Effects of climate change on the radial growth of shelterbelts across the Brown, Dark Brown, and Black soil zones of Saskatchewan

Brooke Howat MSc Candidate Department of Soil Science University of Saskatchewan

Why Shelterbelts?

Many benefits

Soilconservation

Wind protection

The problem…how will climate change effect shelterbelts?

Objectives

- > Make a model to forecast the growth of four shelterbelt species under future climate models and scenarios.
- > Determine if there is a pattern of forecasted growth across the Brown, Dark brown, and Black soil zones of Saskatchewan.

Agriculture and Greenhouse Gases Program

Phase 1: 2011-2016

- \succ Useful for dendrochronology
- > Shelterbelt inventory
- \succ Lots of samples

Phase 2: 2017-2021

Create management toolbox

 \succ Use samples from phase 1

► Economics and dendrochronology

Shelterbelt Species

- > White spruce (*Picea glauca*)
- Scots pine (*Pinus* sylvestris)
- Green ash (Fraxinus pennsylvanica)
- > Hybrid poplar (*Populus* hybrids)

Historical Climate Data

Climate stations Environment Canada Website Current and previous year monthly max temperature and precipitation

Future Climate Data

Statistically Downscaled GCM Scenarios -

BCCAQv2

160 50506 102 10250

historical,rcp26	[+]
historical,rcp45	[+]
historical,rcp85	[+]

-Dataset Selection

-Download	d Data		
	Date Range		
1950/01/01	to 2101/01/01		
Download	Full Timeseries		
	Output Format		
NetCDF		•	[?]
	Download Metadata		

Future Climate Data

2 Representative **Concentration Pathways**

≻ RCP 45: 650 ppm

▶ RCP 85: 1,370 ppm

- 4 Climate Models
- > ACCESS1-0-r1
- ≻ CanESM2-r1
- \succ CNRM-CM5-r1
- ► Inmcm4-r1

Experimental Design

 \triangleright PFRA database trees =>50 years Randomized list Called landowners

nage Landsat / Copernicus

100 mi

Sample Preparation

≻Glued

►Labelled

≻Sanded

Measuring tree rings

► Velmex stage system

≻0.001 mm

Cross-dating and standardizing

COFECHA

Same climate influences the growth of all trees at a site = cross-dating

ARSTAN

Two Douglas-fir trees near Eldorado Springs, CO

www.slideshare.net

WESTERN WATER ASSESSMENT

Forecasting Growth

Linear regression model ≻Ring-width ► Historical climate data

Model Optimization

► Model fit

≻K-fold cross validation

業

Relative Importance of Predictor Variables

Scenario

- Historical predicted
- ····· Measured
- --- RCP 45 acc

Google Earth

lat 50.756359° lon -105.685676° elev 1898 ft eve alt 376.28 mi

Central Saskatchewan RCP 45 ACCESS1

Outlook - green ash growth for RCP 45 ACCESS

Saskatoon - green ash growth for RCP 45 ACCESS

- Historical predicted

South-Central Saskatchewan RCP 45 ACCESS1

2000

2050

Year

1950

Moose Jaw - green ash growth for RCP 45 ACCESS

Scenario

- Historical predicted
- Measured
- --- RCP 45 acc

2100

Southern Saskatchewan RCP 45 ACCESS1

Central Saskatchewan RCP 85 ACCESS1

Outlook - green ash growth for RCP 85 ACCESS

Saskatoon - green ash growth for RCP 85 ACCESS

Historical predicted

South-Central Saskatchewan RCP 85 Access1

Moose Jaw - green ash growth for RCP 85 ACCESS

Southern Saskatchewan RCP 85 ACCESS1

Summary of Results

Current spring precipitation most influence on radial growth of green ash > May be a trend of decreasing green ash growth northward

Acknowledgments

- Supervisor: Colin Laroque
- Committee members: Katherine Stewart and Ken Van Rees
- Ian McConkey
- Beyhan Amichev
- Murray Bentham and Paul Krug
- Emma Davis
- Mad Lab Crew

Questions??

