for integers n ≥ 9,

p2n−14 (φ) pΘ
14 (φ) ≤ 2|B−

2n|. (2.138)

Because Theorem 2.2.7 gives that, for integers n ≥ 7, |B−
2n| = |B+

2n| = wB(2n), then, for

integers n ≥ 9,

p2n−14 (φ) pΘ
14 (φ) ≤ 2wB(2n). (2.139)

Combining Inequalities (2.137) and (2.139) yields the following double inequality for inte-

gers n ≥ 9:

p2n−14 (φ) pΘ
14 (φ) ≤ 2wB(2n) ≤ 2pΘ

2n (φ) . (2.140)

Now, for the above double inequality, taking logarithms, dividing by 2n, and taking the

limit as n → ∞, and using the definition of κφ given by Equation (1.21) and Theorem

2.2.4, yields the required result.

Theorem 2.2.9 For the number of Θ-SAPs in S2n where n ≥ 7, the growth rate is given

by

lim
n→∞

logwS(2n)

2n
= κφ. (2.141)

Proof. For integers n ≥ 7, because S2n ⊆ PΘ
2n(φ),

wS(2n) ≤ pΘ
2n (φ) . (2.142)

For integers n ≥ 9, using Θ-preserving concatenation to concatenate a (2n−14)-edge SAP

in P(φ) to a 14-edge SAP in PΘ
14(φ), such as the SAP illustrated in Figure 2.4 (a), yields

a (2n)-edge SAP in PΘ
2n(φ) which is in S

+
2n. Therefore, for integers n ≥ 9,

p2n−14 (φ) pΘ
14 (φ) ≤ 2wS(2n). (2.143)

Combining Inequalities (2.142) and (2.143) yields the following double inequality for inte-

gers n ≥ 9:

p2n−14 (φ) pΘ
14 (φ) ≤ 2wS(2n) ≤ 2pΘ

2n (φ) . (2.144)
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Now, for the above double inequality, taking logarithms, dividing by 2n, and taking the

limit as n → ∞, and using the definition of κφ given by Equation (1.21) and Theorem

2.2.4, yields the required result.

Theorem 2.2.10 For the number of Θ-SAPs in E2n where n ≥ 7 and n is odd, the growth

rate is given by

lim
n→∞

logwE(2n)

2n
= κφ, (2.145)

where the limit is taken through odd integer values of n.

Proof. For integers n ≥ 7, because E2n ⊆ PΘ
2n(φ),

wE(2n) ≤ pΘ
2n(φ). (2.146)

Now, for odd integers n ≥ 11, choose any ω1, ω2 ∈ P 2n−14
2

(φ) and any ω ∈ PΘ
14(φ). Then

form (via Θ-preserving concatenation) the SAP ω ◦ω1. Note that ω ◦ω1 is a Θ-SAP. Now

using the Concatenation Algorithm for SAPs, form the polygon ω2 ◦ (ω ◦ ω1) and then

apply the appropriate rotation (a 0◦ rotation is allowed) and translation to ω2 ◦ (ω ◦ ω1)

to obtain a SAP ω′ ∈ E2n that contains Θ. Hence, for odd integers n ≥ 11,

p 2n−14
2

(φ) ≤ p 2n−14
2

(φ)pΘ
14(φ)p 2n−14

2
(φ) ≤ 8wE(2n). (2.147)

Combining Inequalities (2.146) and (2.147), yields, for odd integers n ≥ 11, the double

inequality

p 2n−14
2

(φ) ≤ 8wE(2n) ≤ 8pΘ
2n(φ). (2.148)

Now, for the above double inequality, taking logarithms, dividing by 2n, taking the limit as

n→ ∞ (where the limit is taken through the odd integer values), and using the definition

of κφ given by Equation (1.21) and Theorem 2.2.4, yields the required result.

Theorems 2.2.8 to 2.2.10 yield that the numbers wB(2n), wS(2n), and wE(2n) grow

exponentially (at a rate of κφ) with n. Hence the number of Θ-SAPs in B2n, the number

of Θ-SAPs in S2n, and the number of Θ-SAPs in E2n, each grow at an exponential rate.

Since these growth rates do not say anything about the average lengths or the average radii

of gyration for the uSAWs in these sets of Θ-SAPs, these two properties will be discussed,

respectively, in the following two sections.
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The Average Lengths of the uSAWs in a Θ-SAP

For ω ∈ PΘ(φ), recall that w+(ω) denotes the uSAW on the right side of ω and that w−(ω)

denotes the uSAW on the left side of ω. Note that, for odd integers n ≥ 7, if ω ∈ E2n(∗),
then

|w+(ω)| = |w−(ω)| = n− 3. (2.149)

Otherwise, if ω ∈ E c(∗), define the length of the small uSAW to be

s|ω| (ω) :=





|w+(ω)| , if |w+(ω)| < |w−(ω)|
|w−(ω)| , otherwise,

(2.150)

and define the length of the large uSAW to be

l|ω| (ω) :=





|w+(ω)| , if |w+(ω)| > |w−(ω)|
|w−(ω)| , otherwise.

(2.151)

Furthermore, if s|ω| (ω) = |w+(ω)| , then w+(ω) is referred to as the small uSAW on the

right of ω and w−(ω) is referred to as the large uSAW on the left side of ω, while if

s|ω| (ω) = |w−(ω)|, then w+(ω) is referred to as the large uSAW on the right of ω and

w−(ω) is referred to as the small uSAW on the left side of ω. Note that given ∗ ∈ Φ, for

every integer n ≥ 8 and for every ω ∈ E c
2n(∗),

s2n (ω) < n− 3 < l2n (ω) . (2.152)

Now, for every natural number n ≥ 8 and a randomly chosen Θ-SAP W ∈ E c
2n(∗), let

E [S2n(E c (∗))] denote the expected length of the small uSAW in W and let E [L2n(E c (∗))]
denote the expected length of the large uSAW in W. Then

E [S2n(E c (∗))] :=
1

2w∗
S(2n)

∑

ω∈E c
2n(∗)

s2n (ω) (2.153)

and

E [L2n(E c (∗))] :=
1

2w∗
B(2n)

∑

ω∈E c
2n(∗)

l2n (ω) . (2.154)

Now combining Inequality (2.152) with Equations (2.153) and (2.154) yields that, for every

natural number n ≥ 8 and a randomly chosen Θ-SAP W ∈ E c
2n(∗),

E [S2n(E c (∗))] < n− 3 < E [L2n(E c (∗))] . (2.155)
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Because, for every natural number n ≥ 8, the lengths of the large uSAWs in Θ-SAPs in

E c
2n(∗) are O(n), for a randomly chosen Θ-SAP W ∈ E c

2n(∗), E [L2n(E c (∗))] is bounded

linearly in 2n, that is there exist constants c1, c2 such that c1 < c2 and

2c1n ≤ E [L2n(E c (∗))] ≤ 2c2n. (2.156)

Hence E [L2n(E c (∗))] = O(n). Two interesting open questions regarding E [L2n(E c (∗))]
are stated below.

Question 2.2.1 For each ∗ ∈ Φ, given the set E c(∗), as n→ ∞,

(1) does the limit limn→∞
E [L2n(E c (∗))]

2n
exist and

(2) if the limit exists, does

lim
n→∞

E [L2n(E c (∗)))]
2n

= 1? (2.157)

In other words, as n→ ∞, is

E [L2n(E c (∗))] ∼ 2n? (2.158)

The above question will be explored numerically in Section 7.1 of Chapter 7. The re-

mainder of the discussion in this subsection turns to what can be said regarding E [S2n(E c (∗))]
as n→ ∞.

First note that the smallest unknotted Θ-SAPs in E c(φ, f) and E c(φ|φ, s) have sixteen

edges and these smallest SAPs each have a small uSAW with four edges. For each ∗ ∈
K †(φ)\ {(φ|φ, s)} , note that the smallest Θ-SAPs in E c(∗) must have at least twenty edges

(cf. Section 2.2) and consequently the small uSAW in each Θ-SAP in E c(∗) must have

more than four edges. This suggests that in order for the after-strand-passage SAP to

have a non-trivial knot-type:

Conjecture 2.2.10 For each ∗ ∈ K †(φ)\ {(φ|φ, s)} and each natural number n ≥ nΘ
∗ /2,

E [S2n(E c (∗))] > E [S2n(E c (φ, f))] , (2.159)

E [S2n(E c (∗))] > E [S2n(E c (φ|φ, s))] , (2.160)

E [L2n(E c (∗))] < E [L2n(E c (φ, f))] , (2.161)

and

E [L2n(E c (∗))] < E [L2n(E c (φ|φ, s))] . (2.162)
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In fact, it is expected that in some way these average lengths capture the fact that the

after-strand-passage SAP is a non-trivial knot.

Now recall from the discussion in Section 1.5 that in [107], Marcone et al. conjecture

that, for their measure of the length of a knot, the knot is weakly localized, that is the

average length of a knot in an n-edge SAP scales according to a power-law relation nt,

where 0 < t < 1. This conjecture and Conjecture 2.2.9 suggest the possibility that, on

average, for a randomly chosen Θ-SAP W ∈ E c
2n(∗), E [S2n(E c (∗))] grows sub-linearly in

2n. This is summarized in the following conjecture.

Conjecture 2.2.11 For each ∗ ∈ Φ, the expected length of the small uSAW in a randomly

chosen Θ-SAP W ∈ E c
2n(∗), as n→ ∞, has the asymptotic form

E [S2n(E c (∗))] ∼ (2n)ζs(∗) , (2.163)

where 0 ≤ ζs(∗) < 1.

If Conjecture 2.2.11 is true, then two interesting questions are:

Question 2.2.2 How do the exponents ζs(∗) depend on ∗ ∈ Φ?

Question 2.2.3 How do the exponents ζs(∗) compare to zero, that is for what properties,

if any, are the small uSAWs strongly localized (length O(1))?

The validity of Conjectures 2.2.7, 2.2.8, 2.2.10, and 2.2.11 will be explored numerically

in Chapter 7. Questions 2.2.1-2.2.3 will also be investigated numerically in Chapter 7.

In addition to exploring the rate at which the number of elements in different subsets of

PΘ
2n(φ) increase as a function of n and how the average lengths of uSAWs in the Θ-SAPs

in different subsets of PΘ
2n(φ) behave as a function of n, two other interesting questions

regarding the elements in PΘ
2n(φ) are: “How much space, on average, do the large, small,

and equal-length uSAWs comprising Θ-SAPs occupy?” and “How does this amount of

space change as a function of n?”. The measure, used here, of the amount of space that

Θ-SAPs occupy is the radius of gyration (as defined in Section 1.5 of Chapter 1).
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The Average Radius of Gyration of the uSAWs in a Θ-SAP

Recall from Section 1.5 that, for a fixed positive even integer n, the mean-square radius of

gyration of the elements in a finite, non-empty set U2n of (2n)-edge SAPs, is given by

r2(U2n) :=
1

|U2n|
∑

ω∈U2n

r2(ω). (2.164)

Also recall from Section 1.5 that, given a fixed even positive integer M and a condi-

tional probability mass function πz(q,M) := {π2n|M (q, z) : n ≥ M/2} for the length of a

randomly selected element from U :=
⋃

n≥M/2

U2n, the mean-square radius of gyration over

U is given by

r2πz(q,M)(U ) :=
∞∑

n=M/2

r2(U2n)π2n|M (q, z). (2.165)

Now consider the function f : Z3 → Z3. Then the f -transformed mean-square radii of

gyration are respectively defined to be: for each fixed positive integer n ≥ 2,

r2(f(U2n)) :=
1

|U2n|
∑

ω∈U2n

r2(f(ω)) (2.166)

and

r2πz(q,M)(f(U )) :=

∞∑

n=M/2

r2(f(U2n))π2n|M (q, z). (2.167)

Further define, for each ω ∈ E c, ws, the small uSAW function, and wl, the large uSAW

function, respectively by

ws (ω) :=





w+(ω), if |w+(ω)| < |w−(ω)|
w−(ω), otherwise

(2.168)

and

wl (ω) :=





w+(ω), if |w+(ω)| > |w−(ω)|
w−(ω), otherwise,

(2.169)

and, for each ω ∈ E , the equal-length uSAW function we, by

we (ω) := (w+(ω), w−(ω)). (2.170)

Given ∗ ∈ Φ, let r2(ws(E
c
2n(∗))) be the mean-square radius of gyration of the small

uSAW in a randomly chosen element of E c
2n(∗) and r2(wl(E

c
2n(∗))) be the mean-square

radius of gyration of the large uSAW in a randomly chosen element of E c
2n(∗). Also define

r2(we(E2n(∗))) :=
1

2 |E2n(∗)|
∑

ω∈E2n(∗)

[
r2(w+(ω)) + r2(w−(ω))

]
. (2.171)
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Then r2(we(E2n(∗))) is the mean-square radius of gyration of the equal-sided uSAWs for

a randomly chosen element of E2n(∗).
Recall from Section 1.5 that, for real-valued constants a, b, c, and d and a function r

with r(n) = O(n−1), Rn(a, b, c, d, r) is defined by Equation (1.60) to be

Rn(a, b, c, d, r) = an2b
(
1 + cn−d + r(n))

)
. (2.172)

Then in analogy with Equation (1.63), for sufficiently large n ∈ N and for each ∗ ∈ Φ,

r2
(
PΘ

2n(∗)
)
, r2 (E2n(∗)) , and r2 (E c

2n(∗)) , the expected mean-square radii of gyration for

a randomly chosen element from PΘ
2n(∗), E2n(∗), and E c

2n(∗), respectively, are conjectured

to satisfy:

Conjecture 2.2.12 For each ∗ ∈ Φ with:

(1) PΘ(∗) ⊆ PΘ(φ), there exist constants AΘ
P

(∗) , νΘ
P

(∗), BΘ
P

(∗), and ∆Θ
P

(∗) and a

function h∗
P

(n) = O(n−1) such that, for sufficiently large n ∈ N,

r2
(
P

Θ
2n(∗)

)
= R2n

(
AΘ

P (∗) , νΘ
P(∗), BΘ

P (∗) ,∆Θ
P (∗) , h∗P

)
; (2.173)

(2) E (∗) ⊆ PΘ(φ), there exist constants AΘ
E

(∗) , νΘ
E

(∗), BΘ
E

(∗), and ∆Θ
E
(∗) and a function

h∗
E
(n) = O(n−1) such that, for sufficiently large n ∈ N,

r2 (E2n(∗)) = R2n

(
AΘ

E (∗) , νΘ
E (∗), BΘ

E (∗) ,∆Θ
E (∗) , h∗E

)
; and (2.174)

(3) E c(∗) ⊆ PΘ(φ), there exist constants AΘ
E c (∗) , νΘ

E c(∗), BΘ
E c(∗), and ∆Θ

E c(∗) and a

function h∗
E c(n) = O(n−1) such that, for sufficiently large n ∈ N,

r2 (E c
2n(∗)) = R2n

(
AΘ

E c (∗) , νΘ
E c(∗), BΘ

E c (∗) ,∆Θ
E c (∗) , h∗E c

)
. (2.175)

Further to this, in analogy with Equation (1.63), it is also conjectured that:

Conjecture 2.2.13 For each ∗ ∈ Φ,

(1) there exist constants AΘ
we(E ) (∗) , νΘ

we(E )(∗), BΘ
we(E ) (∗) , ∆Θ

we(E ) (∗) , and a function

h∗
we(E )(n) = O(n−1) such that, for sufficiently large n ∈ N, the expected mean-square

radius of gyration for the equal-sided uSAWs in a randomly chosen element from E2n(∗) is

given by

r2 (we(E2n(∗))) = R2n

(
AΘ

we(E ) (∗) , νΘ
we(E )(∗), BΘ

we(E ) (∗) ,∆Θ
we(E ) (∗) , h∗

we(E )

)
; (2.176)
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(2) there exist constants AΘ
wl(E c) (∗) , νΘ

wl(E c)(∗), BΘ
wl(E c) (∗) , ∆Θ

wl(E c) (∗) , and a function

h∗
wl(E c)(n) = O(n−1) such that, for sufficiently large n ∈ N, the expected mean-square radius

of gyration for the large uSAW in a randomly chosen element from E c
2n(∗) is given by

r2 (wl (E
c
2n(∗))) = R2n

(
AΘ

wl(E c) (∗) , νΘ
wl(E c)(∗), BΘ

wl(E c) (∗) ,∆Θ
wl(E c) (∗) , h∗

wl(E c)

)
; and

(2.177)

(3) there exist constants AΘ
ws(E c) (∗) , νΘ

ws(E c)(∗), BΘ
ws(E c) (∗) , ∆Θ

ws(E c) (∗) , and a function

h∗
ws(E c)(n) = O(n−1) such that, for sufficiently large n ∈ N, the expected mean-square

radius of gyration for the small uSAW in a randomly chosen element from E c
2n(∗) is given

by

r2 (ws (E c
2n(∗))) = R2n

(
AΘ

ws(E c) (∗) , νΘ
ws(E c)(∗), BΘ

ws(E c) (∗) ,∆Θ
ws(E c) (∗) , h∗

ws(E c)

)
.

(2.178)

How do each of r2
(
PΘ

2n(∗)
)
, r2 (E2n(∗)) , r2 (E c

2n(∗)) , r2 (we(E2n(∗))) , r2 (wl (E
c
2n(∗))) ,

and r2 (ws (E c
2n(∗))) depend on ∗ ∈ Φ and what, if any, relationship exists between each

of these expected mean-square radii of gyration? These two questions are rather broad

in nature, and, as a consequence, are difficult to address. Some questions that naturally

arise regarding these expected mean-square radii of gyration are presented next.

Recall from Definition 2.2.9 that nΘ
∗ is the length of a smallest Θ-SAP with prop-

erty ∗ ∈ Φ and note that for the even integers n ≥ nΘ
∗ /2, E2n(∗) = {}, which im-

plies E c
2n(∗) = PΘ

2n(∗). Then for the odd integers n ≥ nΘ
∗ /2, the first question arises

from the facts that r2
(
PΘ

2n(∗)
)
, r2 (E2n(∗)) , r2 (E c

2n(∗)) , r2 (we(E2n(∗))) , r2 (wl (E
c
2n(∗))) ,

and r2 (ws (E c
2n(∗))) are functions of the property ∗ ∈ Φ and that E2n(∗) ⊂ PΘ

2n(∗) and

E c
2n(∗) ⊂ PΘ

2n(∗). Roughly speaking, do the equal-sided property-∗ Θ-SAPs have asymp-

totically the same expected mean-square radius of gyration as the unequal-sided property-∗
Θ-SAPs? More specifically:

Question 2.2.4 For each ∗ ∈ Φ and for sufficiently large odd n ≥ nΘ
∗ /2, does

r2 (E2n(∗)) ∼ r2
(
P

Θ
2n(∗)

)
(2.179)

and

r2 (E c
2n(∗)) ∼ r2

(
P

Θ
2n(∗)

)
? (2.180)
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The next question involving the expected mean-square radii of gyration arises from the

facts that, for each ∗ ∈ Φ, for every integer n ≥ nΘ
∗ /2 and for every ω ∈ E c

2n(∗),

s2n (ω) < n− 3 < l2n (ω) , (2.181)

and that, for every ω ∈ E2n(∗),

|w+ (ω)| = n− 3 = |w− (ω)| . (2.182)

Do these same types of inequalities hold true for the expected mean-square radius of

gyration? Specifically:

Question 2.2.5 For each ∗ ∈ Φ and for every odd integer n ≥ nΘ
∗ /2, is

r2 (ws (E c
2n(∗))) < r2 (we(E2n(∗))) < r2 (wl (E

c
2n(∗))) , (2.183)

and, for every even integer n ≥ nΘ
∗ /2, is

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
? (2.184)

Note that in the above question, for the even integers n ≥ nΘ
∗ /2, E c

2n(∗) = PΘ
2n(∗).

The next question regarding the expected mean-square radii of gyration for the small

and large uSAWs is a question that arises from Conjecture 2.2.10.

Question 2.2.6 For each ∗ ∈ K †(φ)\ {(φ|φ, s)} and each natural number n ≥ nΘ
∗ /2, is

r2 (ws (E c
2n(∗))) > r2 (ws (E c

2n(φ, f))) , (2.185)

r2 (ws (E c
2n(∗))) > r2 (ws (E c

2n(φ|φ, s))) , (2.186)

r2 (wl (E
c
2n(∗))) < r2 (wl (E

c
2n(φ, f))) , (2.187)

and

r2 (wl (E
c
2n(∗))) < r2 (wl (E

c
2n(φ|φ, s)))? (2.188)

The final question regarding the expected mean-square radii of gyration for the small,

equal-length, and large uSAWs compares them respectively to the expected mean-square

radius of gyration of a randomly selected Θ-SAP from PΘ
2n(φ) in the n→ ∞ limit.
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Question 2.2.7 For each ∗ ∈ Φ\{φ, (φ, s)}, do the following limits exist and, if they exist,

what are their values:

lim
n→∞

r2 (ws (E c
2n(∗)))

r2
(
PΘ

2n(φ)
) , lim

n→∞

r2 (we (E2n(∗)))
r2
(
PΘ

2n(φ)
) , and lim

n→∞

r2 (wl (E
c
2n(∗)))

r2
(
PΘ

2n(φ)
) ? (2.189)

Now, if Conjectures 2.2.12 and 2.2.13 are true, then, what, if any, is the relationship

between the metric exponents νΘ
P

(∗), νΘ
E

(∗), νΘ
E c(∗), νΘ

we(E )(∗), νΘ
ws(E c)(∗), νΘ

wl(E c)(∗), ν(K),

and ν?

Recall from Section 2.2.1 that, for each ∗ ∈ Φ and for each n ∈ N, pΘ
2n(∗) grows at the

same exponential rate as p2n(φ). Also recall from Section 1.5 that it is hypothesized in

[125] that, for each knot-type K, the metric exponent ν(K) is independent of knot-type

and that ν(K) = ν. Based on these two recollections, for each property ∗ ∈ Φ, a possible

relationship between νΘ
E

(∗), νΘ
E c(∗), and νΘ

P
(∗) and a possible relationship between νΘ

P
(∗)

and ν are stated, respectively, in the following two questions.

Question 2.2.8 Does νΘ
E

(∗) = νΘ
E c(∗) = νΘ

P
(φ), for each property ∗ ∈ Φ?

Question 2.2.9 Does νΘ
P

(φ) = ν?

If the answer to both Questions 2.2.8 and 2.2.9 is “yes”, then the metric exponents νΘ
E

(∗),
νΘ

E c(∗) are independent of the property ∗ ∈ Φ, and νΘ
P

(φ) is independent of knot-type.

The questions posed thus far in this section have been regarding the metric exponents

associated with polygons in various subsets of PΘ
2n(φ), but, for each property ∗ ∈ Φ,

none of these questions involved the metric exponents for the equal-length, large, or small

uSAWs in the polygons and none of the conjectures in this section involve the amplitudes

AΘ
P

(∗), AΘ
E
(∗), AΘ

E c(∗), AΘ
we(E )(∗), AΘ

ws(E c)(∗), and AΘ
wl(E c)(∗). What can be said about

these metric exponents and these amplitudes?

The argument leading up to Question 2.2.1 also suggests the following question involv-

ing the exponents νΘ
E c(∗) and νΘ

wl(E c)(∗).

Question 2.2.10 Does νΘ
wl(E c)(∗) = νΘ

E c(∗), for each property ∗ ∈ Φ?

Because, for each property ∗ ∈ Φ and for every n ∈ N, the lengths of the equal-length

uSAWs in the polygons from E2n(∗) grow linearly in 2n (cf. Equation (2.149)), the following

question is posed.
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Question 2.2.11 Does νΘ
we(E )(∗) = νΘ

E
(∗), for each property ∗ ∈ Φ?

If Conjecture 2.2.11 is true, (that is, for each property ∗ ∈ Φ and for every n ∈ N, the

expected length for the small uSAW in a randomly chosen element of S2n(∗) grows at a

rate less than o(n)), then, for each property ∗ ∈ Φ, the relationship between νΘ
ws(E c)(∗) and

νΘ
E c(∗), as posed in the following question, is suggested.

Question 2.2.12 Is νΘ
ws(E c)(∗) < νΘ

E c(∗), for each property ∗ ∈ Φ?

Questions 2.2.10, 2.2.11, and 2.2.12 present, for each property ∗ ∈ Φ, possible relation-

ships amongst the metric exponents νΘ
wl(E c)(∗), νΘ

we(E )(∗), and νΘ
ws(E c)(∗) and νΘ

E c(∗), νΘ
E

(∗),
and νΘ

E c(∗), respectively, but what, if any, are the relationships between the amplitudes

AΘ
P

(∗), AΘ
E
(∗), AΘ

E c(∗), AΘ
we(E )(∗), AΘ

ws(E c)(∗), and AΘ
wl(E c)(∗)? The numerical evidence in

[68, 125, 134] supports the hypothesis that, for each knot-type K, the amplitudes AR(K)

given by Equation (1.63) are independent of knot-type. Although unrelated to the ampli-

tudes AR(K), a natural question regarding the amplitudes in Equations (2.173)-(2.178) is

the following.

Question 2.2.13 For each property ∗ ∈ Φ, are AΘ
P

(φ), AΘ
E
(∗), AΘ

E c(∗), AΘ
we(E )(∗),

AΘ
ws(E c)(∗), and AΘ

wl(E c)(∗) independent of the property ∗?

Questions 2.2.4-2.2.13 will be investigated numerically in Section 7.2 of Chapter 7.

2.3 In Summary

The chapter begins by reviewing the simplified SAP model for strand passage in a “pinched”

ring polymer as introduced in [150]. In Section 2.2.1, the new result that for every ∗ ∈ Φ,

pΘ
n (∗) grows at the same exponential rate as pn(φ), is proved. Further to this, in Section

2.2.3 the new result that wB(n), wS(n), and wE(n) (as defined in Equations (2.130)-(2.132))

grow exponentially at the same rate as pn(φ) was also proved.

The chapter presents heuristic arguments supporting the validity of several new con-

jectures regarding the critical exponents αΘ
∗ (as defined in Equation (2.84)), that is, for

each ∗ ∈ Φ,

αφ − 2 = αΘ
φ = αΘ

∗ . (2.190)
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Note that these conjectures regarding the critical exponents are tested numerically in

Chapters 4 and 5.

The chapter also includes conjectures regarding scaling forms for the fixed-n strand

passage probabilities and regarding the possible values for the limiting strand passage

probabilities (Conjectures 2.2.3, 2.2.10, 2.2.10, and 2.2.11). The validity of these conjec-

tures is tested numerically in Chapter 6.

The chapter concludes by presenting several conjectures and questions regarding the

size of the SAPs used in the Local Strand Passage Model. Conjecture 2.2.8 hypothesizes

that P2n(φ), for sufficiently large n, consists primarily of Θ-SAPs that are formed by one

large uSAW (length O(n)) and one small uSAW (length O(1)). Conjectures 2.2.10 and

2.2.11 propose how, on average, the lengths of the large and small uSAWs for randomly

chosen elements from subsets of PΘ
n (φ) are expected to behave. The final questions in the

chapter are related to a second measure of the amount of space that elements of subsets of

PΘ(φ) occupy. In particular, these final questions involve possible relationships amongst

the mean-square radius of gyration for subsets of PΘ(φ) and possible relationships amongst

the metric exponents and amplitudes in the scaling forms of the mean-square radius of

gyration for subsets of PΘ(φ). These questions are explored numerically in Section 7.2

of Chapter 7.

Because the conjectures and questions posed in this chapter are to be studied numeri-

cally, the elements in PΘ(φ) need to be generated. The next chapter discusses simulating

the Local Strand Passage Model, that is generating elements in PΘ(φ).
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Chapter 3

Simulating the Local Strand Passage Model

In order to study the Local Strand Passage Model, an algorithm which generates a

sample from PΘ(φ) for a given β and positive integer q according to the distribution given

by

π̆ω(q, eβ) =
|ω|q−1 (|ω| − 6)pΘ

|ω|(φ)eβ|ω|

Q̆(q, eβ)
,

where

Q̆(q, eβ) :=
∑

n≥7

(2n)q−1(2n − 6)pΘ
2n(φ)e2βn, (3.1)

is used. In order to explain the generation of this sample further, Monte Carlo methods

are reviewed next.

A Monte Carlo method is a numerical method for generating states of a random variable

according to a specific probability distribution. Monte Carlo methods can be used to

obtain estimates for some quantity or quantities of interest in a system that has been

rigorously defined but not solved theoretically. Provided a large enough sample of random

states is observed, statistical inference can be used to determine confidence intervals for

the quantity or quantities of interest. Monte Carlo methods have been used extensively to

study polymer models, cf. [103, 122, 150] for just a few examples.

There are two main types of Monte Carlo methods: static and dynamic [105]. A static

Monte Carlo method generates a sequence of statistically independent samples directly

from a specific probability distribution. A dynamic Monte Carlo method generates a

stochastic process on a desired state space where the probability distribution of interest is

the unique stationary distribution of the stochastic process.

Each Monte Carlo method has its advantages and disadvantages. For instance, the

sample generated from a static Monte Carlo method is a statistically independent sample

drawn from the probability distribution of interest. However, if the state space is too

large and/or complicated, it may not be feasible to implement a static method. Dynamic
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methods can be used to generate a sample from large and/or really complicated sample

spaces by generating the current state of the stochastic process {Xt, t ∈ T} from the pre-

vious states. As a result, for all i, j ∈ T, states Xi and Xj will be correlated, and, for all

i, j ∈ T and for any real-valued function f defined on {Xt, t ∈ T}, f(Xi) and f(Xj) will

also be correlated. The further j is from i, the smaller the correlation between Xj and

Xi and hence the smaller the correlation between f(Xj) and f(Xi). In fact, for some j

sufficiently large, f(Xj) is considered to be “essentially independent” of f(Xi). The con-

cept of “essentially independent” will be formally defined and discussed in Section 4.1.2 of

Chapter 4. Another issue arising from using a dynamic method is that the initial distri-

bution of the stochastic process may be a distribution other than the desired stationary

distribution and hence there is an initial period (for each distinct observable) in which

the data generated does not reflect the desired stationary distribution. Determining the

amount of time required for a process to converge to a stationary distribution is discussed

in Section 4.1.1 of Chapter 4. Since the focus in this thesis is on dynamic Monte Carlo,

the issue of the existence of a stationary distribution will be discussed next.

Any stochastic process that can be constructed such that the current state of the

process only depends on the previous state, and not the entire history of the stochastic

process, is said to have the Markov property and such a process is referred to as a Markov

process. If the state space upon which a Markov process is defined is countable, then the

process is referred to as a Markov chain. Because the current state only depends on the

previous state, a Markov process is desirable since it is easier to generate than a stochastic

process that does not have the Markov property. Since a discrete state space is the focus

of this work, from here-on-in the discussion, unless otherwise stated, will be restricted to

Markov chains. The notation, definitions, and results in the remainder of this section,

unless otherwise stated, have been taken from [78]. The next definition formally defines a

Markov process and a Markov chain.

Definition 3.0.1 A Markov process {Xt, t ∈ T} is a stochastic process that has the prop-

erty that, given the state of Xt, the states of Xs, for all s > t, do not depend on the states

of Xu, for all u < t. Formally, a stochastic process is said to be Markov if

Pr(a < Xs ≤ b|Xu = xu, ∀u ≤ t) = Pr(a < Xs ≤ b|Xt = xt).

A Markov process that has a finite or countable state space is called a Markov chain. A
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discrete time Markov chain {Xt, t ∈ T} is a Markov chain with the index parameter set

T = {0, 1, 2, . . .}.

Let {Xt, t ∈ T} be a discrete time Markov chain with state space S . Define the

one-step transition probability to go from the Markov chain’s state at time t to its state at

time t+1 to be the probability that at time t+1 the Markov chain is in state y given that

at time t the chain was in state x, that is

P t,t+1
xy := Pr(Xt+1 = y|Xt = x). (3.2)

If P t,t+1
xy is independent of the time t, then the Markov chain is said to be time homogeneous

and P t,t+1
xy is denoted Pxy. For all x, y ∈ S , Pxy are represented by the one-step transition

probability matrix P = (Pxy)x,y∈S . A set π = {πx}x∈S is a stationary distribution of

{Xt, t ∈ T} if π satisfies the following definition.

Definition 3.0.2 The set π = {πx}x∈S is said to be a stationary distribution for the dis-

crete time, time homogeneous, Markov chain {Xt, t ∈ T} with state space S and transition

probability matrix P = (Pxy)x,y∈S , if, for all x ∈ S ,

πx ≥ 0,
∑

x∈S

πx = 1, and
∑

x∈S

πxPxy = πy, for all y ∈ S . (3.3)

From hence forth, the term “Markov chain” will refer to a discrete time, time homoge-

neous Markov chain. For any x, y ∈ S , the probability that after n-steps the process has

moved from state x to state y is P
(n)
xy , the n-step transition probability, that is

P (n)
xy := Pr(Xt+n = y|Xt = x). (3.4)

(P
(n)
xy )x,y∈S is the n-step transition probability matrix and it has been established that

(P
(n)
xy )x,y∈S = Pn [78].

A Markov chain is irreducible if, for each pair of x, y ∈ S , there exists an n ≥ 0 such

that P
(n)
xy > 0. A Markov chain is aperiodic if d := gcdx∈S δ(x) = 1, where d is the period

of the Markov chain and δ(x) is the period of state x, and this is defined to be the greatest

common divisor of the numbers n > 0 such that P
(n)
xx > 0. If f

(i)
xy denotes the probability

that the first passage from state x to state y occurs at the i’th transition, then for arbitrary

but fixed states x and y, and, for every i ≥ 1,
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f (i)
xy = Pr(Xi = y,Xt 6= y, t = 1, 2, . . . , i− 1|X0 = x). (3.5)

With f
(1)
xx = Pxx and f

(0)
xx = 0, for all states x, a state x is said to be recurrent if and only

if
∞∑

i=1

f (i)
xx = 1. (3.6)

Since the sum given in Equation (3.6) is not easily computed, Chung [12] established that

the concept of the recurrence of a state can be stated in terms of the transition probability

matrix as follows:

Theorem 3.0.1 ([12]) For a Markov chain {Xt, t ∈ T} defined on S with one-step tran-

sition probability matrix P, a state x ∈ S is recurrent if and only if

∞∑

i=1

P (i)
xx = ∞. (3.7)

A Markov chain {Xt, t ∈ T} is said to be recurrent if, for each x ∈ S , x is a recurrent

state. {Xt, t ∈ T} is said to be positive recurrent if it is recurrent and, for some x ∈ S ,

the limn→∞ P
(n)
xx > 0. The following result states one possible method for determining

whether or not a Markov chain is positive recurrent.

Theorem 3.0.2 ([78]) If a Markov chain {Xt, t ∈ T} defined on S is irreducible and

one state in S is positive recurrent, then all states in S are positive recurrent.

If an irreducible, positive-recurrent Markov chain {Xt, t ∈ T} defined on S with one-

step transition probability matrix P has the property that, for all x, y ∈ S , there exists

probabilities πx and πy such that

πxPxy = πyPyx, (3.8)

then {Xt, t ∈ T} is said to be reversible [35]. The condition that Equation (3.8) holds for

all x, y ∈ S is referred to as detailed balance [35].

If a Markov chain is irreducible, positive recurrent, and aperiodic, then the Markov

chain is called ergodic in S . Suppose Si is the largest subset of S for which the Markov

chain {Xt, t ∈ T} is irreducible in Si but not in S . Then Si is called an irreducible

class of S . Furthermore, if Si is the largest subset of S for which the Markov chain

{Xt, t ∈ T} is ergodic in Si but not in S , then Si is called an ergodic class of S .
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In order for a Markov chain {Xt, t ∈ T} with transition probability matrix P to have a

unique stationary distribution π such that πx > 0 for all x ∈ S , the necessary and sufficient

conditions are that {Xt, t ∈ T} must be an irreducible, positive-recurrent Markov chain,

that is:

Theorem 3.0.3 ([12]) Let P be the transition probability matrix of an irreducible, positive-

recurrent Markov chain {Xt, t ∈ T}, then a unique stationary distribution π exists and

πx > 0 for all x. Moreover, for d, the period of {Xt, t ∈ T},

lim
n→∞

P (nd+r)
xy =





d · πy if x ∈ S i, y ∈ S j, with j − i = r mod d

0 if x ∈ S i, y ∈ S j, with j − i 6= r mod d
,

for all x, y ∈ S . In particular, if P is aperiodic, then limn→∞ P
(n)
xy = πy.

The above theorem also states that if {Xt, t ∈ T} is an irreducible, positive-recurrent,

aperiodic Markov chain, as n→ ∞, then {Xt, t ∈ T} will eventually converge to a unique

equilibrium distribution π, independent of the initial starting state. The irreducibility

of a Markov chain can usually be proved directly but showing that a Markov chain is

positive-recurrent (and hence ergodic) directly can be quite difficult. The next theorem is

quite powerful as it expresses the reversibility and positive-recurrence of a Markov chain

in terms of several easily determined conditions for a Markov chain.

Theorem 3.0.4 ([46]) For an irreducible Markov chain, if there exists a set

π= {πx}x∈S such that 0 ≤ πx ≤ 1, πxPxy = πyPyx, for all x, y ∈ S , and
∑

x∈S
πx = 1,

then the chain is reversible and positive-recurrent with stationary distribution π.

Note that in future sections, in order to show a Markov chain on a state space S is

ergodic, the chain will be shown to be irreducible, aperiodic, and a set π = {πx}x∈S that

satisfies Theorem 3.0.4 will be obtained.

In a dynamic Monte Carlo simulation, if a Monte Carlo method generates a stochastic

process which happens to be a Markov chain, we call the Monte Carlo method a Markov

Chain Monte Carlo Method. An example of a Markov Chain Monte Carlo algorithm used

to study some polymer models is the Θ-BFACF algorithm, the algorithm created to study

Problem 1.1 in [150] and discussed in Section 3.3. Because the Θ-BFACF algorithm is

based on the BFACF algorithm [9, 14, 15], it will be reviewed next.
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3.1 The BFACF Algorithm

The BFACF algorithm [9, 14, 15], was initially designed to simulate walks of variable length

with fixed end points in Z
d. The algorithm generates a Markov process on the set of all

possible walks of variable length with fixed end points in the d-dimensional hypercubic

lattice. It has been shown that the algorithm generates a collection of paths which have

a Boltzmann distribution [9], cf. Section 1.4.

In the mid-1980’s Madras proved that the BFACF algorithm is ergodic on the set of

all possible SAPs in Z
2 and hence could be applied to polygons in the square lattice. The

proof of Madras’s result was not published until the early 1990’s, cf. [103]. In general,

the BFACF algorithm, when applied to a polygon in Z
d, generates another polygon (not

necessarily distinct) in Z
d. Janse van Rensburg and Whittington [69] proved that when the

BFACF algorithm is applied to polygons in Z3, the algorithm generates polygons having

the same knot-type as the initial state, that is, when the BFACF algorithm is applied

to polygons in Z3, the ergodic classes of the algorithm are exactly the sets of polygons

partitioned according to knot-type. Because polygons with a specific knot-type in the

simple cubic lattice are required for this work, the BFACF algorithm is a useful starting

point.

Unless otherwise specified, for the remainder of this section, the BFACF algorithm will

be assumed to generate a Markov chain {Xt, t ∈ T} on P(K), the set of all SAPs in Z3 with

fixed knot-type K, where the elementary transformations, as illustrated in Figure 3.1, are

applied in a probabilistic manner to move from state Xt to state Xt+1. Before the BFACF

algorithm can be stated, some notation is required.

Let ω and ω′ be two SAPs in Z3 and |ω| and |ω′| be their respective lengths. We define

∆(ω, ω′) = |ω′| − |ω|, that is the difference in lengths of the two polygons ω and ω′. For

Z3, define
−→
k := 〈0, 0, 1〉 to be the positive unit vector in the z direction,

−→
j := 〈0, 1, 0〉 to be

the positive unit vector in the y direction, and
−→
i := 〈1, 0, 0〉 to be the positive unit vector

in the x direction. ±−→
i ,±−→

j , and ±−→
k will be referred to as the unit lattice directions. The

right-hand rule states that the positive unit vectors are assigned in the order
−→
i to

−→
j to

−→
k

and back to
−→
i . Now define e1(r), e2(r), e3(r), and e4(r) to be the four distinct directions

perpendicular to direction r (or equally −r), where r ∈
{−→

i ,
−→
j ,

−→
k
}

, that is ej(r) 6= r and

ej(r) 6= −r, for j = 1, . . . , 4. To further specify the definition of ej(r) : if starting at r,
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p(−2)

p(+2)

p(0)

Figure 3.1: The elementary BFACF moves as applied to SAPs in Z
3.

e1(r) is the next positive unit vector assigned by the right-hand rule; e3(r) is the second

positive unit vector assigned by the right-hand rule; e2(r) = −e1(r); and e4(r) = −e3(r).

Then the precise definition for the BFACF algorithm for the set of all SAPs in Z3 with

fixed knot-type K is as follows.

3.1.1 Precise Definition of the BFACF Algorithm in Z3

The BFACF algorithm generates a Markov chain {Xt, t ∈ T} on P(K).

1. Select a fugacity z such that 0 < z < zφ, where zφ is as defined by Equation (1.43);

select an integer q > 0; and choose ω[0] to be any polygon in P(K). Set t = 0,

X0 = ω[0], and select one of the vertices of ω[0], to be denoted ω
[0]
0 . Now select one

of the two vertices of ω[0] adjacent to ω
[0]
0 and denote this vertex ω

[0]
1 . ω

[0]
0 will be

referred to as the first vertex of ω[0]. ω
[0]
1 will be referred to as the second vertex of

ω[0]. The edge connecting ω
[0]
0 to ω

[0]
1 will be referred to as the 0’th edge of ω[0]. This

imposes an orientation on ω[0] which induces a numbering of the edges. Choose a set

of one-step transition probabilities Pωω′ such that the one-step transition probabilities

satisfy detailed balance, cf. Equation (3.8), and such that limn→∞ P
(n)
ωω′ = πω′(q; z),

where πω′(q; z) is given by

πω′(q; z) =
|ω′|qz|ω′|

∑∞
i=0 i

qpi(K)zi
. (3.9)

2. At the (t+ 1)’st step, select an integer I uniformly at random from

{0, 1, 2, . . . , |ωt| − 1}.
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3. Define r :=





ω
[t]
I+1 − ω

[t]
I , if I < |ωt| − 1

ω
[t]
0 − ω

[t]
I , if I = |ωt| − 1,

where ω
[t]
j is the j’th vertex in ω[t].

Consider the 4 graph embeddings W1,W2,W3, and W4 in Z
3 that can be formed by

moving the I’th edge one lattice unit respectively in the e1(r), e2(r), e3(r), or e4(r)

direction, and then adding the necessary edges to join the newly shifted edge to the

polygon, and removing any double edges which may result. Define

ξ =

4∑

l=1

p(∆(ω[t],Wl)) (3.10)

where, for ω ∈ P(K) and any graph embedding ̟ in Z
3,

∆(ω,̟) = |̟| − |ω| (3.11)

and

p(∆(ω,̟)) =





|̟|q−1 Z2

|ω|q−1 + 3 |̟|q−1 z2
, if ∆(ω,̟) = +2

|ω|q−1

|ω|q−1 + 3 |̟|q−1 z2
, if ∆(ω,̟) = −2

1 + z2

2 [1 + 3z2]
,

if ∆(ω,̟) = 0 and

ω 6= ̟

0, otherwise.

(3.12)

Choose one of the five embeddings W1,W2,W3,W4, ωt with respective probabilities

p(∆(ω[t],Wl)), l = 1, . . . , 4, max{0, 1 − ξ}, and denote the chosen embedding (which

need not be a SAP) as W .

4. If W is not a SAP, set Xt+1 = ω[t], otherwise set Xt = W . Increase t by 1 and return

to Step 2.

5. Repeat until t = T .

�

One appropriate choice for the one-step transition probabilities Pωω′ is given by

Pωω′ :=
1

|ω|p(∆(ω, ω′)). (3.13)

A detailed discussion for why the choice of the one-step transition probabilities as defined

by Equation (3.13) is a valid choice can be found in [150].
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Because the design of the BFACF algorithm (and hence the Θ-BFACF algorithm)

guarantees sampling from P (K) if the algorithm is started in P (K) , a major advantage

of the algorithm is that one never has to check the knot-type of the SAPs generated. A

major disadvantage of the BFACF algorithm (and hence the Θ-BFACF algorithm) is that,

as z → zφ, the exponential autocorrelation time for the algorithm (the time it takes the

algorithm to attain equilibrium from its initial configuration) approaches infinity (Sokal and

Thomas, [143]). Consequently the algorithm has very long exponential autocorrelation

times for fugacities that are very close to zφ. If the behaviour of some observable as

polygon length increases is of interest, then, because the average length of the polygons

generated by the BFACF increases as z → zφ, fugacities closer and closer to zφ need to be

chosen.

Note that the exponential autocorrelation time of an algorithm and the correlation that

exists among the data generated by a MCMC algorithm will be explored in more detail

in the next chapter, but, at this point, suffice it to say, as the exponential autocorrelation

time for a MCMC algorithm increases, the data generated by the algorithm become more

positively correlated. As z → zφ, the resulting simulation will take longer and longer

to reach the equilibrium distribution and will generate fewer and fewer independent data

points. Although these disadvantages seem to exclude using the BFACF algorithm when

studying the asymptotic properties of the Local Strand Passage Model, techniques have

been developed to decrease the integrated autocorrelation times associated with the BFACF

algorithm [43, 95, 100, 122, 152]. One such technique is the so-called Multiple Markov

chain sampling [43] and is discussed next.

3.2 Multiple Markov Chain Monte Carlo Methods

In 1991, Geyer [43] introduced a concept which he referred to as Metropolis-coupled Markov

chain Monte Carlo. The concept has since been called Multiple Markov Chain (MMC)

Sampling [152], Parallel Tempering [58] and Exchange Monte Carlo [62]. In 1996, the

technique was adapted to study interacting self-avoiding walks with fixed length [152] and

to study self-avoiding polygons [122]. The remainder of the discussion of MMC sampling

will be based on the terminology, notation, and concepts as discussed by Orlandini et al.

in [122].
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MMC sampling is a method that samples along a set of M Markov chains which are

run in parallel. Fix M and let π(i) be the equilibrium distribution of Markov chain i,

where consecutive natural numbers from one to M have been assigned to Markov chains 1

through M , respectively. Denote the probability of Chain i being in a particular state x by

πx(i). Suppose that, for some i ∈ {1, 2, ...,M} , convergence of Chain i to its equilibrium

distribution π(i) is slow and that for some j ∈ {1, 2, ...,M} convergence of Chain j to its

equilibrium distribution π(j) is known to be quite fast. Then, ideally to implement the

MMC method, for some integer M ≥ 2, M Markov chains (such that there is “considerable

overlap” between the distributions of π(i) and π(i + 1) for 1 ≤ i < M) are desired. Note

that the state space S for each chain is the same.

After the M Markov chains have been run in parallel for a fixed number of steps ρ,

Chains i and j are chosen with probability p̃ij from the total possible pairings of i and j,

where the p̃ij are chosen such that they satisfy p̃ij = p̃ji and

∑

i,j≤M

p̃ij = 1.

Suppose at time t, for x, y ∈ S , Chain i is in state x and Chain j is in state y. Then with

probability r(i, j), where

r(i, j) = min

(
1,
πy(i)πx(j)

πx(i)πy(j)

)
(3.14)

(referred to as the swapping probability between Chains i and j), the current configurations

in Chains i and j are exchanged. This exchange between Chains i and j is referred to as

a chain swap or swap for short. This swapping process induces dependence between the

chains. As a result, each chain on its own is not Markov, but, on the other hand, the whole

process has the Markov property and is referred to as a composite Markov chain (CMC)

[123].

A single time-step in the CMC consists of either one non-chain-swap move attempted

on each of the M components of the CMC (to be referred to as a move in parallel) or

one single attempted swap. Define the period for attempted swapping, denoted ρ ≥ 0, to

be the number of moves in parallel implemented before each attempted swap, that is a

swap is attempted after every ρ moves in parallel. For ρ = 0, no moves in parallel are

allowed between attempted swaps; the M components of the CMC are just permuted.

Consequently setting ρ = 0 is not permitted.

A precise definition of a CMC is now provided.
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Definition 3.2.1 Given M > 0 and state space S , for each i = 1, . . . ,M , let {Xt(i), t ∈
T} be an ergodic Markov chain on S with one-step transition probability matrix {Pxy(i)}x,y∈S ,

where

Pxy(i) = Pr[Xt+1(i) = y|Xt(i) = x],

and Pxx(Xt(i)) > 0 for all x ∈ S , and with equilibrium distribution given by π(i) =

{πx(i)}x∈S . Suppose ρ is some given positive integer and the p̃ij ’s are chosen to satisfy

p̃ij = p̃ji and
∑

i,j≤M
p̃ij = 1. Then, define the composite chain {Y t, t ∈ T} with Y t =

(Yt(1), Yt(2), . . . , Yt(M)) ∈ S M to be the stochastic process on the state space S M with

one-step transition probabilities specified by

Pxy =





∏M
i=1 Pxiyi

(i), if t mod (ρ+ 1) 6= 0,

p̃ijr(i, j), if t mod (ρ+ 1) = 0, y = x(i,j),

1 −∑i,j p̃ijr(i, j), if t mod (ρ+ 1) = 0, y = x,

0, otherwise,

(3.15)

where for x = (x(1), x(2), . . . , x(i), . . . , x(j), . . . , x(M)) ∈ S M ,

x(i,j) = (x(1), x(2), . . . , x(i−1), x(j), x(i+1), . . . , x(j−1), x(i), x(j+1), . . . , x(M)) ∈ S
M ,

(3.16)

and

r(i, j) = min

(
1,
πy(i)πx(j)

πx(i)πy(j)

)
. (3.17)

{Y t, t ∈ T}, referred to as a Composite Markov Chain, is a stochastic process on state

space S M

Note that Yt(i) is the i’th component of Y t. The sequence (Yt(i), t ∈ T ) formed from

the sequence of states that appear in the i’th component of Y t is referred to as sub-chain

i or Chain i; and {Xt(i), t ∈ T} is referred to as Uncoupled Chain i.

If p̃ij > 0, for all i 6= j, a swap can occur between any pair of the M chains (this

is referred to as global swapping or global coupling). The acceptance of a swap between

non-adjacent chains should noticeably change the configurations for the chains swapped

and therefore should decrease the time it takes the whole process to reach its stationary

distribution. In practice, such a swap rarely occurs because the overlap of the distributions

of two distinct non-adjacent chains is usually minimal. As most non-adjacent swaps are

rejected, any possible CPU time savings from allowing such swaps is overshadowed by the
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cost of determining the viability of the swap. Therefore local swapping or equivalently local

coupling, that is swapping only between adjacent chains, will be used in this work. From

now on, it is assumed that the term swapping (coupling) refers to local swapping (local

coupling).

Since swapping induces a dependence among the components of the Composite chain,

each component of the Composite Chain is no longer Markov. Hence the usage of the

term Multiple Markov Chain is a bit of a misnomer. The next lemma establishes that the

entire Composite chain however is a Markov chain. The following four lemmas are due to

Geyer [43].

Lemma 3.2.1 (Geyer [43]) The stochastic process {Y t, t ∈ T} as defined in Defini-

tion 3.2.1 has the Markov property and hence is a Markov chain. {Y t, t ∈ T} is referred

to as a Composite Markov Chain.

Lemma 3.2.2 (Geyer [43]) The CMC {Y t, t ∈ T} as defined in Definition 3.2.1 is ir-

reducible.

Lemma 3.2.3 (Geyer [43]) The CMC {Y t, t ∈ T} as defined in Definition 3.2.1 is ape-

riodic.

For x ∈ S M , define the set πY := {πx}x∈S M where

πx =

M∏

i=1

πxi
(i). (3.18)

Lemma 3.2.4 (Geyer [43]) Equations 3.15 and the set πY satisfy

1. 0 ≤ πx ≤ 1 for all x ∈ S M ,

2.
∑

x∈S M πx = 1, and

3. πxPxy(Y t) = πyPyx(Y t), for all x,y ∈S M .

Lemmas 3.2.2, 3.2.3, and 3.2.4 as stated above and Theorem 3.0.4 establish the ergodicity

of a Composite Markov chain. Also, Theorem 3.0.4 establishes that πY is the unique

stationary distribution for {Y t, t ∈ T}. The ergodicity of a CMC was first discussed by

Geyer [43]. Detailed proofs of Lemmas 3.2.1, 3.2.2, 3.2.3, and 3.2.4 for a composite Markov

chain {Y t, t ∈ T} generated by the Θ-BFACF algorithm, can be found in [150].
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By carefully selecting the swapping probabilities between two adjacent chains, each

individual chain might reach its marginal stationary distribution much faster than any

of the individual chains when uncoupled (that is with no swapping). The possible faster

convergence is because when a swap is accepted, it introduces a large change in the config-

urations for the chains involved and this tends to reduce the exponential autocorrelation

time. As one can collect information for all M subchains, another “perk” of the MMC

method is that there is very little difference in CPU time between MMC sampling and

sampling along the M chains uncoupled for the same number of times steps. Hence faster

convergence is obtained at no significant additional cost in CPU time.

Since M chains are being run simultaneously and quantities from each chain need to

be stored, a disadvantage of MMC sampling is that MMC simulations require a significant

increase in computer memory as compared to the uncoupled simulations. Any constraint

imposed by computer memory will depend on the number of chains being run in parallel.

Therefore, the number of chains needs to be determined in order to minimize the number

of time steps it takes to converge to the equilibrium distribution, to minimize the amount

of CPU time required to implement the simulation to collect a sufficiently large sample,

and, at the same time, to not exceed the memory resources available. A procedure for

determining the number of chains and the distribution of the z values over an interval

[z′, z′′] for a CMC generated by the BFACF algorithm whose underlying distribution is

given by Equation (3.9) can be found in [122].

3.3 The Θ-BFACF Algorithm

Because the ergodic classes of the BFACF algorithm, when applied to SAPs in Z3, are the

different types of knots in Z3, therefore the BFACF algorithm (when applied to polygons in

Z3) is a very useful tool for studying properties that are dependent on knot-type. For this

reason, to study the Local Strand Passage Model, a Markov Chain Monte Carlo technique

in which the BFACF algorithm was adapted to study PΘ (φ) was designed (Szafron, M.Sc.

thesis, [150]) and was called the Θ-BFACF algorithm.

The Θ-BFACF algorithm generates a Markov Chain {Xt, t = 0, .., T} such that at each

time t, Xt is a polygon from the state space PΘ (φ). At each time step t, one of five possible

graph embeddings is chosen according to an appropriate probability distribution so as to
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move the chain from state Xt−1 to the state Xt. These five possible graph embeddings are

the same as those generated at each time step of the BFACF algorithm (that is, four of the

embeddings are created using the moves shown in Figure 3.1 and the fifth embedding is the

polygon in state Xt−1). However, the probability distribution according to which these

five embeddings are chosen must be modified (from the distribution used by the BFACF

algorithm) to accommodate for the reduced state space PΘ (φ).

The following is the precise Θ-BFACF algorithm as defined in [150]. Given q > 0, z

such that 0 < z < zφ, t > 0,and ωt−1 ∈ PΘ (φ) such that |ωt−1| = n, define, for any graph

embedding ωt in Z
3,

p(ωt|ωt−1) :=





(n+ 2)q−1z2

nq−1 + 3(n+ 2)q−1z2
, if |ωt| = n+ 2 and ωt can be

obtained from ωt−1 using one BFACF move;

nq−1

nq−1 + 3(n− 2)q−1z2
, if |ωt| = n− 2 and ωt can be

obtained from ωt−1 using one BFACF move;

1 + z2

2[1 + 3z2]
, if |ωt| = n and ωt 6= ωt−1 can be

obtained from ωt−1 using one BFACF move;

0 otherwise.

(3.19)

Then, the Θ-BFACF algorithm proceeds as follows:

1. At the i = 0’th step, set X0 to be any SAP in PΘ(φ).

2. (a) Label the 0’th edge as the edge which is incident on vertices (0, 0, 0) and

(−1, 0, 0). Continue labelling all X0’s edges consecutively (skipping any edges

which are in Θ) in the order induced by directing the 0’th edge to go from the

origin to (−1, 0, 0);

(b) At the (i+ 1)’st step, select an integer I uniformly at random from

{0, 1, 2, . . . , |Xi| − 7};

(c) Consider the four graph embeddings W1,W2,W3,W4 (not necessarily polygons)

that can be formed by moving the I’th edge one lattice unit in one of the four

directions perpendicular to the I’th edge, adding the necessary edges to join the

newly shifted edge to the polygon, and then removing any double edges which

may result.
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(d) Select randomly one of the five embeddings W1,W2,W3,W4, Xi with respective

probabilities p(Wl|Xi), for l ∈ {1, 2, 3, 4}, max{0, 1 − ξ}, where

ξ =

4∑

l=1

p(Wl|Xi), (3.20)

and denote it ω.

(e) If ω is a SAP, set Xi+1 = ω; otherwise set Xi+1 = Xi.

(f) i := i+ 1; return to Step 2. (a).

3. Repeat until i = T .

In [150], Szafron showed that one acceptable choice for the one-step transition proba-

bilities Pωω′ of the Θ-BFACF algorithm is given by

Pωω′ :=
1

|ω|p(ω
′|ω). (3.21)

[150] also contains a proof of the following result regarding the Θ-BFACF algorithm and

the state space PΘ (φ) (recall PΘ (φ) is the set defined by Definition 2.2.3 with K = φ).

Theorem 3.3.1 The Θ-BFACF algorithm is ergodic (that is, the algorithm is irreducible,

aperiodic, and positive recurrent) for the state space PΘ (φ).

The proof of Theorem 3.3.1 was based on the proof of Janse van Rensburg and Whitting-

ton [69] that the ergodicity classes for the BFACF algorithm are the different knot-types.

Szafron’s proof of the irreducibility of the Θ-BFACF algorithm on the set PΘ (φ) relied

on the fact that the structure Θ contains sufficient empty lattice space to allow a strand

of a before-strand-passage polygon to pass through the structure. This empty space is a

necessity for the proof as it guarantees that Reidemeister III moves are permitted about

the structure.

The ergodicity of the Θ-BFACF algorithm ensures that the entire space PΘ (φ) will be

sampled according to the distribution function π̆ω(q, zi,M), given by Equation (2.63), but,

because the Θ-BFACF algorithm is based on the BFACF algorithm, the Θ-BFACF algo-

rithm also suffers from the same major disadvantage of the BFACF algorithm, that is, as

z → zφ, the exponential autocorrelation time for the algorithm approaches infinity. To ad-

dress this limitation, the next section defines the composite Markov chain implementation

of the Θ-BFACF algorithm.
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3.4 The CMC Implementation of the Θ-BFACF Algorithm

For some specified integer M > 1, let {Xt(i), t ∈ T} be a Markov chain generated by the

Θ-BFACF algorithm on PΘ (φ) with stationary distribution having the form

π̆ω(q, zi, 2) =
(|ω| − 6) |ω|q−1z

|ω|
i∑∞

n=1 (2n − 6) (2n)q−1 pΘ
2n(φ)z2n

i

, (3.22)

and with one-step transition probabilities, for all ω, ω′ ∈ PΘ (φ), given by Pωω′(i), where

Pωω′(i) is given by Equation (3.21) with z = zi. Define π̆ω(q,z,M) :=
(
π̆ω(i)(q, zi), i = 1, ...,M

)
.

Now, given any fixed positive integer ρ, define one Θ-BFACF move in parallel to

be one Θ-BFACF move implemented on each of the individual components of Y t, where

{Y t, t ∈ T} is a Markov chain with state space S M :=
[
PΘ (φ)

]M
and one-step transition

probabilities given by

Pωω′ =





∏M
i=1 Pω(i)ω′(i)(i), if t mod (ρ+ 1) 6= 0,

13−1r(i, i+ 1), if t mod (ρ+ 1) = 0, ω′= ω(i,i+1),

1 − 13−1
∑13

i=1 r(i, i+ 1), if t mod (ρ+ 1) = 0, ω′ =ω,

0, otherwise,

(3.23)

where

Y t = (Yt(1), Yt(2), . . . , Yt(M)), (3.24)

ω = (ω(1), ω(2), . . . , ω(M)) ∈ S
M , (3.25)

for 1 ≤ i < j ≤M,

ω(i,j) = (ω(1), . . . , ω(i − 1), ω(j), ω(i + 1), . . . , ω(j − 1), ω(i), ω(j + 1), . . . , ω(M)) ∈ S
M ,

(3.26)

and, for some i such that 1 ≤ i < M,

r(i, i+ 1) = min

(
1,

(
zi+1

zi

)|ω(i)|−|ω(i+1)|
)
. (3.27)

Note that Pωω′ describes the two types of moves for a local swapping CMC algorithm.

Since in [150] Szafron proved Lemmas 3.2.2, 3.2.3, and 3.2.4 hold using the above

definition of Pωω′ and the set πY = {π̆ω(q,M)}
ω∈S

M , the CMC implementation of the

Θ-BFACF algorithm (to be referred to as the CMC Θ-BFACF algorithm) is ergodic on

S M and has the desired stationary distribution πY .
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3.4.1 The Simulation of the CMC Θ-BFACF algorithm

The simulation of the MMC Θ-BFACF algorithm implemented consisted of ten independent

replications. Each replication was run for a total of 9.6 × 1010 time steps (8.0 × 1010 Θ-

BFACF moves in parallel and 1.6 × 1010 attempted swaps) where every five Θ-BFACF

moves in parallel were followed by an attempted swap. The polygon lengths for the initial

starting states of each chain and each replication are given in Table 3.1.

Table 3.1: The length of the polygon in the starting state of the i’th
component during the r’th replication.

Replication r

Chain i 1 2 3 4 5 6 7 8 9 10

1 38 16 52 20 26 44 36 52 42 14

2 50 22 36 52 26 64 54 74 18 14

3 30 14 136 16 24 30 58 46 54 14

4 72 126 44 60 168 94 34 66 32 14

5 78 246 56 198 150 60 36 90 162 14

6 82 172 48 58 64 44 68 58 86 14

7 72 88 94 66 62 42 308 194 180 14

8 134 246 28 218 96 64 200 188 212 14

9 204 160 52 850 176 170 18 18 110 14

10 316 528 222 292 124 802 112 266 130 14

11 178 1074 198 304 76 48 184 592 358 14

12 154 66 312 914 244 838 1582 1740 34 14

13 1304 344 992 372 120 554 180 1570 516 14

14 888 2436 156 1626 142 796 1276 216 200 14

In the CMC Θ-BFACF simulation, for the probabilities given by Equation (3.19), q is

set to 2. For each of the individual replications, the number of chains and the distribution

of the fugacities over the interval [0.2030, 0.2132] to be used were taken from [124], that is

M = 14, and the following distribution of z-values from the interval [0.2030, 0.2132] was

used: z1 = 0.2030, z2 = 0.2050, z3 = 0.2070, z4 = 0.2090, z5 = 0.2100, z6 = 0.2105, z7 =

0.2110, z8 = 0.2115, z9 = 0.2120, z10 = 0.2124, z11 = 0.2128, z12 = 0.2130, z13 = 0.2131,
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and z14 = 0.2132. These values of z are valid for the Θ-BFACF algorithm because for

i = 1, . . . , 14,

zi < zΘ = zφ < 0.2135,

where the equality is a consequence of Corollary 2.2.7 and the inequality zφ < 0.2135 is

a consequence of zφ < zp(3) ≈ 0.2135 [49]. Hence the transition probabilities presented

in Equation (3.19) are valid for the CMC Θ-BFACF algorithm. The motivation for using

this distribution of z-values and choice of M is to compare, for a fixed z value, the average

length of a SAP in P(φ) (as estimated in [121]) with an estimate of the average length of

an unknotted SAP in PΘ(φ). This comparison is presented in Section 4.7.3.

The pseudo-random number generator used in the Monte Carlo simulation is a variant

of the add-with-carry generator developed by Marsaglia and Zaman [109]. The computer

program used to implement this pseudo-random number generator was provided by [66].

The period of this pseudo-random number generator is over 2931 which is much greater

than the estimated 250 numbers generated throughout the course of the simulation. Hence

any error introduced because of the “non-randomness” of the pseudo-random numbers

generated has been assumed to be negligible.

Whether a Composite Markov chain sampling experiment or some other experiment is

chosen to study a model, the data generated from the experiment needs to be analyzed.

In the next chapter, some issues surrounding the analysis of simulation data are discussed.
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Chapter 4

Convergence to the Equilibrium Distribution

Markov Chain Monte Carlo simulation is a powerful tool that allows many different

kinds of problems to be studied. In general, the implementation of these simulations is

straight-forward but there are several challenges that arise when analyzing the results of a

MCMC simulation.

Given a MCMC algorithm for simulating an ergodic Markov chain with a given target

distribution as its equilibrium distribution, two challenges must be overcome before sta-

tistical inferences about parameters of interest can be made using simulation data. The

first issue results from the fact that in any simulation of a Markov chain, the Markov

chain is usually started in some distribution other than the Markov chain’s equilibrium

distribution. Hence there is an initial period (for each distinct observable) in which the

data generated does not reflect the equilibrium distribution. Consequently the amount of

time that must pass before the equilibrium distribution is reached must be determined.

The second issue that needs to be addressed is related to the fundamental property

of a Markov chain {Xt, t ∈ N∪{0}} that random variables Xi and Xj , for all i < j, are

correlated. The further j is from i, the smaller the correlation is expected to be between

Xj and Xi. In fact, for some j large enough, Xj is expected to be “essentially independent”

from Xi.

These two issues, the amount of time required for an arbitrary stationary process to

reach its equilibrium distribution and the concept of two random variables of the process

being “essentially independent”, will be discussed in the next section.

4.1 For a Stationary Process

The following definitions and notation will be used throughout this chapter. Define T =

N∪{0}. Then suppose that X := {Xt, t ∈ T} is a stationary stochastic process defined on
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some countable state space S and that, for every t ∈ T, Xt is distributed according to

a distribution given by the probability mass function π = {πx}x∈S
. Let H be the set

of all real-valued functions defined on X and note that for each of the elements f ∈ H ,

the process f(X ) will be referred to as an observable of the process X . Then, for every

f ∈ H , define f(X ) := {f(Xt), t ∈ T} and also denote f(X ) by {fXt , t ∈ T}. It should

be noted that f(X ) is a stationary stochastic process [78] and that whenever the notation

f(X ) is used to denote a stochastic process, the notation implies that the process f(X )

was formed by applying the real-valued function f to the stochastic process {Xt, t ∈ T}.
Using the above notation and definitions, four key functions associated with the sta-

tionary stochastic process f(X ) are defined next.

Definition 4.1.1 ([35]) For a stationary stochastic process f(X ) whose underlying sta-

tionary stochastic process X is distributed according to π = {πx}x∈S
,

1. the mean with respect to π, denoted Eπ(f), is defined by

Eπ(f) :=
∑

x∈S

f(x)πx; (4.1)

2. the variance with respect to π, denoted varπ(f), is defined by

varπ(f) :=
∑

x∈S

[f (x) − Eπ(f)]2 πx; (4.2)

3. the autocovariance function with respect to π, denoted γf (h), is defined by

γf (h) = Eπ(fXtfXt+|h|
) − (Eπ(f))2 .

=
∑

x,y∈S

f(x)
[
πxp

(|h|)
x,y − πxπy

]
f(y), (4.3)

where p
(k)
x,y = Pr (Xt+k = y|Xt = x) ; and

4. the autocorrelation function with respect to π, denoted ρf (h), is defined by

ρf (h) =
γf (h)

γf (0)
. (4.4)

With the above notation and concepts defined for a stationary stochastic process, all

further discussion is restricted to the scenario where the stochastic process X is actually

an ergodic Markov chain (because an ergodic Markov chain is used later in this thesis).

Now that sufficient machinery has been provided, the discussion turns to the time it takes

an ergodic Markov chain X to reach its stationary distribution.
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4.1.1 Are We There Yet?

Suppose X is started in its equilibrium distribution. Then γf (h) is a measure of the

covariance that exists between the random variables of f(X ) that are |h| time steps apart

and ρf (h) is the correlation that exists between the random variables of f(X ) that are |h|
time steps apart. Generally, for |h| sufficiently large, ρf (h) decays exponentially [142],

that is for |h| sufficiently large, ρf (h) decays like e
−|h|

τexp(f) for some constant τexp(f). The

constant τexp(f) is called the exponential autocorrelation time of the observable f . The

precise definitions of τexp(f) and τexp that follow have been taken from [142].

Definition 4.1.2 ([142]) For a stationary stochastic process f(X ) started in its station-

ary distribution π = {πx}x∈S
, the exponential autocorrelation time of the observable f,

denoted τexp(f), is defined as

τexp(f) = lim sup
h→∞

h

− log |ρf (h)| . (4.5)

Since, for every observable f ∈ H , there is a corresponding value τexp(f), it makes

sense to define an exponential autocorrelation time for the entire system. This systemic

exponential autocorrelation time, denoted τexp, is formally defined as:

Definition 4.1.3 The exponential autocorrelation time for the ergodic Markov chain X
with stationary distribution π = {πx}x∈S

, is defined as

τexp = sup
f∈H

τexp(f). (4.6)

Now suppose that X is started in some distribution other than its equilibrium distri-

bution. Sokal [142] shows that the rate of convergence from some initial, non-equilibrium

distribution to the equilibrium distribution is bounded above by τexp. Therefore τexp can

be used as a measure for the amount of time that it takes the observable with the largest

exponential autocorrelation time to reach the stationary distribution and τexp can be in-

terpreted as the amount of time required for the entire process to equilibrate.

Because τexp represents the slowest convergence time, τexp can be used as a measure

for the amount of time that it will take every function f ∈ H to reach the stationary

distribution [142]. Thus, in practice, to determine τexp, τexp(f), for the observable f ∈ H

with the slowest convergence time to the stationary distribution, needs to be determined.
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In theory, theoretical analysis can be used to determine whether or not the stationary

distribution has been reached, but in practice, many problems are too complex for such an

analysis [101]. In these situations, a numerical approach is used to estimate τexp(f) and

hence τexp. Some numerical methods for estimating τexp and τexp(f) (for the observable

f(X )) will be discussed in Section 4.2.

Once the amount of time for the process to equilibrate has been determined, the cor-

relation between the random variables of the process {fXt , t ∈ T} that are |h| time steps

apart needs to be calculated. A discussion of how to determine this correlation is presented

in the next section.

4.1.2 Are We Related?

Suppose X is started in its equilibrium distribution. ρf (h), as given by Definition 4.1.1, is

a measure of the normalized covariance between the random variables of {fXt , t ∈ T} that

are |h| time steps apart, that is, it is a measure of the normalized covariance between fXt

and fXt+|h|
. Generally, the greater the amount of time that passes between observations

fXi
and fXj

, the smaller the value of ρf (j− i) is expected to be. As the value of ρf (j− i)

decreases, the random variables fXi
and fXj

that are |j − i| time units apart are expected

to be less correlated and consequently less likely to depend on each other. Note that

an infinitesimally small (and for all practical purposes zero) correlation between fXt and

fXt+|h|
does not imply independence according to the usual definition of independence of

two random variables. Instead, for a stochastic process {fXt , t ∈ T}, if the correlation

between fXi
and fXj

is infinitesimally small then fXi
and fXj

are said to be “essentially

independent”.

Mathematically the concept of “essentially independent” can be characterized by the

integrated autocorrelation time of the observable f(X ), denoted τint(f). The functional

definition of τint(f), as presented below, has been taken from [142].

Definition 4.1.4 ([142]) For a stationary stochastic process f(X ) with stationary dis-

tribution π = {πx}x∈S
, the integrated autocorrelation time of the observable f, denoted

τint(f), is defined as

τint(f) =
1

2

∞∑

h=−∞

ρf (h). (4.7)
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Since τint(f) is an even function, τint(f) can alternatively be expressed as

τint(f) =
1

2
+

∞∑

h=1

ρf (h). (4.8)

The reason τint(f) is associated with the concept of “essentially independent” is as

follows. Consider the estimator for the sample mean

〈f〉n :=
1

n

n∑

i=1

fXi
(4.9)

based on the observable f(X ). Then

varπ (〈f〉n) = Eπ

[
1

n2

n∑

r=1

n∑

s=1

fXrfXr+s−r
− (Eπ[f ])2

]

=
γf (0)

n2

n∑

r=1

n∑

s=1

ρf (s− r)

=
γf (0)

n2

∑

h≤|n−1|

(n− |h|) ρf (|h|)

=
γf (0)

n

∑

h≤|n−1|

(
1 − |h|

n

)
ρf (|h|)

=
2γf (0)

n

∑

1≤h≤n−1

(
ρf (|h|) − hρf (|h|)

n
+

1

2(n− 1)

)

≈ 2γf (0)

n
τint(f), if n≫ τint(f), (4.10)

where it is assumed that for n≫ τint(f), τint(f) can be approximated by [142]

τint(f) ≈ 1

2
+

∑

1≤h≤n−1

ρf (h). (4.11)

Note that the validity of this assumption is explored later in this section.

The approximation

varπ (〈f〉n) ≈ 2γf (0)

n
τint(f), if n≫ τint(f), (4.12)

implies that the variance of the sample mean 〈f〉n is approximately a factor of 2τint(f)

larger than
γf (0)

n
which is the variance of the sample mean computed using independent

data. The upshot is that if n values of the observable f(X ) are correlated, then there are

really
n

2τint(f)
essentially independent observations. More formally, for the rest of this

work, the concept of “essentially independent” will be defined as follows:
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Definition 4.1.5 For a stationary stochastic process f(X ) with stationary distribution

π = {πx}x∈S
, two random variables, say fXi

and fXj
, are said to be essentially indepen-

dent if

|j − i| ≥ 2τint(f). (4.13)

Since the observable f(X ), for each f ∈ H , has an associated integrated autocorrelation

time, how much time must pass between random variablesXi and Xj in the original process

before Xi and Xj are considered essentially independent? This amount of time is referred

to as the integrated autocorrelation time for the system. The functional definition of τint,

as presented below, has been modified from the corresponding definition of τint in [142] to

the specific case where a stationary stochastic process f(X ) has a stationary distribution

π = {πx}x∈S
.

Definition 4.1.6 The integrated autocorrelation time for the ergodic Markov chain X with

stationary distribution given by π = {πx}x∈S
, is defined as

τint := sup
f∈H

τint(f). (4.14)

Because, in practice, many problems are too complex to be able to calculate τint [101],

practical methods for estimating τint and τint(f) (for the observable f(X )) are needed.

Such methods will be discussed in Section 4.3. Before these methods for estimating τint

and τint(f) are discussed, practical methods for estimating τexp will be discussed.

4.2 Estimating the Time to Equilibrate, τexp

Several techniques exist to determine τexp, the number of time steps required for the in-

fluence of the initial non-stationary starting state to diminish to the point of having a

negligible effect on inferences. Three techniques will be used in this work to estimate τexp.

In order to facilitate the discussion of these three methods, some definitions and notation

are required. The following discussion, including the notation and the definitions, is based

on Fishman [35].

Suppose that X is an ergodic Markov chain defined on the state space S with sta-

tionary distribution π = {πx}x∈S
that was started in some non-equilibrium distribution

π0. Because all three methods for estimating τexp that are to be presented are based on
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n0 preliminary simulations of X , each of length t0 + 1, some definitions and notation are

required.

Define X (r)
t0 := {X(r)

t , t ∈ {0, 1, ..., t0}}, for 1 ≤ r ≤ n0, where X (r)
t0 is the r’th replication

of X of length t0 + 1 starting in state s
(r)
0 ∈ S . Now, for each h ∈ H , define h

(
X (r)

t0

)
:={

h
(
X

(r)
t

)
, t ∈ {0, 1, ..., t0}

}
,

〈h (Xt)〉 :=
1

n0

n0∑

r=1

h
(
X

(r)
t

)
, (4.15)

and, for m ≥ k,
〈
h
(
X

(r)
k,m

)〉
:=

1

m− k + 1

m∑

t=k

h
(
X

(r)
t

)
, (4.16)

and

〈h (Xk,m,n0)〉 :=
1

n0

n0∑

r=1

〈
h
(
X

(r)
k,m

)〉
. (4.17)

The quantity 〈h (Xt)〉 , for 1 ≤ t ≤ t0, is referred to as the t’th column average of h (X ) ;

the quantity 〈h (X1,j,n0)〉 , for 1 ≤ j ≤ t0, is referred to as the average of the first j column

averages of h (X ); and the quantity 〈h (Xk,t0,n0)〉 , for 1 ≤ k ≤ t0, is referred to as the

average of the last k column averages of h (X ). It is these three averages for various

choices of j and k which can be used to determine an estimate for τexp for the stationary

process X .

Recall from Parts (1) and (2) of Definition 4.1.1 that

Eπ (h) =
∑

x∈S

h (x) πx (4.18)

and

varπ (h) =
∑

x∈S

[h (x) − Eπ (h)]2 πx. (4.19)

Now, for replication r, define µ
s
(r)
0 ,j

(h), the conditional expectation of h
(
X

(r)
j

)
resulting

from starting in state s
(r)
0 , by

µ
s
(r)
0 ,j

(h) := Eπ

[
h
(
X

(r)
j

)
|X(r)

0 = s
(r)
0

]
(4.20)

=
∑

x∈S

h (x) p
(j)

s
(r)
0 ,x

(4.21)
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and σ2

s
(r)
0 ,j

(h), the conditional variance of h
(
X

(r)
j

)
resulting from starting in state s

(r)
0 , by

σ2

s
(r)
0 ,j

(h) := varπ

[
h
(
X

(r)
j

)
|X(r)

0 = s
(r)
0

]
(4.22)

=
∑

x∈S

h (x)
[
h(x) − µ

s
(r)
0 ,j

(h)
]
p
(j)

s
(r)
0 ,x

, (4.23)

where p
(j)

s
(r)
0 ,x

is the probability of moving from state s
(r)
0 to x in j time steps. The

corresponding conditional expectation of
〈
h
(
X

(r)
k,m

)〉
is denoted µ

s
(r)
0 ,k,m

(h) and is given

by

µ
s
(r)
0 ,k,m

(h) := E
[〈
h
(
X

(r)
k,m

)〉
|X(r)

0 = s
(r)
0

]
(4.24)

=
1

m− k + 1

m∑

j=k

µ
s
(r)
0 ,j

(h). (4.25)

The corresponding conditional variance of
〈
h
(
X

(r)
k,m

)〉
is denoted σ2

s
(r)
0 ,k,m

(h) and is given

by

σ2

s
(r)
0 ,k,m

(h) := var
[〈
h
(
X

(r)
k,m

)〉
|X(r)

0 = s
(r)
0

]

=
1

(m− k + 1)2

m∑

j=k

σ2

s
(r)
0 ,j

(h)

+
2

(m− k + 1)2

m−1∑

j=k

m∑

l=j+k

cov
[
h
(
X

(r)
j

)
, h
(
X

(r)
l

)
|X(r)

0 = s
(r)
0

]
, (4.26)

where, for j ≥ 1 and l ≥ 1,

cov
[
h
(
X

(r)
j

)
, h
(
X

(r)
l

)
|X(r)

0 = s
(r)
0

]
:= −µ

s
(r)
0 ,j

(h)µ
s
(r)
0 ,l

(h)

+
∑

x,y∈S

h (x)h(y)p
min(j,l)

s
(r)
0 ,x

p(|l−j|)
x,y . (4.27)

Initially the thought of estimating τexp seems to be a daunting task since it requires

estimating τexp(h) for every h ∈ H . However, Fishman [35, p. 506] showed that if

{Xt, t ∈ T} is a reversible Markov chain, then τexp(h
′), where h′ is a function in H such

that

σ(h′) := max
h∈H

√
varπ (h), (4.28)

only needs to be estimated.

Unfortunately, determining h′ is no less daunting a task. Fishman [35, p. 506] states

that to determine an estimate for τexp, in practice the set of functions H used to determine
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the function h′ can be replaced with the set of functions H ′ where H ′ is the set consisting

of only those functions that are of interest in the study. Then, for the function h′ ∈ H ′

such that

σ(h′) := max
h∈H ′

√
varπ (h), (4.29)

τexp = τexp(h
′) (4.30)

for the study. Because the first two of the three methods ( “Warm-up Analysis” method

and the “Estimated Potential Scale Reduction”) for estimating τexp require the function

h′ ∈ H ′, the following discussions of the “Warm-up Analysis” method and the “Estimated

Potential Scale Reduction” assume that h′ has already been found. Note that both of

these methods can be used to estimate τexp(h) for any function h ∈ H .

4.2.1 Warm-up Analysis

The goal of a warm-up analysis is to estimate a finite length interval [0, k], the warm-

up interval for the Markov chain X , such that τexp ∈ [0, k]. The right end point of a

warm-up interval estimates an upper bound for the number of time steps required for

the underlying ergodic Markov chain {Xt, t ∈ T} to reach its stationary distribution π.

The following discussion for implementing a warm-up analysis is based on “Section 6.3:

Warm-up Analysis” presented in [35].

To estimate the interval [0, k], n0 independent replications of the Markov chain X are

generated, where each of the n0 realizations (each of length t0 + 1 time steps) is started in

the same initial state s0 ∈ S , that is, for 1 ≤ r ≤ n0, set X
(r)
0 = s0. Note that t0 should

be chosen so that k ≪ t0. Suppose the interval [0, k̂] represents an estimate for [0, k]. Then

k̂ provides an estimate for an upper bound on the time steps required for the underlying

ergodic Markov chain {Xt, t ∈ T} to reach its stationary distribution π. The quantities

〈h′ (Xt)〉 , for 0 ≤ t ≤ t0, 〈h′ (X0,j,n0)〉 , for 0 ≤ j ≤ t0, and 〈h′ (Xl,t0,n0)〉 , for 0 ≤ l ≤ t0,

can be used as follows to determine k̂.

Because 〈h′ (X0,j,n0)〉 contains all the data from the n0 replications up to step j, the

tendency for the sequence of the first j column averages (〈h′ (X0,j,n0)〉 , j ∈ {0, 1, ..., t0})
to follow the trend of the sequence (〈h′ (Xt)〉 , t ∈ {0, 1, ..., t0}) starts to dissipate for all

values of j greater than some k∗ ≤ t0. This implies that k̂ ≤ k∗. Since 〈h′ (Xj,t0,n0)〉
contains all the data from the n0 replications from time step j to t0, the tendency for the
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last j column averages (〈h′ (Xj,t0,n0)〉 , j ∈ {0, 1, ..., t0}) to follow the trend of the sequence

(〈h′ (Xt)〉 , t ∈ {0, 1, ..., t0}) starts to dissipate for all values of j greater than some k∗ ≤
t0. This implies that k̂ ≤ k∗. Therefore, to err on the side of conservatism, set k̂ =

max{k∗, k∗}.
The actual amount of time it takes for the process to lose the effect of the initial starting

state is expected to be somewhere in the interval [0, k̂], which is referred to as the warm-up

interval for the sampling experiment. Let τ̂exp,W denote the estimate for τexp determined

using a warm-up analysis, then, erring on the side of conservatism, set τ̂exp,W = k̂, the

upper limit of the warm-up interval. This estimate is a very rough upper bound for

τexp(h′).

Though this method for determining the warm-up interval estimates the time it takes

for the effects of the initial states to dissipate, the warm-up interval as determined using

this technique does not ensure that the simulation has reached the desired global equilib-

rium distribution. If convergence to the global equilibrium distribution is slow, the finite

process may have converged to a “local equilibrium”. Fishman [35, p. 513] states that

“this local stagnation of a process can occur when its equilibrium distribution is multi-

modal and its transition matrix makes one-step transitions only in a small neighborhood

around the current state in the process.” This local stagnation is a possibility for the

work presented here as the changes to SAPs resulting from the CMC Θ-BFACF algorithm

are primarily made on a very local scale (with the exception of swapping). With the Θ-

BFACF algorithm, there is very little change in the SAP from time step i to i+1. Another

possible limitation of this technique is the fact that some starting states may result in an

extremely long time before the effect of the starting state has dissipated from the process.

The technique “Estimated Potential Scale Reduction” for estimating τexp addresses these

two limitations.

4.2.2 Estimated Potential Scale Reduction

Suppose that n0 initial states are chosen at random from π0, some non-degenerate distri-

bution, and that these initial states are denoted s
(r)
0 , for 1 ≤ r ≤ n0. Then each of the n0

simulations (each of length t0 time steps) is started in the initial state s
(r)
0 ∈ S , that is,

for 1 ≤ r ≤ n0, set X
(r)
0 = s

(r)
0 . Each of the replications is started in the same distribution

but not the same state as was the case for a warm-up analysis.
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A warm-up interval can be determined using data from these n0 simulations using

a technique outlined by Fishman in Section 6.3 of [35]. Fishman states that a suit-

able warm-up interval can be determined if there exists “a positive integer k < t0 such

that all n0 truncated sample paths
(〈
h′
(
X

(1)
0,j

)〉
, j ∈ {k, k + 1, ..., t0}

)
,
(〈
h′
(
X

(2)
0,j

)〉
,

j ∈ {k, k + 1, ..., t0}) , ...,
(〈
h′
(
X

(n0)
0,j

)〉
, j ∈ {k, k + 1, ..., t0}

)
have converged to a com-

mon region and repeatedly intersect each other” [35, p. 513]. The rest of this section

presents a numerical method, developed by Gelman and Rubin [42], that is used in this

work to quantify Fishman’s statement “have converged to a common region and repeatedly

intersect each other” [35, p. 513].

Gelman and Rubin’s method requires that the initial states are chosen from π0 such

that π0 is an overdispersed distribution, that is

var
[
h′
(
X

(r)
0

)
|X(r)

0 ∼ π0

]
≥ varπ

(
h′
)

=
∑

x∈S

[
h′ (x) − Eπ

(
h′
)]2

πx,

where X
(r)
0 ∼ π0 means the state of X

(r)
0 is generated from the distribution π0. Choos-

ing overdispersed starting states is an important part of this method because choosing

overdispersed starting states ensures that:

1. the starting states are “relatively far apart” which provides a better chance for detect-

ing any lack of convergence to the desired equilibrium distribution and for detecting

any dependence of subsequent states on the starting state of the replication, and

2. in terms of inference, the sample will be drawn from all regions of the state space

according to the equilibrium distribution.

Now for the function h′ ∈ H , define the quantities

Bn0,t0 =
t0 + 1

n0 − 1

n0∑

i=1

(〈
h′
(
X

(r)
0,t0

)〉
−
〈
h′ (X0,t0,n0)

〉)2
(4.31)

and

Wn0,t0 =
1

n0t0

n0∑

i=1

t0∑

j=0

(
h′
(
X

(r)
j

)
−
〈
h′
(
X

(r)
0,t0

)〉)2
. (4.32)

Note that Bn0,t0 is the “between the replication variance” and Wn0,t0 is the “within the

replication variance”. From these two variances, two estimates for the variance of h′(Xt0)

can be formed.
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The first estimate for the variance of h′(Xt0) is

v̂ar
(
h′(Xt0)

)
=

t0
t0 + 1

Wn0,t0 +
1

t0 + 1
Bn0,t0 (4.33)

which is an unbiased estimate for the variance of h′(Xt0) under the assumption of station-

arity but is an over-estimate for the variance of h′(Xt0) under the assumption that the

starting states are drawn from an overdispersed distribution [41].

The second estimate for the variance of h′(Xt0) is Wn0,t0 . While the realized states

remain concentrated around the starting state, Wn0,t0 under-estimates the variance of

h′(Xt0). The reason for this under-estimation is that the individual sequences may not

have been run long enough to sample from the entire equilibrium distribution and, as a

result, be less variable [41]. Gelman and Rubin [42] show that, as t0 → ∞,

Wn0,t0 → varπ

(
h′
)

(4.34)

and

v̂ar
(
h′(Xt0)

)
→ varπ

(
h′
)
. (4.35)

Assuming that the initial starting state is drawn from an overdispersed distribution,

Gelman [41] shows that the convergence of the Markov chain to its equilibrium distribution

can be detected by monitoring the convergence of the sequence

(√
R̂j , j ∈ {1, 2, ..., t0}

)
,

where √
R̂j :=

√
v̂ar (h′(Xj))

Wn0,j
. (4.36)

Gelman and Rubin [42] refer to the elements of the sequence

(√
R̂j, j ∈ {1, 2, ..., t0}

)
as

the estimated potential scale reduction.

For fixed positive integer values t0, n0, and j ≤ t0,

√
R̂j reduces to

√
R̂j =

√
j

j + 1
+

1

j + 1

Bn0,j

Wn0,j
. (4.37)

Hence, as t0 → ∞ (that is, as the n0 simulations begin converging to the equilibrium

distribution),

√
R̂t0 will converge to 1. As

√
R̂t0 converges to 1, the replications of the

Markov chain start overlapping and one replication is no longer statistically different from

any other replication. Gelman [41] states that if there exists some k < t0 such that the

estimates

√
R̂j, for all k ≤ j ≤ t0, are less than 1.1 or 1.2, then the simulation can be
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thought to have converged for the function h′. This value of k can be thought to be the

upper limit of a warm-up interval for all n0 replications. Hence, the estimate for τexp

based on the estimated potential scale reduction is given by

τ̂exp,E := k. (4.38)

The estimated potential scale reduction

√
R̂j is a measure of how large the estimate

v̂ar (h′(Xj)) is relative to the estimate Wn0,j. Hence

√
R̂j is a measure of how large the

“between the replication” variance is relative to the “within the replication” variance.

Gelman’s [41] convergence condition, that is requiring that

√
R̂j ≤ 1.1, for all k ≤ j ≤ t0,

can be interpreted as requiring that the estimated “between the replication” standard

deviation is less than 10% larger than the estimated “within the replication” standard

deviation.

The methods discussed thus far for estimating τexp can be used to determine whether

a Markov Chain, and hence a composite Markov chain, has reached its stationary distri-

bution. The final method for monitoring the convergence to the stationary distribution

is presented next and is designed specifically to monitor the convergence of a CMC to its

stationary distribution.

4.2.3 The Mixing of the Chains in a Composite Markov Chain

Warm-up analysis and estimated potential scale reduction can be used to estimate the time

it takes the Markov chain X , and hence a composite Markov chain based on X , to reach

its stationary distribution. In the case where X is an ergodic Markov chain, the following

technique, based on [122], can be used to estimate the time it takes the corresponding CMC

to converge to its equilibrium distribution. The technique is implemented as follows.

At time t = 0, attach a different colour to each of the M chains in a CMC. This

colouring stays with the configuration until a swap between Chains i and j (j 6= i) is

accepted. When a swap between Chains i and j (j 6= i) is accepted, the colours associated

with Chains i and j (j 6= i) are also swapped.

Suppose Chain 1 is coloured red. At some point, the red colour will be swapped into

chain M, and then, at some later time, it will return to Chain 1. During the time it takes

the colour red to travel from Chain 1 to Chain M and back, the state of Chain 1 will

most likely be considerably different from its configuration than the previous time it was
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coloured red. The ergodicity of the composite Markov chain implies that, for a run that

is sufficiently long, each colour will spend an equal amount of time in each chain. More

formally, if col(i,“a”) is the proportion of the time chain i is labelled colour “a”, then, for

a fixed colour “a” and for all i such that 1 ≤ i ≤M, it is expected that col(i,“a”) =
1

M
.

From the data generated in Replication r, define

ĉol
(r)

k (i, “a”) :=
1

t0 − k + 1

t0∑

t=0

δ“a”

(
colour

(
X

(r)
t (i)

)) [
1 − I(0,k] (t)

]
[Mn (t)] , (4.39)

where colour (X) is the colour of X, k is the number of data points to be excluded from

the analysis,

δ“a” (colour (X)) :=





1, if colour (X) = “a”

0, otherwise
, (4.40)

for any A ⊆ R,

IA (x) :=





1, if x ∈ A

0, otherwise
, (4.41)

and

Mn (t) :=





1, if t = 0 (modn)

0, otherwise
. (4.42)

Then ĉol
(r)

k (i,“a”) can be used to estimate col(i,“a”).

To determine whether the colourings appear uniformly amongst the M chains, a test

based on the χ2-Test for Goodness of Fit can be used. First, to implement a χ2-Test for

Goodness of Fit, a sample consisting of independent data points is required.

Assuming that an independent sample is available, to determine whether a fixed colour

“a” appears uniformly in Chains 1 through M, a χ2-Test for Goodness of Fit [147] can

be used to test the null hypothesis H0 : col(1,“a”) = col(2,“a”) = ... = col(M,“a”) =
1

M
against the alternative that colour “a” does not appear uniformly in each of the M chains.

If, at the significance level α, the null hypothesis is rejected, then colour “a” is not uniformly

distributed amongst the M chains.

The above test is repeated for each of the M colours. Define the function p-value(“ai”)

to be the p-value associated with the χ2-Test for Goodness of Fit for colour “a” in Chain

i. Then the sample used for the M χ2-Tests for Goodness of Fit is said to be well-mixed

if
M∑

i=1

I(α,1] (p-value(“ai”)) ≥ (1 − α)M. (4.43)
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In other words, a sample is said to be well-mixed if approximately (1 − α) · 100% of the

χ2-Tests for Goodness of Fit for the distinct colours fail to reject the null hypothesis, that

is there is not enough evidence to conclude that approximately (or more than) (α) · 100%
of the colours are not uniformly distributed across the M chains. If it is concluded that

the sample is well-mixed, then this is considered to support the facts that the equilibrium

distribution has been reached and that the equilibrium distribution has been sampled for

a sufficient length of time.

The sample is said to be not well-mixed if considerably greater than α ·100% of the χ2-

Tests for Goodness of Fit for the distinct colours reject the null hypothesis. A conclusion

that the sample is not well-mixed supports the hypothesis that either the equilibrium

distribution has not been reached or that the equilibrium distribution has been reached

but there has not been sufficient sampling from it to make the burn-period statistically

insignificant. To determine which of these two scenarios is affecting the sample, the above

test can be repeated for different values of k to determine whether there is a value of k for

which the sample drawn, after ignoring the first k data points, is well-mixed.

The determination of the number of data points k to burn may lead to a sample so

small that the required condition for the χ2-Test for Goodness of Fit (that is the expected

cell frequencies must be at least five) is violated [85]. Koehler and Larntz [85] show that,

for contingency tables with expected cell frequencies less than 5, if the total number of

observations is at least ten, the number of categories (c) is at least three, and the square

of the total number of observations is at least ten times the number of categories, then,

under the null-hypothesis, the distribution of the test statistic is approximately chi-square

with c − 1 degrees of freedom. For the determination of being well-mixed, Koehler and

Larntz’s condition implies that the sample size must be greater than
√

10M, where M is

the number of subchains in the composite Markov chain. If the value of k must be chosen

so large that the number of independent data points resulting from ignoring the first k

data points is smaller than
√

10M, then either the equilibrium distribution has not been

sampled from a long enough period or perhaps the equilibrium distribution has not even

been reached.

In Section 4.7.1 of this thesis τexp will be estimated using these three techniques (warm-

up analysis, estimated potential scale reduction, and the mixing of the chains of a composite

Markov chain). The purpose for estimating τexp via these three techniques is to be able
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to compare the three estimates and check their consistency with each other. Note that

the estimate for τexp from Replication r, based on:

1. a warm-up analysis will be denoted τ̂
(r)
exp,W ;

2. an estimated potential scale reduction will be denoted τ̂
(r)
exp,E ; and

3. the mixing of the chains of a CMC will be denoted τ̂
(r)
exp,C .

Then the estimate for τexp based on the sample data from all the replications and:

1. a warm-up analysis will be denoted τ̂exp,W , where

τ̂exp,W := max
r

{
τ̂

(r)
exp,W

}
; (4.44)

2. an estimated potential scale reduction will be denoted τ̂exp,E , where

τ̂exp,E := max
r

{
τ̂

(r)
exp,E

}
; (4.45)

and

3. the mixing of the chains of a CMC will be denoted τ̂exp,C , where

τ̂exp,C := max
r

{
τ̂

(r)
exp,C

}
. (4.46)

Then the estimate for τexp that will be used for this work will be denoted τ̂exp where

τ̂exp := max {τ̂exp,W , τ̂exp,E, τ̂exp,C} . (4.47)

The reason that the maximum of the estimates τ̂
(r)
exp,W , τ̂

(r)
exp,E, and τ̂

(r)
exp,C over the

ten replications is used for τ̂exp is so that, for each replication, all the data generated in

each of the replications after τ̂exp Θ-BFACF moves in parallel can be assumed to be from

the equilibrium distribution. Because the distributions of τ̂
(r)
exp,W , τ̂

(r)
exp,E, and τ̂

(r)
exp,C are

unknown, the distribution of τ̂exp is also unknown. Therefore a (1 − α) · 100% confidence

interval for τexp cannot be computed based on the point estimates τ̂exp,W , τ̂exp,E, τ̂exp,C ,

or τ̂exp.
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In order to gain some insight into how τ̂exp,W and τ̂exp,C vary across the replications,

τ̄exp,W :=
1

10

10∑

r=1

τ̂
(r)
exp,W (4.48)

and

τ̄exp,C :=
1

10

10∑

r=1

τ̂
(r)
exp,C , (4.49)

and the standard errors of the samples used to compute τ̄exp,W and τ̄exp,C will be calcu-

lated. Note that because the estimated potential scale reduction technique uses all the

replications, τ̄
(r)
exp,E is the same value for each replication, that is τ̄exp,E = τ̂

(r)
exp,E, for each

r ∈ {1, 2, ..., n0}. Therefore no further information is gained by calculating the average of

the values τ̂
(r)
exp,E across the ten replications. Also note that because the distributions

of τ̂
(r)
exp,W and τ̂

(r)
exp,C are unknown, the distributions of τ̄exp,W , τ̄exp,E, and τ̄exp,C are also

unknown. Because the distributions of τ̄exp,W , τ̄exp,E, and τ̄exp,C are unknown and because

τ̄exp,• is based on fewer than 30 observations, it is not known whether the Central Limit

Theorem applies, (1 − α) · 100% confidence intervals for τexp cannot be computed based

on τ̄exp,W , τ̄exp,E, and τ̄exp,C . At least the sample standard error will provide some infor-

mation about how τ̂
(r)
exp,W and τ̂

(r)
exp,C are dispersed. For example, if it is assumed that the

Central Limit Theorem holds for Equations (4.48) and (4.49), then a (1 − α) · 100% con-

fidence interval for τexp,W and τexp,C can be obtained from the estimated standard errors

reported.

Because τint(f) and τint are quantities defined on the stationary distribution, once an

estimate for the amount of time it takes the process to equilibrate has been established,

τint(f) and τint can be estimated. The different techniques used in this work for estimating

τint(f) and τint are discussed next.

4.3 Estimating τint(f) and τint

There are several techniques for estimating τint(f), each having different degrees of compu-

tational complexity. The three techniques used in this work will be presented in the order

of least computationally intensive to the most computationally intensive. All three tech-

niques will be used to estimate τint(f) and τint in order to compare the resulting estimates.

This comparison is provided at the end of Section 4.7.2.
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Because estimating τint(f) and τint requires data drawn from the equilibrium distri-

bution, first assume that k is an estimate for τexp. Now define the new Markov chain

X ′ :=
{
X ′

j , j ∈ T ′
}
, where X ′

j := Xj+k and T ′ := {0, 1, ..., t0 − k}. Then all three tech-

niques for estimating τint(f) use a realization of X ′.

The first technique, that is the technique that is presented next, uses an estimate

for τexp to estimate τint(f) [142]. The second technique, that is the technique based on

blocking the data [35], is presented in Section 4.3.2. The final technique, that is the

technique based on a time series analysis [142], is presented in Section 4.3.3.

4.3.1 Via the Time to Reach π

The first technique that can be used to estimate τint(f) relies solely on an estimated for

τexp. Hence the technique adds no additional CPU overhead to the data analysis because,

by the time τint(f) is to be estimated, an estimate for τexp is already available. In [142]

it is discussed that the estimated upper limit of the interval [0, k̂], which is an estimate

for τexp(h
′), is approximately 20τint(h

′), but this is very approximate. Quite often τint(h
′)

has the same order of magnitude as τexp(h′); by setting τexp(h
′) = 20τint(h

′), more of the

initial data (than possibly necessary) would be discarded, a big problem if the generation

of the data is very costly in computer time. The estimated value of τexp can be used as a

basis for estimating τint(f) (the autocorrelation time for the observable function f) of the

experiment, because it is believed that [142]

20τint(f) ≈ τexp(f). (4.50)

Because τexp = max
f∈H

τexp(f), using

τint(f) ≈ τexp/20 := k/20 (4.51)

provides an estimate for τint(f). Estimates based on Relation (4.51) provide estimates for

τint(f) that are generally larger than the actual value of τint(f) [142] and hence lead to

the conclusion that there is less essentially independent data than there actually is. This

under-estimate for the amount of essentially independent data results in the associated

(1−α) · 100% confidence interval of any estimate based on a realization of X ′ being wider

than the (1−α)·100% confidence interval computed using the actual value of the integrated

autocorrelation time. To overcome the possible conservative nature of this estimate for
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τint(f), the next technique presented involves an actual analysis of X ′ via “batch means”

[35].

4.3.2 Via a Batch Means Analysis

The discussion now turns to the “batch means technique”, cf. [35]. Suppose Fi = f(X ′
i)

for all i = 0, 1, ..., t0 − k. For fixed natural numbers b and l such that bl ≤ t0 − k, consider

a partition of the data from a single sample path of length t0 − k into l non-overlapping,

consecutive sequences for which each sequence’s length is b (referred to as the batch size);

that is batch 1 consists of the data points F1, . . . , Fb; batch 2 consists of the data points

Fb+1, . . . , F2b; . . .; and batch l consists of data points F(l−1)b+1, . . . , Flb. Now define

Yj,b := b−1
b∑

i=1

F(j−1)b+i, 1 ≤ j ≤ l, (4.52)

〈F 〉l,b := l−1
l∑

j=1

Yj,b (4.53)

and

s2(〈F 〉l,b) := (l − 1)−1
l∑

j=1

(Yj,b − 〈F 〉l,b)2. (4.54)

Now if there exist natural numbers b and l such that lb ≤ t0 − k, and such that

the Yj,b, for all j = 1, . . . , l, are statistically independent according to an appropriate

test for independence, then b is referred to as an independent batch size. The Test for

Independence [35] (used in this work) is as follows:

Algorithm 4.3.1 (Test for Independence, p. 562, [35]) Define the null hypothesis to

be H0 : Ψl,b = 0, where

Ψl,b := 1 −
∑l−1

i=1(Yi,b − Y(i+1),b)
2

∑l
i=1 (Yi,b − 〈F 〉t)2

, (4.55)

for Yj,b as defined by Equation (4.52) and 〈F 〉t as defined by Equation (4.9). Then H0 is

not rejected when

Ψl,b ≤
[
Φ−1(1 − α)

]√ l − 2

l2 − 1
, (4.56)

where Φ−1(1−α) is the (1−α) critical value of the standard normal distribution as deter-

mined from
√

2π

∫ Φ−1(1−α)

−∞
e−z2/2dz = 1 − α. (4.57)

If the null hypothesis H0 is not rejected, then the batches are considered to be independent.
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Assuming equality in Relation (4.12), that is,

varπ (〈f〉n) =
2γf (0)

n
τint(f), (4.58)

then an estimate for τint(f) is given by

τ̂int(f) =
b

2

γ̂f (0)

s2(〈F 〉l,b)
. (4.59)

In other words, τint(f) can be estimated as a function of the batch size b. In fact, if the

sample drawn from the equilibrium distribution is sufficiently large, then γ̂f (0) ≈ s2(〈F 〉l,b)
as both γ̂f (0) and s2(〈F 〉l,b) are both estimates for varπ (f) . Hence

τ̂int(f) ≈ b

2
. (4.60)

Therefore, if sampling from the equilibrium distribution, τint(f) can be estimated as half

the batch size b.

Fishman [35] presents algorithms for determining b and l. However, if the data is

batched according to the batch size calculated from Equation (4.60) using the estimate

for τint(f) determined by the technique in Section 4.3.1, and if this batched data passes

the Test for Independence, then, up to the significance level α used in the Test for Inde-

pendence, the data sampled every b time steps apart will be essentially independent.

If, in addition to needing to determine the amount of essentially independent data that

has been generated, the correlation structure is of interest, then the approach presented

next is the technique that should be used to estimate τint(f).

4.3.3 Via a Series/Windowing Approach

The third, and most computationally intensive, method for estimating τint(f) is based on

computing the estimate directly using Equation (4.8) and the sample data. Two problems

quickly arise. The first problem is that often Eπ(f) is unknown. The second problem

results from the fact that τint(f), as given by Equation (4.8), requires a sample of infinite

length.

The first problem can be solved by using the sample mean 〈f〉n , as defined by Equation

(4.9), as an estimator of Eπ(f). From the definition of τint(f), the logical choices for

estimators of γf (t), ρf (t), and τint(f), when Eπ(f) is unknown, are respectively

γ̂f (t) :=
1

n− |t|

n−|t|∑

i=1

(Fi − 〈f〉n)(Fi+|t| − 〈f〉n), (4.61)
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ρ̂f (t) =
γ̂f (t)

γ̂f (0)
, (4.62)

and

τ̂int(f) =
1

2

n−1∑

t=−(n−1)

ρ̂f (t). (4.63)

In [4], it was shown that γ̂f (t) is a biased estimator of γf (t) and the bias is of order 1/n,

that is

Eπ (γ̂f (t)) =
1

n− |t|

n−|t|∑

i=1

(
Eπ

(
FiFi+|t|

)

− 1

n2

n∑

j,m=1

(
Eπ (FiFj) + Eπ

(
FjFi+|t|

)
− Eπ (FjFm)

)



= γf (t)

− 1

n− |t|




n−|t|∑

i=1


 1

n2

n∑

j,m=1

(
Eπ (FiFj) + Eπ

(
FjFi+|t|

)
− Eπ (FjFm)

)



− (Eπ(f))2
]
. (4.64)

Because ρ̂f (t) is a function of γ̂f (t) and γ̂f (t) is a biased estimator of γf (t), it follows

that ρ̂f (t) and τ̂int(f) will respectively be biased estimators of ρf (t) and τint(f) of order

1/n. Consequently, when trying to estimate τint(f) by using the sample mean 〈f〉n as an

estimator of Eπ(f), the bias in the estimator τ̂int(f) becomes less and less significant as

the sample size n increases.

The second problem is more severe because it is not possible to generate an infinite

length sample path. One solution, for some large sample size n, is to estimate τint(f) by

τ̂int(f) =
1

2

n−1∑

t=−(n−1)

ρ̂f (t). (4.65)

However this is not a good estimator of τint(f) in the sense that the variance of the estimator

defined by Equation (4.65) does not tend to zero as the sample size n tends to infinity [142].

One solution to this problem is to use a “windowing” approach, that is to truncate the

sum in Equation (4.65) at a point which retains most of the “signal” and discards most of

the “noise”. In other words, to truncate the sum in Equation (4.65) at the values ±m such

136



that for all t where m < t ≤ n − 1, ρ̂f (t) is distributed as a N(0, t−1/2) random variable.

To do this, first rewrite Equation (4.65) as

τ̂int(f) =
1

2

n−1∑

t=−(n−1)

λ(t)ρ̂f (t), (4.66)

where

λ(t) =





1, if |t| ≤ τint(f)

0, otherwise,
(4.67)

and λ(t) is referred to as a window. Because this definition of λ(t) relies on knowing

τint(f), it is not a practical choice for a window.

A more practical solution for implementing the aforementioned “windowing” approach

is to define λ(t) by

λ(t) =





1, if |t| ≤W

0, if |t| > W,
(4.68)

where W is chosen in such a manner that

cτ̂int(f) ≤W ≤ n, (4.69)

for some constant c > 0.

With λ(t) defined as in Equation (4.68), Equation (4.66) becomes

τ̂int(f) =
1

2

W∑

t=−W

ρ̂f (t). (4.70)

An estimate for the variance of τ̂int(f), valid for τ̂int(f) ≪ W ≪ n, where n is the run

length, is [142]

var(τ̂int(f)) =
2(2W + 1)

n
τ2
int(f). (4.71)

The c in Inequality (4.69) is chosen to be 4 if ρf (t) is approximately a pure exponential,

since, in this case, the variance of ρf (t), denoted var(ρf (t)), is of the order e−4 which is

close to 2%. However, if ρf (t) decays much more slowly than a pure exponential, in order

to keep the magnitude of var(ρf (t)) around the 2% level, c must be increased. Since

estimates for τint(f) are increasing as a function of c [142], as c tends to infinity, estimates

for τint(f) may double or even triple. Hence, any estimate for τint(f) using this approach

is an underestimate of the true value of τint(f).

Underestimates of c lead to the conclusion that there is more essentially independent

data than there actually is. This leads to smaller confidence intervals which imply that
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the estimates are better than they really are. Another drawback of the series/windowing

approach is that a significant amount of physical storage space is required to store the

data and calculations required to implement the method are very CPU intensive. Samples

could be taken less frequently and “fast Fourier transform” techniques, cf. [131], could be

used to shorten the total length of time necessary to compute an estimate for τint(f), but

possibly at the cost of losing valuable information. Based on the experience gained via the

composite Markov chain Monte Carlo analysis of this thesis, it is concluded that, unless

estimates for the autocorrelations associated with different lag times are needed, in most

circumstances the batch means technique for estimating τint(f) and τint suffices.

In Section 4.7.2 of this thesis, for the sake of comparison, all three methods for esti-

mating τint will be used. The estimate for τint from Replication r, based on:

1. τ̂
(r)
exp, will be denoted τ̂

(r)
int,W ;

2. a batch means analysis with k burned data points, will be denoted τ̂
(r)
int,B(k); and

3. a windowing/series analysis with k burned data points, will be denoted τ̂
(r)
int,S(k).

Then the estimate for τint computed across the replications, based on:

1. τ̂
(r)
exp, will be denoted τ̂int,W , where

τ̂int,W := max
r

{
τ̂

(r)
int,W

}
; (4.72)

2. a batch means analysis with k burned data points, will be τ̂int,B , where

τ̂int,B := max
k

{
τ̂int,B(k)

}
(4.73)

and

τ̂int,B(k) := max
r

{
τ̂

(r)
int,B(k)

}
; (4.74)

and

3. a windowing/series analysis with k burned data points, will be denoted τ̂int,S , where

τ̂int,S := max
k

{
τ̂int,S(k)

}
(4.75)

and

τ̂int,S(k) := max
r

{
τ̂

(r)
int,S(k)

}
. (4.76)
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Finally the estimate for τint that will be used for this work will be denoted τ̂int, where

τ̂int := max {τ̂int,W , τ̂int,B, τ̂int,S} . (4.77)

The reason the estimator τ̂int,W is defined as the maximum over the estimates τ̂
(r)
int,W , for

r ∈ {1, 2, .., 10} , is so that the assumption that data points every 2τ̂int,W time steps apart

will be essentially independent will hold for each of the ten replications. For the same

reason, τ̂int,B and τ̂int,S are defined similarly in terms of a maximum over all replications.

To err on the side of conservatism, τ̂int is defined in terms of the maximum of τ̂int,W , τ̂int,B,

and τ̂int,S.

Because the distributions of τ̂
(r)
int,W , τ̂

(r)
int,B(k), and τ̂

(r)
int,S(k) are unknown, (1 − α) · 100%

confidence intervals for τint based on the point estimates τ̂int,W , τ̂int,B(k), and τ̂int,S(k) cannot

be computed. In order to gain some insight into how τ̂int,W , τ̂int,B(k), and τ̂int,S(k) vary

across the replications,

τ̄int,W :=
1

10

10∑

r=1

τ̂
(r)
int,W , (4.78)

τ̄int,B(k) :=
1

10

10∑

r=1

τ̂
(r)
int,B(k), (4.79)

and

τ̄int,S(k) :=
1

10

10∑

r=1

τ̂
(r)
int,S(k), (4.80)

and the standard error of the samples used to compute τ̄int,W , τ̄int,B(k), and τ̄int,S(k) will

be calculated. Also note that because the distributions of τ̄int,W , τ̄int,B(k), and τ̄int,S(k) are

unknown, and τ̄int,• is based on fewer than 30 observations, whether the Central Limit

Theorem can be applied is unknown. Therefore (1− α) · 100% confidence intervals for τint

cannot be computed based on τ̄int,W , τ̄int,B(k), and τ̄int,S(k). Therefore the best information

available for determining how τ̂int,W , τ̂int,B(k), and τ̂int,S(k) vary across the replications is

the standard error of τ̄int,W , τ̄int,B(k), and τ̄int,S(k) respectively.

Assuming that τexp and τint have been estimated, what should be done with the data

that was generated in the interval [0, τ̂exp]? This question is addressed in the next section.

4.4 To Burn or not to Burn?

Warm-up analysis, estimated potential scale reduction, and the mixing of the chains in

a CMC provide three methods for estimating τexp = k, the number of time steps that
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a simulation must be run to ensure that, for all i such that k < i ≤ t0, X0 and Xi are

essentially independent. (Note that t0 is the total number of steps for which the simulation

is to be run). Because the data that is generated during the warm-up interval [0, k] is not

from the desired equilibrium distribution, what should be done with this “contaminated”

data?

In [142], Sokal defines the burn-time of an observable f to be the period in which

the data generated does not reflect the stationary distribution. The error resulting from

estimates based on data that includes data generated during the burn-time is defined to

be the bias of the simulation. Consequently the burn-time of f can be thought to be the

number of time-steps in the simulation from which the data collected (with respect to f)

should be ignored (discarded). A data point collected during the burn-time is referred to

as a burned data point.

Valuable information, such as estimates for τexp(f) and hence τint(f), can be obtained

from the data which lies in the warm-up interval. If storage space and CPU time are not

an issue, then the data from the warm-up period should be collected. The problem now

becomes “what data should be used in estimating the parameters of interest?”.

Sokal [142] argues that if τexp is a significant portion of the total run time, then the

initialization bias introduced will lead to a significant error in one’s results and, therefore,

the data generated during the warm-up period should be discarded. If τexp represents

an insignificant fraction of the total run time (Sokal recommends < 5%), then the data

generated in the warm-up period can be included in any estimates, as the statistical error

of the estimate will be affected minimally. In [44], Geyer presents arguments that support

the viewpoint discussed by Sokal. Both Geyer and Sokal recommend that the simulation

should be run for a period of time long enough so that the warm-up interval introduces

little statistical error. Therefore the issue of whether some or all of the data generated

should be used to estimate a quantity is really problem specific.

Also, because sampling at every time step is not usually practical, the data available

to estimate τexp is a subset of states observed throughout the simulation. Because the

observed data points in this subset are used to estimate τexp, it is more practical to refer

to the number of data points that need to be burned in the subset than it is to refer to the

number of time steps in which the data generated is not from the equilibrium distribution.

Recall that k is the number of data points that must be discarded from the set of
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sampled data. Then assuming the number of data points k has been determined, how

can, at least preliminarily, the data generated be checked for consistency? How the data

is expected to behave is discussed in the next section.

4.5 How Should We Behave?

Recall from Section 1.4 that several of the properties of the Local Strand Passage Model

can be obtained from derivatives of the logarithm of the model’s partition function. Now

recall from Section 2.2.2 that for unknotted Θ-SAPs, the partition function for the Local

Strand Passage Model is, for a fixed positive even integer M , a fixed positive integer q,

and a fixed real value z, given by

Q̆(q, z,M) =
∑

n≥M/2

(2n− 6) (2n)q−1 pΘ
2n(φ)z2n. (4.81)

Hence, in order to study and understand the behaviour of Q̆(q, z,M), it is important to

investigate how it “behaves” as M → ∞ and log(z) → −κφ. This is one of the studies

presented in this section.

The second function studied in this section is the expected value of the mean-square

radius of gyration of a randomly chosen polygon in PΘ(φ) selected according to the proba-

bility mass function π̆z(q,M) defined by Equation (2.63) with a fixed positive even integer

M , a fixed positive integer q, and a fixed real value z:

r2π̆z(q,M)

(
P

Θ
)

:=
[
Q̆(q, z,M)

]−1 ∑

m=M/2

r2
(
P

Θ
2m

)
π̆2n|M(q, z), (4.82)

where r2
(
PΘ

2m

)
is defined by Equation (1.57) and is the expected mean-square radius of

gyration of a random selected (2m)-edge polygon in PΘ(φ).

In order to study Q̆(q, z,M) and r2
π̆z(q,M)

(
PΘ

)
, it is important to know how both

depend on M and z. More specifically, it is important to know how Q̆(q, z,M) and

r2
π̆z(q,M)

(
PΘ

)
behave as M → ∞ and log(z) → −κφ. These limiting behaviours are

investigated in the next two subsections, respectively.

4.5.1 How Does Q̆(q, z, M) Behave as M → ∞ and log(z) → −κφ?

If Conjecture 2.2.4 from Section 2.2.2 is true, then, for M = Nmin sufficiently large, there

exists AΘ
φ , α

Θ
φ , q, κφ, B

Θ
φ ,−∆Θ

φ and a function gφ (with gφ(n) = O(n−1), such that, for
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β := log(z),

Q̆(q, z,Nmin) =
∑

n≥Nmin/2

F2n(AΘ
φ , α

Θ
φ + q, κφ + β,BΘ

φ ,−∆Θ
φ , gφ). (4.83)

Hence, in order to study and better understand the behaviour of Q̆(q, z,Nmin) asNmin → ∞
and β → −κφ, the behaviour of the right hand side of Equation (4.83) needs to be explored

as Nmin → ∞ and β → −κφ. To this end, define

Q (γ1, γ2, γ3,m, a, b, g) := a
∑

n≥m
n even

nγ1enγ2 (1 + bnγ3 + g(n)) , (4.84)

where, as n→ ∞,

g(n) = O
(
n−1

)
. (4.85)

Before continuing, the following result from Complex Analysis is needed.

Lemma 4.5.1 (Darboux [25]) If t /∈ {0, 1, 2, 3, ...}, then

[zn](1 − z)t ∼ n−t−1

Γ(−t) , (4.86)

where [zn](1− z)t is the coefficient of the term zn in the power series expansion of (1− z)t.

For z = eγ2 , the coefficient of zn in Q (γ1, γ2, γ3,m, a, b, g) is asymptotic (as n→ ∞) to

[zn]Q (γ1, γ2, γ3,m, a, b, g) ∼ anγ1 + abnγ1+γ3 . (4.87)

By Equation (4.86) the coefficient of zn in Q (γ1, γ2, γ3,m, a, b, g) for z = eγ2 is asymptot-

ically (as n→ ∞) equal to:

[zn]Q (γ1, γ2, γ3,m, a, b, g) (4.88)

∼ [zn]
[
aΓ(γ1 + 1)(1 − eγ2)−γ1−1

]
+ [zn]

[
abΓ(γ1 + γ3 + 1)(1 − eγ2)−1−γ1−γ3

]
. (4.89)

Hence, for m even and sufficiently large, Q (γ1, γ2, γ3,m, a, b, g) (given by Equation (4.83))

can be approximated by

Q (γ1, γ2, γ3,m, a, b, g)

∼ aΓ(γ1 + 1)(1 − eγ2)−1−γ1

+ abΓ(γ1 + γ3 + 1)(1 − eγ
∗
2 )−1−γ1−γ3 (4.90)

= a′(1 − eγ2)−1−γ1
[
1 + a′′(1 − eγ2)−γ3

]
, (4.91)
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where a′ = aΓ(γ1 + 1) and a′′ =
bΓ(γ1 + γ3 + 1)

Γ(γ1 + 1)
.

Now define

E (γ1, γ2, γ3,m, a, b, g) :=
∂

∂γ2
(logQ (γ1, γ2, γ3,m, a, b, g)) . (4.92)

Hence, for m even and sufficiently large, by applying logarithms to Equation (4.91) and

differentiating the result with respect to γ2 yields the following asymptotic form for

E (γ1, γ2, γ3,m, a, b, g):

E (γ1, γ2, γ3,m, a, b, g) ∼
[γ1 + 1]eγ2

1 − eγ2

[
1 +

γ3a
′′(1 − eγ2)−γ3

[γ1 + 1][1 + a′′(1 − eγ2)−γ3 ]

]
. (4.93)

For fixed m sufficiently large such that Approximation (4.93) is valid, note that, as

1 − eγ2 → 0, that is, as γ2 → 0,

a′′(1 − eγ2)−γ3

[1 + a′′(1 − eγ2)−γ3 ]
→ a′′(1 − eγ2)−γ3 . (4.94)

Hence, for values of γ2 close to 0, Approximation (4.93) can be reduced to

E (γ1, γ2, γ3,m, a, b, g) ≈
[γ1 + 1]eγ2

1 − eγ2

[
1 +

γ3a
′′(1 − eγ2)−γ3

[γ1 + 1]

]
, (4.95)

and this approximation improves as γ2 → 0. Moreover, for values of γ2 close to 0, the ratio

[E (γ1, γ2, γ3,m, a, b, g)]
−1, to first order, can be reduced to

1

E (γ1, γ2, γ3,m, a, b)
≈ 1

[γ1 + 1]eγ2
− 1

γ1 + 1
, (4.96)

Now assume that there exist γ∗1
1 , γ∗1

2 , γ
∗1
3 ,m∗1 , a∗1 , b∗1 , γ

∗2
1 , γ

∗2
2 , γ∗2

3 ,m∗2 , a∗2 , b∗2 , and

functions g∗1 and g∗2 (with g∗1(n) = O
(
n−1

)
and g∗2(n) = O

(
n−1

)
) such that the functions

E (γ∗1
1 , γ2, γ

∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1) and E (γ∗2

1 , γ2, γ
∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2) can be approximated

by Approximation (4.93). Then the ratio
E (γ∗1

1 , γ2, γ
∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

can be reduced

to

E (γ∗1
1 , γ2, γ

∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

≈ [γ∗1
1 + 1]

[γ∗2
1 + 1]

[
1 +

γ
∗1
3 a′′

∗1
(1−eγ2 )−γ

∗1
3

[γ
∗1
1 +1]

]

[
1 +

γ
∗2
3 a′′

∗2
(K)(1−eγ2 )−γ

∗2
3

[γ
∗2
1 +1]

] . (4.97)

Now if γ∗2
∗1

:= min {−γ∗1
3 ,−γ∗2

3 }, then the first two terms in the expansion of Approxi-

mation (4.97) become

E (γ∗1
1 , γ2, γ

∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

≈ [γ∗1
1 + 1]

[γ∗2
1 + 1]

+ c∗2
∗1

(1 − eγ
∗
2 )γ

∗2
∗1 . (4.98)
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From Approximation (4.97), as γ2 → 0, the ratio
E (γ∗1

1 , γ2, γ
∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

is ex-

pected to become linear in (1 − eγ
∗
2 )γ

∗2
∗1 and to converge to some constant, that is

lim
γ2→0

E (γ∗1
1 , γ2, γ

∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

=
[γ∗1

1 + 1]

[γ∗2
1 + 1]

. (4.99)

If γ∗1
1 = γ∗21 , then the following result is expected:

lim
γ2→0

E (γ∗1
1 , γ2, γ

∗1
3 ,m∗1 , a∗1 , b∗1 , g∗1)

E (γ∗2
1 , γ2, γ

∗2
3 ,m∗2 , a∗2 , b∗2 , g∗2)

= 1. (4.100)

Now relating back to the set of Θ-SAPs PΘ(φ), if forNmin sufficiently large, there exists

AΘ
∗ , α

Θ
∗ , q, κ∗, B

Θ
∗ ,∆

Θ
∗ and a function g∗ (with g∗(n) = O(n−1), such that for properties

∗, ∗1, ∗2 ∈ Φ, Conjecture 2.2.4 holds, then, Approximation (4.96) can be rewritten as

1

E
(
αΘ
∗ + q, β + κφ,−∆Θ

∗ , N
∗
min, A

Θ
∗ , B

Θ
∗

) ≈ 1

[αΘ
φ + q + 1]eβ+κφ

− 1

αΘ
φ + q + 1

(4.101)

and Approximation (4.98) can be rewritten as

E
(
αΘ
∗1

+ q, β + κφ,−∆Θ
∗1
, N∗1

min, A
Θ
∗1
, BΘ

∗1

)

E
(
αΘ
∗2

+ q, β + κφ,−∆Θ
∗2
, N∗2

min, A
Θ
∗2
, BΘ

∗2

) ≈ [αΘ
∗1

+ q + 1]

[αΘ
∗2

+ q + 1]
+ c∗2

∗1
(1 − eβ+κφ)γ

∗2
∗1 , (4.102)

where γ∗2
∗1

:= min
{
∆Θ

∗1
,∆Θ

∗2

}
.

For the set of all polygons in Z3, the exponent γ∗2
∗1

is denoted ∆ and is referred to as the

confluent exponent and is believed to be universal for all lattices with the same dimension

[103]. The value of ∆ is believed to be very close to 0.5. In fact, in [47] ∆ has been

estimated to be 0.478±0.010. In [125] ∆ is assumed to be 0.5 regardless of the knot-type.

Analogously, it will be assumed here that γ∗2
∗1

is also 0.5.

The left hand side of Approximation (4.101) is the reciprocal of the expected length

of a randomly selected polygon in PΘ(φ) according to the distribution given by Equation

(2.63) with z = eβ. The right hand side of Approximation (4.101) is an expression which

is linear in 1/eβ . The upshot of Approximation (4.101) is that as γ2 = β + κφ → 0,[
E
(
αΘ

φ + q, β + κφ,−∆Θ
φ , Nmin, A

Θ
φ , B

Θ
φ

)]−1
is expected to be linear in 1/eβ . This result

will be used in Section (4.7.3) to check the consistency of the data generated from the

CMC implementation of the Θ-BFACF algorithm.

The left hand side of Approximation (4.102) is the ratio of the expected lengths of ran-

domly selected polygons with properties ∗1 and ∗2 in PΘ(φ) (according to the distribution

given by Equation (2.63) with z = eβ). The right hand side of Approximation (4.102) is

an expression which is linear in (1 − eβ+κφ)γ
∗2
∗1 . The upshot of Approximation (4.102) is
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that as γ2 = β + κφ → 0,
E
(
αΘ
∗1

+ q, β + κφ,−∆Θ
∗1
, N∗1

min, A
Θ
∗1
, BΘ

∗1

)

E
(
αΘ
∗2

+ q, β + κφ,−∆Θ
∗2
, N∗2

min, A
Θ
∗2
, BΘ

∗2

) → 1.0, if αΘ
∗1

= αΘ
∗2
.

This result will also be used in Section 4.7.3 to check the consistency of the data generated

from the CMC implementation of the Θ-BFACF algorithm.

4.5.2 How Should r2
π̆z(q,M) (·) Behave as M → ∞ and log(z) → −κφ?

Recall from Section 2.2.3 that, for the property ∗ ∈ Φ, the function f : Z
3 → Z

3, and

U Θ(∗) ⊆ PΘ(φ), the expected value r2
π̆z(q,M)

(
f
(
U Θ(∗)

))
(with respect to π̆z(q,M)

given by Equation (2.63) for a fixed even integer M) is

r2π̆z(q,M)

(
U

Θ(∗)
)

=

∞∑

m=M/2

r2
(
f
(
U

Θ
2m(∗)

))
π2m|M (q, z), (4.103)

where U Θ
2m(∗) is the set of (2m)-edge SAPs in U Θ(∗). If Conjectures 2.2.4, 2.2.12, and

2.2.13 (from Sections 2.2.2 and 2.2.3 respectively) hold for the property ∗ ∈ Φ, the function

f : Z3 → Z3, and U Θ(∗) ⊆ PΘ(φ), then, for even M sufficiently large, there exist

A
(1)
f(U )(∗), A

(2)
f(U )(∗), αΘ

f(U )(∗), q, κφ, B
(1)
f(U )(∗), B

(2)
f(U )(∗), −∆

(1)
f(U )(∗), and −∆

(2)
f(U )(∗) and

functions g∗f(U ) and h∗f(U ) (with g∗f(U )(n) = O(n−1) and h∗f(U )(n) = O(n−1)), such that

r2π̆z(q,M)

(
U

Θ(∗)
)

= [Q(∗)]−1
∑

n≥Nmin
n even

Rn(∗)Fn(∗), (4.104)

where β := log(z),

Fn(·) := Fn

(
A

(2)
f(U )(∗), αΘ

f(U )(∗) + q, κφ + β,B
(2)
f(U )(∗),−∆

(2)
f(U )(∗), g∗f(U )

)
, (4.105)

Rn(·) := Rn

(
A

(1)
f(U ) (∗) , νΘ

f(U )(∗), B
(1)
f(U ) (∗) ,∆(1)

f(U ) (∗) , h∗f(U )

)
, (4.106)

and

Q(·) := Q
(
αΘ

f(U )(∗) + q, κφ + β,−∆
(2)
f(U )(∗),M,A

(2)
f(U )(∗), B

(2)
f(U )(∗), g∗f(U )

)
. (4.107)

Hence, in order to study and better understand the behaviour of r2
π̆z(q,M)

(
U Θ(∗)

)
as

M → ∞ and β → −κφ, the behaviour of the right hand side of Equation (4.104) needs to

be explored as M → ∞ and β → −κφ. To this end, define the function Rn(·) by

Rn(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2, h)

:= eγ2na1a2n
γ1,1+γ1,2

[
1 + b1n

−γ3,1 + b2n
−γ3,2 + h(n)

]
, (4.108)
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where h(n) = O(n−1), and define the function R(·) by

R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h)

:=
∑

n=m
n even

Rn(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2, h). (4.109)

Then, for z = eγ2 , the coefficient of zn in R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h) is,

as n→ ∞, asymptotic to

[zn]R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h)

∼ a1a2n
γ1,1+γ1,2 + a1a2b1n

γ1,1+γ1,2−γ3,1 + a1a2b2n
γ1,1+γ1,2−γ3,2 . (4.110)

By Equation (4.86), the coefficient of zn in R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h) is,

as n→ ∞, asymptotic to:

[zn]R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h)

∼ [zn]
[
a1a2Γ (γ1,1 + γ1,2 + 1) (1 − eγ2)−γ1,1−γ1,2−1

]

+ [zn]
[
a1a2b1Γ (γ1,1 + γ1,2 − γ3,1 + 1) (1 − eγ2)γ3,1−γ1,1−γ1,2−1

]

+ [zn]
[
a1a2b2Γ (γ1,1 + γ1,2 − γ3,2 + 1) (1 − eγ2)γ3,2−γ1,1−γ1,2−1

]
. (4.111)

Hence, for m even and sufficiently large, R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h) can be

approximated by

R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m, h)

≈ a1a2Γ (γ1,1 + γ1,2 + 1) (1 − eγ2)−γ1,1−γ1,2−1

+ a1a2b1Γ (γ1,1 + γ1,2 − γ3,1 + 1) (1 − eγ2)γ3,1−γ1,1−γ1,2−1

+ a1a2b2Γ (γ1,1 + γ1,2 − γ3,2 + 1) (1 − eγ2)γ3,2−γ1,1−γ1,2−1 (4.112)

= a1a2 (1 − eγ2)−γ1,2−1 [Γ (γ1,1 + γ1,2 + 1) (1 − eγ2)−γ1,1

+ b1Γ (γ1,1 + γ1,2 − γ3,1 + 1) (1 − eγ2)γ3,1−γ1,1

+ b2Γ (γ1,1 + γ1,2 − γ3,2 + 1) (1 − eγ2)γ3,2−γ1,1
]
. (4.113)

Now define the function ER(·) by

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, h, g)

:=
R(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1, h)

Q (γ1,2, γ2, γ3,2,m2, a2, b2, g)
, (4.114)
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where Q (γ1,2, γ2, γ3,2,m2, a2, b2, g) is defined by Equation (4.84). Then for m1 and m2,

both even and sufficiently large, ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, f, g) can be

approximated by

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, h, g)

∼ a1Γ (γ1,1 + γ1,2 + 1) (1 − eγ2)−γ1,1

Γ(γ1,2 + 1) [1 + a′2(1 − eγ2)−γ3,2 ]
[1 (4.115)

+ b1
Γ (γ1,1 + γ1,2 − γ3,1 + 1)

Γ (γ1,1 + γ1,2 + 1)
(1 − eγ2)γ3,1 (4.116)

+ b2
Γ (γ1,1 + γ1,2 − γ3,2 + 1)

Γ (γ1,1 + γ1,2 + 1)
(1 − eγ2)γ3,2

]
, (4.117)

where a′2 =
b2Γ(γ1,2 + γ3,2 + 1)

Γ(γ1,2 + 1)
.

As γ2 → 0, [1 + a′2(1 − eγ2)−γ3,2 ]
−1 → 1. Hence, for γ2 sufficiently close to zero, the

above approximation for ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, f, g) becomes

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, f, g)

≈ a1Γ (γ1,1 + γ1,2 + 1) (1 − eγ2)−γ1,1

Γ(γ1,2 + 1)
[1

+ b1
Γ (γ1,1 + γ1,2 − γ3,1 + 1)

Γ (γ1,1 + γ1,2 + 1)
(1 − eγ2)γ3,1

+ b2
Γ (γ1,1 + γ1,2 − γ3,2 + 1)

Γ (γ1,1 + γ1,2 + 1)
(1 − eγ2)γ3,2

]
. (4.118)

Recall from Approximation (4.95) that, for values of γ2 very close to zero,

E (γ1, γ2, γ3,m, a, b, g) ≈
[γ1 + 1]eγ2

1 − eγ2
. (4.119)

Solving the above approximation for 1 − eγ2 yields the approximation

1 − eγ2 ≈ [γ1,2 + 1]eγ2 (E (γ1,2, γ2, γ3,2,m2, a2, b2, g))
−1 . (4.120)

Substituting Approximation (4.120) for 1 − eγ2 into Approximation (4.118) yields

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, h, g)

≈ a1Γ (γ1,1 + γ1,2 + 1) [γ1,2 + 1]−γ1,1e−γ2γ1,1 (E (γ1,2, γ2, γ3,2,m2, a2, b2, g))
γ1,1

Γ(γ1,2 + 1)
[1

+ b1
Γ (γ1,1 + γ1,2 − γ3,1 + 1)

Γ (γ1,1 + γ1,2 + 1)
[γ1,2 + 1]γ3,1eγ2γ3,1 (E (γ1,2, γ2, γ3,2,m2, a2, b2, g))

−γ3,1

+ b2
Γ (γ1,1 + γ1,2 − γ3,2 + 1)

Γ (γ1,1 + γ1,2 + 1)
[γ1,2 + 1]γ3,2eγ2γ3,2 (E (γ1,2, γ2, γ3,2,m2, a2, b2, g))

−γ3,2

]
.

(4.121)
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Hence, for values of γ2 sufficiently close to zero,

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, h, g) can be expressed in terms of

E (γ1,2, γ2, γ3,2,m2, a2, b2, g) , that is

ER(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, h, g)

≈ [A1(a1, γ1,1, γ1,2, γ2)] (E (γ1,2, γ2, γ3,2,m2, a2, b2, g))
γ1,1

+B1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, g), (4.122)

where A1(a1, γ1,1, γ1,2, γ2) = O(1) and B1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m1,m2, g) =

O(n−γ) with γ = min{γ3,1, γ3,2}.
Now relating Approximation (4.122) back to subsets of PΘ(φ), first

E (γ1,2, γ2, γ3,2,m2, a2, b2, g) = Eπ̆z(q,M)(|f(ω)|), (4.123)

and if, for Nmin sufficiently large, there exist constants A
(1)
f(U )(∗), A

(2)
f(U )(∗), νΘ

f(U )(∗),
αΘ

f(U )(∗), q, κφ, B
(1)
f(U )(∗), B

(2)
f(U )(∗), ∆

(1)
f(U )(∗), and ∆

(2)
f(U )(∗) and functions g∗f(U ) and

h∗f(U ) (with g∗f(U )(n) = O(n−1) and h∗f(U )(n) = O(n−1)) such that Conjectures 2.2.4,

2.2.12, and 2.2.13 hold, then Approximation (4.122) becomes

r2π̆z(q,M)

(
f
(
U

Θ(∗)
))

≈ [A1(·)]
(
Eπ̆z(q,M) (|f(ω)|)

)2νΘ
f(U )

(∗)

+B1(·). (4.124)

Note that Eπ̆z(q,M)(|f(ω)|) is the expected length of f(ω) where ω is a randomly selected

polygon from U Θ(∗) chosen according to π̆z(q,M) given by Equation (2.63). Hence for

values of β = log(z) very close to −κφ, r
2
π̆z(q,M)

(
f
(
U Θ(∗)

))
should become linear in

Eπ̆z(q,M)(|f(ω)|)2νΘ
f(U )

(∗)
.

The next section provides a technique for quantifying what is meant by the phrase

“reliable data” in terms of an estimate for the parameter N∗
max.

4.6 Can We Be Trusted?

In this section, a method for quantifying the expression “reliable data” will be provided.

One of the purposes for determining which data is considered reliable is to take into account

the finite nature of the simulation, that is, to take into account the fact that the observed

proportions of large polygons may not accurately reflect the corresponding proportions

determined using the true distribution.
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Suppose a simulation consists of n0 replications, where for Replication r ∈ {1, ..., n0},((
ω̂

(r)
j (1), ω̂

(r)
j (2), ..., ω̂

(r)
j (14)

)
, j = 0, ...,m

)
is a sequence of (m + 1) M -tuples sampled

from (PΘ)M . Then, for Replication r, define ĝ(r)(∗, 2n) to be a function of interest that

is defined on polygons whose lengths are 2n, and let ŜE(ĝ(r)(∗, 2n)) be the corresponding

estimated standard error of ĝ(r)(∗, 2n). Then the corresponding estimated relative standard

error of ĝ(r)(∗, 2n) is defined to be

δ̂
(r)
2n (∗) :=





ŜE(ĝ(r)(∗, 2n))

ĝ(r)(∗, 2n)
, if ĝ(i)(∗, 2n) 6= 0

∞, otherwise.

(4.125)

Now define

δ̂(r)(∗) := min
n
δ̂
(r)
2n (∗) (4.126)

and define η̂(r)(∗) to be the first value of 2n for which δ̂
(r)
2n (∗) = δ̂(r)(∗). Note that δ̂(r)(∗)

is the best (that is smallest) relative error in ĝ(r)(∗, 2n) that can be achieved without

generating more data. Therefore the estimates ĝ(r)(∗, 2n) that have a standard error close

to δ̂(r)(∗) will be more reliable than estimates whose estimated standard error is much

larger than δ̂(r)(∗). Consequently, for a fixed amount of data, the most accurate data

will be for values of n such that δ̂
(r)
2n (∗) is within some ε∗ of δ̂(r)(∗). How should ε∗ be

determined?

If ε∗ > 1.0, then the estimated error of the point estimate ĝ(r)(∗, 2n) would be greater

than ĝ(r)(∗, 2n) itself. Consequently, if the point estimate ĝ(r)(∗, 2n) is used in some

other calculation, any error in the point estimate ĝ(r)(∗, 2n) would introduce error into the

calculations based on ĝ(r)(∗, 2n). Hence having ε∗ < 1.0 is preferred. Therefore define

ε∗ := min
r

(δ̂(r)(∗) + c), (4.127)

where c · 100% represents the maximum tolerated deviation from δ̂(r)(∗) and c is chosen

so that 0 < c < 1.0 and ε∗ < 1.0 . Note that the choice of c in Equation (4.127) is

somewhat arbitrary but c should be chosen in such a manner that using the point estimates

ĝ(r)(∗, 2n), whose estimated relative error is less than ε∗, minimizes the error introduced

into subsequent calculations involving ĝ(r)(∗, 2n).

Now assuming that 0 < c < 1 has been chosen, then an estimate for N∗
max can be

determined. Note for the sake of convenience, the value of N̂
(r)
max(∗) is chosen to be the

value of 2n > η̂(r)(∗) (rounded down to the nearest one hundred) for which δ̂
(r)
2n (∗) first
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achieves a value greater than or equal to ε∗. In other words, N̂
(r)
max(∗) is the observed

polygon for which the point estimates ĝ(r)(∗, 2n) become unreliable. The estimate for

N∗
max for the simulation (to be denoted N̂max (∗)) is

N̂max (∗) := min
r
N̂ (r)

max(∗), (4.128)

if ∗ ∈ Φ\{φ, (φ, f), (φ, s), (φ|φ, s)}, and

N̂max

(
∗′
)

:= min
∗∈{φ,(φ,f),(φ,s),(φ|φ,s)}

min
r
N̂ (r)

max(∗), (4.129)

if ∗′ ∈ {φ, (φ, f), (φ, s), (φ|φ, s)}.
The set of polygons from Replication r whose lengths are greater than N̂max (∗) will

be referred to as unreliable data and the set of polygons from Replication r whose lengths

are less than or equal to N̂max (∗) will be referred to as reliable data (cf. Section 4.7.4 for

an implementation of this technique).

The discussion in this chapter thus far has been presented in the abstract. In the next

section, the techniques outlined in this chapter will be applied to the CMC data generated

by simulations of the CMC Θ-BFACF algorithm.

4.7 Preliminary Analysis of the CMC Θ-BFACF Simulation

Data

For the rest of this document, let t0 = 9.6 × 1010; for r ∈ {1, 2, ..., 10}, let

ω(r) :=
((
ω

(r)
t (1), ω

(r)
t (2), ..., ω

(r)
t (14)

)
, t = 0, ..., t0

)
(4.130)

be the sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ

)14
realized in Replication r of

the simulation of the CMC Θ-BFACF algorithm as described in Section 3.4.1; let

ω̂(r) :=
((
ω̂

(r)
j (1), ω̂

(r)
j (2), ..., ω̂

(r)
j (14)

)
, j = 0, ..., l

)
(4.131)

be the sequence of 14-tuples of SAPs sampled from Replication r, where l := ⌊t0/1200⌋ =

80, 000, 000, and, for t := 1200j, the j’th term (for 1 ≤ j ≤ l) of ω̂(r) is given by

(
ω̂

(r)
j (1), ω̂

(r)
j (2), ..., ω̂

(r)
j (14)

)
:=
(
ω

(r)
t (1), ω

(r)
t (2), ..., ω

(r)
t (14)

)
; (4.132)

and note that the phrase “CMC Θ-BFACF data” refers to the data generated from all

ten realizations of the CMC implementation of the Θ-BFACF algorithm. Further note
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that, for each replication, a sample was taken immediately following the attempted swap

after every 1000’th Θ-BFACF move in parallel. The resulting sample for each replication

consisted of 80, 000, 001 14-tuples. Also let Φave be the set of properties of the set PΘ(φ)

that are of interest where Φave := {φ, (φ, s), (φ, f), (φ|φ, s), (31|φ, s), (41|φ, s), (52|φ, s)}.
Given a polygon in PΘ(φ), note that the property ∗ ∈ Φave abbreviated by the symbol:

• φ indicates that the polygon is in PΘ(φ) (every polygon in PΘ(φ) has this property);

• (φ, s) indicates that a strand passage about Θ in the polygon is possible;

• (φ, f) indicates that a strand passage about Θ is NOT possible in the polygon;

• (φ|φ, s) indicates that a strand passage about Θ is possible in the polygon and that

the after-strand-passage polygon is unknotted;

• (31|φ, s) indicates that a strand passage about Θ is possible in the polygon and that

the after-strand-passage polygon has knot-type 31, i.e. is a trefoil;

• (41|φ, s) indicates that a strand passage about Θ is possible in the polygon and that

the after-strand-passage polygon has knot-type 41, i.e. is a figure 8; and

• (52|φ, s) indicates that a strand passage about Θ is possible in the polygon and that

the after-strand-passage polygon has knot-type 52.

In order to analyze and make any conclusions based on the sequence ω(r), whether or

not the simulation was of sufficient length so that the CMC has reached its stationary dis-

tribution needs to be determined. Then, if the CMC has reached its stationary distribution,

the amount of essentially independent data generated also needs to be determined.

In order to decrease the amount of computer time needed for the warm-up analysis

and the estimated potential scale reduction, only every 40’th sample point was used in the

analysis. Consequently the realized sample of polygon lengths from Replication r used for

the warm-up analysis is the sequence
((
n

(r)
j (1), n

(r)
j (2), ..., n

(r)
j (14)

)
, j = 0, ..., n

)
, where

n := ⌊t0/48000⌋, that is n := 2, 000, 000; the first term of the realized sample is

(
n

(r)
0 (1), n

(r)
0 (2), ..., n

(r)
0 (14)

)
:=
(∣∣∣ω(r)

0 (1)
∣∣∣ ,
∣∣∣ω(r)

0 (2)
∣∣∣ , ...,

∣∣∣ω(r)
0 (14)

∣∣∣
)

; (4.133)

and the j’th term (for 1 ≤ j ≤ n) is given by

(
n

(r)
j (1), n

(r)
j (2), ..., n

(r)
j (14)

)
:=
(∣∣∣ω(r)

t (1)
∣∣∣ ,
∣∣∣ω(r)

t (2)
∣∣∣ , ...,

∣∣∣ω(r)
t (14)

∣∣∣
)
, (4.134)
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where t := 48000j.

Note that, of all the functions of the data that are required for making inferences in this

thesis, the “across-the-chain averages” defined below in Equation (4.135) have the largest

variance (as per the discussion in Section 4.2). Hence the quantities used to perform the

warm-up analysis and the estimated potential scale reduction to obtain estimates for τexp

and τint are actually based on the “across-the-chain averages” given by the sequences of

data
(
x

(r)
j , j = 0, ..., n

)
, for r ∈ {1, 2, ..., 10}, where

x
(r)
j :=

1

14

14∑

i=1

n
(r)
j (i). (4.135)

Consequently the estimates for τexp and τint (determined using the warm-up analysis and

the estimated potential scale reduction) are based on the sequences of data
(
x

(r)
j , j = 0, ..., n

)
,

for r ∈ {1, 2, ..., 10}. The resulting estimates for τexp and τint are presented respectively in

the following two subsections.

4.7.1 Estimating τexp

In Section 4.2, three techniques were provided for estimating τexp: warm-up analysis,

estimated potential scale reduction, and the mixing of the chains of a CMC. Recall from

Section 4.2 that the estimates for τexp from Replication r for these three techniques are

respectively τ̂
(r)
exp,W , τ̂

(r)
exp,E, and τ̂

(r)
exp,C , that the corresponding maximum values taken over

all ten replications are τ̂exp,W , τ̂exp,E, and τ̂exp,C , and that

τ̂exp = max {τ̂exp,W , τ̂exp,E , τ̂exp,C} . (4.136)

Also recall from Section 4.2 that the averages taken over all ten replications of τ̂
(r)
exp,W ,

τ̂
(r)
exp,E , and τ̂

(r)
exp,C , for r ∈ {1, 2, ..., 10}, are respectively denoted τ̄exp,W , τ̄exp,E , and τ̄exp,C .

Also recall from Section 4.2 that τ̄exp,E = τ̂exp,E. The rest of this subsection presents

the estimates for τexp computing using a warm-up analysis, an estimated potential scale

reduction, and then finally the mixing of the chains in a composite Markov chain.

Using a Warmup Analysis

To estimate τexp using a warm-up analysis, the technique from Section 4.2.1 is employed

using the sequences of data
(
x

(r)
j , j = 0, ..., n

)
, for r ∈ {1, 2, ..., 10}.
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Figures 4.1 (a) and (b), 4.2 (a) and (b), ..., and 4.5 (a) and (b) are the graphical displays

of, for Replications 1 through 10 respectively, the sequence
(
x

(r)
j , j = 0, ..., n

)
, the sequence

of the associated first j column averages
(〈
x

(r)
0,j

〉
, j = 0, ..., n

)
, and the sequence of the

associated last (n−j+1) column averages
(〈
x

(r)
j,n

〉
, j = 0, ..., n

)
, where r ∈ {1, 2, 3, ..., 10},

and 〈
x

(r)
k,m

〉
=

1

m− k + 1

m∑

t=k

x
(r)
t . (4.137)

Note that for each of Figures 4.1 (a) and (b), 4.2 (a) and (b), ..., and 4.5 (a) and (b),

the horizontal axis is in terms of 1 Billion Θ-BFACF moves in parallel; the line labelled A

represents the sequence of the transformed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line

labelled B represents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the sequence of points

associated with the last (n− j + 1) column averages
((

40, 000j,
〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.

Referring to Figure 4.1 (a), as just mentioned, line B is the plot associated with the

first j column averages computed from the data sampled during Replication 1. Starting

at j = 0, which corresponds to time step t = 0, the plot of the first j column averages (line

B) first follows the trend of the plot of the transformed points (line A), but as j increases,

that is as the time step t increases, this tendency starts to dissipate. In fact, by the time

approximately 10 billion Θ-BFACF moves in parallel have passed, the trend of the first j

column averages has all but stopped mimicking the trend of line A. Hence an estimated

upper bound for τexp obtained from this is 10 billion Θ-BFACF moves in parallel.

Still referring to Figure 4.1 (a), but now starting at k = 80 billion Θ-BFACF moves

in parallel, as k decreases, that is as the time step t decreases, note that the plot of the

last (80, 000, 000, 000 − k+ 1) column averages (line C) follows the trend of the plot of the

transformed points (line A), but after k = 74 billion Θ-BFACF moves in parallel, the trend

of the last (80, 000, 000, 000−k+1) column averages has all but stopped following the trend

of line A. Consequently an estimate for τexp would be 6 = 80−74 billion Θ-BFACF moves

in parallel. Hence it is concluded that τexp would lie somewhere between 6 and 10 billion

Θ-BFACF moves in parallel yielding the estimate τ̂
(1)
exp,W = 10 billion Θ-BFACF moves in

parallel.

Similarly an upper bound is estimated for the warm-up interval for each of the other

nine replications from Figures 4.1 (b), 4.2 (a) and (b), ..., and 4.5 (a) and (b) and these
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Figure 4.1: Figures (a) and (b) are the plots required to implement
a warm-up analysis for Replications 1 and 2, respectively, where for
r ∈ {1, 2}, the line labelled A represents the sequence of the trans-

formed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line labelled B repre-

sents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the

sequence of points associated with the last (n − j + 1) column averages((
40, 000j,

〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.
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Figure 4.2: Figures (a) and (b) are the plots required to implement
a warm-up analysis for Replications 3 and 4, respectively, where for
r ∈ {3, 4}, the line labelled A represents the sequence of the trans-

formed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line labelled B repre-

sents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the

sequence of points associated with the last (n − j + 1) column averages((
40, 000j,

〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.
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Figure 4.3: Figures (a) and (b) are the plots required to implement
a warm-up analysis for Replications 5 and 6, respectively, where for
r ∈ {5, 6}, the line labelled A represents the sequence of the trans-

formed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line labelled B repre-

sents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the

sequence of points associated with the last (n − j + 1) column averages((
40, 000j,

〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.
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Figure 4.4: Figures (a) and (b) are the plots required to implement
a warm-up analysis for Replications 7 and 8, respectively, where for
r ∈ {7, 8}, the line labelled A represents the sequence of the trans-

formed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line labelled B repre-

sents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the

sequence of points associated with the last (n − j + 1) column averages((
40, 000j,

〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.
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Figure 4.5: Figures (a) and (b) are the plots required to implement
a warm-up analysis for Replications 9 and 10, respectively, where for
r ∈ {9, 10}, the line labelled A represents the sequence of the trans-

formed points
((

40, 000j, x
(r)
j

)
, j = 0, ..., n

)
; the line labelled B repre-

sents the sequence of points associated with the first j column averages((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
; and the line labelled C represents the

sequence of points associated with the last (n − j + 1) column averages((
40, 000j,

〈
x

(r)
j,n

〉)
, j = 0, ..., n

)
.
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Table 4.1: The estimates for τexp (in terms of 1 billion Θ-BFACF moves in
parallel) based on a warm-up analysis of the data generated in Replication
r.

Replication r τ̂
(r)
exp,W Replication r τ̂

(r)
exp,W

1 10.0 6 8.0

2 9.0 7 10.0

3 8.0 8 10.0

4 6.0 9 9.0

5 12.0 10 4.0

estimated upper bounds are used to estimate the exponential autocorrelation time for

Replication r. The resulting estimates τ̂
(r)
exp,W , for r ∈ {1, 2, .., 10}, are presented in Table

4.1.

Taking the maximum of the values presented in Table 4.1 (as defined by Equation

(4.44)) yields τ̂exp,W = 12.0 billion Θ-BFACF moves in parallel. To get a sense of how

the estimates for τ̂
(r)
exp,W vary across the ten replications, averaging the ten values in Table

4.1 and computing the corresponding standard error yields τ̄exp,W = 8.6 ± 0.7 billion Θ-

BFACF moves in parallel (where τ̄exp,W is defined by Equation (4.48) and 0.7 is the sample

standard error of the estimates in Table 4.1). Assuming the Central Limit Theorem can

be applied, the corresponding 95% confidence would be τexp = 8.6 ± 1.6.

Depending on the starting state of a replication, the different replications may take

different lengths of time to reach the stationary distribution. From the estimates for

τ̂
(r)
exp,W , for r ∈ {1, 2, .., 10}, presented in Table 4.1, while some replications seemingly

converge to the equilibrium distribution quickly, other replications take much longer (for

example, Replication 5 is estimated to have taken three times as long as Replication 10

to converge to the equilibrium distribution). This illustrates the advantage of using more

than one replication. For only a single replication, if the initial starting state leads to

slow convergence to the equilibrium distribution, much time is wasted “converging” to

the equilibrium distribution and less time is spent collecting data from the equilibrium

distribution. To avoid this scenario, it is recommended that whenever possible, several

replications, each starting in a different state, should be generated.

From Figures 4.1 (a) and (b), 4.2 (a) and (b), ..., and 4.5 (a) and (b), Replication r,
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Figure 4.6: The first j column averages from Replications 1 through 10.

for r ∈ {1, 2, .., 10}, has apparently reached its equilibrium distribution after τ̂
(r)
exp,W Θ-

BFACF moves in parallel have passed, but, “Is the Markov chain really sampling from its

equilibrium distribution or has the Markov chain reached a local equilibrium?”. To answer

this question, the estimated potential scale reduction method is implemented next.

Using an Estimated Potential Scale Reduction

To address whether or not the r’th replication has reached its equilibrium distribution,

Fishman’s suggestion [35] is followed and the sequence of points associated with the first

j column averages
((

40, 000j,
〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
, for each r ∈ {1, 2, .., 10}, are plotted

on the same graph in order to determine whether the ten sequences have converged to

the same region and repeatedly intersect one another. These ten sequences of points are

displayed in Figure 4.6.

Referring to Figure 4.6, by inspection, the plots of the sequence of points associated

with the first j column averages
((

40, 000j,
〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
seemingly are converging

to the same region. The fact that the first j column averages plotted in Figure 4.6 do

repeatedly intersect one and another is easier to see when the first j column averages for

each replication are plotted using different colours. The conclusion that the first j column

averages plotted in Figure 4.6 do repeatedly intersect one and another is based on this
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colour plot. The colours are visible in the electronic version of this thesis. Hence, based

on Figure 4.6, it is possible that the sample means are all converging to the same value but,

to garner further support, the estimated potential scale reduction sequence as discussed in

Section 4.2.2 is used.

Consider the sequence of points

((
40, 000j,

√
R̂j

)
, j = 0, ..., n

)
, where

√
R̂j , as given

by Equation (4.37), is

√
R̂j =

√
j

j + 1
+

1

j + 1

B10,j

W10,j
, (4.138)

with

B10,j =
j + 1

9

10∑

r=1

(〈
x

(r)
0,j

〉
− 〈x1,j,10〉

)2
(4.139)

and

W10,j =
1

10j

10∑

r=1

j∑

k=0

(
x

(r)
k −

〈
x

(r)
0,j

〉)2
. (4.140)

Figure 4.7 (a) depicts the graph of the sequence

((
40, 000j,

√
R̂j

)
, j = 0, ..., n

)
where

the horizontal axis units are in terms of 1 billion Θ-BFACF moves in parallel. In order to

get a better picture of what is happening near the beginning of each replication, Figure

4.7 (b) focusses on the region of Figure 4.7 (a) defined by the first 10 billion Θ-BFACF

moves in parallel.
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Figure 4.7: (a) The estimated potential scale reduction associated with((
40, 000j,

〈
x

(r)
0,j

〉)
, j = 0, ..., n

)
. (b) The region in (a) defined by the first

10 billion Θ-BFACF moves in parallel. (In (a) and (b), the line A is the line

y = 1.05 and the line B is the line y = 1.025.)

Using the value 1.1 (as suggested by Gelman [41]) as the cutoff value for
√
R̂j, implies

that after approximately 1.0 billion Θ-BFACF moves in parallel the “between the replica-

tion” standard deviation is always less than 10% higher than the “within the replication”

standard deviation. To err on the side of conservatism and require that the “between

the replication” standard deviation always be less than 2.5% higher than the “within the
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replication” standard deviation, that is use 1.025 as the cutoff value for
√
R̂j , then, from

Figure 4.7 (b), the resulting estimate for τexp,E is approximately 4.5 billion Θ-BFACF

moves in parallel. Hence, for each replication, at the end of 5.0 billion Θ-BFACF moves

in parallel (after rounding up to the nearest 1 billion Θ-BFACF moves in parallel), either

a local equilibrium has been reached and the simulation is very slowly converging to the

equilibrium distribution or the actual equilibrium distribution has been reached. Because

the ten replications were started in distinct starting states, it is more likely that the repli-

cations have converged to the equilibrium distribution as opposed to all ten replications

being trapped in the same local equilibrium. Therefore τ̂
(r)
exp,E = 5.0 billion Θ-BFACF

moves in parallel, and, as a result, τ̂exp,E is also 5.0 billion Θ-BFACF moves in parallel.

Because the sub-sample formed by taking every
(
1.2 × 106

)
’th data point passed the

Test for Independence outlined in Algorithm 4.3.1, this sub-sample can be considered an

essentially independent sample. This essentially independent sample is used in the next

section

The Mixing of the Chains

Once in equilibrium, because the distribution of the colours throughout the CMC’s chains

is expected to be uniform, the time it takes to reach the CMC’s equilibrium distribution

can be estimated by determining the time step after which the colourings appear to be

uniformly distributed amongst the CMC’s chains. The χ2 Test for Goodness of Fit is used

to compare, for each replication, the proportion of the number of times a particular chain

is labelled by a particular colour to the discrete uniform distribution in order to test the

uniformity of: for fixed colour, uniformity across the chains; for fixed chain, uniformity

across the colours; and uniformity across the entire CMC.

For each of the ten replications, the movement of the colourings throughout the CMC’s

sub-chains was monitored. To determine whether or not each sample from the ten replica-

tions is well-mixed, an essentially independent sub-sample is required from each of the ten

replications. Because the sub-sample formed by taking every
(
1.2 × 106

)
’th data point

passed the Test for Independence outlined in Algorithm 4.3.1, this sub-sample is considered

an essentially independent sample and is used to determine how well-mixed each of the

replications is..

In order to have a sufficient number of observations to determine whether the sample
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Table 4.2: The p-values calculated using df = 13 for each of the colors
a, b, c, ..., n for each of the ten replications after no data points were dis-
carded.

Replication

Colour 1 2 3 4 5 6 7 8 9 10

a 0.222 0.451 0.712 0.519 0.318 0.878 0.427 0.718 0.212 0.609

b 0.047 0.075 0.159 0.816 0.102 0.071 0.164 0.555 0.755 0.837

c 0.147 0.228 0.827 0.236 0.493 0.284 0.750 0.019 0.540 0.581

d 0.851 0.667 0.883 0.262 0.018 0.946 0.047 0.600 0.944 0.209

e 0.929 0.726 0.309 0.747 0.255 0.889 0.647 0.008 0.210 0.059

f 0.115 0.830 0.825 0.002 0.768 0.297 0.220 0.060 0.089 0.283

g 0.162 0.814 0.187 0.595 0.751 0.119 0.142 0.052 0.493 0.900

h 0.887 0.081 0.935 0.425 0.713 0.004 0.013 0.014 0.469 0.526

i 0.875 0.718 0.664 0.965 0.050 0.049 0.150 0.671 0.513 0.418

j 0.495 0.139 0.090 0.919 0.230 0.850 0.375 0.178 0.931 0.447

k 0.465 0.258 0.008 0.531 0.172 0.625 0.250 0.487 0.604 0.215

l 0.713 0.546 0.429 0.372 0.217 0.642 0.354 0.212 0.025 0.446

m 0.436 0.197 0.398 0.031 0.299 0.220 0.647 0.276 0.652 0.634

n 0.960 0.150 0.610 0.325 0.111 0.338 0.286 0.270 0.573 0.832

is well-mixed (as defined in Section 4.2.3), at least 13(>
√

10 · 14) observations from each

replication is required. As each replication consisted of 8.0 × 1010 Θ-BFACF moves in

parallel, the resulting sub-sample consists of 66 essentially independent data points. Hence

the essentially independent sample is of sufficient size. Recall from Section 4.2.3 that k

is the first value in [0, 66 − k] for which the sub-sample formed using the last 66 − k

observations is considered well-mixed. Let dr be the smallest number of data points

that need to be burned (discarded) from the essentially independent sample created from

Replication r so that the sample is considered well-mixed and let d̂r be the estimate for

dr.

Assume that each replication is started in the equilibrium distribution. Then Table

4.2 contains the p-values calculated under this assumption using df = 13, for each of the

colours a, b, c, ..., n, for each of the ten replications.
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Table 4.3: The p-values calculated using df = 13 for each of the colors
a, b, c, ..., n for Replications 4, 5, and 7, after the first four 14-tuples were
discarded from the essentially independent sample generated in Replications
4, 5, and 7.

Replication Replication

Colour 4 5 7 Colour 4 5 7

a 0.402 0.214 0.245 h 0.549 0.533 0.038

b 0.951 0.278 0.192 i 0.928 0.084 0.360

c 0.187 0.617 0.785 j 0.980 0.143 0.423

d 0.168 0.069 0.065 k 0.359 0.237 0.211

e 0.733 0.283 0.748 l 0.489 0.320 0.279

f 0.001 0.663 0.125 m 0.165 0.314 0.677

g 0.487 0.876 0.448 n 0.351 0.078 0.164

For any colour whose associated p-value< 0.05 in Table 4.2, the proportion of time that

colour (in the replication) appeared in each of the fourteen chains differs significantly from
1

14
, the hypothesized value. To be 95% confident that the realized CMC is well-mixed for a

particular replication, at most one (0.05 · 14 ≈ 1) of the fourteen colours is expected to not

be distributed uniformly across the chains. As long as none or one of the fourteen colours

is not distributed uniformly across the chains, then the sample (and hence the underlying

CMC) is considered well-mixed. Using this criterion for being well-mixed, from Table 4.2,

Replications 1, 2, 3, 9, and 10 are well-mixed. Hence d̂1 = d̂2 = d̂3 = d̂9 = d̂10 = 0.

In order for the sample from Replications 4, 5, and 7 to be considered well-mixed, the

first four data points in the sample need to be discarded, that is d̂4 = d̂5 = d̂7 = 4. Table

4.3 displays the p-values for Replications 4, 5, and 7, calculated using df = 13, for each of

the colours a, b, c, ..., n, after d̂4 = d̂5 = d̂7 = 4 data points are discarded.

In order for the sample from Replications 6 and 8, respectively, to be considered well-

mixed, for Replication 6, the first thirty-seven data points need to be discarded, that is

d̂6 = 37, and, for Replication 8, the first twenty-five data points need to be discarded,

that is d̂8 = 25. Table 4.4 displays the p-values for Replications 6 and 8, calculated

using df = 13, for each of the colours a, b, c, ..., n, after d̂6 = 37 and d̂8 = 25 data points,

respectively, have been discarded. The values of d̂r required for all ten replications to be

considered well-mixed are summarized in Table 4.5.

165



Table 4.4: The p-values calculated using df = 13 for each of the colors
a, b, c, ..., n for Replications 6 and 8 calculated using df = 13 for each of the
colors a, b, c, ..., n after the first d̂6 = 37 and d̂8 = 25 14-tuples were discarded
from Replications 6 and 8, respectively.

Replication Replication

Colour 6 8 Colour 6 8

a 0.752 0.182 h 0.135 0.198

b 0.143 0.181 i 0.467 0.260

c 0.084 0.042 j 0.169 0.138

d 0.523 0.665 k 0.705 0.666

e 0.394 0.282 l 0.547 0.261

f 0.195 0.262 m 0.201 0.427

g 0.263 0.204 n 0.565 0.430

Table 4.5: Column 2 displays the number of data points from Replication i’s
essentially independent sample that must be discarded in order to conclude
that the sample is well-mixed. Column 3 displays the estimates for τexp from
Replication r (in terms of billions of Θ-BFACF moves in parallel) based on
the number of data points from an essentially independent sample that must
be discarded so that the remaining sample is well-mixed.

Replication r d̂r τ̂
(r)
exp,C Replication r d̂r τ̂

(r)
exp,C

1 0 0.0 6 37 45.0

2 0 0.0 7 4 5.0

3 0 0.0 8 25 30.0

4 4 5.0 9 0 0.0

5 4 5.0 10 0 0.0

Because each estimate d̂r, for r ∈ {1, 2, .., 10}, is the number of data points that should

be discarded from Replication r’s essentially independent sample so that the remaining

sample can be considered well-mixed, the estimates d̂r, for r ∈ {1, 2, .., 10}, provide further

estimates for τexp. Table 4.5 contains the values of τ̂
(r)
exp,C (in terms of 1 billion Θ-BFACF

moves in parallel) defined by

τ̂
(r)
exp,C :=

⌈
2d̂r τ̂int

⌉
, (4.141)
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where ⌈x⌉ is the least integer greater than or equal to x. The estimates reported in Table

4.5 were calculated using Equation (4.141) and then rounded up to the nearest one billion

Θ-BFACF moves in parallel.

Since the values of τ̂
(r)
exp,C , for r ∈ {1, 2, .., 10}, in Table 4.5 are all estimates for τexp for

the Markov chain generated by the CMC Θ-BFACF algorithm, an estimate for τexp can be

obtained by simply averaging the ten values in Table 4.5, that is

τ̄exp,C :=
1

10

10∑

r=1

τ̂
(r)
exp,C . (4.142)

Recall that because the distribution of τ̂
(r)
exp,C is unknown and because the Central Limit

theorem may not hold (the estimate for τ̄exp,C is based on only ten values), in order to

explore the variability of the estimates τ̂
(r)
exp,C as a function of the replication, the estimated

standard error of τ̄exp,C is reported. Using the data in Table 4.5 yields the estimate

τ̄exp,C = 9.0 ± 5.0 billion Θ-BFACF moves in parallel (where 5.0 is the estimated sample

standard error of the estimate for τ̄exp,C). If the Central Limit Theorem can be applied,

then a 95% confidence interval is τexp = 9.0± 11.31. Calculating an estimate for τ̂exp,C , as

defined by Equation (4.46), using the data in Table 4.5 yields τ̂exp,C = 37.

Computing Equation (4.47) yields the estimate τ̂exp = 37.0 billion Θ-BFACF moves

in parallel for τexp. Recall from Section 4.7.1 that an estimate for τexp from a warm-up

analysis is τ̄exp,W = 8.6 ± 0.7 billion Θ-BFACF moves in parallel and from an estimated

potential scale reduction is τ̄exp,E = 5.0 billion Θ-BFACF moves in parallel. Because τ̄exp,E

has the same order of magnitude as τ̄exp,W and τ̄exp,C and because τ̄exp,W and τ̄exp,E lie

within one estimated standard error of τ̄exp,C , these three estimates for τexp are consistent.

Erring on the side of conservatism, the estimate τ̂exp = 37.0 billion Θ-BFACF moves

in parallel could be used as an estimate for τexp for the system. This would lead to the

conclusion that, because τ̂exp is greater than two percent of the total 80 billion Θ-BFACF

moves in parallel implemented in each replication, all of the data generated by the first

37.0 billion Θ-BFACF moves in parallel must be excluded from all data analysis. In fact,

τ̂exp = 37.0 billion Θ-BFACF moves in parallel of τexp suggests that almost half of the data

generated in each replication should be discarded. But, is discarding the data generated

by the first 37.0 billion Θ-BFACF moves in parallel too conservative?

For support that τ̂exp = 37.0 billion Θ-BFACF moves in parallel is too conservative

an estimate for τexp, cf. Figure 4.8. Line A in Figure 4.8 is the sequence of points
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((40, 000j, 〈xj〉) , j = 0, ..., n) ; Line B represents the sequence of points associated with the

first j column averages ((40, 000j, 〈x0,j〉) , j = 0, ..., n) ; and Line C represents the sequence

of points associated with the last (n−j+1) column averages ((40, 000j, 〈xj,n〉) , j = 0, ..., n) ,

where

〈xt〉 =
1

10

10∑

r=1

x
(r)
t (4.143)

and

〈xk,m〉 =
1

(m− k + 1)

m∑

t=k

〈xt〉 . (4.144)

The behaviour of Line B stops following the trend of Line A after the first 5.0 billion Θ-

BFACF moves in parallel have been completed. The behaviour of Line C starts following

the trend of Line A after 75.0 billion Θ-BFACF moves in parallel have been implemented

(or equivalently, the behaviour of Line C follows the trend of Line A for the last 5.0 billion

Θ-BFACF moves in parallel of the simulation). Figure 4.8 suggests that considering the

data generated from all ten replications as one large data set, setting τ̂exp = 5.0 billion Θ-

BFACF moves in parallel is sufficient and that setting τ̂exp = 37.0 billion Θ-BFACF moves

in parallel would lead to discarding an extra forty percent of the data (data seemingly

sampled from close to, if not from within, the equilibrium distribution).

For this reason, τ̂exp = 5.0 billion Θ-BFACF moves in parallel is the estimate that will

be used for τexp in the data analysis in the following three chapters.

4.7.2 Estimating τint

In Section 4.3, three techniques were provided for estimating τint: using τ̂
(r)
exp,W , using

a batch means analysis, and using a series/windowing analysis. Recall from Section

4.3 that the estimates for τint from Replication r for these three techniques are respec-

tively τ̂
(r)
int,W , τ̂

(r)
int,B(k), and τ̂

(r)
int,S(k) and that the corresponding across all ten chain max-

imum estimates are respectively τ̂int,W = max
r

{
τ̂

(r)
int,W

}
, τ̂int,B(k) = max

r

{
τ̂

(r)
int,B(k)

}
, and

τ̂int,S(k) = max
r

{
τ̂

(r)
int,S(k)

}
, where k is the number of sample points burned in the analysis.

Also recall from Section 4.3 that the desired estimate for τint is

τ̂int = max {τ̂int,W , τ̂int,B, τ̂int,S} , (4.145)

where τ̂int,B = max
k

{
τ̂int,B(k)

}
and τ̂int,S = max

k

{
τ̂int,S(k)

}
, and that τ̄int,W , τ̄int,B(k), and

τ̄int,S(k) are the corresponding across-the-replication averages.
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Figure 4.8: Line A is the sequence of points ((40, 000j, 〈xj〉) , j = 0, ..., n) ;
the line labelled B represents the sequence of points associated with the first
j column averages ((40, 000j, 〈x0,j〉) , j = 0, ..., n) ; and the line labelled C
represents the sequence of points associated with the last (n− j+1) column
averages ((40, 000j, 〈xj,n〉) , j = 0, ..., n) .
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Table 4.6: The estimates for τint (in terms of 1 billion Θ-BFACF moves in
parallel) based on a warm-up analysis of the data generated in Replication
r.

Replication r τ̂
(r)
int,W Replication r τ̂

(r)
int,W

1 0.50 6 0.40

2 0.45 7 0.50

3 0.40 8 0.50

4 0.30 9 0.45

5 0.60 10 0.20

Determining τ̂ int,W

Based on the relation τint(f) ≈ τexp/20 (as discussed in Section 4.3.1), estimates for τint

can be determined for each of the ten replications via the estimates τ̂
(r)
exp,W as presented

in Table 4.1. The estimates τ̂
(r)
int,W corresponding to the estimates τ̂

(r)
exp,W are presented in

Table 4.6.

Calculating τ̂int,W using the data in Table 4.6 yields τ̂int,W = 0.60 billion Θ-BFACF

moves in parallel. To determine how τ̂
(r)
int,W varies across the ten replications, averaging

the ten estimates in Table 4.6 and computing the associated standard error yields τ̄int,W =

0.43 ± 0.04 billion Θ-BFACF moves in parallel (where τ̄int,W is computed using Equation

(4.78) and 0.04 is the standard error computed using the estimates in Table 4.6). If the

Central Limit does hold, then a 95% confidence interval for τint = 0.43 ± 0.09.

In the next two subsections, the estimates τ̂int,B and τ̂int,S are respectively determined.

In both subsections, the dependence of the estimates τ̂int,B and τ̂int,S on the amount of

data burned, for each replication, are explored. In each of the two following subsections,

the first scenario (Case 1) assumes that sampling began from the equilibrium distribution

and that no data is burned. This scenario is the k = 0 case. The next scenario (Case 2)

assumes that after τ̂exp,E = 5.0 billion Θ-BFACF moves in parallel (the estimate for τexp

based on an estimated potential scale reduction), the equilibrium distribution has been

reached and that the first 5.0 million sample points have been discarded. This scenario is

the k = 5.0×106 case. The third and final scenario (Case 3) assumes that, for Replication

r, after τ̂
(r)
exp,W billion Θ-BFACF moves in parallel (the estimate for τexp based on a warm-

up analysis of Replication r), the equilibrium distribution has been reached and that the
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first τ̂
(r)
exp,W million sample points need to be discarded. This scenario is the k = kr × 106

case. Since both of the estimates τ̂int,B and τ̂int,S are functions of k, the number of sample

points discarded, the estimates τ̂int,B(k), τ̂int,S(k), τ̄int,B(k), and τ̄int,S(k) will be computed

for each of the values of k described in the three different cases.

Determining τ̂int,B

Given a particular value of k, to determine τ̂int,B(k), for r ∈ {1, 2, .., 10}, the block sizes

br(k) are required such that the following sample averages pass the Test for Independence

provided in Section 4.3.2:
〈
x

(r)
1,br(k)|k

〉
,
〈
x

(r)
br(k)+1,2br(k)|k

〉
, ...,

〈
x

(r)
(l−1)br(k)+1,lbr(k)|k

〉
, where

lbr(k) ≤ 8.0 × 107 (the size of the sample collected from each of the ten replications), and

〈
x

(r)
l,m|k

〉
:=

1

m− l + 1

m+k∑

t=l+k

x
(r)
t . (4.146)

Such estimates for br(k), for r ∈ {1, 2, .., 10}, are denoted b̂r(k). To explore how the

estimate for τint based on a batch means analysis depends on k, the three cases: k = 0;

k = 5.0 × 106; and k = kr × 106 are now considered.

Case 1: k = 0. Each of the replications is started in the equilibrium distribution and

no data is discarded in the analysis. The second column in Table 4.7 provides the required

estimates b̂r(0) (for each Replication r, where r ∈ {1, 2, .., 10}). The third column in

Table 4.7 presents the associated estimate for τint computed using Equation (4.60). Note

that the values of τ̂
(r)
int,B(0), for r ∈ {1, 2, .., 10}, in Table 4.7 all have the same order of

magnitude. In order to get a sense of how τ̂
(r)
int,B(0) varies across the ten replications,

calculating τ̄int,B(0) (as given by Equation (4.79)) using the data in Table 4.7 yields the

estimate τ̄int,B(0) = 0.375 ± 0.043 billion Θ-BFACF moves in parallel (where 0.043 is the

estimated standard error of τ̄int,B(0)). If the Central Limit does hold, then a 95% confidence

interval for τint = 0.375 ± 0.097.

Case 2: k = 5.0 × 106. Each of the replications is started in some non-equilibrium

distribution, but, after τ̂exp,E (5.0 billion Θ-BFACF moves in parallel), each replication

has reached the equilibrium distribution. The fourth column in Table 4.7 provides the

required estimates b̂r(5.0 × 106) (for Replication r, where r ∈ {1, 2, .., 10}). The fifth

column in Table 4.7 presents the associated estimate for τint computed using Equation

(4.60). Note that the estimates τ̂
(r)
int,B(5.0×106)

, for r ∈ {1, 2, .., 10}, in Table 4.7 all have the
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Table 4.7: The estimates for the time between independent data points br
and the integrated autocorrelation time τint (in terms of 1 billion Θ-BFACF
moves in parallel) based on a batch means analysis of the data generated
when 5.0 × 106 data points are burned from Replication r.

Replication r b̂r(0) τ̂
(r)
int,B(0) b̂r(5.0 × 106) τ̂

(r)
int,B(5.0×106)

1 0.60 0.30 0.60 0.30

2 0.60 0.30 0.60 0.30

3 0.30 0.15 0.40 0.20

4 1.00 0.50 0.90 0.45

5 0.90 0.45 0.60 0.30

6 0.50 0.25 0.50 0.25

7 1.00 0.50 1.00 0.50

8 0.70 0.35 0.70 0.35

9 1.20 0.60 1.00 0.50

10 0.70 0.35 0.90 0.45

same order of magnitude and all have the same order of magnitude as the estimates τ̂
(r)
int,B(0),

for r ∈ {1, 2, .., 10}, in the third column of Table 4.7. Calculating τ̄int,B(5.0×106) using

Equation (4.79) yields τ̄int,B(5.0×106) = 0.360 ± 0.034 billion Θ-BFACF moves in parallel

(where 0.034 is the estimated standard error of τ̄int,B(5.0×106)). If the Central Limit can

be applied, then a 95% confidence interval for τint = 0.360 ± 0.077. Note that the point

estimate τ̄int,B(5.0×106) lies within one standard error of the point estimate τ̄int,B(0) and the

point estimate τ̄int,B(0) lies within one standard error of τ̄int,B(5.0×106). Hence τ̄int,B(0) and

τ̄int,B(5.0×106) are consistent with each other.

Case 3: k = kr × 106. Each of the replications is started in some non-equilibrium

distribution and after τ̂
(r)
exp,W , the single starting state warm-up period given in Table 4.1,

each replication has reached the equilibrium distribution. The third column in Table 4.8

provides the estimates b̂r(kr × 106) (for Replication r, where r ∈ {1, 2, .., 10}). The fourth

column in Table 4.8 presents the associated estimate for τint computed using Equation

(4.60). Note that the estimates τ̂
(r)
int,B(kr×106)

, for r ∈ {1, 2, .., 10}, in Table 4.8 all have

the same order of magnitude and all have the same order of magnitude as the estimates

τ̂
(r)
int,B(0) and τ̂

(r)
int,B(5.0×106)

for r ∈ {1, 2, .., 10} in the third and fifth columns of Table 4.7
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Table 4.8: The estimates for the time between independent data points br
and the integrated autocorrelation time τint (in terms of 1 billion Θ-BFACF
moves in parallel) based on a batch means analysis of the data generated in
Replication r when kr × 106 data points are burned.

Replication r kr b̂r(kr × 106) τ̂
(r)
int,B(kr×106)

1 10.0 0.50 0.25

2 9.0 0.60 0.30

3 8.0 0.40 0.20

4 6.0 0.90 0.45

5 12.0 0.90 0.45

6 8.0 0.50 0.25

7 10.0 1.00 0.50

8 10.0 0.60 0.30

9 9.0 1.00 0.50

10 4.0 0.70 0.35

respectively. Calculating τ̄int,B(kr×106) (as given by Equation (4.79)) yields τ̄int,B(kr×106) =

0.355 ± 0.036 billion Θ-BFACF moves in parallel, (where 0.036 is the estimated standard

error of τ̄int,B(kr×106)). If the Central Limit can be applied, then a 95% confidence interval

for τint = 0.355 ± 0.081.

Calculating the estimator τ̂int,B using the data in columns three and five of Table 4.7

and the data in column 4 of Table 4.8 yields τ̂int,B = 0.60 billion Θ-BFACF moves in

parallel.

Because the point estimate for τ̄int,B(kr×106) is within the estimated standard error of the

point estimates for both τ̄int,B(0) and τ̄int,B(5.0×106); the point estimate for τ̄int,B(5.0×106) is

within the estimated standard error of the point estimates for both τ̄int,B(0) and τ̄int,B(kr×106);

and the point estimate for τ̄int,B(0) is within the estimated standard error of the point es-

timates for both τ̄int,B(5.0×106) and τ̄int,B(kr×106), the estimates for τ̄int,B(0), τ̄int,B(5.0×106),

and τ̄int,B(kr×106) are consistent. The fact that the estimates τ̄int,B(0), τ̄int,B(5.0×106), and

τ̄int,B(kr×106) are consistent supports the hypothesis that the estimates τ̄int,B(•) are inde-

pendent of the amount of data burned, which supports the hypothesis that the simulation

has been run for a long enough time that any burn-time resulting from each replication

starting in a non-equilibrium state is negligible in estimating τint. Hence, based on the
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batch means analysis of the data generated by the simulation of the CMC Θ-BFACF al-

gorithm, no data needs to be burned in the analysis presented in Chapters 5 to 7. In an

attempt to support the conclusion that no data needs to be burned, the next section uses

the series/windowing approach to determine whether or not τ̂int,S is independent of the

amount of burned data.

Determining τ̂ int,S

Given that the amount of burned data is k, recall from Equation (4.71) that an estimate

for the variance of τ̂int(f), valid for τ̂int(f) ≪ W ≪ n, where n is the run length, is

var(τ̂int(f)) =
2(2W + 1)

n
τ2
int(f). (4.147)

Define an estimate for the variance of τ̂
(r)
int,S(k) by

var
(
τ̂

(r)
int,S(k)

)
:=

2(2Ŵr(k) + 1)

n

(
τ̂

(r)
int,S(k)

)2
(4.148)

and an estimate for the associated standard error associated with τ̂
(r)
int,S by

SE
(
τ̂

(r)
int,S(k)

)
:=

√
2(2Ŵr(k) + 1)

n
τ̂

(r)
int,S(k), (4.149)

where Ŵr(k) is the estimated window size based on the data in Replication r. Also define

the average estimated window size when k data points are burned to be

W̄ (k) :=
1

10

10∑

i=1

Ŵr(k). (4.150)

Note that, for fixed k, the distribution of the estimates Ŵr(k) is unknown. Further,

because there are only ten replications, the Central Limit theorem may not hold. Hence

in an attempt to explore how the estimates for τint and W (based on the series/windowing

approach) depend on k, the three cases: k = 0; k = 5.0 × 106; and k = kr × 106 will be

considered.

Case 1: k = 0. Each of the replications is started in the equilibrium distribution and

no data is discarded in the analysis. Table 4.9 contains, for r ∈ {1, 2, .., 10}, the estimates

τ̂
(r)
int,S(0), the associated estimated standard error SE

(
τ̂

(r)
int,S(0)

)
, and the estimated window

size Ŵr(0) required to compute τ̂
(r)
int,S(0) and SE

(
τ̂

(r)
int,S(0)

)
.

Note that, if rounded to the first decimal place, the values of τ̂
(r)
int,S(0), for r ∈ {1, 2, .., 10},

in Table 4.9 all have the same order of magnitude. In order to get some sense of how τ̂
(r)
int,S(0)
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Table 4.9: The estimates for τint based on the series/windowing approach
when no data are burned (k = 0).

Replication r τ̂
(r)
int,S(0) SE

(
τ̂

(r)
int,S(0)

)
Ŵr(0)

1 0.100 0.003 0.619

2 0.078 0.002 0.503

3 0.071 0.002 0.403

4 0.128 0.005 1.109

5 0.121 0.004 0.808

6 0.061 0.002 0.541

7 0.066 0.002 0.454

8 0.094 0.003 0.727

9 0.190 0.008 1.272

10 0.100 0.003 0.648

varies across the ten replications, calculating τ̄int,S(0) (as given by Equation (4.80)) using

the data in Table 4.9 yields the estimate τ̄int,S(0) = 0.101 ± 0.004 billion Θ-BFACF moves

in parallel (where 0.004 is the estimated standard error of τ̄int,S(0)). If the Central Limit

Theorem holds, then a 95% confidence interval for τint is τint = 0.101±0.009. The average

estimated window size (computed using the estimates in Table 4.9) W̄ (0) = 0.708 ± 0.090

billion Θ-BFACF moves in parallel (where W̄ (0) is computed using Equation (4.150) and

0.090 is the estimated standard error of W̄ (0)).

Case 2: k = 5.0 × 106. Each of the replications is started in some no-equilibrium

distribution and after τ̂exp,E (5.0 billion Θ-BFACF moves in parallel), each replication

has reached the equilibrium distribution. For r ∈ {1, 2, .., 10},estimates for τ̂
(r)
int,S(5.0×106)

,

SE
(
τ̂

(r)
int,S(5.0×106)

)
, and the estimated window size Ŵr(5.0 × 106) required to compute

τ̂
(r)
int,S(5.0×106)

and SE
(
τ̂

(r)
int,S(5.0×106)

)
are summarized in Table 4.10.

Note that, if rounded to the first decimal place, the values of τ̂
(r)
int,S(5.0×106)

, for r ∈
{1, 2, .., 10}, in Table 4.10 all have the same order of magnitude as each other and all have

the same order of magnitude as the estimates for τ̂
(r)
int,S(0) (rounded to the first decimal), for

r ∈ {1, 2, .., 10} . Calculating τ̄int,S(5.0×106) (as given by Equation (4.80)) using the data in

Table 4.10 yields τ̄int,S(5.0×106) = 0.100 ± 0.004 billion Θ-BFACF moves in parallel (where

0.004 is the estimated standard error of τ̄int,S(5.0×106)). If the Central Limit Theorem holds,
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Table 4.10: The estimates for τint based on the series/windowing approach
when the data collected during the first five billion Θ-BFACF moves in
parallel are discarded (k = 5.0 × 106).

Replication r τ̂
(r)
int,S(5.0×106)

SE
(
τ̂

(r)
int,S(5.0×106)

)
Ŵr(5.0 × 106)

1 0.103 0.003 0.618

2 0.083 0.003 0.565

3 0.072 0.002 0.402

4 0.129 0.005 1.106

5 0.123 0.004 0.789

6 0.061 0.002 0.546

7 0.064 0.002 0.454

8 0.095 0.003 0.731

9 0.169 0.007 1.248

10 0.102 0.004 0.660

then a 95% confidence interval for τint is τint = 0.100±0.009. The average estimated window

size (computed using the estimates from Table 4.10) is W̄ (5.0×106) = 0.710±0.086 billion

Θ-BFACF moves in parallel (where W̄ (5.0× 106) is computed using Equation (4.150) and

0.086 is the estimated standard error of W̄ (5.0 × 106)).

Note that the point estimate τ̄int,S(5.0×106) lies within one standard error of the point

estimate τ̄int,S(0) and the point estimate τ̄int,B(0) lies within one estimated standard error

of τ̄int,B(5.0×106). Similarly the point estimate for W̄ (5.0 × 106) lies within one estimated

standard deviation of W̄ (0). Hence τ̄int,S(0) and τ̄int,S(5.0×106) are consistent with each

other and W̄ (0) and W̄ (5.0 × 106) are also consistent with each other.

Case 3: k = kr × 106. Each of the replications is started in some non-equilibrium

distribution and after τ̂
(r)
exp,W , the single starting state warm-up period given in Table 4.1,

each replication has reached the equilibrium distribution. The estimates for τint computed

using the series/windowing approach based on kr×106 burned data points are summarized

in Table 4.11.

Note that, if rounded to the first decimal place, the values of τ̂
(r)
int,S(kr×106)

, for r ∈
{1, 2, .., 10}, in Table 4.11 all have the same order of magnitude as each other and all have

the same order of magnitude as the estimates for τ̂
(r)
int,S(0) and τ̂

(r)
int,S(5.0×106)

(rounded to the
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Table 4.11: The estimates for τ̂int based on the windowing/series approach

when the data collected during the first τ̂
(r)
exp,W billion Θ-BFACF moves in

parallel are discarded (k = 5.0 × 106).

Replication r kr τ̂
(r)
int,S(kr×106)

SE
(
τ̂

(r)
int,S(kr×106)

)
Ŵr(kr × 106)

1 10.0 0.080 0.003 0.590

2 9.0 0.082 0.003 0.561

3 8.0 0.072 0.002 0.402

4 6.0 0.130 0.005 1.106

5 12.0 0.119 0.005 0.836

6 8.0 0.063 0.002 0.600

7 10.0 0.064 0.002 0.474

8 10.0 0.092 0.003 0.779

9 9.0 0.171 0.007 1.239

10 4.0 0.103 0.003 0.640

first decimal), for r ∈ {1, 2, .., 10}. Calculating τ̄int,S(kr×106) (as given by Equation (4.80))

using the data in Table 4.11 yields τ̄int,S(kr×106) = 0.098±0.004 billion Θ-BFACF moves in

parallel (where 0.004 is the estimated standard error of τ̄int,S(kr×106)). If the Central Limit

Theorem holds, then a 95% confidence interval for τint is τint = 0.098±0.009. The average

estimated window size (computed using the estimates in Table 4.11) is W̄ (kr × 106) =

0.722 ± 0.086 billion Θ-BFACF moves in parallel (where 0.086 is the estimated standard

error of W̄ (kr × 106)).

Calculating τ̂int,S using the estimates for τint summarized in Tables 4.9, 4.10, and

4.11 yields τ̂int,S = 0.190 billion Θ-BFACF moves in parallel. The window size used to

determine τ̂int,S is 1.272 million data points. With estimates for τ̂int,W , τ̂int,B, and τ̂int,S

computed, the estimate τ̂int can be determined using Equation (4.77), that is τ̂int = 0.600

billion Θ-BFACF moves in parallel. Note that doubling this yields estimates for the

number of Θ-BFACF moves in parallel that must be implemented before two observations

will be essentially independent. 1.2 billion Θ-BFACF moves in parallel is statistically

consistent with the window size of 1.272 million data points that was required to estimate

τ̂int,S, because data was sampled every 1000 Θ-BFACF moves in parallel. Also, because

data was sampled every 1000 billion Θ-BFACF moves in parallel, 1.200 million is the
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predicted batch size required for independence.

Because the point estimate τ̄int,S(kr×106) lies within one estimated standard error of the

point estimates τ̄int,S(0) and τ̄int,S(5.0×106); the point estimate τ̄int,S(0) lies within one esti-

mated standard error of τ̄int,S(5.0×106) and τ̄int,S(kr×106); and the point estimate τ̄int,S(5.0×106)

lies within one estimated standard error of τ̄int,S(0) and τ̄int,S(kr×106), the estimates τ̄int,S(0),

τ̄int,S(5.0×106), and τ̄int,S(kr×106) are consistent. For the same reason, the point estimates for

W̄ (0), W̄ (5.0 × 106), and W̄ (kr × 106) are also consistent with each other. The consis-

tency of the estimates τ̄int,S(•) and W̄ (•) implies that both estimators are independent of

the amount of data burned. The fact that the estimates τ̄int,S(•) and W̄ (•) are indepen-

dent of the amount of data burned supports the hypothesis that the simulation has been

run for enough time so that any burn-time resulting from each replication starting in a

non-equilibrium state is negligible in estimating τint. Hence the series/windowing analysis

also supports the conclusion that in any subsequent data analysis, no data needs to be

discarded.

The conclusion to be drawn from estimating τint is that all ten replications have been

run for long enough so that the estimates τ̄int,B(•) and τ̄int,S(•) are independent of the

amount of data burned in determining the estimates. This implies that no data needs to

be discarded in any subsequent data analysis. Hence whether a warm-up analysis, batch

means analysis, or a series/windowing approach is used to estimate τint, the estimates for

τint are not affected by the amount of burned data. To err on the conservative side, for all

further analysis in this thesis, τ̂int = 0.6 (where τ̂int is defined by Equation (4.77)). Hence

it will be assumed that data collected every 1.2 × 109 Θ-BFACF moves in parallel will

be essentially independent and data blocked according to a block size of 1.2 million data

points will be essentially independent.

4.7.3 Checking the Consistency of the CMC Θ-BFACF Data

In this section, the consistency and accuracy of the simulated data are checked. Before

the methods for these checks can be specified, recall that Φave = {φ, (φ, f), (φ, s), (φ|φ, s),
(31|φ, s), (41|φ, s), (52|φ, s)}. Note that throughout this thesis any (1 − α)·100% confidence

interval for a parameter will be of the form

point estimate ± (1 − α) · 100% ME , (4.151)
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where (1 − α) · 100% ME will be referred to as the (1 − α) · 100% margin of error resulting

from using the point estimate to estimate the parameter of interest. If ŜE is the estimated

standard error for the point estimator and c(α), referred to as the critical value, is the

value for which the cumulative distribution function of the point estimator equals 1 − α,

then

(1 − α) · 100% ME := c(α)ŜE. (4.152)

Let W := {(Wt(1),Wt(2), ...,Wt(14)) , t = 0, ..., t0} be a Markov chain formed by the

CMC Θ-BFACF algorithm and let ω(u), where

ω(u) :=
((
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, t = 0, ..., t0

)
, (4.153)

be the sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ(φ)

)14
realized in Replication u

of the simulation of the CMC Θ-BFACF algorithm as described in Section 3.4.1. Now, in

order to estimate the expected length of W , a random property-∗ Θ-SAP chosen according

to πzi
(2, 14) (that is estimate Eπzi

(2,14)(ξU (∗) (W ) |W |)), for each ∗ ∈ Φ and for U (∗) ⊆
PΘ(φ), define the random variables X and Y (as defined in Section A.4 of Appendix A)

by

X(L,W,U (∗)) := I[L,∞)(|W |)ξU (∗)(W ) (4.154)

and

Y (L,W,U (∗)) := X(L,W,U (∗)) |W | , (4.155)

respectively, where, for A ⊆ R,IA (t)is defined by Equation (7.6), and, for each ω ∈ PΘ(φ)

and each subset of Θ-SAPs V ⊆ PΘ(φ),

ξV (ω) :=





1, if ω ∈ V

0, otherwise.
(4.156)

Now define Xk,i and Yk,i (as used in Section A.4 of Appendix A) by

Xk,i := Xk,i(Nmin,W,U (∗))
t0∑

t=0

MT (t)IB(k) (t)X(Nmin,Wt(i),U (∗)). (4.157)
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and

Yk,i := Yk,i(Nmin,W,U (∗))

:=

t0∑

t=0

MT (t)IB(k) (t)Y (Nmin,Wt(i),U (∗))

:= Nk,i (U (∗)) , (4.158)

where

B(k) := (2(k − 1)τint − 1, 2kτint − 1], (4.159)

MT (t) is defined by Equation (4.42); and, for A ⊆ R, IA (t)is defined by Equation (7.6).

Then let
〈
Nπzi

(q,Nmin) (U (∗))
〉

be the ratio estimator (as defined by Equation (A.21) in

Section A.3 of Appendix A) for Eπzi
(q,Nmin)(ξU (∗)(W ) |W |) formed using the sequence

((Xk,i, Nk,i (U (∗))), k = 1, .., l) . (4.160)

For each ∗ ∈ Φ and for t0 = 9.6 × 1010 time steps, Nmin = 14, q = 2, τint = 0.72 × 109

time steps, T = 1200 time steps, and l := 66, based on the u’th realization ω(u) of W ,

u ∈ {1, 2, ..., 10}, let n
(u)
k,i

(
PΘ(∗)

)
denote the u’th realization of Nk,i

(
PΘ(∗)

)
and let

x
(u)
k,i denote the u’th realization of Xk,i. Then define

〈
nπzi

(2,14)

(
PΘ(∗)

)〉
to be the point

estimate for Eπzi
(2,14)(ξU (∗)(W ) |W |) computed using the sequence

(((
x

(u)
k,i , n

(u)
k,i

(
P

Θ(∗)
))
, k = 1, .., l

)
, u = 1, ..., 10

)
(4.161)

in Equation (A.21).

In this section, the point estimates
〈
nπzi

(2,14)

(
PΘ(φ)

)〉
, for i = 1, ..., 14, (the average

lengths of the unknotted Θ-SAPs generated in each of the fourteen chains) are used to

check the consistency and accuracy of the simulated data by first drawing a comparison to〈
nφ

i

〉
, the average lengths of the unknotted SAPs generated in chain i with zi defined in

[121]. Then, for ∗ ∈ Φave, the sample averages
〈
nπzi

(2,14)

(
PΘ(∗)

)〉
are used to determine

whether or not, as (log(z) + κφ) → 0, the data support that Equation (4.101) becomes

linear in 1/z and Equation (4.102) goes to 1.0.

Verifying from an Outside Source [121]

Note that the average length of an unknotted Θ-SAP computed from a chain characterized

by a smaller fugacity (lower chain number) will be influenced by the size of the structure Θ
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more than the average length of an unknotted Θ-SAP computed from a chain with a larger

fugacity (higher chain number). Also note that the relationship between the estimated

average length of an unknotted polygon (denoted
〈
nφ

i

〉
) which is not forced to contain Θ

and the estimated average length of an unknotted Θ-SAP for zi < zφ is expected to be

〈
nπzi

(2,14)

(
P

Θ(φ)
)〉

>
〈
nφ

i

〉
. (4.162)

Also, because, as the fugacity zi → zφ, it is expected that the size of the structure Θ will

impact the expected length of an unknotted polygon that contains the structure less and

less, for zi sufficiently close to zφ,

〈
nπzi

(2,14)

(
P

Θ(φ)
)〉

≈
〈
nφ

i

〉
, (4.163)

that is the lengths of SAPs with the structure, for large enough polygons, should not be

influenced by the presence of the structure and essentially behave as unknotted SAPs.

Note that the values in Column 2 of Table 4.12 are estimates for
〈
nφ

i

〉
taken from

[121] and the values in Columns 3 and 4 of Table 4.12, the values in Columns 2, 3, and

4 of Table 4.13, and the values in Columns 2 and 3 of Table 4.14 are the ratio estimates〈
nπzi

(2,14)

(
PΘ(∗)

)〉
computed as described at the beginning of this section. The esti-

mates presented in Columns 2 and 3 of Table 4.12 are in excellent agreement with the two

observations given by Equations (4.162) and (4.163).. Further note that, on average, in

each of the chains as the property ∗ becomes more complex (that is changes from (φ|φ, s)
to (31|φ, s) to (41|φ, s) to (52|φ, s)), the estimated average polygon length with property

∗ increases. This increase is also to be expected because the more complex the property

∗, the more complex the after-strand-passage knot-type and hence the larger the polygon

required to form the property ∗ Θ-SAP.

Verifying by Fitting to Believed Forms

The estimates in Tables 4.12-4.14 can be used to estimate eκφ by fitting to the form given

by Approximation (4.101) using
〈
nπzi

(2,14)

(
PΘ(∗)

)〉
as the estimate for

E
(
αΘ
∗ + q, log(z) + κφ,−∆Θ

∗ , N
∗
min, A

Θ
∗ , B

Θ
∗

)
and then extrapolating to the value of z for

which the linear fit crosses the z-axis. In Figure 4.9, for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s),
(41|φ, s), (52|φ, s)},

〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
is plotted as a function of 1/zi, where the values〈

nπzi
(2,14)

(
PΘ(∗)

)〉
are from Tables 4.12-4.14. Note that in Figure 4.9: property-(φ, f)
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Table 4.12: The values in Column 2 are estimates (taken from [121]) of
the expected length of an unknotted polygon sampled from a modified Boltz-
mann distribution characterized by the fugacity zi. The values in Columns 3
and 4 are the average lengths of Θ-SAPs in Chain i with property ∗ sampled
from all 10 replications where ∗ ∈ {φ, (φ, f)}. The values in parentheses are
the estimated 95% margins of error. The 95% margins of error presented
in Columns 3,and 4 were computed assuming τ̂int = 0.6 billion Θ-BFACF
moves in parallel.

Chain i
〈
nφ

i

〉 〈
nπzi

(2,14)

(
PΘ(φ)

)〉 〈
nπzi

(2,14)

(
PΘ(φ, f)

)〉

1 26.1(0.2) 34.9(1.6) 34.3 (1.6)

2 32.0(0.2) 40.0(2.0) 39.3 (2.0)

3 41.5(0.3) 48.5 (2.6) 47.6 (2.6)

4 59.6(0.5) 64.7 (3.8) 63.5 (3.8)

5 76.2(0.7) 80.0 (4.9) 78.7 (5.0)

6 88.9(0.8) 91.6 (5.8) 90.2 (5.9)

7 107.2(1.1) 108.0 (7.0) 106.5 (7.1)

8 132.7(1.8) 132.9 (8.8) 131.3 (8.9)

9 179.3(2.9) 174.9 (12.0) 173.2 (12.0)

10 243.6(5.4) 236.8 (16.5) 235.1 (16.5)

11 379(16) 371.6 (26.2) 369.9 (26.2)

12 522(30) 521.6 (36.9) 520.0 (37.0)

13 636(48) 653.7 (46.1) 652.1 (46.2)

14 830(70) 872.7 (60.7) 871.4 (60.8)

data is plotted using a ∗; property-(φ|φ, s) data is plotted using a △; property-(31|φ, s) data

is plotted using a ⊡; property-(41|φ, s) data is plotted using a �; and property-(52|φ, s) data

is plotted using a ⊙. The error bars plotted in Figure 4.9 represent 95% confidence intervals

for [Eπzi
(2,14)(ξU (∗)(W ) |W |)]−1 for ∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)}. Because the error bars

for each ∗ ∈ {(41|φ, s), (52|φ, s)} that could be calculated are so large (at least five times

the lengths of largest error bars displayed in the plot), they have not been plotted in Figure

4.9. Also note that the point estimates
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
for ∗ ∈ {(φ, f), (φ|φ, s)}

are so close in value that they cannot be distinguished from each other in the figure.

Now recall from Section 4.5 that for values of β sufficiently close to βc := −κφ, the

Approximation (4.101) is expected to hold. Therefore for values of β sufficiently close to βc,
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Figure 4.9:
〈
nπzi

(14)

(
PΘ(∗′)

)〉−1
versus 1/zi for ∗′ ∈ {(φ, f) [∗],

(φ|φ, s) [△] , (31|φ, s) [⊡] , (41|φ, s) [�] , (52|φ, s) [⊙]}. The error bars
represent the corresponding estimated 95% margin of error.
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Table 4.13: The average lengths of Θ-SAPs in Chain i with property ∗
sampled from all 10 replications where ∗ ∈ {(φ, s) , (φ|φ, s) , (31|φ, s)}. The
values in parentheses are the estimated 95% margins of error computed as-
suming τ̂int = 0.6 billion Θ-BFACF moves in parallel.

Chain
〈
nπzi

(2,14)

(
PΘ(φ, s)

)〉 〈
nπzi

(2,14)

(
PΘ(φ|φ, s)

)〉 〈
nπzi

(2,14)

(
PΘ(31|φ, s)

)〉

1 41.1 (1.7) 41.0 (1.7) 68.8 (3.2)

2 46.9 (2.1) 46.9 (2.1) 77.4 (2.6)

3 56.3 (2.7) 56.1 (2.7) 90.6 (3.4)

4 73.7 (4.0) 73.4 (4.0) 113.7 (4.6)

5 89.7 (5.1) 89.3 (5.1) 134.0 (5.7)

6 101.8 (6.0) 101.3 (6.0) 148.7 (6.6)

7 118.6 (7.2) 118.0 (7.2) 168.6 (7.8)

8 143.9 (9.0) 143.2 (9.0) 197.6 (9.6)

9 186.3 (12.1) 185.5 (12.0) 244.5 (12.6)

10 248.5 (16.5) 247.4 (16.5) 310.6 (17.0)

11 382.9 (26.1) 381.7 (26.1) 447.8 (26.4)

12 532.1 (36.8) 530.8 (36.8) 598.2 (37.0)

13 663.4 (46.0) 662.0 (46.0) 730.1 (46.4)

14 881.2 (60.6) 879.8 (60.6) 947.9 (61.0)

(or equivalently for values of 1/z sufficiently close to µφ) the plots of
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1

versus 1/zi should become linear as 1/zi → µφ.

From Figure 4.9, for ∗ ∈ {(φ, f), (φ|φ, s)}, it appears as though the linear behaviour of〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
with respect to 1/zi begins after the ninth z value (which corre-

sponds to the first five points plotted) Therefore the information in Figure 4.9 is replotted

in Figure 4.10 where the values of
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
for ∗ ∈ {(φ, f), (φ|φ, s)} corre-

sponding to the smallest nine z values are dropped, that is Figure 4.10 focuses on the area

in Figure 4.9 near the critical value.

Referring to Figure 4.10, note that, for the values of 1/zi plotted, for ∗ ∈ {(φ, f), (φ|φ, s)},
〈ni(∗)〉−1 appears to be linear in 1/zi. If the x-intercept of the regression line is determined

from the set of points

{(
1/zi,

〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
)}14

i=10

, for ∗ ∈ {(φ, f), (φ|φ, s)}, the
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Table 4.14: The average lengths of Θ-SAPs in Chain i with property ∗
sampled from all 10 replications where ∗ ∈ {(41|φ, s) , (52|φ, s)}. The values
in parentheses are the estimated 95% margins of error computed assuming
τ̂int = 0.6 billion Θ-BFACF moves in parallel. † indicates estimates are based
on one essentially independent block of data.

Chain
〈
nπzi

(2,14)

(
PΘ(41|φ, s)

)〉 〈
nπzi

(2,14)

(
PΘ(52|φ, s)

)〉

1 85.3 (43.0) 100.3(n/a)†

2 97.8 (30.1) 123.2(n/a)†

3 113.3 (26.5) 128.5(n/a)†

4 141.8 (25.8) 175.5(n/a)†

5 166.8 (24.2) 204.6(n/a)†

6 186.0 (22.5) 237.1(n/a)†

7 210.3 (22.1) 259.9(n/a)†

8 245.6 (23.0) 294.9(166)

9 302.1 (25.4) 372.8(158)

10 378.6 (33.3) 456.7(152)

11 522.3 (48.2) 562.0(165)

12 659.6 (64.3) 686.4(212)

13 774.0 (78.2) 814.6(234)

14 930.0 (96.3) 995.1(271)

estimated x-intercept is (4.6836 ± 0.0012, 0) and the estimated y-intercept is (0,−1.78 ±
0.02). From these intercepts, the values of µφ = 4.6836±0.0012 and αΘ

φ = −1.78±0.02 are

obtained. This point estimate for µφ (4.6836) computed based on the CMC data is exactly

the value estimated for eκφ by Orlandini et al. [125]. The point estimate for αΘ
φ (−1.78) is

completely consistent with Consequence 2.2.8 (that is αΘ
φ = αφ − 2) because Orlandini et

al. [125] estimated αφ ≈ 0.23. Hence, not only do the estimates
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1

support the fact that
[
E
(
αΘ
∗ + q, log(z) + κφ,−∆Θ

∗ , N
∗
min, A

Θ
∗ , B

Θ
∗

)]−1
is expected to be-

come linear as 1/zi → µφ but, from the linear fit to the form given by Approximation

(4.101), the estimates obtained for µφ and αΘ
φ are completely consistent with indepen-

dently obtained estimates.

From Figure 4.10, it appears that data for z values larger than those used in the simula-

tion are required in order to obtain data such that, when
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
is plotted
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Figure 4.10:
〈
nπzi

(14)

(
PΘ(∗′)

)〉−1
versus 1/zi for ∗′ ∈ {(φ, f) [∗],

(φ|φ, s) [△] , (31|φ, s) [⊡] , (41|φ, s) [�] , (52|φ, s) [⊙]} with focus on the
1/zi values closest to µφ.

versus 1/zi, for ∗ ∈ {(31|φ, s), (41|φ, s), (52|φ, s)}, the estimates
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
are

not significantly influenced by the corrections to the linear form. One further important

note (based on Figure 4.10) is that as 1/zi → µφ, the estimates
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
for

each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s), (41|φ, s), (52|φ, s)}, are approaching each other. This

numerically supports the conjecture µφ = µΘ
∗ . If, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s),

(41|φ, s), (52|φ, s)}, the estimates
〈
nπzi

(2,14)

(
PΘ(∗)

)〉−1
are really approaching each other

as z−1
i → µφ, then this would imply that, since µφ = µΘ

∗ , then αΘ
φ = αΘ

∗ , which supports

Consequence 2.2.9.

The discussion now turns to determining whether or not the point estimates〈
nπzi

(2,14)

(
PΘ(∗)

)〉
(for each ∗ ∈ Φave) support Approximation (4.102). Recall from

Section (4.5) that, for β := log(z) and ∗1, ∗2 ∈ Φ, as β + κφ → 0,

E (∗1)

E (∗2)
:=

E
(
αΘ
∗1

+ 2, β + κφ,−∆Θ
∗1
, N∗1

min, A
Θ
∗1
, BΘ

∗1

)

E
(
αΘ
∗2

+ 2, β + κφ,−∆Θ
∗2
, N∗2

min, A
Θ
∗2
, BΘ

∗2

) → [αΘ
∗1

+ 3]

[αΘ
∗2

+ 3]
(4.164)

and that, if αΘ
∗1

= αΘ
∗2

, then, as β + κφ → 0, the ratios
E (∗1)

E (∗2)
→ 1. In order to explore
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how
E (∗1)

E (∗2)
, behaves, for ∗1, ∗2 ∈ Φave, the estimates in Tables 4.12-4.14 can be used to

approximate the ratios
E (∗1)

E (∗2)
where ∗1, ∗2 ∈ Φave. Further to this, assuming that the

confluent exponents for this work are all 0.5 and that κ̂φ = 1.544125, then a plot of〈
nπzi

(2,14)

(
PΘ(∗)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 versus

√
1 − eβi+κ̂φ should exhibit linear behaviour as βi + κφ → 0.

The reason
〈
nπzi

(2,14)

(
PΘ(φ)

)〉
is used in the denominator is because the most reliable

data available is for the property φ. Also note that the estimates in Tables 4.12-4.14 will

be used to form the ratios

〈
nπzi

(2,14)

(
PΘ(∗)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 to estimate the ratio

E (∗)
E (φ)

.

In the following two figures (Figures 4.11 and 4.12), note that property-(φ, f) data

is plotted using a ∗; property-(φ|φ, s) data is plotted using a △; property-(31|φ, s) data

is plotted using a ⊡; property-(41|φ, s) data is plotted using a �; and property-(52|φ, s)

data is plotted using a ⊙. Figure 4.11 contains the plots of

〈
nπzi

(2,14)

(
PΘ(∗′)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 ver-

sus
√

1 − eβi+κ̂φ for Chains 1 through 14 and properties ∗′ ∈ {(φ, f), (φ|φ, s), (31|φ, s),
(41|φ, s), (52|φ, s)}, where the error bars represent the 95% confidence intervals com-

puted using Section A.3 of Appendix A. In Figure 4.11, for each chain, the estimates〈
nπzi

(2,14)

(
PΘ(φ, f)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 and

〈
nπzi

(2,14)

(
PΘ(φ|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 are so close in value that, when

plotted versus
√

1 − eβi+κ̂φ , the estimates plotted respectively with a (∗) and a (△) in

Figures 4.11 and 4.12 cannot be distinguished from each other. Figure 4.12 zooms in on

the region βi ∈ (−1.554,−κφ).

Note that in Figure 4.12 no error bars are plotted as they detracted from being able

to determine whether the estimates for each of the properties appeared to be linear. The

error bars (that is, the estimated 95% margins of error) are presented in Figure 4.11.

From Figure 4.12, it is plausible that, for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, the estimates〈
nπzi

(2,14)

(
PΘ(∗)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 are all approaching the same value as

√
1 − eβi+κ̂φ → 0. Because,

for βi sufficiently close to −κφ, Equation (4.98) is expected to be valid, the value the ratio
E (∗)
E (φ)

is expected to approach is the y-intercept of the regression line estimated using the
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Figure 4.11:

〈
nπzi

(14)

(
PΘ(∗′)

)〉

〈
nπzi

(14) (PΘ(φ))
〉 versus

√
1 − eβi+κ̂φ for Chains 1

through 14 and ∗′ ∈ {(φ, f) [∗], (φ|φ, s) [△], (31|φ, s) [⊡], (41|φ, s) [�],
(52|φ, s) [⊙]}, where the error bars are the estimated 95% margins of error.
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Figure 4.12:

〈
nπzi

(14)

(
PΘ(∗′)

)〉

〈
nπzi

(14) (PΘ(φ))
〉 versus

√
1 − eβi+κ̂φ for Chains 8

through 14 and ∗′ ∈ {(φ, f) [∗], (φ|φ, s) [△], (31|φ, s) [⊡], (41|φ, s) [�],
(52|φ, s) [⊙]}.
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data







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(∗)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=l∗

, where l∗ is the value of i for which

the plot of the points in







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(∗)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

appears to start

behaving linearly in
√

1 − eβi+κ̂φ .

For the rest of this section, any reference to y-intercept for property ∗ will refer to

the y-intercept of the estimated regression line determined using the specified property-∗
subsequence. The problem with trying to estimate the y-intercept of property ∗ for each

of the five sequences in Figure 4.12 is that, the larger the value of βi (or equivalently the

smaller the value of
√

1 − eβi+κ̂φ), the more likely the corrections to the linear scaling form

influence the estimate for the ratio
E (∗)
E (φ)

. Hence, in order to estimate the y-intercepts

in Figure 4.12, the estimates for the ratios
E (∗)
E (φ)

that are based on the βi’s which are as

close as possible to −κφ should be used. The problem with using these estimates for the

ratios
E (∗)
E (φ)

is that, as βi + κφ → 0, there is much more variability in the estimates for

E
(
αΘ
∗ + q, βi + κφ,−∆Θ

∗ , N
∗
min, A

Θ
∗ , B

Θ
∗

)
and E

(
αΘ

φ + q, βi + κφ,−∆Θ
φ , N

φ
min, A

Θ
φ , B

Θ
φ

)
and

hence there is much more variability in the estimate for
E (∗)
E (φ)

.

The data







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(φ, f)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

(plotted in Figure 4.11 us-

ing ∗) is used to estimate the y-intercept for property (φ, f). Fitting a straight line to the

data







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(φ, f)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

using Weighted Least-Squares Re-

gression yields the following 95% confidence interval for the y-intercept for property (φ, f):

0.99±0.02. Because 1.0 is in this confidence interval, it is plausible that the y-intercept for

property (φ, f) is 1.0, which implies that, as βi +κφ → 0,
E (φ, f)

E (φ)
→ 1 is possible. Hence,

as βi + κφ → 0,
αΘ

(φ,f) + 3

αΘ
φ + 3

→ 1 is also possible, that is αΘ
φ = αΘ

(φ,f) is possible.

Referring to the plot of







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(φ|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

in Figure

4.11, for the values β1, β2, β3, and β4, the plot does not seem to be linear. Hence, for

these four β values, the estimates

〈
nπzi

(2,14)

(
PΘ(φ|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 are being influenced by the
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corrections to the linear scaling form. Therefore the points corresponding to these four

β values should not be used to estimate the y-intercept for property (φ|φ, s). Fitting a

straight line to the restricted data set







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(φ|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=5
via a Weighted Least-Squares Regression yields the following 95% confidence interval for

the y-intercept for property (φ|φ, s) : 0.96 ± 0.05. Since one is in this confidence interval,

it is plausible that the y-intercept for property (φ|φ, s) is one, and by a similar argument

to that in the previous paragraph for property (φ, f), it is plausible that αΘ
φ = αΘ

(φ|φ,s).

Referring to Figure 4.11, the corrections to the linear scaling form seem to be present

in the plot of







√

1 − eβi+κ̂φ,

〈
nπzi

(2,14)

(
PΘ(31|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

for the values β1, ..., β6.

Hence the estimates

〈
nπzi

(2,14)

(
PΘ(31|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉 should not be used for the values β1, ..., β6

when trying to estimate the y-intercept for property (31|φ, s). Fitting a straight line to the

data







√

1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(31|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=7

via a Weighted Least-Squares Re-

gression and estimating a 95% confidence interval for the y-intercept for property (31|φ, s)
yields 0.95±0.08. Since one is in this confidence interval, it is plausible that the y-intercept

for property (31|φ, s) is one and by a similar argument to that in the paragraph estimating

the y-intercept for property (φ, f), it is plausible that αΘ
φ = αΘ

31|φ,s.

The plot of the data






√1 − eβi+κ̂φ ,

〈
nπzi

(2,14)

(
PΘ(41|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=1

in Figure 4.11

indicates that, for the values β1, ..., β10, corrections to the linear scaling form appear

to be present in each of the point estimates. Therefore the restricted data set given

by







√

1 − eβi+κ̂φ,

〈
nπzi

(2,14)

(
PΘ(41|φ, s)

)〉

〈
nπzi

(2,14) (PΘ(φ))
〉







14

i=11

should be used to estimate the y-

intercept for property (41|φ, s). By fitting a straight line to this restricted data set via

a Weighted Least-Squares Regression, the following 95% confidence interval for the y-

intercept for property (41|φ, s) was determined: 0.44 ± 0.57. Because of the size of the

estimated 95% margin of error, the point estimate for the y-intercept is not very reliable.

Consequently the value of the y-intercept could be one but it might not be as well.
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4.7.4 Estimating N∗
max

The purpose for including the quantity N∗
max in the model is to take into account the finite

nature of the simulation, and specifically the fact that the observed proportion for a large

polygon length N may not accurately represent the proportion for that N according to the

true equilibrium distribution. For example, if the total number of polygons with property

∗ ∈ Φ observed in Chain i of Replication r is denoted Ψ
(r)
i (∗), then

Ψ
(r)
i (∗) :=

t0∑

t=0

MT (t)ψ∗(ω
(r)
t (i)), (4.165)

where, for ∗ ∈ Φ,

ψ∗(ω) :=





1 if ω has property ∗,
0 otherwise.

(4.166)

Further, if the total number of polygons with property ∗ observed in Chain i across all n0

replications is denoted Ψi(∗), then

Ψi(∗) :=

n0∑

r=1

Ψ
(r)
i (∗). (4.167)

Therefore, if the total number of polygons with property ∗ observed throughout the n0

replications is denoted Ψ(∗), then

Ψ(∗) :=

M∑

i=1

Ψi(∗). (4.168)

The following table contains the values of Ψ(∗) for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s), (41|φ, s),
(52|φ, s), (61|φ, s), (62|φ, s), (63|φ, s), (72|φ, s), (76|φ, s), (820|φ, s)}.

From Table 4.15, it is quite evident that the majority of the polygons generated during

the simulation of the CMC Θ-BFACF algorithm are unsuccessful-strand-passage polygons;

that the majority of the successful-strand-passage polygons generated during the simulation

are unknotted after strand passage; and that there are relatively few observed successful-

strand-passage Θ-SAPs that have a non-trivial knot-type after a strand passage about Θ.

Hence in order to compute any estimate based on this data, the interval over which the

data is most reliable needs to be determined. The technique discussed in Section 4.6 will

be used to estimate N∗
max for the purposes of determining the most reliable data.

For each of the ten replications, suppose no data is thrown away. Let N̂
(r)
u be the largest

unknotted polygon length observed in Replication r and let N̂
(r)
l be the smallest unknotted
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Table 4.15: The total number of polygons sampled from the simulation of
the CMC Θ-BFACF algorithm that have property ∗.

Property ∗ Ψ(∗) Property ∗ Ψ(∗)
(φ, f) 9770500795 (62|φ, s) 55

(φ|φ, s) 1300566055 (63|φ, s) 10

(31|φ, s) 16471677 (72|φ, s) 21

(41|φ, s) 443025 (76|φ, s) 1

(52|φ, s) 17872 (820|φ, s) 6

(61|φ, s) 483

Table 4.16: The largest and smallest polygon lengths observed in Replica-
tion r.

Replication r N̂
(r)
l N̂

(r)
u Replication r N̂

(r)
l N̂

(r)
u

1 14 6416 6 14 5628

2 14 5938 7 14 5584

3 14 5700 8 14 6642

4 14 5402 9 14 6960

5 14 6166 10 14 5826

polygon length observed in Replication r. Suppose the estimate for N∗
max determined using

Replication r is denoted N̂
(r)
max(∗). Then, the estimate N̂

(r)
u in Table 4.16 is an upper bound

for N̂
(r)
max(∗). The values of N̂

(r)
l and N̂

(r)
u , for Replication r, r ∈ {1, ..., 10} , are presented

in Table 4.16:

From the values of N̂
(r)
l and N̂

(r)
u , for Replication r, r ∈ {1, ..., 10} , presented in Table

4.16, the values of N̂l and N̂u can be determined, where

N̂l = max
r
N̂

(r)
l (4.169)

and

N̂u = min
r
N̂ (r)

u . (4.170)

From the estimates presented in Table 4.16, N̂l = 14 and N̂u = 5402.

Because the same data is used in the analysis presented in Chapters 5 through 7, the

reliability of the data will be determined using a function of the data that is common to
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the analysis in all three chapters, that is the reliability of the data will be determined using

the proportion of (2n)-edge Θ-SAPs with property ∗ generated in each of the replications.

Then ĝ
(r)
i (φ, 2n) is the estimated proportion of (2n)-edge unknotted Θ-SAPs as sampled

from Chain i during Replication r. If ∗ is one of the after-strand-passage properties {(φ, f),

(φ, s), (φ|φ, s), (31|φ, s), (41|φ, s)}, let

ĝ
(r)
i (∗, 2n) :=

∑m
t=0 ψ∗

(
ω

(r)
t (i)

)
I2n

(∣∣∣ω(r)
t (i)

∣∣∣
)

∑m
t=0 ψφ

(
ω

(r)
t (i)

)
I2n

(∣∣∣ω(r)
t (i)

∣∣∣
) . (4.171)

Then the quantity ĝ(r)(∗, 2n) is the estimated proportion of (2n)-edge Θ-SAPs that have

property ∗ ∈ {(φ, f), (φ, s), (φ|φ, s), (31|φ, s), (41|φ, s)} as sampled during Replication r.

For ∗ ∈ {(φ, f), (φ, s), (φ|φ, s), (31|φ, s), (41|φ, s)}, the corresponding estimated stan-

dard error of ĝ(r)(∗, 2n) is defined to be

ŜE(ĝ(r)(∗, 2n)) :=

√
v̂ar(ĝ(r)(∗, 2n))

m′
, (4.172)

where v̂ar(ĝ(r)(∗, 2n)) is given by Equation (A.30) in Section A.3 of Appendix A and

m′ is the number of essentially independent data points used to compute v̂ar(ĝ(r)(∗, 2n)).

Then for every ∗ ∈ {(φ, f), (φ, s), (φ|φ, s), (31|φ, s), (41|φ, s)}, the corresponding estimated

relative standard error of ĝ(r)(∗, 2n) is defined to be

δ̂
(r)
2n (∗) :=





ŜE(ĝ(r)(∗, 2n))

ĝ(r)(∗, 2n)
, if ĝ(r)(∗, 2n) > 0

∞, otherwise.

(4.173)

Recall from Section 4.6 that δ̂(r) = min
n
δ̂
(r)
2n ; that η̂(r)(∗) is the first value of 2n for which

δ̂(r)(∗) = δ̂
(r)
2n (∗); ε∗ := min

r
(δ̂(r)(∗) + c); and that N̂

(r)
max(∗) computed from Replication r is

the smallest polygon length greater than η̂(r)(∗) for which δ̂
(r)
2n (∗) ≥ ε∗. For the purposes of

this work, the most reliable data is data whose relative error is within 5% of the minimum

estimated relative error. This corresponds to setting c := 0.05 in the definition of ε∗. The

reason this cutoff was chosen results from the fact that the estimated proportions for all

the properties ∗, save ∗ = φ, are ratio estimates and the goal is to minimize the effects

of small fluctuations in the denominator as they could lead to large fluctuations in the

resulting point estimates.

To see the necessity for including an N∗
max, cf. Figure 4.13. Figure 4.13 is a plot

of the estimated relative error associated with the estimated proportion of n-edge before-

strand-passage polygons (from each of the ten replications) plotted as a function of polygon
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Figure 4.13: The estimated relative error associated with the estimated
proportion of (2n)-edge before-strand-passage polygons generated in Repli-
cation r.

length 2n. The horizontal line in the figure represents when the estimated relative error

is one. This corresponds to the estimated standard error of the point estimate being

equal to the estimated standard error of the point estimate. From Figure 4.13, if the

maximum tolerated relative error is 1.0, then choosing 3700 as the estimate for Nφ
max

seems appropriate.

In order to determine how the estimates δ̂
(r)
2n (φ) (as defined by Equation (4.173)) are

expected to behave as a function of n, assume that, for sufficiently large n ≥ Nmin/2, there

exist constants AΘ
φ , µφ, h

Θ
φ , and αΘ

φ such that pΘ
2n(φ) = AΘ

φ µ
2n
φ (2n + hΘ

φ )α
Θ
φ and that, for
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any positive integer q, π2n(θi) is defined by

π2n(AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , q, zi, Nmin)

:=

(
I[14,Nmin)(2n)

)
Q(q, zi, Nmin)

Q(q, zi, Nmin) +
∑

m≥Nmin/2

AΘ
φ (2m− 6)(2m)q−1(2m+ hΘ

φ )α
Θ
φ (eκφzi)

2m

+

(
I[Nmin,∞)(2n)

) [
AΘ

φ (2n− 6) (2n)q−1 (2n + hΘ
φ )α

Θ
φ (eκφzi)

2n
]

Q(q, zi, Nmin) +
∑

m≥Nmin/2

AΘ
φ (2m− 6)(2m)q−1(2m+ hΘ

φ )α
Θ
φ (eκφzi)

2m
(4.174)

with

Q(q, z,Nmin) :=
∑

14≤m<Nmin/2

(2m− 6) (2m)q−1 z2mpΘ
2m(φ). (4.175)

Then, as n→ ∞,

π̆2n|Nmin
(q, z) ∼ π2n(AΘ

φ , κφ, α
Θ
φ , h

Θ
φ , q, z,Nmin) (4.176)

Now, for q = 2 and the a priori guess

θi = (1.0, 1.544125,−1.75, 0, 2, zi , 14), (4.177)

suppose

π2n(θi) := π2n(1.0, 1.544125,−1.75, 0, 2, zi , 14), (4.178)

σ2
π2n

(θi) := π2n(θi) (1 − π2n(θi)) /T
′,

π̄2n :=
1

M

M∑

i=1

π2n(θi), (4.179)

and

σ2 [π̄2n] :=
1

M

M∑

i=1

σ2
π2n

(θi). (4.180)

Then the expected relative error associated with π̄2n is

√
σ2 [π̄2n]

π̄2n
.

Figure 4.14 is a plot of

√
σ2 [π̄2n]

π̄2n
versus 2n for the a priori guess

θi = (1.0, 1.544125,−1.75, 0, 2, zi , 14). (4.181)

Note from Figure 4.14 that the expected relative error associated with the proportion of

observed polygons of length 2n is an increasing function of n. This feature needs to be

taken into account when trying to determine an estimate for Nφ
max.

Because the relative error is expected to increase as a function of n, simply determining

the estimate for Nφ
max based on a fixed cutoff value is not a good measure for the reliability
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Figure 4.14: The expected relative errors for the proportion of (2n)-edge
before-strand-passage polygons generated in Replication r. The expected
values are computed based on assuming θi = (1, 1.544125,−1.75, 0, 2, zi , 14).

of the data. The estimated relative errors may still be well-approximating the trend of

the expected relative errors beyond the fixed cutoff. This is why the method described

in Section 4.6 for estimating Nφ
max determines an estimate for Nφ

max in terms of when the

sequences of the estimated relative errors for each replication start diverging.

For each of the ten replications, the values of δ̂
(r)
2n (∗), for the properties (φ, f), (φ|φ, s),

(31|φ, s), and (41|φ, s), are respectively shown in Figures 4.15 through 4.18. For the

purposes of creating a more meaningful figure, every tenth consecutive value for δ̂
(r)
2n (∗),

that is the set of points

{(
N̂

(r)
l + 20i, δ̂

(r)

N̂
(r)
l

+20i
(∗)
)}⌊(N̂(r)

u −N̂
(r)
l

)/20
⌋

i=0

, is plotted in Figures

4.15 through 4.18. The horizontal line in each of Figures 4.15 through 4.18 represents ε∗,

that is where the estimated relative error is five percent of the smallest of the ten values

δ̂(r)(∗), r ∈ {1, 2, ..., 10}. Table 4.17 contains the values of ε∗ for the same four properties.

Table 4.18 summarizes the estimated values of N∗
max for the properties (φ, f), (φ|φ, s),

(31|φ, s), and (41|φ, s) for each of the ten replications.
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Table 4.17: The maximum tolerated estimated relative error in the pro-
portion of n-edge Θ-SAPs with property ∗.

Property ε∗

(φ, f) 0.051

(φ|φ, s) 0.070

(31|φ, s) 0.072

(41|φ, s) 0.074
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Figure 4.15: The estimated relative error associated with the estimated
proportion of (2n)-edge failed-strand-passage polygons generated in Repli-
cation r. The horizontal line represents where the estimated relative error is
five percent higher than the minimum (over all ten replications) estimated
relative error.
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Figure 4.16: The estimated relative error associated with the estimated
proportion of (2n)-edge Θ-SAPs that are unknotted given a successful strand
passage and are generated in Replication r. The horizontal line represents
where the estimated relative error is five percent higher than the minimum
(over all ten replications) estimated relative error.
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Figure 4.17: The estimated relative error associated with the estimated
proportion of (2n)-edge Θ-SAPs that are a trefoil given a successful strand
passage and are generated in Replication r. The horizontal line represents
where the estimated relative error is five percent higher than the minimum
(over all ten replications) estimated relative error.

Based on the estimates N̂
(r)
max(φ, f), N̂

(r)
max(φ|φ, s), N̂ (r)

max(31|φ, s), and N̂
(r)
max(41|φ, s) pre-

sented in Table 4.18, N̂max(φ, f) = 3700, N̂
(r)
max(φ|φ, s) = 3300, N̂

(r)
max(31|φ, s) = 2000 and

N̂
(r)
max(41|φ, s) = 600. Hence N̂max(φ) = 3300, N̂max(φ, f) = 3300, N̂max(φ, s) = 3300, and

N̂max(φ|φ, s) = 3300.

The estimates for N∗
max were also computed when the data collected during the first 5.0

billion and 11.0 billion Θ-BFACF moves in parallel are discarded. The values estimated for

N∗
max in both of these scenarios are consistent with the values estimated for N∗

max when no

data is burned. Therefore the estimates for N∗
max used in Chapter 5 are N̂max(φ) = 3300,

N̂max(φ, f) = 3300, N̂max(φ, s) = 3300, N̂max(φ|φ, s) = 3300, N̂max(31|φ, s) = 2000, and

N̂max(41|φ, s) = 600.
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Figure 4.18: The estimated relative error associated with the estimated
proportion of (2n)-edge Θ-SAPs that are a figure 8 given a successful strand
passage and are generated in Replication r. The horizontal line represents
where the estimated relative error is five percent higher than the minimum
(over all ten replications) estimated relative error.

Table 4.18: The estimates for N∗
max for each of the 10 replications.

Replication r N̂
(r)
max(φ, f) N̂

(r)
max(φ|φ, s) N̂

(r)
max(31|φ, s) N̂

(r)
max(41|φ, s)

1 3900 3300 2000 700

2 3900 3300 2200 600

3 4100 3400 2100 700

4 3900 3400 2500 600

5 4100 3300 2500 700

6 3700 3300 2200 700

7 4000 3400 2100 600

8 4100 3400 2400 600

9 4100 3300 2200 600

10 4100 3700 2200 800
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4.8 In Summary

This chapter provided a technique for estimating the time it takes a composite Markov

chain to reach its stationary distribution and a technique for measuring the correlation

that exists between the states of a composite Markov chain. The also chapter provides

measures for determining the reliability and the consistency of the data that was generated

from a composite Markov chain.

The above techniques and methods were illustrated with applications to the CMC Θ-

BFACF data. Each replication in the data set consisted of 9.6×1010 time steps (8.0×1010

Θ-BFACF moves in parallel and 1.6 × 1010 attempted swaps) where every five Θ-BFACF

moves in parallel are followed by an attempted swap. The realization in the r’th replication

consisted of a sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ(φ)

)14
and this sequence

was denoted

ω(r) :=
((
ω

(r)
t (1), ω

(r)
t (2), ..., ω

(r)
t (14)

)
, t = 0, ..., 9.6 × 1010

)
. (4.182)

Data was collected after every 1000’th Θ-BFACF in parallel (but before the corresponding

attempted swap) and the corresponding sample was denoted by

ω̂(r) :=
((
ω̂

(r)
j (1), ω̂

(r)
j (2), ..., ω̂

(r)
j (14)

)
, j = 0, ..., l

)
, (4.183)

the sequence of 14-tuples of SAPs sampled from Replication r, where l := ⌊t0/1200⌋ =

80, 000, 000, and, for t := 1200j, the j’th term (for 1 ≤ j ≤ l) of ω̂(r) is given by

(
ω̂

(r)
j (1), ω̂

(r)
j (2), ..., ω̂

(r)
j (14)

)
:=
(
ω

(r)
t (1), ω

(r)
t (2), ..., ω

(r)
t (14)

)
. (4.184)

Applying the technique to determine the time it took each replication to reach its sta-

tionary distribution yielded τ̂exp = 5.0 billion Θ-BFACF moves in parallel, that is after 5.0

billion Θ-BFACF moves in parallel, each replication appeared to have reached its station-

ary distribution. Applying the technique to determine the correlation that exists between

the states generated in each replication yielded τ̂int = 0.6 billion Θ-BFACF moves in par-

allel. Hence states that are 1.2 billion Θ-BFACF moves in parallel apart are essentially

independent and data that is subdivided into blocks of 1.2 million consecutive data points

form essentially independent blocks of data. These estimates for τexp and τint will be

used throughout the rest of this work. Consequently, before any data are burned, each

202



replication can be subdivided into 66 essentially independent blocks of data and hence,

if the data from all ten replications are combined, there are 660 essentially independent

blocks of data which can be used in any subsequent analysis. If 5.0 million data points

are burned, then each replication consists of 62 essentially independent blocks of data,

and hence, there are 620 essentially independent blocks of data (if the data from all ten

replications are combined) available for any subsequent analysis.

The next portion of the preliminary analysis consisted of a verification of the accuracy

and reliability of the CMC Θ-BFACF data. From a comparison of the average lengths of

the unknotted Θ-SAPs generated in each of the fourteen chains to the average lengths of

the unknotted SAPs generated in the fourteen chains characterized by the same fugacities

used in the CMC Θ-BFACF simulation (as presented in [121]), it was concluded that the

average lengths were in agreement and behaved as expected. Further, the average lengths

of the property ∗ Θ-SAPs generated in each of the fourteen chains exhibited the behaviours

expected as given by Approximations (4.101) and (4.102) thus supporting the data was

generated from the correct distribution. For the final verification presented, recall that in

Chapter 2, it was proved that, for all ∗ ∈ Φ, κ∗φ = κφ and it was conjectured that (assuming

both Consequences 2.2.8 and 2.2.9 are true) αφ − 2 = αΘ
∗ . The final verification presented

in this chapter was included as a method for checking the consistency of the data generated

by using the data generated to verify that κ∗φ = κφ and to determine if the data supported

the Consequence 2.2.8, that is αφ−2 = αΘ
∗ . The estimate for eκ

∗
φ (4.6836) computed based

on the CMC data is exactly the value estimated for eκφ estimated by Orlandini et al. [125].

The estimate computed for αΘ
φ ≈ −1.78 is completely consistent with Consequence 2.2.8

since Orlandini et al. [125] estimated αφ ≈ 0.23.

The final discussion in the chapter applied the technique for determining which data

generated is reliable data. The analysis of the simulation data concluded that all property

∗ Θ-SAPs generated whose lengths are less than or equal to N̂max(∗) can be considered

reliable. The following estimates for N̂max(∗) are obtained: N̂max(φ) = 3300, N̂max(φ, f) =

3300, N̂max(φ, s) = 3300, N̂max(φ|φ, s) = 3300, N̂max(31|φ, s) = 2000, and N̂max(41|φ, s) =

600. These estimates for N̂max(∗) will be used in Chapter 5. The estimates for N∗
max that

are required in Chapters 6 and 7 are presented in those chapters respectively.
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Chapter 5

A New Maximum Likelihood Estimation Technique

for a CMC

The first section of the chapter provides a brief review of some notation, definitions,

and results that will be required throughout the chapter with the goal being to obtain a

point estimate and an associated (1 − α) · 100% confidence interval for some parameter

of interest. The next section provides a method for estimating how many time steps a

simulation must be run (once in equilibrium) in order to obtain a particular (1−α) · 100%
margin of error associated with a parameter of interest. The third section details a new

technique developed by the author to compute maximum likelihood estimates (which is

defined in Definition 5.1.2) for parameters of interest based on data generated by the CMC

Θ-BFACF Algorithm. The following section outlines a method for determining the reliable

data that is required in the statistical analysis presented at the ends of Chapters 5 and

6, and throughout the discussions in Chapter 7. The chapter concludes by applying the

new maximum likelihood technique to the data generated and providing the estimates that

result from the application.

5.1 (1 − α) · 100% Confidence Intervals Based on Maximum

Likelihood Estimates

The purpose of this section is two-fold. The section provides an outline for determining a

point estimate and a (1 − α) · 100% confidence interval based on an i.i.d. sample and the

likelihood function (defined in Definition 5.1.2). The second purpose of the section is to

introduce the notation and results that will be needed throughout the chapter. To this end,

suppose that the random variables X1,X2, ...,Xn have the same unknown distribution P

from a parametric family of distributions, where each distribution in the parametric family

204



is completely determined by a finite k-dimensional real-valued parameter Ξ = (Ξ1, ..,Ξk) ∈
R

k. The set, denoted Ω, of all possible values of the parameter Ξ is called the parameter

space. When a particular value from Ω is assigned to Ξ, the notation Ξ = θ will be used.

In order to provide an example of a parametric family of distributions, suppose that

W is a randomly chosen self-avoiding polygon from PΘ(φ) that was chosen according to

the probability mass function {π̆ω(q, z), ω ∈ PΘ(φ)} where

π̆ω(q, z) :=
|ω|q−1 (|ω| − 6)z|ω|∑

n≥7

pΘ
2n(φ)(2n)q−1(2n − 6)z2n

, (5.1)

(as defined and discussed in Section 2.2.2), q is a given fixed positive integer, and z < zφ is

a fixed real value. Also, recall from Section 2.61 that the probability that W is a (2n)-edge

SAP from PΘ(φ) is given by

π̆2n(q, z) =
(2n)q−1(2n − 6)pΘ

2n(φ)z2n

∑

m≥7

pΘ
2m(φ)(2m)q−1(2m− 6)z2m

, (5.2)

which can be approximated by assuming that, for some fixed positive even integer Nmin ≥
14, for sufficiently large n ≥ Nmin/2, there exist constants AΘ

φ , µφ, h
Θ
φ , and αΘ

φ such that

pΘ
2n(φ) = AΘ

φ µ
2n
φ (2n + hΘ

φ )α
Θ
φ . (5.3)

The corresponding parametric family of discrete distributions for a fixed positive even

integer Nmin and fixed real values z, and hΘ
φ , is given by the set of probability mass

functions, ℘(hΘ
φ , z,Nmin), where

℘(hΘ
φ , z,Nmin) :=

{
π(AΘ

φ , κφ, α
Θ
φ , Q|hΘ

φ , z,Nmin)|(AΘ
φ , κφ, α

Θ
φ , Q) ∈ R

4
}
, (5.4)

π(AΘ
φ , κφ, α

Θ
φ , Q|hΘ

φ , z,Nmin) :=
(
π2m(AΘ

φ , κφ, α
Θ
φ , h

Θ
φ , z,Nmin, Q), 7 ≤ m ∈ N

)
, (5.5)

and

π2m(AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , z,Nmin, Q)

:=

(
I[14,Nmin)(2m)

)
Q

Q+
∑

n≥Nmin/2

AΘ
φ (2n − 6)(2n)q−1(2n+ hΘ

φ )α
Θ
φ (eκφz)2n

+

(
I[Nmin,∞)(2m)

) [
AΘ

φ (2m− 6) (2m)q−1 (2m+ hΘ
φ )α

Θ
φ (eκφz)2m

]

Q+
∑

n≥Nmin/2

AΘ
φ (2n− 6)(2n)q−1(2n + hΘ

φ )α
Θ
φ (eκφz)2n

. (5.6)
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Unless otherwise stated, the remainder of the discussion in this section is based on [139],

and, whenever relevant, related to elements in the parametric family ℘(hΘ
φ , z,Nmin).

Another example of a parametric family of distributions is an exponential family of

distributions, which is defined as follows.

Definition 5.1.1 (Schervish, p. 102-103) A parametric family with parameter space Ω

and density (probability mass function) fX|Ξ(x|θ) with respect to a measure ν on (X ,B)

is called an exponential family if

fX|Ξ(x|θ) = c(θ)h(x) exp

{
k∑

i=1

gi(θ)ti(x)

}
, (5.7)

for some ν-measurable functions g1, g2, ..., gk , t1, t2, ..., tk and some integer k.

The parametric family ℘(hΘ
φ , z,Nmin), as defined by Equation (5.4), is an example of

an exponential (parametric) family because, for a fixed positive even integer Nmin and for

fixed real values z and hΘ
φ , the components of each element from ℘(hΘ

φ , z,Nmin) can be

rewritten in the form given by Equation (5.7), that is π2m(AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , z,Nmin, Q) can

be written as

π2m(AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , z,Nmin, Q) = c(θ)h(2m) exp

{
k∑

i=1

gi(θ)ti(2m)

}
,

where θ := (AΘ
φ , κφ, α

Θ
φ , Q),

c(θ) := exp

(
− log

[
Q+

∑
n≥Nmin/2

AΘ
φ (2n− 6)(2n)q−1(2n+ hΘ

φ )α
Θ
φ (eκφz)2n

])
, (5.8)

h(2m) := exp
((

I[Nmin,∞)(2m)
)
log
[
(2m− 6) (2m)q−1 z2m

])
, (5.9)

and

exp

{
k∑

i=1

gi(θ)ti(2m)

}
= exp

((
I[Nmin,∞)(2m)

)
logAΘ

φ + κφ

(
I[Nmin,∞)(2m)

)
2m

+ logQ
(
I[14,Nmin)(2m)

)
+ α

(
I[Nmin,∞)(2m)

)
log(2m+ hΘ

φ )
)
.

(5.10)

In addition to the definition of an exponential family of distributions, some more no-

tation is required before the discussion can be continued. Let X1, ...,Xn be i.i.d. random

variables defined on the sample space X . Then the sample space of X := (X1,X2, ...,Xn)
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is X n. The notation Pθ will be used to denote the element from an exponential family

of distributions associated with Ξ = θ, fixed, and Pθ is distributed over the sample space

X . The notation fXi|Ξ(·|θ) will be used to represent the density function for Pθ if Xi is

continuous and will represent the probability mass function for Pθ if Xi is discrete. Eθ(·)
will be used to denote the expected value taken with respect to the distribution Pθ, where

Ξ = θ is fixed. With this notation established, the following is the definition of a maximum

likelihood estimator (MLE) of the parameter Ξ.

Definition 5.1.2 ([139], p. 307) Let X := (X1,X2, ...,Xn) be a random vector where

the Xi are i.i.d. random variables with density function (probability mass function)

fXi|Ξ(·|θ). Suppose that X = x is observed. Then the function L(θ|X = x) := fX|Ξ(x|θ),

where

fX|Ξ(x|θ) :=

n∏

i=1

fX1|Ξ(xi|θ), (5.11)

is considered a function of θ for fixed x and is called the likelihood function. Any random

vector Ξ̂(X) such that

max
θ∈Ω

fX|Ξ(X|θ) = fX|Ξ(X |Ξ̂(X)) (5.12)

is called a maximum likelihood estimator (MLE) of Ξ. If no such vector Ξ̂(X) can be

found, the maximum likelihood estimator is said to not exist. A maximum likelihood

estimate for Ξ is any value θ̂, after observing X = x, for which the likelihood function

L(θ|X = x) attains a maximum, that is Ξ̂(x) = θ̂.

Let Ξ̂n(X), assuming it exists, be the MLE of Ξ based on X := (X1,X2, ...,Xn). To

form simultaneous (1 − α) · 100% confidence intervals for the components of Ξ, Ξ̂n(X)

must exist and the distribution of each of the components of Ξ̂n(X) (under the assumed

distribution Pθ, where Ξ = θ is fixed) must be known. The next theorem addresses both

of these issues when the Xi are conditionally i.i.d. given Ξ = θ and a non-degenerate

exponential family of distributions.

Theorem 5.1.1 ([139], p. 419) Suppose that {Xi}∞i=1 are conditionally i.i.d. given Ξ =

θ with a non-degenerate exponential family distribution whose density with respect to a

measure ν has the form of Equation (5.7). Suppose that the natural parameter space

for θ is Ω, an open subset of Rk. Let Ξ̂n(X), if it exists, be the MLE of Ξ based on

X := (X1,X2, ...,Xn). Then
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1. lim
n→∞

Pθ(Ξ̂n(X) exists) = 1, and

2. under Pθ,
√
n
(
Ξ̂n(X) − θ

)
D→ Nk

(
0, [IX(θ)]−1

)
, where IX(θ) is the Fisher Infor-

mation Matrix.

Before defining the Fisher Information matrix, the Fisher Information regularity con-

ditions are required and hence are stated next.

Definition 5.1.3 ([139], p. 111) Suppose that Ξ is k-dimensional and that fX|Ξ(x|θ)

is the density of X with respect to some measure ν. Then the following three conditions

are referred to as the Fisher Information regularity conditions:

1. There exists some B with ν(B) = 0 such that for all θ,
∂

∂θi
log
(
fX|Ξ(x|θ)

)
exists for

x /∈ B and each i.

2.
∫
X|Ξ fX|Ξ(x|θ)dν(x) can be differentiated under the integral sign with respect to each

coordinate of θ.

3. The set C = {x : fX|Ξ(x|θ) > 0} is the same for all θ.

With the Fisher Information regularity conditions specified, the Fisher Information

Matrix can be defined.

Definition 5.1.4 ([139], p. 111) Assuming that the Fisher Information regularity con-

ditions hold, then the matrix,

IX(θ) = (IX,i,j(θ)) (5.13)

where the elements IX,i,j(θ) are defined by

IX,i,j(θ) = Covθ

(
∂

∂θi
log
(
fX|Ξ(X |θ)

)
,
∂

∂θj
log
(
fX|Ξ(X|θ)

))
, (5.14)

is called the Fisher Information Matrix about Ξ based on X1. The random vector, whose

coordinates are
∂

∂θi
log
(
fX|Ξ(X|θ)

)
, is called the score function.

The next theorem states the conditions under which the elements of the Fisher Infor-

mation Matrix via the expectation (with respect to Pθ) of the second partial derivatives

of the logarithm of the likelihood function fX|Ξ(x|θ) can be computed.

Theorem 5.1.2 ([139], p. 112-113) If

1. the Fisher Information regularity conditions hold;

2. the second derivative of fX|Ξ(x|θ) exists and is finite; and
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3.
∫
fX|Ξ(x|θ)dν(x) can be differentiated TWICE under the integral sign with respect to

each coordinate of θ,

then

IX,i,j(θ) = −Eθ

[
∂2

∂θi∂θj

(
log
(
fX|Ξ(X|θ)

))]
. (5.15)

Theorem 5.1.2 provides a second method for calculating the Fisher Information Matrix

when conditions (1)-(3) of the theorem hold. In the case of an exponential family of

distributions with the natural parameterization, Equation (5.15) reduces to

IX,i,j(θ) = − ∂2

∂θi∂θj
(log c (θ))) . (5.16)

Because, for a fixed positive even integer Nmin and for fixed real values z and hΘ
φ ,

℘(hΘ
φ , z,Nmin) is an exponential parametric family of distributions, Theorems 5.1.1 and

5.1.2 applies to the distributions in ℘(hΘ
φ , z,Nmin). Hence Part (1) of Theorem 5.1.1 implies

that asymptotically Ξ̂n(X) exists (with probability 1.0) and the components of Ξ̂n(X), it

exists, are asymptotically normally distributed. The conclusion of Theorem 5.1.2 yields

that the components of the Fisher Information Matrix based on ℘(hΘ
φ , z,Nmin) are simply

the second partial derivatives of log[Q+
∑

n≥Nmin/2

AΘ
φ (2n−6)(2n)q−1(2n+hΘ

φ )α
Θ
φ (eκφz)2n]−1

with respect to each of Q,AΘ
φ , κφ, and αΘ

φ .

But suppose {Xi}∞i=1 are conditionally i.i.d. given Ξ = θ and their distribution is not in

an exponential family of distributions but from some other parametric family of distribu-

tions. For example, if hΘ
φ in Equation (5.6) is considered a parameter, not an a priori fixed

constant, then ℘(hΘ
φ , z,Nmin) is no longer an exponential family of distributions. The next

theorem states when the MLEs for a non-exponential parametric family of distributions

are asymptotically normal.

Theorem 5.1.3 ([139], P. 421) Let Ω be a subset of Rk, and suppose {Xi}∞i=1 are con-

ditionally i.i.d. given Ξ = θ, each with a density fX1|Ξ(·|θ). Let Ξ̂n(X), if it exists, be

the MLE of Ξ based on X := (X1,X2, ...,Xn). Assume that:

1. Ξ̂n(X)
P→ θ, under Pθ for all θ;

2. fX1|Ξ(x|θ) has continuous second partial derivatives with respect to θ and that differ-

entiation can be passed under the integral sign;

3. there exists Hr(x, y) such that, for each θ0 ∈ interior(Ω) and each k, j,

sup
||θ−θ0||≤r

∣∣∣∣
∂2

∂θk∂θj
log fX1|Ξ(x|θ0) −

∂2

∂θk∂θj
log fX1|Ξ(x|θ)

∣∣∣∣ ≤ Hr(x,θ0), (5.17)

209



with

lim
r→0

Eθ0(Hr(Xi,θ0)) = 0; (5.18)

and

4. the Fisher Information Matrix IX(θ) is finite and non-singular.

Then, for each θ0 ∈ interior(Ω), under Pθ0 ,

√
n
(
Ξ̂n(X) − θ0

)
D→ Nk

(
0, [IX(θ0)]

−1
)
. (5.19)

The upshot of Theorem 5.1.3 is that as long as:

1. the MLE Ξ̂n(X) exists (Assumption (1) of the theorem) for a particular parametric

family that has certain smoothness properties (Assumptions (2) and (3) of the theorem);

2. the second derivatives are bounded by a function satisfying limr→0 Eθ0(Hr(Xi,θ0)) = 0

for each θ0 ∈ interior(Ω); and

3. the Fisher Information Matrix IX(θ) is finite and non-singular,

then the distribution of the components of Ξ̂n(X) are asymptotically normal.

Suppose {Xi}∞i=1 are conditionally i.i.d. given Ξ = θ and their distribution is from

℘(hΘ
φ , z,Nmin) in which hΘ

φ is now considered a parameter, that is from
⋃
hΘ

φ

℘(hΘ
φ , z,Nmin).

Then Theorem 5.1.3 implies that the MLEs for this parametric family of distributions are

asymptotically normal because the four assumptions required for Theorem 5.1.3 to apply

are expected to be true for ℘(hΘ
φ , z,Nmin). Specifically:

1. Assumptions (1), (2), and (4) follow from the fact that ℘(hΘ
φ , z,Nmin) is an exponen-

tial parametric family for fixed (but arbitrary) hΘ
φ in Equation (5.6)

2. Schervish [139] shows that if the derivatives in Assumption (3) of Theorem 5.1.3 can

be differentiated with respect θ and the derivatives have a finite mean, then a function

Hr(Xi,θ0) such that limr→0 Eθ0(Hr(Xi,θ0)) = 0 for each θ0 ∈ interior(Ω) exists.

The derivatives required in Assumption (3) are provided in Section A.6 of Appendix

A. Note that each of the derivatives in Section A.6 of Appendix A is differentiable at

the estimated values of κφ, α
Θ
φ , Q, and hΘ

φ . Also note that the author has numerically

verified that each of these required derivatives has a finite mean when evaluated at

the estimated values of κφ, α
Θ
φ , Q, and hΘ

φ .

For a particular parametric family that has certain smoothness properties (which are

either the Fisher Information regularity conditions if the parametric family is an exponen-
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tial family or Assumptions (2) and (3) of Theorem 5.1.3), the information stored in the

Fisher Information matrix is a measure of how much information a data set provides about

a given parameter. The conclusion of both Theorem 5.1.1 and Theorem 5.1.3 indicates

that the distribution of
√
n
(
Ξ̂n(X) − θ

)
converges to Nk

(
0, [IX(θ)]−1

)
which allows

(1 − α) ·100% simultaneous confidence intervals to be determined for θ using the following

theorem.

Theorem 5.1.4 ([76], p. 192) Let X1,X2, ...,Xn be a random sample from a Nk (µ,Σ)

population where Σ is positive definite. Then, simultaneously for any k-dimensional col-

umn vector ξ, the interval

(
ξtX −

√
p(n− 1)

n(n− p)
Fp,n−p(α)ξtSξ, ξtX +

√
p(n− 1)

n(n− p)
Fp,n−p(α)ξtSξ

)
(5.20)

will contain ξtµ with probability 1−α, where X is the sample mean vector, S is the sample

covariance matrix, and Fp,r(α) is the value of x for which the F -distribution, F (x) with

(p, r) degrees of freedom equals 1 − α.

With the machinery necessary to determine (1 − α) · 100% simultaneous confidence

intervals for parameters of interest in hand, the discussion next turns to determining the

maximum likelihood estimates for the parameters of interest from data generated from a

Monte Carlo simulation. The technique developed in this thesis to determine maximum

likelihood estimates based on a CMC Monte Carlo simulation is based on a method in-

troduced by Berretti and Sokal [7] that uses the results of a Monte Carlo simulation to

compute the maximum likelihood estimates for some parameters of interest. They also

developed a technique to determine, a priori, error estimates for the parameters of interest

and how to use these a priori error estimates in combination with an estimate for τexp

to determine how long a simulation must be run to ensure a certain error margin for the

parameter estimates. Before the new technique for determining maximum likelihood es-

timates based on CMC Monte Carlo data is presented, Berretti and Sokal’s method for

determining a priori error estimates and obtaining an estimate for τexp will be discussed

next.
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5.2 How Long is Long Enough?

Given an error tolerance δ > 0 and starting in the equilibrium distribution, how long

should the simulation be run in order to obtain a (1−α) · 100% confidence interval (whose

half width is δ) for some parameter appearing in the probability mass function? The

following is one method for determining this a priori estimate for the simulation length.

This method is based on the method presented in [7] is demonstrated using the probability

mass function πz := πz(κ, γ,Nmin) := (π2m(κ, γ|Nmin, z), Nmin/2 ≤ m ∈ N) , where z, κ,

and γ are fixed real values, Nmin is a fixed positive even integer, and

π2m(κ, γ|Nmin, z) :=
(2m)γ−1 (eκz)2m

∑
n≥Nmin/2

(2n)γ−1 (eκz)2n . (5.21)

Suppose that the SAPs W1, ...,WT are i.i.d. with probability mass function as given by

Equation (5.21) and respective lengths N1, ..., NT , where Ni ≥ Nmin for all i ∈ {1, .., T}.
Then, for fixed Ξ = θ := (κ, γ), the likelihood of observing the random sequence NT =

{N1, ..., NT } is given by

fXT |Ξ(NT |κ, γ) =
∏

1≤t≤T

Nγ−1
t (eκz)Nt

∑
n≥Nmin/2

(2n)γ−1 (eκz)2n , (5.22)

and the Fisher Information Matrix determined using the above likelihood function with

θ = (κ, γ) is

INT
(κ, γ) = −E




∂2 log fXT |Ξ(NT |κ,γ)

∂κ2

∂2 log fXT |Ξ(NT |κ,γ)

∂γ∂κ
∂2 log fXT |Ξ(NT |κ,γ)

∂γ∂κ

∂2 log fXT |Ξ(NT |κ,γ)

∂γ2


 (5.23)

=


 −varπz (N 1|N1≥ Nmin) − covπz (N 1, logN1|N1≥ Nmin)

− covπz (N1, logN1|N1≥ Nmin) − varπz ( logN1|N 1≥ Nmin)


 .

(5.24)

The inverse of the Fisher Information Matrix is

I−1
NT

(κ, γ)

=
1

det [IN1(κ, γ)]


 − varπz ( logN1|N1≥ Nmin) covπz (N1, logN1|N 1≥ Nmin)

covπz (N1, logN1|N1≥ Nmin) −varπz (N1|N1≥ Nmin)


 .

(5.25)
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Theorem 5.1.1 and Theorem 5.1.4 imply that, if the half widths of the (1 − α) · 100%

simultaneous confidence intervals for κ and γ are denoted δκ and δγ , respectively, and

fixed, then

δκ =

√
2(T − 1)

T − 2
F2,T−2(α)

√
− varπz(logN1|N1 ≥ Nmin)

T det [INT
(κ, γ)]

(5.26)

and

δγ =

√
2(T − 1)

T − 2
F2,T−2(α)

√
− varπz(N1|N1 ≥ Nmin)

T det [INT
(κ, γ)]

(5.27)

where Fp,t(α) is the value of x for which the F -distribution, F (x), with (p, t) degrees

of freedom equals 1 − α. Since, in Equations 5.26 and 5.27, T represents the number of

independent data points, a value of T, denoted T̂ , that makes the following two inequalities

true is required:
√√√√ 2(T̂ − 1)

T̂
(
T̂ − 2

)F2,T̂−2(α)

√
− var

πz(θ̂,Nmin)(logN1|N1 ≥ Nmin)

det [INT
(κ̂, γ̂)]

≤ δκ (5.28)

and √√√√ 2(T̂ − 1)

T̂
(
T̂ − 2

)F2,T̂−2(α)

√
− var

πz(θ̂,Nmin)(N1|N1 ≥ Nmin))

det [INT
(κ̂, γ̂)]

≤ δγ , (5.29)

where θ̂ := (κ̂, γ̂) is a fixed a priori guess for θ and
− var

πz(θ̂,Nmin)(logN1|N1 ≥ Nmin)

det [INT
(κ̂, γ̂)]

and

− var
πz(θ̂,Nmin)(N1|N1 ≥ Nmin))

det [INT
(κ̂, γ̂)]

are computed using the a priori guess θ̂. Then, given θ̂,

T̂ is the number of independent data points that need to be generated to ensure that the

half widths of the (1 − α) ·100% simultaneous confidence intervals for κ̂ and γ̂ are no wider

than δκ and δγ .

If the data is generated from a MCMC experiment, the best that can be done is to

generate T̂ essentially independent data points. In order to make the assumption that

sampling starts from the equilibrium distribution, a technique for estimating τexp, such as

the one discussed in Section 4.3.1, must be implemented. Then, given the estimate τ̂exp,

as discussed in [142] and Section 4.7.1, after approximately τ̂exp time steps, the amount of

time between essentially independent data points is approximately
τ̂exp

10
, assuming

τexp ≈ 20τint. (5.30)

Consequently, in order to obtain a sample of T̂ essentially independent data points, a

MCMC experiment of length

τ̂exp + T̂ · τ̂exp

10
=
τ̂exp

10

(
10 + T̂

)
(5.31)
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needs to be implemented. Note that this technique was not used in this work to initially

estimate the length of the simulation of the CMC Θ-BFACF algorithm. The technique

is solely provided for the sake of the completeness of the overall method that this thesis

represents.

The next section discusses how to implement maximum likelihood estimation based on

T̂ essentially independent data points generated from a composite Markov chain simulation.

5.3 CMC Maximum Likelihood Estimation

In [7], a method (to be referred to as the Berretti-Sokal MC MLE Method in this work)

was proposed for obtaining maximum likelihood estimates for κ (as defined by Theorem

1.3.1) and γ (where γ is the critical exponent in the asymptotic form for the number of

SAWs of length n, that is cn ∼ A0e
κnnγ−1) from a Markov Chain Monte Carlo simulation

consisting of several independent sample paths. Refer to Section A.1 of Appendix A for

the details of the Berretti-Sokal MC MLE Method. A new modification of this method

for the case that the Markov Chain data comes from a composite Markov chain sample

path is presented next.

Though this work focuses on SAPs in Z3, the approach can be extended to other sample

spaces where the asymptotic probability mass function falls in a parametric family whose

elements, for a fixed positive even integer Nmin and fixed real values hΘ
φ and z, have the

form
(
π2m(AΘ

φ , κφ, α
Θ
φ , h

Θ
φ , z,Nmin, Q),m ≥ 7

)
where

π2m(AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , z,Nmin, Q)

=

(
I[14,Nmin)(2m)

)
Q

Q+
∑

n≥Nmin/2

AΘ
φ (2n − 6)(2n)q−1(2n + hΘ

φ )α
Θ
φ (eκφz)2n

+

(
I[Nmin,∞)(2m)

) [
AΘ

φ (2m− 6) (2m)q−1 (2m+ hΘ
φ )α

Θ
φ (eκφz)2m

]

Q+
∑

n≥Nmin/2

AΘ
φ (2n− 6)(2n)q−1(2n + hΘ

φ )α
Θ
φ (eκφz)2n

. (5.32)

The remainder of this section is dedicated to developing a maximum likelihood technique

to estimate the parameters AΘ
φ , κφ, α

Θ
φ , h

Θ
φ , and Q in π2m(AΘ

φ , κφ, α
Θ
φ , h

Θ
φ , z,Nmin, Q) given

above using a sample generated from a CMC. To this end, the remainder of the discussion

first defines the log-likelihood function for the desired random sample. The derivatives with

respect to each of the parameters are then computed . Finally values for the parameters
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that simultaneously make each of the derivatives zero are determined. These values are

the desired maximum likelihood estimates.

In order to define the log-likelihood function required for the CMC Maximum Likelihood

Technique, the following definitions and notations are required. Let S be a given subset

of the set of all SAPs in Z
3 that are rooted at the origin and consider any fixed non-empty

subset S ∗ ⊆ S . Then S ∗ := S − S ∗. ω ∈ S is said to have property ∗ if and only if

ω ∈ S ∗. Now define sn to be the number of n-edge SAPs in S ; s∗n to be the number of

n-edge SAPs in S ∗; and s∗n to be the number of n-edge SAPs in S ∗. Note that

sn = s∗n + s∗n. (5.33)

Finally assume that there exists (κs, αs, hs, As), (κ∗, α∗, h∗, A∗), (κ∗, α∗, h∗, A∗) ∈ R
4 and

a positive even integer N∗
min such that

sn = As(n+ hs)
αsenκs , (5.34)

s∗n = A∗(n+ h∗)
α∗enκ∗ , (5.35)

and

s∗n = A∗(n+ h∗)
α∗enκ∗ (5.36)

for all n ≥ N∗
min.

Given a fixed real value β and a fixed polynomial function w(n), let ω be a random

element from S chosen according to the probability mass function

(π̆ω(∗, β,N∗
min, N

∗
max), ω ∈ S ) , (5.37)

where

π̆ω(∗, β,N∗
min, N

∗
max) := Pr(W = ω) :=

w(|ω|)eβ|ω|
∞∑

n=0

w(2n)s2ne2βn

. (5.38)

Then given any even positive integers N∗
min < N∗

max, π̆ω(∗, β,N∗
min, N

∗
max) can be rewritten

as

π̆ω(∗, β,N∗
min, N

∗
max)

:= I〈1〉(|ω|)


 ∑

n<N∗
min

w(n)sne
βn

Q̆(β)


+ I〈2〉(|ω|)ψ∗ (ω)

w(|ω|)s∗|ω|eβ|ω|

Q̆(β)

+ I〈2〉(|ω|) (1 − ψ∗ (ω))
w(|ω|)s∗|ω|eβ|ω|

Q̆(β)
+ I〈3〉(|ω|)

∑

n>N∗
max

w(n)
[
s∗n + s∗n

]
eβn

Q̆(β)
, (5.39)
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where

Q̆(β) :=

∞∑

n=0

w(2n)s2ne
2βn, (5.40)

ψ∗(ω) is defined by Equation (4.166), and for any even positive integer n,

I〈1〉(n) :=





1, if 0 ≤ n < N∗
min

0, otherwise
, (5.41)

I〈2〉(n) :=





1, if N∗
min ≤ n ≤ N∗

max

0, otherwise
, (5.42)

and

I〈3〉(n) :=





1, if n > N∗
max

0, otherwise
. (5.43)

Because Equations (5.34)-(5.36) hold only for n ≥ N∗
min, it makes sense that the

asymptotic (|ω| → ∞) form of π̆ω(∗, β,N∗
min, N

∗
max) should depend on N∗

min, but why

should it depend on N∗
max? To see why, first note that the accuracy of the estimates for

A∗, A∗, κs, ε∗, h∗, α∗, h∗ depends on the accuracy of the estimates for the statistical quanti-

ties 〈·〉T in Equations (5.92)-(5.99). Based on the relative statistical error of the statistical

quantities 〈·〉T in Equations (5.92)-(5.99), there exists a value N∗
max ≥ N∗

min such that for

all n > N∗
max, the relative statistical error of the statistical quantities 〈·〉T in Equations

(5.92)-(5.99) becomes so large that the reliability of the statistical quantities 〈·〉T , and

all functions based on these statistical quantities, becomes questionable at best. Conse-

quently, for all n > N∗
max, the estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤M,

based on the statistical quantities 〈·〉T also become questionable. Therefore it makes sense

that the asymptotic (|ω| → ∞) form of π̆ω(∗, β,N∗
min, N

∗
max) should be defined in such a

manner to take this into account.

Note that from Equations (5.34)-(5.36) the unknown parameters of interest are As, αs,

κs, hs, A∗, A∗, κ∗, κ∗, α∗, α∗, h∗, and h∗. However, for subsets of Θ-SAPs in PΘ(φ), the

relevant κ’s are known to be equal. It is therefore assumed here that κs = κ∗ = κ∗ and

for convenience the parameter set is transformed to

θ = (A∗, A∗, κs, ε∗, h∗, α∗, h∗) ∈ R
7,

where

ε∗ := α∗ − α∗. (5.44)
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Substituting Equations (5.34)-(5.36) into π̆ω(∗, β,N∗
min, N

∗
max) and assuming that κs =

κ∗ = κ∗ yields

π̆ω(∗, β,N∗
min, N

∗
max) ∼ πω(θ|∗, β,N∗

min, N
∗
max), (5.45)

where πω(θ|∗, β,N∗
min, N

∗
max), for fixed even integers N∗

min and N∗
max and fixed

θ = (A∗, A∗, κs, ε∗, h∗, α∗, h∗) ∈ R
7,

is given by

πω(θ|∗, β,N∗
min, N

∗
max) = I〈2〉(|ω|)ψ∗ (ω)

A∗w(|ω|)(|ω| + h∗)
α∗−ε∗e(κs+β)|ω|

Q(β)

+ I〈2〉(|ω|) (1 − ψ∗ (ω))
A∗w(|ω|)(|ω| + h∗)

α∗e(κs+β)|ω|

Q(β)

+ I〈1〉(|ω|)


 ∑

n<N∗
min

w(n)sne
βn

Q(β)




+ I〈3〉(|ω|)
∑

n>N∗
max

w(n) [A∗(n+ h∗)
α∗−ε∗ +A∗(n + h∗)

α∗ ] e(κs+β)n

Q(β)
,

(5.46)

Q(β) := Q〈1〉(β) +Q〈2,3〉(β), (5.47)

ε∗ := α∗ − α∗, (5.48)

Q〈1〉 (β) := Q̃〈1〉(β), (5.49)

Q〈2,3〉 (β) := A∗Q
∗
〈2,3〉 (β) +A∗Q

∗
〈2,3〉 (β) , (5.50)

Q∗
〈2,3〉 (β) :=

∑

n≥N∗
min

w(n) (n+ h∗)
α∗−ε∗ e(κs+β)n, (5.51)

and

Q∗
〈2,3〉 (β) :=

∑

n≥N∗
min

w(n) (n+ h∗)
α∗ e(κs+β)n. (5.52)

Now define

Q〈2〉 (β) := A∗Q
∗
〈2〉 (β) +A∗Q

∗
〈2〉 (β) (5.53)

and

Q〈3〉 (β) := A∗Q
∗
〈3〉 (β) +A∗Q

∗
〈3〉 (β) , (5.54)

where

Q∗
〈2〉 (β) :=

∑

N∗
min≤n≤N∗

max

w(n) (n+ h∗)
α∗−ε∗ e(κs+β)n, (5.55)
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Q∗
〈2〉 (β) :=

∑

N∗
min≤n≤N∗

max

w(n) (n+ h∗)
α∗ e(κs+β)n, (5.56)

Q∗
〈3〉 (β) :=

∑

n>N∗
max

w(n) (n+ h∗)
α∗−ε∗ e(κs+β)n, (5.57)

and

Q∗
〈3〉 (β) :=

∑

n>N∗
max

w(n) (n+ h∗)
α∗ e(κs+β)n. (5.58)

Finally define π̆N,K(∗, β,N∗
min, N

∗
max) to be the probability that a randomly chosen

polygon W with probability mass function given by Equation (5.39) has length |W | = N

and property K := ψ∗(W ). Then the probability that a randomly chosen M -tuple of

polygons (W1,W2, ...,WM ) in which Wi has probability mass function given by Equation

(5.39) and has length |Wi| = Ni and property Ki := ψ∗(Wi) is given by

π̆N,K(∗,β, N∗
min, N

∗
max) :=

M∏

i=1

π̆Ni,Ki
(∗, βi, N

∗
min, N

∗
max), (5.59)

where N := (N1, ..., NM ), K := (K1, ...,KM ), and for i ∈ {1, ...,M} , Ni is an even positive

integer and Ki ∈ {0, 1}. Then, for NT = {N (t), t = 1, ..., T} and KT = {K(t), t = 1, ..., T},
independent sequences of random vectors with joint distribution π̆N,K and for fixed θ =

(A∗, A∗, κs, ε∗, h∗, α∗, h∗) ∈ R7, the likelihood of this random sample is given by

f̆XT
(NT ,KT ) =

T∏

t=1

π̆
N(t),K(t)(∗,β, N∗

min, N
∗
max), (5.60)

and hence the log-likelihood of this random sample is

log f̆XT
(NT ,KT ) =

T∑

t=1

M∑

i=1

log π̆
N

(t)
i ,K

(t)
i

(∗, βi, N
∗
min, N

∗
max). (5.61)

Substituting Equation (5.46) into the log-likelihood for the random sample (NT ,KT )
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given by Equation (5.61) yields

log fXT |Ξ(NT ,KT |θ)

:=

T∑

t=1

M∑

i=1

log

(
A∗w(N

(t)
i )(N

(t)
i + h∗)

α∗−ε∗e(κs+βi)N
(t)
i

Q(βi)
I〈2〉(N

(t)
i )K

(t)
i

+ I〈2〉(N
(t)
i )

[
1 −K

(t)
i )
] A∗w(N

(t)
i )(N

(t)
i + h∗)

α∗e(κs+βi)N
(t)
i

Q(βi)

+

∑

n<N∗
min

w(n)sne
βin

Q(βi)
I〈1〉(N

(t)
i )

+

∑

n>N∗
max

w(n) [A∗(n+ h∗)
α∗−ε∗ +A∗(|ω| + h∗)

α∗ ] e(κs+βi)n

Q(βi)
I〈3〉(N

(t)
i )


 , (5.62)

which can be rewritten as

log fXT |Ξ(NT ,KT |θ)

= [logA∗]

T∑

t=1

M∑

i=1

I〈2〉(N
(t)
i )K

(t)
i + [logA∗]

T∑

t=1

M∑

i=1

I〈2〉(N
(t)
i )

[
1 −K

(t)
i

]

+ (α∗ − ε∗)

T∑

t=1

M∑

i=1

I〈2〉(N
(t)
i )K

(t)
i log(N

(t)
i + h∗) −

T∑

t=1

M∑

i=1

logQ(βi).

+

T∑

t=1

M∑

i=1

I〈2〉(N
(t)
i )

[
logw(N

(t)
i ) + (κs + βi)N

(t)
i

]

+
T∑

t=1

M∑

i=1

I〈2〉(N
(t)
i )

[
1 −K

(t)
i )
] [
α∗ log(N

(t)
i + h∗)

]

+

T∑

t=1

M∑

i=1

[
I〈1〉(N

(t)
i ) logQ〈1〉(βi) + I〈3〉(N

(t)
i ) logQ〈3〉 (βi)

]
. (5.63)

Now expressing Equation (5.63) in terms of sample averages yields the log-likelihood func-

tion ℓT defined as
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ℓT := T [logA∗]

M∑

i=1

〈
I〈2〉(Ni)Ki

〉
T

+ (α∗ − ε∗)T

M∑

i=1

〈
I〈2〉(Ni)Ki log(Ni + h∗)

〉
T

+ T
M∑

i=1

[〈
I〈2〉(Ni) logw(Ni)

〉
T

+ (κs + βi)
〈
I〈2〉(Ni)Ni

〉
T

]

+ T [logA∗]

M∑

i=1

〈
I〈2〉(Ni) [1 −Ki]

〉
T

+ α∗T
M∑

i=1

〈
I〈2〉(Ni) [1 −Ki] log(Ni + h∗)

〉
T

+ T

M∑

i=1

[〈
I〈1〉(Ni)

〉
T

logQ〈1〉(βi) +
〈
I〈3〉(Ni)

〉
T

logQ〈3〉 (βi)
]

− T
M∑

i=1

logQ(βi), (5.64)

where

〈f(Ni,Ki)〉T =

∑T
t=1 f(N

(t)
i ,K

(t)
i )

T
. (5.65)

In practice Q〈1〉 (βi) , for each 1 ≤ i ≤M, is unknown and hence it can be considered a

parameter in the log-likelihood function ℓT . Therefore, for fixed values of N∗
min and N∗

max

the log-likelihood function ℓT (as defined by Equation (5.64)) can be viewed as a function

of the parameters A∗, A∗, κs, ε∗, h∗, α∗, h∗, Q〈1〉(β1), ..., Q〈1〉(βM ).

To simplify the Fisher Information Matrix, the log-likelihood function ℓT (as defined

by Equation (5.64)) is transformed to be expressed in terms of A∗, A∗, κs, ε∗, h∗, α∗, h∗,

and M new parameters Q̃(βi), for 1 ≤ i ≤M, where

Q̃ (βi) :=
Q〈2,3〉 (βi)

Q〈1〉 (βi) +Q〈2,3〉 (βi)
, for 1 ≤ i ≤M. (5.66)

Under this transformation, for 1 ≤ i ≤M, Q(βi) and Q〈1〉(βi) respectively can be expressed

as

Q(βi) =
Q〈2,3〉 (βi)

Q̃ (βi)
(5.67)

and
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Q〈1〉(βi) = Q〈2,3〉 (βi)

[
1 − Q̃ (βi)

]

Q̃ (βi)
. (5.68)

Also define the new variable A to be

A :=
A∗

A∗
. (5.69)

Substituting Equations (5.67)-(5.69) into Equation (5.64) transforms the log-likelihood

equation given by Equation (5.64) into the following log-likelihood equation:

ℓ̃T := T
M∑

i=1

[〈
I〈2〉(Ni) logw(Ni)

〉
T

+ (κs + βi)
〈
I〈2〉(Ni)Ni

〉
T

]

+ T

M∑

i=1

[
(α∗ − ε∗)

〈
I〈2〉(Ni)Ki log(Ni + h∗)

〉
T

]

+ T

M∑

i=1

α∗

〈
I〈2〉(Ni) [1 −Ki] log(Ni + h∗)

〉
T

+ T

M∑

i=1

logA
〈
I〈2〉(Ni)Ki

〉
T

+ T

M∑

i=1

〈
I〈1〉(Ni)

〉
T

log
[
1 − Q̃ (βi)

]

+ T

M∑

i=1

〈
I〈3〉(Ni)

〉
T

log
[
Q∗

〈3〉 (βi) +AQ∗
〈3〉 (βi)

]

− T

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

[
log
[
Q∗

〈2,3〉 (βi) +AQ∗
〈2,3〉 (βi)

]
− log Q̃ (βi)

]
. (5.70)

Since the realizations of (NT ,KT ) studied here are generated by a Markov Chain

Monte Carlo simulation, the sample averages that are available for the quantities required

in the log-likelihood are not necessarily computed using independent data. Following

the Berretti-Sokal Method (discussed in Section A.1 of Appendix A), to compensate for

the lack of independence in the sample data, the number of essentially independent data

points, T ′, as defined in Section 4.1.2, can be used in place of T in Equation (5.64), to
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form the following modified log-likelihood function ℓ̃′T [7, 11]:

ℓ̃′T := T ′
M∑

i=1

[〈
I〈2〉(Ni) logw(Ni)

〉
T

+ (κs + βi)
〈
I〈2〉(Ni)Ni

〉
T

]

+ T ′
M∑

i=1

[
(α∗ − ε∗)

〈
I〈2〉(Ni)Ki log(Ni + h∗)

〉
T

]

+ T ′
M∑

i=1

α∗

〈
I〈2〉(Ni) [1 −Ki] log(Ni + h∗)

〉
T

+ T ′
M∑

i=1

logA
〈
I〈2〉(Ni)Ki

〉
T

+ T ′
M∑

i=1

〈
I〈1〉(Ni)

〉
T

log
[
1 − Q̃ (βi)

]

+ T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

log
[
Q∗

〈3〉 (βi) +AQ∗
〈3〉 (βi)

]

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

log
[
Q∗

〈2,3〉 (βi) +AQ∗
〈2,3〉 (βi)

]

+ T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

log Q̃ (βi) . (5.71)

Note that the sample averages in ℓ̃′T are still based on all T sample data points and are

given by Equation (5.65).

Now that the log-likelihood function is defined, its derivatives are needed. To find

these derivatives, some notation is needed. By defining

π〈1〉(n, β) :=
w(n)sne

βn

Q〈1〉(β)
, (5.72)

π〈i〉(∗, n, β) :=
w(n)(n + h∗)

α∗−ε∗e(κs+β)n

Q〈i〉(β)
, if i ∈ {2, 3}, (5.73)

π〈i〉(∗, n, β) :=
w(n)(n + h∗)

α∗e(κs+β)n

Q〈i〉(β)
, if i ∈ {2, 3}, (5.74)

π〈2,3〉(∗, n, β) :=
w(n)(n + h∗)

α∗−ε∗e(κs+β)n

Q〈2,3〉(β)
, (5.75)

and

π〈2,3〉(∗, n, β) :=
w(n)(n + h∗)

α∗e(κs+β)n

Q〈2,3〉(β)
, (5.76)

the following expectations can be defined:

Eπβ
[f(N)] :=

∑

n even

f(n)πβ(n, k|θ, N∗
min, N

∗
max, ∗) (5.77)
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E〈1〉 [f(N)|β] :=
∑

n even

[
f(n)I〈1〉(n)

]
π〈1〉(n, β) (5.78)

E∗
〈i〉 [f(N)|β] :=

∑

n even

[
f(n)I〈i〉(n)

]
π〈i〉(∗, n, β), if i ∈ {2, 3}, (5.79)

E∗
〈i〉 [f(N)|β] :=

∑

n even

[
f(n)I〈i〉(n)

]
π〈i〉(∗, n, β), if i ∈ {2, 3}, (5.80)

E∗
〈2,3〉 [f(N)|β] :=

∑

n even

[
f(n)I〈2,3〉(n)

]
π〈2,3〉(∗, n, β), (5.81)

and

E∗
〈2,3〉 [f(N)|β] :=

∑

n even

[
f(n)I〈2,3〉(n)

]
π〈2,3〉(∗, n, β), (5.82)

where, for i, j ∈ {1, 2, 3},

I〈i,j〉(n) :=





I〈i〉(n) + I〈j〉(n), if i 6= j

I〈i〉(n), if i = j.
(5.83)

Further, for i ∈ {2, 3}, define the variances and covariances:

var∗〈i〉 [f(N)|β] := AE∗
〈i〉

[
[f(N)]2 |β

]
−
(
AE∗

〈i〉 [f(N)|β]
)2
, (5.84)

var∗〈i〉 [f(N)|β] := E∗
〈i〉

[
[f(N)]2 |β

]
−
(
E∗
〈i〉 [f(N)|β]

)2
, (5.85)

var∗〈2,3〉 [f(N)|β] := AE∗
〈2,3〉

[
[f(N)]2 |β

]
−
(
AE∗

〈2,3〉 [f(N)|β]
)2
, (5.86)

var∗〈2,3〉 [f(N)|β] := E∗
〈2,3〉

[
[f(N)]2 |β

]
−
(
E∗
〈2,3〉 [f(N)|β]

)2
. (5.87)

Cov∗
〈i〉 [f(N), g(N)|β] := AE∗

〈i〉 [f(N)g(N)|β] −A2 E∗
〈i〉 [f(N)|β] E∗

〈i〉 [g(N)|β] , (5.88)

Cov∗
〈i〉 [f(N), g(N)|β] := E∗

〈i〉 [f(N)g(N)|β] − E∗
〈i〉 [f(N)|β] E∗

〈i〉 [g(N)|β] , (5.89)

Cov∗〈2,3〉 [f(N), g(N)|β] := AE∗
〈2,3〉 [f(N)g(N)|β] −A2 E∗

〈2,3〉 [f(N)|β] E∗
〈2,3〉 [g(N)|β] ,

(5.90)

and

Cov∗
〈2,3〉 [f(N), g(N)|β] := E∗

〈2,3〉 [f(N)g(N)|β] − E∗
〈2,3〉 [f(N)|β] E∗

〈2,3〉 [g(N)|β] . (5.91)

Differentiating ℓ̃′T with respect to A,κs, ε∗, α∗, h∗, h∗, and Q̃(βi), for 1 ≤ i ≤ M , respec-

tively, and defining Q̃ := (Q̃(β1), .., Q̃(βM )) and θ̃ := (A,κs, ε∗, α∗, h∗, h∗) leads to the

following expressions:
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a(θ̃, Q̃) :=
∂ℓ̃′T
∂A

=
T ′

A

M∑

i=1

〈
I〈2〉(Ni)Ki

〉
T

+ T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi)

AQ∗
〈3〉(βi) +Q∗

〈3〉(βi)

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi)

AQ∗
〈2,3〉

(βi) +Q∗
〈2,3〉

(βi)
; (5.92)

g(θ̃, Q̃) :=
∂ℓ̃′T
∂κs

= T ′
M∑

i=1

〈
I〈2〉(Ni)Ni

〉
T

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

[
E∗
〈2,3〉 [Ni|βi] +AE∗

〈2,3〉 [Ni|βi]
]

+ T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

[
E∗
〈3〉 [Ni|βi] +AE∗

〈3〉 [Ni|βi]
]
; (5.93)

r(θ̃, Q̃) :=
∂ℓ̃′T
∂ε∗

= −T ′
M∑

i=1

〈
I〈2〉(Ni)Ki log(Ni + h∗)

〉
T

−AT ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [log (Ni + h∗) |βi]

+AT ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [log (Ni + h∗) |βi] ; (5.94)

f(θ̃, Q̃) :=
∂ℓ̃′T
∂α∗

= −r(θ̃, Q̃) + T ′
M∑

i=1

〈
I〈2〉(Ni) [1 − ψ∗(Ki)] log(Ni + h∗)

〉
T

(5.95)

+ T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [log (Ni + h∗) |βi]

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [log (Ni + h∗) |βi] ; (5.96)

~∗(θ̃, Q̃) :=
∂ℓ̃′T
∂h∗

= (α∗ − ε∗)T
′

M∑

i=1

〈
I〈2〉(Ni)Ki

Ni + h∗

〉

T

− (α∗ − ε∗)AT
′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉

[
(Ni + h∗)

−1 |βi

]

+ (α∗ − ε∗)AT
′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉

[
(Ni + h∗)

−1 |βi

]
; (5.97)
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~∗(θ̃, Q̃) :=
∂ℓ̃′T
∂h∗

= α∗T
′

M∑

i=1

〈
I〈2〉(Ni) [1 −Ki]

Ni + h∗

〉

T

− α∗T
′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉

[
(Ni + h∗)

−1 |βi

]

+ α∗T
′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉

[
(Ni + h∗)

−1 |βi

]
; (5.98)

and

q̃i(θ̃, Q̃) :=
∂ℓ̃′T

∂Q̃ (βi)

= T ′

[
−
〈
I〈1〉(Ni)

〉
T

1 − Q̃ (βi)
+

〈
I〈2,3〉(Ni)

〉
T

Q̃ (βi)

]
, for 1 ≤ i ≤M. (5.99)

In order to use these derivatives to determine estimates that maximize Equation (5.71),

the following system of equations needs to be simultaneously solved.





a(θ̃, Q̃) = 0

g(θ̃, Q̃) = 0

r(θ̃, Q̃) = 0

f(θ̃, Q̃) = 0

~∗(θ̃, Q̃) = 0

~∗(θ̃, Q̃) = 0

q̃i(θ̃, Q̃) = 0, for 1 ≤ i ≤M.

(5.100)

Setting q̃i(θ̃, Q̃) = 0, for each 1 ≤ i ≤ M , and then solving for Q̃ (βi) yields the

following solutions for Q̃ (βi) :

Q̃ (βi) =
〈
I〈2,3〉(Ni)

〉
T
, for 1 ≤ i ≤M. (5.101)

To find maximum likelihood estimates for A,κφ, ε, α∗, h∗, and h∗, a solution to the non-

linear system 



a(θ̃, Q̃) = 0

g(θ̃, Q̃) = 0

r(θ̃, Q̃) = 0

f(θ̃, Q̃) = 0

~∗(θ̃, Q̃) = 0

~∗(θ̃, Q̃) = 0

(5.102)
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needs to be determined using a numerical technique such as Newton-Raphson’s Method

[75]. (Newton-Raphson’s Method is outlined in Section A.2 of Appendix A.)

The upshot of Theorem 5.1.2 from Section 5.1 is that the very derivatives required by

Newton-Raphson’s Method to simultaneously solve the System (5.102) for A,κs, ε∗, α∗, h∗,

and h∗, that is, the second partial derivatives of the modified log-likelihood equation (Equa-

tion (5.71)) with respect toA,κs, ε∗, α∗, h∗, and h∗, are also the derivatives that are required

to estimate the Fisher Information Matrix so that (1 − α) · 100% confidence intervals can

be determined using the maximum likelihood estimates for A,κs, ε∗, α∗, h∗, and h∗. The

second partial derivatives of Equation (5.71) with respect to A,κs, ε∗, α∗, h∗, and h∗ have

been included in Section A.6 of Appendix A.

Note that in addition to the derivatives with respect to A,κs, ε∗, α∗, h∗, and h∗ given by

Equations (A.51) to (A.85) (found in Section A.6 of Appendix A), the Fisher Information

matrix also contains the derivatives of Equations (5.92) to (5.99) with respect to Q̃ (βi) ,

for 1 ≤ i ≤M. Hence in order to determine the standard error for the maximum likelihood

estimates for A,κs, ε∗, α∗, h∗, and h∗, via Theorem 5.1.1, the Fisher Information Matrix

associated with the modified log-likelihood ℓ̃′T needs to be evaluated at the maximum

likelihood estimates for A,κs, ε∗, α∗, h∗, h∗, and Q̃ and the inverse of this estimated Fisher

Information Matrix needs to be computed.

One simplifying consequence of the transformation to Q̃ (βi) , for 1 ≤ i ≤ M, is that,

for 1 ≤ i ≤M,

∂a

∂Q̃ (βi)
=

∂g

∂Q̃ (βi)
=

∂r

∂Q̃ (βi)
=

∂f

∂Q̃ (βi)
=

∂~∗

∂Q̃ (βi)
=

∂~∗

∂Q̃ (βi)
= 0 (5.103)

and that, for 1 ≤ i, j ≤M such that i 6= j,

∂q̃i

∂Q̃ (βj)
= 0. (5.104)

Hence the only non-zero contributions to the Fisher Information Matrix resulting from

derivatives of q̃i(θ̃,Q̃) and derivatives with respect to Q̃ (βi) , for 1 ≤ i ≤M, are

∂q̃i

∂Q̃ (βi)
= T ′


−

〈
I〈1〉(Ni)

〉
T[

1 − Q̃ (βi)
]2 −

〈
I〈2,3〉(Ni)

〉
T[

Q̃ (βi)
]2


 , for 1 ≤ i ≤M. (5.105)

Furthermore, evaluating the derivatives given by Equation (5.105) at the maximum likeli-

hood estimate for Q̃ (βi) , as given by Equation (5.101), reduces the contributions to the
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Fisher Information matrix corresponding to the derivatives given by Equation (5.105) to

∂q̃i

∂Q̃ (βi)

∣∣∣∣∣
Q̃(βi)=〈I〈2,3〉(Ni)〉

T

= T ′

[
− 1〈

I〈1〉(Ni)
〉
T

〈
I〈2,3〉(Ni)

〉
T

]
, for 1 ≤ i ≤M. (5.106)

Denoting the maximum likelihood estimates for θ̃ and Q̃, for a particular value of

N∗
min and N∗

max, by
̂̃
θ(N∗

min, N
∗
max) and

̂̃
Q(N∗

min, N
∗
max) respectively, the Fisher Information

matrix, when evaluated at
̂̃
θ(N∗

min, N
∗
max) and

̂̃
Q(N∗

min, N
∗
max) becomes

IX(
̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max))

=




J(
̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max)) 0 0 · · · 0

0 −
T ′
〈
I〈1〉(N1)

〉−1

T〈
I〈2,3〉(N1)

〉
T

0 · · · 0

0 0
. . . · · · 0

0 0 · · · 0 −
T ′
〈
I〈1〉(NM )

〉−1

T〈
I〈2,3〉(NM )

〉
T




,

(5.107)

where

J(θ̃, Q̃) :=




∂a

∂A

∂a

∂κs

∂a

∂ε∗

∂a

∂α∗

∂a

∂h∗

∂a

∂h∗
∂a

∂κs

∂g

∂κs

∂g

∂ε∗

∂g

∂α∗

∂g

∂h∗

∂g

∂h∗
∂a

∂ε∗

∂g

∂ε∗

∂r

∂ε∗

∂r

∂α∗

∂r

∂h∗

∂r

∂h∗
∂a

∂α∗

∂g

∂α∗

∂r

∂α∗

∂f

∂α∗

∂f

∂h∗

∂f

∂h∗
∂a

∂h∗

∂g

∂h∗

∂r

∂h∗

∂f

∂h∗

∂~∗

∂h∗

∂~∗

∂h∗
∂a

∂h∗

∂g

∂h∗

∂r

∂h∗

∂f

∂h∗

∂~∗

∂h∗

∂~∗

∂h∗




(5.108)

and J(
̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max)) is the Jacobian required by Newton-Raphson’s Method

evaluated at the maximum likelihood estimates
̂̃
θ(N∗

min, N
∗
max) and

̂̃
Q(N∗

min, N
∗
max).

Now for

S(
̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max)) :=

[
IX(

̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max))

]−1

, (5.109)

Theorem 5.1.4 yields the following simultaneous (1 − α) · 100% confidence intervals for

A,κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤M :

[
Â−

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ11
t
, Â+

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ11
t

]
(5.110)
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[
κ̂s −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ22
t
, κ̂s +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ22
t

]
(5.111)

[
ε̂∗ −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ33
t
, ε̂∗ +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ33
t

]
(5.112)

[
α̂∗ −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ44
t
, α̂∗ +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ44
t

]
(5.113)

[
ĥ∗ −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ55
t
, ĥ∗ +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ55
t

]
(5.114)

[
ĥ∗ −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ66
t
, ĥ∗ +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ66
t

]
(5.115)

and
[
̂̃Q (βi) −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ(i+6,i+6)

t
, ̂̃Q (βi) +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ(i+6,i+6)

t

]
(5.116)

where p = M + 6 is the number of parameters being estimated, t is the number of inde-

pendent blocks used to compute the sample averages, Fm,n(α) is the value of x for which

the F -distribution F (x) with (m,n) degrees of freedom, equals 1 − α and ŝii is the i’th

diagonal component of S(
̂̃
θ(N∗

min, N
∗
max),

̂̃
Q(N∗

min, N
∗
max)) [76].

The next section provides a technique for estimating the values of N∗
min (for which the

Equations (5.34)-(5.36) hold) and N∗
max in the probability mass function given by Equation

(5.46).

5.4 How Big is Big Enough?

Given an observed set of polygon lengths, let NL be the length of the smallest polygon

observed and NU be the length of the largest polygon observed. Then how can a value

for N∗
min, where NL ≤ N∗

min < N∗
max ≤ NU , be determined such that Equations (5.35) and

(5.36) hold for all even integers nmin satisfying nmin ≥ N∗
min?

For any even integer nmin such that NL ≤ nmin < N∗
max, denote the maximum likelihood

estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤ M, obtained by solving the

system of nonlinear equations (cf. the system given by Equation (5.100)) with N∗
min = nmin,

respectively as Â(nmin), κ̂s(nmin), ε̂∗(nmin), α̂∗(nmin), ĥ∗(nmin), ĥ∗(nmin), and ̂̃Q (βi) (nmin),

for 1 ≤ i ≤ M . Because the estimates Â(nmin), κ̂s(nmin), ε̂∗(nmin), α̂∗(nmin), ĥ∗(nmin),

ĥ∗(nmin), and ̂̃Q (βi) (nmin), for 1 ≤ i ≤ M are maximum likelihood estimates, they are
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considered the best possible estimates for the unknown parameters in the distribution

π(n,k|∗,θ, nmin, N
∗
max,β). Of all the nmin ∈ [NL, N

∗
max), how is the value of nmin that

best estimates N∗
min be determined, that is how is N∗

min estimated such that Equations

(5.34)-(5.36) hold?

If Equations (5.34)-(5.36) hold, then the estimates Â(nmin), κ̂s(nmin), ε̂∗(nmin), α̂∗(nmin),

ĥ∗(nmin), and ĥ∗(nmin) should not change much for all nmin ≥ N∗
min, that is for nmin ≥ N∗

min

the estimates Â(nmin), κ̂s(nmin), ε̂∗(nmin), α̂∗(nmin), ĥ∗(nmin), and ĥ∗(nmin) should not de-

pend on the value of nmin. Hence the best estimate for N∗
min is expected to be the value

of nmin for which the estimated parameters first appear to be simultaneously constant in

nmin.

One method for identifying where the estimates first appear to be simultaneously con-

stant in nmin is to locate the value of nmin for which the maximum likelihood estimates

do not change much from nmin to nmin + 2. In order to quantify the expression “do not

change much from nmin to nmin + 2”, let

λ := (λ1, ..., λ6) (5.117)

:= (Â(nmin), κ̂s(nmin), ε̂∗(nmin), α̂∗(nmin), ĥ∗(nmin), ĥ∗(nmin)), (5.118)

and define

m
(
λ̂i(nmin)

)
:=
∣∣∣λ̂i(nmin) − λ̂i(nmin + 2)

∣∣∣ , (5.119)

where λ̂i(nmin) is an estimate for λi based on N∗
min = nmin. Then define N̂min(∗)(λi) to

be the first value of nmin for which m
(
λ̂i(n)

)
< ǫλi

for all n ∈ [nmin, N̂max(∗)), where

N̂max(∗) is the estimate for N∗
max, and some a priori fixed ǫλi

> 0. Then the estimate for

N∗
min is defined as

N̂min(∗) := max
i

{
N̂∗

min(λi)
}
. (5.120)

The flat region for the point estimates is defined to be the set {nmin ∈ N : N̂min(∗) ≤
nmin < N̂max(∗)}. Once N∗

min has been estimated, the corresponding estimate λ̂i(N̂min(∗))
is considered to be the best estimate for λi.

Because the maximum likelihood estimates are a function of the estimates for N∗
min and

N∗
max, how do the estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) depend on the estimates

for N∗
min and N∗

max. The next section provides a method for estimating how the estimates

vary depending on the estimates for N∗
min and N∗

max.
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5.5 Systematic Error in MLEs

Since the maximum likelihood estimates depend on N∗
min and N∗

max, a measure of the

influence of N∗
min and N∗

max on the estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) can be

obtained from estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) determined using various

values of N∗
min and N∗

max. This influence will provide one contribution to an estimate for

the systematic error for the maximum likelihood estimates, that is the error that results

from choosing estimates for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) based on a fixed value for

N∗
min and N∗

max.

Suppose λ is one of the parameters estimated using the maximum likelihood technique

in Section 5.3 and that its estimate, λ̂(N̂min(∗), N̂max(∗)), has been determined via the

techniques discussed in Sections 4.6 and 5.4. For the estimates N̂min(∗) and N̂max(∗), let

ν̂λ be the maximum deviation of the estimates λ̂(nmin, N̂max(∗)) from the best estimate

λ̂(N̂min(∗), N̂max(∗)), that is

ν̂λ := max

n : NL ≤ nmin < NU ,

nmin is even

∣∣∣λ̂(N̂min(∗), N̂max(∗)) − λ̂(nmin, N̂max(∗))
∣∣∣ , (5.121)

where NL is the minimum length of unknotted self-avoiding polygon observed in the data

set and NU is the first value of nmin greater than N̂min(∗) such that m
(
λ̂i(nmin)

)
> ǫλ,

the value used in Section 5.4 to estimate N∗
min. Then the estimated systematic error in the

estimate for λ is denoted ξ̂ (λ) and defined to be

ξ̂ (λ) := max
{
ǫλ, ν̂λ,

∣∣∣λ̂(N̂min(∗), N̂max(∗)) − λ̂(N̂min(∗),∞)
∣∣∣
}
. (5.122)

Note that ξ̂ (λ) represents the error in the point estimate for λ that results from choosing

too small an estimate for N∗
max and a different estimate for N∗

min.

With methods for estimating N∗
max, N

∗
min, and the systematic error in the maximum

likelihood estimates in hand, the Maximum Likelihood Technique discussed in this chapter

can be applied to the set of SAPs PΘ(φ). The results of this application are presented

next.
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5.6 The Maximum Likelihood Estimates from the CMC-

Implementation of the Θ-BFACF Algorithm

To apply the CMC Maximum Likelihood Technique developed in Section 5.3 to the CMC

data (Θ-SAPs with property ∗ generated as discussed in Section 4.7 of Chapter 4), set

sn, s
∗
n, and s∗n, as defined in Section 5.3, to pΘ

n (φ), pΘ
n (∗), and pΘ

n (φ) − pΘ
n (∗) respectively.

Then the maximum likelihood technique in Section 5.3 can be used to determine estimates

for A, κs, ε∗, α∗, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤ M, which depend on N∗
min and N∗

max.

The estimates for A, κΘ
∗ , ε∗, α

Θ
∗ , h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤M , obtained by applying

the Maximum Likelihood Technique developed previously in this chapter to the CMC data

will be referred to from-here-on-in as CMC maximum likelihood estimates or CMC m.l.e.s

for short. Also, note that in the remainder of this chapter, unless otherwise stated, any

reference to an estimate refers to a CMC m.l.e.. In order to determine the best CMC

maximum likelihood estimates for A, κΘ
∗ , ε∗, α

Θ
∗ , h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤ M , an

estimate for N∗
max is first required, where ∗ ∈ Φmle and

Φmle := {φ, (φ, f), (φ, s), (φ|φ, s), (31 |φ, s), (41|φ, s)}. (5.123)

Recall that the purpose for including the quantity N∗
max in the model is to take into

account the finite nature of the simulation, and specifically the fact that, the observed

proportion for a large polygon length N may not accurately represent the proportion for

that N according to the true distribution. To estimate the value of N∗
max from the observed

data, the estimates for N∗
max for each property ∗ ∈ Φmle that were determined in Section 4.6

will be used in this maximum likelihood analysis. Hence the required estimated values for

N∗
max are N̂max(φ) = 3300, N̂max(φ, f) = 3300, N̂max(φ, s) = 3300, N̂max(φ|φ, s) = 3300,

N̂max(31|φ, s) = 2000, and N̂max(41|φ, s) = 600.

From the estimate of τint in Chapter 4, each replication can be subdivided into 66

essentially independent blocks. Thus, if it is assumed that no data needs to be burned,

the CMC Maximum Likelihood Technique could be implemented with T ′ = 660 essentially

independent blocks of data. Although, in Chapter 4, it was determined that 5.0 million

data points should be burned from each replication, the results presented in the following

two sub-sections are based on no data being burned. The reason for presenting the results

for the scenario in which no data is burned is that none of the CMC m.l.e.s differed statis-
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tically when computed using either burn-time scenario and hence none of the conclusions

based on the CMC m.l.e.s were affected by using all the data in the analysis. Thus the

results presented in the remainder of this section are based on using all the data in the

analysis.

Note that the smallest values of nmin for which CMC m.l.e.s were computed for each

∗ ∈ Φmle are respectively 14, 14, 14, 14, 70, and 70. The reason CMC m.l.e.s were not

computed for values of nmin < 70 for the properties (31|φ, s) and (41|φ, s) is a consequence

of the estimate N̂min(φ|φ, s) = 182 and the belief that Nmin(∗) increases as property ∗
becomes more complex. Because of this estimate and belief, and the fact that finding

starting states for Newton-Raphson’s method (which is used to determine estimates for A,

κΘ
∗ , ε∗, α

Θ
∗ , h∗, and h∗) becomes more and more difficult as nmin decreases, it was deemed

unnecessary to compute CMC m.l.e.s for properties (31|φ, s) and (41|φ, s) when nmin < 70.

Because the estimates for κΘ
∗ , ε∗, α

Θ
∗ , h∗, and h∗ can be used to explore the reliability

of the programs that were written to implement the CMC Θ-BFACF algorithm and to

implement the CMC Maximum Likelihood Technique and because the estimates for ε∗ and

αΘ
∗ can be used to explore the validity of Conjectures 2.2.8 and 2.2.9, the CMC m.l.e.s

presented for a range of values for nmin are those for the parameters κΘ
∗ , ε∗, α

Θ
∗ , h∗, and

h∗. Only the best estimates for A and Q̃ (βi) , for 1 ≤ i ≤M , are presented.

5.6.1 The Reliability of the CMC M.L.E. Program

The first part of this discussion presents some of the CMC m.l.e.’s and uses these estimates

to check the accuracy/consistency of the computer program that was written to implement

the CMC Maximum Likelihood Technique. The first estimates discussed are those for κΘ
∗ ,

for properties ∗ ∈ Φmle.

Recall (from Section 2.2.1 of Chapter 2) the conclusions of Theorems 2.2.4 and 2.2.5,

that is

κΘ
φ = κΘ

(φ,s) = κΘ
(φ,f) = κφ = κΘ

(K|φ,s), (5.124)

where K ∈ K Θ(φ), the set of knot-types possible after a strand-passage occurs in an

unknotted successful-strand-passage Θ-SAP. In [125], Orlandini et al. estimate µφ =

eκφ ≈ 4.6836 which corresponds to κφ ≈ 1.544067.

Because PΘ(φ, f), PΘ(φ|φ, s), PΘ(31|φ, s), and PΘ(41|φ, s) are mutually disjoint

sets, CMC maximum likelihood estimates for κΘ
∗ , for each property ∗ ∈ {(φ, f), (φ|φ, s),
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Figure 5.1: The CMC m.l.e.s for κΘ
∗ for each of the properties ∗ ∈

{(φ, f) [+], (φ|φ, s) [⊡], (31|φ, s) [△], (41|φ, s) [⊙]} plotted versus nmin. The
error bars plotted represent estimated 95% confidence intervals for κΘ

(φ,f).

(31|φ, s), (41|φ, s)}, were computed as a function of nmin for N̂max(∗) fixed. The resulting

estimates denoted κ̂Θ
∗ (nmin, N̂max(∗)) are displayed as a function of nmin in Figure 5.1.

Figure 5.1 is a plot of the CMC maximum likelihood estimates for κΘ
∗ , as a function of

nmin. Note that the property-(φ, f) estimates are plotted using a +; the property-(φ|φ, s)
estimates are plotted using a ⊡; the property-(31|φ, s) estimates are plotted using a △;

and the property-(φ|φ, s) estimates are plotted using a ⊙. The error bars represent the

estimated 95% confidence intervals for κΘ
∗ as calculated for ∗ = (φ, f) using Theorem 5.1.4.

Referring to Figure 5.1, since the estimates for κΘ
∗ for each of the properties ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s), (41|φ, s)} plotted versus nmin are essentially indistinguishable from each

other, regardless of the value of nmin, the plotted estimates are consistent with Equation

(5.124), that is

κΘ
(φ,f) = κΘ

(φ|φ,s) = κΘ
(31|φ,s) = κΘ

(41|φ,s). (5.125)

Thus, this provides strong evidence for the validity of the programmed CMC m.l.e. algo-

rithm.
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The best estimate for κΘ
∗ , for each of the properties ∗ ∈ Φmle, was determined using

the method outlined in Section 5.4. The best estimates for κΘ
∗ and the corresponding

estimates for N∗
min are presented in Table 5.1.

Table 5.1: The best CMC m.l.e.s for κΘ
∗ based on ∗ ∈ Φmle. The values in

parentheses are the estimated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min N∗

max κΘ
∗ (95% ME)

φ 156 3300 1.544125 (0.000028)

(φ, f) 142 3300 1.544125 (0.000028)

(φ, s) 156 3300 1.544124 (0.000030)

(φ|φ, s) 182 3300 1.544124 (0.000033)

(31|φ, s) 408 2000 1.544135 (0.000094)

(41|φ, s) 296 1200 1.544125 (0.000049)

Because the final estimates for κΘ
∗ presented in Table 5.1 are all equal to four deci-

mal places and are equal to four decimal places to Orlandini et al.’s estimate [125] for

κφ (provided their estimate is rounded to four decimal places), it is concluded that the

estimates for κΘ
∗ , based on each of the properties ∗ ∈ Φmle, support the fact that κφ is inde-

pendent of property ∗ ∈ Φmle. Hence the CMC data generated from the CMC Θ-BFACF

algorithm numerically support the conclusions of Theorems 2.2.4 and 2.2.5 of Section 2.2),

that is,

κΘ
φ = κΘ

(φ,s) = κΘ
(φ,f) = κφ = κΘ

(K|φ,s). (5.126)

Hence the program written to implement the CMC Θ-BFACF algorithm and the program

written to perform the CMC Maximum Likelihood Technique can be concluded to im-

plement the CMC Θ-BFACF algorithm and the CMC Maximum Likelihood Technique

correctly.

Note that when N̂max(41|φ, s) = 600 is used to estimate A, κΘ
∗ , α

Θ
∗ , α

Θ
∗ , h∗, and h∗,

no flat region could be found in any of the estimates. Because it was determined that

N̂min(φ|φ, s) = 182 and N̂min(31|φ, s) = 408, it is quite possible that N̂min(41|φ, s) >

N̂min(31|φ, s) and hence there might not be enough reliable data in the interval[
N̂min(41|φ, s), 600

]
to implement the CMC Maximum Likelihood Technique. In fact, if
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N̂min(41|φ, s) > Nmax(41|φ, s), there would be no reliable data for which the asymptotic

form of pΘ
n (41|φ, s) holds. Hence the CMC Maximum Likelihood Technique could not be

used to estimate A, κΘ
∗ , ε∗, α∗, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤ M . For comparison,

N̂max(41|φ, s) = 1200 is used to determine estimates for κΘ
∗ , α

Θ
∗ , α

Θ
∗ , h∗, and h∗ for ∗ ∈

{(41|φ, s)} . Because of the unreliability (determined in determines of the relative error)

of the estimates for h(41|φ,s) over the interval [30, 1200), the estimates presented for the

property ∗ ∈ {(41|φ, s)} are based on detecting a flat region in the estimates for κΘ
∗ , α

Θ
∗ ,

and h∗.

Because the largest amount of data available is for Θ-SAPs with property ∗ = φ, the

best estimate of κφ is taken to be

κφ = 1.544125 ± 0.000028 (±0.00005) , (5.127)

where the above is of the form

parameter = point estimate ± 95% ME (±systematic error), (5.128)

the estimated 95% margin of error is calculated using Theorem 5.1.4, and the systematic

error is determined using the technique discussed in Section 5.5.

Because the complement of the set of unsuccessful strand passage polygons (with re-

spect to PΘ(φ)) is the set of successful strand passage polygons, αΘ
(φ,f)

= αΘ
(φ,s); α

Θ
(φ,s)

=

αΘ
(φ,f); h(φ,f) = h(φ,s); and h(φ,s) = h(φ,f). These four equalities can also be used to check

the consistency of the program written to implement the CMC Θ-BFACF algorithm and

the program written to perform the CMC Maximum Likelihood Technique.

Note that for the remainder of this chapter, for the purposes of creating more illustrative

figures, only the point estimates computed for every tenth consecutive even value of nmin

will be displayed. With this in mind, Figure 5.2 depicts the estimates for αΘ
(φ,f)

and

αΘ
(φ,s) plotted as functions of nmin using a (×) and (⋄) respectively. Figure 5.3 depicts the

estimates for αΘ
(φ,f) and αΘ

(φ,s)
plotted as functions of nmin using a (×) and (⋄) respectively.

Figure 5.4 depicts the estimates for h(φ,f) and h(φ,s) plotted as functions of nmin using a

(×) and (⋄) respectively. Figure 5.5 depicts the estimates for h(φ,f) and h
(φ,s)

plotted

as functions of nmin using a (×) and (⋄) respectively. In each of Figures 5.2-5.5, the

corresponding estimated 95% margins of error are not displayed so that each of the plotted

point estimates can be clearly identified. With this in mind, on the scale of the plots,
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Figure 5.2: The CMC m.l.e.s for αΘ
(φ,f)

[×] and αΘ
(φ,s) [⋄] plotted versus

nmin.

the point estimates plotted in each of Figures 5.2-5.5 cannot be distinguished from each

other. Hence the estimates displayed in Figures 5.2-5.5 numerically support, respectively,

the relationships

αΘ
(φ,f)

= αΘ
(φ,s); α

Θ
(φ,s)

= αΘ
(φ,f); h(φ,f)

= h(φ,s); and h
(φ,s)

= h(φ,f). (5.129)

Because the data generated by the CMC Θ-BFACF algorithm, when analyzed using the

CMC Maximum Likelihood Technique, numerically support the relations: αΘ
(φ,f)

= αΘ
(φ,s);

αΘ
(φ,s)

= αΘ
(φ,f); h(φ,f) = h(φ,s); and h(φ,s) = h(φ,f); and the facts that κΘ

φ = κΘ
(φ,s) =

κΘ
(φ,f) = κφ = κΘ

(K|φ,s), it is concluded that the program written to implement the CMC Θ-

BFACF algorithm and the program written to implement the CMC Maximum Likelihood

Technique perform their intended purpose correctly. Hence the discussion can now turn to

the estimates for αΘ
∗ , α

Θ
∗ , h∗, and h∗, respectively, based on each of the properties ∗ ∈ Φmle.

236



-2

-1.95

-1.9

-1.85

-1.8

-1.75

-1.7

-1.65

-1.6

 0  50  100  150  200  250  300  350  400

nmin

(φ, f)
(φ, s)

Figure 5.3: The estimates for αΘ
(φ,s)

[⋄] and αΘ
(φ,f) [×] plotted versus nmin.
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Figure 5.4: The CMC m.l.e.s for h(φ,f) [×] and h(φ,s) [⋄] plotted versus nmin.
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Figure 5.5: The CMC m.l.e.s for h(φ,s) [⋄] and h(φ,f) [×] plotted versus nmin.

5.6.2 The CMC M.L.E.’s for αΘ
∗ , αΘ

∗ , h∗, and h∗

The Maximum Likelihood technique presented in Section 5.3 was used to estimate κΘ
∗ , α

Θ
∗ ,

αΘ
∗ , A, h∗, h∗, and Q̃ (βi) , for 1 ≤ i ≤M , for fixed N̂∗

max.

Recall that, for the purposes of creating more illustrative graphs, the CMC m.l.e.

corresponding to every tenth consecutive even value of nmin is plotted in Figures 5.6 through

5.14. Also recall from the previous subsection that the best CMC maximum likelihood

estimates for κΘ
∗ are presented in Table 5.1 and that these estimates support

κΘ
φ = κΘ

(φ,s) = κΘ
(φ,f) = κφ = κΘ

(K|φ,s). (5.130)

Further recall that the best CMC maximum likelihood estimate for κφ is

κφ = 1.544125 ± 0.000028 (±0.00005) . (5.131)

With κφ estimated, the next estimates to be presented are the CMC maximum likelihood

estimates for the critical exponents αΘ
∗ and αΘ

∗ .

Before discussing the CMC m.l.e.s for αΘ
∗ and αΘ

∗ , recall that, for given values of N∗
max

and N∗
min, the CMC Maximum Likelihood technique presented in Section 5.3 computes
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estimates for ε∗ and αΘ
∗ . In order to obtain estimates for αΘ

∗ recall from Equation (5.48)

that

ε∗ := αΘ
∗ − αΘ

∗ . (5.132)

Hence the estimates for αΘ
∗ and ε∗ (as functions of nmin and fixed N̂max(∗)) need to be

presented before estimates for αΘ
∗ can be determined.

Figure 5.6 contains the CMC m.l.e.s for αΘ
∗ (as a function on nmin and fixed N̂max(∗))

for ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△], (41|φ, s) [⊙]}. For the purposes of creating a

more meaningful graph, note that the only error bars (which correspond to an estimated

95% confidence interval) plotted in Figure 5.6 are those corresponding to the estimates

α̂Θ
(φ,f)

(nmin, N̂max(∗)). Referring to Figure 5.6, note that on the scale of the plot, for

all plotted positive even values of nmin > 70, the estimated 95% confidence interval for

αΘ
(φ,f)

contains the estimates α̂Θ
∗ (nmin, N̂max(∗)) for every property ∗ ∈ {(φ|φ, s), (31|φ, s),

(41|φ, s)}. Hence, the estimates presented in Figure 5.6 support, for any unknotting number

one knot-type K,

αΘ
(φ,f)

= αΘ
(K|φ,s)

, (5.133)

which is part of Conjecture 2.2.9. Furthermore, recall from Section 5.6.1 (cf. Figure 5.2)

that the data numerically supports the relation

αΘ
(φ,s) = αΘ

(φ,f)
. (5.134)

This, combined with Figure 5.6, results in the conclusion that the data supports the fol-

lowing equalities:

αΘ
(φ,s) = αΘ

(φ,f)
= αΘ

(K|φ,s)
. (5.135)

The best CMC m.l.e.s for αΘ
∗ , for ∗ ∈ Φmle, are presented in Table 5.2.

In order to garner further numerical support for Conjecture 2.2.9, the discussion now

turns to the estimates for ε∗ (as a function of nmin and fixed N̂max(∗)). Figure 5.7 displays

the estimated difference between αΘ
∗ and αΘ

∗ , that is it displays the CMC m.l.e.’s for ε∗

(as a function of nmin and fixed N̂max(∗)). To test whether the estimated values of αΘ
∗

and αΘ
∗ numerically support Conjecture 2.2.9, the estimated differences for ε∗ = αΘ

∗ −αΘ
∗ ,

for each of the properties ∗ ∈ {(φ, s), (φ, f), (φ|φ, s), (31|φ, s), (41|φ, s)}, are compared to

zero. Without any error bars displayed in Figure 5.7, the estimates ε̂∗(nmin, N̂
∗
max), for
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Figure 5.6: The CMC m.l.e.s for αΘ
∗ for each of the properties ∗ ∈

{(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△], (41|φ, s) [⊙]} plotted versus nmin. The
error bars represent estimated 95% confidence intervals for αΘ

(φ,f)
.

each of the properties ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} (that is the points plotted with the

symbols (×) , (⊡) , and (△) respectively) seem to be approaching each other, and seem to

be approaching zero. The estimates ε̂(41|φ,s)(nmin, N̂max (41|φ, s)) seem to be approaching

one. To explore this further, plots with error bars (estimated 95% confidence intervals)

are investigated next.

Figure 5.8 plots the estimated 95% confidence intervals for ε∗, for each of the properties

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} . Because each of the plotted confidence intervals contains

0.0 for every plotted nmin ≥ 100, the hypothesis that ε∗ = 0.0, for each ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)}, cannot be rejected, that is the hypothesis that αΘ
∗ = αΘ

∗ for each

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} cannot be rejected.

Figure 5.9 plots the estimated 95% confidence intervals for ε(41|φ,s) as a function of

nmin. Because zero is included in each of the plotted 95% confidence intervals for ε(41|φ,s)

regardless of the value of nmin, the possibility exists that ε(41|φ,s) = 0 and hence that
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Figure 5.8: The CMC m.l.e.s for ε∗ for each of the properties ∗ ∈
{(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]} plotted versus nmin. The error bars rep-
resent estimated 95% confidence intervals for ε∗ for each of the properties
∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}.
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Figure 5.9: The CMC m.l.e.s for ε(41|φ,s) plotted versus nmin. The error
bars represent estimated 95% confidence intervals for ε(41|φ,s).

αΘ
(41|φ,s)

= αΘ
(41|φ,s). Therefore the CMC m.l.e.s provide further support for Conjecture

2.2.9.

To be completely objective, based on the data plotted in Figure 5.9, the possibility

exists that ε(41|φ,s) is not zero. In particular, the estimates appear to be fluctuating

around the value 1.0 for nmin ≥ 130. However, because the widths of the estimated 95%

confidence intervals for ε(41|φ,s) are so large (each is over 20 units in length) and the point

estimates are approximately 1.0, it is concluded that more property-(41|φ, s) data needs

to be generated to get a more accurate estimate for ε(41|φ,s). With this in mind, note that

the best existing CMC m.l.e.s for ε∗, for ∗ ∈ Φmle, are presented in Table 5.2.

For each ∗ ∈ {(φ, f), (φ, s), (φ|φ, s), (31|φ, s), (41|φ, s)} , the CMC m.l.e.s for αΘ
∗ and

ε∗ (as functions of nmin and fixed N̂max(∗)) can be combined using Equation (5.48) to

obtain estimates for αΘ
∗ (as functions of nmin and fixed N̂max(∗)) since

αΘ
∗ = αΘ

∗ − ε∗, (5.136)

Figure 5.10 depicts the estimates for αΘ
∗ (as functions of nmin and fixed N̂max(∗)), for each

∗ ∈ Φmle. For the purposes of creating a more meaningful graph, note that the only error

bars (which correspond to an estimated 95% confidence interval) plotted in Figure 5.6 are
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Figure 5.10: The CMC m.l.e.s for αΘ
∗ for each of the properties ∗ ∈ {φ (▽),

(φ, f) [×], (φ, s) [⋄], (φ|φ, s) [⊡], (31|φ, s) [△], (41|φ, s) [⊙]} plotted versus
nmin. The error bars represent estimated 95% confidence intervals for αΘ

(φ,f).

those corresponding to the estimates α̂Θ
(φ,f)(nmin, N̂max(∗)).

From Figure 5.10, on the scale that the estimates are plotted, the estimates for αΘ
∗ , for

each ∗ ∈ {φ, (φ, f), (φ, s), (φ|φ, s)} (the points plotted with the symbols (▽) , (×) , (⋄) ,
and (⊡) respectively), appear to be the same value for all nmin ≥ 140. Further to this,

as nmin increases, the estimates for αΘ
(31|φ,s) (the points plotted with the symbol (△)) are

also approaching those estimates for αΘ
∗ for ∗ ∈ {φ, (φ, f), (φ, s), (φ|φ, s)} . Hence the

equalities

αΘ
φ = αΘ

(φ,s) = αΘ
(φ,f) = αΘ

(φ|φ,s) = αΘ
(31|φ,s) (5.137)

are supported numerically by the CMC m.l.e.s. The best CMC m.l.e.s for ε∗, for each

∗ ∈ Φmle, are presented in Table 5.2.
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Table 5.2: The best CMC m.l.e.s for α∗̄, ǫ∗ and α∗ for each ∗ ∈ Φmle. The

values in parentheses are the estimated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min N∗

max αΘ
∗ (95% ME) ε∗ (95% ME) αΘ

∗ (95% ME)

φ 156 3300 n/a n/a −1.7521 (0.0414)

(φ, f) 142 3300 −1.7619 (0.0526) −0.0104(0.0404) −1.7516 (0.0663)

(φ, s) 156 3300 −1.7508 (0.0440) 0.0096(0.0440) −1.7604 (0.0623)

(φ|φ, s) 182 3300 −1.7504 (0.0529) 0.0061(0.0514) −1.7565 (0.0737)

(31|φ, s) 408 2000 −1.7800 (0.2274) 0.0105(1.1918) −1.7905 (1.2117)

(41|φ, s) 296 1200 −1.7539 (0.1819) 0.8352(18.6) −2.8 (18.7)

Because the 95% confidence interval for αΘ
(31|φ,s), as presented in Table 5.2, contains

the 95% confidence intervals for αΘ
∗ , ∗ ∈ {φ, (φ, s), (φ, f), (φ|φ, s)} , this provides further

support for αΘ
(31|φ,s) = αΘ

∗ , where ∗ ∈ {φ, (φ, s), (φ, f), (φ|φ, s)} . Similarly, because the

95% confidence interval for αΘ
(41|φ,s), as presented in Table 5.2, contains the 95% confidence

intervals for αΘ
∗ , ∗ ∈ {φ, (φ, s), (φ, f), (φ|φ, s), (31|φ, s)} , it is possible that αΘ

(41|φ,s) =

αΘ
∗ , where ∗ ∈ {φ, (φ, s), (φ, f), (φ|φ, s), (31|φ, s)} . Hence the data supports that

αΘ
φ = αΘ

(φ,s) = αΘ
(φ,f) = αΘ

(φ|φ,s) = αΘ
(31|φ,s) = αΘ

(41|φ,s) (5.138)

which supports Conjecture 2.2.9, that is, for each K ∈ K Θ(φ),

αΘ
φ = αΘ

(φ,s) = αΘ
(φ,f) = αΘ

(K|φ,s). (5.139)

Assuming that Conjecture 2.2.9 is true, because the largest amount of available data

is for Θ-SAPs with property ∗ = φ, the best estimate of αΘ
φ is taken to be

αΘ
φ = −1.7521 ± 0.0414 (±0.02) , (5.140)

where the above is of the form

parameter = point estimate ± 95% ME (±systematic error), (5.141)

the estimated 95% margin of error is calculated using Theorem 5.1.4, and the systematic

error was determined using the technique discussed in Section 5.5.
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In order to determine if Conjecture 2.2.8 holds, that is whether αφ−2 = αΘ
φ is supported

numerically by the CMC Θ-BFACF data, recall that Orlandini et al. [125] estimated αφ

≈ 0.23. Using this value for αφ, if Conjecture 2.2.8 is true, then αΘ
φ = −1.77. Since

this value is contained in the estimated 95% confidence interval for αΘ
φ given by Equation

(5.140), Conjecture 2.2.8 is supported numerically.

The discussion now turns to the corrections to scaling terms h∗ and h∗. Recall from

Section 1.3 that Orlandini et al. [125] proposed that pn (K) scales like

pn(K) = AKn
αK−3µn

K

(
1 +

BK

n∆K
+ . . .

)
, for even n, (5.142)

where µK = eκK , αK is the corresponding entropic critical exponent, and ∆K is the

exponent for the dominate correction due to scaling term. From the scaling form for

pn(K) given by Equation (5.142), the first order correction term BK

n∆K
is believed to be

a function of the knot-type K because even though ∆K is thought to be independent of

knot-type [125], the coefficient BK is believed to be dependent on knot-type. Because, in

this work, it is similarly proposed that

pΘ
n (∗) = AΘ

∗ n
αΘ
∗ µn

∗

(
1 +

BΘ
∗

n∆Θ
∗

+ . . .

)
, for even n, (5.143)

there is no reason to believe the first order correction term BΘ
∗

n∆Θ
∗

is independent of the

property ∗. If, for sufficiently large values of even n, pΘ
n (∗) can also be expressed as

pΘ
n (∗) = AΘ

∗ µ
n
∗

(
n+ hΘ

∗

)αΘ
∗ (5.144)

= AΘ
∗ n

αΘ
∗ µn

∗

(
1 +

hΘ
∗

n

)αΘ
∗

, (5.145)

then the first order term in the power series expansion of
(
1 + hΘ

∗
n

)αΘ
∗

must be approxi-

mately BΘ
∗

n∆Θ
∗

. Hence there is no reason to expect h∗ (and similarly h∗) to be independent

of the property ∗. The discussion turns to whether or not the estimates for h∗ and h∗

for ∗ ∈ {φ, (φ, f), (φ, s), (φ|φ, s), (31|φ, s)} support this hypothesis. Note that because

there is the least amount of reliable data for property (41|φ, s) and in fact there is in-

sufficient data to obtain a good estimate the critical exponent αΘ
(41|φ,s), the estimates for

h(41|φ,s) and h
(41|φ,s),

are not used to investigate the dependence (or lack of dependence) of

h∗ (and similarly h∗) on the property ∗.
Figures 5.11 and 5.12 display h∗ and h∗, the estimated first order corrections due to

finite scaling defined by Equations (5.35) and (5.36) respectively, as a function of nmin as-
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Figure 5.11: The CMC m.l.e.s for h∗ for each of the properties ∗ ∈ {φ (▽),
(φ, f) [×], (φ, s) [⋄], (φ|φ, s) [⊡], (31|φ, s) [△]} plotted versus nmin. The error
bars represent estimated 95% confidence intervals for h(φ,f).

sociated with properties ∗ ∈ {φ (▽) , (φ, f) (×) , (φ, s) (⋄) , (φ|φ, s) (⊡) , (31|φ, s) (△)}
and their corresponding complementary property ∗. From Figures 5.11 and 5.12, note that

as nmin increases, the estimates for h∗ and h∗ for the unknotted properties {φ, (φ, f), (φ, s),

(φ|φ, s)} (that is the symbols (▽) , (×) , (⋄) , and (⊡) respectively) appear to be (at least

on the scale of the figure) equal.

Table 5.3 displays the estimates for h∗ and h∗, for properties ∗ ∈ Φmle\{(41|φ, s)} and

∗ ∈ Φmle\{φ, (41|φ, s)} respectively From the estimates for h∗ and h∗ in Table 5.3, it is

interesting to note that there is considerable overlap of the 95% confidence intervals for

h∗ and h∗ where ∗ ∈ Φmle. This suggests that the h∗ and h∗ may be independent of the

property ∗ ∈ Φmle until Figures 5.13 and 5.14 are considered. Figure 5.13 displays the

same information as Figure 5.11 except Figure 5.13 does not include any error bars and it

does not include the estimate for h(31|φ,s). Figure 5.14 displays the same information as

Figure 5.12 except Figure 5.14 does not include any error bars.
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Figure 5.12: The CMC m.l.e.s for h∗ for each of the properties ∗ ∈
{(φ, f) [×], (φ, s) [⋄], (φ|φ, s) [⊡], (31|φ, s) [△]} plotted versus nmin. The error
bars represent estimated 95% confidence intervals for h

(φ,f)
.

Table 5.3: The best CMC m.l.e.s for h∗ and h∗̄ for each ∗ ∈ Φmle. The

values in parentheses are the estimated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min N∗

max h∗ (95% ME) h∗ (95% ME)

φ 156 3300 −10.3 (5.9) n/a

(φ, f) 142 3300 −10.3 (5.4) −8.5 (9.1)

(φ, s) 156 3300 −8.7 (10.7) −10.5 (6.4)

(φ|φ, s) 182 3300 −10.3 (14.2) −10.5 (8.7)

(31|φ, s) 408 3300 −6.8 (506) −2.5 (59)

(41|φ, s) 296 1200 449 (3158) −9.8 (13.1)

Upon close examination of Figure 5.13, for every nmin, the estimates plotted for h(φ,f)

are always strictly less than the estimates for h∗ for each ∗ ∈ {φ, (φ, s), (φ|φ, s)}. Because
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Figure 5.13: The CMC m.l.e.s for h∗ for each of the properties ∗ ∈ {φ (▽),
(φ, f) [×], (φ, s) [⋄], (φ|φ, s) [⊡]} plotted versus nmin.

for all nmin,

ĥ(φ,f)(nmin, N̂max(φ, f)) < ĥ(φ|φ,s)(nmin, N̂max(φ|φ, s)) < ĥ(31|φ,s)(nmin, N̂max(31|φ, s)),
(5.146)

h∗ is seemingly dependent on the property ∗.
Upon close examination of Figure 5.14, for every nmin, the estimates plotted for h

(φ,f)

are always strictly greater than the estimates for h∗ for each ∗ ∈ {(φ, s), (φ|φ, s)} and are

always greater than the estimates for h
(31|φ,s)

for nmin ≤ 260. This suggests that h
(φ,f)

is larger than h∗, for ∗ ∈ {(φ, s), (φ|φ, s), (31|φ, s)}. Note that because the estimates for

h∗ for each ∗ ∈ {(φ, s), (φ|φ, s), (31|φ, s)} are all based on sets of polygons that contain

PΘ(φ, f), then the only major difference between how the estimates for h
(31|φ,s)

and the

estimates for h∗ for each ∗ ∈ {(φ, s), (φ|φ, s)} are determined (beyond the actual property

under study) is the value of Nmax. The drastic deviation of the estimates for h(31|φ,s) from

the estimates for h∗ for each ∗ ∈ {(φ, s), (φ|φ, s)} and for all nmin ≥ 250 is thus likely

a consequence of the different values of Nmax used to compute the estimates. However,

whether this behaviour is an actual property of the estimates for h
(31|φ,s)

or is a result of

N̂max(31|φ, s) = 2000 < 3300 = N̂max(∗), for ∗ ∈ {(φ, s), (φ|φ, s)}, is unknown. In order
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Figure 5.14: The CMC m.l.e.s for h∗ for each of the properties ∗ ∈
{(φ, f) [×], (φ, s) [⋄], (φ|φ, s) [⊡], (31|φ, s) [△]} plotted versus nmin.

to answer this question, further data is needed so that the estimate for N
(31|φ,s)
max is at least

3300.

The displayed estimates for h∗, ∗ ∈ {(φ, s), (φ|φ, s), (31|φ, s)}, all exhibit the behaviour

ĥ
(φ,s)

(nmin, N̂max(φ, s)) < ĥ
(φ|φ,s)

(nmin, N̂max(φ|φ, s)) < ĥ
(31|φ,s)

(nmin, N̂max(31|φ, s)),
(5.147)

which also supports that h∗ is dependent on the property ∗.

The conclusion here is that h∗ and h∗ are dependent on the property ∗.

5.7 In Summary

In this chapter, a new maximum likelihood technique is presented which computes maxi-

mum likelihood estimates from a realization of a composite Markov chain

((Wt(1),Wt(2), ...,Wt(M)) , t = 0, ..., t0) on state space S M whose marginal equilibrium

distribution for Chain i is characterized by the fugacity zi = eβi and is assumed to be
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asymptotic (as |ω| → ∞) to

πω(θ|∗, β,N∗
min, N

∗
max) ∼ I〈2〉(|ω|)ψ∗ (ω)

A∗w(|ω|)(|ω| + h∗)
α∗−ε∗e(κs+β)|ω|

Q(β)

+ I〈2〉(|ω|) (1 − ψ∗ (ω))
A∗w(|ω|)(|ω| + h∗)

α∗e(κs+β)|ω|

Q(β)

+ I〈1〉(|ω|)


 ∑

n<N∗
min

w(n)sne
βn

Q(β)




+ I〈3〉(|ω|)
∑

n>N∗
max

w(n) [A∗(n+ h∗)
α∗−ε∗ +A∗(n + h∗)

α∗ ] e(κs+β)n

Q(β)
,

(5.148)

where ω ∈ S and w(n) = (n − 6)nq−1 for some fixed positive integer q. The details of

this CMC Maximum Likelihood Technique can be found in Section 5.3.

Section 5.2 reviews Berretti and Sokal’s technique [7] for determining how long a sim-

ulation must be run in order to attain a certain accuracy in the m.l.e.s from Markov chain

data. Section 5.4 provides a method for estimating N∗
min, the value for which the scaling

form of pΘ
n (∗) holds for all n ≥ N∗

min, and consequently for determining the best CMC

m.l.e.s. Section 5.5 then presents a technique for determining the error in using the best

estimate as the estimate for the parameters of interest. Then in Section 5.6 the tech-

nique outlined in the chapter is used to analyze the data generated by the CMC Θ-BFACF

algorithm.

Section 5.6 begins by using the data generated by the CMC Θ-BFACF algorithm to

verify that the program written to implement the CMC Θ-BFACF algorithm and the pro-

gram written to perform the CMC Maximum Likelihood Technique perform their functions

correctly. In fact, by using the CMC m.l.e. estimates for A, κΘ
∗ , ε∗, α

Θ
∗ , h∗, and h∗, the

expected relations: αΘ
(φ,f)

= αΘ
(φ,s); α

Θ
(φ,s)

= αΘ
(φ,f); h(φ,f) = h(φ,s); and h(φ,s) = h(φ,f); and

the facts that

κΘ
φ = κΘ

(φ,s) = κΘ
(φ,f) = κφ = κΘ

(K|φ,s), (5.149)

were numerically estimates. Then the CMC m.l.e.s for αΘ
∗ , ∗ ∈ Φmle, were presented and

used to show that Conjectures 2.2.8 and 2.2.9 hold, that is that the critical exponents αΘ
∗

are independent of the knot-type and that αΘ
φ = αφ − 2. The section concludes with

a discussion regarding the corrections due to scaling h∗ and h∗ and their dependence on

property ∗. The conclusion from the current CMC estimates is that h∗ and h∗ both depend

on the property ∗.
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The best CMC m.l.e.s for κΘ
∗ , α

Θ
∗ , α

Θ
∗ , h∗, h∗, A, and Q̃ (βi) , for 1 ≤ i ≤ 14, are

summarized as follows. The best estimates for κφ, αΘ
∗ , and αΘ

∗ are

κφ = κΘ
φ = 1.544125 ± 0.000028 (±0.00005)

αΘ
∗ = αΘ

∗ = αΘ
φ = −1.7521 ± 0.0414 (±0.02) ,

(5.150)

where the above are of the form

parameter = point estimate ± 95% ME (±systematic error), (5.151)

the 95% margin of error is calculated using Theorem 5.1.4, and the systematic error was

determined using the technique discussed in Section 5.5. The best estimates for h∗ and

h∗ are given below in Table 5.4 which is a reproduction of Table 5.3.

Table 5.4: The best CMC m.l.e.s for h∗ and h∗̄ for each ∗ ∈ Φmle . The

values in parentheses are the estimated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min N∗

max h∗ (95% ME) h∗ (95% ME)

φ 156 3300 −10.3 (5.9) No estimate

(φ, f) 142 3300 −10.3 (5.4) −8.5 (9.1)

(φ, s) 156 3300 −8.7 (10.7) −10.5 (6.4)

(φ|φ, s) 182 3300 −10.3 (14.2) −10.5 (8.7)

(31|φ, s) 408 3300 −6.8 (506) −2.5 (59)

(41|φ, s) 296 1200 449 (3158) −9.8 (13.1)

The best estimates for the amplitude ratios are given in Table 5.5.
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Table 5.5: The best CMC m.l.e.s for the amplitude ratios. The values in

parentheses are the estimated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min N∗

max

A∗

A∗
(95% ME)

φ 156 3300 No estimate

(φ, f) 142 3300 5.8531 (1.6848)

(φ, s) 156 3300 0.1699 (0.0537)

(φ|φ, s) 182 3300 0.1611 (0.0514)

(31|φ, s) 408 2000 0.0032 (0.0290)

(41|φ, s) 296 1200 0.4930 (28.6)

The best estimates for Q̃ (βi) , for 1 ≤ i ≤ 14, are provided in Tables 5.6 and 5.7.

Table 5.6: The best CMC m.l.e.s for Q̃(βi) for ∗ ∈ {φ, (φ, f), (φ, s)}. The

values in parentheses are the estimated 95% margins of error.

Property

Chain i φ (φ, f) (φ, s)

1 0.00102(0.34265) 0.00203(0.17169) 0.00102(0.14740)

2 0.00402(0.36336) 0.00700(0.15204) 0.00402(0.18564)

3 0.01565(0.24936) 0.02379(0.09006) 0.01565(0.13786)

4 0.05988(0.13460) 0.07960(0.04966) 0.05988(0.07372)

5 0.11615(0.09786) 0.14452(0.03688) 0.11615(0.05307)

6 0.16137(0.08350) 0.19426(0.03181) 0.16137(0.04504)

7 0.22365(0.07133) 0.26056(0.02747) 0.22365(0.03827)

8 0.30900(0.06103) 0.34847(0.02375) 0.30900(0.03256)

9 0.42508(0.05233) 0.46420(0.02058) 0.42508(0.02776)

10 0.54611(0.04638) 0.58139(0.01839) 0.54611(0.02450)

11 0.69648(0.04126) 0.72327(0.01649) 0.69648(0.02169)

12 0.78271(0.03901) 0.80311(0.01565) 0.78271(0.02046)

13 0.82811(0.03796) 0.84474(0.01526) 0.82811(0.01989)

14 0.87449(0.03698) 0.88700(0.01489) 0.87449(0.01936)
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Table 5.7: The best CMC m.l.e.s for Q̃(βi) for ∗ ∈
{(φ|φ, s), (31 |φ, s), (41|φ, s)}. The values in parentheses are the estimated

95% margins of error.

Property

Chain i (φ|φ, s) (31|φ, s) (41|φ, s)
1 0.00028(0.08811) 0.00000(0.00033) 0.00001(0.00518)

2 0.00143(0.16144) 0.00000(0.00233) 0.00002(0.02082)

3 0.00718(0.22581) 0.00001(0.01483) 0.00023(0.08012)

4 0.03522(0.45092) 0.00033(0.09494) 0.00337(0.18600)

5 0.07729(0.66508) 0.00212(0.17413) 0.012721(0.18050)

6 0.11417(0.80783) 0.00535(0.17659) 0.024602(0.14644)

7 0.16817(0.98017) 0.01342(0.13359) 0.04738(0.10982)

8 0.24684(1.18735) 0.03347(0.08784) 0.090827(0.08024)

9 0.36057(1.43496) 0.08276(0.05621) 0.172893(0.05834)

10 0.48569(1.66538) 0.16924(0.03935) 0.287186(0.04530)

11 0.64886(1.92489) 0.34104(0.02772) 0.47145(0.03537)

12 0.74576(2.06361) 0.47918(0.02339) 0.59908(0.03138)

13 0.79772(2.13428) 0.56560(0.02153) 0.673037(0.02960)

14 0.85141(2.20493) 0.66472(0.01986) 0.753589(0.02798)
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Chapter 6

Estimating the Probabilities Associated

with Strand Passage

In this chapter, the fixed-n strand passage probabilities and the limiting strand passage

probabilities associated with LSP Model that were introduced in Section 2.2.2 are estimated

and used to explore the validity of Conjecture 2.2.3, that is to explore whether the limiting

strand passage probabilities exist, whether their values are in the interval (0, 1) , and,

assuming the limiting probabilities exist, how the corresponding fixed-n probabilities (as

n → ∞) approach their limiting value. In order to investigate Conjecture 2.2.3, two

methods (the Fixed-n Method and the Grouped-n Method) for estimating the limiting

transition probabilities PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K|φ, s) are presented and compared.

The second method, which is concluded to be the better of the two methods, is then

used to estimate PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K|φ, s). These estimates are then used to

investigate Conjecture 2.2.3.

Before the methods for estimating the fixed-n and the limiting strand passage probabil-

ities can be presented, first recall from Section 2.2.2 that the fixed-n probabilities associated

with a strand passage about the structure Θ for K = φ are respectively: the probability of

a successful strand passage in a (2n)-edge Θ-SAP,

PrΘ2n(φ, s) :=
pΘ
2n (φ, s)

pΘ
2n (φ)

; (6.1)

the probability of an unsuccessful strand passage in a (2n)-edge Θ-SAP,

PrΘ2n(φ, f) :=
pΘ
2n (φ, f)

pΘ
2n (φ)

= 1 − PrΘ2n(φ, s); (6.2)

and, for each knot-type K ∈ K Θ(φ), the probability of a (2n)-edge successful-strand-

passage Θ-SAP having knot-type K after a strand passage,

PrΘ2n(K|φ, s) :=
pΘ
2n (K|φ, s)
pΘ
2n (φ, s)

. (6.3)
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Also recall from Section 2.2.2 that the limiting probabilities (if they exist) associated with

a strand passage about the structure Θ for K = φ are

PrΘ(φ, s) := lim
n→∞

PrΘ2n(φ, s), (6.4)

PrΘ(φ, f) := lim
n→∞

PrΘ2n(φ, f) = 1 − lim
n→∞

PrΘ2n(φ, s), (6.5)

and, for each knot-type K ∈ K Θ(φ),

PrΘ(K|φ, s) := lim
n→∞

PrΘ2n(K|φ, s). (6.6)

The next section presents one method for estimating the limiting probabilities associated

with the LSP Model is presented.

6.1 The Fixed-n Method Used to Estimate PrΘ(∗)

If the conjectured forms for the fixed-n probabilities hold and the limiting probabilities

PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K|φ, s) exist, then, for sufficiently large n, plots of each of

PrΘ2n(φ, s),PrΘ2n(φ, f), and PrΘ2n(K|φ, s) versus 2n will have the form

f(2n, a, b, δ) = a+ b(2n)−δ (6.7)

where the constants a, b, and δ depend on the property ∗ ∈ Φ and where the constant term

a is the limiting strand passage probability PrΘ(∗), for ∗ ∈ Φ. Consequently one way to

estimate PrΘ(∗), for ∗ ∈ Φ, is to estimate the constant a in Equation (6.7) by using each

of the sequences of data {(2n,PrΘ
2n(∗))}, ∗ ∈ Φ, for sufficiently many n’s in the “Fixed-n

Method for curve fitting” provided in Section A.5 of Appendix A. Thus estimating each

of the limiting strand passage probabilities PrΘ(∗), ∗ ∈ Φ, via this approach, reduces to

first computing PrΘn (∗).
Because computing PrΘ2n(∗) appears to require the value of pΘ

2n(∗), a problem quickly

arises. The values of pΘ
2n(∗) have not been enumerated for any value of n. However,

this problem can be overcome, because the data generated from the CMC Θ-BFACF

Algorithm discussed in Section 3.4 can be used to estimate the fixed-n probabilities PrΘ2n(∗)
without knowing pΘ

2n(∗). Then the “Fixed-n Method for curve fitting” can be used to fit

an essentially independent sample of estimates for PrΘ2n(∗) to Equation (6.7) to obtain

estimates for a, b, and δ. Hence the “Fixed-n Method for estimating PrΘ(∗)” requires

estimating PrΘ2n(∗) using CMC data.
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6.2 Estimating PrΘ
2n(∗) Using CMC Θ-BFACF Data

Suppose W := {(Wt(1),Wt(2), ...,Wt(14)) , t = 0, ..., t0} is a CMC generated by the CMC

Θ-BFACF Algorithm discussed in Section 3.4 and ω(u) is the u’th realization of W , that

is Replication u. The method for estimating PrΘ2n(∗) will be presented for two different

scenarios: via a single replication and via several replications. Before either of these two

versions can be presented, some notation and definitions common to both versions must

first be introduced.

Because ultimately the estimators for PrΘ2n(∗) are ratio estimators, in order to determine

(1 − α) · 100% confidence intervals for PrΘ2n(∗) using the theory in the Ratio Estimator

Section (cf. Section A.3 of Appendix A), an i.i.d. sample of two-dimensional counters

(X,Y ) is required, where the count X is that required for the denominator and the count

Y is needed for the numerator. One way to create this i.i.d. sample is to subdivide the t0

time-steps as described in Section A.4. More specifically, define Xk,· and Yk,· in Section

A.4 as follows. For any ∗1, ∗2 ∈ Φ, define

Xk,·(∗1|2n, T ) :=
1

14

14∑

i=1

Yk,i(∗1|2n, T ) (6.8)

and

Yk,·(∗2|2n, T ) :=
1

14

14∑

i=1

Yk,i(∗2|2n, T ), (6.9)

where, for ∗ ∈ Φ.

Yk,i(∗|2n, T ) :=

t0∑

t=0

MT (t)IB(k) (t) I2n(|Wt(i)|) ψ∗(Wt(i)); (6.10)

In(m) :=





1 if m = n,

0 otherwise;
(6.11)

B(k) is given by Equation (4.159); for each ω ∈ PΘ(φ) and ∗ ∈ Φ, ψ∗(ω) is given by

Equation (4.166); and Mn (t) is given by Equation (4.42).

Then, for each natural number n, the sequence of two-tuples of counters

((Xk,·(φ|2n, T ), Yk,·(φ, s|2n, T )), k = 1, .., l) (6.12)

and, for each ∗ ∈ K †(φ),

((Xk,·(φ, s|2n, T ), Yk,·(∗|2n, T )), k = 1, .., l) , (6.13)

256



can be used to form ratio estimators for PrΘ2n(∗) (cf. Section A.3). Note that, for ex-

ample, Yk,·(φ, s|2n, T ) represents the number of (2n)-edge successful-strand-passage Θ-

SAPs found across all fourteen chains in block k and Xk,·(φ|2n, T ) represents the num-

ber of (2n)-edge Θ-SAPs found across all fourteen chains in block k. Then the ratio

Yk,·(φ, s|2n, T )/Xk,·(φ|2n, T ) is the estimator for the probability of a successful strand pas-

sage in a (2n)-edge Θ-SAP in block k.

With these definitions and notations in hand, the two versions of the method for esti-

mating PrΘ2n(∗) are presented.

6.2.1 Scenario 1: Via a Single Replication

For a fixed natural number n ≥ 7, in order to estimate PrΘ2n(∗), an estimator (preferably

unbiased) is required. To this end, let P̂r
Θ

2n(φ, s) be the estimator (as defined by Equation

(A.21) in Section A.4 of Appendix A) for PrΘ2n(φ, s) using the sequence

((Xk,·(φ|2n, T ), Yk,·(φ, s|2n, T )), k = 1, .., l) (6.14)

with Xk,·(φ|2n, T ) and Yk,·(φ, s|2n, T ) defined respectively by Equations (6.8) and (6.9).

Similarly, for each after-strand-passage property ∗ ∈ K †(φ), let P̂r
Θ

2n(∗) be the estima-

tor (as defined by Equation (A.21) in Section A.4 of Appendix A) for PrΘ2n(∗) using the

sequence

((Xk,·(φ, s|2n, T ), Yk,·(∗|2n, T )), k = 1, .., l) (6.15)

with Xk,·(φ, s|2n, T ) and Yk,·(∗|2n, T ) defined respectively by Equations (6.8) and (6.9).

Also define

P̂r
Θ

2n(φ, f) = 1 − P̂r
Θ

2n(φ, s). (6.16)

Theorem A.3.2 from Section A.3 of Appendix A implies that P̂r
Θ

2n(φ, s), P̂r
Θ

2n (φ, f) , and

P̂r
Θ

2n(∗), for ∗ ∈ K †(φ), are respectively asymptotically (as l → ∞) unbiased estimators

for PrΘ2n(φ, s), PrΘ2n(φ, f), and PrΘ2n(∗), ∗ ∈ K †(φ).

Now, for ∗1, ∗2 ∈ Φ, let x
(u)
k,· (∗1|2n, T ) and y

(u)
k,· (∗2|2n, T ) respectively denote the realiza-

tions of Xk,·(∗1|2n, T ) and Yk,·(∗2|2n, T ) based on sampling every T time-steps from ω(u).

When Xk,·(∗1|2n, T ) and Yk,·(∗2|2n, T ) in Sequences (6.14) and (6.15) are replaced by the

realized sample from a single replication (say Replication u) with t0 = 9.6×1010 time steps,

τint = 0.72× 109 time steps, T = 1200 time steps, and l := 66, the notation p̂rΘ2n((φ, s) , u),
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p̂rΘ2n((φ, f) , u), and p̂rΘ2n(∗, u), ∗ ∈ K †(φ), is used to denote the values corresponding to

the estimators P̂r
Θ

2n(φ, s), P̂r
Θ

2n (φ, f) , and P̂r
Θ

2n(∗), ∗ ∈ K †(φ), respectively.

6.2.2 Scenario 2: Via Several Independent Replications

Suppose instead of using only one realization of W, n0 realizations of W are used in

the analysis. Then, for each even n ∈ N, with n0 := 10, t0 = 9.6 × 1010 time steps,

τint = 0.72 × 109 time steps, T = 1200 time steps, and l := 66, for each natural number

n ≥ 7, let p̃rΘ2n(φ, s) be the point estimate for PrΘ2n(φ, s) determined using the sequence

(((
x

(u)
k,· (φ|2n, T ), y

(u)
k,· (φ, s|2n, T )

)
, k = 1, .., l

)
, u = 1, ..., n0

)
(6.17)

in Equation (A.21) in Section A.4 of Appendix A; for each ∗ ∈ K †(φ), let p̃rΘ2n(∗) be the

point estimate for PrΘ2n(∗) determined using the sequence

(((
x

(u)
k,· (φ, s|2n, T ), y

(u)
k,· (∗|2n, T )

)
, k = 1, .., l

)
, u = 1, ..., n0

)
(6.18)

in Equation (A.21) in Section A.4 of Appendix A; and let p̃rΘ2n(φ, f) := 1−p̃rΘ2n(φ, s) be the

point estimate for PrΘ2n(φ, f). Note that p̃rΘ2n(φ, s), p̃rΘ2n(φ, f), and p̃rΘ2n(∗), ∗ ∈ K †(φ), are

respectively the fixed-n point estimates for PrΘ2n(φ, s), PrΘ2n(φ, f), and PrΘ2n(∗), ∗ ∈ K †(φ),

based on n0 independent replications. Note that if n0 = 1 (that is there is only one

replication), the two scenarios yield the same point estimates. Therefore in the following

discussion of the two scenarios, it is assumed that n0 > 1.

6.2.3 Discussion of the Two Scenarios

Figure 6.1 consists of the plots of the sequences of data:
((

2n, p̂rΘ2n((31|φ, s) , 1)
))2000

n=0

(Line A: dashed line) and
((

2n, p̃rΘ2n(31|φ, s)
))2000

n=0
(Line B: solid line). The estimates

p̂rΘ2n((31|φ, s) , 1) in the first sequence are determined from Replication 1 using “Scenario

1: Via a Single Replication”, and the estimates p̃rΘ2n(31|φ, s) in the second sequence

are determined using “Scenario 2: Via Several Independent Replications” with all ten

replications.

Because the data that was used to calculate the first sequence of estimates was generated

using the CMC Θ-BFACF Algorithm, polygons generated, whose lengths are 2n and 2n+2,

respectively, are correlated. Hence the estimates p̂rΘ2n((31|φ, s) , 1) and p̂rΘ2n+2((31|φ, s) , 1)
will also be correlated. In fact, recall from Section 3.1 that for polygons generated using
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Figure 6.1: Line A: The estimated probabilities p̂rΘ2n((31|φ, s) , 1). Line B:
The estimated probabilities p̃rΘ2n(31|φ, s). The estimates p̂rΘ2n((31|φ, s) , 1)
are determined using the data generated from Replication 1 and the esti-
mates p̃rΘ2n(31|φ, s) are determined using the data from all ten independent
replications.
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the BFACF Algorithm, as the polygon length increases, the time between two gener-

ated polygons being “essentially independent” also increases. Therefore the estimates

p̂rΘ2n((31|φ, s) , ·) and p̂rΘ2n+2((31|φ, s) , ·), regardless of which replication is used, are ex-

pected to be more and more correlated as the polygon length 2n increases. The relationship

between p̂rΘ2n((31|φ, s) , ·) and p̂rΘ2n+2l((31|φ, s) , ·) can be seen in Figure 6.1. Specifically,

the dependence that exists between p̂rΘ2n((31|φ, s) , ·) and p̂rΘ2n+2((31|φ, s) , ·) manifests in

Figure 6.1 as the oscillating trend that is present in the estimates p̂rΘ2n((31|φ, s) , 1) as 2n

increases. This oscillating trend becomes more and more dramatic as 2n increases. Note

that the estimates p̂rΘ2n((φ, s) , ·) and p̂rΘ2n+2((φ, s) , ·) (and likewise p̂rΘ2n((K|φ, s) , ·) and

p̂rΘ2n+2((K|φ, s) , ·) for each unknotting number one knot-type K) are also expected to ex-

hibit the same property. In order to reduce the impact of this oscillating trend on the

estimates for Pr2n(31|φ, s), the estimates p̃rΘ2n(31|φ, s) were computed using “Scenario 2:

Via Several Independent Replications”.

Regarding Figure 6.1, as the polygon length 2n increases, although for any given 2n,

the deviation
∣∣∣p̃rΘ2n(31|φ, s) − p̃rΘ2(n+1)(31|φ, s)

∣∣∣ is not as great as the deviation∣∣∣p̂rΘ2n((31|φ, s) , 1) − p̂rΘ2n+2((31|φ, s) , 1)
∣∣∣, the estimates p̃rΘ2n(31|φ, s) still exhibit a general

oscillating trend as a function of 2n. This suggests that, even after data from ten indepen-

dent replications is combined to estimate PrΘ2n(φ, s), some relationship still exists between

p̃rΘ2n(31|φ, s) and p̃rΘ2n+2l(31|φ, s) for integer values of l > 0 that are relatively small. Con-

sequently it is concluded that ten replications are not sufficient to remove the correlation

that exists between the estimates p̃rΘ2n(31|φ, s) and p̃rΘ2(n+1)(31|φ, s) for even relatively small

values of n. The question then becomes, “How many replications are required so that the

estimates p̃rΘ2n(31|φ, s) and p̃rΘ2(n+1)(31|φ, s) are essentially independent?”.

To determine the number of replications that must be used to ensure that the point

estimates p̃rΘ2n(31|φ, s) and p̃rΘ2(n+1)(31|φ, s) are essentially independent, consider the fol-

lowing. Starting from the equilibrium distribution, the goal is to obtain an estimate for

the standard deviation which is within ε > 0 of the population standard deviation. In

this situation, using J replications only reduces the standard error associated with the

point estimate by a factor of
√
J, and in order to reduce the estimated standard error

associated with P̂r
Θ

n (31|φ, s) by a factor of 10, 100 replications would be required. If the

standard error based on a single replication is of the order 100, 100 replications would

effectively reduce the estimated standard error by a factor of 10, that is an estimated stan-
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dard error of the order 10−1 is expected. In the property-(31|φ, s) case, since the point

estimate is of the order 10−2, 100 replications would still produce a point estimate whose

estimated standard error is approximately 10 times the point estimate. Hence continually

increasing the number of replications to reduce the correlation between p̃rΘ2n(31|φ, s) and

p̃rΘ2n+2(31|φ, s) is not an efficient method for estimating PrΘ2n(31|φ, s). Because the esti-

mates p̃rΘ2n(φ, s), p̃rΘ2n(φ, f), and p̃rΘ2n(K|φ, s) (as a function of n) are expected to follow a

similar trend to the estimates p̃rΘ2n(31|φ, s) (as a function of n), continually increasing the

number of replications is also not an efficient method for reducing the correlation between

the point estimates p̃rΘ2n(φ, s) and p̃rΘ2n+2(φ, s), p̃rΘ2n(φ, f) and p̃rΘ2n+2(φ, f), and p̃rΘ2n(∗)
and p̃rΘ2n+2(∗), ∗ ∈ K †(φ). The method presented next, referred to as the Grouped-n

Method for Estimating PrΘ(∗), is designed to minimize the effects of any correlation that

exists between p̃rΘ2n(∗) and p̃rΘ2n+2(∗), ∗ ∈ K †(φ)∪{(φ, f), (φ, s)}. The Grouped-n Method

for estimating PrΘ(∗) is discussed next.

6.3 The Grouped-n Method for Estimating PrΘ(∗)

The Grouped-n Method for Estimating PrΘ(∗) allows all the generated data (not just the

data in HΘ
1 (∗), the essentially independent sample from the Fixed-n Method) to be used.

To this end, for positive even values n1 and n2, such that n2 > n1, define the length

[n1, n2]-grouped probabilities

PrΘn1,n2
(φ, s) :=

n2∑
n=n1

[
pΘ

n (φ, s)
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
pΘ

n (φ)
M∑
i=1

w(n)eβin

Q̆(βi)

] , (6.19)

PrΘn1,n2
(φ, f) :=

n2∑
n=n1

[
pΘ

n (φ, f)
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
pΘ

n (φ)
M∑
i=1

w(n)eβin

Q̆(βi)

] , (6.20)

and, for ∗ ∈ K †(φ),

PrΘn1,n2
(∗) :=

n2∑
n=n1

[
pΘ

n (∗)
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
pΘ

n (φ, s)
M∑
i=1

w(n)eβin

Q̆(βi)

] , (6.21)

where each sum is taken through even values of n. Then PrΘn1,n2
(φ, s) is the probability of

observing a successful-strand-passage Θ-SAP given that the Θ-SAP has length in [n1, n2] ;
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PrΘn1,n2
(φ, f) is the probability of observing an unsuccessful-strand-passage Θ-SAP given

that the Θ-SAP has length in [n1, n2] ; and PrΘn1,n2
(∗), for ∗ ∈ K †(φ), is the probability

of observing a property-∗ Θ-SAP given a successful-strand-passage Θ-SAP whose length is

in [n1, n2] . An interesting question regarding the [n1, n2]-grouped probabilities PrΘn1,n2
(∗),

for ∗ ∈ Φ\{φ} is “How does PrΘn1,n2
(∗) behave as n1 → ∞?”.

In order to determine the n1 → ∞ scaling form for PrΘn1,n2
(φ, s), consider the following:

PrΘn1,n2
(φ, s) :=

n2∑
n=n1

[
pΘ

n (φ, s)
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
pΘ

n (φ)
M∑
i=1

w(n)eβin

Q̆(βi)

] (6.22)

=
pΘ

n1
(φ, s)

pΘ
n (φ)

n2∑
n=n1

[
pΘ

n (φ, s)

pΘ
n1

(φ, s)

M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
pΘ

n (φ)

pΘ
n1

(φ)

M∑
i=1

w(n)eβin

Q̆(βi)

] . (6.23)

Substituting the believed scaling form for pΘ
n (φ, s) and pΘ

n (φ) , as given by Equation (2.86),

into the above equation yields the following scaling form as n1 → ∞:

PrΘn1,n2
(φ, s) ∼ pΘ

n1
(φ, s)

pΘ
n1

(φ)

n2∑
n=n1




n
αΘ

(φ,s)
+q
eκφn

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)

)

n
αΘ

(φ,s)
+q

1 eκφn1

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

)
M∑
i=1

w(n)eβin

Q̆(βi)




n2∑
n=n1




nαΘ
φ

+qeκφn

(
1 +

BΘ
φ

n
∆Θ

φ

+ ...

)

n
αΘ

φ
+q

1 eκφn1

(
1 +

BΘ
φ

n
∆Θ

φ
1

+ ...

)
M∑
i=1

w(n)eβin

Q̆(βi)




. (6.24)

Assuming αΘ
φ = αΘ

(φ,s) then the scaling form, as given by Equation (6.24), can be reduced

as follows:

PrΘn1,n2
(φ, s) ∼ pΘ

n1
(φ, s)

pΘ
n1

(φ)

(
1 +

BΘ
φ

n
∆Θ

φ
1

+ ...

)

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

+ ...

)×

n2∑
n=n1

[
nαΘ

φ
+qeκφn

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)

+ ...

)
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
nαΘ

φ
+qeκφn

(
1 +

BΘ
φ

n
∆Θ

φ

+ ...

)
M∑
i=1

w(n)eβin

Q̆(βi)

] . (6.25)
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To first order, the scaling form for PrΘn1,n2
(φ, s), as n1 → ∞, is therefore

PrΘn1,n2
(φ, s) ∼ pΘ

n1
(φ, s)

pΘ
n1

(φ)

(
1 +

BΘ
φ

n
∆Θ

φ
1

)

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

)×




n2∑
n=n1

[
nαΘ

φ
+qeκφn

M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
nαΘ

φ
+qeκφn

(
1 +

BΘ
φ

n
∆Θ

φ

)
M∑
i=1

w(n)eβin

Q̆(βi)

]

+

BΘ
(φ,s)

n2∑
n=n1

[
n

αΘ
φ

+q−∆Θ
(φ,s)eκφn

M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
nαΘ

φ
+qeκφn

(
1 +

BΘ
φ

n
∆Θ

φ

)
M∑
i=1

w(n)eβin

Q̆(βi)

]


 , (6.26)

which can be algebraically manipulated to be

PrΘn1,n2
(φ, s) ∼ pΘ

n1
(φ, s)

pΘ
n1

(φ)

(
1 +

BΘ
φ

n
∆Θ

φ
1

)

(
1 +

BΘ
φ,s

n
∆Θ

(φ,s)
1

)×





1 +BΘ

φ

n2∑
n=n1

[
nαΘ

φ
+q−∆Θ

φ eκφn
M∑
i=1

w(n)eβin

Q̆(βi)

]

n2∑
n=n1

[
nαΘ

φ
+qeκφn

M∑
i=1

w(n)eβin

Q̆(βi)

]




−1

+




n2∑
n=n1

[
nαΘ

φ
+qeκφn

(
1 +

BΘ
φ

n
∆Θ

φ

)
M∑
i=1

w(n)eβin

Q̆(βi)

]

BΘ
(φ,s)

n2∑
n=n1

[
n

αΘ
φ

+q−∆Θ
(φ,s)eκφn

M∑
i=1

w(n)eβin

Q̆(βi)

]




−1
 . (6.27)

By defining the new function

Gn := Gn(κ, α, q, Q̆,β) := nα+qeκn
M∑

i=1

w(n)eβin

Q̆ (βi)
, (6.28)

263



Equation (6.27) can be expressed in terms of Gn, that is

PrΘn1,n2
(φ, s) ∼ pΘ

n1
(φ, s)

pΘ
n1

(φ)

(
1 +

BΘ
φ

n
∆Θ

φ
1

)

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

)×





1 +BΘ

φ

n2∑
n=n1

n−∆Θ
φGn

n2∑
n=n1

Gn




−1

+




n2∑
n=n1

[(
1 +BΘ

φ n
−∆Θ

φ

)
Gn

]

BΘ
(φ,s)

n2∑
n=n1

n
−∆Θ

(φ,s)Gn




−1

 . (6.29)

BΘ
(φ,s)

n2∑

n=n1

n
−∆Θ

(φ,s)Gn

[
1 +BΘ

φ

n2∑

n=n1

n−∆Θ
φGn

]−1

(6.30)

This scaling form can be manipulated to become

PrΘn1,n2
(φ, s)

∼ pΘ
n1

(φ, s)

pΘ
n1

(φ)

(
1 +

BΘ
φ

n
∆Θ

φ
1

)

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

)





1 +BΘ

φ

n2∑
n=n1

n−∆Θ
φGn

n2∑
n=n1

Gn




−1

+

BΘ
(φ,s)

n2∑
n=n1

n
−∆Θ

(φ,s)Gn

n2∑
n=n1

Gn


1 +

BΘ
φ

n2∑
n=n1

n−∆Θ
φGn

n2∑
n=n1

Gn




−1

 . (6.31)

Therefore

PrΘn1,n2
(φ, s)

∼ PrΘn1
(φ, s)

(
1 +

BΘ
φ

n
∆Θ

φ
1

)

(
1 +

BΘ
(φ,s)

n
∆Θ

(φ,s)
1

)


1 +BΘ

φ

n2∑
n=n1

n−∆Θ
φGn

n2∑
n=n1

Gn




−1

×


1 +

BΘ
(φ,s)

n2∑
n=n1

n
−∆Θ

(φ,s)Gn

n2∑
n=n1

Gn


 . (6.32)

Now substituting the scaling form for PrΘn1
(φ, s), given by Equation (2.109), into Equation

(6.32), obtains, to first order,

PrΘn1,n2
(φ, s) ≈

AΘ
(φ,s)

AΘ
φ

+
CΘ

(φ,s)

n
λΘ
(φ,s)

1

. (6.33)
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Through a similar argument, it can be shown that

PrΘn1,n2
(φ, s) ≈

AΘ
(φ,f)

AΘ
φ

+
CΘ

(φ,f)

n
λΘ
(φ,f)

1

; (6.34)

and, for ∗ ∈ K †(φ),

PrΘn1,n2
(∗) ≈ AΘ

∗

AΘ
(φ,s)

+
CΘ
∗

n
λΘ
(K|φ,s)

1

. (6.35)

Hence, to first order, PrΘn1,n2
(∗) is expected to have the form

f(n) = a+ bn−δ, (6.36)

where a, b, and δ depend on property ∗.
Just as was the case for the “Fixed-n Method for Estimating PrΘ(∗)”, in order to

estimate the limiting probabilities PrΘ(φ, s), PrΘ(φ, f), and PrΘ(∗), for ∗ ∈ K †(φ), an

independent sample is required to estimate PrΘ(φ, s), PrΘ(φ, f), and PrΘ(∗), for ∗ ∈
K †(φ), by fitting the sample data to the scaling form

f(n) = a+ bn−δ. (6.37)

Therefore in order to estimate PrΘ(φ, s), PrΘ(φ, f), and PrΘ(∗), for ∗ ∈ K †(φ), estimates

for PrΘn1,n2
(φ, s), PrΘn1,n2

(φ, f), and PrΘn1,n2
(∗), for ∗ ∈ K †(φ), respectively are required.

Recall from Section 6.2 that, for ∗1, ∗2 ∈ Φ, Xk,·(∗1|2n, T ) and Yk,·(∗2|2n, T ) are the

estimators that respectively represent the number of (2n)-edge property-∗1 and property-

∗2 Θ-SAPs found across all fourteen chains in block k . Then using the estimators

Xk,·(∗1|2n, T ) and Yk,·(∗2|2n, T ), for fixed positive even integers n1 and n2, the point esti-

mators X∗1
k,·(n1, n2|T ) and Y ∗2

k,· (n1, n2|T ) defined by

X∗1
k (n1, n2|T ) :=

n2∑

n=n1

Xk(∗1|n, T ) (6.38)

and

Y ∗2
k (n1, n2|T ) :=

n2∑

n=n1

Yk(∗2|n, T ) (6.39)

respectively, where both sums are taken through even values of n, represent the number of

property-∗1 and property-∗2 Θ-SAPs, whose lengths are in the interval [n1, n2] , found in

all fourteen chains in block k. Now let P̂r
Θ

n1,n2
(φ, s) be the point estimator for PrΘn1,n2

(φ, s)

defined by Equation (A.21) (in Section A.4 of Appendix A) using the sequence

(
(Xφ

k (n1, n2|T ), Y
(φ,s)
k (n1, n2|T )), k = 1, .., l

)
; (6.40)
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let P̂r
Θ

n1,n2
(φ, f) be the point estimator for PrΘn1,n2

(φ, f) defined by Equation (A.21) using

the sequence
(
(Xφ

k (n1, n2|T ), Y
(φ,f)
k (n1, n2|T )), k = 1, .., l

)
; (6.41)

and, for each after-strand-passage property ∗ ∈ K †(φ), let P̂r
Θ

n1,n2
(∗) be the point estima-

tor for PrΘn1,n2
(∗) defined by Equation (A.21) using the sequence

(
(X

(φ,s)
k (n1, n2|T ), Y ∗

k (n1, n2|T )), k = 1, .., l
)
. (6.42)

Theorem A.3.2 from Section A.3 of Appendix A implies that P̂r
Θ

n1,n2
(φ, s), P̂r

Θ

n1,n2
(φ, f),

and P̂r
Θ

n1,n2
(∗), for ∗ ∈ K †(φ), are respectively asymptotically (as l → ∞) unbiased

estimators for PrΘn1,n2
(φ, s), PrΘn1,n2

(φ, s), and PrΘn1,n2
(∗).

Now, for ∗1, ∗2 ∈ Φ, let x
(u)
k,· (∗1|n1, n2, T ) and y

(u)
k,· (∗2|n1, n2, T ) respectively denote the

realizations of X∗1
k,·(n1, n2|T ) and Y ∗2

k,· (n1, n2|T ) based on sampling every T time-steps from

ω(u). Then the point estimators P̂r
Θ

n1,n2
(φ, s), P̂r

Θ

n1,n2
(φ, f), and P̂r

Θ

n1,n2
(∗), for ∗ ∈ K †(φ),

defined with t0 = 9.6 × 1010 time steps, τint = 0.72 × 109 time steps, T = 1200 time

steps, and l := 66, are respectively used to compute the point estimate p̂rΘn1,n2
(φ, s) for

PrΘn1,n2
(φ, s) using the sequence

(((
x

(u)
k,· (φ|n1, n2, T ), y

(u)
k,· (φ, s|n1, n2, T )

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(6.43)

in Equation (A.21); the point estimate p̂rΘn1,n2
(φ, f) for PrΘn1,n2

(φ, f) using the sequence

(((
x

(u)
k,· (φ|n1, n2, T ), y

(u)
k,· (φ, f |n1, n2, T )

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(6.44)

in Equation (A.21); and, for ∗ ∈ K †(φ), the point estimate p̂rΘn1,n2
(∗) for PrΘn1,n2

(∗) using

the sequence

(((
x

(u)
k,· (φ, s|n1, n2, T ), y

(u)
k,· (∗|n1, n2, T )

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(6.45)

in Equation (A.21).

In order to estimate PrΘ(∗), for ∗ ∈ Φ\{φ}, using the grouped-n estimates p̂rΘn1,n2
(∗),

an independent sample of the values p̂rΘn1,n2
(∗) is required. More specifically the value g∗

needs to be estimated, where g∗ is the number of consecutive even n’s that must pass so

that the point estimates p̂rΘn,n+2g∗−2(∗) and p̂rΘn+2g∗,n+4g∗−2(∗) are essentially independent.

Let ml be the smallest value of n for which p̃rΘ2n(∗) is non-zero. (Recall that p̃rΘ2n(∗) is a
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fixed-n estimate for Pr Θ
2n(∗).) Then the set

HΘ
2 (∗) :=

t⋃

i=1

{(
2ml + 2(i − 1)g∗, p̂rΘ2ml+2(i−1)g∗,2ml+2ig∗−2(∗)

)}
, (6.46)

where t is the greatest integer that satisfies both 2ml ≤ 2ml + 2g∗t ≤ 2mu and for all j ≤
2ml + 2g∗t− 2, p̃rΘj (∗) 6= 0, consists of t essentially independent data points. The data in

HΘ
2 (∗) can then be fit to the scaling form for PrΘn1,n2

(∗).
Only one step in the Grouped-nMethod remains to be clarified. How does one estimate

the value of g∗ required by the Grouped-n Method? Define ℧u
∗t

as the set of estimates

{u(∗t|2n)} used in the numerators of the elements in
{

p̃rΘ2n(∗)
}

; ℧
u
∗b

as the set of estimates

{u(∗b|2n)} used in the denominator of the elements in
{

p̃rΘ2n(∗)
}

; and ℧P
∗ as the set of

estimates

{
u(∗t|2n)

u(∗b|2n)

}
. For k (P∗), the minimum number of n’s that must pass before the

point estimate p̃rΘ2n(∗) and p̃rΘ2n+2k(P∗)(∗) are essentially independent, and for k
(
u∗#

)
, for

# ∈ {t, b} , the minimum number of n’s that must pass before the point estimate u(∗#|2n)

and u(∗#|2n + 2k
(
u∗#

)
) are essentially independent,

k (u∗t) := τint(℧
u
∗t

), (6.47)

k (u∗b
) := τint(℧

u
∗b

), (6.48)

k (P∗) := τint(℧
P
∗ ) (6.49)

and then

g∗ := max {k (P∗) , k (u∗t) , k (u∗b
)} . (6.50)

Define k̂ (u∗t) to be the estimate for k (u∗t) that is obtained by calculating the first value

of c such that for all k ≥ c, the estimated correlation between u(∗t|n) and u(∗t|2n + 2k)

is statistically insignificant at the 95% confidence level. Define k̂ (u∗b
) to be the estimate

for k (u∗b
) that is obtained by calculating the first value of c such that for all k ≥ c, the

estimated correlation between u(∗b|n) and u(∗b|2n+ 2k) is statistically insignificant at the

95% confidence level. Define k̂ (P∗) to be the estimate for k (P∗) that is the first value of

c such that for all k ≥ c, the correlation between p̃rΘ2n(∗) and p̃rΘ2n+2k(∗) is statistically

insignificant at the 95% confidence level. Then let ĝ (∗) be the estimator for g (∗) given

by

ĝ∗ := max
{
k̂ (P∗) , k̂ (u∗t) , k̂ (u∗b

)
}
. (6.51)
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After creating the set HΘ
2 (∗) using g∗ = ĝ∗, weighted least-squares regression can be

used to fit the data in HΘ
2 (∗) to the scaling form for PrΘn1,n2

(∗) :

f(n) = a+ bn−δ. (6.52)

Then the estimate for a also estimates the desired limiting probability PrΘ(∗).

6.4 Comparison of the Fixed-n and Grouped-n Methods for

Estimating PrΘ(∗)

Recall from Section A.5 of Appendix A that k∗ is the minimum positive even integer

such that p̃rΘ2n(∗) and p̃rΘ2n+k∗
(∗) are essentially independent. Then, the most obvious

drawback of the “Fixed-n Method for Estimating PrΘ(∗)” is that the larger the value of

k∗, the fewer the number of points in HΘ
1 (∗) and the more estimates p̃rΘ2n(∗) that are

discarded, and finally, the more variability in the resulting fit to the scaling form for

PrΘ2n(∗). Another drawback of the “Fixed-n Method for Estimating PrΘ(∗)” is that as

n increases, the variance of p̃rΘ2n(∗) increases dramatically as well. Since the goal of this

section is to estimate the limiting probabilities PrΘ(φ, s), PrΘ(φ, f), and PrΘ(K|φ, s), the

estimates for PrΘ2n(∗), for values of n as large as possible, are of interest, but these are the

very estimates that have the largest variances. Consequently the very estimates that are

most desirable in the fit to the scaling form for PrΘ2n(∗) are the least accurate estimates.

The most obvious drawback of the “Grouped-n Method for estimating PrΘ(∗)” is that the

larger the value of g∗, the fewer the number of points in HΘ
2 (∗). However, at least the

variability of the data in HΘ
2 (∗) is less than the variability of the data in the set HΘ

1 (∗)
where k∗ = g∗. For the purpose of illustrating these weaknesses of the two methods, refer

to Figure 6.2 for a display of the sequences of estimates
{(

24 + 60i, p̃rΘ
24+60i(31|φ, s)

)}67

i=0

and
{(

24 + 140i, p̃rΘ
24+140i,24+138(i+1)(31|φ, s)

)}29

i=0
that are required by the Fixed-n and

the Grouped-n Methods respectively.

Figure 6.2 displays the fixed-n estimates
{(

24 + 60i, p̃rΘ
24+60i(31|φ, s)

)}67

i=0
and the

grouped-n estimates
{(

24 + 140i, p̃rΘ
24+140i,24+138(i+1)(31|φ, s)

)}29

i=0
. The figure illustrates

the fact that, over the same range of values, the grouped-n estimates do not vary as widely

as the fixed-n estimates. As a result, the Grouped-n Method generates more reliable

(i.e. less variable) point estimates for larger ranges of n than the Fixed-n Method. The
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Figure 6.2: A comparison of the fixed-n estimates p̃rΘ2n((31|φ, s)) and the
grouped-n estimates p̂rΘn1,n2

(31|φ, s), where the error bars are the estimated
95% margins of error for the grouped-n estimates.

error bars (estimated 95% confidence intervals) presented in Figure 6.2 for any particular

grouped-n estimate (say calculated using the interval [n1, n2]) is consistently smaller than

the estimated 95% confidence intervals for the fixed-n estimates computed for each even

n ∈ [n1, n2]. The difference in lengths of the two intervals increases as n1 increases. Hence

it is concluded that, whenever possible, the Grouped-n Method for Estimating PrΘ(∗)
should be used to estimate PrΘ(∗).

In the next section, the Grouped-n Method for Estimating PrΘ(∗) is used to estimate

some of the limiting strand passage probabilities.

6.5 The Transition Knotting Probability Estimates

In order to estimate any of the limiting probabilities, the interval over which the data is

believed to be reliable needs to be determined, that is estimates for N∗
max need to be deter-

mined. Because the probability of a successful strand passage appears in the denominators

of the transition knotting probabilities PrΘ(K|φ, s), a logical choice for determining when

the data is unreliable is when the estimates prΘ2n(φ, s) become unreliable; any unreliability
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in prΘ2n(φ, s) (due to it appearing in the denominator) gets magnified in the estimates for

PrΘn1,n2
(K|φ, s). Hence the procedure from Section 4.6 will be used to estimate N

(φ,s)
max in

which the c = 0.003 and

δ̂
(u)
2n (∗) :=





ŜE(p̂rΘ2n((φ, s) , u))

p̂rΘ2n((φ, s) , u)
, if p̂rΘ2n((φ, s) , u) 6= 0

∞, otherwise,

(6.53)

where

ŜE(p̂rΘ2n((φ, s) , u)) :=

√
v̂ar(p̂rΘ2n((φ, s) , u))

m
, (6.54)

m is the number of essentially independent blocks of data used in the estimate p̂rΘ2n((φ, s) , u),

and v̂ar(p̂rΘ2n((φ, s) , u)) is given by Equation (A.30). The reason for choosing a cutoff value

of 0.003 is that 0.003 corresponds to approximately fifteen percent of the estimate δ̂(u)(φ, s).

Figure 6.3 illustrates the estimates δ̂
(u)
2n (φ, s) <∞ for the ten replications. The dashed

line in Figure 6.3 is the line y = δ̂(φ, s) + 0.003, where

δ̂(φ, s) := min
u,n

δ̂
(u)
2n (φ, s). (6.55)

The values of δ̂(u)(φ, s) and N̂
(u)
max(φ, s), for u = 1, ..., 10, are summarized in Table

6.1. From the estimates in Table 6.1, N̂max(φ, s) = 1890. Note that estimates for N
(φ,s)
max

were also computed when the data collected during the first 5.0 billion and 11.0 billion

Θ-BFACF moves in parallel were discarded. The values estimated for N
(φ,s)
max in both of

these scenarios are consistent with the estimate N̂max(φ, s) = 1890 that was determined

when no data was discarded. Therefore no data is burned when estimating the limit-

ing strand passage probabilities and the data from polygons in each replication of sizes

between 14 and N̂max(φ, s) = 1890 (including 14 and 1890) are used to determine the

distance between nl and nm such that the estimates for p̂rΘnl
(∗, u) and p̂rΘnm

(∗, u) (for even

nl,nm ∈ [14, 1890]) are essentially independent and to estimate the limiting strand passage

probabilities PrΘ(∗).

For Replication u and for each property ∗ ∈ {(φ, s) , (φ|φ, s) , (31|φ, s) , (41|φ, s) ,
(52|φ, s)}, half the length of the grouping interval [n1, n2] must be estimated (recall from

Section 6.3 that this quantity is denoted g∗). Using the method discussed in Section 6.3 to

estimate g∗, the resulting estimates for g∗ are presented in Table 6.2.
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Figure 6.3: The relative standard error in the fixed-n estimates
p̂rΘ2n((31|φ, s) , u). Line Z represents the maximum tolerance in the esti-
mated relative standard error.

Table 6.1: The estimates for δ(u)(φ, s) and Nmax(φ, s) from each of the 10
replications.

Replication u δ̂(u)(φ, s) N̂
(u)
max(φ, s)

1 0.020060 1958

2 0.020059 2128

3 0.020060 1994

4 0.020061 1890

5 0.020054 2058

6 0.020057 2032

7 0.020058 1984

8 0.020059 1934

9 0.020059 1966

10 0.020059 1988
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Table 6.2: The estimated values for g∗ (half the estimated lengths of the
grouping intervals for property ∗) so that an essentially independent sample
can be formed using the data from Replication u . The estimates are based
on the cutoff N̂max(∗) = 1890.

Property ∗
Replication u φ (φ, s) (φ|φ, s) (31|φ, s) (41|φ, s) (52|φ, s)

1 40 50 50 70 80 90

2 40 50 50 70 80 80

3 40 50 50 70 80 70

4 40 50 50 70 80 90

5 40 50 50 70 80 60

6 40 50 50 70 80 80

7 40 50 50 70 80 80

8 40 50 50 70 80 60

9 40 50 50 70 80 60

10 40 50 50 70 80 80

ĝ∗ 40 50 50 70 80 90
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Table 6.3: The number of essentially independent grouped-n data points
for property ∗ over the interval [14, 1890].

Property ∗ (φ, s) (φ|φ, s) (31|φ, s) (41|φ, s) (52|φ, s)
Number independent blocks 18 18 13 11 10

Using N̂max(φ, s) = 1890 as the maximum polygon length for which the data for each

property ∗ ∈ {(φ, s) , (φ|φ, s) , (31|φ, s) , (41|φ, s) , (52|φ, s)} is reliable and the estimates

ĝ∗ presented in Table 6.2, the number of essentially independent grouped-n data points

formed based on groupings of length 2ĝ∗ are presented in Table 6.3. Based on these

groupings, essentially independent samples for PrΘn1,n2
(∗), for each ∗ ∈ {(φ, s) , (φ|φ, s) ,

(31|φ, s) , (41|φ, s) , (52|φ, s)}, are displayed in Figures 6.4-6.8 respectively and are presented

in Tables B.6-B.10 (cf. Section B.1.2 of Appendix B) respectively. In order to estimate

the limiting strand-passage probabilities using these essentially independent samples, recall

from Equation (6.35) that it is expected that, to first order,

PrΘn1,n2
(∗) ≈ AΘ

∗

AΘ
(φ,s)

+
CΘ
∗

n
λΘ
∗

1

, (6.56)

where ∗ ∈ {(φ|φ, s) , (31|φ, s) , (41|φ, s) , (52|φ, s)}; recall from Equation (6.33) that it is

expected that, to first order,

PrΘn1,n2
(φ, s) ≈

AΘ
(φ,s)

AΘ
φ

+
CΘ

(φ,s)

n
λΘ
(φ,s)

1

; (6.57)

and recall that the constant terms in the scaling form for PrΘn1,n2
(∗), for ∗ ∈ {(φ|φ, s) ,

(31|φ, s) ,(41|φ, s) ,(52|φ, s)}, and PrΘn1,n2
(φ, s) are the desired limiting probabilities PrΘ(∗)

and PrΘ(φ, s).

To estimate the constant terms in these scaling forms, the grouped-n data displayed in

Figures 6.4-6.8 can be fit to the form

f(n1, n2) = b+mn−λ
1 (6.58)

using weighted non-linear least-squares regression. The following estimates are of the

form:

point estimate ± 95% margin of error ( ± systematic error). (6.59)

The systematic error is determined to be the maximum of the largest difference between

the grouped-n point estimates over the region [14, 1890] and the estimated limiting prob-

ability.
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Figure 6.4: A: the grouped-n estimates for the probability of a successful
strand passage. The error bars are the estimated 95% margins of error for
the grouped-n estimates. B: the curve estimated from the grouped-n data
in A.

Figure 6.4 displays the sequence of point estimates

((14+100(t−1), p̂rΘ
14+100(t−1),12+100t(φ, s)), t = 1, ..., 18) and the estimated scaling form for

PrΘn1,n2
(φ, s) versus n1. The parameters in the scaling form for PrΘn1,n2

(φ, s) are estimated

to be:

PrΘ(φ, s) = 0.13719 ± 0.00019 (±0.03240)

m(φ, s) = −3.52566 ± 1.13622

λ(φ, s) = −1.62076 ± 0.12146.

The estimated scaling form for PrΘn1,n2
(φ, s) fits the sequence of point estimates plotted in

Figure 6.4 well, because, based on a χ2- Test for Goodness of Fit, χ2(14) = 9.1936 and

the corresponding p-value for the fit is 0.8185. Because the estimated scaling form for

PrΘn1,n2
(φ, s) is an increasing function in n1 (as can be seen from Figure 6.4), the data

numerically supports Conjecture 2.2.3, that is PrΘ2n(φ, s) increases to the value PrΘ(φ, s)

and that PrΘ(φ, s) ∈ (0, 1).

Figure 6.5 displays the sequence of point estimates
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Figure 6.5: A: the grouped-n estimates for the probability of the unknot
given a successful strand passage. The error bars are the estimated 95%
margins of error for the grouped-n estimates. B: the curve estimated from
the grouped-n data in A.

((14 + 100(t− 1), p̂rΘ14+100(t−1),12+100t(φ|φ, s)), t = 1, ..., 18) and the estimated scaling form

for PrΘn1,n2
(φ|φ, s) versus n1. The parameters in the scaling form for PrΘn1,n2

(φ|φ, s) are

estimated to be:

PrΘ(φ|φ, s) = 0.97653 ± 0.00133 (±0.01822)

m(φ|φ, s) = 0.10401 ± 0.05589

λ(φ|φ, s) = −0.65717 ± 0.21745.

The estimated scaling form for PrΘn1,n2
(φ|φ, s) fits the sequence of point estimates plotted

in Figure 6.5 well, because, based on a χ2-Test for Goodness of Fit, χ2(14) = 0.1631 and

the corresponding p-value for the fit is greater than 0.9999. Because the estimated scaling

form for PrΘn1,n2
(φ|φ, s) is a decreasing function in n1 (as can be seen from Figure 6.4),

the data numerically supports Conjecture 2.2.3, that is PrΘ2n(φ|φ, s) decreases to the value

PrΘ(φ|φ, s) and that PrΘ(φ|φ, s) ∈ (0, 1).

Figure 6.6 displays the sequence of point estimates
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Figure 6.6: A: the grouped-n estimates for the probability of the trefoil
given a successful strand passage. The error bars are the estimated 95%
margins of error for the grouped-n estimates. B: the curve estimated from
the grouped-n data in A.

((14+140(t−1), p̂rΘ
14+140(t−1),12+140t(31|φ, s)), t = 1, ..., 13) and the estimated scaling form

for PrΘn1,n2
(31|φ, s) versus n1. The parameters in the scaling form for PrΘn1,n2

(31|φ, s) are

estimated to be:

PrΘ(31|φ, s) = 0.02208 ± 0.00095 (±0.00672)

m(31|φ, s) = −0.12450 ± 0.09108

λ(31|φ, s) = −0.79237 ± 0.29174.

The estimated scaling form for PrΘn1,n2
(31|φ, s) fits the estimates p̂rΘn1,n2

(31|φ, s) plotted

in Figure 6.6 well, because, based on a χ2-Test for Goodness of Fit, χ2(9) = 2.1360

and the corresponding p-value for the fit is 0.9891. Because the estimated scaling form

for PrΘn1,n2
(31|φ, s) is an increasing function in n1 (as can be seen from Figure 6.4), the

data numerically supports Conjecture 2.2.3, that is PrΘ2n(31|φ, s) increases to the value

PrΘ(31|φ, s) and that PrΘ(31|φ, s) ∈ (0, 1).

Figure 6.7 plots the sequence of point estimates

((14+160(t−1), p̂rΘ
14+160(t−1),12+160t(41|φ, s)), t = 1, ..., 11) and the estimated scaling form

for PrΘn1,n2
(41|φ, s) versus n1. The parameters in the scaling form for PrΘn1,n2

(41|φ, s) are
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Figure 6.7: A: the grouped-n estimates for the probability of the figure
8 given a successful strand passage. The error bars are the estimated 95%
margins of error for the grouped-n estimates. B: the curve estimated from
the grouped-n data in A.

estimated to be:

PrΘ(41|φ, s) = 0.00093 ± 0.00048 (±0.00082)

m(41|φ, s) = −0.00323 ± 0.01021

λ(41|φ, s) = −0.51409 ± 1.47002.

The estimated scaling form for PrΘn1,n2
(41|φ, s) fits the data in Figure 6.7 poorly, because,

based on a χ2-Test for Goodness of Fit, χ2(7) = 36.1050 and the corresponding p-value for

the fit is less than 0.0001. Because of the variability in the point estimates and the poor

fit, even though the estimated scaling form for PrΘn1,n2
(41|φ, s) is an increasing function in

n1 (as can be seen from Figure 6.4), more property-(41|φ, s) data is required to determined

whether or not the CMC Θ-data supports Conjecture 2.2.3, that is PrΘ2n(41|φ, s) increases

to the value PrΘ(41|φ, s) and that PrΘ(41|φ, s) ∈ (0, 1).

Figure 6.8 displays the sequence of point estimates

((14+180(t−1), p̂rΘ
14+180(t−1),12+180t(52|φ, s)), t = 1, ..., 10) and the estimated scaling form

for PrΘn1,n2
(52|φ, s) versus n1. The parameters in the scaling form for PrΘn1,n2

(52|φ, s) were
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Figure 6.8: A: the grouped-n estimates for the probability of knot-type
52 given a successful strand passage. The error bars are the estimated 95%
margins of error for the grouped-n estimates. B: the curve estimated from
the grouped-n data in A.

estimated to be:

PrΘ(52|φ, s) = 0.00004 ± 0.00003 (±0.00004)

m(52|φ, s) = −0.00060 ± 0.00020

λ(52|φ, s) = −1.08720 ± 2.14156.

(6.60)

The estimated scaling form for PrΘn1,n2
(52|φ, s) fits the data in Figure 6.8 poorly, very

poorly, because, based on a χ2-Test for Goodness of Fit, χ2(6) = 483.0888 and the cor-

responding p-value for the fit is less than 0.0001. Because of the variability in the point

estimates and the poor fit, even though the estimated scaling form for PrΘn1,n2
(52|φ, s) is

an increasing function in n1 (as can be seen from Figure 6.4), more property-(52|φ, s) data

is required to determined whether or not the CMC Θ-data supports Conjecture 2.2.3, that

is PrΘ2n(52|φ, s) increases to the value PrΘ(52|φ, s) and that PrΘ(52|φ, s) ∈ (0, 1).

The upshot of the estimated limiting strand passage probabilities is that:

1. the estimate for PrΘ(φ, s) = 0.13719 ± 0.00019 (±0.03240) supports Conjec-

ture 2.2.3, that is the limiting strand passage probability PrΘ(φ, s) exists and PrΘ(φ, s) ∈
(0, 1);
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2. the estimates for PrΘ(φ|φ, s) = 0.97653 ± 0.00133 (±0.01822) and

PrΘ(31|φ, s) = 0.02208 ± 0.00095 ± 0.00672 also support Conjecture 2.2.3,

that is the limiting transition knotting probabilities PrΘ(K|φ, s), for every unknotting

number one knot-type K, exist and PrΘ(K|φ, s) ∈ (0, 1); and

3. though technically the estimates PrΘ(41|φ, s) = 0.00093 ± 0.00048 (±0.00082)

and PrΘ(52|φ, s) = 0.00004 ± 0.00003 (±0.00004) support Conjecture 2.2.3,

the estimates are not deemed to be reliable and therefore cannot be used as either

confirmation or disproof of the conjecture.

As a consequence of 3. above, further data needs to be collected in order to compute

better estimates for PrΘ(41|φ, s) and PrΘ(52|φ, s).

6.6 In Summary

In this chapter, two methods for estimating the limiting strand passage probabilities

PrΘ(∗), for ∗ ∈ Φ, were presented. The first method presented was the Fixed-n Method

and the second method presented was the Grouped-n Method. Both methods required

determining a value for N∗
max so that the estimate values for PrΘ(∗) were based on the

most reliable data available.

The advantage of the Fixed-n Method for Estimating PrΘ(∗) is that it only requires an

independent set of estimated values for the fixed-n probabilities PrΘn (∗) in order to yield an

estimate for PrΘ(∗). The major disadvantage of this method is that in order to determine

the required independent set of fixed-n probability estimates, many of the estimated fixed-

n probabilities have to be ignored due to the correlation that exists between the fixed-n

probabilities for consecutive values of even n. The Grouped-n Method for Estimating

PrΘ(∗) was designed so that all the fixed-n data could be used to determine the estimate

for PrΘ(∗). Because a by-product of the Grouped-n Method for Estimating PrΘ(∗) is that

the point estimates generated do not vary as much as the fixed-n probabilities over the

same range of n values, the grouped-n estimates are considered more reliable. Hence it was

concluded that whenever possible the Grouped-n Method for Estimating PrΘ(∗) should be

used to estimate PrΘ(∗).
When the Grouped-n Method for Estimating PrΘ(∗) is used to estimate PrΘ(∗) for
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∗ ∈ {(φ, s), (φ|φ, s), (31|φ, s), (41|φ, s), (52|φ, s)}, the following estimates result:

PrΘ(φ, s) = 0.13719 ± 0.00019 (±0.03240) , (6.61)

PrΘ(φ|φ, s) = 0.97653 ± 0.00133 (±0.01822) , (6.62)

PrΘ(31|φ, s) = 0.02208 ± 0.00095 (±0.00672) , (6.63)

PrΘ(41|φ, s) = 0.00093 ± 0.00048 (±0.00082) , (6.64)

and

PrΘ(52|φ, s) = 0.00004 ± 0.00003 (±0.00004) . (6.65)

The data is concluded to numerical support Conjecture 2.2.3 which conjectures that

the limiting strand passage probabilities PrΘ(∗) exist, that PrΘ(∗) ∈ (0, 1), and that

PrΘ2n(φ|φ, s) decreases to PrΘ(φ|φ, s) and that PrΘ2n(φ, s) and PrΘ2n(K|φ, s) for any non-

trivial unknotting number one knot-type K increase to PrΘ(φ, s) and PrΘ(K|φ, s) respec-

tively. But, because of the large 95% margins of error associated with the estimates for

PrΘ(41|φ, s) and PrΘ(52|φ, s), the estimates for PrΘ(41|φ, s) and PrΘ(52|φ, s) are concluded

to be unreliable. Thus more data needs to be generated in order to determine better esti-

mates for PrΘ(41|φ, s) and PrΘ(52|φ, s). This is left for future work.
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Chapter 7

The Size of a Θ-SAP

In this chapter, two measures of the “size” of a Θ-SAP in PΘ(φ) are discussed. Both

of these measures will be used to explore numerically the validity of Conjecture 2.2.8 which

states that the set PΘ(φ) is dominated by polygons that can be formed from one large

uSAW, one small uSAW, and the structure Θ, (cf. Section 2.2.3).

Recall from Section 4.7.3 that one measure of the “size” of a self-avoiding polygon is

the length of the SAP. Using this measure, the relationship between the expected lengths

of the small and large uSAWs and the polygon length from which the uSAWs were taken,

and the (n → ∞) scaling form of these expected lengths (that is Conjectures 2.2.10 and

2.2.11 respectively) are studied numerically in Section 7.1. Also in this section, questions

regarding whether the exponent in the scaling forms for these expected lengths depends

on the property ∗ ∈ Φ and how the exponents compare to zero (that is Questions 2.2.2

and 2.2.3) are addressed. Also note that the numerical approach used in Section 7.1 has

been adapted from a discussion in [125] regarding the size of a knot in a SAP in P(K).

The second measure of the “size” of a SAP in PΘ(φ) is related to how much volume

the uSAWs comprising Θ-SAPs occupy, that is the second measure is the radius of gyration

(as defined by Equation (1.55)) of the uSAWs. In Section 7.2, this measure is used to

investigate the validity of Conjecture 2.2.8 by comparing the radii of gyration of the two

uSAWs to each other and to the radius of gyration of the SAP in PΘ(φ) from which the two

uSAWs were taken. Also in Section 7.2, for each property ∗ ∈ Φ, the possible relationships

amongst the metric exponents νΘ
B (∗), νΘ

E (∗), νΘ
S (∗), νΘ

B
(∗), νΘ

E
(∗), νΘ

S
(∗), and ν (that is

Conjectures 2.2.8-2.2.10 and Questions 2.2.11 and 2.2.12) are numerically investigated.

Furthermore, the possible relationships between the amplitudes AΘ
P

(∗), AΘ
E
(∗), AΘ

S
(∗),

AΘ
B

(∗), AΘ
E(∗), AΘ

S (∗), and AΘ
B(∗) (that is Questions 2.2.12 and 2.2.13) are also studied.

In order to numerically explore the conjectures and questions referenced in the previous

two paragraphs, a sample of Θ-SAPs is required. To this end, let W := ((Wt(1), Wt(2),
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..., Wt(14)), t = 0, ..., t0) be a Markov chain formed by the CMC Θ-BFACF algorithm and

let ω(u), where

ω(u) :=
((
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, t = 0, ..., t0

)
, (7.1)

be the sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ(φ)

)14
realized in Replication

u of the simulation of the CMC Θ-BFACF algorithm as described in Section 3.4.1. Then,

the sample that is used in this chapter is one hundredth of the size of the sample used in

the analysis in Chapters 4, 5, and 6. The reason the entire original sample is not used

in this chapter is because calculating the radius of gyration requires the entire polygon

configuration as opposed to only the polygon length and knot-type that were required for

the analysis in Chapters 4, 5, and 6. Consequently a lot more physical storage space is

required for this sample than for the sample used in Chapters 4, 5, and 6. At the time the

simulation was implemented, the largest possible sample of polygon configurations (based

on the physical storage space available at the time) was stored. This subsample of data

consists of l + 1 (l := ⌊t0/120000⌋ = 800, 000) 14-tuples of polygon configurations from

Replication u and is denoted

ω̂
(u)
R :=

((
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
, j = 0, ..., l

)
, (7.2)

where ω̂
(u)
R is the sequence of 14-tuples of SAPs sampled from Replication u such that the

j’th term (for 1 ≤ j ≤ l) of ω̂
(u)
R is given by

(
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
:=
(
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, (7.3)

for t := 120, 000j. In fact, this is the subsample that results immediately from taking a

sample following the attempted swap after every 100,000’th Θ-BFACF move in parallel.

Recall from Definition 2.2.3 of Section 2.2.3 that, for ω ∈ PΘ(φ), w+(ω) is the uSAW

on the right side of ω and w−(ω) is the uSAW on the left side of ω. Also recall from

Section 2.2.3 that, for ∗ ∈ Φ, the set of “big right-side (2n)-edge property-∗ Θ-SAPs” is

denoted B
+
2n(∗); the set of “small right-side (2n)-edge property-∗ Θ-SAPs” is denoted

S
+
2n(∗); the set of “big left-side (2n)-edge property-∗ Θ-SAPs” is denoted B

−
2n(∗); the

set of “small left-side (2n)-edge property-∗ Θ-SAPs” is denoted S
−
2n(∗); and the set of

“equal-sided (2n)-edge property-∗ Θ-SAPs” is denoted E2n(∗). Also recall from Section
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2.2.3 that, for ω ∈ E c(∗),

s|ω| (ω) :=





|w+(ω)| , if |w+(ω)| < |w−(ω)|
|w−(ω)| , otherwise,

(7.4)

and

l|ω| (ω) :=





|w+(ω)| , if |w+(ω)| > |w−(ω)|
|w−(ω)| , otherwise.

(7.5)

In order to perform the analysis in this chapter, the following indicator function (as

defined in Section 4.2.3) is required: for A ⊂ R,

IA (x) :=





1, if x ∈ A

0, otherwise.
(7.6)

Also note that for this entire chapter, the estimate for N∗
max, for each ∗ ∈ {φ, (φ, f), (φ|φ, s),

(31|φ, s)}, will be N̂max(∗) = 1890, as determined in Chapter 6. To explain this choice,

recall that N̂max(∗) = 1890 was chosen in Chapter 6, because, for such a choice, the relative

frequency data p̂rΘ2n((φ, s) , u) had a relative error bounded above by δ̂ω̂(∗)+0.003 = 0.023,

where

δ̂ω̂(∗) := min
n,u

δ̂
(u)
2n (∗) (7.7)

is the minimum relative error computed using the sample ω̂(u), for u ∈ {1, 2, ..., 10}, and

δ̂
(u)
2n (∗) is as defined by Equation (4.125). Using the same approach here, based on the

subsample ω̂
(u)
R , for u ∈ {1, 2, ..., 10} and the relative error being bounded above by 0.023,

results in N̂max(∗) = 0, for each ∗ ∈ {φ, (φ, f), (φ|φ, s), (31|φ, s)}. Hence the upper

bound used to determine the N∗
max cut-off for the “reliable data” needs to be relaxed

from the upper bound used in Chapter 6. In this chapter, since the analysis are based

on 1/100’th of the data used in Chapter 6, the N∗
max cut-off for the “reliable data” is

determined here using the upper bound δ̂ω̂R
(∗) + 0.003

√
100 for the relative error in the

relative frequencies calculated using the subsample ω̂
(u)
R , for u ∈ {1, 2, ..., 10}. In this

case, N̂max(∗) = 1890, for ∗ ∈ {φ, (φ, f), (φ|φ, s)}, is appropriate. Using the same upper

bound for property-(31|φ, s) yielded an estimate of 600 for N∗
max but because of the small

amount of property-(31|φ, s) data and for the sake of convenience, N̂max(31|φ, s) = 1890.

In the next sections, the data set ω̂
(u)
R is used to address the conjectures and questions

raised at the beginning of the chapter.
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7.1 The Length of a uSAW

Given any n ≥ 7, for each ∗ ∈ Φ, recall from Section 2.2.3 that E [S2n(E c
2n(∗))] , defined

by Equation (2.153), is the expected length of the small uSAW for a uniformly chosen

ω ∈ E c
2n(∗), and that E [L2n(E c

2n(∗))] , defined by Equation (2.154), is the expected length

of the large uSAW for a uniformly chosen ω ∈ E c
2n(∗). In this section, estimates for

E [S2n(E c
2n(∗))] and E [L2n(E c

2n(∗))] , for a range of n and ∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)},
are first calculated, are then used to check the consistency of the subsample ω̂

(u)
R , for

u ∈ {1, 2, ..., 10} with the facts presented in Section 2.2.3, and are finally used to explore

the validity of Conjecture 2.2.8 (that is, for sufficiently large n, PΘ
n (φ) is dominated by

SAPs with one large uSAW (length is O(n)) and one small uSAW) and Conjectures 2.2.10

and 2.2.11 (relationships involving E [S2n(E c
2n(∗))] and E [L2n(E c

2n(∗))] and their asymptotic

(as n→ ∞) form). The estimates for E [S2n(E c
2n(∗))] and E [L2n(E c

2n(∗))] are also used to

explore answers to Questions 2.2.2 and 2.2.3 (regarding the exponent of the scaling form for

E [S2n(E c
2n(∗))]). In order to begin these explorations, E [S2n(E c

2n(∗))] and E [L2n(E c
2n(∗))]

need to be estimated.

For each ∗ ∈ Φ and for the subset of (2n)-edge Θ-SAPs E c
2n(∗) ⊆ PΘ(φ), suppose W

is a random property-∗ Θ-SAP chosen from E c
2n(∗). Then define the random variables X

and Y (as defined in Section A.4 of Appendix A) by

X(W,E c
2n(∗)) := ξE c

2n(∗)(W ), (7.8)

and

Y (W,E c
2n(∗)) := ξE c

2n(∗)(W )s (W ) , (7.9)

where, for each ω ∈ PΘ(φ) and each subset of Θ-SAPs V ⊆ PΘ(φ),

ξV (ω) :=





1, if ω ∈ V

0, otherwise,
(7.10)

and

s (ω) :=





0, if |w+(ω)| = |w−(ω)| ,
s|ω|(ω), otherwise.

Further define Xk,i and Yk,i (as used in Section A.4 of Appendix A) by

Xk,i(E
c
2n(∗)) :=

t0∑

t=0

MT (t)IB(k) (t)X(Wt(i),E
c
2n(∗)) (7.11)
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and

Yk,i(E
c
2n(∗)) :=

t0∑

t=0

MT (t)IB(k) (t)Y (Wt(i),E
c
2n(∗))

:= Nk,i (s (E c
2n(∗))) , (7.12)

where B(k) is defined by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6). Now redefine the random variables Y and Yk,i

(as defined in Section A.4 of Appendix A) to be respectively

Y (W,E c
2n(∗)) := ξE c

2n(∗)(W )b (W ) , (7.13)

and

Yk,i(E
c
2n(∗)) :=

t0∑

t=0

MT (t)I(2(k−1)τint−1,2kτint−1] (t)Y (Wt(i),E
c
2n(∗))

:= Nk,i (b (E c
2n(∗))) , (7.14)

where, for each ω ∈ PΘ(φ),

b (ω) :=





0, if |w+(ω)| = |w−(ω)| ,
l|ω|(ω), otherwise,

B(k) is defined by Equation (4.159); MT (t) is defined by Equation (4.42); and, for A ⊆
R,IA (t)is defined by Equation (7.6). Note that Xk,i(E

c
2n(∗)) counts the number of

property-∗ (2n)-edge Θ-SAPs in block k of Chain i that contain a small uSAW and hence

Xk,i(E
c
2n(∗)) also counts the number of property-∗ (2n)-edge Θ-SAPs in block k of Chain

i that contain a large uSAW.

Then let 〈S2n(E c(∗))〉 be the ratio estimator (as defined by Equation (A.21) in Section

A.3 of Appendix A) for E [S2n(E c(∗))] formed using the sequence

((Xk,i(E
c
2n(∗)), Nk,i (s (E c

2n(∗)))), k = 1, .., l) , (7.15)

and let 〈L2n(E c(∗))〉 be the ratio estimator (as defined by Equation (A.21) in Section A.3

of Appendix A) for E [L2n(E c(∗))] formed using the sequence

((Xk,i(E
c
2n(∗)), Nk,i (b (E c

2n(∗)))), k = 1, .., l) , (7.16)

with l := ⌊t0/(2τint)⌋ .
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Based on the u’th realization ω(u) of W , u ∈ {1, 2, ..., 10}, let n
(u)
k,i (s (E c

2n(∗))) denote

the u’th realization of Nk,i (s (E c
2n(∗))) ; let n

(u)
k,i (b (E c

2n(∗))) denote the u’th realization of

Nk,i (b (E c
2n(∗))) ; and let x

(u)
k,i denote the u’th realization of Xk,i (E

c
2n(∗)) . Then, for each

∗ ∈ Φ and for a fixed positive integer n, the estimators 〈S2n(E c(∗))〉 and 〈L2n(E c(∗))〉
defined with t0 = 9.6 × 1010 time steps, τint = 0.72 × 109 time steps, T = 120, 000 time

steps, and l := ⌊t0/(2τint)⌋ = 66 are used to calculate the point estimate 〈s2n(E c(∗))〉 for

E [S2n(E c(∗))] by using the sequence

(((
x

(u)
k,i , n

(u)
k,i (s (E c

2n(∗)))
)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.17)

in Equation (A.21) and the point estimate 〈l2n(E c(∗))〉 for E [L2n(E c(∗))] by using the

sequence (((
x

(u)
k,i , n

(u)
k,i (b (E c

2n(∗)))
)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.18)

in Equation (A.21). The estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉 are used throughout the

remainder of this section.

7.1.1 Checking the Consistency of the CMC Θ-BFACF Data

First, for all positive integers n ∈ {nΘ
∗ /2 + 1, nΘ

∗ /2 + 2, ..., 945} and for each ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)}, the estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉 are used to check the con-

sistency of the subsample ω̂
(u)
R , for u ∈ {1, 2, ..., 10}, by verifying the following facts from

Section 2.2.3:

Fact 1: Given an integer n ≥ nΘ
∗ /2 + 1 and any property ∗ ∈ Φ,

E [S2n(E c
2n(∗))] < n− 3 < E [L2n(E c

2n(∗))] . (7.19)

Fact 2: As n→ ∞, for each property ∗ ∈ Φ, E [L2n(E c
2n(∗))] is O(n).

To explore whether the data support Fact 1, the estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉,
for each ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]} and n ∈ {nΘ

∗ /2 + 1, nΘ
∗ /2 + 2, ..., 945},

are plotted in Figures 7.1 and 7.2. Note that for the purposes of creating a more illus-

trative plot, every tenth term in the corresponding sequence of estimates (〈l2n(E c(∗))〉,
n ∈ {nΘ

∗ /2 + 1, nΘ
∗ /2 + 2, ..., 945}) and

(
〈s2n(E c(∗))〉, n ∈ {nΘ

∗ /2 + 1, nΘ
∗ /2 + 2, ..., 945}

)

is plotted in Figures 7.1 and 7.2 and the dashed line in both figures represents the line

y = n− 3.
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Figure 7.1: The estimates 〈l2n(E c(∗))〉, for ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡],
(31|φ, s) [△]}, plotted versus 2n. The dashed line represents the line y =
n− 3.

The estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉 plotted in Figures 7.1 and 7.2 are consistent

with Fact 1, because, by comparing both figures, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}
and those values of n plotted,

〈s2n(E c(∗))〉 < n− 3 < 〈l2n(E c(∗))〉. (7.20)

Note that the author has confirmed that the above inequality holds for each ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)} and for every n ∈ {nΘ
∗ /2 + 1, nΘ

∗ /2 + 2, ..., 945}, thus numerically con-

firming Fact 1.

To determine, whether or not the data support Fact 2 above, if, as n increases, the

estimates
〈l2n(E c(∗))〉

2n
, for each ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]}, become constant,

then the data supports Fact 2. For each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and for every

n ∈ {nΘ
∗ /2 + 1, nΘ

∗ /2 + 2, ..., 945}, the estimates
〈l2n(E c(∗))〉

2n
are plotted in Figure 7.3. In

order to create a more illustrative figure, note that the estimate for
〈l2n(E c(∗))〉

2n
for every

tenth value of n is displayed in the figure.

From Figure 7.3, it appears possible that, as n→ ∞,

〈l2n(E c (φ, f))〉
2n

→ 1,
〈l2n(E c (φ|φ, s))〉

2n
→ 1, and

〈l2n(E c (31|φ, s))〉
2n

→ 1. (7.21)
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Figure 7.3: For each property ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]},
the ratio of the estimated expected length of the large uSAW for a (2n)-edge
SAP in E c(∗), and 2n.
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To garner more conclusive numerical support for Fact 2, for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)},
curves of the form

f(n) = ml(∗)nζl(∗) + bl(∗) (7.22)

are fit to the data displayed in Figure 7.3 in order to estimate the exponents ζl(∗), for

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}. However, in order to estimate the exponents ζl(∗), for

each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, using weighted non-linear regression and Equation

(7.22), an essentially independent sample of estimates for E [L2n(E c(∗))] is required. Using

the technique from Section 4.3.2, it was determined that 〈l2n(E c(∗))〉 and 〈l2n+k(E
c(∗))〉,

for each of the properties ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, are essentially independent if

minimally k = 180.

For each ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]}, one possible essentially independent

sample of estimates for E [L2n(E c(∗))] over the interval of n ∈ {nΘ
∗ /2+1, nΘ

∗ /2+2, ..., 945}
is displayed in Figure 7.4. Because PΘ(φ, f), PΘ(φ|φ, s), and PΘ(31|φ, s) are mutually

exclusive sets, the estimates displayed in Figure 7.4 best illustrate any relationships that

exist or do not exist amongst the average lengths of the large uSAWs as a function of 2n

for these subsets of PΘ(φ). Note that the values (and the corresponding estimated 95%

margins of error) plotted in Figure 7.4 can be found in Tables B.11, B.12, and B.13 (cf.

Section B.2 of Appendix B).

Fitting a function of the form given by Equation (7.22) to each of the sequences of data

plotted in Figure 7.4 yields the following estimates for the exponents ζl(∗), for ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)} :

ζl(φ, f) = 1.0032(0.0046), (7.23)

ζl(φ|φ, s) = 1.0087(0.0140), (7.24)

and

ζl(31|φ, s) = 1.0826(0.1666), (7.25)

where the value in parentheses is the estimated 95% margin of error. Note that one

is in each of the estimated 95% confidence intervals. Therefore, at the α = 0.05 level

of significance, it cannot be ruled out that ζl(φ, f) = ζl(φ|φ, s) = ζl(31|φ, s) = 1. This

supports Fact 2: E [L2n(E c(φ, f))], E [L2n(E c(φ|φ, s))] , and E [L2n(E c(31|φ, s))] are O(n).

Having shown that the data supports Facts 1 and 2, the data is concluded to be

consistent with Facts 1 and 2. As a result, the discussion turns to using the data to
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Figure 7.4: An essentially independent sample of the estimated ex-
pected lengths of the large uSAWs in (2n)-edge SAPs in E c(∗) for each
∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]}. The error bars represent the
corresponding estimated 95% margins of error.
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explore Conjectures 2.2.10 and 2.2.11 and Conjecture 2.2.8.

7.1.2 Testing the Validity of Conjectures 2.2.8, 2.2.10, and 2.2.11

The discussion in this chapter thus far has focused on testing the consistency of the data

generated by the CMC Θ-BFACF algorithm using known facts. The remainder of the

discussion in this section uses the sample of Θ-SAPs generated by the CMC Θ-BFACF

algorithm to explore the validity of Conjectures 2.2.8, 2.2.10, and 2.2.11.

Exploring Conjecture 2.2.10

First, for each ∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)}, the estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉
are used to explore the validity of Conjecture 2.2.10, that is to determine whether or not,

for each natural number n ≥ 13 = nΘ
(31|φ,s)/2+1, 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉 numerically

support

E [S2n(E c(31|φ, s))] ≥ E [S2n(E c(φ, f))] (7.26)

and

E [L2n(E c(31|φ, s))] ≤ E [L2n(E c(φ, f))] . (7.27)

From Figure 7.1 (though on the scale of the plot as presented here, it is difficult to see),

the author has verified that the following inequality holds for each plotted estimate.

〈l2n(E c (31|φ, s))〉 < 〈l2n(E c (φ|φ, s))〉 < 〈l2n(E c (φ, f))〉. (7.28)

In fact, the author has verified that Inequality (7.28) holds for every integer n ∈ {13, 14, ...,
945}. Therefore the estimates 〈l2n(E c(∗))〉 for E [L2n(E c(∗))], for ∗ ∈ {(φ, f), (φ|φ, s),
(31|φ, s)} and n ∈ {13, 14, ..., 945}, numerically support Conjecture 2.2.10.

Similarly, from Figure 7.2, it can be seen that for every point estimate plotted

〈s2n(E c (φ, f))〉 < 〈s2n(E c (φ|φ, s))〉 < 〈s2n(E c (31|φ, s))〉. (7.29)

Further to this, the author has verified that Inequality (7.29) holds for every integer n ∈
{13, 14, ..., 945}. Hence the point estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉, for ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)} and n ∈ {13, 14, ..., 945}, support Conjecture 2.2.10.
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Exploring Conjecture 2.2.8

In order to determine whether or not the data numerically supports Conjecture 2.2.8

(PΘ(φ) is dominated by SAPs with one large uSAW and one small uSAW), for each

property ∗ ∈ Φ, the proportion of Θ-SAPs with equal-length uSAWs amongst the (2n)-

edge property-∗ Θ-SAPs is first estimated. To this end, consider PΘ
2n(φ) for a fixed

positive integer n. Note that for any (2n)-edge Θ-SAP in PΘ
2n(φ), if n−3 is odd, then the

Θ-SAP cannot have equal-length uSAWs. If it did, then the uSAW would have to have

an odd number of edges which is impossible. Hence, for every n ∈ {8, 10, 12, ...}, the sets

PΘ
2n(φ) contain no Θ-SAPs formed by two equal-length uSAWs. Therefore consider, for

each n ∈ {7, 9, 11, ...}, the sets PΘ
2n(φ). Figure 7.5 plots, on a logarithmic (base 10) scale,

the proportion of (2n)-edge property-∗ (∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]}) Θ-SAPs

that contain equal-length uSAWs versus 2n, where n ∈ {7, 9, 11, ..., 299}, that is, Figure

7.5 is a plot, on a logarithmic (base 10) scale, of the estimates

〈
|E2n(∗)|∣∣PΘ

2n(∗)
∣∣

〉
:=

∑10
u=1

∑l
j=0 ξE2n(∗)

(
ω̂

(u)
j (i)

)

∑10
u=1

∑l
j=0 ξPΘ

2n(∗)

(
ω̂

(u)
j (i)

) , (7.30)

for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and the integer values n ∈ {7, 9, 11, ..., 299}. In order

to create a more meaningful figure, the estimated proportions associated with every sixth

consecutive value (starting with n = 7) in {7, 9, 11, ..., 299} are plotted. For the same

reason, because, for values of n ∈ {301, 304, ..., 945}, the associated estimated proportions

are less than 10−5, the plot is restricted to values of n ≤ 299.

Note that for ∗ ∈ {(φ, f), (φ|φ, s)}, every Θ-SAP in PΘ
14(∗) consists of two equal-length

uSAWs and the structure Θ. Hence, in Figure 7.5,

〈
|E14(φ,f)|

|PΘ
14(φ,f)|

〉
=

〈
|E14(φ|φ,s)|

|PΘ
14(φ|φ,s)|

〉
= 1.

Because the estimated proportions displayed in Figure 7.5 appear to be generally decreasing

as polygon length (2n) increases and because these proportions are less than 10−5 for all

values of n ∈ {301, 303, .., 945}, the estimated proportions support the hypothesis that

|E2n(∗)|

|PΘ
2n(∗)| → 0 as n → ∞ (through odd values of n ≥ 7) which in turn supports that, for

every even integer n ≥ 8 and for all sufficiently large odd values of n, PΘ
2n(∗) is dominated

by Θ-SAPs that contain one large and one small uSAW.
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Figure 7.5: For ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]} and the odd

values of n ∈ {nΘ
∗ /2, n

Θ
∗ /2+1, ..., 299}, the estimates

〈
|E2n(∗)|

|PΘ
2n(∗)|

〉
are plotted

on a logarithmic (base 10) scale versus 2n.
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Exploring Conjecture 2.2.11

Recall that Conjecture 2.2.11 hypothesizes that E [S2n(E c(∗))] grows sub-linearly in 2n as

n → ∞. To explore how E [S2n(E c(∗))], for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, behaves

as a function of polygon length 2n, the ratios
〈s2n(E c(∗))〉

2n
, for each ∗ ∈ {(φ, f), (φ|φ, s),

(31|φ, s)} and for every n ∈ {nΘ
∗ /2 + 1, nΘ

∗ /2 + 2, ..., 945}, are used. If the expected length

of the small uSAW in a randomly selected Θ-SAP from E c
2n(∗) grows linearly in 2n, then

it is expected that

lim
n→∞

〈s2n(E c(∗))〉
2n

= υ∗s > 0; (7.31)

otherwise, if the expected length of the small uSAW in a randomly selected Θ-SAPs from

E c
2n(∗) grows sub-linearly in 2n, then it is expected that

lim
n→∞

〈s2n(E c(∗))〉
2n

= 0. (7.32)

In Figure 7.6, it appears possible that, as n→ ∞,

〈s2n(E c (φ, f))〉
2n

→ 0,
〈s2n(E c (φ|φ, s))〉

2n
→ 0, and

〈s2n(E c (31|φ, s))〉
2n

→ 0. (7.33)

This supports the hypothesis that E [S2n(E c (∗))] , for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)},
grows sub-linearly in 2n, which, in turn, supports that the asymptotic (n → ∞) form for

E [S2n(E c (∗))] given by Conjecture 2.2.11 is plausible.

Additional support for the validity of Conjecture 2.2.11 can be obtained from the fact

that

E [S2n(E c (∗))] + E [L2n(E c (∗))] + 6 = 2n. (7.34)

Solving Equation (7.34) for E [S2n(E c (∗)] yields

E [S2n(E c (∗))] = 2n− 6 − E [L2n(E c (∗))] . (7.35)

The fact that E [L2n(E c (∗))] = O(n) implies that, for n sufficiently large, there exist

constant m−
l (∗) and m+

l (∗) and functions f−∗ (n) = o(n) and f+
∗ (n) = o(n) such that

2m−
l (∗)n + f−∗ (2n) ≤ E [L2n(E c (∗))] ≤ 2m−

l (∗)n + f+
∗ (2n). (7.36)

Combining Equation (7.35) with Inequality (7.36) yields that, for n sufficiently large,

2n − 6 − (2m+
l (∗)n + f+

∗ (2n)) ≤ E [S2n(E c (∗))] ≤ 2n− 6 − (2m−
l (∗)n + f−∗ (2n)). (7.37)
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Figure 7.6: For each property ∗ ∈ {(φ, f) [×], (φ|φ, s) [⊡], (31|φ, s) [△]}, the
ratio of the estimated expected length of the small uSAW for a (2n)-edge
SAP in E c(∗), and 2n.

where f−∗ (n) = o(n) and f+
∗ (n) = o(n). Dividing Inequality (7.37) by 2n yields, for n

sufficiently large,

1 −m+
l (∗) − (6 + f+

∗ (2n))

2n
≤ E [S2n(E c (∗))]

2n
≤ 1 −m−

l (∗) − (6 + f−∗ (2n))

2n
. (7.38)

Hence if m+
l (∗) = m−

l (∗) = 1, then, as n→ ∞,

E [S2n(E c (∗))]
2n

→ 0 (7.39)

and E [S2n(E c (∗))] grows sub-linearly in 2n. If either m+
l (∗) < 1 or m−

l (∗) < 1, then, as

n→ ∞, E [S2n(E c (∗)] = O(n).

In order to determine if, at least numerically, m+
l (∗) = m−

l (∗) = 1 is possible, functions

of the form

f(n) = ml(∗)nζl(∗) + bl(∗) (7.40)

are fit to the data displayed in Figure 7.3 using weighted, non-linear, least-squares re-

gression. The following estimates for ml(∗), for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, are

obtained:

ml(φ, f) = 0.9744(0.0349), (7.41)
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ml(φ|φ, s) = 0.9327(0.1024), (7.42)

and

ml(31|φ, s) = 0.5144(0.6539), (7.43)

where the value in parentheses is the estimated 95% margin of error. Note that the value

one is in each of the estimated 95% confidence intervals. Therefore, at the α = 0.05 level

of significance, it cannot be ruled out that ml(φ, f) = ml(φ|φ, s) = ml(31|φ, s) = 1. Hence,

at least numerically, it is possible that E [S2n(E c (∗))] grows sub-linearly in 2n.

To investigate further whether there is numerical support for Conjecture 2.2.11, curves

of the form

f(n) = ms
∗n

ζs(∗) + bs∗ (7.44)

are fit to the data displayed in Figure 7.6 in order to estimate the exponents ζs(∗), for

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}. However, as before, in order to estimate the exponents

ζs(∗), for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, using weighted, non-linear, least-squares regression

and Equation (7.44), an essentially independent sample of estimates for E [S2n(E c (∗))],
for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, is required. Using the technique from Section 4.3.2,

it has been determined that 〈s2n(E c(∗))〉 and 〈s2n+k(E
c(∗))〉, for each of the properties

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, are essentially independent if minimally k = 180. For each

∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, one such essentially independent sample of estimates for

E [S2n(E c (∗))] over the interval of n ∈ {nΘ
∗ /2 + 1, nΘ

∗ /2 + 2, ..., 945} is displayed in Figure

7.7. Note that the values (and the corresponding estimated 95% margins of error) plotted

in Figure 7.7 can be found in Tables B.11, B.12, and B.13 (cf. Section B.2 of Appendix

B).

Using weighted, non-linear, least-squares regression, fitting a function of the form given

by Equation (7.44) to each of the sequences of data in Figure 7.7, respectively, yields the

following estimates for the exponents ζs(∗), for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} :

ζs(φ, f) = 0.03(0.39), (7.45)

ζs(φ|φ, s) = 0.03(0.48), (7.46)

and

ζs(31|φ, s) = 0.088(0.97), (7.47)
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where the value in parentheses is the estimated 95% margin of error. Note that zero is

in each of the estimated 95% confidence intervals. Therefore, at the α = 0.05 level of

significance, it cannot be ruled out that ζs(φ, f) = ζs(φ|φ, s) = ζs(31|φ, s) = 0, that is,

on average, it is possible that the small uSAWs created from (2n)-edge polygons in E c(φ)

that have the property ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} are constant in the length of the

polygon from which they were formed. This suggests that, on average, it is possible that

the length of the small uSAW in a (2n)-edge polygon in E c(φ) is O(1), which supports that

E [S2n(E c (∗))] ∼ (2n)0. Hence the numerical evidence supports Conjecture 2.2.11.

The numerical evidence also supports the following answer to Question 2.2.2 and 2.2.3:

for each ∗ ∈ Φ, the exponents ζs(∗) = 0 and hence are independent of the property ∗. Due

to the large 95% margins of error in the estimates for ζs(∗) given by Equations (7.45)-

(7.47), more data must be collected before the numerics can more conclusively support

Conjecture 2.2.11 and that E [S2n(E c (∗))] = O(1).

An important issue to note is that due to the limited amount of property-(31|φ, s) data

available and the lack of properties-(K|φ, s) (where K ∈ K Θ(φ) and K is not the unknot

or the trefoil) data available, the exploration of Conjecture 2.2.8, Conjectures 2.2.10 and

2.2.11 , and Questions 2.2.2 and 2.2.3 with respect to properties (K|φ, s), where K is a

non-trivial knot-type in K Θ(φ), is by no means finished. In fact these explorations are

left as future work.

The discussion now turns to the final work presented in this thesis, that is the discussion

turns to “How much volume in space do the uSAWs in K Θ(φ) occupy?”.

7.2 The Radius of Gyration of a uSAW

Recall from Section 2.2.3 of Chapter 2 that, for each ∗ ∈ Φ and for each fixed positive

integer n ≥ nΘ
∗ /2 (where nΘ

∗ is the length of a smallest Θ-SAP that has property ∗ ∈ Φ),

the expected mean-square radius of gyration for a randomly selected (2n)-edge property-∗
element from the finite non-empty subset U2n(∗) ⊆ PΘ(φ) is denoted r2 (U2n(∗)) , and,

for the function f : Z3 → Z3, the f -transformed mean-square radius of gyration is denoted

r2(f(U2n(∗))). From Section 2.2.3, also recall that E c
2n(∗) is the set of property-∗ (2n)-edge

Θ-SAPs that contain one uSAW which is larger than the other uSAW, and that E2n(∗) is

the set of property-∗ (2n)-edge Θ-SAPs that contain equal-length uSAWs. Finally, from
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Section 2.2.3, recall the small uSAW function ws (defined by Equation (2.168)), the large

uSAW function wl (defined by Equation (2.169)), and the equal-length uSAW function we

(defined by Equation (2.170)).

In this section, for a range of n and each ∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)}, estimates for

r2 (ws (E c
2n(∗))) , r2 (we (E2n(∗))) , and r2 (wl (E

c
2n(∗))) , and, for each set U2n(∗) ∈ {PΘ

2n(∗),
E2n(∗), E 2c

n(∗)}, estimates for r2 (U2n(∗)) are calculated. These estimates are then used to

explore how the expected mean-square radii of gyration depend on the subsets of PΘ(φ),

the property ∗ ∈ Φ, and the functions ws, we, and wl, (that is Questions 2.2.4-2.2.5).

The estimates for r2 (ws (E c
n(∗))) and r2 (wl (E

c
n(∗))) are also used to test the validity of

Conjecture 2.2.8 where the radius of gyration is used to measure the size of a uSAW.

Then, for each property ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, the possible relationships (that is

Questions 2.2.8-2.2.12) amongst the metric exponents νΘ
wl(E c)(∗), νΘ

we(E )(∗), and νΘ
ws(E c)(∗)

and νΘ
P

(∗), νΘ
E

(∗), and νΘ
E c(∗) (as defined in Conjectures 2.2.12 and 2.2.13 of Section 2.2.3)

and ν (as defined in Section 1.5) and the possible relationships (that is Question 2.2.13)

between the amplitudes AΘ
wl(E c)(∗), AΘ

we(E )(∗), AΘ
ws(E c)(∗), AΘ

P
(∗), AΘ

E
(∗), and AΘ

E c(∗) (as

defined in Conjectures 2.2.12 and 2.2.13 of Section 2.2.3) are also explored.

Because the rest of the discussion in this section requires, for ∗ ∈ {(φ, f), (φ|φ, s),
(31|φ, s)}, knowing the values r2

(
PΘ

2n(∗)
)
, r2 (E2n(∗)) , r2 (E c

2n(∗)) , r2 (we(E2n(∗))) ,
r2 (wl (E

c
2n(∗))) , and r2 (we (E c

2n(∗))) , estimates for these mean-square radii of gyration

need to be determined.

7.2.1 Estimating the Mean-square Radius of Gyration

Recall that W := ((Wt(1),Wt(2), ...,Wt(14)) , t = 0, ..., t0) is a Markov chain formed by

the CMC Θ-BFACF algorithm and that ω(u), where

ω(u) :=
((
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, t = 0, ..., t0

)
, (7.48)

is the sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ(φ)

)14
realized in Replication u

of the simulation of the CMC Θ-BFACF algorithm as described in Section 3.4.1.

For each ∗ ∈ Φ and for the subset of (2n)-edge Θ-SAPs U2n(∗) ⊆ PΘ(φ), suppose W

is a random property-∗ Θ-SAP chosen from U2n(∗). Then define the random variables X

and Y (as used in Section A.4 of Appendix A) by

X(W,U2n(∗)) := ξU2n(∗)(W ), (7.49)
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and

Y (W,U2n(∗)) := ξU2n(∗)(W )r2 (W ) , (7.50)

respectively, where, for ω ∈ PΘ(φ) and each subset V ⊆ PΘ(φ), ξV (ω) is given by

Equation (7.10). Then define Xk,i and Yk,i (as used in Section A.4 of Appendix A) by

Xk,i(U2n(∗)) :=

t0∑

t=0

MT (t)IB(k) (t)X(Wt(i),U2n(∗)) (7.51)

and

Yk,i(U2n(∗)) :=

t0∑

t=0

MT (t)IB(k) (t)Y (Wt(i),U2n(∗))

:= R2
k,i (U2n(∗)) , (7.52)

where B(k) is defined by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6). Now, for the mapping f : Z3 → Z3, redefine

the random variables Y and Yk,i (as used in Section A.4 of Appendix A) by

Y (f(W ),U2n(∗)) := ξU2n(∗)(W )r2 (f(W )) (7.53)

and

Yk,i (f (U2n(∗))) :=

t0∑

t=0

MT (t)IB(k) (t)Y (f (Wt(i)) ,U2n(∗))

:= R2
k,i (f (U2n(∗))) , (7.54)

where B(k) is defined by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6). Then let
〈
R2(U2n(∗))

〉
be the ratio estimator

(as defined by Equation (A.21) in Section A.3 of Appendix A) for r2(U2n(∗)) formed using

the sequence
(
(Xk,i(U2n(∗)), R2

k,i(U2n(∗))), k = 1, .., l
)

(7.55)

and let
〈
R2 (f (U2n(∗)))

〉
be the ratio estimator (as defined by Equation (A.21) in Section

A.3 of Appendix A) for r2 (f (U2n(∗))) formed using the sequence

(
(Xk,i(U2n(∗)), R2

k,i (f (U2n(∗)))), k = 1, .., l
)
, (7.56)

with B(k) is defined by Equation (4.159).

Based on the u’th realization ω(u) of W , u ∈ {1, 2, ..., 10}, let r
(u)
k,i (U2n(∗)) denote

the u’th realization of R2
k,i (U2n(∗)) ; let r

(u)
k,i (f (U2n(∗))) denote the u’th realization of
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R2
k,i (f (U2n(∗))) ; and let x

(u)
k,i denote the u’th realization of Xk,i (U2n(∗)) . Then, for each

∗ ∈ Φ and for a fixed positive integer n, the estimators
〈
R2
(
PΘ

2n(∗)
)〉

,
〈
R2 (E c

2n(∗))
〉
,

〈
R2 (E2n(∗))

〉
,
〈
R2 (ws(E

c
2n(∗)))

〉
,
〈
R2 (wl(E

c
2n(∗)))

〉
, and

〈
R2 (we(E2n(∗)))

〉
defined with

t0 = 9.6×1010 time steps, τint = 0.72×109 time steps, T = 120, 000 time steps, and l := 66

are respectively used to calculate: the point estimate
〈
r2
(
PΘ

2n(∗)
)〉

for r2
(
PΘ

2n(∗)
)

by

using the sequence

(((
x

(u)
k,i , r

(u)
k,i

(
P

Θ
2n(∗)

))
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.57)

in Equation (A.21); the point estimate
〈
r2 (E c

2n(∗))
〉

for r2 (E c
2n(∗)) by using the sequence

(((
x

(u)
k,i , r

(u)
k,i (E c

2n(∗))
)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.58)

in Equation (A.21); the point estimate
〈
r2 (E2n(∗))

〉
for r2 (E2n(∗)) by using the sequence

(((
x

(u)
k,i , r

(u)
k,i (E2n(∗))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.59)

in Equation (A.21); the point estimate
〈
r2 (ws(E

c
2n(∗)))

〉
for r2 (ws(E

c
2n(∗))) by using the

sequence (((
x

(u)
k,i , r

(u)
k,i (ws(E

c
2n(∗)))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.60)

in Equation (A.21); the point estimate
〈
r22n (wl(E

c(∗)))
〉

for r2 (wl(E
c(∗))) by using the

sequence (((
x

(u)
k,i , r

(u)
k,i (wl(E

c
2n(∗)))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.61)

in Equation (A.21); and the point estimate
〈
r2 (we(E2n(∗)))

〉
for r2 (we(E2n(∗))) by using

the sequence (((
x

(u)
k,i , r

(u)
k,i (we(E2n(∗)))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.62)

in Equation (A.21).

For each ∗ ∈ {φ, (φ, f), (φ|φ, s), (31|φ, s)} and n ∈ {7, 8, ..., 945}, the point esti-

mates
〈
r2
(
PΘ

2n(∗)
)〉
,
〈
r2 (E c

2n(∗))
〉
,
〈
r2 (E2n(∗))

〉
,
〈
r2 (ws(E

c
2n(∗)))

〉
,
〈
r2 (wl(E

c
2n(∗)))

〉
,

and
〈
r2 (we(E2n(∗)))

〉
are used throughout the discussion in the remainder of this section.

7.2.2 Properties of the Expected Mean-square Radius of Gyration

The discussion in this section investigates the set dependence (that is Questions (2.2.4) and

(2.2.5)) and the property dependence (that is Questions (2.2.6) and (2.2.7)) of the expected

mean-square radius of gyration using the epoint estimates
〈
r2
(
PΘ

2n(∗)
)〉
,
〈
r2 (E c

2n(∗))
〉
,

〈
r2 (E2n(∗))

〉
,
〈
r2 (ws(E

c
2n(∗)))

〉
,
〈
r2 (wl(E

c
2n(∗)))

〉
, and

〈
r2 (we(E2n(∗)))

〉
.
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Exploring Question 2.2.4

For each ∗ ∈ Φ, Question 2.2.4 hypothesizes that, as n → ∞, the expected mean-square

radii of gyration of the sets PΘ
2n(∗), E2n(∗), and E c

2n(∗) satisfy

r2 (E c
2n(∗))

r2
(
PΘ

2n(∗)
) → 1. (7.63)

and, through odd values of n,
r2 (E2n(∗))
r2
(
PΘ

2n(∗)
) → 1 (7.64)

To numerically investigate whether or not the ratios
r2 (E2n(∗))
r2
(
PΘ

2n(∗)
) and

r2 (E c
2n(∗))

r2
(
PΘ

2n(∗)
) tend

to one as n increases, first note that because E c
14(φ, f) = E c

14(φ|φ, s) = {}, r2 (E c
14(φ, f))

r2
(
PΘ

14(φ, f)
)

and
r2 (E c

14(φ|φ, s))
r2
(
PΘ

14(φ|φ, s)
) are not defined. Hence Figures 7.8 and 7.9 do not display a point

estimate for either
r2 (E c

14(φ, f))

r2
(
PΘ

14(φ, f)
) and

r2 (E c
14(φ|φ, s))

r2
(
PΘ

14(φ|φ, s)
) . Note that in order to construct

more informative plots, the estimates for the expected mean-square radii of gyration corre-

sponding to every tenth consecutive odd integer and the horizontal line y = 1.0 are plotted

in Figures 7.8-7.10. Also note that Figures 7.8-7.10 are plotted over the range of n’s for

which samples from E2n are available. With these two notes in mind, for odd values of

n ≥ 9, point estimates for
r2 (E2n(φ, f))

r2
(
PΘ

2n(φ, f)
) and

r2 (E c
2n(φ, f))

r2
(
PΘ

2n(φ, f)
) are plotted in Figure 7.8; for

odd values of n ≥ 9, point estimates for
r2 (E2n(φ|φ, s))
r2
(
PΘ

2n(φ|φ, s)
) and

r2 (E c
2n(φ|φ, s))

r2
(
PΘ

2n(φ|φ, s)
) are plotted

in Figure 7.9; and for odd values of n ≥ 13, point estimates for
r2 (E2n(31|φ, s))
r2
(
PΘ

2n(31|φ, s)
) and

r2 (E c
2n(31|φ, s))

r2
(
PΘ

2n(31|φ, s)
) are plotted in Figure 7.10. The error bars plotted in each of Figures

7.8-7.10 are the estimated 95% margins of error.

For those estimated 95% confidence intervals for
r2 (E c

2n(φ, f))

r2
(
PΘ

2n(φ, f)
) plotted in Figure 7.8,

note that each plotted interval contains the value one. This observation similarly holds for

Figures 7.9 and 7.10. The author has verified that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}
fixed, and for each n ∈ {nΘ

∗ /2 + 1, nΘ
∗ /2 + 2, ..., 945}, the estimated 95% confidence in-

tervals for
r2 (E c

2n(∗))
r2
(
PΘ

2n(∗)
) contain the value one. Because sample data is not currently

available to obtain point estimates (and the associated estimated 95% margins of error)

for
r2 (E4n+2(∗))
r2
(
PΘ

4n+2(∗)
) for sufficiently large integer values of n, and due to the large estimated

95% margins of error for
r2 (E4n+2(∗))
r2
(
PΘ

4n+2(∗)
) , for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, for those
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Figure 7.8: The estimates

〈
r2 (E2n(φ, f))

〉
〈
r2
(
PΘ

2n(φ, f)
)〉 [⊙] and

〈
r2 (E c

2n(φ, f))
〉

〈
r2
(
PΘ

2n(φ, f)
)〉 [⊡]

plotted versus 2n, for odd values of n. The error bars represent the estimated
95% margins of error.

303



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 100  200  300  400  500  600  700  800

〈 r
2
(U

2
n
(φ
|φ
,s

))
〉 /
〈 r

2
( P

Θ 2
n
(φ
|φ
,s

))
〉

2n

U = E
c

U = E

y = 1.0

Figure 7.9: The estimates

〈
r2 (E2n(φ|φ, s))

〉
〈
r2
(
PΘ

2n(φ|φ, s)
)〉 [⊙] and

〈
r2 (E c

2n(φ|φ, s))
〉

〈
r2
(
PΘ

2n(φ|φ, s)
)〉 [⊡] plotted versus 2n, for odd values of n. The

error bars represent the estimated 95% margins of error.
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Figure 7.10: The estimates

〈
r2 (E2n(31|φ, s))

〉
〈
r2
(
PΘ

2n(31|φ, s)
)〉 [⊙] and

〈
r2 (E c

2n(31|φ, s))
〉

〈
r2
(
PΘ

2n(31|φ, s)
)〉 [⊡] plotted versus 2n, for odd values of n. The

error bars represent the estimated 95% margins of error.
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values of n in which a sample from E2n(∗) is available, there is insufficient data to make

any conclusion regarding the n → ∞ behaviour of
r2 (E4n+2(∗))
r2
(
PΘ

4n+2(∗)
) . Hence the conjecture

that can be made based on the numerics in this discussion is:

Conjecture 7.2.1 For each ∗ ∈ Φ,

lim
n→∞

r2 (E c
2n(∗))

r2
(
PΘ

2n(∗)
) = 1. (7.65)

Exploring Question 2.2.5

For each property ∗ ∈ Φ, Question 2.2.5 poses a possible relationship between the expected

radii of gyration of the large, equal-length, and small uSAWs (as a function of polygon

length) for randomly selected, property-∗, (2n)-edge Θ-SAPs. In order to explore the

hypothesized relationship that, for a given ∗ ∈ Φ and for all integers n ≥ nΘ
∗ /2 such that

E2n(∗) 6= {},
r2 (ws (E c

2n(∗))) < r2 (we(E2n(∗))) < r2 (wl (E
c
2n(∗))) , (7.66)

the point estimates for r2 (ws (E c
2n(φ, f))) , r2 (we(E2n(φ, f))) , and r2 (wl (E

c
2n(φ, f))) are

plotted in Figure 7.11 using [×], [⊡], and [⊙] respectively; the point estimates for r2 (ws (E c
2n(φ|φ, s))) ,

r2 (we(E2n(φ|φ, s))) , and r2 (wl (E
c
2n(φ|φ, s))) are plotted in Figure 7.12 using [×], [⊡], and

[⊙] respectively; and the point estimates for r2 (ws (E c
2n(31|φ, s))) , r2 (we(E2n(31|φ, s))) ,

and r2 (wl (E
c
2n(31|φ, s))) are plotted in Figure 7.13 using [×], [⊡], and [⊙] respectively. In

order to create more meaningful figures, the point estimates for the expected mean-square

radii of gyration corresponding to every tenth consecutive odd integer n are plotted in

Figures 7.11-7.13. The error bars in each of these three figures represent the estimated

95% margins of error.

For those point estimates plotted in Figures 7.11 and 7.12 based on polygon lengths

greater than 100 and for those point estimates plotted in Figure 7.13 based on polygon

lengths greater than 200, it is observed that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, the

point estimates satisfy

〈
r2 (ws (E c

2n(∗)))
〉
<
〈
r2 (we(E2n(∗)))

〉
<
〈
r2 (wl (E

c
2n(∗)))

〉
. (7.67)

Note that the author has verified that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and for

each odd-valued n ∈ {nΘ
∗ /2, n

Θ
∗ /2 + 1, ..., 945} such that there was data to estimate

306



 0

 100

 200

 300

 400

 500

 600

 700

 800

 200  400  600  800  1000  1200  1400  1600  1800

〈r
2
(U

(φ
,f

))
〉

2n
U = ws(E c

2n) U = we(E2n) U = wl(E
c
2n)

Figure 7.11: The estimates for r2(ws(E
c
2n(φ, f))) [×], r2(we(E2n(φ, f))) [⊡],

and r2(wl(E
c
2n(φ, f))) [odot] plotted versus 2n, for odd values of n. The error

bars represent the estimated 95% margins of error.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 200  400  600  800  1000  1200  1400  1600  1800

〈r
2
(U

(φ
|φ
,s

))
〉

2n
U = ws(E c

2n) U = we(E2n) U = wl(E
c
2n)

Figure 7.12: The estimates for r2 (ws (E c
2n(φ|φ, s))) [×],

r2 (we(E2n(φ|φ, s))) [⊡], and r2 (wl (E
c
2n(φ|φ, s))) [⊙] plotted versus 2n,

for odd values of n. The error bars represent the estimated 95% margins of
error.

307



 0

 100

 200

 300

 400

 500

 600

 700

 800

 200  400  600  800  1000  1200  1400  1600  1800

〈r
2
(U

(3
1
|φ
,s

))
〉

2n
U = ws(E c

2n) U = we(E2n) U = wl(E
c
2n)

Figure 7.13: The estimates for r2 (ws (E c
2n(31|φ, s))) [×],

r2 (we(E2n(31|φ, s))) [⊡], and r2 (wl (E
c
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r2 (we(E2n(∗))) ,

〈
r2 (ws (E c

2n(∗)))
〉
<
〈
r2 (we(E2n(∗)))

〉
<
〈
r2 (wl (E

c
2n(∗)))

〉
, (7.68)

which supports the relationship stated in Inequality (7.66). However, because the esti-

mated 95% confidence intervals for r2 (we(E2n(∗))) displayed in Figures 7.11-7.13 include

both the point estimates r2 (ws (E c
2n(∗))) and r2 (wl (E

c
2n(∗))) and the intervals are ex-

tremely large, more data is required to fully explore the relationship between r2 (we(E2n(∗)))
and both r2 (ws (E c

2n(∗))) and r2 (wl (E
c
2n(∗))) .

In order to explore the second relationship posed in Question 2.2.5, that is, for a given

∗ ∈ Φ and for all integers n > nΘ
∗ /2,

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
, (7.69)

note that the discussion thus far has only been for values of n for which E2n(∗) 6= {}. For

these values of n (that is odd values of n), it has already been observed that the correspond-

ing point estimates support Inequality (7.69). The question becomes “Do r2
(
ws

(
PΘ

2n(∗)
))

and r2
(
wl

(
PΘ

2n(∗)
))

satisfy Inequality (7.69) for even values of n?”. To answer ex-

plore this question for even values of n, the point estimates for r2
(
ws

(
PΘ

2n(φ, f)
))

and

r2
(
wl

(
PΘ

2n(φ, f)
))

are plotted in Figure 7.14 using [×] and [⊙] respectively; the point

estimates for r2
(
ws

(
PΘ

2n(φ|φ, s)
))

and r2
(
wl

(
PΘ

2n(φ|φ, s)
))

are plotted in Figure 7.15;

and the point estimates for r2
(
ws

(
PΘ

2n(31|φ, s)
))

and r2
(
wl

(
PΘ

2n(31|φ, s)
))

are plotted

in Figure 7.16. As before, in order to create more meaningful figures, the estimates for

the expected mean-square radii of gyration corresponding to every tenth consecutive even

integer n are plotted in Figures 7.14-7.16. The error bars in each of these three figures

represent the estimated 95% margins of error.

For those point estimates plotted in Figures 7.14 -7.16, for each ∗ ∈ {(φ, f), (φ|φ, s),
(31|φ, s)}, the estimates satisfy

〈
r2
(
ws

(
P

Θ
2n(∗)

))〉
<
〈
r2
(
wl

(
P

Θ
2n(∗)

))〉
. (7.70)

Furthermore, the author has verified that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and for

each even-valued n ∈ {nΘ
∗ /2, n

Θ
∗ /2 + 1, ..., 945},

〈
r2
(
ws

(
P

Θ
2n(∗)

))〉
<
〈
r2
(
wl

(
P

Θ
2n(∗)

))〉
(7.71)
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and that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and for all n ∈ {40, 41, ..., 945}, the

estimated 95% confidence intervals for ws (E c
2n(∗)) and wl (E

c
2n(∗)) do not intersect. Hence

the data supports, for a given ∗ ∈ Φ and for all integers n > nΘ
∗ /2,

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
. (7.72)

Consequently the data supports both relationships posed in Question 2.2.5, that is the

relationships given by Inequalities (7.66) and (7.69). However, due to the lack of data

sampled from E (∗), the following is conjectured.

Conjecture 7.2.2 For each ∗ ∈ Φ, and for every integer n > nΘ
∗ /2,

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
. (7.73)

Note that more data needs to be generated before the relationship “For every odd

integer n ≥ nΘ
∗ /2,

r2 (ws (E c
2n(∗))) < r2 (we(E2n(∗))) < r2 (wl (E

c
2n(∗))) .” (7.74)

can be conjectured with any level of confidence.
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Exploring Question 2.2.6

Question 2.2.6 hypothesizes that, for each ∗ ∈ K †(φ)\ {(φ|φ, s)} and each natural number

n ≥ nΘ
∗ /2, the expected mean-square radius of gyration of the small uSAW in a randomly

chosen element from E c
2n(∗) is greater than the expected mean-square radii of gyration

of the small uSAW in a randomly chosen element from either E c
2n(φ, f) and E c

2n(φ|φ, s).
The question also poses that the expected mean-square radius of gyration of the large

uSAW in a randomly chosen element from E c
2n(∗) is smaller than the expected mean-

square radii of gyration of the large uSAW in a randomly chosen element from either

E c
2n(φ, f) and E c

2n(φ|φ, s). In order to determine whether the data supports these hypoth-

esized relationships, the point estimates
〈
r2 (ws (E c

2n(31|φ, s)))
〉
,
〈
r2 (ws (E c

2n(φ|φ, s)))
〉
,

and
〈
r2 (ws (E c

2n(φ, f)))
〉

are plotted versus 2n in Figure 7.17 using [×], [⊡], and [△]

respectively, and the point estimates
〈
r2 (wl (E

c
2n(31|φ, s)))

〉
,
〈
r2 (wl (E

c
2n(φ|φ, s)))

〉
, and

〈
r2 (wl (E

c
2n(φ, f)))

〉
are plotted versus 2n in Figure 7.18 using [×], [⊡], and [△] respec-

tively. As before, in order to create more meaningful figures, the point estimates for the

expected mean-square radii of gyration corresponding to every tenth consecutive integer n

are plotted in Figures 7.17 and 7.18.

From Figure 7.17, for those point estimates plotted,

〈
r2 (ws (E c

2n(31|φ, s)))
〉
>
〈
r2 (ws (E c

2n(φ, f)))
〉

(7.75)

and
〈
r2 (ws (E c

2n(31|φ, s)))
〉
>
〈
r2 (ws (E c

2n(φ|φ, s)))
〉
. (7.76)

Furthermore, the point estimates plotted in Figure 7.17 also support the following inequal-

ity:
〈
r2 (ws (E c

2n(φ|φ, s)))
〉
>
〈
r2 (ws (E c

2n(φ, f)))
〉
. (7.77)

The author has verified that the above three inequalities hold for every

n ∈ {nΘ
(31|φ,s)/2, n

Θ
(31|φ,s)/2 + 1, ..., 945}. Further note that the estimated 95% confidence

intervals for r2 (ws (E c
2n(31|φ, s))) , r2 (ws (E c

2n(φ|φ, s))) , and r2 (ws (E c
2n(φ, f))) displayed

in Figure 7.17 do not intersect and that the author has verified that, for each n ∈
{nΘ

(31|φ,s)/2, n
Θ
(31|φ,s)/2 + 1, ..., 945}, the estimated 95% confidence intervals for

r2 (ws (E c
2n(31|φ, s))) , r2 (ws (E c

2n(φ|φ, s))) , and r2 (ws (E c
2n(φ, f))) also do not intersect.

Therefore, based on the numerical evidence displayed in Figure 7.17, the following is con-

jectured.
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Conjecture 7.2.3 For each ∗ ∈ K †(φ)\ {(φ|φ, s)} and each natural number n ≥ nΘ
∗ /2,

r2 (ws (E c
2n(∗))) > r2 (ws (E c

2n(φ|φ, s))) > r2 (ws (E c
2n(φ, f))) . (7.78)

For those point estimates plotted in Figure 7.18, note that, for n ∈ {nΘ
(31|φ,s)/2,

nΘ
(31|φ,s)/2 + 1, ..., 525}

〈
r2 (wl (E

c
2n(31|φ, s)))

〉
<
〈
r2 (wl (E

c
2n(φ, f)))

〉
(7.79)

and
〈
r2 (wl (E

c
2n(31|φ, s)))

〉
<
〈
r2 (wl (E

c
2n(φ|φ, s)))

〉
. (7.80)

The author has verified that the two inequalities above hold for every n ∈ {nΘ
(31|φ,s)/2, n

Θ
(31|φ,s)/2+

1, ..., 525}. But, because, for all n ≥ 350,
〈
r2 (wl (E

c
2n(φ|φ, s)))

〉
and

〈
r2 (wl (E

c
2n(φ, f)))

〉

are within the estimated 95% confidence intervals for r2 (wl (E
c
2n(31|φ, s))), the point esti-

mates plotted in Figure 7.18 support no definitive relationship between r2 (wl (E
c
2n(31|φ, s)))

and r2 (wl (E
c
2n(φ|φ, s))) and r2 (wl (E

c
2n(31|φ, s))) and r2 (wl (E

c
2n(φ, f))) . The upshot here

is that more data is required in order to identify and explore any relationships amongst

r2 (wl (E
c
2n(∗))) , r2 (wl (E

c
2n(φ, f))) , and r2 (wl (E

c
2n(φ|φ, s))) .
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Exploring Question 2.2.7

The final question posed in Section 2.2.3 of Chapter 2 regarding the expected mean-square

radii of gyration of the large, equal-length, and small uSAWs for subsets of PΘ
2n(∗) explores

how these expected mean-square radii of gyration compare to the expected mean-square

radius of gyration of a Θ-SAP from PΘ
2n(φ) as n increases. To this end, Figure 7.19

displays the point estimates

〈
r2 (wl (E

c
2n(φ, f)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 ,

〈
r2 (wl (E

c
2n(φ|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 , and

〈
r2 (wl (E

c
2n(31|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 versus 2n using [×], [⊡], and [△] respectively; Figure 7.20 displays

the point estimates

〈
r2 (we (E2n(φ, f)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 ,

〈
r2 (we (E2n(φ|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 , and

〈
r2 (we (E2n(31|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 versus 2n using [×], [⊡], and [△] respectively; and Figure 7.21

displays the point estimates

〈
r2 (ws (E c

2n(φ, f)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 ,

〈
r2 (ws (E c

2n(φ|φ, s)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 , and

〈
r2 (ws (E c

2n(31|φ, s)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 versus 2n using [×], [⊡], and [△] respectively. Note that, as before,

in order to create less cluttered figures, the point estimates for the expected mean-square

radii of gyration corresponding to every tenth consecutive integer n are plotted in Figures
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Figure 7.19: The estimates for
r2 (wl (E

c
2n(φ, f)))

r2
(
PΘ

2n(φ)
) [×],

r2 (wl (E
c
2n(φ|φ, s)))

r2
(
PΘ

2n(φ)
) [⊡], and

r2 (wl (E
c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) [△] plotted versus

2n.

7.19-7.21.

Referring to Figure 7.19, as n increases, the point estimates

〈
r2 (wl (E

c
2n(φ, f)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 and

〈
r2 (wl (E

c
2n(φ|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 are both approaching one. Though the point estimates

〈
r2 (wl (E

c
2n(31|φ, s)))

〉
〈
r2
(
PΘ

2n(φ)
)〉 are not as convincingly approaching one, for all n ≥ 350, the esti-

mated 95% confidence intervals for
r2 (wl (E

c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) do contain the value one. Thus,

at the α = 0.05 level of significance, the possibility that
r2 (wl (E

c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) → 1 can-

not be excluded. In order to make a stronger statement regarding the behaviour of
r2 (wl (E

c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) , as n→ ∞, more data is required.

The only statement that can be made based on Figure 7.20 is that there is not a large

enough sample from E (φ, f), E (φ|φ, s), and E (31|φ, s) to conclude whether or not, for each

of ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, the limit lim
n→∞

r2 (we (E2n(∗)))
r2
(
PΘ

2n(φ)
) exists, let alone, if it does

exist, determine its limiting value.
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Figure 7.20: The estimates for
r2 (we (E c

2n(φ, f)))

r2
(
PΘ

2n(φ)
) [×],

r2 (we (E c
2n(φ|φ, s)))

r2
(
PΘ

2n(φ)
) [⊡], and

r2 (we (E c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) [△] plotted versus

2n.

316



-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200  400  600  800  1000  1200  1400  1600  1800

〈r
2
(w

s
(E

c 2
n
(∗

))
)〉
/〈
r2
( P

Θ 2
n
(φ

))
〉

2n

(φ, f)
(φ|φ, s)
(31|φ, s)

Figure 7.21: The estimates for
r2 (ws (E c

2n(φ, f)))

r2
(
PΘ

2n(φ)
) [×],

r2 (ws (E c
2n(φ|φ, s)))

r2
(
PΘ

2n(φ)
) [⊡], and

r2 (ws (E c
2n(31|φ, s)))

r2
(
PΘ

2n(φ)
) [△] plotted versus

2n.
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Referring to Figure 7.21, as n increases, the estimates

〈
r2 (ws (E c

2n(φ, f)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 and

〈
r2 (ws (E c

2n(φ|φ, s)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 are both approaching zero. Because, for the range of n’s plotted,

the estimates

〈
r2 (ws (E c

2n(31|φ, s)))
〉

〈
r2
(
PΘ

2n(φ)
)〉 are not as convincingly approaching zero, the numer-

ically the possibility that
r2 (ws (E c

2n(31|φ, s)))
r2
(
PΘ

2n(φ)
) → 0 cannot be excluded. In order to make

a stronger statement regarding the behaviour of
r2 (ws (E c

2n(31|φ, s)))
r2
(
PΘ

2n(φ)
) , as n → ∞, more

data is required. However, without further data, the data displayed in Figures 7.19 and

7.21 suggest the following conjecture.

Conjecture 7.2.4 For each ∗ ∈ Φ\{φ, (φ, s)},

lim
n→∞

r2 (ws (E c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 0, and (7.81)

lim
n→∞

r2 (wl (E
c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 1. (7.82)

If the expected mean-square radius of gyration is to be used as a measure of the size of

uSAWs in Θ-SAPs in P2n(φ), the numerical evidence presented throughout Section 7.2.2

supports Conjecture 2.2.8 as follows. The numerical evidence in throughout Section 7.2.2

suggests that P2n(φ) is dominated by Θ-SAPs with one large and one small uSAW such

that the “size” (mean-square radius of gyration) of the large uSAW is O
(
nt
)

(where t > 1)

and the “size” (mean-square radius of gyration) of the small uSAW is O(ns) (where s < 1).

7.2.3 Estimating the Metric Exponents and Amplitudes

In this section, the final questions posed in Section 2.2.3 of Chapter 2 regarding the metric

exponents and amplitudes (as stated in Conjectures 2.2.12 and 2.2.13) are investigated.

Questions 2.2.8-2.2.12 query possible relationships between the metric exponents, including

their property dependence. Question 2.2.13 queries a possible relationship amongst the

amplitudes, including their property dependence.

For convenience, for each ∗ ∈ Φ and for every n ≥ nΘ
∗ /2, define the set of sets

Υ2n(∗) := {PΘ
2n(∗),E2n(∗),E c

2n(∗),we(E2n(∗)),wl (E c
2n(∗)) ,ws (E c

2n(∗))} (7.83)

and the set of sets

Υ := {PΘ,E ,E c,we(E ),wl (E
c) ,ws (E c)}. (7.84)
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Then, assuming that Conjectures 2.2.12 and 2.2.13 hold implies that, for sufficiently large

values of n ∈ N, there exist suitable constants and functions such that each of r2
(
PΘ

2n(∗)
)
,

r2 (E2n(∗)) , r2 (E c
2n(∗)) , r2 (we(E2n(∗))) , r2 (wl (E

c
2n(∗))) , and r2 (ws (E c

2n(∗))) scale ac-

cording to a function whose form is given by

Rn(aΘ
• (∗), bΘ• (∗), cΘ• (∗), dΘ

• (∗), r∗•) = aΘ
• (∗)n2bΘ• (∗)

(
1 + cΘ• (∗)n−dΘ

• (∗) + r∗•(n))
)
, (7.85)

where ∗ ∈ Φ, • ∈ Υ, and r∗•(n) = O(n−1). The constants represented by aΘ
• (∗) and bΘ• (∗)

in Equation (7.85) are, respectively, referred to as the amplitude and metric exponent.

In order to explore the final questions in Chapter 2, recall that the amplitude and metric

exponent for the scaling form for: r2
(
PΘ

2n(∗)
)

are respectively denoted AΘ
P

(∗) and νΘ
P

(∗);
r2 (E2n(∗)) are respectively denoted AΘ

E
(∗) and νΘ

E
(∗); r2 (E c

2n(∗)) are respectively de-

noted AΘ
E c (∗) and νΘ

E c(∗); r2 (we(E2n(∗))) are respectively denoted AΘ
we(E ) (∗) and νΘ

we(E )(∗);
r2 (wl (E

c
2n(∗))) are respectively denoted AΘ

wl(E c) (∗) and νΘ
wl(E c)(∗); and r2 (ws (E c

2n(∗))) are

respectively denoted AΘ
ws(E c) (∗) and νΘ

ws(E c)(∗). Then, given any ∗ ∈ Φ and n ≥ nΘ
∗ /2,

when the expected mean-square radii of gyration of the elements in Υ2n(∗) are being dis-

cussed, the notation r2(•), for • ∈ Υ2n(∗) is used. The corresponding point estimate for

r2(•) is
〈
r2(•)

〉
, where

〈
r2(•)

〉
is defined in Section 7.2.1. Also the notation AΘ

• (∗) and

νΘ
• (∗), for each ∗ ∈ Φ and • ∈ Υ, is used to represent the amplitude and metric exponent

for an arbitrary set in Υ with property ∗. Because an estimate for r2(•), for • ∈ Υ2n(∗),
is based on CMC data, estimates for r2(•) for each n ≥ nΘ

∗ /2 are correlated. In this

situation, how can the parameters AΘ
• (∗) and νΘ

• (∗), for • ∈ Υ and ∗ ∈ Φ, be estimated?

This question is addressed next.

Given • ∈ Υ and ∗ ∈ Φ, for the sake of comparison, two methods for estimating νΘ
• (∗)

are presented here. The first method presented is an implementation of the “Fixed-n

Method for curve fitting” as discussed in Section A.5 of Appendix A. The results of this

method will be used to explore Questions 2.2.8-2.2.13 The second method is referred to as

the “Average-n Method for estimating νΘ
• (∗)” and is discussed in Section 7.2.3.

Estimating AΘ
• (∗) and νΘ

• (∗) using the “Fixed-n Method for curve fitting”

The method to be used in this section is an application of the “Fixed-n Method for curve

fitting” as discussed in Section A.5 of Appendix B. To this end, first note that there

exists a real value b such that, for all n sufficiently large, Rn(a, b, c, d, r) in Equation (7.85)
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behaves like

Rn(a, b, c, d, r) ∼ rn(a, b, h) := an2b + b. (7.86)

Now for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, n ≥ nΘ
∗ /2, and each • ∈ Υ2n(∗), the es-

timates
〈
r2(•)

〉
, calculated as discussed in Section 7.2.1, based on a sub-sample taken

after every 90’th n, passes the Test for Independence (as described in Algorithm 4.3.1).

The resulting essentially independent samples are plotted versus 2n in Figures 7.23-7.29.

It should be noted up front, that there is currently insufficient fixed-n data to esti-

mate AΘ
• (∗) and νΘ

• (∗), for each • ∈ {E ,we(E )}, regardless of the property ∗ ∈ {(φ, f),

(φ|φ, s), (31|φ, s)}. Hence no estimates for AΘ
• (∗) and νΘ

• (∗), for each • ∈ {E ,we(E )} and

∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)}, are presented. Consequently the portion of Questions 2.2.8,

2.2.11, and 2.2.13 involving • ∈ {E ,we(E )} cannot be explored at this time and hence is

left as future work. Based on the analysis in Section 7.2.2, the error in the estimates for

property-(31|φ, s), are large and hence the reliability of any of the (31|φ, s)-data is question-

able at best. Estimates for AΘ
• (∗) and νΘ

• (∗) based on the (31|φ, s)-data are presented but

more (31|φ, s)-data is really required. Hence investigating how the amplitude and metric

exponents depend on the property-(31|φ, s) is also future work.

For ∗ ∈ {(φ, f), (φ|φ, s), (31 |φ, s)}, k = 90, n ∈ {12, 12 + 90, ..., 12 + 90t ≤ 945}, • ∈
Υ2n(∗), f(2n,AΘ

• (∗), νΘ
• (∗), b•(∗)) := r2n(AΘ

• (∗), νΘ
• (∗), b•(∗)); y2n =

〈
r2(•)

〉
, the “Fixed-n

Method for curve fitting” of Section A.5 is used to estimate AΘ
• (∗) and νΘ

• (∗), for ∗ ∈
{(φ, f), (φ|φ, s), (31|φ, s)} and • ∈ {PΘ,E c,wl (E

c) ,ws (E c)}. Figures 7.23-7.29 and

the corresponding estimates for AΘ
• (∗) and νΘ

• (∗), for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)} and

• ∈ {PΘ,E c,wl (E
c) ,ws (E c)}, are presented in the following three subsections. Note

that the essentially independent samples plotted in Figures 7.23-7.29 are provided in Tables

B.14-B.17 (cf. Section B.3 of Appendix B).

Exploring Questions 2.2.8 and 2.2.9 Question 2.2.8 queries whether or not the metric

exponents are independent of the sets E (∗) and E c(∗), for each property ∗ ∈ Φ, and whether

or not the metric exponents are all equal to νΘ
P

(φ). Because of insufficient data, the metric

exponents associated with the sets E (∗) could not be estimated. Hence the exploration

here addresses whether the metric exponents associated with E c(∗), for each ∗ ∈ Φ, are

property independent and furthermore, are equal to the metric exponent νΘ
P

(φ). Because

PΘ(φ, f), PΘ(φ|φ, s), and PΘ(31|φ, s) are mutually exclusive sets, the sequences in 2n of
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essentially independent estimates for r2
(
PΘ

2n(φ)
)

and r2 (E c
2n(∗)) , for ∗ ∈ {(φ, f), (φ|φ, s),

(31|φ, s)}, best illustrate any relationship that may exist amongst the metric exponents for

these subsets of PΘ(φ).

Given • ∈ Υ2n(∗), if the expected mean-square radius of gyration r2(•) scales according

to Equation (7.86) as a function of 2n, then for sufficiently large values of n, the log-log

plot of r2(•) versus 2n should become more and more linear as n increases and the slope

of this linear plot will correspond to 2νΘ
• (∗). If the metric exponent in the scaling form of

r2(•) is independent of the property ∗ ∈ Φ, then in the log-log plots for different choices of

• ∈ Υ2n(∗) (for sufficiently large values of n), the regression lines should appear parallel.

From this point forward, any reference to sequences being parallel in a figure refers to the

regression lines for the different sequences appearing in the figure being parallel.

Figure 7.22 is a log-log plot of the sequences ((2n,
〈
r2(•)

〉
), n ∈ {12, 13, , ..., 945}), for

each • ∈ {PΘ
2n(φ) [⊙], E c

2n(φ, f) [×], E c
2n(φ|φ, s) [⊡], E c

2n(31|φ, s) [△]}. Note that both the

horizontal and vertical scales are logarithmic (base 10) scales and for the purposes of

creating a more illustrative figure, every 50’th estimate from each sequence is plotted.

Over the range of values for 2n plotted in Figure 7.22, it appears that the sequences are

parallel and hence it is possible that the metric exponents corresponding to each of the

sequences are equal.

To further explore this equality of the metric exponents, the values of the exponents

are estimated using the “Fixed-n Method for curve fitting”. The essentially independent

sequences required by the “Fixed-n Method for curve fitting” are displayed in Figure 7.23

and are presented in Column 3 of Tables B.15, B.16, and B.17 in Section B.3 of Appendix

B.

Recall that in Section 5.6.1 of Chapter 5, the smallest value estimated for N∗
min (for any

∗ ∈ {φ, (φ, f), (φ|φ, s), (31|φ, s)}) was 142. Because the conjectured form for the expected

mean-square radius of gyration is based on the conjectured form for pΘ
2n(∗) which in turn

only holds for values of n ≥ N∗
min/2, the conjectured forms for the expected mean-square

radii of gyration are considered only to be valid for values of 2n above 142. Consequently

the data points corresponding to 2n = 24 (the first data point in each sequence) have been

excluded from the data that is used in the fits.
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Figure 7.23: The estimated mean-square radius of gyration of (2n)-edge
SAPs from PΘ(φ) [⊙], E c(φ, f) [×], E c(φ|φ, s) [⊡], and E c(31|φ, s) [△]. The

line is the estimated regression curve ŷ2n = ÂΘ
P

(φ)(2n)2ν̂Θ
P

(φ) + b̂P(φ). The
error bars are the estimated 95% margins of error.
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Table 7.1: The estimates for νΘ
• (∗), AΘ

• (∗), and b•(∗) for the set • of
property-∗ SAPs in PΘ(φ).

Parameter Estimated

•(∗) νΘ
• (∗) AΘ

• (∗) b•(∗)
PΘ(φ) 0.5907(0.0071) 0.0982(0.0164) −2.8029(2.8576)

E c(φ, f) 0.5854(0.0073) 0.1069(0.0121) −4.5970(3.6207)

E c(φ|φ, s) 0.5846(0.0166) 0.1072(0.0270) −2.2051(6.8708)

E c(31|φ, s) 0.6189(0.1296) 0.0620(0.1220) 2.0377(48.7147)

Using the “Fixed-n Method for curve fitting” to fit the data plotted in Figure 7.23 to

a curve of the form

y2n = AΘ
• (∗)(2n)2νΘ

• (∗) + b•(∗), (7.87)

for 2n ≥ 142, obtains the estimates for νΘ
• (∗), AΘ

• (∗), and b•(∗) presented in Table 7.1.

From the estimates νΘ
• (∗) presented in Table 7.1, note that there is considerable overlap

between the estimated 95% confidence intervals for each νΘ
• (∗). Hence it is possible that

the metric exponents νΘ
• (∗) are all equal and thus independent of the property ∗. Because

the most data available is from the set PΘ(φ), the χ2-Test for Goodness of Fit is used to

determine how well the estimated regression curve

ŷ2n = ÂΘ
P(φ)(2n)2ν̂Θ

P
(φ) + b̂P(φ), (7.88)

with ÂΘ
P

(φ) = 0.0982, ν̂Θ
P

(φ) = 0.5907, and b̂P(φ) = −2.8029, fits the sequences of

estimates ((2n,
〈
r2(•)

〉
), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}), for • ∈ {E c

2n(φ, f), E c
2n(φ|φ, s),

E c
2n(31|φ, s)}.

The estimated scaling form given by Equation (7.88) fits the sequence of estimates:

• ((2n,
〈
r2(E c

2n(φ, f))
〉
), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}) plotted in Figure 7.23 well,

because, based on a χ2-Test for Goodness of Fit, χ2(6) = 0.1131 and the correspond-

ing p-value for the fit is greater than 0.9999;

• ((2n,
〈
r2(E c

2n(φ|φ, s))
〉
), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}) plotted in Figure 7.23

well, because, based on a χ2-Test for Goodness of Fit, χ2(6) = 0.3943 and the

corresponding p-value for the fit is 0.9997; and
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• ((2n,
〈
r2(E c

2n(31|φ, s))
〉
), n ∈ {12+90, ..., 12+90t ≤ 945}) plotted in Figure 7.23 very

poorly, because, based on a χ2-Test for Goodness of Fit, χ2(6) = 18.6052 and the

corresponding p-value for the fit is 0.0049.

However, regarding the final case above, observe from the plot of Equation (7.88) in Figure

7.23 that the plotted curve lies within all the plotted estimated 95% confidence intervals

for r2(E c
2n(31|φ, s)). Considering this and the other numerical evidence presented in this

section, the following is conjectured.

Conjecture 7.2.5 νΘ
E c(∗) = νΘ

P
(φ), for each property ∗ ∈ Φ.

Question 2.2.9 queries whether or not the metric exponent νΘ
P

(φ) is equal to ν, the

metric exponent associated with the set of all polygons P (cf. Equation (1.61)). Because

the estimated 95% confidence interval for νΘ
P

(φ) presented in Table 7.1 includes the best

estimated value for ν = 0.588, the following is conjectured.

Conjecture 7.2.6 νΘ
P

(φ) = ν.

Exploring Question 2.2.10 Question 2.2.10 queries whether or not, for a fixed prop-

erty ∗ ∈ Φ, νΘ
wl(E c)(∗), the metric exponent of the expected mean-square radius of gyration

for the large uSAWs in E c(∗), is the same as νΘ
E c(∗), the metric exponent for the expected

mean-square radius of gyration for the polygons in E c(∗). Given • ∈ Υ2n(∗), if the expected

mean-square radius of gyration r2(•) scales according to Equation (7.86) as a function of

2n, then for sufficiently large values of n, the log-log plot of r2(•) versus 2n should be-

have linearly as n increases and the slope of this linear plot corresponds to 2νΘ
• (∗). Figure

7.24 is a log-log plot of
(
2n,
〈
r2 (E c

2n(φ, f))
〉)
, n ∈ Λ) ,

((
2n,
〈
r2 (wl (E

c
2n(φ, f)))

〉)
, n ∈ Λ),

((
2n,
〈
r2 (we (E2n(φ, f)))

〉)
, n ∈ Λ) , and

((
2n,
〈
r2 (ws (E c

2n(φ, f)))
〉)
, n ∈ Λ) , where Λ :=

{12, 13, ..., 945}. Note that for the purposes of creating a more illustrative figure, ev-

ery 30’th estimate from each sequence is plotted. Because the sequences associated with

E c(φ, f), wl (E
c(φ, f)) , and we (E (φ, f)) in Figure 7.24 appear to be parallel, it is possible

that νΘ
wl(E c)(φ, f) = νΘ

E c(φ, f) = νΘ
we(E )(φ, f).

Figure 7.25 is a log-log plot of
((

2n,
〈
r2 (E c

2n(φ|φ, s))
〉)
, n ∈ Λ),

((
2n,
〈
r2 (wl (E

c
2n(φ|φ, s)))

〉)
, n ∈ Λ),

((
2n,
〈
r2 (we (E2n(φ|φ, s)))

〉)
, n ∈ Λ), and
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Figure 7.24: A log-log plot of the estimates for r2 (E c
2n(φ, f)) [△],

r2 (ws (E c
2n(φ, f))) [⊙], r2 (we (E2n(φ, f))) [⊡], and r2 (wl (E

c
2n(φ, f))) [×]

plotted versus 2n.

((
2n,
〈
r2 (ws (E c

2n(φ|φ, s)))
〉)
, n ∈ Λ) , where Λ := {12, 13, ..., 945}. Note that, as before,

for the purposes of creating a more illustrative figure, only every 30’th estimate from each

sequence is plotted. In Figure 7.25, because the sequences associated with E c(φ|φ, s),
wl (E

c(φ|φ, s)) , and we (E (φ|φ, s)) appear parallel, it is possible that νΘ
wl(E c)(φ|φ, s) =

νΘ
E c(φ|φ, s) = νΘ

we(E )(φ|φ, s).

Figure 7.26 is a log-log plot of
((

2n,
〈
r2 (E c

2n(31|φ, s))
〉)
, n ∈ Λ) ,

((
2n,
〈
r2 (wl (E

c
2n(31|φ, s)))

〉)
, n ∈ Λ) ,

((
2n,
〈
r2 (we (E2n(31|φ, s)))

〉)
, n ∈ Λ) , and

((
2n,
〈
r2 (ws (E c

2n(31|φ, s)))
〉)
, n ∈ Λ) , where Λ := {12, 13, ..., 945}. Note that, once again,

for the purposes of creating a more illustrative figure, every 30’th estimate from each

sequence is plotted. In Figure 7.25, not enough data is available to draw any con-

clusion regarding the relationship between the metric exponent νΘ
we(E )(31|φ, s) and the

exponents νΘ
wl(E c)(31|φ, s) and νΘ

E c(31|φ, s). Because, however, the sequences associated

with E c(31|φ, s) and wl (E
c(31|φ, s)) appear parallel, it is possible that νΘ

wl(E c)(31|φ, s) =

νΘ
E c(31|φ, s).
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Figure 7.25: A log-log plot of the estimates for
r2 (E c

2n(φ|φ, s)) [△], r2 (ws (E c
2n(φ|φ, s))) [⊙], r2 (we (E2n(φ|φ, s))) [⊡],

and r2 (wl (E
c
2n(φ|φ, s))) [×] plotted versus 2n.
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Figure 7.26: A log-log plot of the estimates for
r2 (E c

2n(31|φ, s)) [△], r2 (ws (E c
2n(31|φ, s))) [⊙], r2 (we (E2n(31|φ, s))) [⊡],

and r2 (wl (E
c
2n(31|φ, s))) [×] plotted versus 2n.
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Figure 7.27: The estimated mean-square radius of gyration of the large uS-
AWs in (2n)-edge SAPs from E c(φ, f) [×], E c(φ|φ, s) [⊡], and E c(31|φ, s) [△].
The error bars are the estimated 95% margins of error.

In order to further explore whether the exponents νΘ
wl(E c)(∗) and νΘ

E c(∗) are equal,

estimates for the exponents νΘ
wl(E c)(∗) for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, are required in

addition to the estimates for νΘ
E c(∗) presented in Table 7.1. In order to use the “Fixed-n

Method for curve fitting” to determine these additional estimates, sequences of essentially

independent estimates for r2 (wl (E
c
2n(∗))) , for ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, are required.

These required sequences are plotted in Figure 7.27 and also can be found in Column 4 of

Tables B.15, B.16, and B.17 (cf. Section B.3 of Appendix B).

The estimates resulting from applying the “Fixed-n Method for curve fitting” to the

data plotted in Figure 7.27 to a curve of the form

y2n = AΘ
wl(E c)(∗)(2n)

2νΘ
wl(E

c)
(∗)

+ b
wl(E c)(∗) (7.89)

yields the estimates for νΘ
wl(E c)(∗), AΘ

wl(E c)(∗), and b
wl(E c)(∗) provided in Table 7.2.

If the metric exponents in the scaling form of r2(•) are independent of the prop-

erty ∗ ∈ Φ, then, for sufficiently large values of n, the log-log plots of the data se-

quences should appear parallel. Figure 7.28 is a log-log plot of the sequences of esti-
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Table 7.2: The estimates for νΘ
wl(E c)(∗), AΘ

wl(E c) (∗), and bwl(E c)(∗) for the

large uSAWs in polygons in E c(∗).

Parameter Estimated

Property ∗ νΘ
wl(E c)(∗) AΘ

wl(E c) (∗) b
wl(E c)(∗)

(φ, f) 0.5847(0.0075) 0.1080(0.0126) −5.9280(3.7271)

(φ|φ, s) 0.5851(0.0166) 0.1059(0.0267) −4.0901(6.8560)

(31|φ, s) 0.6419(0.1673) 0.0428(0.1086) 5.1553(58.2663)

mates ((2n,
〈
r2(•)

〉
), n ∈ {12, 13, , ..., 945}), for each • ∈ {wl (E

c
2n(φ, f)) , wl (E

c
2n(φ|φ, s)) ,

wl (E
c
2n(31|φ, s))}; note that both the horizontal and vertical scales are logarithmic (base

10) scales and for the purposes of creating a more illustrative figure, every 50’th estimate

from each sequence is plotted. For the values of 2n plotted in Figure 7.28, it appears that,

for sufficiently large values of 2n, the sequences plotted are parallel and hence it is possible

that the metric exponents corresponding to each of the sequences are equal.

For each of the properties ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, from the estimates νΘ
wl(E c)(∗)

presented in Table 7.2, note that there is considerable overlap between the estimated 95%

confidence intervals for the three corresponding metric exponents. Hence it is possible

that the metric exponent νΘ
wl(E c)(∗) for the large uSAW is independent of the property ∗.

Furthermore, because each point estimate for νΘ
wl(E c)(∗) presented in Table 7.2 lies within

the estimated 95% confidence interval for the metric exponent in Table 7.1 with the same

property, and vice versa, the metric exponent associated with the expected mean-square

radius of gyration of the large uSAWs in SAPs in E c(∗) is quite possibly equal to the

metric exponent associated with the expected mean-square radius of gyration of SAPs in

E c(∗). The χ2-Test for Goodness of Fit is used to determine, for each ∗ ∈ {(φ, f), (φ|φ, s),
(31|φ, s)}, how well the estimated regression curve

ŷ2n = ÂΘ
E c(∗)(2n)2ν̂Θ

Ec (∗) + b̂E c(∗), (7.90)

with ÂΘ
E c(∗), ν̂Θ

E c(∗), and b̂E c(∗) as given in Table 7.1, fits the sequences of estimates

((2n,
〈
wl

(
r2(•)

)〉
), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}), for • ∈ {E c

2n(φ, f), E c
2n(φ|φ, s),

E c
2n(31|φ, s)}.
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Figure 7.28: A log-log plot for the estimated mean-square radius of gyra-
tion of the large uSAWs in (2n)-edge SAPs from E c(φ, f) [×], E c(φ|φ, s) [⊡],
and E c(31|φ, s) [△]. The error bars are the estimated 95% margins of error.

The estimated scaling form given by Equation (7.90) with ∗ = (φ, f) fits the se-

quence of estimates ((2n,
〈
wl

(
r2(E c

2n(φ, f))
)〉

), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}) plot-

ted in Figure 7.27 extremely well, because, based on a χ2-Test for Goodness of Fit,

χ2(6) = 0.0596 and the corresponding p-value for the fit is greater than 0.9999. Simi-

larly the form given by Equation (7.90) with ∗ = (φ|φ, s) fits the sequence of estimates:

((2n,
〈
wl

(
r2(E c

2n(φ|φ, s))
)〉

), n ∈ {12 + 90, ..., 12 + 90t ≤ 945}) plotted in Figure 7.27 well,

because, based on a χ2-Test for Goodness of Fit, χ2(6) = 0.8837 and the corresponding

p-value for the fit is 0.9896. Due to the large 95% error margins for the (31|φ, s)-estimates

presented in Table 7.1, it is not surprising that Equation (7.90) with ∗ = (31|φ, s) does not

fit the sequence of estimates ((2n,
〈
wl

(
r2(E c

2n(31|φ, s))
)〉

), n ∈ {12+90, ..., 12+90t ≤ 945})
at all. In fact, based on a χ2-Test for Goodness of Fit, χ2(6) = 19.0323 and the corre-

sponding p-value for the fit is 0.0041. However, based on the numerical evidence presented

in this section, the following conjecture is made.

Conjecture 7.2.7 νΘ
wl(E c)(∗) = νΘ

E c(∗), for each property ∗ ∈ Φ.
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Exploring Question 2.2.12 Question 2.2.12 queries whether or not, for a fixed prop-

erty ∗ ∈ Φ, νΘ
ws(E c)(∗), the metric exponent of the expected mean-square radius of gyration

for the small uSAWs in E c(∗), is less than νΘ
E c(∗), the metric exponent for the expected

mean-square radius of gyration for the polygons in E c(∗). In Figure 7.24, because the se-

quences associated with E c(φ, f) and ws (E c(φ, f)) do not appear parallel and the slope

of the estimated regression line based on the E c(φ, f)-data appears to be greater than

the slope of the estimated regression line based on the ws (E c(φ, f))-data, this supports

νΘ
ws(E c)(φ, f) < νΘ

E c(φ, f). In Figure 7.25, because the sequences associated with E c(φ|φ, s)
and ws (E c(φ|φ, s)) do not appear parallel and the slope of the estimated regression line

based on the E c(φ|φ, s)-data appears to be greater than the slope of the estimated re-

gression line based on the ws (E c(φ|φ, s))-data, this supports νΘ
ws(E c)(φ|φ, s) < νΘ

E c(φ|φ, s).
Similarly, in Figure 7.26, the sequences associated with E c(31|φ, s) and ws (E c(31|φ, s)) do

not appear parallel and the slope of the estimated regression line based on the E c(31|φ, s)-
data appears to be greater than the slope of the estimated regression line based on the

ws (E c(31|φ, s))-data. Thus supporting νΘ
ws(E c)(31|φ, s) < νΘ

E c(31|φ, s).
In order to further explore this possible relationship between, for a fixed property ∗ ∈ Φ,

νΘ
ws(E c)(∗) and νΘ

E c(∗), estimates for the exponents νΘ
ws(E c)(∗), for ∗ ∈ {(φ, f), (φ|φ, s),

(31|φ, s)}, are required in addition to the estimates for νΘ
E c(∗) presented in Table 7.1. In

order to use the “Fixed-n Method for curve fitting” to determine these additional estimates,

sequences of essentially independent estimates for r2 (ws (E c
2n(∗))) , for ∗ ∈ {(φ, f), (φ|φ, s),

(31|φ, s)}, are required. These required sequences are plotted in Figure 7.29 and also can

be found in Column 5 of Tables B.15, B.16, and B.17 in Section B.3 of Appendix B.

From Figure 7.29, note that the general trend of the estimated mean-square radii of

gyration of the small uSAWs plotted as a function of polygon length 2n seem to follow a

different trend than the estimated mean-square radii of gyration that are plotted in Figures

7.23 and 7.27 respectively. Assuming the relationship between the fixed 2n expected mean-

square radius of gyration and polygon length 2n is a power law relation of the form given

by, for each ∗ ∈ Φ,

y2n = AΘ
ws(E c)(∗)(2n)

2νΘ
ws(Ec)

(∗)
+ b

ws(E c)(∗) (7.91)

then from Figures 7.23 and 7.27, the point estimates plotted for each property seem to

follow a trend where 2νΘ
• (∗) > 1, but the estimates plotted in Figure 7.29 as a function of

polygon length seem to follow a trend where 0 ≤ 2νΘ
ws(E c)(∗) < 1.
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Figure 7.29: The estimated mean-square radius of gyration of the small uS-
AWs in (2n)-edge SAPs from E c(φ, f) [×], E c(φ|φ, s) [⊡], and E c(31|φ, s) [△].
The error bars are the estimated 95% margins of error.

Table 7.3: The estimates for νΘ
ws(E c)(∗), AΘ

ws(E c) (∗), and bws(E c)(∗) for the

small uSAWs in polygons in E c(∗).

Parameter Estimated

Property ∗ νΘ
ws(E c) AΘ

ws(E c) bws(E c)

φ 0.0179(0.0903) 13.2685(71.5134) −13.4529(72.5984)

(φ, f) 0.0193(0.0915) 10.6506(54.6140) −10.7057(55.5400)

(φ|φ, s) 0.0360(0.1654) 10.1934(61.5720) −11.2391(65.1067)

(31|φ, s) 0.1084(0.6717) 11.1331(155.9192) −21.3703(235.5239)
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Using the “Fixed-n Method for curve fitting” to fit the data plotted in Figure 7.29

to Equation (7.91) yields the estimates for νΘ
ws(E c)(∗), AΘ

ws(E c)(∗), and bΘ
ws(E c)(∗) provided

in Table 7.3. Because each point estimate for νΘ
ws(E c)(∗) presented in Table 7.3 is not

included in the estimated 95% confidence interval for the metric exponent in Table 7.1

with the same property, this supports the possibility that the metric exponent associated

with the expected mean-square radius of gyration of the small uSAWs in SAPs in E c(∗)
is smaller than the metric exponent associated with the expected mean-square radius of

gyration of SAPs in E c(∗). Furthermore, from the parameter estimates provided in Table

7.3, the possibility that

νΘ
ws(E c)(φ, f) = νΘ

ws(E c)(φ|φ, s) = νΘ
ws(E c)(31|φ, s) = 0 (7.92)

cannot be ruled out but due to the large relative error in the estimates, this possibility is

not strongly supported. Figure 7.30 is a log-log plot of the sequences ((2n,
〈
r2(•)

〉
), n ∈

{12, 13, ..., 945}), for each • ∈ {ws (E c
2n(φ, f)) ,ws (E c

2n(φ|φ, s)) ,ws (E c
2n(31|φ, s))}. The

only conclusive statement that can be made, based on Figure 7.30, is that more data must

be collected before the relationship between the exponents νΘ
ws(E c)(φ, f), νΘ

ws(E c)(φ|φ, s),
and νΘ

ws(E c)(31|φ, s) can be specified. However, the numerical evidence presented here

supports the following conjecture.

Conjecture 7.2.8 0 ≤ νΘ
ws(E c)(∗) < 1

2 < νΘ
E c(∗), for each property ∗ ∈ Φ.

Exploring Question 2.2.13 Question 2.2.13 asks whether the amplitudes AΘ
• (∗) are

independent of ∗ ∈ Φ. From the estimates for AΘ
• (∗) presented in Table 7.1, there is

considerable overlap amongst all four estimated confidence intervals. Hence it is also

possible that the amplitudes AΘ
E c(∗) and AΘ

P
(φ) are all equal and thus independent of the

property ∗. Furthermore, comparing the estimates for the amplitudes AΘ
L (∗) presented in

Table 7.1 to the amplitude estimates in Equation (1.65) leads to the conjecture that.

Conjecture 7.2.9 For every property ∗ ∈ Φ, AΘ
E c(∗) = AΘ

P
(φ) = AR(φ), where AR(φ) is

the amplitude in the scaling form for the radius of gyration for the set of polygons with

knot-type φ.
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Figure 7.30: A log-log plot for the estimated mean-square radius of gyra-
tion of the small uSAWs in (2n)-edge SAPs from E c(φ, f) [×], E c(φ|φ, s) [⊡],
and E c(31|φ, s) [△]. The error bars are the estimated 95% margins of error.

For each of the properties ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}, from the estimates AΘ
wl(E c)(∗)

presented in Table 7.2, note that there is considerable overlap in the estimated 95% con-

fidence intervals for the three corresponding amplitudes. Hence it is possible that the

amplitudes AΘ
wl(E c)(∗) for the large uSAW is independent of the property ∗. Further-

more, because each point estimate for AΘ
wl(E c)(∗) presented in Table 7.2 lies within the

estimated 95% confidence interval for the amplitude with the same property in Table 7.1,

and vice versa, this supports the possibility that the amplitude associated with the ex-

pected mean-square radius of gyration of the large uSAWs in SAPs in E c(∗) is equal to the

amplitude associated with the expected mean-square radius of gyration of SAPs in E c(∗).
This supports the following conjecture.

Conjecture 7.2.10 For every property ∗ ∈ Φ, AΘ
wl(E c) (∗) = AΘ

E c(∗).

The analysis, which lead to Conjectures 7.2.5-7.2.10, is really a preliminary analysis.

In order to obtain better numerics that support these conjectures, more data must be

collected and hence is left as future work.
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A benefit of the “Fixed-n Method” is that it is straightforward and relatively simple

to implement. The method estimates both the metric exponent and the amplitude in the

assumed scaling form for the expected mean-square radius of gyration. The downside

of this method is that the essentially independent sample ignores many of the generated

estimates for r2
(
PΘ

2n(φ)
)
, r2 (E2n(∗)) , r2 (E c

2n(∗)) , r2 (we(E2n(∗))) , r2 (wl (E
c
2n(∗))) , and

r2 (ws (E c
2n(∗))) . The next method, “Average-n Method for estimating νΘ

• (∗)” uses es-

timates for r2
(
PΘ

2n(φ)
)
, r2 (E2n(∗)) , r2 (E c

2n(∗)) , r2 (we(E2n(∗))) , r2 (wl (E
c
2n(∗))) , and

r2 (ws (E c
2n(∗))) generated for all 2n ≥ N∗

min.

The Average-n Method for Estimating νΘ
• (∗)

Given a fixed positive integer q, a fixed even positive integer Nmin and a conditional

probability mass function πz(q,Nmin) := {π2n|Nmin
(q, z) : n ≥ Nmin/2} for the length of a

randomly selected element from U (∗) :=
⋃

n≥Nmin/2

U2n(∗) (with U2n(∗) ⊆ PΘ
2n(φ)), recall

from Section 2.2.3, that for some function f : Z
3 → Z

3, the expected mean-square radii of

gyration and the f -transformed expected mean-square radii of gyration for the length of a

randomly selected element from U are respectively given by

r2πz(Nmin)(U (∗)) :=

∞∑

n=Nmin/2

r2(U2n(∗))π2n|Nmin
(2, z) (7.93)

and

r2πz(Nmin)(f(U (∗))) :=
∞∑

n=Nmin/2

r2(f(U2n(∗)))π2n|Nmin
(2, z). (7.94)

Further recall from Section 4.5.2 that, if π2n|Nmin
(q, z) is defined by Equation (2.61), then,

assuming that, for Nmin sufficiently large, there exist constants A
(1)
U

(∗), A(2)
U

(∗), νΘ
U

(∗),
αΘ

U
(∗), q, κφ, B

(1)
U

(∗), B(2)
U

(∗), ∆
(1)
U

(∗), and ∆
(2)
U

(∗) and functions g∗
U
, and h∗

U
(with

g∗
U

(n) = O(n−1) and h∗
U

(n) = O(n−1)) such that Conjectures 2.2.4, 2.2.12, and 2.2.13

hold,

r2πz(Nmin) (U (∗))

≈ [A1(a1, γ1,1, γ1,2, γ2)]
(
Eπz(2,Nmin)

(
ξU (∗)(ω) |ω|

))γ1,1

+B1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m2, g), (7.95)

where a1 = A
(1)
U
, a2 = A

(2)
U
, γ1,1 = 2νΘ

U
(∗), γ1,2 = αΘ

U
(∗) + q, γ2 = κφ + log(z),

γ3,1 = ∆
(1)
U

(∗), γ3,2 = ∆
(2)
U

(∗), b1 = B
(1)
U

(∗), b2 = B
(2)
U

(∗), m1 = m2 = Nmin, g =
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g∗
U
, A1(a1, γ1,1, γ1,2, γ2) = O(1) andB1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m2, g) = O(n−γ)

with γ = min{γ3,1, γ3,2}. Similarly, assuming that, for Nmin sufficiently large, there exist

constants A
(1)
f(U )(∗), A

(2)
f(U )(∗), νΘ

f(U )(∗), αΘ
f(U )(∗), q, κφ, B

(1)
f(U )(∗), B

(2)
f(U )(∗), ∆

(1)
f(U )(∗), and

∆
(2)
f(U )(∗) and functions g∗f(U ) and h∗f(U ) (with g∗f(U )(n) = O(n−1) and h∗f(U )(n) = O(n−1))

such that Conjectures 2.2.4, 2.2.12, and 2.2.13 hold, then

r2πz(Nmin) (f (U (∗)))

≈ [A1(a1, γ1,1, γ1,2, γ2)]
(
Eπz(2,Nmin)

(
ξU (∗)(ω) |f(ω)|

))γ1,1

+B1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m2, g), (7.96)

where a1 = A
(1)
f(U ), a2 = A

(2)
f(U ), γ1,1 = 2νΘ

f(U )(∗), γ1,2 = αΘ
f(U )(∗) + q, γ2 = κφ + log(z),

γ3,1 = ∆
(1)
f(U )(∗), γ3,2 = ∆

(2)
f(U )(∗), b1 = B

(1)
f(U )(∗), b2 = B

(2)
f(U )(∗), m1 = m2 = Nmin,

g = g∗f(U ), A1(a1, γ1,1, γ1,2, γ2) = O(1) and B1(γ1,1, γ1,2, γ2, γ3,1, γ3,2, a1, a2, b1, b2,m2, g) =

O(n−γ) with γ = min{γ3,1, γ3,2}. (Note that Eπz(q,Nmin)(ξU (∗)(W ) |W |) is the expected

length of W and Eπz(q,Nmin)(ξU (∗)(W ) |f(W )|) is the expected length of f(W ), where W

is a randomly selected polygon from PΘ(φ) chosen according to πz(q,Nmin).)

For values of log(z) close to −κφ, r
2
πz(Nmin) (U (∗)) should become linear in

Eπz(2,Nmin)(ξU (∗)(W ) |W |)2νΘ
U

(∗) and r2
πz(Nmin) (f (U (∗))) should become linear in

Eπz(2,Nmin)(ξU (∗)(W ) |f(W )|)2νΘ
f(U )

(∗)
. Therefore if the values r2

πz(Nmin) (U (∗)) ,
r2
πz(Nmin) (f (U (∗))) , Eπz(2,Nmin)(ξU (∗)(W ) |W |) , and Eπz(2,Nmin)(ξU (∗)(W ) |f(W )|) are

known, then the exponents νΘ
U

(∗) and νΘ
f(U )(∗) can be estimated by fitting these values

(via a non-linear weighted least-squares fit) to an equation of the form

r(2n, a, b,ℏ) = a (2n)2b + ℏ, (7.97)

where b corresponds to the metric exponent of interest. In reality, r2
πz(Nmin) (U (∗)) ,

r2
πz(Nmin) (f (U (∗))) , Eπz(2,Nmin)(ξU (∗)(W ) |W |) , and Eπz(2,Nmin)(ξU (∗)(W ) |f(W )|) are un-

known. This problem can be overcome by using the estimates for r2
πz(Nmin) (U (∗)) ,

r2
πz(Nmin) (f (U (∗))) , Eπz(2,Nmin)(ξU (∗)(W ) |W |) , and Eπz(2,Nmin)(ξU (∗)(W ) |f(W )|) calcu-

lated from the data generated in each chain of the CMC simulation.

Let W := ((Wt(1),Wt(2), ...,Wt(14)) , t = 0, ..., t0) be a Markov chain formed by the

CMC Θ-BFACF algorithm and let ω(u), where

ω(u) :=
((
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, t = 0, ..., t0

)
, (7.98)
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be the sequence of (t0 + 1) 14-tuples of Θ-SAPs from
(
PΘ(φ)

)14
realized in Replication

u of the simulation of the CMC Θ-BFACF algorithm as described in Section 3.4.1. For

each ∗ ∈ Φ and for U (∗) ⊆ PΘ(φ), suppose W is a random polygon from U (∗) chosen

according to πzi
(q,Nmin). Then define, for the mapping f : Z

3 → Z
3, the random variables

X and Y (as defined in Section A.4 of Appendix A) by

X(L,W,U (∗)) := I[L,∞)(|W |)ξU (∗)(W ) (7.99)

and

Y (L,W,U (∗)) := X(L,W,U (∗)) |f(W )| , (7.100)

respectively, where, for each ω ∈ PΘ(φ) and each subset of Θ-SAPs V ⊆ PΘ(φ), ξV (ω)

is given by Equation (4.156). Further define Xk,i and Yk,i (as used in Section A.4 of

Appendix A) by

Xk,i := Xk,i(L,W,U (∗))

:=

t0∑

t=0

MT (t)IB(k) (t)X(Nmin,Wt(i),U (∗)). (7.101)

and

Yk,i := Yk,i(Nmin,W,U (∗))

:=

t0∑

t=0

MT (t)IB(k) (t)Y (Nmin,Wt(i),U (∗))

:= Nk,i (f (U (∗))) , (7.102)

where B(k) is given by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6). Now redefine Y and Yk,i respectively by

Y := Y (L,W,U (∗)) := I[L,∞)(|W |)ξU (∗)(W )r2(f(W )) (7.103)

and

Yk,i := Yk,i(Nmin,W,U (∗))

:=

t0∑

t=0

MT (t)IB(k) (t)Y (Nmin,Wt(i),U (∗))

:= Rπ
k,i (f(U (∗))) , (7.104)
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where B(k) is given by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6). Finally redefine Y and Yk,i respectively by

Y := Y (L,W,U (∗)) := I[L,∞)(|W |)ξU (∗)(W )r2(W ) (7.105)

and

Yk,i := Yk,i(Nmin,W,U (∗))

:=

t0∑

t=0

MT (t)IB(k) (t)Y (Nmin,Wt(i),U (∗))

:= Rπ
k,i (U (∗)) , (7.106)

where B(k) is given by Equation (4.159); MT (t) is defined by Equation (4.42); and, for

A ⊆ R,IA (t)is defined by Equation (7.6).

For the remainder of this section define πzi
(Nmin) := πzi

(2, Nmin). Then let〈
Nπzi

(Nmin) (f (U (∗)))
〉

be the ratio estimator (as defined by Equation (A.21) in Section

A.3 of Appendix A) for Eπzi
(Nmin)(ξU (∗)(W ) |f(W )|) formed using the sequence

((Xk,i, Nk,i (f (U (∗)))), k = 1, .., l) , (7.107)

and recall that
〈
Nπzi

(Nmin) (U (∗))
〉

is the ratio estimator for Eπzi
(2,Nmin)(ξU (∗)(W ) |(W )|)

defined in Section 4.7.3. Further let
〈
R2

πzi
(Nmin) (U (∗))

〉
be the ratio estimator (as defined

by Equation (A.21) in Section A.3 of Appendix A) for r2
πzi

(Nmin) (U (∗)) formed using the

sequence
(
(Xk,i, R

π
k,i (U (∗))), k = 1, .., l

)
; (7.108)

and let
〈
R2

πzi
(Nmin) (f (U (∗)))

〉
be the ratio estimator for r2

πzi
(Nmin) (f (U (∗))) formed

using the sequence
(
(Xk,i, R

π
k,i (f(U (∗)))), k = 1, .., l

)
. (7.109)

Based on the u’th realization ω(u) of W , u ∈ {1, 2, ..., 10}, let n
(u)
k,i (U (∗)) denote the

u’th realization of Nk,i (U (∗)) ; let n
(u)
k,i (f (U (∗))) denote the u’th realization of

Nk,i (f (U (∗))) ; let r
π,(u)
k,i (U (∗)) denote the u’th realization of Rπ

k,i (U (∗)) ; let

r
π,(u)
k,i (f (U (∗))) denote the u’th realization of Rπ

k,i (f (U (∗))); and let x
(u)
k,i denote the u’th

realization of Xk,i. Then, for each ∗ ∈ Φ and for a fixed positive integer n, the estimators〈
Nπzi

(Nmin) (U (∗))
〉
,
〈
Nπzi

(Nmin) (f (U (∗)))
〉
,
〈
R2

πzi
(Nmin) (U (∗))

〉
, and〈

R2
πzi

(Nmin) (f (U (∗)))
〉

defined with t0 = 9.6×1010 time steps, τint = 0.72×109 time steps,

337



T = 120, 000 time steps, and l := ⌊t0/(2τint)⌋ = 66 are respectively used to calculate: the

point estimate
〈
nπzi

(Nmin) (U (∗))
〉

for Eπzi
(Nmin)(ξU (∗) (ω) |ω|) using the sequence

(((
x

(u)
k,i , n

(u)
k,i (U (∗))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.110)

in Equation (A.21); the point estimate
〈
nπzi

(Nmin) (f (U (∗)))
〉

for

Eπzi
(Nmin)(ξU (∗) (ω) |f(ω)|) using the sequence

(((
x

(u)
k,i , n

(u)
k,i (f (U (∗)))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.111)

in Equation (A.21); the point estimate
〈
r2
πzi

(Nmin) (U (∗))
〉

for R2
πzi

(Nmin) (U (∗)) using the

sequence (((
x

(u)
k,i , r

π,(u)
k,i (U (∗))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.112)

and the point estimate
〈
r2
πzi

(Nmin) (f (U (∗)))
〉

for R2
πzi

(Nmin) (f (U (∗))) using the sequence

(((
x

(u)
k,i , r

π,(u)
k,i (f (U (∗)))

)
, k = 1, .., l

)
, u = 1, ..., 10

)
(7.113)

in Equation (A.21).

Now by fitting Equation (7.97) using non-linear weighted least-squares regression to the

sequences of data
((〈

nπzi
(Nmin)

(
PΘ(φ)

)〉
,
〈
r2
πzi

(Nmin) (U (∗))
〉)

, i ∈ {1, 2, ..., 14}
)

and((〈
nπzi

(Nmin)

(
PΘ(φ)

)〉
,
〈
r2
πzi

(Nmin) (f (U (∗)))
〉)

, i ∈ {1, 2, ..., 14}
)

estimates for a, b, and

h can be obtained, where b = νΘ
• (∗).

Estimating νΘ
• (∗) using the Average-n Method

In this section, νΘ
P

(φ), νΘ
E c(φ, f), νΘ

E c(φ|φ, s), νΘ
E c(31|φ, s), νΘ

wl(E c)(φ, f), νΘ
wl(E c)(φ|φ, s),

νΘ
wl(E c)(31|φ, s), νΘ

ws(E c)(φ, f), νΘ
ws(E c)(φ|φ, s), and νΘ

ws(E c)(31|φ, s) are estimated using the

Average-n Method for the purposes of a comparison to the corresponding estimates com-

puted using the Fixed-n Method. Then, for each ∗ ∈ Φ and for a fixed positive even integer

Nmin, the point estimates required to estimate these metric exponents are computed us-

ing the estimators
〈
Nπzi

(Nmin)

(
PΘ

2n(φ)
)〉

,
〈
R2

πzi
(Nmin)

(
PΘ

2n(∗)
)〉

,
〈
R2

πzi
(Nmin) (E c

2n(∗))
〉
,〈

R2
πzi

(Nmin) (E2n(∗))
〉
,
〈
R2

πzi
(Nmin) (ws(E

c
2n(∗)))

〉
,
〈
R2

πzi
(Nmin) (wl(E

c
2n(∗)))

〉
, and〈

R2
πzi

(Nmin) (we(E2n(∗)))
〉

defined with t0 = 9.6 × 1010 time steps, τint = 0.72 × 109 time

steps, T = 120, 000 time steps, and ⌊t0/(2τint)⌋ = 66.

Recall from Section 4.5.2 that the sequences

((
Eπzi

(Nmin)(ξPΘ(φ) (ω) |ω|), R2
πzi

(Nmin) (U (∗))
)
, i ∈ {1, 2, ..., 14}

)
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and ((
Eπzi

(Nmin)(ξPΘ(φ) (ω) |ω|), R2
πzi

(Nmin) (f (U (∗)))
)
, i ∈ {1, 2, ..., 14}

)

scale according to

R2
πzi

(Nmin) (U (∗)) ∼ aU (∗)
(
Eπzi

(Nmin)(ξPΘ(φ) (ω) |ω|)
)2bU (∗)

(7.114)

and

R2
πzi

(Nmin) (f (U (∗))) ∼ af(U )(∗)
(
Eπzi

(Nmin)(ξPΘ(φ) (ω) |ω|)
)2bf(U )(∗)

, (7.115)

respectively for a suitable value of N∗
min sufficiently large. Also from the discussion in Sec-

tion 4.5.2 that determined the above scaling form, recall that one of the assumptions made

was that N∗
min needs to be sufficiently large so that pΘ

2n(∗) scales according to the form

given by Conjecture 2.2.4. In Section 5.6, Nφ
min was estimated to be 156; N

(φ,f)
min was esti-

mated to be 142; N
(φ|φ,s)
min was estimated to be 182; and N

(31|φ,s)
min was estimated to be 408.

Because the “Average-n Method for estimating νΘ
• (∗)” is based on Nmin being sufficiently

large that the approximate forms of both Eπzi
(Nmin)(ξPΘ(φ) (W ) |W |) (given by Approx-

imation (4.95)) and R2
πzi

(Nmin) (U (∗)) or R2
πzi

(Nmin) (f (U (∗))) (given by Approximation

(4.118)) hold, the values of Nmin to be used are Nφ
min = N

(φ,f)
min = 156, N

(φ|φ,s)
min = 182, and

N
(31|φ,s)
min = 408. But, because of the limited amount of data available for property-(31|φ, s),

using 408 as the estimate for N
(31|φ,s)
min results in having no data available to compute〈

r2
πzi

(408)

(
PΘ(31|φ, s)

)〉
for i ∈ {1, 2, 3, 4, 5}, and the estimated 95% confidence intervals

based on the estimates
〈
r2
πzi

(408)

(
PΘ(31|φ, s)

)〉
for i ∈ {6, 7, ..., 14} being so large that

the point estimates
〈
r2
πzi

(408)

(
PΘ(31|φ, s)

)〉
for i ∈ {6, 7, ..., 14} are considered unreliable.

In an attempt to maximize the amount of data available for the property-(31|φ, s) analysis,

N
(31|φ,s)
min =N

(φ|φ,s)
min = 182 under the proviso that more property-(31|φ, s) data need to be

collected in the future.

The point estimates and the corresponding estimated 95% confidence interval displayed

in Figures 7.31-7.33 can be found in Tables B.18-B.41 (cf. Section B.3.2 of Appendix B).

The sequences of point estimates

((〈
nπzi

(156)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(156)

(
P

Θ(φ)
)〉)

, i ∈ {1, 2, ..., 14}
)

(⊙) ,

((〈
nπzi

(156)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(156) (E c(φ, f))
〉)

, i ∈ {1, 2, ..., 14}
)

(×) ,

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (E c(φ|φ, s))
〉)

, i ∈ {1, 2, ..., 14}
)

(⊡) ,
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Figure 7.31: The point estimates 〈nπzi
(156)

(
PΘ(φ)

)
〉,

〈nπzi
(156)

(
PΘ(φ)

)
〉, 〈nπzi

(182)

(
PΘ(φ)

)
〉, and 〈nπzi

(156)

(
PΘ(φ)

)
〉 plot-

ted respectively against 〈r2
πzi

(156)

(
PΘ(φ)

)
〉 [⊙], 〈r2

πzi
(156) (E c(φ, f))〉 [×],

〈r2
πzi

(182) (E c(φ|φ, s))〉 [⊡], and 〈r2
πzi

(182) (E c(31|φ, s))〉 [△]. The error bars

represent the corresponding estimated 95% margins of error.

and

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (E c(31|φ, s))
〉)

, i ∈ {3, 4, ..., 14}
)

(△) ,

that are required to estimate νΘ
P

(φ), νΘ
E c(φ, f), νΘ

E c(φ|φ, s), and νΘ
E c(31|φ, s) respectively

using the Average-n Method, are illustrated in Figure 7.31. Note that there is no data

available to compute the point estimates
〈
r2
πzi

(182) (E c(31|φ, s))
〉
, i ∈ {1, 2}.

Each of the data sequences plotted in Figure 7.31, when fitted via weighted non-linear

least-squares regression to a curve of the form

y = aΘ
• (∗)x2νΘ

• (∗) + d•(∗), (7.116)

yields the estimates for νΘ
• (∗), aΘ

• (∗), and d•(∗) presented in Table 7.4.

In order to facilitate the comparison between the estimates for νΘ
• (∗) generated by

the Fixed-n and Average-n Methods, the estimates for νΘ
P

(φ), νΘ
E c(φ, f), νΘ

E c(φ|φ, s), and
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Table 7.4: The estimates for νΘ
• (∗), aΘ

• (∗), and d•(∗) computed using
the “Average-n Method”. The values in parentheses are the estimated 95%
margins of error.

Parameter Estimated

•(∗) N∗
min νΘ

• (∗) aΘ
• (∗) d•(∗)

PΘ(φ) 156 0.5905(0.0040) 0.0957(0.0055) −4.5674(1.1018)

E c(φ, f) 156 0.5944(0.0064) 0.1001(0.0093) −1.0699(1.7770)

E c(φ|φ, s) 182 0.5977(0.0094) 0.0917(0.0250) −4.4469(2.6560)

E c(31|φ, s) 182 0.5679(0.0759) 0.1411(0.1525) −15.5592(20.7470)

Table 7.5: A summary of the estimates for νΘ
• (∗) computed using the

“Fixed-n Method” and the “Average-n Method”. The values in parentheses
are the estimated 95% margins of error.

Estimate of νΘ
• (∗)

•(∗) Average-n Method Fixed-n Method

PΘ(φ) 0.5905(0.0040) 0.5907(0.0071)

E c(φ, f) 0.5944(0.0064) 0.5854(0.0073)

E c(φ|φ, s) 0.5977(0.0094) 0.5846(0.0166)

E c(31|φ, s) 0.5679(0.0759) 0.6189(0.1296)

νΘ
E c(31|φ, s) generated by both methods are summarized in Table 7.5. Note that for each

•(∗) in Table 7.5, there is considerable overlap between the estimated 95% confidence

interval presented for νΘ
• (∗). Hence the estimates generated via the two methods are

comparable. It also should be noted that the 95% confidence intervals determined via the

Average-n Method are slightly smaller than the corresponding interval estimated by the

Fixed-n Method. Consequently the Average-n Method provides better estimates than the

Fixed-n Method for νΘ
P

(φ), νΘ
E c(φ, f), νΘ

E c(φ|φ, s), and νΘ
E c(31|φ, s).

The sequences of point estimates

((〈
nπzi

(156)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(156) (wl (E
c(φ, f)))

〉)
, i ∈ {1, 2, ..., 14}

)
(×) ,

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (wl (E
c(φ|φ, s)))

〉)
, i ∈ {1, 2, ..., 14}

)
(⊡) ,
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Figure 7.32: The point estimates 〈nπzi
(156)

(
PΘ(φ)

)
〉,

〈nπzi
(182)

(
PΘ(φ)

)
〉, and 〈nπzi

(156)

(
PΘ(φ)

)
〉 plotted respectively

against 〈r2
πzi

(156) (wl (E
c(φ, f)))〉 [×], 〈r2

πzi
(182) (wl (E

c(φ|φ, s)))〉 [⊡], and

〈r2
πzi

(182) (wl (E
c(31|φ, s)))〉 [△]. The error bars represent the estimated

95% margins of error.

and

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (wl (E
c(31|φ, s)))

〉)
, i ∈ {3, 4, ..., 14}

)
(△) ,

that are required to respectively estimate νΘ
wl(E c)(φ, f), νΘ

wl(E c)(φ|φ, s), and νΘ
wl(E c)(31|φ, s)

using the Average-n Method, are illustrated in Figure 7.32. Note that there is no data in

the sample to compute the point estimates
〈
r2
πzi

(182) (wl (E
c(31|φ, s)))

〉
, i ∈ {1, 2}.

Each of the data sequences plotted in Figure 7.32 is fit (via weighted non-linear least-

squares regression) to a curve of the form

y = aΘ
• (∗)x2νΘ

• (∗) + d•(∗) (7.117)

to obtain the estimates for νΘ
wl(E c)(∗), aΘ

wl(E c)(∗), and d
wl(E c)(∗) presented in Table 7.6.

As before, in order to facilitate the comparison between the two estimates for νΘ
wl(E c)(∗),

the estimates for νΘ
wl(E c)(φ, f), νΘ

wl(E c)(φ|φ, s), and νΘ
wl(E c)(31|φ, s) generated by both meth-

ods are summarized in Table 7.7. Note that for each property ∗ presented in Table 7.5,
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Table 7.6: The estimates for νΘ
wl(E c)(∗), aΘ

wl(E c) (∗), and dwl(E c)(∗) com-
puted using the “Average-n Method”. The error bars represent the esti-
mated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min νΘ

wl(E c)(∗) aΘ
wl(E c)(∗) dwl(E c)(∗)

(φ, f) 156 0.5942(0.0064) 0.0959(0.0093) −2.4548(1.7769)

(φ|φ, s) 182 0.5998(0.0099) 0.0921(0.0131) −6.929(2.795)

(31|φ, s) 182 0.5745(0.0772) 0.1265(0.1390) −17.4646(20.3186)

Table 7.7: A summary of the estimates for νΘ
wl(E c)(∗) computed using the

“Fixed-n Method” and the “Average-n Method”. The values in parentheses
are the estimated 95% margins of error.

Estimate of νΘ
wl(E c)(∗)

Property ∗ Average-n Method Fixed-n Method

(φ, f) 0.5942(0.0064) 0.5847(0.0075)

(φ|φ, s) 0.5998(0.0099) 0.5851(0.0166)

(31|φ, s) 0.5745(0.0772) 0.6419(0.1673)

there is considerable overlap between the estimated 95% confidence interval presented for

νΘ
• (∗). Also note that the estimated 95% confidence intervals determined via the Average-

n Method are slightly smaller than the corresponding interval estimated by the Fixed-n

Method. Hence the estimates for each of νΘ
wl(E c)(φ, f), νΘ

wl(E c)(φ|φ, s), and νΘ
wl(E c)(31|φ, s)

generated by both methods are also concluded to be comparable. Because the confidence

intervals estimated by the Average-n Method are smaller than the corresponding confi-

dence interval estimated by the Fixed-n Method, the Average-n Method is concluded to

provide better estimates than the Fixed-n Method for νΘ
wl(E c)(φ, f), νΘ

wl(E c)(φ|φ, s), and

νΘ
wl(E c)(31|φ, s).

The sequences of point estimates

((〈
nπzi

(156)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(156) (ws (E c(φ, f)))
〉)

, i ∈ {1, 2, ..., 14}
)

(×) ,

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (ws (E c(φ|φ, s)))
〉)

, i ∈ {1, 2, ..., 14}
)

(⊡) ,
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Figure 7.33: The point estimates 〈nπzi
(156)

(
PΘ(φ)

)
〉,

〈nπzi
(182)

(
PΘ(φ)

)
〉, and 〈nπzi

(156)

(
PΘ(φ)

)
〉 plotted respectively

against 〈r2
πzi

(156) (ws (E c(φ, f)))〉 [×], 〈r2
πzi

(182) (ws (E c(φ|φ, s)))〉 [⊡],

and 〈r2
πzi

(182) (ws (E c(31|φ, s)))〉 [△]. The error bars represent the estimated

95% margins of error.

and

((〈
nπzi

(182)

(
P

Θ(φ)
)〉
,
〈
r2πzi

(182) (ws (E c(31|φ, s)))
〉)

, i ∈ {3, 4, ..., 14}
)

(△) ,

that are respectively required to estimate νΘ
ws(E c)(φ, f), νΘ

ws(E c)(φ|φ, s), and νΘ
ws(E c)(31|φ, s)

using the “Average-n Method”, are illustrated in Figure 7.33. Once more, note that there

is no data in the sample to compute the points estimates
〈
r2
πzi

(182) (ws (E c(31|φ, s)))
〉
,

i ∈ {1, 2}.

Fitting each of the data sequences plotted in Figure 7.33 via weighted non-linear least-

squares regression to a curve of the form

y = aΘ
• (∗)x2νΘ

• (∗) + d•(∗) (7.118)

yields the estimates for νΘ
ws(E c)(∗), aΘ

ws(E c)(∗), and d
ws(E c)(∗) given in Table 7.8.

As before, in order to facilitate the comparison between the two estimates for νΘ
ws(E c)(∗),

the estimates for νΘ
ws(E c)(φ, f), νΘ

ws(E c)(φ|φ, s), and νΘ
ws(E c)(31|φ, s) generated by both meth-
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Table 7.8: The estimates for νΘ
ws(E c)(∗), aΘ

ws(E c) (∗), and dws(E c)(∗) com-
puted using the “Average-n Method”. The error bars represent the esti-
mated 95% margins of error.

Parameter Estimated

Property ∗ N∗
min νΘ

ws(E c)(∗) aΘ
ws(E c)(∗) dws(E c)(∗)

(φ, f) 156 0.0042(0.2900) 55(2784) −54(2787)

(φ|φ, s) 182 0.0041(0.5002) 93(11968) −94(11981)

(31|φ, s) 182 0.0832(0.7537) 18.0(328) −32(449)

Table 7.9: A summary of the estimates for νΘ
ws(E c)(∗) computed using the

“Fixed-n Method” and the “Average-n Method”. The values in parentheses
are the estimated 95% margins of error.

Estimate of νΘ
ws(E c)(∗)

Property ∗ Average-n Method Fixed-n Method

(φ, f) 0.0042(0.2900) 0.0193(0.0915)

(φ|φ, s) 0.0041(0.5002) 0.0360(0.1654)

(31|φ, s) 0.0832(0.7537) 0.1084(0.6717)

ods are summarized in Table 7.9. Note that for each property ∗ presented in Table 7.5,

there is considerable overlap between the estimated 95% confidence interval presented for

νΘ
ws(E c)(∗). Hence the estimates for each of νΘ

wl(E c)(φ, f), νΘ
wl(E c)(φ|φ, s), and νΘ

wl(E c)(31|φ, s)
generated by both methods are also concluded to be comparable. Note that the estimated

95% margins of error determined via both methods are much larger than the point estimate

and that the margin of error determined by the Average-n Method is even larger than the

corresponding margin of error estimated by the Fixed-n Method. Consequently neither

method provides reliable estimates for νΘ
ws(E c)(φ, f), νΘ

ws(E c)(φ|φ, s), and νΘ
ws(E c)(31|φ, s).

The upshot based on this analysis is that the Average-n Method does not provide

estimates for the metric exponent that are consistently much better (in terms of the size of

the estimated 95% margin of error) than the Fixed-n Method and in some cases, actually

provides estimates that are much more unreliable than the Fixed-n Method. Another

downside of the Average-n Method is that, though it can be used to estimate νΘ
• (∗), it
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cannot be used to estimate the amplitude AΘ
• (∗). A further drawback is that the sequence

of points used to estimate the metric exponents is formed from estimates of two parameters

whereas the sample of points required by the Fixed-n Method requires only one parameter

estimate. If this second source of error is taken into account in the metric exponent’s

estimated error, then the estimates generated by the Average-n Method are actually less

reliable than reported. Taking this extra source of error into account, since the Fixed-n

Method can be used to estimate both AΘ
• (∗) and νΘ

• (∗), and it computes estimates that

are as least as good as, if not better than, the Average-n Method estimates for νΘ
• (∗), the

conclusion is that whenever a sufficiently large, fixed-n sample of essentially independent

points can be formed, the Fixed-n Method should be used .

7.3 In Summary

In this chapter, two measures of the “size” of a Θ-SAP in PΘ(φ) were discussed. In

Section 7.1 the lengths of the two uSAWs comprising each Θ-SAP are discussed as one

measure of the size of a Θ-SAP. In Section 7.2, the mean-square radii of gyration of

the two uSAWs comprising each Θ-SAP are discussed as the second measure of size of a

Θ-SAP.

The discussion in Section 7.1 begins by verifying that the generated data supports the

facts that, given an integer n ≥ nΘ
∗ /2 + 1 and any property ∗ ∈ Φ,

E [S2n(E c (∗))] < n− 3 < E [L2n(E c (∗))] , (7.119)

and, as n→ ∞, for each property ∗ ∈ Φ and for W ∈ E c
2n(∗) chosen uniformly at random,

the expected length of the large uSAW in W is O(n). Then the discussion demonstrated

that the data supports Conjecture 2.2.10, that is for each natural number n ≥ 13 =

nΘ
(31|φ,s)/2 + 1, the point estimates 〈s2n(E c(∗))〉 and 〈l2n(E c(∗))〉 satisfy the hypothesized

relationships

E [S2n(E c (31|φ, s))] ≥ E [S2n(E c (φ, f))] (7.120)

and

E [L2n(E c (31|φ, s))] ≤ E [L2n(E c (φ, f))] . (7.121)

The section concludes with showing that for a fixed polygon length 2n, the estimated

proportion of (2n)-edge property-∗ Θ-SAPs with equal-length uSAWs decreases to zero as
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a function of 2n. Thus the estimated proportions support Conjecture 2.2.8 (that is, for

each property ∗ ∈ Φ, PΘ(∗) is dominated by SAPs with one large uSAW and one small

uSAW). The discussion then shows the numerical evidence supports Conjecture 2.2.11,

that is, E [S2n(E c (∗))] ∼ (n)ζs(∗) . It is also shown that it is possible that, on average, the

length of the small uSAW in a (2n)-edge polygon in E c(φ) is O(1), which supports that

E [S2n(E c (∗))] ∼ (n)0. The discussion then turns to the mean-square radius of gyration.

Section 7.2 begins by using the data to explore Question 2.2.4, that is, the discussion

shows that it is possible that, for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)},
r2 (E c

2n(∗))
r2
(
PΘ

2n(∗)
) → 1, (7.122)

and hence it is conjectured (refer to Conjecture 7.2.1), for each ∗ ∈ Φ,

r2 (E c
2n(∗))

r2
(
PΘ

2n(∗)
) → 1. (7.123)

Then the discussion numerically investigates a possible relationship between the expected

radii of gyration of the large, equal-length, and small uSAWs (as a function of polygon

length) for randomly selected, property-∗, (2n)-edge Θ-SAPs (that is Question 2.2.5) and

by conjecturing (refer to Conjecture 7.2.2) that for each ∗ ∈ Φ, and for every integer

n > nΘ
∗ /2,

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
, (7.124)

and concluding that more data needs to be generated before the relationship “For every

odd integer n ≥ nΘ
∗ /2,

r2 (ws (E c
2n(∗))) < r2 (we(E2n(∗))) < r2 (wl (E

c
2n(∗))) .” (7.125)

can be explored more thoroughly. The discussion then turns to showing that the data

supports that, for each ∗ ∈ K †(φ)\ {(φ|φ, s)} and each natural number n ≥ nΘ
∗ /2, the

expected mean-square radius of gyration of the small uSAW in a randomly chosen element

from E c
2n(∗) is greater than the expected mean-square radii of gyration of the small uSAW

in a randomly chosen element from either E c
2n(φ, f) and E c

2n(φ|φ, s) and that the expected

mean-square radius of gyration of the large uSAW in a randomly chosen element from

E c
2n(∗) is smaller than the expected mean-square radii of gyration of the large uSAW in

a randomly chosen element from either E c
2n(φ, f) and E c

2n(φ|φ, s) (that is Question 2.2.6).

Hence it is conjectured that, for each ∗ ∈ Φ\{φ, (φ, s)},

lim
n→∞

r2 (ws (E c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 0, and (7.126)
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lim
n→∞

r2 (wl (E
c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 1, (7.127)

cf. Conjecture 7.2.4. Furthermore, the numerical evidence presented throughout Section

7.2.2 suggests that P2n(φ) is dominated by Θ-SAPs with one large and one small uSAW

such that the “size” (mean-square radius of gyration) of the large uSAW is O
(
nt
)

(where

t > 1) and the “size” (mean-square radius of gyration) of the small uSAW is O(ns) (where

s < 1).

The final part of Section 7.2 ends by presenting two methods for estimating the metric

exponents νΘ
• (∗) and a discussion of the possible properties of the exponents νΘ

• (∗). The

first method presented to estimate νΘ
• (∗) is an implementation of the “Fixed-n Method for

curve fitting” and a by-product of the method is that, in addition to estimating νΘ
• (∗), the

method estimates the amplitudes AΘ
• (∗) . The second method presented for estimating

νΘ
• (∗) is referred to as the “Average-n Method for estimating νΘ

• (∗)”. νΘ
• (∗) is estimated

using both techniques. The estimates for the metric exponents and amplitudes determined

using the “Fixed-n Method for curve fitting” were used to investigate whether the metric

exponents are independent of the sets E (∗) and E c(∗), for each property ∗ ∈ Φ, and that

the metric exponents are all equal to νΘ
P

(φ) (that is Question 2.2.8). Because of insufficient

data, the metric exponents associated with the sets E (∗) could not be estimated. The

estimates available for the metric exponents support the following conjectures: for each

property ∗ ∈ Φ, νΘ
E c(∗) = νΘ

P
(φ) (cf. Conjecture 7.2.5); νΘ

P
(φ) = ν (cf. Conjecture 7.2.6);

νΘ
wl(E c)(∗) = νΘ

E c(∗) (cf. Conjecture 7.2.7); and 0 ≤ νΘ
ws(E c)(∗) < 1

2 < νΘ
E c(∗) (cf. Conjecture

7.2.8). Based on the estimates for the amplitudes AΘ
• (∗) , the following conjectures are

also made: for every property ∗ ∈ Φ, AΘ
E c(∗) = AΘ

P
(φ) = AR(φ) (cf. Conjecture 7.2.9)

and AΘ
wl(E c) (∗) = AΘ

E c(∗) (cf. Conjecture 7.2.10).

The final part of Section 7.2 ends by presenting the Average-n Method and then using

the method to estimate the metric exponents. The resulting estimates were then compared

to the corresponding estimates from the Fixed-n Method. The conclusion based on this

comparison is that whenever a sufficiently large essentially independent sample (referred

to as a good sample) of fixed-n estimates is available, the Fixed-n Method should be used

to estimate the metric exponents.

Sections 7.1 and 7.2 both contain a word of caution regarding the amount of data

available for exploring how the two measures of the size of a Θ-SAP depend on the property

∗ ∈ Φ and how these two measures are impacted by Θ-SAPs in E . The caution is that
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more data needs to be collected before these dependencies of the two measures can be more

conclusively determined. Hence the work presented in Chapter 7 is really the preliminary

work of a future, more in-depth study.
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Chapter 8

Conclusions and Future Work

This chapter first includes a synopsis of the results presented throughout this work and

then provides some summary remarks regarding the work presented. The chapter ends

with the presentation of some of the future work inspired by this dissertation.

8.1 Conclusions and Ending Remarks

Chapter 2 begins by reviewing the simplified SAP model that is used in this work to

investigate Problems 1.1 and 1.2. This simplified model is the model for strand passage

in a “pinched” ring polymer as introduced in [150]. The focus is on unknotted Θ-SAPs.

For this set, in Section 2.2.1, the new result, that, for every ∗ ∈ Φ,

κ∗φ := lim
n→∞

log pΘ
n (∗)

2n
= κφ := lim

n→∞

log pn(φ)

2n
(8.1)

is proved. Further to this, in Section 2.2.3, the new result that

lim
n→∞

logwB(2n)

2n
= lim

n→∞

logwE(2n)

2n
= lim

n→∞

logwS(2n)

2n
= κφ (8.2)

is proved. The rest of the chapter presents heuristic arguments that lead to new conjectures

and open questions (related to Problems 1.1 and 1.2) for unknotted Θ-SAPs. Specifically,

the heuristic arguments presented here lead to new conjectures regarding the critical ex-

ponents αΘ
∗ (as defined in Equation (2.84)), that is, for each ∗ ∈ Φ, it is conjectured

that

αφ − 2 = αΘ
φ = αΘ

∗ . (8.3)

The chapter also includes heuristic arguments leading to new conjectures regarding the

scaling forms for the fixed-n strand passage probabilities and their limiting values as n→
∞. Namely, it is conjectured for ∗ ∈ {(φ, s), (φ, f)} that

PrΘ2n(∗) =
AΘ

∗

AΘ
φ

+
(
B′Θ

∗

)
n−∆′Θ

∗ + g∗1(n), (8.4)
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where

g∗1(n) = O(min
{
n−1,max

{
n−∆Θ

φ , n−∆Θ
∗

}}
), (8.5)

and, for ∗ ∈ K †(φ) (the set of after-strand passage properties), that

PrΘn (∗) =
AΘ

∗

AΘ
(φ,s)

+
(
B′Θ

∗

)
n−∆′Θ

∗ + g∗2(n), (8.6)

where

g∗2(n) = O(min
{
n−1,max

{
n
−∆Θ

(φ,s) , n−∆Θ
∗

}}
). (8.7)

The final conjectures and questions presented in Chapter 2 are regarding Problem 1.2,

that is regarding the size of unknotted Θ-SAPs. The first conjecture related to this is that,

for sufficiently large n, P2n(φ) consists primarily of Θ-SAPs formed from one large uSAW

(length O(n)) and one small uSAW (length O(1)). The first question posed regarding the

size of a Θ-SAP is, as n→ ∞, does

E [L2n(E c (∗))] ∼ n? (8.8)

The next conjectures are that, for each ∗ ∈ K †(φ)\ {(φ|φ, s)} and every natural number

n ≥ nΘ
∗ /2,

E [S2n(E c (∗))] > E [S2n(E c (φ, f))] , (8.9)

E [S2n(E c (∗))] > E [S2n(E c (φ|φ, s))] , (8.10)

E [L2n(E c (∗))] < E [L2n(E c(φ, f))] , (8.11)

and

E [L2n(E c (∗))] < E [L2n(E c(φ|φ, s))] . (8.12)

The final conjectures and questions in the chapter are related to the mean-square radii

of gyration for subsets of PΘ(φ). For R2n (a, b, c, d, h) given by Equation (2.172) and

∗ ∈ Φ, the expected mean-square radius of gyration for Θ-SAPs in Un(∗) ⊆ PΘ
n (φ) is

conjectured to scale (as n→ ∞) according to

r2(U2n) ∼ R2n

(
AΘ

U (∗) , νΘ
U (∗), BΘ

U (∗) ,∆Θ
U (∗) , h∗U

)
, (8.13)

and the expected f -transformed mean-square radius of gyration for Θ-SAPs in Un(∗) ⊆
PΘ

n (φ) is conjectured to scale (as n→ ∞) according to

r2(f(U2n)) ∼ R2n

(
AΘ

f(U ) (∗) , νΘ
f(U )(∗), BΘ

f(U ) (∗) ,∆Θ
f(U ) (∗) , h∗f(U )

)
. (8.14)
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Several questions are then asked regarding the expected mean-square radius of gyration

and the corresponding metric exponent νΘ
• (∗) and amplitude AΘ

• (∗) :

1. for each ∗ ∈ Φ and for sufficiently large n ≥ nΘ
∗ /2, does

r2 (E c
2n(∗)) ∼ r2

(
P

Θ
2n(∗)

)
, (8.15)

and, for n odd, does

r2 (E2n(∗)) ∼ r2
(
P

Θ
2n(∗)

)
? (8.16)

2. for each ∗ ∈ Φ and for every integer n > nΘ
∗ /2, is

r2
(
ws

(
P

Θ
2n(∗)

))
< r2

(
wl

(
P

Θ
2n(∗)

))
, (8.17)

and, n odd, is

r2 (ws (E c
2n(∗))) < r2 (we(E2n(∗))) < r2 (wl (E

c
2n(∗))) ? (8.18)

3. for each ∗ ∈ K †(φ)\ {(φ|φ, s)} and for every integer n > nΘ
∗ /2, is

r2 (ws (E c
2n(∗))) > r2 (ws (E c

2n(φ, f))) , (8.19)

r2 (ws (E c
2n(∗))) > r2 (ws (E c

2n(φ|φ, s))) , (8.20)

r2 (wl (E
c
2n(∗))) < r2 (wl (E

c
2n(φ, f))) , (8.21)

and

r2 (wl (E
c
2n(∗))) < r2 (wl (E

c
2n(φ|φ, s)))? (8.22)

4. for each ∗ ∈ Φ\{φ, (φ, s)} and for every integer n > nΘ
∗ /2, do the following limits

exist and, if they exist, what are their values:

lim
n→∞

r2 (ws (E c
2n(∗)))

r2
(
PΘ

2n(φ)
) , lim

n→∞

r2 (we (E4n+2(∗)))
r2
(
PΘ

4n+2(φ)
) , and lim

n→∞

r2 (wl (E
c
2n(∗)))

r2
(
PΘ

2n(φ)
) ? (8.23)

Chapter 2 ends with several questions regarding the relationships between the metric

exponents and the relationships between the amplitudes in the scaling forms for the ex-

pected mean-square radius of gyration and the expected f -transformed mean-square radius

of gyration (assuming that the scaling forms hold).

Chapter 3 presents the details of the implementation of the CMC Θ-BFACF algorithm

for collecting data to explore the conjectures and questions posed in Chapter 2. The
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simulation consists of ten independent replications of fourteen chains characterized by the

fugacities: z1 = 0.2030, z2 = 0.2050, z3 = 0.2070, z4 = 0.2090, z5 = 0.2100, z6 = 0.2105,

z7 = 0.2110, z8 = 0.2115, z9 = 0.2120, z10 = 0.2124, z11 = 0.2128, z12 = 0.2130, z13 =

0.2131, and z14 = 0.2132, and q := 2. Each replication consists of a total of 9.6×1010 time

steps (8.0×1010 Θ-BFACF moves in parallel and 1.6×1010 attempted swaps) in which each

five Θ-BFACF moves in parallel is followed by an attempted swap. The polygon lengths

for the initial starting states of each chain and each replication can be found in Table 3.1.

The realization given by the u’th replication consists of a sequence of (t0 + 1) 14-tuples of

Θ-SAPs from
(
PΘ

)14
denoted

ω(u) :=
((
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
, t = 0, ..., 9.6 × 1010

)
. (8.24)

Data is sampled after every 1000’th Θ-BFACF in parallel (but before the correspond-

ing attempted swap) and the corresponding sequence of 14-tuples of SAPs sampled from

Replication u is denoted by

ω̂(u) :=
((
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
, j = 0, ..., l

)
, (8.25)

where l := ⌊t0/1200⌋ = 80, 000, 000, and, for t := 1200j, the j’th term (for 1 ≤ j ≤ l) of

ω̂(u) is given by

(
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
:=
(
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
. (8.26)

Using the sample (ω̂(u), u = 1, ..., 10) (the CMC Θ-BFACF data), and the methods

presented in Chapter 4, τexp, the time it takes each replication to reach its equilibrium

distribution, and τint, half the time between essentially independent samples, are respec-

tively estimated to be τ̂exp = 5.0 billion Θ-BFACF moves in parallel and τ̂int = 0.6 billion

Θ-BFACF moves in parallel. Consequently it is concluded that: after 5.0 billion Θ-BFACF

moves in parallel, each replication has reached its equilibrium distribution; states that are

1.2 billion Θ-BFACF moves in parallel apart are essentially independent; and data that is

subdivided into blocks of 1.2 million consecutive data points form essentially independent

blocks of data. Hence each replication can be subdivided into 66 essentially independent

blocks of data. In Section 4.4, it is suggested that if the amount of data generated in the

warm-up interval is less than 5% of the total sample size, then the data collected during

the warm-up interval need not be discarded. For the CMC Θ-BFACF data, the number
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of blocks in the warm-up interval corresponds to approximately 6% (4/66 ≈ 0.06) of the

total data generated. Since this is only slightly larger than the 5% cutoff value and none

of the estimates computed using all the data differed statistically from the estimates com-

puted from burning the first four blocks of data from each replication, no data is burned

in the data analysis presented. The 660 essentially independent blocks of data (if the

data from all ten replications is combined) are then used to show that the average lengths

of the property-∗ Θ-SAPs generated in each of the fourteen chains exhibit the behaviours

predicted by Approximations (4.101) and (4.102). Hence it is concluded that the data is

generated from the correct distribution.

Furthermore, in Chapter 4, the average lengths of the property-φ Θ-SAPs are fit to

the form predicted by Approximation (4.101), thus producing an estimate for eκφ to be

4.6836 and estimate for αΘ
φ to be −1.78. This estimate for eκφ is exactly the same as the

estimate for eκφ given by Orlandini et al. [125]. The estimate -1.78 for αΘ
φ , when combined

with Orlandini et al.’s [125] estimate αφ ≈ 0.23, supports the conjectured relationship

αφ − 2 = αΘ
φ .

The final discussion in Chapter 4 applies the proposed technique for determining the

amount of “reliable” data. From the analysis of the simulation data it is concluded

that all generated property-∗ Θ-SAPs with lengths less than or equal to N̂max(∗) are

“reliable” for N̂max(∗) given by: N̂max(φ) = 3300, N̂max(φ, f) = 3300, N̂max(φ, s) = 3300,

N̂max(φ|φ, s) = 3300, N̂max(31|φ, s) = 2000, and N̂max(41|φ, s) = 600. These estimates for

N̂max(∗) are used in Chapter 5. The estimates for N∗
max that are required in Chapters 6

and 7 are presented in those chapters respectively.

In Chapter 5, a new maximum likelihood technique is presented to compute the best

maximum likelihood estimates from a realization of a composite Markov chain whose i’th

equilibrium marginal distribution is characterized by the fugacity zi = eβi and is asymp-
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totically given by

πω(θ|∗, β,N∗
min, N

∗
max) = I〈2〉(|ω|)ψ∗ (ω)

A∗w(|ω|)(|ω| + h∗)
α∗−ε∗e(κs+β)|ω|

Q(β)

+ I〈2〉(|ω|) (1 − ψ∗ (ω))
A∗w(|ω|)(|ω| + h∗)

α∗e(κs+β)|ω|

Q(β)

+ I〈1〉(|ω|)


 ∑

n<N∗
min

w(n)sne
βn

Q(β)




+ I〈3〉(|ω|)
∑

n>N∗
max

w(n) [A∗(n+ h∗)
α∗−ε∗ +A∗(n + h∗)

α∗ ] e(κs+β)n

Q(β)
.

(8.27)

The technique is then applied to the CMC Θ-BFACF data to obtain maximum likelihood

estimates for κΘ
∗ , α

Θ
∗ := αΘ

∗ − ε∗, α
Θ
∗ , h∗, h∗, and A∗/A∗.

The estimates for κΘ
∗ , α

Θ
∗ , αΘ

∗ , h∗, and h∗ are shown to support the expected relations:

αΘ
(φ,f)

= αΘ
(φ,s); α

Θ
(φ,s)

= αΘ
(φ,f); h(φ,f)

= h(φ,s); and h
(φ,s)

= h(φ,f); and the facts that

κΘ
φ = κΘ

(φ,s) = κΘ
(φ,f) = κφ = κΘ

(K|φ,s). (8.28)

Then, based on the CMC m.l.e.s for αΘ
∗ , the critical exponents αΘ

∗ are concluded to be

independent of the after strand passage knot-type and αΘ
φ = αφ − 2. The section ends by

concluding that the CMC m.l.e.s for h∗ and h∗ depend on the property ∗.

The best CMC m.l.e.s for κΘ
∗ , α

Θ
∗ , α

Θ
∗ , h∗, h∗, and A are as follows. Because the most

data is available for property φ, and assuming αΘ
∗ = αΘ

∗ , the best estimates for κφ, αΘ
∗ ,

and αΘ
∗ are

κφ = κΘ
φ = 1.544125 ± 0.000028 (±0.00005)

αΘ
∗ = αΘ

∗ = αΘ
φ = −1.7521 ± 0.0414 (±0.02) ,

(8.29)

where the above are in the form

parameter = point estimate ± 95% ME ( ± systematic error), (8.30)

the estimated 95% margin of error is calculated using Theorem 5.1.4, and the systematic

error is determined using the technique discussed in Section 5.5. The best estimates for

h∗ and h∗ are given below in Table 8.1 which is a reproduction of Table 5.3.
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Table 8.1: The estimates for h∗ and h∗̄ computed using all 10 replications

combined.

Parameter Estimated

Property ∗ N∗
min N∗

max h∗ (95% ME) h∗ (95% ME)

φ 156 3300 −10.3 (5.9) No estimate

(φ, f) 142 3300 −10.3 (5.4) −8.5 (9.1)

(φ, s) 156 3300 −8.7 (10.7) −10.5 (6.4)

(φ|φ, s) 182 3300 −10.3 (14.2) −10.5 (8.7)

(31|φ, s) 408 3300 −6.8 (506) −2.5 (59)

(41|φ, s) 296 1200 449 (3158) −9.8 (13.1)

The best estimates for the amplitude ratios are given below in Table 8.2 which is a

reproduction of Table 5.5.

Table 8.2: The estimates for amplitude ratios computed using all 10 repli-

cations combined.

Parameter Estimated

Property ∗ N∗
min N∗

max

A∗

A∗
(95% ME)

φ 156 3300 No estimate

(φ, f) 142 3300 5.8531 (1.6848)

(φ, s) 156 3300 0.1699 (0.0537)

(φ|φ, s) 182 3300 0.1611 (0.0514)

(31|φ, s) 408 2000 0.0032 (0.0290)

(41|φ, s) 296 1200 0.4930 (28.6)

In this chapter, two methods for estimating the limiting strand passage probabilities

PrΘ(∗), for ∗ ∈ Φ, were presented. The first method presented is the Fixed-n Method

for Estimating PrΘ(∗) and the second method presented is the Grouped-n Method for

Estimating PrΘ(∗). Because the Grouped-n Method generates point estimates that are

not as variable as the fixed-n probability estimates, the Grouped-n estimates are concluded
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to be more reliable. Hence it is concluded that whenever possible the Grouped-n Method

should be used. With N∗
max estimated by N̂max(∗) = 1890, applying the Grouped-n

Method to the CMC Θ-BFACF data yields the following estimates for the limiting strand

passage probabilities:

PrΘ(φ, s) = 0.13719 ± 0.00019 (±0.03240) , (8.31)

PrΘ(φ|φ, s) = 0.97653 ± 0.00133 (±0.01822) , (8.32)

PrΘ(31|φ, s) = 0.02208 ± 0.00095 (±0.00672) , (8.33)

PrΘ(41|φ, s) = 0.00093 ± 0.00048 (±0.00082) , (8.34)

and

PrΘ(52|φ, s) = 0.00004 ± 0.00003 (±0.00004) . (8.35)

Because of the large error in the estimates for PrΘ(41|φ, s) and PrΘ(52|φ, s), the estimates

are concluded to be unreliable and thus more data is required to determine better estimates

for PrΘ(41|φ, s) and PrΘ(52|φ, s). Based on the estimates given by Equations (8.31)-(8.35),

the limiting strand passage probabilities PrΘ(∗) are concluded to exist and PrΘ(∗) ∈ (0, 1).

Assuming that the LSP Model is an appropriate model to study Problem 1.1, the esti-

mates given by Equations (8.31)-(8.35) estimate the transition probabilities for the K = φ

case. More specifically, the point estimates indicate that the (φ→ φ)-transition prob-

ability is 0.97653; the (φ→ 31)-transition probability is 0.02208; the (φ→ 41)-transition

probability is 0.00093; and the (φ→ 52)-transition probability is 0.00004. These estimates

suggest that once a ring polymer is unknotted, after any subsequent strand passage, the

ring polymer will most likely remain unknotted.

The focus of Chapter 7 is to address Problem 1.2 using the CMC Θ-BFACF data

(ω̂
(u)
R , u = 1, ..., 10), where ω̂

(u)
R is the sequence of 14-tuples of SAPs sampled from Repli-

cation u defined by

ω̂
(u)
R :=

((
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
, j = 0, ..., lR

)
, (8.36)

where lR := ⌊t0/120, 000⌋ = 800, 000, and, for t := 120, 000j, the j’th term (for 1 ≤ j ≤ lR)

of ω̂
(u)
R is given by

(
ω̂

(u)
j (1), ω̂

(u)
j (2), ..., ω̂

(u)
j (14)

)
:=
(
ω

(u)
t (1), ω

(u)
t (2), ..., ω

(u)
t (14)

)
. (8.37)
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Note that for the remainder of this section, any reference to CMC Θ-BFACF data refers

to (ω̂
(u)
R , u = 1, ..., 10) unless otherwise stated. Also note that, as property ∗ increases in

complexity, the number of property-∗ Θ-SAPs in the sample (ω̂
(u)
R , u = 1, ..., 10) decreases

rapidly. Consequently the numerical evidence supporting the conjectures and questions

discussed throughout Chapter 7 for more complex properties (such as (31|φ, s)) is not strong

and as a result, the discussions in Chapter 7 are to be considered preliminary discussions

and more data needs to be generated to more conclusively address the conjectures and

questions.

In Chapter 7, two measures of the “size” of a Θ-SAP in PΘ(φ) are discussed. The

lengths of the two uSAWs comprising each Θ-SAP are used as one measure of the “size” of

a Θ-SAP and the mean-square radii of gyration of the two uSAWs comprising each Θ-SAP

are used as the second measure of size of a Θ-SAP. The data supports the hypothesized

relationships given by Inequalities (8.9)-(8.12), ∗ = (31|φ, s) and for each natural number

n ≥ 13 = nΘ
(31|φ,s)/2+1. The section ends by showing that for fixed polygon length 2n and

property ∗, the estimated proportion of (2n)-edge property-∗ Θ-SAPs with equal-length

uSAWs decreases to zero as a function of 2n, and hence, for each property ∗ ∈ Φ, PΘ(∗) is

dominated by SAPs with one large uSAW and one small uSAW. The numerical evidence

supports that the relationship E [S2n(E c (∗))] ∼ (n)ζs(∗) is possible and that, on average,

the length of the small uSAW in a (2n)-edge polygon in E c(φ) is O(1), which supports that

E [S2n(E c (∗))] ∼ (n)0.

The second section in Chapter 7 focuses on the expected mean-square radius of gyration

as the measure of the “size” of a Θ-SAP. The CMC Θ-BFACF data supports that, for

each ∗ ∈ Φ,
r2 (E c

2n(∗))
r2
(
PΘ

2n(∗)
) → 1; (8.38)

that for each ∗ ∈ Φ, and for every integer n > nΘ
∗ /2, Equation (8.17) and Equations

(8.19)-(8.22) holds

r2 (wl (E
c
2n(∗))) < r2 (wl (E

c
2n(φ|φ, s))) ; (8.39)

and that, for each ∗ ∈ Φ\{φ, (φ, s)},

lim
n→∞

r2 (ws (E c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 0, and (8.40)

lim
n→∞

r2 (wl (E
c
2n(∗)))

r2
(
PΘ

2n(φ)
) = 1. (8.41)
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The numerical evidence presented throughout Section 7.2.2 suggests that P2n(φ) is

dominated by Θ-SAPs with one large and one small uSAW such that the “size” (mean-

square radius of gyration) of the large uSAW is O
(
n2t
)

(where t > 1/2) and the “size”

(mean-square radius of gyration) of the small uSAW is O(n2s) (where s < 1/2). The

estimates for the metric exponents and amplitudes determined using the “Fixed-n Method

for curve fitting” are used to investigate whether the metric exponents are independent

of the sets E (∗) and E c(∗), for each property ∗ ∈ Φ, and that the metric exponents are

all equal to νΘ
P

(φ). Because of insufficient data, the metric exponents associated with

the sets E (∗) could not be estimated. The estimates available for the metric exponents

support the following conjectures: for each property ∗ ∈ Φ, νΘ
E c(∗) = νΘ

P
(φ); νΘ

P
(φ) = ν;

νΘ
wl(E c)(∗) = νΘ

E c(∗); and 0 ≤ νΘ
ws(E c)(∗) < 1

2 < νΘ
E c(∗). Based on the estimates for the

amplitudes AΘ
• (∗) , the following conjectures are also made: for every property ∗ ∈ Φ,

AΘ
E c(∗) = AΘ

P
(φ) = AR(φ) and AΘ

wl(E c) (∗) = AΘ
E c(∗).

The final part of Section 7.2 ends by presenting the Average-n Method and then using

the method to estimate the metric exponents. The resulting estimates were then compared

to the corresponding estimates from Fixed-n Method. The conclusion based on this

comparison is that whenever a sufficiently large essentially independent sample (referred

to as a good sample) of fixed-n estimates is available, the “Fixed-n Method” should be

used to estimate the metric exponents.

Again, both Sections 7.1 and 7.2 of Chapter 7 provide a cautionary warning regarding

the amount of data available for exploring how both measures of the “size” of a Θ-SAP

depend on the property ∗ ∈ Φ and how both measures are impacted by Θ-SAPs in E .

The caution is that more data needs to be collected before these dependencies of the two

measures can be more conclusively determined. Hence the work presented in Chapter 7

is preliminary to a future, more in-depth study, requiring more data.

8.2 Future Work

In this section, some of the future work that arises from the work in this thesis are outlined.

The first future work discussed is work resulting directly from the analysis discussed in this

thesis. Then some future work regarding the efficiency of the CMC Θ-BFACF algorithm

is presented. The final future work discussed involves comparisons (if possible) of this
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work to three separate works in the literature.

Some open questions that are not addressed in this thesis but are immediate extensions

of the work in the thesis are:

1. For a fixed non-trivial knot-type K, how do the fixed-n probabilities PrΘ2n(K, s),

PrΘ2n(K, f), and PrΘ2n(K ′|K, s) depend on n?

2. For a fixed non-trivial knot-type K, do the limiting probabilities lim
n→∞

PrΘ2n(K, s),

lim
n→∞

PrΘ2n(K, f), and lim
n→∞

PrΘ2n(K ′|K, s) exist, and if they exist, to what are their

limiting values?

3. For any fixed knot-type K, how do the fixed-n probabilities PrΘ2n(K, s), PrΘ2n(K, f),

and PrΘ2n(K ′|K, s) depend on the choice of structure Θ?

4. For any fixed knot-type K, how are the fixed-n probabilities PrΘ2n(K, s), PrΘ2n(K, f),

and PrΘ2n(K ′|K, s) affected by implementing an off-lattice strand-passage, such as the

one described by Liu et al. in [96]? Is the probability of a successful strand passage

increased?

5. For a fixed non-trivial knot-type K, do the connective constants κΘ
K , κ

Θ
(K,s), and

κΘ
(K ′|K,s) exist and, if they exist, what are their values and are they equal?

Investigating each of the above open questions requires collecting the data via a computer

simulation of an algorithm such as the CMC Θ-BFACF algorithm.

From the simulation (ten replications in which each replication consisted of 96 billion

time-steps) of the CMC Θ-BFACF algorithm in this work, enough data was sampled from

PΘ(φ|φ, s) to estimate any of the property-(φ|φ, s) parameters presented in the thesis. For

each ∗ ∈ K †(φ)\ {(φ|φ, s)} , the number of property-∗ Θ-SAPs sampled was not sufficient

to determine good estimates for any of the property-∗ quantities presented in the thesis.

Hence in order to obtain better numerical evidence regarding the questions and conjectures

presented in Chapter 2 involving property ∗ ∈ K †(φ)\ {(φ|φ, s)} , more property ∗ ∈
K †(φ)\ {(φ|φ, s)} Θ-SAPs need to be sampled. Creating this larger sample is left as

future work.

With regard to generating more property-∗ Θ-SAPs, recall from Section 6.5 that the

estimated limiting probability of a successful strand passage in an unknotted Θ-SAP is
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PrΘ(φ, s) = 0.13719±0.00019 (±0.03240) , which suggests that a strand passage is possible

in a sufficiently large unknotted Θ-SAP only about 14% of the time. Consequently the

CMC Θ-BFACF algorithm is not a very efficient algorithm for generating successful-strand-

passage Θ-SAPs or any subset of these (such as a sample of property ∗ ∈ K †(φ) Θ-SAPs).

Thus developing an algorithm which samples more efficiently from PΘ(φ, s) is required

in order to study the conjectures and questions presented in Chapter 2 which depend on

property ∗ ∈ K †(φ)\ {(φ|φ, s)}; this is left as future work. Because the expected length of

a property-∗ Θ-SAP appears to be increasing as the complexity of the property ∗ increases,

an algorithm which efficiently samples large polygons also needs to be developed in order

to generate a larger sample of property ∗ ∈ K †(φ) Θ-SAPs.

A third efficiency issue of the CMC Θ-BFACF algorithm to be explored in the future

is in regard to the time it takes to reach the equilibrium distribution. When proposing a

distribution for the probability of swapping, the distribution will depend on the frequency

at which one attempts to swap two distinct chains in a CMC. If a distribution is chosen such

that only a few time steps pass between attempted swaps, the swap will be accepted with a

high acceptance rate, but, because very little change occurs in the states of the two chains,

the convergence to the desired equilibrium distribution will be slowed. Alternatively, if a

large number of time steps passes between attempted swaps, the states in the two chains

will be quite different; however, the acceptance rate of the swap will be low. The optimal

rate (in terms of convergence to the equilibrium distribution) at which a swap should be

attempted is somewhere between these two extremes. Developing criteria for determining

the optimal swapping rate would be very beneficial.

The next three future works involve making comparisons of results from the LSP Model

to results presented for other models, as in [61], [96] and [36]. Recall the strand passage

model of Hua et al. [61] described in Section 1.6. Hua et al.’s model for a strand passage

in an unknotted self-avoiding polygon differs from the Local Strand Passage Model in

several ways. Firstly, in Hua et al.’s model, the segments of the polygon which form a

strand passage crossing site may be quite far apart in the original polygon while in the LSP

Model, such polygon segments are always “close together” that is they are always a fixed

distance apart. Secondly, it might not be possible to implement the strand passage in Hua

et al.’s model in Z3 whereas only those strand passages that can be implemented in Z3 are

considered in the LSP Model. A third difference between the two models is that, for the
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LSP Model, for those after-strand-passage polygons whose knot-type is chiral, only right

handed knots are generated; however, for the Hua et al. [61] algorithm, both right-handed

and left-handed knots are generated. Obtaining a better understanding of these model

differences and whether or not the transition knotting probability estimates obtained from

the two models can be compared is future work.

Also recall from Section 1.6, that in [96], Liu et al. study three types of juxtapositions:

a hooked juxtaposition (cf. Figure 1.18 (a); a semi-hooked juxtaposition (cf. Figure 1.18

(b)); and free juxtapositions (cf. Figure 1.19). For one of these five juxtapositions, the

bottom part of Θ resembles exactly one of the segments of the juxtaposition and the top

part of Θ (with the appropriate adjacent edges) is just a translate of the other segment

in the juxtaposition. Hence if the structure Θ is compared to the juxtapositions studied

in [96], Θ can be viewed as another juxtaposition about which a strand passage in a SAP

can be implemented and the LSP Model can be used to address those questions studied in

[96]. This study is to be explored as future work.

In [36], an off-lattice simulation of a freely jointed isolateral 33-edge polygon is per-

formed in which randomly selected strands (having lengths ranging from two to eight edges)

of the polygon are allowed to pass through one another via a random rotation about the

line formed through the first and last vertex of the strand. For this simulation, the knot-

type of the after-strand-passage polygon will not necessarily be an unknotting number one

knot-type. Given each pair of knot-types Ki and Kj , the frequency of the transitions from

Ki to Kj via the strand passage was recorded and then the probability of this transition

was estimated. Table 8.3 summarizes the limiting transition knotting probabilities esti-

mated via the LSP Model of this thesis (Column 2) and the fixed-n transition knotting

probability of the strand passage model of Flammini et al. [36] (Column 3). Note that

currently for a number of reasons, the estimates presented in Table 8.3 cannot be compared

directly. First note that for the LSP Model, for those after-strand-passage polygons whose

knot-type is chiral, only right handed knots are generated; however, for the Flammini et

al. [36] algorithm, both right-handed and left-handed knots are generated. Adjusting the

estimates to take this key difference into account is left as future work. Also, the Flammini

et al. estimates are based on a 33-edge, off-lattice polygon. It is unknown what edge

length on the lattice is comparable to 33-edge polygons in the off-lattice regime. Fur-

thermore, extending Flammini et al.’s work to include larger off-lattice polygons and from
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Table 8.3: The limiting transition knotting probabilities estimated using a
lattice model (The Local Strand Passage Model) and the fixed-n transition
knotting probabilities estimated using an off-lattice model (Flammini et al
[36]).

Transition Strand Passage Model Flammini et al.

φ→ φ 0.9765 0.9457

φ→ 3+
1 0.0221 0.0227

φ→ 41 0.0009 0.0073

φ→ 5+
2 0.00004 0.0006

these larger polygons, estimating the limiting transition probabilities is of interest and left

as future work.
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Appendix A

Methods Used in the Thesis

For the sake of convenience and completeness, this appendix includes the methods and

calculations that are referenced and/or used in the main body of this thesis that would

have had to have been looked up or calculated.

A.1 Berretti-Sokal Markov Chain Maximum Likelihood Method

In [7] a method for obtaining maximum likelihood estimates for κ (as defined by Theorem

1.3.1) and γ (where γ is the exponent in Equation (A.3)) from a Markov Chain Monte Carlo

simulation consisting of several independent sample paths was proposed. The following is a

summary of their method. Supposew1, ..., wT are self-avoiding walks distributed according

to the probability mass function

Pr(wi) =
z|wi|

∑
cnzn

. (A.1)

Then

Pr(w : |w| = N) =
cNz

N

∑
cnzn

(A.2)

can be approximated by assuming

cn ∼ A0µ
nnγ−1, (A.3)

for some constant A0 and µ := eκ, is exact for all N ≥ Nmin where Nmin is some cutoff

value. Therefore,

πN (µ, γ,Nmin|z) := Pr(|w| = N : N ≥ Nmin, z)

=
Nγ−1 (µz)N

∑
n≥Nmin

nγ−1 (µz)n
. (A.4)
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In order to estimate µ and γ, suppose the SAWs w1, ..., wT are independent with respective

lengths N1, ..., NT , where Ni ≥ Nmin for all i ∈ {1, .., T}. Then the likelihood of observing

the sequence NT := (N1, ..., NT ) is given by

fXT |Ξ(NT |µ, γ) =

T∏

t=1

M∏

i=1

πN (µ, γ,Nmin|z)

=
∏

1≤t≤T

M∏

i=1

Nγ−1
t (µzi)

Nt

∑
n≥Nmin

nγ−1 (µzi)
n (A.5)

and maximum likelihood estimates for µ and γ can be found by simultaneously solving the

equations

M∑

i=1

〈Ni〉T =
M∑

i=1

∑

n≥Nmin

nnγ−1 (µzi)
n

∑

n≥Nmin

nγ−1 (µzi)
n

(A.6)

and

M∑

i=1

〈logNi〉T =

M∑

i=1

∑

n≥Nmin

(log n)nγ−1 (µzi)
n

∑

n≥Nmin

nγ−1 (µzi)
n

, (A.7)

where

〈f(Ni)〉T =

∑T
t=1 f(N

(t)
i )

T
. (A.8)

In practice, the sample of size T is not an independent sample. The solution that

Sokal and Berretti advocate is, in the error analysis, to replace T with Ti, where Ti is the

number of essentially independent data points that was generated associated with fugacity

zi. Then Equations (A.6) and (A.7) become

M∑

i=1

Ti · 〈Ni〉T =

M∑

i=1

Ti ·
∑

n≥Nmin

nnγ−1 (µzi)
n

∑

n≥Nmin

nγ−1 (µzi)
n

(A.9)

and

M∑

i=1

Ti · 〈logNi〉T =

M∑

i=1

Ti ·
∑

n≥Nmin

(log n)nγ−1 (µzi)
n

∑

n≥Nmin

nγ−1 (µzi)
n

. (A.10)

Suppose κ̂ and γ̂ are the maximum likelihood estimates obtained using the fore-mentioned

method. If the data from the Monte Carlo simulation consists of t independent obser-

vations, n1, n2, ..., nt, of the size of SAWs where ni ≥ Nmin, i = 1, ..., t, then
√
t(κ̂ −
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κ, γ̂ − γ) is asymptotically bivariate normal [91] with mean (0, 0) and covariance matrix

S = [INT
(κ, γ)]−1 where INT

(κ, γ) is the Fisher information matrix given by

INT
(κ, γ) = −E




∂2 log π(κ,γ,Nmin|N)
∂κ2

∂2 log π(κ,γ,Nmin|N)
∂γ∂κ

∂2 log π(κ,γ,Nmin|N)
∂γ∂κ

∂2 log π(κ,γ,Nmin|N)
∂γ2




=


 var(n) −cov(n, log n)

−cov(n, log n) var(log n)


 . (A.11)

Approximating INT
(κ, γ) using κ̂ and γ̂ and assuming normality, simultaneous (1 − α) ·

100% confidence intervals for κ and γ can be obtained by

[
κ̂(σ) −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ11
t
, κ̂(σ) +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ11
t

]
(A.12)

and [
γ̂ −

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ22
t
, γ̂ +

√
p(t− 1)

t− p
Fp,t−p(α)

√
ŝ22
t

]
(A.13)

where p is the number of parameters being estimated, t is the number of essentially in-

dependent data points, Fp,t(α) is the value of x for which the F -distribution, F (x), with

(p, t) degrees of freedom such equals α and ŝ11 and ŝ22 are the diagonal components of

Ŝ := [INT
(κ̂, γ̂)]−1 [76].

To obtain confidence intervals one replaces t in Equations (A.12) and (A.13) with
∑M

i=1 Ti.

Equations (A.12) and (A.13) yield estimates for the statistical error of the maximum

likelihood estimates given that Equation (A.3) is valid. Clearly the maximum likelihood

estimates obtained depend on the value of Nmin chosen. Thus we can get one measure of

systematic error by obtaining estimates for various values of Nmin. Another possible source

of systematic error is the fact that corrections to scaling have been ignored in Equation

(A.3). In order to estimate the possible systematic error due to this, consider that, for

n ≥ Nmin,

cn ∼ A0µ
n(n+ h)γ−1,

where the constant h is included to account for possible corrections to scaling. Then

πN (µ, γ, h,Nmin|z) := Pr(|w| = N : N ≥ Nmin, z)

=
(N + h)γ−1 (µz)N∑

n≥Nmin

(n + h)γ−1 (µz)n . (A.14)
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For a range of values h, one can use Equation (A.14) in the right hand sides of the coupled

set of Equations (A.10) and solve for estimates for µ and γ. From this set of estimates one

can estimate a systematic error due to disregarding any corrections due to scaling.

A.2 Newton-Raphson’s Method

The following is based on a discussion of Newton-Raphson’s Method in [75]. Suppose

one wishes to solve simultaneously a system of n-nonlinear equations in n unknowns. Let

x1, ..., xn be n real-valued variables, x = (x1, ..., xn) be a row vector consisting of the n

variables, f1(x), ..., fn(x) be n real-valued functions, and

f(x) =




f1(x)
...

fn(x)


 (A.15)

be the column vector consisting of the n real-valued functions f1(x), ..., fn(x). Then the

problem of simultaneously solving a system of n-nonlinear equations in n unknowns, such

as the system given by Equation (5.102), reduces to finding s = (s1, ..., sn) such that

fi(s) = 0 for all i such that 1 ≤ i ≤ n. In vector format, the problem can be expressed

simply as finding s = (s1, ..., sn) such that f(s) = 0, where 0 is an (n × 1)-column vector

consisting of all zeroes. Then, if si is the (i + 1)’st approximation of s, then the next

approximation of s, denoted si+1, is given by

si+1 = si − [J i(si)]
−1

f(si), (A.16)

where

J i(si) :=




∂f1(si)

∂x1
· · · ∂f1(si)

∂xn
...

. . .
...

∂fn(si)

∂x1
· · · ∂fn(si)

∂xn



. (A.17)

Suppose a solution to f(x) = 0 exists. Given one starts the process at some initial

guess s0, the process is iterated until for some natural value j, |f1(sj)| , ..., |fn(sj)| are all

simultaneously smaller than some ε > 0, the desired definition of zero.
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A.3 Ratio Estimates and (1−α)× 100% Confidence Intervals

For the entirety of this section, suppose {(Xi, Yi), i = 1, ..., n} is a sequence of indepen-

dent, identically-distributed (i.i.d.) random two-dimensional vectors with µY := E[Yi],

µX := E[Xi] 6= 0, σ2
Y := E[(Yi − µY )2] < ∞, σ2

X := E[(Xi − µX)2] < ∞, and σ2
X,Y :=

E[(Xi − µX) (Yi − µY )] <∞, for i = 1, ..., n. Now define θ := µY

µX
and

θn :=





Y n

Xn
, if Xn 6= 0

0, otherwise,
(A.18)

where

Xn :=
1

n

n∑

i=1

Xi and Y n :=
1

n

n∑

i=1

Yi. (A.19)

In [35], Fishman proves the following results regarding using θn to estimate θ.

Theorem A.3.1 (Fishman, 1997) 1. lim
n→∞

nE[θn − θ] = θ

[
σ2

X

µ2
X

− σ2
X,Y

µXµY

]
, and

2. lim
n→∞

nE
[(
θn − θ

)2]
= θ2

[
σ2

X

µ2
X

− 2
σ2

X,Y

µXµY
+

σ2
Y

µ2
Y

]
.

Theorem A.3.1 reveals that θ is a biased estimator of θ and the dominant term of the

bias is
θ

n

[
σ2

X

µ2
X

−
σ2

X,Y

µXµY

]
. (A.20)

To reduce this bias, Fishman [35] recommends using the estimator

θ̃n := θn

[
1 +

1

n

(
σ̂2

X,Y

XnY n

− σ̂2
X

X
2
n

)]
, (A.21)

where

σ̂2
X :=

1

n− 1

n∑

i=1

(
Xi −Xn

)2
, (A.22)

σ̂2
Y :=

1

n− 1

n∑

i=1

(
Yi − Y n

)2
, (A.23)

and

σ̂2
X,Y :=

1

n− 1

n∑

i=1

(
Xi −Xn

) (
Yi − Y n

)
. (A.24)
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Fishman’s recommendation is based on the following theorem from [156].

Theorem A.3.2 (Tin, 1965) 1. lim
n→∞

nE[θ̃n − θ] = 0, and

2. lim
n→∞

nE

[(
θ̃n − θ

)2
]

= θ2

[
σ2

X

µ2
X

− 2
σ2

X,Y

µXµY
+

σ2
Y

µ2
Y

]
.

The upshot of Theorem A.3.2 is that for sufficiently large n, θ̃n can be considered

essentially an unbiased estimator of θ and, when θ̃n is compared to θn in terms of variance,

there is no additional cost associated with using θ̃n, that is even though θ̃n is less biased than

θn in estimating θ, θ̃n does not have a larger variance than θn. Therefore it is preferable to

use θ̃n as an estimator of θ and, as a consequence, the ratio estimates presented in Section

6.5 of this work will use θ̃n to estimate θ.

Based on Part 2 of Theorem A.3.2, an estimator of the variance of θ̃n, that is

v̂ar(θ̃n) :=
θ̃2
n

n

[
σ̂2

X

X
2
n

+
σ̂2

Y

Y
2
n

−
2σ̂2

X,Y

XnY n

]
. (A.25)

To obtain a (1 − α)% confidence interval for θ, define

Vi := Yi − θXi, i = 1, . . . , n, (A.26)

and

V n = Y n − θXn. (A.27)

Note that E[V n] = 0,

var
(
V n

)
:= E[

(
V n − E[V n]

)2
] =

(
θ2σ2

X − 2θσ2
X,Y + σ2

Y

)
/n , (A.28)

var (Vi) = nvar
(
V n

)
, (A.29)

and

v̂ar (V ) := θ2σ̂2
X − 2θσ̂2

X,Y + σ̂2
Y . (A.30)

Since V1, . . . , Vn are i.i.d. random variables, the Central Limit Theorem yields the

result that V n/
√

var
(
V n

)
has an asymptotically normal distribution with mean zero and

variance one (unit normal distribution). Fishman proves that V n/
√

v̂ar (V ) /n also has an

asymptotic unit normal distribution and, for large values of n,

Pr

[
|V n|√

v̂ar (V ) /n
≤ c(α)

]
≈ 1 − α, (A.31)
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where c(α) is the value for which

(2π)−1/2

∫ c(α)

−∞
e−z2/2dz = 1 − α/2, for 0 < α < 1. (A.32)

Because

Pr

[
|V n|√

v̂ar (V ) /n
≤ c(α)

]
= Pr


|Y n − θXn| ≤ c(α)

√
θ2σ̂2

X − 2θσ̂2
X,Y + σ̂2

Y

n


 ,

(Y n − θXn)2 ≤ c2(α)

n

(
θ2σ̂2

X − 2θσ̂2
X,Y + σ̂2

Y

)
.

Expanding the left hand side of the above inequality and then simplifying yields the fol-

lowing quadratic inequality in θ:

[
X

2
n − c2(α)

n
σ̂2

X

]
θ2 − 2θ

[
XnY n − c2(α)

n
σ̂2

X,Y

]
+

[
Y

2
n − c2(α)

n
σ̂2

Y

]
≤ 0. (A.33)

Solving the previous quadratic inequality, provided real solutions to

[
X

2
n − c2(α)

n
σ̂2

X

]
θ2 − 2θ

[
XnY n − c2(α)

n
σ̂2

X,Y

]
+

[
Y

2
n − c2(α)

n
σ̂2

Y

]
= 0 (A.34)

exist, yields the interval r1 ≤ θ ≤ r2 for θ, where

r1 :=
XnY n -

c2(α)
n σ̂2

X,Y -

√[
XnY n -

c2(α)
n σ̂2

X,Y

]2
-
[
X

2
n -

c2(α)
n σ̂2

X

] [
Y

2
n -

c2(α)
n σ̂2

Y

]

X
2
n -

c2(α)
n σ̂2

X

(A.35)

and

r2 :=
XnY n -

c2(α)
n σ̂2

X,Y +

√[
XnY n -

c2(α)
n σ̂2

X,Y

]2
-
[
X

2
n -

c2(α)
n σ̂2

X

] [
Y

2
n -

c2(α)
n σ̂2

Y

]

X
2
n -

c2(α)
n σ̂2

X

. (A.36)

Whenever r1, r2 ∈ R, by the definitions of r1 and r2, r1 ≤ r2. Hence, whenever

r1, r2 ∈ R, the interval r1 ≤ θ ≤ r2 is a (1 − α) · 100% confidence interval for θ.

A.4 Ratio Estimation Using Composite Markov Chain Data

Let θ be a parameter of interest and let X and Y be real-valued random variables de-

fined on a state space S such that θ = µY

µX
, where µY := E[Y ], µX := E[X] 6= 0, σ2

Y :=

E[(Y − µY )2] < ∞, σ2
X := E[(X − µX)2] < ∞, and σ2

X,Y := E[(X − µX) (Y − µY )] <

∞. As discussed in Section A.3 of this appendix, a (1 − α) · 100% confidence inter-

val for θ can be obtained via Equations (A.35) and (A.36) using an i.i.d. sequence
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((Xi, Yi), i = 1, ..., n) of random two-dimensional real-valued vectors defined on S sat-

isfying µY = E[Yi], µX = E[Xi] 6= 0, σ2
Y = E[(Yi − µY )2] < ∞, σ2

X = E[(Xi − µX)2] < ∞,

and σ2
X,Y = E[(Xi − µX) (Yi − µY )] <∞, for i = 1, ..., n. In the situation where the data

available is generated from a realization of a composite Markov chain, how is such an i.i.d.

set formed?

To answer this question, recall from Section 4.2.3 that

Mn (t) :=





1, if t = 0 (modn)

0, otherwise,
(A.37)

and

I(k,l] (x) :=





1, if x ∈ (k, l]

0, otherwise
. (A.38)

Suppose W := ((Wt(1),Wt(2), ...,Wt(M)) , t = 0, ..., t0) is a composite Markov chain

with state space S M . Then one way to create an i.i.d. sample is to subdivide the t0

time-steps into blocks each of whose length is 2τint time steps and then form a set of M

two-dimensional real-valued vectors from a sub-sample taken every T time steps from each

block. To clarify this, for a fixed block k ∈ {1, 2, ..., ⌊t0/(2τint)⌋}, the sequence of M

two-dimensional vectors is denoted

((Xk,i, Yk,i), i = 1, ..,M) , (A.39)

where

Xk,i := Xk,i(W |T )

:=

t0∑

t=0

MT (t)I(2(k−1)τint−1,2kτint−1] (t)X(Wt(i)) (A.40)

and

Yk,i := Yk,i(W |T )

:=

t0∑

t=0

MT (t)I(2(k−1)τint−1,2kτint−1] (t)Y (Wt(i)). (A.41)

Now define the sequences of two-dimensional vectors

((Xk,·, Yk,·), k = 1, .., ⌊t0/(2τint)⌋) (A.42)

and

((X·,i, Y·,i), i = 1, ..,M) (A.43)
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using

Xk,· := Xk,·(W |T )

:= M−1
M∑

i=1

Xk,i(W |T ), (A.44)

Yk,· := Yk,·(W |T )

:= M−1
M∑

i=1

Yk,i(W |T ), (A.45)

X·,i := X·,i(W |T )

:=
1

⌊t0/(2τint)⌋

⌊t0/(2τint)⌋∑

k=1

Xk,i(W |T ), (A.46)

and

Y·,i := Y·,i(W |T )

:=
1

⌊t0/(2τint)⌋

⌊t0/(2τint)⌋∑

k=1

Yk,i(W |T ). (A.47)

Now suppose that w(r), r ∈ {1, 2, ..., n0} is the r’th realization of W . Let y
(r)
k,i denote

the realization of Yk,i based on ω(r). Similarly, let x
(r)
k,i denote the realization of Xk,i based

on ω(r). Then y
(r)
k,· and x

(r)
k,· are the realizations of Yk,· and Xk,·, respectively, based on ω(r)

and y
(r)
·,i and x

(r)
·,i are the realizations of Y·,i and X·,i, respectively, based on ω(r). Then a

point estimates for θ, that is based on Chain i, uses the sequence

((
(x

(r)
k,i , y

(r)
k,i ), k = 1, .., ⌊t0/(2τint)⌋

)
, r = 1, ..., n0

)
(A.48)

in Equation (A.21) and a point estimate for θ, that is based on the data in all the chains,

uses the sequence

((
(x

(r)
k,· , y

(r)
k,· ), k = 1, .., ⌊t0/(2τint)⌋

)
, r = 1, ..., n0

)
(A.49)

in Equation (A.21).
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A.5 The Fixed-n Method for Curve Fitting

Let X and Y be two random variables defined on the state space S such that there exists a

real-valued function f for which Y = f(X,a1, ..., al) and a1, ..., al are unknown parameters.

Let F := ((xi, yi), i = 1, ..., n) represent a sequence of observations of (X,Y ) Then, in order

to estimate the parameters a1, ..., al, an independent sub-sample from F is required. To

this end, the minimum value k such that the points (xi, yi) and (xi+k, yi+k) are essentially

independent needs to be determined using the techniques from Section 4.3. Such a “k” is

referred to as the essentially independent frequency. With k determined, the set

H1 :=

t⋃

i=1

{(
x1+(i−1)k, y1+(i−1)k

)}
, (A.50)

where t is the greatest integer that satisfies 1 + (t− 1)k ≤ n, is an essentially independent

set consisting of t two-dimensional data points. Using weighted least-squares regression,

then fitting a curve of the form f(x, a1, ..., al) to the data in H1 provides estimates for the

parameters a1, ..., al.

A.6 Second Partial Derivatives for the CMC Maximum Like-

lihood Estimation Technique

The required derivatives of a(θ̃, Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively are

∂a

∂A
:= T ′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

[
Q∗

〈2,3〉 (βi)

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

]2

− T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

[
Q∗

〈3〉 (βi)

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

]2

− T ′

A2

M∑

i=1

〈
I〈2〉(Ni)Ki

〉
T
, (A.51)
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∂a

∂κs
:= T ′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉 [n|βi]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

+AT ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉 [n|βi]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

− T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉 [n|βi]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

−AT ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉 [n|βi]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

+ T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [n|βi]

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [n|βi] , (A.52)

∂a

∂ε∗
:= T ′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [log(n+ h∗)|βi]

− T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [log(n+ h∗)|βi]

+AT ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉 [log(n+ h∗)|βi]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

−AT ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉 [log(n+ h∗)|βi]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)
, (A.53)

∂a

∂α∗
:= T ′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉 [log(n+ h∗)|βi]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

− T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉 [log(n+ h∗)|βi]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

− ∂a

∂ε∗
, (A.54)
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∂a

∂h∗
:= (α∗ − ε∗)AT

′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉

[
(n+ h∗)

−1 |βi

]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

− (α∗ − ε∗)AT
′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉

[
(n+ h∗)

−1 |βi

]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)

+ (α∗ − ε∗)T
′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉

[
(n+ h∗)

−1|βi

]

− (α∗ − ε∗)T
′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉

[
(n+ h∗)

−1|βi

]
, (A.55)

and

∂a

∂h∗
:= α∗T

′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Q∗
〈2,3〉(βi) E∗

〈2,3〉

[
(n+ h∗)

−1 |βi

]

Q∗
〈2,3〉 (βi) +AQ∗

〈2,3〉 (βi)

− α∗T
′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

Q∗
〈3〉(βi) E∗

〈3〉

[
(n+ h∗)

−1 |βi

]

Q∗
〈3〉 (βi) +AQ∗

〈3〉 (βi)
. (A.56)

The required derivatives of g(θ̃,Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively

are
∂g

∂A
:=

∂a

∂κs
, (A.57)

∂g

∂κs
:= T ′

M∑

i=1

〈
I〈3〉(Ni)

〉
T

[
var∗〈3〉 [n|βi] + var∗〈3〉 [n|βi]

]

− 2AT ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [n|βi] E

∗
〈3〉 [n|βi]

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

[
var∗〈2,3〉 [n|βi] + var∗〈2,3〉 [n|βi]

]

+ 2AT ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [n|βi] E

∗
〈2,3〉 [n|βi] , (A.58)

∂g

∂ε∗
:= T ′

M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Cov∗
〈2,3〉 [n, log(n+ h∗)|βi]

−AT ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

E∗
〈2,3〉 [log(n+ h∗)|βi] E

∗
〈2,3〉 [n|βi]

− T ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

Cov∗
〈3〉 [n, log(n+ h∗)|βi]

+AT ′
M∑

i=1

〈
I〈3〉(Ni)

〉
T

E∗
〈3〉 [log(n+ h∗)|βi] E

∗
〈3〉 [n|βi] , (A.59)
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∂g

∂α∗
:= − ∂g

∂ε∗

− T ′
M∑

i=1

〈
I〈2,3〉(Ni)

〉
T

Cov∗
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The required derivatives of r(θ̃,Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively

are

∂r

∂A
:=

∂a

∂ε∗
, (A.63)

∂r
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:=
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, (A.64)
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The required derivatives of f(θ̃,Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively

are
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The required derivatives of ~∗(θ̃,Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively

are
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The required derivatives of ~∗(θ̃,Q̃) with respect to A,κs, ε∗, α∗, h∗, and h∗ respectively

are
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Appendix B

Essentially Independent Data

In this appendix, tables of data that are generated using the methods discussed in

Chapters 6 and 7 are provided.

B.1 Probability Estimates

B.1.1 Fixed-n Estimates

Tables B.1-B.5 contain essentially independent samples of the fixed-n probability estimates

(from several replications) that were discussed in Chapter 6. The value t′ in each of these

tables is the number of non-zero blocks of data available to compute the point estimate and

the estimated 95% margin of error. Tables B.1, B.2, B.3, B.4, and B.5 respectively display

an essentially independent sample of the fixed-n point estimates p̃rΘ2n(φ, s), p̃rΘ2n(φ|φ, s),
p̃rΘ2n(31|φ, s), p̃rΘ2n(41|φ, s), and p̃rΘ2n(52|φ, s) and their corresponding estimated 95% mar-

gins of error.

Note that the point estimates and the estimated 95% margins of error presented in

Tables B.1-B.5 were computed using the point estimators P̂r
Θ

2n(φ, s) and P̂r
Θ

2n(∗), for ∗ ∈
K †(φ), defined with t0 = 9.6×1010 time steps, τint = 0.72×109 time steps, T = 1200 time

steps, l := 66, and the data generated in each of the ten replications. Refer to Section

6.2.2 for a detailed discussion on how the estimates were precisely determined.

B.1.2 Grouped-n Estimates

Tables B.6-B.10 contain essentially independent samples of the grouped-n probability es-

timates that were used in the estimation of the limiting strand passage probabilities in

Section 6.5 of Chapter 6. The value t′ in each of these tables is the number of non-zero

blocks of data available to compute the point estimate and the estimated 95% margin of

error. Tables B.6, B.7, B.8, B.9, and B.10 respectively display the essentially independent
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Table B.1: The fixed-n estimates for the probability of a successful strand
passage. The values in parentheses are the estimated 95% margins of error.

2n t′ p̃rΘ2n(φ, s) 2n t′ p̃rΘ2n(φ, s)

112 660 0.135508(0.014146) 1012 660 0.137143(0.014548)

212 660 0.136592(0.015384) 1112 660 0.137149(0.015265)

312 660 0.136870(0.015151) 1212 660 0.137155(0.014460)

412 660 0.136986(0.014867) 1312 660 0.137159(0.014687)

512 660 0.137047(0.014545) 1412 660 0.137162(0.014825)

612 660 0.137083(0.014652) 1512 660 0.137165(0.015163)

712 660 0.137106(0.014547) 1612 660 0.137168(0.014663)

812 660 0.137122(0.014404) 1712 660 0.137170(0.015009)

912 660 0.137134(0.013833) 1812 660 0.137172(0.015263)

Table B.2: The fixed-n estimates for the probability of the unknot given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

2n t′ p̃rΘ2n(φ|φ, s) 2n t′ p̃rΘ2n(φ|φ, s)
112 660 0.986131(0.012633) 1012 660 0.978092(0.015912)

212 660 0.980421(0.014943) 1112 660 0.977809(0.016067)

312 660 0.978606(0.015604) 1212 660 0.978389(0.015949)

412 660 0.977429(0.016019) 1312 660 0.977526(0.016301)

512 660 0.977494(0.016004) 1412 660 0.978092(0.016110)

612 660 0.977285(0.016087) 1512 660 0.978297(0.016323)

712 660 0.977301(0.016076) 1612 660 0.978202(0.016572)

812 660 0.976972(0.016210) 1712 660 0.977031(0.017463)

912 660 0.977656(0.015996) 1812 660 0.977811(0.017279)
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Table B.3: The fixed-n estimates for the probability of the trefoil given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

2n t′ p̃rΘ2n(31|φ, s) 2n t′ p̃rΘ2n(31|φ, s)
112 660 0.013693(0.001532) 1012 660 0.021166(0.002552)

212 660 0.019099(0.002136) 1112 660 0.021390(0.002608)

312 660 0.020735(0.002326) 1212 660 0.020823(0.002617)

412 660 0.021836(0.002458) 1312 660 0.021870(0.002792)

512 660 0.021678(0.002456) 1412 660 0.021292(0.002810)

612 660 0.021846(0.002494) 1512 660 0.021052(0.002874)

712 660 0.021780(0.002508) 1612 660 0.021049(0.003033)

812 660 0.022092(0.002591) 1712 660 0.022144(0.003367)

912 660 0.021471(0.002543) 1812 660 0.021706(0.003352)

Table B.4: The fixed-n estimates for the probability of the figure 8 given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

2n t′ p̃rΘ2n(41|φ, s) 2n t′ p̃rΘ2n(41|φ, s)
154 660 0.000609(0.000788) 1134 660 0.000533(0.000993)

294 660 0.000669(0.000890) 1274 660 0.000396(0.000946)

434 660 0.000691(0.000960) 1414 660 0.000308(0.000758)

574 660 0.000768(0.001105) 1554 660 0.000489(0.001136)

714 660 0.000668(0.001047) 1694 660 0.000389(0.000971)

854 660 0.000679(0.001104) 1834 660 0.000111(0.001731)

994 660 0.000646(0.001102)
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Table B.5: The fixed-n estimates for the probability of a knot-type 52

SAP resulting given a successful strand passage in a Θ-SAP. The values in
parentheses are the estimated 95% margins of error.

2n t′ p̃rΘ2n(52|φ, s)
192 660 0.000015(0.000005)

372 660 0.000039(0.000020)

552 660 0.000048(0.000033)

732 660 0.000051(0.000044)

912 660 0.000045(0.000037)

1092 660 0.000042(0.000040)

1272 660 0.000041(0.000051)

1452 660 n/a(n/a)

1632 660 n/a(n/a)

1812 660 n/a(n/a)

samples of Grouped-n estimates p̂rΘn1,n1+98(φ, s), p̂rΘn1,n1+98(φ|φ, s), p̂rΘn1,n1+138(31|φ, s),
p̂rΘn1,n1+158(41|φ, s), and p̂rΘn1,n1+178(52|φ, s) and their corresponding estimated 95% mar-

gins of error. The estimates in Tables B.6-B.10 are respectively plotted in Figures 6.4-6.8.

Note that the point estimates and the estimated 95% margins of error presented in

Tables B.6-B.10 were computed using the point estimators P̂r
Θ

n1,n2
(φ, s), P̂r

Θ

n1,n2
(φ, f), and

P̂r
Θ

n1,n2
(∗), for ∗ ∈ K †(φ), defined with t0 = 9.6 × 1010 time steps, τint = 0.72 × 109 time

steps, T = 1200 time steps, and l := 66. Refer to Section 6.3 for a detailed discussion on

how the estimates were precisely determined.
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Table B.6: The grouped-n estimates for the probability of a successful
strand passage. The values in parentheses are the estimated 95% margins of
error.

n1 t′ p̂rΘn1,n1+98(φ, s) n1 t′ p̂rΘn1,n1+98(φ, s)

14 660 0.104733(0.011275) 914 660 0.136967(0.014574)

114 660 0.136864(0.014458) 1014 660 0.137093(0.014630)

214 660 0.137656(0.014542) 1114 660 0.137226(0.014709)

314 660 0.137619(0.014546) 1214 660 0.137278(0.014804)

414 660 0.137399(0.014532) 1314 660 0.137168(0.014906)

514 660 0.137313(0.014530) 1414 660 0.137031(0.015050)

614 660 0.137254(0.014532) 1514 660 0.136969(0.015237)

714 660 0.137101(0.014531) 1614 660 0.136773(0.015467)

814 660 0.137004(0.014546) 1714 660 0.136728(0.015760)

Table B.7: The grouped-n estimates for the probability of the unknot given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

n1 t′ p̂rΘn1,n1+98(φ|φ, s) n1 t′ p̂rΘn1,n1+98(φ|φ, s)
14 660 0.994759(0.007827) 914 660 0.977710(0.016029)

114 660 0.983008(0.013973) 1014 660 0.977888(0.015992)

214 660 0.979426(0.015336) 1114 660 0.978085(0.016017)

314 660 0.978001(0.015848) 1214 660 0.977949(0.016134)

414 660 0.977325(0.016089) 1314 660 0.977792(0.016257)

514 660 0.977441(0.016054) 1414 660 0.977847(0.016391)

614 660 0.977282(0.016116) 1514 660 0.978152(0.016534)

714 660 0.977320(0.016117) 1614 660 0.978096(0.016810)

814 660 0.977241(0.016164) 1714 660 0.977093(0.017416)
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Table B.8: The grouped-n estimates for the probability of a trefoil given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

n1 t′ p̂rΘn1,n1+138(31|φ, s) n1 t′ p̂rΘn1,n1+138(31|φ, s)
14 660 0.006725(0.000765) 994 660 0.021245(0.002532)

154 660 0.018904(0.002138) 1134 660 0.021129(0.002577)

294 660 0.021242(0.002405) 1274 660 0.021427(0.002683)

434 660 0.021816(0.002481) 1414 660 0.021476(0.002809)

574 660 0.021797(0.002496) 1554 659 0.021096(0.002914)

714 660 0.021797(0.002524) 1694 658 0.022077(0.003213)

854 660 0.021611(0.002533)

Table B.9: The grouped-n estimates for the probability of a figure 8 given
a successful strand passage in a Θ-SAP. The values in parentheses are the
estimated 95% margins of error.

n1 t′ p̂rΘn1,n1+158(41|φ, s) n1 t′ p̂rΘn1,n1+158(41|φ, s)
14 660 0.000100(0.000012) 974 454 0.000876(0.000183)

174 660 0.000542(0.000064) 1134 365 0.000899(0.000203)

334 660 0.000775(0.000099) 1294 271 0.000711(0.000208)

494 654 0.000862(0.000124) 1454 197 0.000657(0.000219)

654 629 0.000923(0.000152) 1614 153 0.000836(0.000271)

814 548 0.000925(0.000190) 1774 113 0.000756(0.000343)

Table B.10: The grouped-n estimates for the probability of observing knot-
type 52 given a successful strand passage in a Θ-SAP. The values in paren-
theses are the estimated 95% margins of error.

n1 t′ p̂rΘn1,n1+178(52|φ, s) n1 t′ p̂rΘn1,n1+178(52|φ, s)
14 373 0.000002(0.000002) 914 27 0.000044(0.000035)

194 320 0.000022(0.000006) 1094 21 0.000031(0.000023)

374 175 0.000046(0.000016) 1274 16 0.000035(0.000040)

554 111 0.000046(0.000029) 1454 8 0.000023(0.000038)

734 54 0.000053(0.000034) 1634 6 0.000003(0.000063)
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B.2 Expected Length Estimates

Tables B.11-B.13 display the essentially independent samples of the estimated expected

lengths (and their corresponding estimated 95% margins of error) of the large and the

small uSAWs found in Θ-SAPs in E c
2n(∗) for each ∗ ∈ {(φ, f), (φ|φ, s), (31|φ, s)}. These

essentially independent samples are used throughout the analysis in Section 7.1 of Chapter

7. The essentially independent samples associated with the large uSAW in Θ-SAPs in

E c
2n(φ, f), E c

2n(φ|φ, s), and E c
2n(31|φ, s) are displayed in Column 3 of Tables B.11-B.13

respectively and are plotted in Figure 7.4. The essentially independent samples associated

with the small uSAW in Θ-SAPs in E c
2n(φ, f), E c

2n(φ|φ, s), and E c
2n(31|φ, s) are displayed in

Column 4 of Tables B.11-B.13 respectively and are plotted in Figure 7.7. The value t′ in

each of these tables is the number of non-zero blocks of data available to compute the point

estimate and the estimated 95% margin of error. Note that the point estimates and the

estimated 95% margins of error presented in Tables B.11-B.13 were computed using the

point estimators 〈S2n(E c(∗))〉 and 〈L2n(E c(∗))〉 defined in Section 7.1 with t0 = 9.6× 1010

time steps, τint = 0.72 × 109 time steps, T = 120, 000 time steps, and ⌊t0/(2τint)⌋ = 66.
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Table B.11: For the set PΘ(φ, f), an essentially independent sample for
the estimated average length of the large (Column 3) and small (Column 4)
uSAW in polygons in E c

2n(φ, f). The values in parentheses are the estimated
95% margins of error.

2n t′ 〈l2n (E c(φ, f))〉 〈s2n (E c(φ, f))〉
18 660 8.00(0.00) 4.00(0.00)

198 660 180.22(5.71) 11.78(0.37)

378 660 359.09(11.26) 12.91(0.40)

558 660 538.62(16.71) 13.38(0.41)

738 660 718.15(22.12) 13.85(0.43)

918 660 898.32(27.56) 13.68(0.42)

1098 660 1077.55(33.20) 14.45(0.45)

1278 660 1257.65(38.64) 14.35(0.44)

1458 660 1438.14(43.36) 13.86(0.42)

1638 660 1616.88(49.45) 15.12(0.46)

1818 660 1798.30(53.82) 13.70(0.41)

Table B.12: For the set PΘ(φ|φ, s), an essentially independent sample
for the estimated average length of the large (Column 3) and small (Col-
umn 4) uSAW in polygons in E c

2n(φ|φ, s). The values in parentheses are the
estimated 95% margins of error.

2n t′ 〈l2n (E c(φ|φ, s))〉 〈s2n (E c(φ|φ, s))〉
18 660 8.00(0.00) 4.00(0.00)

198 660 174.35(5.61) 17.65(0.56)

378 660 351.83(11.14) 20.17(0.64)

558 660 530.22(16.56) 21.78(0.68)

738 660 709.33(21.98) 22.67(0.70)

918 660 888.31(27.41) 23.69(0.73)

1098 660 1067.83(33.03) 24.17(0.75)

1278 660 1249.42(38.48) 22.58(0.74)

1458 660 1432.16(43.65) 19.84(0.79)

1638 660 1609.22(49.25) 22.78(0.70)

1818 649 1788.98(53.63) 23.02(0.69)
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Table B.13: For the set PΘ(31|φ, s), an essentially independent sample
for the estimated average length of the large (Column 3) and small (Column
4) uSAW in polygons in E c

2n(31|φ, s). The values in parentheses are the
estimated 95% margins of error.

2n t′ 〈l2n (E c(31|φ, s))〉 〈s2n (E c(31|φ, s))〉
24 2 0.00(0.00) 0.00(0.00)

204 660 154.58(10.67) 43.42(3.00)

384 355 306.43(30.49) 71.57(7.11)

564 209 480.44(63.28) 77.56(10.23)

744 108 662.68(119.07) 75.32(13.53)

924 101 835.33(156.76) 82.67(15.51)

1104 37 995.00(288.35) 103.00(29.85)

1284 37 1176.26(380.38) 101.74(32.90)

1464 20 1306.83(549.83) 151.17(63.01)

1644 24 1580.33(664.57) 57.67(24.25)

1824 23 1739.57(748.64) 78.43(33.76)

B.3 Expected Mean-Square Radius of Gyration Estimates

In this section, the point estimates and their estimated 95% margins of error that are

required for the analysis presented in Section 7.2 are presented in the following two sub-

sections. The first subsection presents the estimates used in the discussion in Sections

7.2.2 and 7.2.3 that are based on “fixed-n estimates”. The second subsection presents the

estimates used in the discussion of the “Average-n Method” in Section 7.2.3.

B.3.1 Fixed-n Estimates

Tables B.14-B.17 display the essentially independent samples of the estimated expected

mean-square radii of gyration (and their corresponding estimated 95% margins of error)

for Θ-SAPs in P2n(∗) for each ∗ ∈ {φ, (φ, f), (φ|φ, s), (31|φ, s)} and the estimated expected

mean-square radii of gyration (and their corresponding estimated 95% margins of error)

for the large and the small uSAWs found in Θ-SAPs in E c
2n(∗) for each ∗ ∈ {(φ, f), (φ|φ, s),

(31|φ, s)}. These essentially independent samples are used throughout the analysis in

Section 7.2 of Chapter 7. The essentially independent sample associated with Θ-SAPs
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in P2n(φ) is presented in Table B.14 and is plotted in Figure 7.23. The essentially

independent samples associated with Θ-SAPs in, and the large and small uSAWs in the

Θ-SAPs in, E c
2n(φ, f) are respectively presented in Columns 3, 4, and 5 of Table B.15 and

are respectively plotted in Figures 7.23, 7.27, and 7.29. The value t′ in each of these tables

is the number of non-zero blocks of data available to compute the point estimate and the

estimated 95% margin of error.

Note that the point estimates and the estimated 95% margins of error presented in

Tables B.14-B.17 were computed using the point estimators
〈
R2
(
PΘ

2n(∗)
)〉

,
〈
R2 (E c

2n(∗))
〉
,

〈
R2 (E2n(∗))

〉
,
〈
R2 (ws(E

c
2n(∗)))

〉
,
〈
R2 (wl(E

c
2n(∗)))

〉
, and

〈
R2 (we(E2n(∗)))

〉
as defined in

Section 7.2.1 with t0 = 9.6 × 1010 time steps, τint = 0.72 × 109 time steps, T = 120, 000

time steps, and ⌊t0/(2τint)⌋ = 66.
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Table B.14: An essentially independent sample of estimates for
r2
(
PΘ

2n(φ)
)
. t′ is the number of non-empty essentially independent blocks

of data that are used to compute the estimates. The values in parentheses
are the estimated 95% margins of error.

2n t′
〈
r2
(
PΘ

2n(φ)
)〉

24 660 3.70(0.00)

204 660 50.22(0.20)

384 660 108.49(0.69)

564 660 172.41(1.45)

744 660 240.99(2.53)

924 660 312.31(3.97)

1104 660 385.67(6.00)

1284 660 463.55(8.46)

1464 660 539.22(11.86)

1644 660 617.00(15.76)

1824 660 697.30(20.43)

B.3.2 The Average-n Estimates

The estimates in Column 2 of Table B.30 and Column 3 of Table B.33 are plotted versus

the estimates in Column 2 of Table B.18 in Figure 7.31. The estimates in Column 3 of

Tables B.34 and B.35 are plotted versus the estimates in Column 2 of Table B.19 also in

Figure 7.31.

The estimates in Column 2 of Table B.39 are plotted versus the estimates in Column

2 of Table B.18 in Figure 7.32. The estimates in Column 2 of Tables B.40 and B.41 are

plotted versus the estimates in Column 2 of Table B.19 also in Figure 7.32.

The estimates in Column 3 of Table B.39 are plotted versus the estimates in Column

2 of Table B.18 in Figure 7.33. The estimates in Column 3 of Tables B.40 and B.41 are

plotted versus the estimates in Column 2 of Table B.19 also in Figure 7.33. The remainder

of the estimates presented in Tables B.18-B.41 are included for the sake of completeness.

The point estimates and the estimated 95% margins of error presented in Tables B.18-
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Table B.15: An essentially independent sample of estimates
for r2 (E c

2n(φ, f)) (Column 3), r2 (wl (E
c
2n(φ, f))) (Column 4), and

r2 (ws (E c
2n(φ, f))) (Column 5). t′ is the number of non-empty essentially

independent blocks of data that are used to compute the estimates. The
values in parentheses are the estimated 95% margins of error.

2n t′
〈
r2 (E c

2n(φ, f))
〉 〈

r2 (wl (E
c
2n(φ, f)))

〉 〈
r2 (ws (E c

2n(φ, f)))
〉

24 660 3.64(0.00) 2.38(0.00) 1.22(0.00)

204 660 50.22(0.22) 49.06(0.21) 2.49(0.01)

384 660 108.48(0.74) 107.41(0.73) 2.80(0.02)

564 660 172.44(1.55) 171.40(1.55) 2.96(0.03)

744 660 241.29(2.69) 240.30(2.70) 3.06(0.03)

924 660 312.24(4.22) 311.28(4.25) 3.19(0.04)

1104 660 385.98(6.30) 385.01(6.44) 3.37(0.06)

1284 660 462.69(8.81) 461.88(9.06) 3.21(0.06)

1464 660 540.29(12.12) 539.70(12.72) 2.90(0.07)

1644 660 617.58(16.07) 616.67(16.86) 3.27(0.09)

1824 660 699.21(20.79) 698.55(21.88) 3.24(0.10)
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Table B.16: An essentially independent sample of estimates for E c
2n(φ|φ, s)

(Column 3), r2 (wl (E
c
2n(φ|φ, s))) (Column 4), and r2 (ws (E c

2n(φ|φ, s))) (Col-
umn 5). t′ is the number of non-empty essentially independent blocks of
data that are used to compute the estimates. The values in parentheses are
the estimated 95% margins of error.

2n t′
〈
r2 (E c

2n(φ|φ, s))
〉 〈

r2 (wl (E
c
2n(φ|φ, s)))

〉 〈
r2 (ws (E c

2n(φ|φ, s)))
〉

24 660 4.42(0.02) 2.52(0.01) 1.43(0.01)

204 660 50.27(0.54) 47.88(0.51) 3.87(0.04)

384 660 108.70(1.86) 106.19(1.81) 4.74(0.08)

564 660 173.03(3.92) 170.93(3.87) 4.72(0.11)

744 660 239.52(6.81) 237.25(6.74) 5.32(0.15)

924 660 313.01(10.67) 311.30(10.61) 5.29(0.18)

1104 660 383.91(15.62) 381.90(15.54) 5.51(0.22)

1284 660 467.90(22.43) 465.82(22.33) 5.92(0.28)

1464 660 533.54(30.54) 531.15(30.40) 6.67(0.38)

1644 660 613.58(40.94) 612.01(40.83) 5.34(0.36)

1824 646 685.84(52.99) 685.12(52.93) 5.15(0.40)
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Table B.17: An essentially independent sample of estimates
for PΘ

2n(31|φ, s) (Column 3), r2 (wl (E
c
2n(31|φ, s))) (Column 4), and

r2 (ws (E c
2n(31|φ, s))) (Column 5). t′ is the number of non-empty essentially

independent blocks of data that are used to compute the estimates. The
values in parentheses are the estimated 95% margins of error.

2n t′
〈
r2 (E c

2n(31|φ, s))
〉 〈

r2 (wl (E
c
2n(31|φ, s)))

〉 〈
r2 (ws (E c

2n(31|φ, s)))
〉

24 4 3.38(4.69) 2.75(3.82) 2.22(3.08)

204 660 46.73(3.23) 43.51(3.00) 11.00(0.76)

384 389 101.57(10.12) 96.45(9.61) 18.12(1.81)

564 223 155.48(20.51) 150.89(19.90) 21.37(2.82)

744 121 236.40(42.54) 229.13(41.23) 20.01(3.60)

924 111 302.77(56.93) 294.23(55.33) 26.19(4.93)

1104 48 350.11(101.60) 339.06(98.39) 31.52(9.15)

1284 39 473.59(153.38) 461.37(149.42) 32.89(10.65)

1464 24 475.55(200.34) 446.07(187.92) 50.97(21.47)

1644 24 556.05(234.25) 541.97(228.32) 17.92(7.55)

1824 23 704.73(303.97) 702.57(303.04) 24.20(10.44)
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B.41 were computed using the point estimators
〈
Nπzi

(Nmin) (U (∗))
〉
,
〈
Nπzi

(Nmin) (f (U (∗)))
〉
,〈

R2
πzi

(Nmin) (U (∗))
〉
, and

〈
R2

πzi
(Nmin) (f (U (∗)))

〉
as defined in Section 7.2.3 with t0 =

9.6×1010 time steps, τint = 0.72×109 time steps, T = 120, 000 time steps, and ⌊t0/(2τint)⌋ =

66.

Table B.18: The values in Columns 2-4 are the estimated average lengths
of a Θ-SAP sampled from PΘ(φ), E c(φ), and E (φ) respectively according
to πzi

(156). The values in parentheses are the estimated 95% margins of
error.

i
〈
nπzi

(156)

(
PΘ(φ)

)〉 〈
nπzi

(156) (E c(φ))
〉 〈

nπzi
(156) (E (φ))

〉

1 161.20(29.91) 160.73(10.74) 161.27(9.67)

2 166.54(19.84) 166.37(6.68) 166.57(6.60)

3 174.41(14.90) 174.41(2.58) 174.41(2.80)

4 189.86(7.81) 189.87(1.78) 189.86(2.27)

5 204.44(3.59) 204.34(1.98) 204.48(3.35)

6 215.54(4.69) 215.70(2.78) 215.46(4.18)

7 231.44(4.11) 231.69(1.31) 231.27(3.44)

8 255.12(3.73) 255.17(2.68) 255.07(3.62)

9 295.55(4.20) 295.51(1.77) 295.59(5.78)

10 354.86(5.71) 354.89(2.64) 354.79(9.54)

11 485.43(10.75) 485.54(8.26) 485.06(24.45)

12 631.73(17.84) 631.80(14.94) 631.40(36.99)

13 761.64(30.16) 761.74(28.32) 761.05(56.59)

14 984.78(69.72) 985.60(69.53) 977.11(103.00)
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Table B.19: The values in Columns 2-4 are the estimated average lengths
of a Θ-SAP sampled from PΘ(φ), E c(φ), and E (φ) respectively according
to πzi

(182). The values in parentheses are the estimated 95% margins of
error.

i
〈
nπzi

(182)

(
PΘ(φ)

)〉 〈
nπzi

(182) (E c(φ))
〉 〈

nπzi
(182) (E (φ))

〉

1 201.07(66.57) 202.54(33.02) 200.61(50.91)

2 206.48(29.02) 206.45(27.62) 206.48(31.27)

3 214.25(13.18) 214.25(4.96) 214.25(5.78)

4 229.61(4.44) 229.69(2.11) 229.55(3.62)

5 244.10(2.97) 244.17(2.42) 244.03(5.08)

6 255.13(4.67) 255.12(2.35) 255.15(4.97)

7 270.85(2.65) 270.88(2.01) 270.79(6.72)

8 294.34(3.37) 294.24(2.08) 294.55(3.98)

9 334.31(4.06) 334.26(2.08) 334.47(8.19)

10 393.25(4.36) 393.23(3.19) 393.36(12.18)

11 522.68(9.73) 522.56(8.91) 523.56(22.89)

12 667.75(19.00) 667.85(18.10) 666.62(39.09)

13 797.14(29.77) 797.28(29.54) 795.25(56.09)

14 1017.83(67.74) 1018.30(68.63) 1008.16(87.41)
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Table B.20: The values in Columns 2-4 are the estimated average lengths of
a Θ-SAP sampled from PΘ(φ, f), E c(φ, f), and E (φ, f) respectively accord-
ing to πzi

(142). The values in parentheses are the estimated 95% margins
of error.

i
〈
nπzi

(142)

(
PΘ(φ, f)

)〉 〈
nπzi

(142) (E c(φ, f))
〉 〈

nπzi
(142) (E (φ, f))

〉

1 161.20(29.91) 160.73(10.74) 161.27(9.67)

2 166.54(19.84) 166.37(6.68) 166.57(6.60)

3 174.41(14.90) 174.41(2.58) 174.41(2.80)

4 189.86(7.81) 189.87(1.78) 189.86(2.27)

5 204.44(3.59) 204.34(1.98) 204.48(3.35)

6 215.54(4.69) 215.70(2.78) 215.46(4.18)

7 231.44(4.11) 231.69(1.31) 231.27(3.44)

8 255.12(3.73) 255.17(2.68) 255.07(3.62)

9 295.55(4.20) 295.51(1.77) 295.59(5.78)

10 354.86(5.71) 354.89(2.64) 354.79(9.54)

11 485.43(10.75) 485.54(8.26) 485.06(24.45)

12 631.73(17.84) 631.80(14.94) 631.40(36.99)

13 761.64(30.16) 761.74(28.32) 761.05(56.59)

14 984.78(69.72) 985.60(69.53) 977.11(103.00)
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Table B.21: The values in Columns 2-4 are the estimated average lengths of
a Θ-SAP sampled from PΘ(φ, f), E c(φ, f), and E (φ, f) respectively accord-
ing to πzi

(156). The values in parentheses are the estimated 95% margins
of error.

i
〈
nπzi

(156)

(
PΘ(φ, f)

)〉 〈
nπzi

(156) (E c(φ, f))
〉 〈

nπzi
(156) (E (φ, f))

〉

1 175.24(15.83) 174.93(13.12) 175.35(19.59)

2 180.35(12.07) 180.45(9.74) 180.31(14.17)

3 188.30(8.42) 188.20(3.25) 188.35(3.97)

4 203.77(2.95) 203.85(1.64) 203.70(3.12)

5 218.43(2.94) 218.48(1.59) 218.38(3.64)

6 229.38(3.76) 229.36(2.01) 229.41(4.34)

7 245.22(2.60) 245.24(1.52) 245.18(5.01)

8 268.82(3.19) 268.77(1.74) 268.92(3.78)

9 309.02(3.51) 309.00(1.79) 309.09(8.22)

10 368.27(4.04) 368.26(2.92) 368.27(11.13)

11 498.44(9.21) 498.34(8.47) 499.12(21.63)

12 644.18(18.45) 644.30(17.59) 642.87(37.31)

13 774.06(28.96) 774.20(28.70) 772.21(54.16)

14 995.57(66.67) 996.06(67.55) 985.55(86.37)
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Table B.22: The values in Columns 2-4 are the estimated average lengths
of a Θ-SAP sampled from PΘ(φ|φ, s), E c(φ|φ, s), and E (φ|φ, s) respectively
according to πzi

(182). The values in parentheses are the estimated 95%
margins of error.

i
〈
nπzi

(182)

(
PΘ(φ|φ, s)

)〉 〈
nπzi

(182) (E c(φ|φ, s))
〉 〈

nπzi
(182) (E (φ|φ, s))

〉

1 199.09(232.10) 200.84(200.58) 198.36(236.05)

2 206.22(135.85) 207.30(65.29) 205.71(66.50)

3 214.64(44.29) 214.34(22.74) 214.70(16.51)

4 229.41(34.06) 229.59(17.12) 229.30(8.59)

5 244.28(14.12) 244.33(8.47) 244.23(8.43)

6 255.05(11.37) 255.19(7.41) 254.90(14.82)

7 270.93(15.40) 271.10(6.81) 270.70(19.25)

8 294.68(10.88) 294.57(6.49) 294.89(14.02)

9 333.82(17.57) 333.89(8.46) 333.65(23.10)

10 392.90(13.57) 392.75(8.54) 393.40(31.85)

11 521.40(13.09) 521.35(10.10) 521.72(37.27)

12 666.32(23.61) 666.49(20.88) 664.82(73.07)

13 793.34(33.97) 793.61(31.62) 790.92(154.39)

14 1016.90(69.42) 1017.51(67.60) 1007.24(254.56)
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Table B.23: The values in Columns 2-4 are the estimated average lengths of
a Θ-SAP sampled from PΘ(31|φ, s), E c(31|φ, s), and E (31|φ, s) respectively
according to πzi

(182). The values in parentheses are the estimated 95%
margins of error.

i
〈
nπzi

(182)

(
PΘ(31|φ, s)

)〉 〈
nπzi

(182) (E c(31|φ, s))
〉 〈

nπzi
(182) (E (31|φ, s))

〉

1 n/a n/a n/a

2 n/a n/a n/a

3 218.25(305.08) 225.00(238.85) 215.57(249.10)

4 233.46(149.70) 232.43(123.92) 235.35(164.78)

5 244.72(89.23) 242.71(67.55) 249.32(179.43)

6 259.78(96.87) 260.25(74.27) 258.69(129.94)

7 273.26(92.56) 272.96(80.36) 273.12(191.04)

8 300.23(51.16) 300.19(53.83) 299.28(170.03)

9 341.00(63.28) 341.85(49.92) 336.17(419.62)

10 406.43(57.44) 406.86(42.78) 401.98(367.54)

11 531.89(57.81) 531.04(42.30) 539.93(448.04)

12 677.86(109.03) 678.64(73.85) 641.29(708.09)

13 807.43(115.51) 809.21(102.61) 785.47(998.48)

14 986.81(178.28) 988.67(137.99) 915.98(1248.10)
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Table B.24: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs
in a Θ-SAP sampled from PΘ(φ) according to πzi

(156). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(156) (wl (E
c(φ)))

〉 〈
nπzi

(156) (ws (E c(φ)))
〉 〈

nπzi
(156) (we (E (φ)))

〉

1 143.24(26.90) 11.48(3.51) 6.05(0.49)

2 149.07(17.89) 11.30(1.91) 6.32(0.30)

3 156.98(13.51) 11.43(1.14) 6.68(0.13)

4 172.41(7.23) 11.46(0.56) 7.26(0.24)

5 186.73(3.47) 11.61(0.29) 7.70(0.14)

6 198.02(4.42) 11.68(0.30) 7.97(0.24)

7 213.88(3.87) 11.81(0.30) 8.29(0.22)

8 237.23(3.60) 11.94(0.24) 8.74(0.21)

9 277.37(4.04) 12.14(0.20) 9.21(0.35)

10 336.50(5.40) 12.39(0.22) 9.92(0.68)

11 466.77(10.27) 12.77(0.26) 10.75(1.01)

12 612.76(16.06) 13.04(0.29) 11.68(1.45)

13 742.55(28.93) 13.19(0.33) 12.34(1.49)

14 966.27(70.38) 13.33(0.50) 13.17(2.59)
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Table B.25: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs
in a Θ-SAP sampled from PΘ(φ) according to πzi

(182). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(182) (wl (E
c(φ)))

〉 〈
nπzi

(182) (ws (E c(φ)))
〉 〈

nπzi
(182) (we (E (φ)))

〉

1 183.92(62.71) 12.62(8.99) 6.26(1.98)

2 187.88(27.27) 12.57(2.66) 6.53(1.05)

3 195.45(12.10) 12.81(0.96) 6.90(0.30)

4 210.89(4.12) 12.80(0.29) 7.60(0.24)

5 225.23(2.78) 12.93(0.29) 8.14(0.22)

6 236.11(4.35) 13.01(0.28) 8.43(0.26)

7 251.75(2.52) 13.13(0.19) 8.76(0.26)

8 274.97(3.17) 13.26(0.20) 9.34(0.25)

9 314.81(3.90) 13.45(0.21) 9.94(0.39)

10 373.53(4.29) 13.70(0.16) 10.75(0.54)

11 502.46(9.44) 14.10(0.27) 12.02(1.18)

12 647.47(18.17) 14.38(0.37) 12.95(1.44)

13 776.73(29.55) 14.55(0.43) 14.00(2.23)

14 997.61(68.96) 14.69(0.55) 14.56(2.76)
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Table B.26: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs
in a Θ-SAP sampled from PΘ(φ, f) according to πzi

(142). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(142) (wl (E
c(φ, f)))

〉 〈
nπzi

(142) (ws (E c(φ, f)))
〉 〈

nπzi
(142) (we (E (φ, f)))

〉

1 143.24(26.90) 11.48(3.51) 6.05(0.49)

2 149.07(17.89) 11.30(1.91) 6.32(0.30)

3 156.98(13.51) 11.43(1.14) 6.68(0.13)

4 172.41(7.23) 11.46(0.56) 7.26(0.24)

5 186.73(3.47) 11.61(0.29) 7.70(0.14)

6 198.02(4.42) 11.68(0.30) 7.97(0.24)

7 213.88(3.87) 11.81(0.30) 8.29(0.22)

8 237.23(3.60) 11.94(0.24) 8.74(0.21)

9 277.37(4.04) 12.14(0.20) 9.21(0.35)

10 336.50(5.40) 12.39(0.22) 9.92(0.68)

11 466.77(10.27) 12.77(0.26) 10.75(1.01)

12 612.76(16.06) 13.04(0.29) 11.68(1.45)

13 742.55(28.93) 13.19(0.33) 12.34(1.49)

14 966.27(70.38) 13.33(0.50) 13.17(2.59)
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Table B.27: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs
in a Θ-SAP sampled from PΘ(φ, f) according to πzi

(156). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(156) (wl (E
c(φ, f)))

〉 〈
nπzi

(156) (ws (E c(φ, f)))
〉 〈

nπzi
(156) (we (E (φ, f)))

〉

1 156.54(14.48) 12.40(3.15) 6.18(0.78)

2 162.32(11.44) 12.13(1.42) 6.52(0.55)

3 169.83(7.71) 12.38(0.71) 6.93(0.21)

4 185.33(2.69) 12.51(0.24) 7.61(0.17)

5 199.81(2.68) 12.67(0.25) 8.15(0.19)

6 210.63(3.47) 12.73(0.23) 8.45(0.25)

7 226.37(2.44) 12.87(0.18) 8.78(0.22)

8 249.74(3.01) 13.03(0.21) 9.36(0.27)

9 289.75(3.37) 13.25(0.20) 9.95(0.40)

10 348.74(3.96) 13.52(0.15) 10.77(0.55)

11 478.38(8.97) 13.96(0.25) 12.04(1.17)

12 624.03(17.67) 14.27(0.35) 12.96(1.44)

13 753.74(28.73) 14.46(0.41) 14.02(2.23)

14 975.43(67.85) 14.63(0.53) 14.60(2.84)
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Table B.28: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs in
a Θ-SAP sampled from PΘ(φ|φ, s) according to πzi

(182). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(182) (wl (E
c(∗)))

〉 〈
nπzi

(182) (ws (E c(∗)))
〉 〈

nπzi
(182) (we (E (∗)))

〉

1 178.31(213.96) 16.54(35.74) 8.81(12.26)

2 181.72(122.23) 19.58(21.46) 9.68(3.71)

3 190.23(40.52) 18.11(6.68) 10.86(1.06)

4 205.35(31.05) 18.24(3.53) 12.33(0.89)

5 220.13(13.06) 18.20(1.67) 13.40(1.07)

6 230.79(10.44) 18.39(1.08) 13.96(1.41)

7 246.61(14.14) 18.50(1.30) 14.86(1.89)

8 269.90(10.06) 18.67(0.76) 15.99(1.21)

9 308.71(16.47) 19.18(1.22) 17.47(2.39)

10 367.20(12.95) 19.55(0.74) 19.51(2.11)

11 495.14(12.47) 20.21(0.69) 23.41(5.88)

12 639.83(23.09) 20.67(0.94) 25.07(8.74)

13 766.67(34.05) 20.94(0.87) 27.28(8.08)

14 990.18(69.65) 21.33(1.30) 27.29(9.73)
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Table B.29: The values in Columns 2-4 are respectively the estimated
average lengths of the large and small uSAW or the equal-length uSAWs in
a Θ-SAP sampled from PΘ(31|φ, s) according to πzi

(182). The values in
parentheses are the estimated 95% margins of error.

i
〈
nπzi

(182) (wl (E
c(∗)))

〉 〈
nπzi

(182) (ws (E c(∗)))
〉 〈

nπzi
(182) (we (E (∗)))

〉

1 n/a n/a n/a

2 n/a n/a n/a

3 165.84(235.24) 53.17(83.67) 33.49(46.71)

4 180.31(117.02) 46.12(32.11) 33.16(27.93)

5 185.74(70.57) 50.98(23.31) 38.15(34.40)

6 205.84(78.20) 48.41(19.09) 38.41(26.77)

7 209.77(78.54) 57.18(22.88) 38.43(34.63)

8 238.05(42.83) 56.14(14.96) 56.58(45.62)

9 276.51(53.23) 59.34(13.01) 51.27(74.93)

10 335.14(46.43) 65.72(19.31) 52.48(61.04)

11 453.79(50.18) 71.25(9.28) 70.61(66.53)

12 595.29(96.42) 77.35(15.59) 64.20(90.15)

13 718.93(106.55) 84.28(26.95) 127.64(279.74)

14 894.79(167.52) 87.88(23.63) 91.47(162.77)
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Table B.30: The values in Columns 2-4 are the estimated radii of gyration
of a Θ-SAP sampled from PΘ(φ), E c(φ), and E (φ) respectively according
to πzi

(156). The values in parentheses are the estimated 95% margins of
error.

i
〈
r2
πzi

(156)

(
PΘ(φ)

)〉 〈
r2
πzi

(156) (E c(φ))
〉 〈

r2
πzi

(156) (E (φ))
〉

1 37.60(7.03) 37.63(3.24) 37.59(2.47)

2 39.11(4.67) 39.07(2.14) 39.11(1.57)

3 41.49(3.55) 41.34(1.00) 41.53(0.68)

4 46.28(1.92) 46.35(0.78) 46.26(0.58)

5 50.80(0.91) 50.76(0.53) 50.82(0.87)

6 54.36(1.19) 54.41(0.70) 54.34(1.07)

7 59.53(1.08) 59.63(0.43) 59.46(0.91)

8 67.36(1.01) 67.37(0.77) 67.36(0.97)

9 81.08(1.19) 81.07(0.62) 81.10(1.64)

10 102.02(1.83) 102.05(1.08) 101.97(2.92)

11 150.56(4.29) 150.62(3.56) 150.37(8.42)

12 208.00(7.96) 208.06(6.97) 207.71(14.91)

13 261.17(14.49) 261.24(14.03) 260.73(23.78)

14 356.64(38.28) 356.99(38.63) 353.29(49.83)
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Table B.31: The values in Columns 2-4 are the estimated radii of gyration
of a Θ-SAP sampled from PΘ(φ), E c(φ), and E (φ) respectively according
to πzi

(182). The values in parentheses are the estimated 95% margins of
error.

i
〈
r2
πzi

(182)

(
PΘ(φ)

)〉 〈
r2
πzi

(182) (E c(φ))
〉 〈

r2
πzi

(182) (E (φ))
〉

1 49.29(16.98) 49.38(10.16) 49.25(13.66)

2 50.97(7.26) 50.90(7.36) 51.00(7.78)

3 53.45(3.31) 53.43(1.57) 53.47(1.47)

4 58.29(1.20) 58.35(0.73) 58.24(1.01)

5 62.92(0.78) 62.95(0.63) 62.89(1.34)

6 66.59(1.23) 66.58(0.64) 66.60(1.33)

7 71.81(0.71) 71.82(0.56) 71.80(1.80)

8 79.75(0.93) 79.71(0.60) 79.82(1.10)

9 93.61(1.20) 93.59(0.70) 93.66(2.37)

10 114.74(1.54) 114.72(1.29) 114.83(3.70)

11 163.46(4.14) 163.42(3.90) 163.72(7.95)

12 220.94(8.67) 220.99(8.30) 220.34(15.69)

13 274.32(14.78) 274.41(14.78) 273.12(22.48)

14 369.12(36.57) 369.38(37.29) 363.85(37.50)
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Table B.32: The values in Columns 2-4 are the estimated radii of gyra-
tion of a Θ-SAP sampled from PΘ(φ, f), E c(φ, f), and E (φ, f) respectively
according to πzi

(142). The values in parentheses are the estimated 95%
margins of error.

i
〈
r2
πzi

(142)

(
PΘ(φ, f)

)〉 〈
r2
πzi

(142) (E c(φ, f))
〉 〈

r2
πzi

(142) (E (φ, f))
〉

1 37.60(7.03) 37.63(3.24) 37.59(2.47)

2 39.11(4.67) 39.07(2.14) 39.11(1.57)

3 41.49(3.55) 41.34(1.00) 41.53(0.68)

4 46.28(1.92) 46.35(0.78) 46.26(0.58)

5 50.80(0.91) 50.76(0.53) 50.82(0.87)

6 54.36(1.19) 54.41(0.70) 54.34(1.07)

7 59.53(1.08) 59.63(0.43) 59.46(0.91)

8 67.36(1.01) 67.37(0.77) 67.36(0.97)

9 81.08(1.19) 81.07(0.62) 81.10(1.64)

10 102.02(1.83) 102.05(1.08) 101.97(2.92)

11 150.56(4.29) 150.62(3.56) 150.37(8.42)

12 208.00(7.96) 208.06(6.97) 207.71(14.91)

13 261.17(14.49) 261.24(14.03) 260.73(23.78)

14 356.64(38.28) 356.99(38.63) 353.29(49.83)
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Table B.33: The values in Columns 2-4 are the estimated radii of gyra-
tion of a Θ-SAP sampled from PΘ(φ, f), E c(φ, f), and E (φ, f) respectively
according to πzi

(156). The values in parentheses are the estimated 95%
margins of error.

i
〈
r2
πzi

(156)

(
PΘ(φ, f)

)〉 〈
r2
πzi

(156) (E c(φ, f))
〉 〈

r2
πzi

(156) (E (φ, f))
〉

1 41.56(3.88) 41.46(3.36) 41.60(4.79)

2 43.15(2.96) 43.07(2.61) 43.18(3.46)

3 45.64(2.05) 45.65(0.88) 45.64(0.97)

4 50.44(0.78) 50.47(0.55) 50.41(0.83)

5 55.04(0.75) 55.05(0.41) 55.02(0.95)

6 58.59(0.97) 58.59(0.52) 58.60(1.14)

7 63.78(0.69) 63.79(0.43) 63.77(1.32)

8 71.63(0.86) 71.61(0.50) 71.66(1.02)

9 85.38(1.03) 85.38(0.60) 85.41(2.33)

10 106.40(1.42) 106.39(1.18) 106.45(3.36)

11 154.99(3.92) 154.96(3.71) 155.19(7.50)

12 212.38(8.39) 212.44(8.04) 211.73(15.01)

13 265.71(14.31) 265.80(14.30) 264.53(21.71)

14 360.49(35.89) 360.75(36.58) 355.11(37.02)
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Table B.34: The values in Columns 2-4 are the estimated radii of gyration
of a Θ-SAP sampled from PΘ(φ|φ, s), E c(φ|φ, s), and E (φ|φ, s) respectively
according to πzi

(182). The values in parentheses are the estimated 95%
margins of error.

i
〈
r2
πzi

(182)

(
PΘ(φ|φ, s)

)〉 〈
r2
πzi

(182) (E c(φ|φ, s))
〉 〈

r2
πzi

(182) (E (φ|φ, s))
〉

1 48.49(58.06) 48.73(55.72) 48.22(58.99)

2 51.31(33.91) 51.59(18.31) 51.11(16.86)

3 53.74(11.16) 53.62(6.63) 53.81(4.23)

4 58.29(8.66) 58.17(4.37) 58.38(2.34)

5 63.17(3.70) 63.30(2.29) 63.05(2.24)

6 66.66(3.04) 66.65(2.07) 66.67(3.97)

7 71.90(4.17) 71.96(2.05) 71.82(5.18)

8 79.80(3.13) 79.77(2.17) 79.86(3.99)

9 93.39(4.97) 93.37(2.61) 93.46(6.56)

10 114.50(4.10) 114.50(2.81) 114.50(9.33)

11 162.81(4.68) 162.86(3.87) 162.60(12.16)

12 219.95(9.76) 220.01(8.81) 219.43(26.02)

13 272.61(16.24) 272.73(15.90) 271.52(54.36)

14 368.05(36.26) 368.36(35.98) 363.06(98.42)
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Table B.35: The values in Columns 2-4 are the estimated radii of gyration
of a Θ-SAP sampled from PΘ(31|φ, s), E c(31|φ, s), and E (31|φ, s) respec-
tively according to πzi

(182). The values in parentheses are the estimated
95% margins of error.

i
〈
r2
πzi

(182)

(
PΘ(31|φ, s)

)〉 〈
r2
πzi

(182) (E c(31|φ, s))
〉 〈

r2
πzi

(182) (E (31|φ, s))
〉

1 n/a n/a n/a

2 n/a n/a n/a

3 49.08(69.05) 52.58(62.87) 47.84(56.76)

4 54.70(36.85) 54.51(33.71) 54.36(39.28)

5 57.19(21.66) 56.48(17.06) 59.32(43.75)

6 62.17(23.54) 62.29(18.75) 61.79(31.36)

7 65.75(23.39) 65.84(21.54) 64.95(45.97)

8 73.91(13.25) 73.92(14.48) 73.47(42.16)

9 88.26(16.98) 88.56(13.64) 86.66(108.34)

10 110.07(15.81) 110.41(12.20) 107.95(98.96)

11 156.12(19.71) 156.02(16.03) 157.50(133.01)

12 211.75(35.61) 212.09(25.16) 195.19(221.17)

13 262.29(40.32) 263.16(37.23) 254.91(325.75)

14 336.86(71.85) 337.28(60.65) 315.20(432.99)
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Table B.36: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(φ) according to πzi

(156). The values
in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(156) (wl (E
c(φ)))

〉 〈
r2
πzi

(156) (ws (E c(φ)))
〉 〈

r2
πzi

(156) (we (E (φ)))
〉

1 36.34(7.20) 2.38(0.83) 1.32(0.25)

2 37.86(4.73) 2.38(0.41) 1.37(0.17)

3 40.17(3.53) 2.40(0.26) 1.44(0.12)

4 45.16(1.99) 2.42(0.13) 1.55(0.08)

5 49.60(0.94) 2.46(0.07) 1.64(0.03)

6 53.25(1.18) 2.49(0.06) 1.69(0.05)

7 58.50(1.09) 2.52(0.06) 1.76(0.06)

8 66.23(1.05) 2.56(0.05) 1.86(0.05)

9 79.95(1.22) 2.62(0.04) 1.96(0.08)

10 100.94(1.77) 2.70(0.05) 2.13(0.16)

11 149.54(4.06) 2.82(0.07) 2.34(0.23)

12 207.00(7.25) 2.92(0.09) 2.57(0.37)

13 260.21(14.20) 2.97(0.11) 2.75(0.41)

14 355.97(38.89) 3.03(0.18) 2.97(0.70)
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Table B.37: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(φ) according to πzi

(182). The values
in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(182) (wl (E
c(φ)))

〉 〈
r2
πzi

(182) (ws (E c(φ)))
〉 〈

r2
πzi

(182) (we (E (φ)))
〉

1 48.22(16.87) 2.70(2.28) 1.37(0.41)

2 49.59(7.66) 2.74(0.58) 1.42(0.23)

3 52.05(3.37) 2.77(0.23) 1.49(0.06)

4 57.03(1.23) 2.76(0.07) 1.63(0.05)

5 61.64(0.78) 2.80(0.07) 1.74(0.05)

6 65.27(1.22) 2.82(0.06) 1.80(0.05)

7 70.53(0.72) 2.86(0.04) 1.87(0.06)

8 78.42(0.93) 2.90(0.05) 2.00(0.06)

9 92.31(1.21) 2.96(0.05) 2.13(0.09)

10 113.45(1.55) 3.04(0.04) 2.33(0.13)

11 162.17(4.04) 3.17(0.08) 2.65(0.31)

12 219.77(8.32) 3.27(0.12) 2.89(0.41)

13 273.21(14.81) 3.33(0.15) 3.20(0.66)

14 368.20(37.46) 3.40(0.21) 3.33(0.77)
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Table B.38: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(φ, f) according to πzi

(142). The
values in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(142) (wl (E
c(φ, f)))

〉 〈
r2
πzi

(142) (ws (E c(φ, f)))
〉 〈

r2
πzi

(142) (we (E (φ, f)))
〉

1 36.34(7.20) 2.38(0.83) 1.32(0.25)

2 37.86(4.73) 2.38(0.41) 1.37(0.17)

3 40.17(3.53) 2.40(0.26) 1.44(0.12)

4 45.16(1.99) 2.42(0.13) 1.55(0.08)

5 49.60(0.94) 2.46(0.07) 1.64(0.03)

6 53.25(1.18) 2.49(0.06) 1.69(0.05)

7 58.50(1.09) 2.52(0.06) 1.76(0.06)

8 66.23(1.05) 2.56(0.05) 1.86(0.05)

9 79.95(1.22) 2.62(0.04) 1.96(0.08)

10 100.94(1.77) 2.70(0.05) 2.13(0.16)

11 149.54(4.06) 2.82(0.07) 2.34(0.23)

12 207.00(7.25) 2.92(0.09) 2.57(0.37)

13 260.21(14.20) 2.97(0.11) 2.75(0.41)

14 355.97(38.89) 3.03(0.18) 2.97(0.70)
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Table B.39: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(φ, f) according to πzi

(156). The
values in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(156) (wl (E
c(φ, f)))

〉 〈
r2
πzi

(156) (ws (E c(φ, f)))
〉 〈

r2
πzi

(156) (we (E (φ, f)))
〉

1 40.16(3.97) 2.64(0.73) 1.36(0.14)

2 41.80(3.12) 2.59(0.30) 1.42(0.10)

3 44.30(2.06) 2.65(0.16) 1.49(0.07)

4 49.13(0.79) 2.68(0.05) 1.63(0.04)

5 53.73(0.73) 2.72(0.06) 1.74(0.04)

6 57.27(0.94) 2.74(0.05) 1.80(0.05)

7 62.48(0.69) 2.78(0.04) 1.87(0.04)

8 70.31(0.87) 2.83(0.05) 2.00(0.06)

9 84.08(1.04) 2.90(0.05) 2.14(0.07)

10 105.11(1.42) 2.99(0.04) 2.34(0.12)

11 153.70(3.83) 3.13(0.08) 2.66(0.29)

12 211.22(8.06) 3.24(0.11) 2.89(0.39)

13 264.59(14.34) 3.31(0.14) 3.20(0.63)

14 359.56(36.74) 3.37(0.20) 3.34(0.78)
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Table B.40: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(φ|φ, s) according to πzi

(182). The
values in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(182) (wl (E
c(∗)))

〉 〈
r2
πzi

(182) (ws (E c(∗)))
〉 〈

r2
πzi

(182) (we (E (∗)))
〉

1 45.75(63.13) 3.50(7.16) 1.92(2.71)

2 48.99(33.86) 5.16(10.00) 2.06(0.80)

3 51.47(10.84) 4.08(1.72) 2.32(0.45)

4 55.82(8.46) 4.11(1.00) 2.63(0.41)

5 60.97(3.67) 4.08(0.39) 2.85(0.43)

6 64.28(2.97) 4.13(0.24) 2.97(0.49)

7 69.60(4.11) 4.16(0.28) 3.16(0.74)

8 77.43(3.14) 4.22(0.17) 3.43(0.67)

9 91.00(5.00) 4.38(0.29) 3.75(0.69)

10 112.15(4.15) 4.49(0.17) 4.27(0.80)

11 160.57(4.56) 4.71(0.20) 5.38(2.30)

12 217.77(9.42) 4.87(0.29) 5.74(2.82)

13 270.54(16.58) 4.97(0.31) 6.32(2.30)

14 366.18(36.75) 5.12(0.48) 6.32(2.49)
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Table B.41: The values in Columns 2-4 are respectively the estimated
average radii of gyration of the large and small uSAW or the equal-length
uSAWs in a Θ-SAP sampled from PΘ(31|φ, s) according to πzi

(182). The
values in parentheses are the estimated 95% margins of error.

i
〈
r2
πzi

(182) (wl (E
c(∗)))

〉 〈
r2
πzi

(182) (ws (E c(∗)))
〉 〈

r2
πzi

(182) (we (E (∗)))
〉

1 n/a n/a n/a

2 n/a n/a n/a

3 46.87(70.27) 14.35(24.19) 8.28(11.91)

4 50.20(35.15) 11.32(8.09) 8.00(6.87)

5 52.04(20.68) 13.50(6.91) 10.07(9.67)

6 58.60(22.86) 12.22(4.97) 9.96(7.59)

7 60.77(23.37) 14.75(5.98) 9.20(7.96)

8 69.56(13.89) 14.79(4.12) 14.55(11.68)

9 83.44(16.09) 15.63(3.30) 13.16(20.51)

10 104.60(15.08) 17.52(5.65) 14.54(17.83)

11 149.57(19.85) 19.34(2.68) 18.56(18.07)

12 205.26(34.42) 21.36(4.87) 16.73(24.45)

13 255.51(40.95) 23.74(9.65) 40.55(110.04)

14 328.40(71.72) 25.01(7.92) 25.58(47.56)
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fixed-n
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limiting
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confidence intervals, 370
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mean-square radius of gyration

n-edge property-∗ Θ-SAPs, 300
equal-length uSAW in n-edge property-
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score function, 208
self-avoiding polygon

directed, 25
distinct, 25
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SAP, 23
unrooted, 23

self-avoiding walk
SAW, 23
undirected, 53

series/windowing approach, 135
stationary distribution, 100
strand passage, 12

unsuccessful , 50
viable , 50

structure
after-strand-passage, 50
before-strand-passage , 50

swapping probability, 107
systematic error

CMC m.l.e.s, 230

terminal vertex
self-avoiding walk, 53

test for independence, 134
time homogeneous, 100
topoisomerase, 6
transition knotting probability

all SAPs
fixed-n, 43
limiting, 43

transition probability
n-step, 100
one-step, 100

transition probability matrix
one-step, 100

trefoil, 13
left-handed, 13
negative, 13
positive, 13
right-handed, 13

twist region, 19

undercrossing, 11
unknot, 11
unknotting number, 8
unreliable data, 150

uSAW, 53
large, 82
on the left, 82
on the right, 82
small, 82

variance
between the replications, 126
stationary stochastic process, 117
within a replication, 126

verification of
CMC Θ-BFACF data, 178
CMC m.l.e. program, 232
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first , 57
last, 56
top, 56

warm-up
analysis, 124
interval, 124

434


