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Abstract

The need for increased computational power is growing faster than our ability to pro-
duce faster computers. Already researchers are proposing systems that require peta-flop
capable super computers, a far cry from what is currently capable. To meet such high
computational requirements, networks of computers will be required. While it is possible
to network together computers to achieve a single task, making that network more flexible
to handle a multitude of different tasks is the promise of grid computing.

Grid systems are slowly appearing that are designed to run many independent tasks,
and provide the ability for programs to migrate between machines before completion. How-
ever, these systems lack coordination capabilities. Many grid systems/environments allow
multiple tasks to communicate/coordinate with each other based on various paradigms, but
don’t provide migration capabilities.

This thesis proposes a system, called JOLTS, that attempts to fill a gap by providing
both checkpointing and coordination capabilities. The coordination model offered by JOLTS
is based on the Objective Linda coordination language, with some additions. This thesis will
show that the object space model is an effective form of coordination and communication,
and can effectively be combined with checkpointing capabilities inside the same grid system.
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Chapter 1

Introduction

In recent years there has been a large growth in the number of distributed client programs

that the average computer user can download and run on their own computer to take part

in large projects. The program with the largest following is Seti@Home, which processes

satellite data to search for extra-terrestrial life. Other programs gaining popularity in-

clude distributed.net and Folding@Home. These programs can be classified as distributed

computing programs because large computations are decomposed across many different

machines. While these types of programs have many research benefits in their own right,

they have also shown the type of computing power that can be accessed by networking

common PCs together. Grid computing is concerned with how to effectively and efficiently

network many computers together.

Processing power demands continue to rise, often faster than our ability to design

and build faster computers. For example, researchers are trying to create teleimmersive

environments for collaborative work [6]. However, the predicted processing power for such

systems are in the peta-flop range, far more power than the world’s faster super computer

is capable of at 35.8 tera-flops [25]. Thus, the only way to achieve such requirements is to

start networking together many computers. As will be shown, some grids stress the use of

idle cycles on desktop computers (see Section 2.3.2), while others use dedicated hardware

on the grid (see Section 2.1.4.1). Whatever method is used, the end goal of increasing

processing power is the same.

1.1 Defining the Grid

The original use of the word “grid” in grid computing did not refer to the computers being

networked together in a grid structure. In fact, it was used in reference to the power grid.
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The idea was that eventually this single “grid” of network computers would be accessible

from everywhere it would be pervasive, much like the power grid is today. While this

vision of the grid is no longer that common, it is still a goal of many grid researchers.

A more realistic view of grid computing is that of networking together computer re-

sources to achieve a single goal. It is important to distinguish between computing resources

and the entire computer. In some current grids it is possible to restrict what parts of a

computer are accessible; e.g., a large disk may be used for grid storage purposes but it is

not permitted to run jobs on the computer hosting this storage.

Grid computing was originally formed as an off-shoot from High Performance Comput-

ing (HPC) [6]. While it still shares many traits in common with HPC, unique properties

inherent in grid systems have helped distinguish it from HPC (see Chapter 2). Because

of this similarity, it isn’t always clear what classifies as a grid system: cluster, super com-

puter, or even a single personal computer. A cluster almost always consists of identically

configured computers. These computers often reside in a single location, and the entire

cluster is usually under the administrative control of a single person or entity. A super

computer often takes a cluster to the next level; e.g., gigabit networking is deemed too

slow and replaced by high speed connections such as InfiniBand. Gone are the days of a

single computer; e.g., the Cray 3, being the most powerful computer. Most super comput-

ers today consist of a large number of commercial desktop computers networked together

though some also consist of large numbers of customized processors. For example, the

‘Big Mac’ at Virginia Tech, the third fastest computer in the world at 10.28 tera-flops is

made up of 1100 Apple PowerMac G5s [25]. Super computers that are large clusters have

some important additions. They usually contain high-speed network connections for fast

communication between nodes, and special software for shared memory access.

The only real similarity between a grid system and a cluster/super computer is the

fact that many computers are networked together to work on a common problem. In fact,

a cluster or a super computer can be treated as a single node in a grid system, in grid

applications referred to as distributed supercomputing (see Section 1.2). Nodes, or groups

of nodes, in a grid system are usually under different administrative control. Also, nodes

are usually different types of computers, sharing different types of resources, and running

different operating systems. Some nodes on the grid may have special hardware, such as

the high-speed connections found in super computers, but it isn’t a requirement. Nodes

2



in a grid can also be geographically scattered, so high-speed and possibly even reliable

network connections amongst nodes isn’t always a guarantee. Whether or not a node is

part of a grid usually depends on if it is running the appropriate software or not. It is

possible to have an entire grid system running on a single computer: the server, worker,

and client all running on a single computer.

1.2 Grid Applications

Grid systems are usually classified by the applications they run [6]. The grid community

uses the term application to refer to the type of problems that a grid system is designed to

handle. While no grid system is ideal for all situations, making adjustments to the system

to increase performance in one area can result in a decrease in another. These tradeoffs

result in configurations that fall into one of the following five categories:

1. Distributed supercomputing

2. High-throughput computing

3. On-demand computing

4. Data-intensive computing

5. Collaborative computing

Each of these areas will now be discussed in turn.

1.2.1 Distributed Supercomputing

Grid systems in this category are characterized by two properties:

1. The large size of the problems they are attempting to solve; and

2. The large amount of resources being thrown at the problem; e.g., several tera-flop

super computers and multi-terabyte file servers.

Some systems qualify by both properties. Most grid systems in this category qualify by

the second property, the amount of resources being used. Usually, several actual super

computers are working as nodes in the grid. Another option is if most of the computers

3



in a very large company are used to work on the same problems. The computers can even

be the personal computers on all the employee’s desks scattered across multiple buildings.

An example matching the first property are problems where the amount of communication

between nodes is high. If intercommunication is low, the system might in fact be a high-

throughput computing system.

1.2.2 High-Throughput Computing

High-throughput computing grid systems are characterized by the requirement to process

as many data blocks as possible, as fast as possible. Computational problems that are

easily decomposed into small pieces are ideal for this type of grid system. The commu-

nication between nodes working on various pieces are usually kept to a minimum if

any communication exists at all. Depending on the amount of resources applied to the

problem, a grid could qualify as a distributed supercomputer; however, the fact that inter-

communication is extremely low is what causes it to fall into the area of high-throughput

computing instead of distributed supercomputing. An example of this type of system is

Condor, which is discussed in Section 2.3.2.

1.2.3 On-Demand Computing

On-demand computing is characterized by having a need for large amounts of computing

power, but only for a relatively short period of time. Users of this type of grid are usually

more cost-performance driven than pure performance driven. This area holds lots of

potential for e-commerce applications. For example, a company with a large grid system

could sell (or trade) some of it’s idle computing power to a second company that requires

more processing power than it has available for a limited time to complete some urgent

task. An example of such a type of problem is the scheduling problem at a university. It

requires a lot of power, but is only performed periodically, maybe only twice a year. An

example of an on-demand computing system is NetSolve [13].

1.2.4 Data-Intensive Computing

Data-intensive systems are characterized by the creation and processing of large amounts

of data, stored both locally and remotely. These types of systems usually have high band-
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width and I/O requirements, along with high processing power requirements to analyze

the data. An example of this type of grid is one used to process the results from a particle

accelerator, where the accelerator can potentially generate several terabytes worth of data

each day. These large data sets can easily balloon into the petabyte range, requiring tera-

flop computers to process them. How to deal with such large data sets, such as moving,

storing, and backing it up is an ongoing challenge.

1.2.5 Collaborative Computing

The word “collaborative” in collaborative computing does not refer to the fact that many

computers are working together, it refers to the users collaborating toward some common

goal. This is probably the newest area of grid computing and is still in its infancy. Since

this area is heavily dependent on users, the systems in question need to be interactive. To

achieve useful interactivity, i.e., real-time requirements, collaborative computing overlaps

with distributed supercomputing, high-throughput computing, and data-intensive com-

puting to some extent. Some of the systems theorized to fall into this category would

require computers several orders of magnitude computationally higher than today’s most

powerful super computers.

An example would be a networking of several CAVE environments, scattered across the

country, together where doctors could walk through a virtual body of a patient currently

in a hospital imaging device. Thus, the data from the imaging device would qualify as

data-intensive computing. Even to ship the relevant data across a network to various

destinations is a challenge in and of itself. To do real-time rendering of this data might

require a distributed supercomputing environment. Add to this the “collaborative” nature

of the work; i.e., live video and audio streams between all the different CAVE environments

so the users can interact with not only with their own CAVE, but with the users in remote

CAVEs, and you have a very complex system. All of these requirements must be met in

real time to effectively create a collaborative environment.

1.3 Thesis Goals

Of the five grid applications just discussed, this thesis is only concerned with high-

throughput computing. As mentioned in Section 1.2.2 communication among nodes in
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a high-throughput system is very low, if it even exists at all, which is the case of Condor,

discussed in Section 2.3.2.

As mentioned earlier a high-throughput grid is concerned with processing data blocks

as fast as possible. For long run jobs, it is possible that the number of nodes in the grid

can be dynamic, increasing and decreasing over time. When a new node enters the grid,

data blocks can be assigned to this node for processing. However, when a node that was

processing a data block leaves the grid, the data block will either be lost entirely, or be

restarted from the beginning. Another option that is just beginning to appear in the grid

community is that of checkpointing. If a data block is checkpointed, when a node leaves

the grid, a different node can continue processing the same data block from where the

data block was when the checkpoint was created.

The combination of communication/coordination between nodes and checkpointing in

a high-throughput grid is as non-existent research area. This thesis examines a high-

throughput system developed, called JOLTS, that supports both a communication model

between the nodes in the system based on Objective Linda (see Section 2.2.5), and check-

points. The high-level design of JOLTS is described in Chapter 3, while the detailed

design of JOLTS is given in Chapter 4. Because high-throughput grids are concerned with

processing data blocks as fast as possible, the performance penalty of using the system,

including its checkpointing capability, are examined in Chapter 5. Lastly, this thesis’s

research contributions and future work are given in Chapter 6.
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Chapter 2

Grid Research

The area of grid research ranges from the theoretical such as examining what features are

necessary in a grid system, to the practical such as implementing detailed protocols across

a network. This chapter is divided into three main areas. Section 2.1 briefly describes some

of the major design concerns for grid systems, such as scheduling mechanisms. Section 2.2

describes coordination languages, a special set of programming languages that can used to

write programs designed for grid systems. Lastly, Section 2.3 describes a few grid systems

that are similar to the JOLTS system, created as part of this thesis research, discussed in

Chapter 4.

2.1 Research Areas

There are few, if any, fully-functional grid systems available today. As seen in Chapter 1,

there are many categories of grid systems. Each of these system types focus on meeting

particular requirements. Some requirements can be simple to solve, while others have no

adequate solution. This section outlines some of the more active grid research areas.

2.1.1 Security

Security in a grid system is more than simply making sure all communication is encrypted.

When a grid system is set up that allows outsiders to access resources available on various

computers, security is a large concern. Many of the security concerns in grid systems

are the same as most online systems; e.g., verifying user names and passwords. However,

the distributed nature of grid systems often adds complications to the standard security

concerns. Other areas are rather unique to grid systems; e.g., protecting resources from
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malicious code. Other areas such as accounting, used when payment is required to use

grid services, are closely coupled with security, and are beyond the scope of this thesis and

will not be discussed.

2.1.1.1 Authentication and Authorization

Authentication is the process by which a user identifies him or herself to a computer

system. This usually entails submitting some form of user ID and password to the system,

which is checked against a list of known users and their passwords. This is a simplified

view of how authentication is done in a non-grid system; e.g., logging onto a secure shell

server. However, things get more complicated when a grid system that spans across several

different administrative entities is involved.

A common problem in grid systems, when dealing with multiple administrative do-

mains, is how to deal with a request for resources for a principal (a user or program

entity) that isn’t authenticated in some of the domains. For example, assume a principal

submits a job to a grid system that uses some resources from domain a. During execution,

the resources in a request and receive access to the resources in domain b on behalf

of the principal. This works because the principal has a valid account in both domains.

However, if the resources in b require access to resources in domain c, where the principal

does not have an account, there is a problem. There are two main solutions to this prob-

lem: either always allow connections from other trusted grids, or use a trusted third party

for all verification.

Trusting known grids creates the illusion of a transitive property. Using our previous

example, if grid a needs access to resources in b, and b trusts a, represented as aTb, there

is no problem. The same holds true for b requesting resources from c, where c trusts b,

written as bTc. As mentioned at the end of the previous example, a going through b to use

resources in c, is not a problem because c will be authenticating a request from b, not a.

The original program running on a assumes the identity of a principal in b, this is known

as delegation of identity. It may look like at transitive property of aTb and bTc ⇒ aTc;

however, aTc doesn’t hold true if c doesn’t know about and trust a. Thus, there is the

illusion of trust created by going through one (or more) intermediaries, represented as aIc.

It is quite possible that aTc = aIc, but it is not guaranteed to hold for all pairs of grid

systems. The end result of this relation is that it is possible for a single grid system to
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access the resources of many other grids provided there is a path of trusted intermediaries

in between.

The second option involves all the grid participants trusting the same third party. Re-

quests made by a principal have a certificate attached. This certificate is then passed onto

a third party that verifies the certificate. The third party can also be used to determine

what the principal is allowed to do on a grid, called authorization.

Once a principal is authenticated, it is possible to determine its authorization level.

This helps create different security levels, where different groups of principals are allowed

to perform different tasks. As mentioned earlier, sometimes a principal will use identity

delegation to change its identity. This can also be used to change its authorization level

to perform a restricted task. This is similar to how a Unix process switches to kernel

mode to execute kernel function calls. It is also possible for a principal to use delegation

of authorization to allow some other process to perform tasks on its behalf. The same

concepts, e.g., using a trusted third party, used to perform authentication can also be

used to perform authorization.

2.1.1.2 Malicious Code/Hosts

Malicious code refers to programs that are run on a computer, designed to cause problems

very similar to a computer virus. A malicious host is the complete opposite, where the

host computer intentionally modifies a program that it is running for malicious purposes;

e.g., falsify output data.

Malicious code and malicious hosts have received relatively little attention in the grid

community. One main reason for this neglect is the fact that most grid systems currently

available are closed systems. Only authorized, trusted people are allowed to use them, and

the computers on the grid are either dedicated computers, or trusted computers. This

works fine in a controlled research environment, but if grid systems are ever to become

easily accessible by anyone with an internet connection, the concept of malicious code and

hosts is going to have to be dealt with.

Current grid systems simply have detailed logging systems, so that if anything goes

wrong, it is possible to trace the cause. However, this is more relevant for finding malicious

code, than malicious hosts. This is also more of a reactive approach, waiting until a

problem occurs; opposed to a proactive approach where the problem is prevented from
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even occurring. One proactive approach has been to restrict programs running on the grid

to exist inside a sandbox environment. Programs inside a sandbox would have restrictions

as to what they are allowed to do. Building a fully secure sandbox is a difficult problem;

however, building from existing contained environments can make the job easier. The

Java Virtual Machine (JVM) can be treated like a weak sandbox, since programs running

inside the virtual machine have some restrictions. For example, objects inside the JVM

aren’t allowed to access low-level memory addresses. By adding new security managers,

it is possible to make the security around the sandbox stronger, but at the cost of some

functionality. This idea only addresses malicious code, it doesn’t deal with the idea of

malicious hosts.

As mentioned at the start of this section, malicious code is similar to a virus. As such,

some techniques used to prevent a computer from becoming infected with a virus can be

applied to malicious code. Malicious hosts are quite different, there is no repository of

knowledge on how to deal with something like a hostile host. Once a program has been

sent to a grid node for execution, it is very difficult to make sure the program isn’t altered.

This is because the node executing the program could potentially reverse engineer it to

cause many types of damage. How to deal with malicious hosts depends on the nature

of the program in question. For example, early versions of the Seti@Home client were

altered by malicious hosts, allowing the owners of the malicious hosts to falsify their

results to artificially inflate their completed jobs ranking [14]. The solution in this case

was redundancy a simple solution for a grid. Each data block processed was sent to

multiple nodes, and the results of all the nodes processing that unique data block would

have to be the same; otherwise, one (or more) of the results must have been falsified.

Unfortunately, this solution will only work for a small class of problems. Only once more

grids are easily accessible to the general public will grid security, especially dealing with

malicious code and hosts, become a predominant research area.

2.1.2 Performance

Performance is concerned with maximizing available resource use, without overloading

the resources causing a decrease in performance. A large portion of how to maximize

resource usage is by trying to find optimal scheduling algorithms. Discussion of scheduling

algorithms is deferred to Section 2.1.3.
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Depending on the nature of the application being run, the CPU is often the most

important resource. Specialized compilers can help keep the CPU busy to some extent,

such as making sure all the Arithmetic Logic Units (ALU) are in use. The CPU can only

be working if it has all the necessary data available for its current computation. To achieve

this, many grid programs are starting to use asynchronous I/O, along with non-blocking

function calls. These types of improvements are made by paying attention to the order of

operations when writing a program. Consider the following example:

for(int i = 0; i < n; i++)
sum += array[i];

previous week = get prev(); // synchronous network call
total = sum + previous week;

This code fragment sums the values in an array, then fetches a previous value over the

network, and finally adds them together to create a total. This seems like a natural way

to program; however, the CPU is left idle waiting for data over the network. By using an

asynchronous network call to request the data before it is first needed, the amount of idle

CPU time can be reduced, or eliminated, depending on the network. The previous code

fragment can be rewritten as:

previous week = async get prev(); // asynchronous network call
for(int i = 0; i < n; i++)

sum += array[i];
wait(previous week); // check to see if the data is ready
total = sum + previous week;

Now the program first fetches the data from the network. While this request is executing

concurrently, the array can be summed. Depending on the array size and network con-

ditions, the wait function would return immediately, keeping the CPU busy the entire

time.

Another way to increase performance is to use efficient network protocols. Depending

on the nature of the application, it might be possible to use UDP for speed, but most

grid systems require reliable transmission so they use TCP/IP. Whether a program uses

clear text-based messages, such as encoding them in XML or uses a binary protocol,

can significantly affect performance. Using text-based messages has the advantage that

they can easily be modified and understood. However, because of the extra characters

these message can potentially take a longer time to transmit over a network. A binary

protocol is more difficult to modify but is often more compact, requiring fewer packets to

be transmitted; i.e., faster to transmit the complete message.

Disk access can also be an important factor in the overall performance of a system. As
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mentioned earlier, asynchronous I/O can be used to help improve disk performance. In

grid systems dealing with large data sets, it is sometimes advantageous to cache data for

later retrieval. A fast disk (or RAID setup) can help reduce the time spent waiting for disk

access. As networks continue to become faster, sometimes it is possible to retrieve cached

data over the network faster than it is to retrieve the same data cached on a local disk.

Of course, this only works if the remote machine has the data in memory; otherwise, the

remote machine will have to use its local disk, in which case the original machine should

use its local disk instead.

2.1.3 Scheduling

The initial scheduling algorithms used in grid systems were taken directly from massively

parallel processor (MPP) schedulers. This seemed like a natural fit since grid systems

consist of many processors that need to effectively communicate with each other. This

didn’t work very well because several of the assumptions made in MPP environments do

not hold in grid environments, such as [6]:

• The MPP scheduler is in control of all resources.

• All the resources are under a single administrative domain.

• The number of resources in an MPP environment never change.

• Contention for resources from programs not under the control of the MPP scheduler

is minimal.

• All similar types of resources, e.g., all disk resources, have the same characteristics.

All of these assumptions basically state that an MPP environment is a large, single entity,

while a grid is made up of many smaller, diverse entities. Because of this diverse nature,

grid schedulers are grouped together based on their desired goal. The following grouping

of schedulers is similar to the groups of grid applications discussed in Section 1.2:

• Job schedulers designed to work in high-throughput computing systems. The goal

of these schedulers is to maximize the number of processed blocks in a given time

span.
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• Resource schedulers designed to optimize the use of a limited resource in the grid.

This can be in terms of keeping the resource busy as much as possible, or by ensuring

fair access to the resource.

• Application schedulers designed to increase the performance of a particular pro-

gram running on a grid, at the expense of all other programs.

Job and resource schedulers are often grouped together as grid schedulers. What the grid

will be used for determines what class of schedulers is ideal for the system. Even defining

what “optimized” means for each scheduler can be a problem.

Creating a good, customized application scheduler starts by creating an accurate per-

formance model of how the application behaves. When multiple programs are run simul-

taneously, the problem becomes harder, since the performance model will lose accuracy.

When multiple applications are run simultaneously, it is virtually impossible to create

an optimal schedule for any of the programs. Creating accurate performance models is

difficult for several reasons:

1. Performance predictions must vary over time. The performance of the resources

being used in the grid can vary according to time, which must be taken into account

in the performance model.

2. Performance can vary based on the number and type of available resources. This

information can be contained inside a dynamic profile, which should be incorpo-

rated into the performance model to give a better representation of the performance

available for the resources.

3. If the program can be run in different environments, the performance model should

be flexible enough to effectively model any possible environment it is going to run on,

so an appropriate scheduler can be optimized for each environment. For example,

having a fixed number of resources may not be an accurate representation of all the

available environments.

Even something as simple as load balancing may not be good for the application, because

it may cause an increase in communication overhead between nodes. Another problem

with application schedulers is that a schedule which is good for one application, may not

be good for the entire grid.
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In the area of grid schedulers (specifically high-throughput computing systems), the

current trend is to use advertisements and matchmakers to associate available resources

with users/programs that need access to them [7]. These advertisements are often com-

pared to classify ads in a newspaper, where people can advertise both items they have

for sale, and items they wish to purchase. An entity with available resources publishes

information, called an offer, regarding what resources are available to a matchmaker. En-

tities requesting resources also publish advertisements to the matchmaker, called requests.

The matchmaker is then responsible for finding good matches between offers and requests.

How to properly structure advertisements and what are good matchmaking algorithms is

an active research area.

2.1.4 Communication/Coordination

All computers in a grid system need some form of communication. Whether it is as simple

as transferring a single packet between a client and server, to advanced coordination issues

carried out over a network between hundreds of nodes, communication is essential. For

applications that run on a grid not to be confused with the so-called grid applications

discussed in Section 1.2 there are two fundamental ways for nodes to communicate with

each other: by passing messages, and by using shared memory. Message passing is a more

popular paradigm than shared memory because it allows easier communication between

multiple processor architectures, and has a larger number of supporting applications and

software tools. When coordination is involved, each of these communication forms has a

complimentary coordination style; message passing uses control-driven coordination, and

shared memory uses data-driven coordination. Another communication style called a tuple

space, which is similar to shared memory and also uses data coordination, is discussed in

Section 2.2.

2.1.4.1 Message Passing

Message passing has been known as Remote Procedure Call (RPC) for several decades. As

just mentioned, message-passing communication performs coordination through a control-

driven approach. This means that procedures and functions calls are made between two

processes, whether they are local to a single machine, or hosted on different machines.

Message passing can be done at the programming level, using features such as Java’s
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Remote Method Invocation (RMI), or .Net’s remoting. If multiple languages are involved,

CORBA can be used to create common interfaces that can be implemented in many

different languages.

Java’s RMI mechanism requires the programmer to implement a few special interfaces

to indicate that his/her code is meant to operate over RMI. The compiler then generates

special versions of the classes called skeletons and stubs. These classes handle the commu-

nication between the two computers involved in the method call. Also required is a special

entity called a registry. The registry is responsible for keeping track of what classes on

a particular machine are available for other processes to call. Other processes wishing to

gain access to these classes for remote access, need to do so through this registry. Once the

proper object is retrieved from the registry, the object can be treated like a local object,

when in fact all method calls made to the object are executed by the remote object. There

are several problems with using RMI:

1. The registry can become a bottleneck in the system.

2. The programmer must know what computer is hosting the registry beforehand.

3. It is difficult to dynamically find objects in the registry. It is simpler if you already

know the name of the object you are looking for.

4. It is possible to having naming conflicts in the registry.

5. Communication between objects isn’t very bandwidth efficient.

6. When a new remote connection arrives, a new thread is spawned. This is very

inefficient if the object is handling many remote requests. Whether this is a problem

or not, and to what degree, is highly dependent on the Java VM implementation.

7. The programmer is restricted to a Java-only environment.

Some of these problems, such as problem 6 can be removed by using CORBA instead

of Java. The registry is replaced by an Object Request Broker (ORB) that adds many

features over the registry. Programs are written according to a language-independent

specification. The ORBs are then responsible for communicating on behalf of their re-

spective objects to create the illusion of local objects. While objects are what the ORBs
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deal with at a high-level, it isn’t a requirement that the programming language used be an

object-oriented language. Message passing can also be done at a higher level, using special

environments to help link multiple machines. The two main, competing technologies are

the Parallel Virtual Machine (PVM) and the Message Passing Interface (MPI), discussed

in Sections 2.1.5.1 and 2.1.5.2, respectively.

2.1.4.2 Shared Memory

The other major form of communication between multiple processes is by shared memory.

Depending on how the processes are related, there are three different levels of shared

memory.

1. Thread Level Sharing threads and processes all reside in the same memory address

space.

2. Process Level Sharing involves multiple process each with its own memory address

space, and a designated shared memory area.

3. Distributed Shared Memory involves multiple processes, with different processes

located on different computers.

Processes/threads communicate with each other by placing data inside the shared memory.

Coordination is usually done by relying on specific values for certain variables inside the

shared memory. For example, one process may keep executing a loop while some flag is

set to true, while a second process is responsible for flipping the flag to stop the loop in

the first process from executing.

While shared memory is the fastest way to do inter-process communication (IPC), it

does have some drawbacks. The main problem with shared memory is restricting access to

the shared memory when necessary; e.g., to prevent reading a variable before the proper

value is assigned to it. There are many different primitives for protecting shared memory,

usually language or library based; e.g., Java’s synchronized and semaphores in Solaris, re-

spectively. However, these memory protection schemes are beyond the scope of this thesis.

Another difficulty is coordinating multiple processes so they execute in a specific order.

For example, preventing some function from executing in one process until a different
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function in another process has finished executing is more difficult than in a message-

passing environment. Shared memory is often very low-level, making a shared-memory

space between different processor architectures very difficult. For example, translating

between 32-bit versus 64-bit, and between little-endian versus big-endian architectures is

problematic. Each of the three shared-memory levels will now be briefly discussed in turn.

Thread Level Sharing Shared memory in programs at this level is the easiest to work

with because no extra work is required to create the shared memory. Threads by definition

all share the same memory space; so depending on the language used, variables declared

in specific areas can be shared among several threads. For example, threads in Java are

able to share instance variables, while variables declared inside a method are local to only

that thread. This same behavior can be achieved with processes instead of threads; e.g.,

by using the vfork() function in Unix. This creates a new process, but doesn’t duplicate

the active processes memory space. Normally this newly created process is then used to

execute a separate program, preventing any memory access problems. However, if this

new process doesn’t execute a separate program, the end result is two processes sharing

the same memory address space, allowing for communication using the shared variables.

Process Level Sharing Programs at this level consist of two or more processes that are

executing in separate memory spaces on the same computer. Library calls to the operating

system are responsible for setting up the shared-memory area, gaining access to shared

memory created by a different process, and detaching from a shared-memory area [17].

Usually access to the shared memory is restricted to either read-only or read-write access,

based on a per-process basis. For example, the process that created the shared-memory

area could have read-write access, while permitting other processes to have read-only

access. Once the shared-memory area has been created, communication and coordination

is the same as thread-level sharing.

Distributed Shared Memory Programs at this level consist of two or more processes

that are executing on different computers. The basic idea behind distributed shared

memory (DSM) is to allow the programmer to manage memory as if it were all local to a

single machine. DSM can be done using either hardware or software solutions.
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In hardware approaches, such as those implemented on the Stanford DASH, the

HP/Convex Exemplar, and the SGI Origin, local cache misses initiate data

transfers from remote memory if they are needed. Software schemes such as

Shared Virtual Memory and TreadMarks rely on the paging mechanism in

the operating system to transfer whole pages on demand between operating

systems. [6]

The advantage of the hardware approach is that it is faster than the software approach,

but has the disadvantage that it is usually restricted to a single architecture. The software

approach has the advantage that it can be run on different hardware, provided the software

has been ported to the desired architecture. The disadvantage of the software approach is

there is a much higher time penalty than there is with the hardware approach. Regardless

of the approach used, DSM systems still have not been able to scale as well as message-

passing approaches.

2.1.5 Tools

The tools used for creating grid systems are diverse. Depending on who is being asked,

some grid systems themselves are treated just as tools. This is not the approach taken

in this thesis. A grid tool is defined as a piece of software or hardware that helps in the

creation of applications that run in a grid environment; e.g., profilers, compilers, CASE

tools, and so on. A large amount of effort (see Section 2.1.3) has been placed on developing

tools that create performance models for creating schedulers. The remainder of this section

gives an overview of some of the various tools used in concurrent and parallel systems.

People outside the field of concurrent systems assume that a compiler can take care of

everything for the programmer. Initially, companies believed they could take their legacy

code and run it through a parallelizing compiler to breathe new life into their old software.

Parallelizing compilers are still relatively rare, and are not nearly sophisticated enough to

carry out the previous example. One problem stems from the fact that a compiler cannot

create parallelism that isn’t inherent in a program to begin with. When the same variable

is used concurrently, simply parallelizing a sequential program can be dangerous, creating

nondeterministic behavior, or even deadlock. Some success has been made in creating

parallelizing compilers for functional languages, since they don’t use stored variables.
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Each function in a series of calls can be executed in parallel. The disadvantage to this

approach is that based on the outcome of some functions, others may not need to have

been evaluated at all, unnecessarily wasting processor cycles.

To help create concurrent and distributed programs, new programming languages are

being created. Some are merely extensions of existing languages with new libraries, such

as High Performance FORTRAN (HPF). Others aren’t really programming languages at

all, but coordination languages, discussed in Section 2.2. Some programming languages

are dialects of existing languages, such as Titanium [26].

Titanium is not an extension of Java, it merely uses it as a base language. The

compiler produces native code, not bytecode. Some of the more interesting features of

Titanium are local and global references, and zone-based memory management. Variables

in Titanium can be declared as local to a process, or global to a program. Global variables

are accessible to any process of a program, even on both shared-memory and distributed-

memory architectures. Zone-based memory management is used for (de)allocating objects.

When an object is created, it can be created for a specific zone. Instead of releasing an

object, the entire zone is released. Reference counts to zones are used to prevent releasing

a zone that still has active references, while not requiring reference counts to objects inside

the zone.

Tools can also be used to help observe, and potentially debug, live concurrent programs.

An example is a tuple space (see Section 2.2) visualization tool created by Paul Bercovitz

as part of the work in [4]. This tool allows a programmer to watch the creation of tuples

inside multiple tuple spaces, and see how the tuples move between several active processes

as the tuples are created and consumed. This can be used as a visualization tool for

beginners, so they understand how tuples migrate. It is also a valuable debugging tool,

allowing a programmer to trace a program while it is running to check for errors.

Some tools are available that allow users to assemble pre-built or custom-built compo-

nents into an application using a graphical interface. An example of such a system is the

Linear System Analyzer (LSA) [8]. This particular system is used to help scientists solve

complex systems of equations. Graphical representations of the various components are

moved and assembled on screen, where various output ports are connected to correspond-

ing input ports, even if the various components are executed on different computers. The

designers of LSA view this process as very similar to the graphical creation of an integrated
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circuit. Each module not only sends its output to another component, it also writes it to

a file. Thus, when a component along a path changes, new data is only calculated from

the starting component, not from the start of the entire path. A framework is provided to

allow programmers to create custom components that aren’t part of the standard package.

A sequence of components can then be saved for later use, and executed again on different

data sets. This type of tool allows non-programmers to create semi-custom programs that

take advantage of the power of multiple computers to solve complex problems.

2.1.5.1 Parallel Virtual Machine

The Parallel Virtual Machine (PVM) was originally jointly created by the Oak Ridge

National Laboratory, the University of Tennessee, Emory University, and Carnegie Mellon

University.

The overall goal of the PVM system is to enable such a collection of computers

to be used cooperatively for concurrent or parallel computation. [9]

This collection can be comprised of heterogeneous computers. Programs that run inside

this virtual machine consist of tasks. Tasks are capable of starting/stopping other tasks

on any other computer in the virtual machine. They also have the ability to dynamically

add/remove other computers in the virtual machine. All these abilities are accessed us-

ing standard PVM libraries. The main languages supported by PVM are C, C++ and

FORTRAN. Because some computers may handle FORTRAN data types differently, all

FORTRAN PVM library calls are to special stubs, which in turn call the corresponding C

function. The PVM system is responsible for message passing, spawning processes, coor-

dinating tasks, and modifying the virtual machine, if needed. It also does any necessary

type conversion, e.g., from big-endian to little-endian when required.

The PVM system allows programs to decompose complex problems according to func-

tional parallelism, data parallelism, or a combination of both. Functional parallelism is

when each computer in the virtual machine is assigned a specific function. For example,

one would be responsible for taking data, while another would be assigned the responsibil-

ity of processing that data because it had a specialized vector processor. A third machine

with a graphical display could be responsible for displaying the results. Data parallelism

is when each piece of a program works on a small section of the data, also referred to as
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Single Program Multiple Data (SPMD).

Tasks in the PVM system are assigned unique IDs, called task IDs (TID). User pro-

grams are able to access the current TID, as well as the other TIDs that make up the

entire program. These TIDs are used when messages are being sent and received between

tasks. For example, messages are sent using the pvm send procedure, where data is passed

into the procedure, along with the TID of the destination task. At the receiving end, a

task must make a call to pvm recv, along with the TID of where the message is coming

from. Thus, communication is tightly coupled between tasks based on their TIDs.

The PVM requires that each computer that is assigned to a specific virtual machine

be running the PVM daemon pvmd. The user is then responsible for starting up the

PVM application on at least one machine, where the master task starts executing. This

master task is then responsible for creating remote tasks on other computers in the virtual

machine. Remote tasks can also be created manually by the user, if needed. Since each

PVM is created from computers selected by the user, it is possible for a single computer

to be used by more than one PVM at a time.

One problem with the PVM system is that the program to be run needs to be separately

compiled for each unique architecture of the computers comprising the virtual machine.

The compiled binary form must then be copied to the appropriate place on each computer

before the program can begin executing.

2.1.5.2 Message Passing Interface

Unlike PVM, the Message Passing Interface (MPI) standard was created by a Forum [5],

consisting of large number of both corporate and academic institutions. The version of

MPI discussed in this thesis is MPI-2 [22]. The original idea behind MPI was to take

the best components of several competing technologies and combine them, as opposed to

modifying one to meet the needs of the forum. The main goals of MPI are:

• portability across different machines, to the same extent that languages such as

FORTRAN are portable; and

• the same code should run on any machine that has the MPI library.

While MPI is designed to run both on homogeneous and heterogeneous systems, it isn’t a

requirement that the version for such systems be compatible with each other. The MPI
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description specifies the semantics of the system, allowing implementors to optimize the

MPI system for a particular machine and architecture. If it is desired to use a hetero-

geneous system, the programmer must use an MPI version that supports heterogeneous

systems.

Process groups in MPI are created using a communicator, which creates a commu-

nication domain. The communicator is passed as an argument to all library calls. The

advantage of the communicator is both for (sub)group communication, and isolation of

user programs that potentially share procedure and function names. It is possible to do

both intra- and inter-domain communication using a groups communicator.

MPI is suitable for both multiple-instructions multiple-data (MIMD) programs, and

single-instruction multiple-data (SIMD) programs. The main library is designed to work

with C, C++, and FORTRAN. Similar to CORBA, parameters to the MPI functions are

designated as either in, out, or inout, indicating where the variable is used for input,

output, or both.

Just like PVM, MPI uses a separate command to indicate whether it is sending

(MPI Send), or receiving (MPI Recv) data. Portable data types are available that can

be sent between heterogeneous systems (and languages), provided the proper constructors

are used. Most messages are on a one-to-one basis, where the sender indicates the recipient

of the message. It is also possible to do broadcast type messages using MPI Bcast which

sends the arguments to all processes in the same group as the sender, including the sender

itself.

MPI also has functions for performing non-blocking sending and receiving, using

MPI Isend and MPI Irecv, respectively (the I is for immediate). Whenever non-blocking

I/O is used, regardless of the system, methods must be available for testing whether the

requested I/O function has completed. MPI has two functions for this purpose, MPI Wait

and MPI Test, that are blocking and non-blocking testing functions, respectively. Similar

functions also exist to test for completion in groups of non-blocking I/O calls.

Sending messages over a network usually involves placing the message data into a

buffer, and then transferring the buffer to a socket for transmission. The reverse is true

for receiving incoming data is copied from the socket buffer into a buffer that is ac-

cessible to the user’s program. Proper handling of these buffers can have a significant

performance impact, which is why MPI allows a limited form of buffer control by desig-
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nating a communication mode. The four modes available are:

1. Standard it is up to the MPI system to determine if a message is buffered before

it is sent. It is the default setting.

2. Buffered the message to be sent is buffered, and can be sent (and possibly com-

pleted) regardless of whether a matching receive call has been made. The buffer for

the message must be supplied by the user’s program. This version is invoked using

MPI Bsend.

3. Synchronous similar to buffered mode, except the completion of the send only

occurs if a matching receive has at least started executing. Thus, it is guaranteed

that both ends of the message are synchronized on the communication before either

can move on. This version is invoked using MPI Ssend.

4. Ready a send in ready mode will only start if the matching receive call has already

occurred. If this mode is used before the receive call is invoked, an error occurs.

This version is invoked using MPI Rsend.

All of these special sends can match with any of the multitude of receives that are part of

the MPI library. There are also matching non-blocking versions of all these send methods.

PVM and MPI are often compared, since they appear very similar at first glance. There

is some debate as to whether this is even a valid comparison [11], since both systems were

designed with different goals in mind. Some of these differences are very subtle, and

some are more implementation-specific differences rather than specification differences.

However, from the point of the discussion here, PVM and MPI are very similar in that

they are both message-passing based systems, as opposed to shared-memory systems.

2.2 Coordination Languages

This section describes a group of programming languages called coordination languages.

While some coordination languages aren’t true programming languages, most were de-

signed to be an extension to existing programming languages that wanted to add high-

level coordination capabilities. As mentioned in Section 2.1.4, coordination in parallel

programs is either control-driven or data-driven.
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Control-driven languages are characterized as having one path of execution explicitly

tell another (or multiple) path of execution when to do something, and the receiving path of

execution was awaiting the notification. Thus, communication between paths of execution

occur at known locations and times. In this regard multiple paths of execution can be

considered to be tightly coupled to each other. Examples of control-driven languages

include Conic, Darwin/Regis, and Durra [18].

Data-driven languages are characterized as having multiple paths of execution watching

for a specific state change in various variables. When the desired change occurs, the path

of execution can then take the appropriate action. The variables being watched need to

be accessible to multiple paths of execution, which implies some form of shared memory.

Because coordination is done using the state of variables instead of explicit messages,

multiple paths of execution can be considered to be loosely coupled. Examples of data-

driven languages include Linda, LAURA, Ariadne, and Sonia [18]. The main coordination

language of concern to this thesis is Linda; thus, the following subsections describe Linda

and some of its various extensions in more detail.

2.2.1 Linda

As just mentioned, Linda isn’t a true programming language, it was designed to be an

extension to existing programming languages that want to add high-level coordination

capabilities. One of the most common variants is C-Linda, but Linda features have also

been added to FORTRAN, Scheme, and Modula-2 to name a few [18].

If two processes need to communicate, they don’t exchange messages or share

a variable; instead the data producing process generates a new data object

(called a tuple) and sets it adrift in a region called a tuple space. The receiver

process may now access the tuple. [4]

Linda isn’t limited to just two processes, any number of processes can use a tuple space

to communicate and coordinate their activities. A tuple is a series of typed fields, usually

consisting of strings and numbers. From a programming point of view, a tuple can be

thought of as a simple record structure.

Standard Linda defines four primitives that can be performed on the tuple space: out,

in, rd, and eval. The out statement is used for placing tuples into the tuple space; e.g.,
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in C-Linda:
out("test string", 30, 1.676);
out(23, 1, -6.1);
out("John Smith", 4321);

These statements create corresponding tuples and place them in the tuple space. The

out statement is non-blocking execution returns immediately after each call. The two

primitives in and rd are used to retrieve tuples from the tuple space. For example,

statements to retrieve the previously entered tuples would be:

in("test string", ?i, 1.676);
rd(?x, 1, -6.1);
rd("John Smith", ?emp id);

Tuples are retrieved by matching a template created from the arguments passed into in

and rd. The question mark (?), acts as a wild card with the restriction that any wild-

card matching value is of the appropriate type. Matching values are then copied into the

variable. Assuming the variables i, x, and emp id are all declared as integers, i will be

assigned the value 30, x will be assigned the value 23, and emp id will be assigned the value

4321. Both statements block until a tuple matching the template is found; if more than

one matching tuple is found, one is arbitrarily chosen from the matches. The difference

between in and rd is what is done with the matching tuple. The in statement removes

the matching tuple from the tuple space, while rd makes a copy of the tuple, leaving the

original in the tuple space.

The final Linda primitive is eval. This primitive is similar to out, except that it

inserts active tuples into the tuple space instead of the passive tuples like out. Active

tuples contain their own path of execution, usually as a separate process. When the active

tuple has finished processing, it turns into a passive tuple and the result of the eval is

placed into the tuple space. Consider the following statement:

eval("process 1", x, y, foo(x, y));

where the function foo can use other language-specific, or Linda operations. A separate

process is created to execute the function foo, with the result of the function attached to

the rest of the arguments to eval creating a new tuple, that is then placed in the tuple

space.

Two other primitives that are sometimes included with Linda are rdp and inp (the

p stands for predicate). These two primitives correspond to the primitives rd and in,

respectively. The difference between these “p” primitives and the regular ones is that the

25



former are non-blocking. When invoked, they return a Boolean value indicating whether

or not a tuple matching the given template was found. Because of the difficulty in im-

plementing the non-blocking behavior, these two additional primitives are not part of the

standard Linda primitives, and are only supported by certain Linda systems.

The advantage of the tuple space over message passing is that the sender and receiver

are decoupled. The sender no longer needs to know where the receiver is, or even who

the receiver is. The receiver isn’t aware of where the sender is, or even who it is. This

is advantageous for programs that can potentially have a large number of receivers. For

example, in a producer/consumer application using message passing, the producer would

need to know about all the consumers. Making sure each consumer is used can be a

difficult problem. However, using a tuple space is much easier. The producer places the

data into the tuple space, and any free consumer can simply look in the tuple space for

new data.

The tuple space can also be used to emulate low-level coordination techniques like

semaphores. One process can place a number of tuples into the tuple space that restrict

access to a critical section. The act of grabbing a semaphore is done using in, which

blocks if no matching tuple exists. When a process is done with the semaphore, it can be

returned to the tuple space using out. Consider the following

for(int i = 0; i < n; i++)
out("semaphore");

...
in("semaphore");
. . . // critical section
out("semaphore");

where the variable n is the number of semaphores to be created. The critical section is

protected by a semaphore, implemented using a tuple. Semaphores protecting different

critical sections can be assigned separate tuple items to help distinguish the semaphores.

This is the basis of the Linda coordination language. As stated earlier, it is designed

to be an extension to existing programming languages. Just as any language is modified

or extended to add new capabilities, such as Linda’s tuple space, the same holds true for

Linda itself. Some of the various Linda-like extension languages will now be discussed.
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2.2.2 Piranha

Piranha [10] and its associated system of the same name is designed to use idle cycles

across workstations on a network. Programs that run in Piranha are usually master/slave

types, where one node places the tuples into the tuple space, while all the slaves are

responsible for removing and processing the tuples from the tuple space. There are three

main functions in Piranha: feeder, piranha, and retreat. The feeder function runs

on the node that submitted the job, and is usually the master, creating tasks in the tuple

space. The piranha function runs on the other nodes, executing the slaves. The retreat

function is used when a user begins interactive work on a node, and halts the executing

Piranha job. It is responsible for restoring the global state of the tuple space; how it does

this is application dependent.

2.2.3 Bauhaus Linda

Instead of using tuples inside a tuple space, Bauhaus Linda uses multisets. The tuple

space is no longer a flat structure, it is possible to add multisets to a specific multiset

to create a hierarchy. To accomplish this, the out, in, and rd operations of Linda have

been redone to work with multisets. Bauhaus Linda also adds several move operations to

manipulate existing multisets. Consider the example taken from [18], lowercase letters are

binary tuples, and capital letters are processes:

{a b b {x y Q} {w {z}} P}

If the process P executes move{w}, the resulting multiset will look like:

{a b b {x y Q} {w {z} P}}

Other functions exist for moving multisets up and down in the hierarchy.

2.2.4 Bonita

The Linda primitives are designed to provide synchronous access to a tuple space (ignoring

the uncommon inp and rdp). Bonita [20] primitives are designed to provide asynchronous

access to tuple spaces. Bonita also makes use of multiple tuple spaces, so normal Linda

operations now require an argument referring to a specific tuple space. Several of the

Bonita operations are overloaded, which are as follows:

27



rqid = dispatch(ts, tuple | [template, destructive | nondestructive])
rqid = dispatch bulk(ts1, ts2, template, destructive | nondestructive])
arrived(rqid)
obtain(rqid)

The three main Linda primitives, out, in, and rd are all overloaded in the dispatch

primitive. The variable ts refers to the tuple space in question. If the second argument

is a tuple, that tuple is to be placed inside ts, similar to the Linda out primitive. If a

template is given, it means a tuple is to be retrieved from ts, followed by a flag indicating if

it is destructive (Linda in), or nondestructive (Linda rd). This primitive is non-blocking,

and the rqid (request identifier) returned refers to the matched tuple.

The dispatch bulk primitive is used to move tuples between two tuple spaces. Tuples

that match the template are transferred from ts1 to ts2. If the last argument is destruc-

tive, it means the tuples are moved; if it is nondestructive the tuples are copied. The rqid

returned is then used in conjunction with other primitives to determine how many tuples

where moved/copied.

The final two primitives arrived and obtain are used to determine if a tuple is

available, and retrieve a reference to the tuple, respectively. The arrived primitive is

non-blocking, instantly returning either true or false. The obtain primitive is blocking

it only returns with the specified tuple when the requested tuple is finally available.

Bonita makes no reference to the Linda primitive eval. It was determined that process

creation should be the responsibility of the underlying environment to create processes,

not Bonita itself. However, as noted in [20], primitives to control the creation of processes

may be added in the future.

2.2.5 Objective Linda

Objective Linda was designed with the goal of qualifying as a open distributed system [15,

16]. The main concerns it deals with are:

1. Heterogeneous hardware the computers in such a system can consist of various

architectures.

2. Heterogeneous software the computers in such a system can consist of various

operating systems. These can also have different programming languages in use.

3. Heterogeneous configuration over time number and types of computers involved
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in such a system are dynamic, and can change at any time. Thus, software running

on such a system must be able to appear and disappear on their own.

To meet some of these challenges, the creators of Objective Linda felt that the original

Linda specification was too restrictive. Instead of using tuples, Objective Linda uses ob-

jects, instances of ADTs that are described in an language-independent notation called

Object Interchange Language (OIL). While this language appears to rely on objects, be-

cause it relies heavily on ADT descriptions, it is possible to use a non-object-oriented

language that can adequately implement ADTs to create OIL objects. Standard object-

oriented languages form a hierarchy of objects, but this property isn’t required. OIL

objects are not subtype related, but instead follow matching relations. This follows the

Linda idea of performing tuple matching.

Ideally, it would be possible to perform object matching by supplying an object and

any required predicates to the standard Linda in and rd primitives. To accomplish this,

so called function objects would be required to represent the predicates. Instead, the root

of the Objective Linda hierarchy, OIL Object, has a match function which takes a template

object. It is then up to the programmer to define how two objects are supposed to match.

The OIL Object class also has an evaluate method as a starting point, when creating

active objects.

Because of the heterogeneous configuration nature of open distributed systems, Ob-

jective Linda views the standard blocking primitives in and rd as limiting, because of

potential disconnects when the network is changing. The non-blocking primitives inp and

rdp are viewed as semantically incorrect. Instead of immediate failure when a matching

tuple can’t be found, these methods should instead mean a matching tuple can’t be found

at the moment. The Objective Linda solution to this problem is to add timeout counters

to the in and rd primitives. Depending on the value of the timeout counter, it is possible

to have them behave like the standard blocking primitives (timeout of infinity), or the non-

blocking primitives (timeout of zero), and everything in between. To keep the appearance

of consistency, timeout counters are also added to the out and eval primitives.

Another problem seen with the original Linda primitives, specifically with in, is the

inability to remove multiple tuples at once. This is an important ability that is often

required for certain synchronization problems. The solution chosen is to have the primi-
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Figure 2.1: Multiple object spaces in Objective Linda

tives work on multisets. The Objective Linda multiset is treated as a container with three

operations: get, put, and the current number of items nbr items. With the addition of

multisets, there is the need to specify the maximum and minimum values required in the

multiset. For example, in a synchronization problem, it may desirable to grab either at

least five, and up to 10 tokens at once, where 5 and 10 would be set as the minimum

and maximum sizes of the multiset, respectively. Again, for consistency reasons, the other

Linda primitives were augmented to deal with multisets and timeout counters.

An important distinction between standard Linda and Objective Linda are processes.

As mentioned earlier, standard Linda treats both passive and active tuples as the same.

When an active object, created from an eval, finishes executing it turns into a passive

object. Objective Linda, on the other hand, has a clear distinction between objects and

processes. Processes created as the result of an eval operation do not turn into a passive

object when they finish, they simply disappear.

Objective Linda supports multiple object (tuple) spaces. However, it does not support

nested object spaces; i.e., the class Object Space is not a descendant of class OIL Object.

When a new process is created, it by default gets access to two objects spaces, one that is

local to the newly created process called self, and one to the object space where eval was

invoked on, called context. Of course, a process can create more object spaces, if needed.

Consider Figure 2.1, if process A created three children: B, C, and D; each child would

have access to their own private object space, as well as their parent’s object space. While

this may appear to form an object-space hierarchy, this is not the case as the private child

object spaces are not stored inside the object space of A. Any communication between the

children and their parent can be accomplished by placing/removing objects in A’s object

space. This communication is still limited, only processes that share the same parent

can communicate with each other. The solution is to allow other processes access to the
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private tuple space contained in each object. As mentioned earlier, objects spaces can’t

be nested, so instead of the children placing their self object space into their context

object space, they place what is called an object space logical. The class OS Logical is a

descendant of OIL Object, so it can be placed inside an object space. Once a logical has

been placed in an object space, any process can use either in or rd to access it. Once

a process has a different process’s logical, it can then use the Objective Linda primitive

attach to gain access to the actual object space. Thus, to summarize, the Objective Linda

primitives are:

boolean out(Multiset *m, double timeout)
boolean eval(Multiset *m, double timeout)
Multiset *in(OIL Object *o, int min, int max, double timeout)
Multiset *rd(OIL Object *o, int min, int max, double timeout)
Object Space attach(OS Logical *o, double timeout)
int infinite matches // constant for min and max values
double infinite time // constant for infinite timeout delay

Using this set of primitives, the creators of Objective Linda feel that they have all the

components necessary to qualify as an open distributed system.

2.3 Grid Systems

This section is meant to give a brief overview of two prominent grid systems currently

available: Globus and Condor. The Globus system is designed around the idea of making

services available to users on the grid. Condor is a high-throughput computing system

designed to harness unused cycles on desktop computers.

2.3.1 Globus

No discussion of grid environments is really complete without mentioning Globus. The

group behind the Globus project view the grid as a pervasive entity, much like the current

Internet; however, it isn’t meant to replace the Internet. Globus is not a true grid system

more accurately, it is a toolkit to help developers create grid-enabled applications. Globus

is designed to create a grid software infrastructure of basic grid services. The Globus

toolkit consists of seven essential services [6]:

1. GRAM resource allocation and process management

2. Nexus communication services, both unicast and multicast
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3. MDS information services, distributed access to structure and state information

4. GSI security services

5. HBM system health and status services

6. GASS remote data access, providing both sequential and parallel interfaces

7. GEM executable management (construction, caching, and location)

The most important of these services is probably the Metacomputing Directory Service

(MDS). The grid infrastructure can change very fast, with new nodes coming and going,

new services replacing old ones, and new services coming into existence. Applications will

need to use this information service to keep track of all these changes. As applications use

more of these services, it is deemed to be more “grid aware.”

Services are deemed either as being local or global. Local services are very simple, so

they can be deployed easily. Global services are more complex, but are built on top of the

local services. The seven core services listed act as interfaces between the local and global

services. Interfaces are usually designed to hide low-level details from outside interfaces;

however, this is not the case in Globus. Globus interfaces are deemed to be translucent,

allowing outside entities to gain information about the low-level services offered. The

reason for this design decision is it gives the higher-level services the ability to fine tune

the lower-level services to their particular needs.

Default implementations of many of these services are supplied to allow developers

to get up and running with the Globus toolkit fast. Services can then be extended and

customized as they see fit.

2.3.2 Condor

The Condor system, developed by the Condor Team at the University of Wisconsin-

Madison, has been in use for more than 10 years [24]. Condor can be classified either

as a batch system, or a high-throughput computing system. It is designed to allow users

to submit jobs to a group of computers, called a Condor pool, where it is executed. The

results of the job are returned to the user upon its completion. Two of the capabilities of

Condor relevant to this thesis are its checkpoint and migration, and remote system calls
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features. Before these concepts are discussed in detail, a high-level view of the Condor

system is given.

Scheduling in Condor is done using an advertisement and matchmaking system as

discussed in Section 2.1.3 on page 14, which Condor calls ClassAds. When submitting

a job to a pool, the user must specify the requirements and preferences (called a rank)

for the job, creating a ClassAd request. For example, the desired machine must have a

minimum 128MB of RAM, and it is desirable to have the fastest integer-based performance

possible. Computers also advertise their available resources when they join a Condor pool,

creating a ClassAd offer. Some information is static, such as the processor and operating

system, while other information is dynamic, such as the current load average. The Condor

scheduler is then responsible for matching requests and offers, making sure all the desired

requirements are met. In the case where multiple machines meet all the requirements, the

rank comes into play.

The rank allows a user to specify either floating-point values or Boolean conditions to

be met. A false Boolean value is given the value 0.0, while true is given a value of 1.0.

Because a desired rank field may not be available on a particular machine, it is assigned a

value of 0.0 for that rank. For example, if a program requests a machine with the highest

floating-point performance, but none are specified in a computer’s ClassAd offer, that

computer is given a value of 0.0 for floating-point performance when performing a match.

When multiple computers meet the requirements, the machine with the highest rank is

selected. An example requirement and rank description is:

Requirements = Memory >= 512 && OpSys == "OSX"
Rank = cpus >= 2

This description says that the program requires a machine with at least 512MB or mem-

ory, running OSX, and it would prefer a machine with two or more processors. The

condor status command can be used to list machines that match specific constraints

before submitting a job, to gain an idea of what information is available about the various

machines in a pool.

When a job is submitted to a pool, it is accompanied by a description file. This file

contains information about what files are used for input and output, the architecture

required for the program, and so on. This file also contains the universe in which to run

the program. Condor has several runtime environments, called a universe, for executing
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code. The main ones of interest here are:

1. Standard Universe jobs submitted to this universe need to be relinked to the

Condor library using the condor compile command. This allows the job to take

advantage of the checkpointing, migration, and remote system calls offered by the

Condor system.

2. Vanilla Universe jobs submitted to this universe cannot be relinked to the Condor

library. Access to files must be done using either a shared-file system, or through

Condor’s file-transfer mechanism. Fewer services are provided than in the standard

universe, but at the same time fewer restrictions are placed on the job. This universe

is used mainly when the object code isn’t available, preventing it from being relinked

and placed in the standard universe; e.g., commercial programs and interpreted

languages.

3. PVM Universe jobs submitted to this universe are written for the the PVM envi-

ronment, as discussed in Section 2.1.5.1. This universe is designed for PVM appli-

cations that follow the master/worker paradigm of parallel programs. The machine

that submits the original job to Condor is designated as the master, and cannot be

preempted. Requests to add more machines to the PVM are transferred to Condor,

which is responsible for finding an available machine. If a PVM node disappears,

it’s assigned task is restarted (not resumed), on another node inside the PVM. Most

PVM programs can run inside this universe with no modification.

4. MPI Universe jobs submitted to this universe are written for the the MPI environ-

ment, as discussed in Section 2.1.5.2. Condor currently supports MPICH versions

122 through 124. Programs submitted to run in this universe will have to be com-

piled with mpicc. The machines used to execute the MPI program are required to

be setup as dedicated resources; i.e., the jobs will not be preempted or suspended if

a user sits down at the keyboard.

5. Globus Universe jobs submitted to this universe are written for the Globus system,

as discussed in Section 2.3.1, but are submitted through Condor. Job submission is

done through the GRAM protocol. The advantage of using Condor to submit jobs to

34



Globus is that Condor helps deal with common errors that can arise with executing

a job, even if it is executing in the Globus system.

6. Java Universe used for jobs written in Java. Jobs in this universe have no check-

pointing or remote systems calls abilities. Jobs can be submitted either as a single

class file, or as a jar file.

Checkpointing in the Condor system is only available to jobs submitted to the standard

universe. Checkpointing works by using custom C library calls to save the entire memory

footprint and execution stack of a program, similar to a core dump. The saved form is

then transferred either to the computer that originally submitted the job to the pool, or

to another machine designated by the user as a checkpoint server. The system periodically

checkpoints an executing job automatically. The job can also create checkpoints itself by

calling one of two library routines:

ckpt() // performs a checkpoint and returns
ckpt and exit() // checkpoint and the exits

The second version causes the job to halt entirely, but can be restarted later by the system.

While the original C/C++ program submitted may have been platform independent, the

resulting checkpoints are not. For example, a program that started on a Linux machine

using an Intel architecture can only use that configuration from then on. It cannot be

resumed on another machine; e.g., a Solaris machine with a UltraSparc processor, even if

the original program runs on that configuration. While the Condor system runs on many

different architectures and operating systems, only a small subset support the standard

universe.

Migration is tied very closely to checkpointing. Migration is when a job needs to

leave the machine it is currently executing on for various reasons; e.g., it is now being

used locally. When this happens, there are several options on what to do with currently

executing jobs:

1. The job can be checkpointed and resumed somewhere else (standard universe).

2. The job can be stopped and restarted from the beginning somewhere else (vanilla

universe).

3. The job can be temporarily suspended until the machine becomes available again

(vanilla universe).

35



Of course, option 3 isn’t viable if the machine in question crashed, in which case option 2

must be used. While the idea of checkpointing and migration seem like a great idea, using

these capabilities results in some restrictions being placed on programs in the standard

universe [24], including but not limited to:

• Multi-process jobs are not allowed, including system calls fork() and exec().

• Inter-process communication is not allowed, including pipes, semaphores, and shared

memory.

• All network communication must be brief, because it can delay checkpointing and

migration.

• Alarms, timers, and sleeping are not allowed.

• Opened files must either read-only or write-only. A file in read-write mode will

generate a warning, but not an error; however, it can cause significant problems if

the program is resumed from a checkpoint.

• Memory mapped files are not allowed.

• Multiple kernel threads are not allowed; however, multiple user threads are allowed.

• A large amount of disk space is required for the checkpoints, from 10M and up. This

can be alleviated by designating a checkpoint server in the description file.

The major advantage of the standard universe, besides checkpointing and migration,

are the remote system calls. When a system call is made to a file in the standard universe,

the Condor system intercepts the call and redirects it to the machine that submitted the

job to the pool. When a job is submitted to a Condor pool, a special process called a

condor shadow is started on the user’s machine. This process receives any systems calls

from the submitted job, and sends the results back to the remote machine in the pool.

The net effect is that the program can remain unmodified from running on its originating

machine to running inside a pool. The disadvantage of this setup is that the originating

machine must remain on and connected to the network while it’s job(s) remain unfinished.
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2.4 Summary

With all the active research areas in grid computing, it is somewhat surprising that there

aren’t more grid systems currently available. Often these research concepts and examined

in isolation, without the existence of a full grid system to test them. Absent from the

major research areas discussed in Section 2.1 is checkpointing. While checkpointing isn’t

necessarily a valuable feature for all grid applications (see Section 1.2), it can be beneficial

for high-throughput grid applications.

The most common high-throughput grid system with checkpoints is Condor, discussed

in Section 2.3.2. While it has many useful features, it has a serious limitation in that

jobs are restricted to a single computer. There is a hole in grid research there is

no data available about the interaction between checkpointing and coordination issues.

The JOLTS system, described in the following chapter, is designed to investigate the

problem of combining checkpointing capabilities in a grid system with a coordination

model that allows jobs to communicate and coordinate while existing on various computers.

The coordination model used in JOLTS is an extension of Objective Linda, described in

Section 2.2.5.
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Chapter 3

JOLTS High-Level Design

Grid research is a large area, as shown in the number of topics covered in Chapter 2. One

topic that wasn’t mentioned in the grid research areas in Section 2.1 is checkpointing.

While fault tolerance and recovery is a sub-area of performance, it is usually handled by

detecting failures, and restarting the failed job. Only recently has checkpointing started

to receive more attention, as researchers are realizing that restarting a job isn’t always an

acceptable option. For example, if a program has been running for six months, with one

week of computation time left, what happens if a power failure occurs? With checkpoint-

ing, only the work since the last checkpoint was made is lost; e.g., two days, as compared

to six months if the entire job had to be restarted. A few systems are starting to sup-

port checkpointing, such as Piranha and Condor, discussed in Sections 2.2.2 and 2.3.2,

respectively. One problem with the current checkpointing systems is they are designed to

operate independent tasks they have no support for highly cooperative tasks. The rea-

son is that resuming a small piece in a large parallel system is a non-trivial task. Thus, a

new system was developed, called JOLTS (Java Objective Linda Tuple Space), to support

checkpoints for coordinating jobs.

This chapter is meant to both describe some of the features of the JOLTS system, and

give a description of some of the design decisions that went into its creation. Discussion

of the actual high-level design is left to Chapter 4. Section 3.1 gives a conceptual overview

of how the JOLTS system works. Section 3.2 describes the design goals for the JOLTS

system. Section 3.3 describes the checkpointing system present in JOLTS. Section 3.4 and

onward follows the ordering of grid research areas discussed in Section 2.1, and how they

relate to JOLTS.

38



User

Client

Central Server

Temporary
Storage

Scheduler

Security
Manager

Worker Node

Worker Node

Control

Data

Figure 3.1: High-level conceptual diagram of JOLTS

3.1 Conceptual Overview

A high-level conceptual view of JOLTS is given in Figure 3.1. Using the grid “application”

definitions discussed in Section 1.2, JOLTS is classified as a high-throughput grid. It is

also not classified as a peer computing system, since it relies heavily on a central server

and nodes in the grid don’t talk directly to each other.

The main reason for choosing Java as the implementation language is the portability

aspect, since it will run on any computer that has a JVM. This moves the potential

number of nodes at the University into the hundreds (possibly thousands), instead of a

few dozen, if it was restricted to Solaris, for example. Another reason for choosing Java is

its threading capabilities. Any grid system is inherently highly concurrent, and without

good thread (or process) support, implementing such a system would be a near impossible

task. When designing the system, it is important to remember that users will be writing

their own programs to run on the system. This implies implementing the system in a

language that is familiar to the end users of the grid. Few users will want to learn a new

language so they can run their programs on a grid. Also, porting existing programs to the

system is more difficult if the language used for the program needs to be changed. Thus,

the final reason JOLTS was implemented in Java is that many of the computer science

students at the University of Saskatchewan are familiar with it, as opposed to HPF.

Users wishing to submit jobs to the grid system do so using the supplied client (graph-

ical or command-line based), provided their program implements the proper interface (see

Section 4.2). Programs need to be sent to the central server, either as a class file or a
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jar file, along with any input files the programs will need. Once the job passes through

the security checks (see Section 3.4), the server returns an ID that is assigned to the job.

The user then requests the results for his/her program by returning the ID to the central

server. The server will then return one of several messages based on the current state of

the user’s program; e.g., “try again later, your program is still running.”

The worker nodes are where the programs submitted by the users are actually executed.

When a worker node first joins the grid, it sends some basic statistics information to the

central server; e.g., Java version, operating system, available memory, and so on. When

a user job arrives at the central server, the server determines which worker node that job

will be assigned to (see Section 3.6). The user’s program is then transferred to the worker

node, where it executes. When the job is finished, the results are sent back to the central

server, where they are stored until the user requests their results. The results are in the

form of Java objects, not text files.

3.2 System Goals

This thesis research focuses on how to effectively design and implement a checkpoint

mechanism for highly parallel, coordinating programs running in a grid environment. This

consists of designing and building a new grid system, with specific goals in mind:

1. The system should keep overhead to a minimum.

2. The system should make efficient use of the available resources.

3. The system should be scalable.

4. The system should support several different parallel/concurrent programming mod-

els.

It is generally well known that simply parallelizing a sequential program doesn’t result in

a linear speedup. For example, breaking a program into four pieces and running them in

parallel doesn’t automatically imply the result will be four times faster, there is overhead

involved. Possibly the largest piece of overhead is moving the sequential program into a

parallel form; however, how to do this is beyond the scope of this thesis. If a system is used

to run the resulting parallel program, overhead exists in network communication, creating
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the parallel processes, assembling the results, and so on. The first goal is to minimize the

JOLTS overhead to keep it within some acceptable margin.

The second goal is straightforward, the grid system should not consume excessive re-

sources, the majority of the resources on the worker nodes should be available to the

programs running on the grid. The second goal will require careful design and program-

ming of the grid system itself. For example, passive loops should be used instead of active

loops when waiting for specific events to occur.

The third goal requires that the system should be able to handle large numbers of nodes

and concurrent programs. Thorough stress testing will be required to ensure the scalability

of the system. For example, a series of tests will be designed and run to determine the

number of worker nodes that the central server can handle before performance is adversely

affected. Another scalability issue is to determine how the performance of applications

running on the grid scale, as more nodes are added to the grid. For more information

about how the system was tested, refer to Chapter 5.

The final goal will be met using several levels of Application Programmer Interfaces

(APIs), discussed in the following subsections.

3.2.1 Simple/Sequential API

The first API is a simple, beginners API designed to get programmers familiar with the

system, how it works, and how to write programs for it. It has a method for receiving

a mechanism that the programmer can use to create checkpoints (see Section 3.3), and

an execute method. The execute method should contain the main body of the program

to be executed. Since programs are actually objects, the constructor used to create the

object/program should have no constructors. This API is also beneficial for programs that

can’t be parallelized, but can still benefit from using the checkpoint mechanism in JOLTS.

3.2.2 Parameter Experiments

In computer research experiments, programs are often run repeatedly, only varying the

input parameters so results can be collected. These input parameters can be varied, from

input data to flags indicating what algorithm is to be tested. For example, if different

caching schemes are being tested in a network simulator, each run through the program

can be to test a different caching algorithm, while the data that is being cached is identical
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for each run. This type of parameter experiment is suited perfectly to a grid environment.

Each node in the grid can be assigned a different parameter configuration for the same

experiment. This approach has the advantage of greatly reducing the experimentation

time from a sum of all the experiments, to the time required for the longest experiment

(provided there are at least as many nodes as there are parameter configurations). Two

different APIs are available in JOLTS to allow the running of parameter experiments.

The first API is for Single Instruction Multiple Data (SIMD) experiments. This type

of experiment is characterized in that the exact same program is run repeatedly, but the

data that is being processed in each run is different. Returning to the network simulator

example, an SIMD example would be a simulator that is determining average request

times, based on several different web server logs. Each node would be running the same

program, but each node would be using a different input file.

The second API is for Multiple Instruction Single Data (MISD) experiments. This

type of experiment is characterized in that slight modifications of the same program (or a

different program) is run, but that the data being processed is identical for each program.

This is the type of experiment described at the start of this subsection, where different

caching algorithms are being tested, each using the same input file.

SIMD and MISD are very similar and can in fact be viewed as two different ways

to attack the same problem. If the parameter experiment is designed to fill a table with

experiment results, SIMD and MISD basically determine whether the results table is being

assembled a row at a time, or a column at a time. The choice to use one or the other

will depend both on personal preference, and how the programmer views the experiment

he/she is conducting.

In addition to the Simple/Sequential API, the SIMD and MISD APIs require the

implementation of a collector, used to assemble the results from the various nodes in the

grid as their parameter experiments are completed. A default implementation is supplied

as part of the API; however, the programmer is free to write his/her own collector from

scratch, if desired.

3.2.3 Object Space

While the previous APIs have dealt with largely independent programs, this isn’t an

accurate reflection of the full capability of a grid system. To harness the full potential of a
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grid system requires that nodes inside the grid have the ability to communicate with each

other to accomplish a task. As mentioned in Section 2.1.4, there are two main ways to have

components communicate with each other, by message-passing or using a shared-memory

space.

Message passing appears to be the dominant form of communication in grid systems,

but it relies on the fact that the remote system receiving the message is at a known

location, and it knows about the sender; i.e., the sender and receiver are tightly coupled

together. The ability of jobs in the JOLTS system to move between nodes in the grid

breaks this assumption about message passing. There are several different ways to solve

this problem, but each solution also has an associated problem. One common solution is

to leave a forwarding pointer/address on the worker node, when a job moves to another

worker node. The problem with this solution is that when code is moved to a different node

because the original node crashed, that forwarding pointer will not be available. Another

solution would be to leave a forwarding pointer on a central server. This approach has

the advantage over the previous solution in that it is an assumed grid property that the

central server will not go down; thus, the forwarding pointer will always be accessible.

However, if the job that moved has not been assigned to a new node; i.e., there are no free

nodes on the grid, the forwarding pointer will be empty. This implies that the message

being sent needs to be stored until the moved job is assigned to a new node in the grid,

and then the message can be forwarded. This solution does work, but instead of passing

messages around, this design is much closer to the shared-memory space design.

Shared-memory spaces are usually for communication inside the same machine, but it

is possible to create distributed shared-memory systems as discussed in Section 2.1.4.2.

Ideally each node in the system would be able to share part of it’s memory; however,

moving code in the JOLTS system will cause serious problems. Because any node could

potentially need to talk to any other node, the situation is worse than in message passing.

Instead of having just sender/receiver coupling, all the nodes would be tightly coupled

to each other. If any node crashed, it could potentially take with it an important piece

of the shared-memory space, which is unacceptable. The solution is to use a centralized

shared-memory space that doesn’t move. This suggests using a tuple space, like those

discussed in Section 2.2. The specific tuple space to be used in the system is based on the

Objective Linda model discussed in Section 2.2.5. From a design point of view, the tuple
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Figure 3.2: Timeline for example object space operations

space is similar to the Blackboard architectural style [3], with the blackboard located on

a central server.

3.2.3.1 Object Space Clarification

One clarification to Objective Linda needs to be made before moving on. The Objective

Linda specification only specifies what the available primitives do, not how they do it.

A major ambiguity exists in how searches for matching objects in the object space are

performed. When a single match is found, there are two options available:

1. Store a reference to the matching object in a temporary location, leaving a reference

in the object space; i.e., no modification is made to the object space.

2. Store a reference to the matching object in a new location, and remove the reference

in the object space; thus, no other active object will be able see/match the removed

object.

Depending on which option is selected, it can have a dramatic effect on programs using

the object space. Consider the following example, illustrated in Figure 3.2.

Assume the object space contains two instances of class A. One active object performs

an in looking for instances of A with min = 1, max = 5, and timeout = 10s. The

two matches are found instantly, but time remains to potentially find three more matches.

After three seconds another active object arrives to perform a rd also looking for instances

of A with min = 1, max = 3, and timeout = 3s. After an additional two seconds, a third

active object arrives that inserts one instance of A using out and then leaves. The question

then becomes, which of the remaining active objects (the rd, in, or both) see the newly

inserted instance. JOLTS makes the decision that modifications to the object space are

atomic, incremental modifications are not allowed; i.e., it uses option 1 given above. Thus,

both active objects see the new insert. Hence, the active object performing the rd finds a
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third match and returns because it has found it’s maximum number of matches. The in

thread waits an additional 5 seconds until it times out, at which point it returns the three

matches it found and removes them from the object space. The results returned by both

active objects are both predictable, and repeatable.

Another option would be to allow the active objects to temporarily remove matches

as they find them; e.g., using option 2 given above. Using this idea, the rd in the above

example will find either 1 or 0 matches, depending on if it sees the newly inserted item

before the in active object does. The rd does not see the initial two objects, since the

in temporarily removed them. Assume the in sees the insert first, causing the rd to

find 0 matches. Thus, the returned results are 3 and 0 for the in and rd active objects,

respectively. However, it could just as easily have been 2 and 1 for the results. The

results are thus nondeterministic, which is usually to be avoided if possible in concurrent

programs.

As can clearly be seen, the results found using the object space can vary depending

on whether or not incremental modifications are allowed to the object space. As a final

example using incremental modifications, change the value to min = 5 for the in active

object. After ten seconds, when the in exits with zero matches, the object space will

contain three instances of A. However, even though they were all present when the rd was

active, no matches were found. This seems counter intuitive, and its why JOLTS doesn’t

allow threads to perform incremental modifications to the object space.

3.3 Checkpoints

Checkpoints in JOLTS are created on the worker nodes, but stored on the central server.

Thus, if a job finishes prematurely on a worker node; e.g., the worker node crashed or the

load became too high causing the job to be terminated prematurely, the server can resume

the program from the most recent checkpoint on a different worker node. Checkpoints are

associated with a number indicating how far along program execution has advanced. Using

time stamps doesn’t work given the fact that work nodes can have different performance

levels, and that all the clocks on the worker node clocks would need to be synchronized

for it to work.

The first decision in designing checkpoints into a grid system is to consider how the
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checkpoints will be created. There are three main options to consider:

1. Allow the system to arbitrarily create a checkpoint when it needs to.

2. Allow the user to specify when a checkpoint should be made.

3. Both options 1 and 2.

Option 1 would appear to be the best option and is the one used in the Condor System

(see Section 2.3.2). This option has the advantage that the user doesn’t have to decide

when to create a checkpoint of his program. This option can decrease execution time

if the checkpoints are expensive to make and save for future use. The downside of this

option is that if the system creates a checkpoint in the middle of a method, it can be very

difficult, or impossible, to resume execution from that point if the program is restarted

from a checkpoint file. This can be done in C using custom calls to manipulate the stack;

however, this does not work in Java, which is JOLTS’s host language. A solution to this

problem is to use a customized JVM, as is done in the NOMADS system [23]. Using a

customized JVM was dismissed because this JVM would then need to be ported to all the

architectures that were going to host JOLTS worker nodes. Option 2, allowing the user

to create their own checkpoints, is more feasible.

In the end, only the programmer knows when her program is in a safe state to create

a checkpoint. The programmer is also in the best position to determine if there is any real

use in creating a checkpoint for her program. For example, if the program is only going

to take six minutes to execute, there may not be any benefit to using checkpoints, since

it would not take too long to just restart the program from the beginning. On the other

hand, if the program is going to run for six weeks, checkpoints could become invaluable.

To create a checkpoint, the user’s program needs to call the checkpoint(short)

method. The short passed in is just used to give ordering to the checkpoints, so the

checkpoint archiving mechanism knows which one is the most advanced checkpoint. The

downside of having the user indicate when to create checkpoints is that he might acci-

dentally create them when his program is not in a stable state, making proper recovery

from the checkpoint impossible. Regardless of which option is chosen, there are still some

fundamental problems to be addressed with resuming from a checkpoint; namely, files and

sockets.
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File objects are references to files on the local computer. When a checkpoint is created

and resumed on a different machine, any files associated with the program will not have

moved with the program. However, the user should not be responsible for recreating file

references each time a program is restarted from a checkpoint; thus, a special file is needed.

Instead of working at the file level, the support class, GridInputStream, operates at the

stream level. This class is designed to reconnect to the source file on the central server

when it is deserialized; thus, from the program’s point of view, the file did move with the

program from one machine to the next.

A similar problem is faced when writing files, but file writing currently is not im-

plemented in JOLTS. Any data that would normally be stored in an output file should

instead be stored inside the object representing the job. The reason file writing hasn’t

been implemented is that any files that are written would need to be written on the server,

not the worker node. This would be done for two main reasons:

1. If the worker node crashed, the output file would be lost.

2. Programs could potentially do malicious things to the worker node, if they had write

access to the disk.

Writing to the server for sequential programs wouldn’t be that hard. The challenge comes

when any of the supported parallel APIs want to write to the same file, at the same time.

Simply appending data to the end of the file could result in a scrambled file as thread

switches take place on the server. There is no clear cut solution to this problem; thus,

why file writing isn’t supported in JOLTS. File writing is actually restricted in the default

JOLTS security configuration to prevent this problem from even arising.

Similar to the problem of file references to files being lost when a program moves,

socket connections are broken when a program moves as well. As mentioned earlier,

the file problem is solved using a customized input stream to create the illusion of the

file moving with the program. This technique will not work for sockets. The problem

with moving a live socket connection from one machine to another is that the remote

end of the socket, possibly on a machine not part of the grid system at all, would view

this as a security violation. The solution to this problem is to create a switchboard, an

intermediary between the program running on the grid, and remote end of the socket.

When a program moves from one machine to another, it breaks its connection to the
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switchboard, and then re-establishes the connection when the program is resumed on a

different machine. The remote machine does not see any actual socket interruption, since

it remained connected to the switchboard the entire time. Currently, JOLTS does not

have a switchboard mechanism.

3.4 Security

While security is an important issue in large commercial grid systems, it is not an over-

riding concern in JOLTS. As seen in Section 2.1.1, a lot of security research focuses on

authorization, authentication, and how it is handled when crossing administrative do-

mains. In JOLTS, security focuses more on the concept of malicious code, preventing

programs submitted to the grid system from doing damage to nodes they execute on in

the grid.

The built-in Java security manager didn’t prove very useful for the types of security

requirements desired for JOLTS. There are several reasons why the Java security manager

couldn’t be used:

1. The Java security manager can vary on each worker node, which is undesirable be-

cause it would require the user to know the security access needed for their program,

and the scheduler would need to be much more complicated to handle these types

of job requirements.

2. The Java security manager works at too high a level and doesn’t allow specific

components to be deemed off limits. For example, restricting access to System.in

while allowing access to System.out isn’t possible.

3. The Java security manager is runtime based. If a job is already running, it is too

late to inform users of security violations. Security checks need to be done when a

job is submitted, and before it begins execution.

This all leads to the creation of a custom security manager that is configurable by an

administrator.

The first level of security is to identify where a computer is located. Only computers

that are part of the University of Saskatchewan domain are allowed to submit jobs to the
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grid system (in the current JOLTS setup). Thus, it is assumed that users coming from a

university machine have already been authenticated by the login system at the university.

While only machines at the university can submit jobs, any computer can be a worker

node in the grid system.

When a program is submitted to the grid system, either as a jar file or a class file, it

is checked to make sure it does not access any forbidden components in the Java library.

Refer to Appendix A.1 as to how this is done. Certain components inside the Java library

have been designated as forbidden either because:

1. using them can potentially break the submitted program; or

2. using them can potentially break the worker node.

An example of case 1 is class FileInputStream. As discussed in Section 3.3, files can cause

problems in the grid system; therefore, the special class GridInputStream class should

be used instead. As a simple example of case 2, user programs are not allowed to call

System.exit because it would shut down the worker node. A more interesting example

of case 2 is the class ThreadDeath. When a worker node’s load becomes too high, jobs

will slowly be terminated until the load falls below some threshold. When a thread is

stopped, an instance of error ThreadDeath is thrown; consequently, if the user’s program

was able to catch this instance, it could prevent the job from being stopped prematurely,

maintaining the high load on the worker node.

As already mentioned, the security manager is configurable by an administrator. A

configuration file contains a list of restricted components. An administrator can change

the default values to change how tight or loose security is on the system. Security checks

are only done on the server, not the worker nodes, so that it can be guaranteed that all

worker nodes connected to a server have the same set of restricted components. It was

suggested that user groups be created with different security levels; e.g., only users in the

highest security level could open sockets. However, this was not done because, as shown

in Section 2.1.1.1, authentication can become a tricky issue. Similar functionality can be

achieved by having a worker node connect to more than one server, where each server has

different security restrictions. Jobs assigned to that worker node will have the security

restrictions corresponding to the server that the job was submitted to.
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After a job has successfully been checked, the system returns a unique job ID. This

ID is used by the user to later retrieve the associated results from JOLTS. This primitive

form of security helps prevent someone from getting unauthorized results.

While some effort has been used to prevent malicious code from disrupting the worker

node that it is executing on, nothing has been done to prevent malicious code from inter-

fering with a remote computer. This decision was based on the fact that it is impossible to

determine the nature of a malicious attack or not. For example, a small web client could

be written to be executed on multiple nodes in a grid. Each node would then contact the

same web server and request several pages. This setup could be used to easily test the

performance of a new web server someone was deploying, a perfectly legitimate use of a

grid system. However, if the administrator of the targeted web server was unaware of this

coming increase in traffic, it could easily be used as a distributed denial-of-service (DDoS)

attack. The point is that by only looking at the source or bytecode, it is impossible to tell

which scenario a program is intended for.

3.5 Performance

Most of the performance enhancements in JOLTS deal with trying to make efficient use of

the network. The largest concern of these enhancements is with the central server, since it

could potentially be communicating with thousands of worker nodes. A secondary concern

is the efficient use of threads inside both the server and worker nodes.

3.5.1 Network

The very first choice is to determine whether communication with the server is socket-

based or RMI-based. Because there exists the possibility that non-Java programs may

wish to submit jobs to the grid, it was decided that connections between the server and

clients would be socket-based. The connection between the server and worker nodes could

be RMI-based, but the problem is that when a new RMI connection arrives, a new thread

might be created (depending on the JVM implementation). Thus, to simplify the design

and have full thread control, communication between the server and worker nodes is also

socket-based.

With regular sockets selected for communication, the next concern is the protocol
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being used. The main consideration is either byte-based or XML-based. XML has the

advantage of being much easier to read, debug, and extend, but has the disadvantage

that it is verbose and consumes more bandwidth. Byte-based communication is the com-

plete opposite, being very difficult to read and modify; however, if designed properly, it

consumes less bandwidth. Byte-based communication was selected because keeping band-

width consumption to a minimum was deemed more important than making the protocol

readable and easily extendable.

With all the socket connections on the server to the various worker nodes, an important

question is whether the sockets should be left open or closed after each communication.

(This is not a concern between the server and clients because clients disconnect after send-

ing new data to the server.) Because creating new sockets can be an expensive operation,

when a worker node first connects to the central server, its corresponding socket connec-

tion is left open for the life of the worker node. All data sent to the server from the worker

node; i.e., when the worker node initiates the communication, is sent through this socket.

Thus, the server will need to continually watch a large number of sockets simultaneously

for incoming data. There are three basic ways to deal with this situation:

1. Spawn a new thread for each socket, which then takes the appropriate action when

incoming data is detected.

2. Store all the sockets connections in a list, and have a single thread going through a

loop checking each socket, to see if it has any incoming data.

3. Use a multiplexor to watch all the sockets. This can be achieved using the Reactor

pattern described in [21].

Option 1 is unacceptable because creating threads is an expensive operation, and the

sheer number of threads required would result in continual thread swapping in the JVM,

preventing any of them from making any real progress. Option 2 is a much better solution,

but it is basically an active wait, which can consume unnecessary resources. The only

remaining option is option 3.

From a conceptual level, a multiplexor operates in a similar fashion to option 2, but an

important difference is that there is no active wait involved. Multiplexors usually rely on

low-level system calls to watch for incoming data, so they are more common in C/C++.
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However, multiplexors were introduced in Java 1.4 with the inclusion of the Selector

class in the java.nio package [12]. For more details on an example using a multiplexor

in JOLTS, refer to Appendix A.3.1. For the discussion here, it is only important to know

that before a socket can be monitored by a multiplexor, it must be placed in non-blocking

I/O mode.

When the sockets are placed in non-blocking mode, any read or write method calls

on the socket return instantly. The protocols designed for JOLTS took this into account.

Most messages are small enough to reside inside a single TCP/IP packet, so when any data

arrives, it is guaranteed to all be there. The one exception to this rule is when sending

files. In such a case, reads and writes need to be placed into a loop until all the data has

been sent/received correctly. Depending on the reason for the incoming data, it is either

handled by the thread executing the multiplexor, or it is executed from inside a thread

pool.

3.5.2 Thread Pools

Both the central server and worker nodes need to deal with many concurrent activities.

This implies either using multiple processes or threads. Since data is continually being

passed between these activities, it is much simpler to use threads instead of processes.

Creating a new thread for each activity can be very expensive, so a thread pool is used

instead. Thread pools in JOLTS behave as repositories for multiple threads that are

available for executing any required tasks. For a task to be executable from inside a

thread pool, it needs to implement the PoolJob interface.

When a job is placed inside a thread pool, a free thread is selected to execute the job.

If no free threads are available, the job is placed inside a FIFO list for processing, once

a thread becomes available. When a thread finishes executing a job, the reference to the

executed job is lost (eventually garbage collected), but the thread itself does not finish.

The thread goes back into the pool as a free thread and either executes a pending job

request, or enters a passive wait until a new job is assigned to it.

Multiple thread pools exist in both the server and the worker nodes. The reason

for multiple pools on both the server and worker nodes is to allow specific functions to

continue executing, instead of being stalled behind a few large jobs that would consume

all the threads in a single pool for an extended period of time.
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3.5.3 Caching

There are three different types of caching that take place inside the grid system. Two of

them are designed to save unnecessary network communication (both done on the worker

node), while the third is used to reduce disk space on the server.

The first type of caching on the worker nodes revolves around the checkpoints generated

by the client programs being executed. Depending on the size of the checkpoints, it can

potentially take a long time to send the checkpoints to the server. In the case when the

program can generate new checkpoint files faster than they can be sent over the network

(assuming checkpoints are generated in non-blocking mode), consecutive checkpoints can

be in the same thread pool awaiting execution. If this happens, the newer checkpoint file

takes priority and the older checkpoint is destroyed. This results in a saving of network

bandwidth where only the most recent checkpoint is sent to the server.

The second type of caching on the worker node revolves around the GridInputStream

class. As mentioned in Section 3.3, this class is used for reading files by programs submitted

to the grid. When data is to be read from this file, it is first downloaded from the server

and cached on the worker node. This cached file can then be used by any instances of the

same program that later migrate to this worker node. When the GridInputStream object

is deserialized with the migrated program, it checks for this cached file and uses it. Once

all the cached data is used, more data is downloaded from the server and attached to the

previous cached data and the whole process repeats itself.

The final type of caching exists on the server and is designed to prevent excessive disk

usage. When a checkpoint file arrives from a worker node, it is downloaded and saved to

disk. Because checkpoints could arrive from different worker nodes at different points in

the submitted program, the checkpoints can be from different points as well. Checkpoints

can potentially be very large, so a check is made for all the stored checkpoint files, and

only the most advanced checkpoint is kept.

3.6 Scheduling

Scheduling in JOLTS is not very advanced, because scheduling in grid systems is its

own very large research area (see Section 2.1.3), and is beyond the scope of this thesis.

Scheduling, or the selection of what grid node is to host a job is accomplished inside a
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single class, Scheduler. The scheduler operates on a simple first-come first-serve basis.

When a new job requests to be assigned to a node, the scheduler scans through a list of

worker nodes and returns the first one that is willing to host a job. Determining if a node

is willing to host a job depends of the following three properties:

1. Whether or not the worker node is currently hosting/executing the maximum number

of jobs it is willing to accept this value is specified by the administrator of the

worker node.

2. Whether or not the load on the worker node is below some threshold this threshold

is also specified by the administrator of the worker node.

3. If the node is still alive this is determined by checking the time since the last

heartbeat message from the worker node. If the time is beyond a multiple of the

heartbeat time, the worker node is removed from the master list of worker nodes.

When a request for an available worker node is made, it is possible that none of the grid

nodes are willing to accept additional jobs. In this case, the request is suspended for the

duration of one heartbeat. When the time has elapsed, all the worker nodes will have

updated the server with their current load and the process of checking for an available

worker node begins again.

While this scheduling algorithm isn’t advanced, JOLTS is designed such that different

scheduling algorithms can easily be incorporated into the central server by extending the

Scheduler class and giving a new implementation of the getAvailable() method. For

example, one addition to the scheduler that could be made is to bias the scheduler into

choosing worker nodes that have already hosted a particular job. This approach would

help increase the benefit of file caching in the grid. The substitution of one scheduler for

another will require the system to be shut down. Scheduler substitution can’t take place

while the system is running.

3.7 Communication/Coordination

As already discussed in Section 3.2.3, communication among pieces of the same job are

done using an object space, defined according to Objective Linda. One of the most common
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models used with tuple spaces is the master/slave model, although it is capable of much

more. Using this model it is possible to emulate other programming models such a message

passing; however, the reverse is not true.

The object space implementation is supplied by the JOLTS system. The programmer

only needs to define what objects can be stored in the object space, and what objects can

be turned into active objects. Both of these steps are done by implementing the proper

interfaces supplied as part of the JOLTS API.

3.8 Name Spaces

Name spaces are a familiar topic to C/C++ programmers, but are rarely encountered by

Java programmers. However, in grid systems name spaces become relevant even to Java

programmers. Name spaces deal with how to group together associated classes, without

interfering with other groups of classes that can potentially share the same name. In

normal Java programs, when a class is loaded, the loader first checks to see if it is a

system class, defined somewhere inside the java.lang package. This is done by moving

up the class loader hierarchy. If it isn’t found, it then repeats the process checking the

caches of the loader in the same hierarchy until either a cached copy is found, or one of the

loaders knows how to load the class (a ClassNotFoundException is thrown if no loader

could load the class). A problem can arise when different implementations of a class with

the same name are loaded.

Consider a scenario with two programmers, Alice and Bob, who each want to submit

a program they wrote to the grid for execution. Both of them named their program the

same, say Foo. Alice submits her program first, which passes through the security checks

and is assigned to node A. When A gets Alice’s program from the central server, it loads it

and begins execution. Bob then submits his program, which also passes the security checks

and gets assigned to the same node as Alice’s program. Now when A goes to load Bob’s

program, as it moves up the class loader hierarchy, some object will already know how to

load a class called Foo, so it loads it and the program starts executing. The problem is

that the cached version is Alice’s Foo, and not Bob’s. Thus, when Bob goes to obtain his

results from the grid, he will get results based on a run of Alice’s program, not his own. If

checkpointing is used in either version of Foo, things can become even more complicated.
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The solution to this problem is a customized class loader.

JOLTS actually has two customized class loaders: one deals with loading a single class

file, and the other is responsible for loading entire jar files. Both class loaders are also

responsible for helping implement the malicious code protection discussed in Section 3.4.

Here is how the previous example will be handled with the customized loaders. When

Alice’s program is started on worker node A, an instance of one of the grid class loaders

is created. This loader is then responsible for loading Alice’s program, based on the ID

of Alice’s job. Any other classes that need to be loaded during the execution of Alice’s

program will also use this class loader. When Bob’s program arrives, another instance of

one of the grid class loaders is created, which then loads Bob’s program based on the ID

assigned to his grid job. When either Alice or Bob go to obtain their results from the grid,

they will both get results generated by their own instance of Foo.

Thus, the ID assigned to a grid job also helps act as part of a name space, making each

program unique even if they have classes with the same name. The use of a customized

loader, along with the job IDs makes name spaces really a non-issue in JOLTS. The main

point to remember is that programmers are totally unaware that this problem even exists.
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Chapter 4

JOLTS Detailed Design

While the previous chapter gave a brief listing of the features of the JOLTS system,

this chapter is meant to give a high-level view of the design of the system. Low-level

implementation details are kept to a minimum in this chapter. Some of the more interesting

implementation details, however, are given in Appendix A including large code examples.

Conceptually the JOLTS system, consists of three main components: a client, a server,

and one (preferably more) worker nodes. First, it is important to clarify some of the terms

that will be used throughout this chapter.

• Worker node the computer that executes the user’s job(s), or sub-jobs in the case

of a multi-part job.

• Server a large computer that is responsible for accepting jobs from clients, return-

ing job results, and sending out jobs/sub-jobs to the various worker nodes.

• Client the computer that submits jobs to the server.

• User the human that uses the client to submit jobs.

• Programmer the human that is responsible for writing the programs that are

turned into jobs and submitted to the JOLTS system. The user and programmer

are not necessarily the same person, but they can be.

• Job programs that are submitted by a user. There are four main types of jobs, in

increasing complexity:

1. Simple/Sequential

2. MISD
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3. SIMD

4. Object Space

All but the first consist of many smaller sub-jobs that make up the larger job. Sub-

jobs that are part of a larger object-space job are referred to as active objects, as

dictated by Objective Linda.

The JOLTS system from the user’s (and programmer’s) point of view is rather simple.

The programmer writes the program(s) using the supplied JOLTS API. The user then

uses the client to submit the job to the server using either a command-line or graphical

interface. The server sends back either a job ID that is used when retrieving the results for

the job, or an explanation of why the job was rejected. The user can have the client either

display the results of job, or the results can be incorporated into another program directly,

if desired (see Section 4.2). Behind the scenes, hidden from the user, many operations are

performed to execute the submitted job.

The server does several types of verification on the submitted job (and the client who

submitted it), before sending the job to worker(s) for execution. Once the verification

is complete, sub-jobs, or the entire job in the case of sequential jobs, are sent to various

worker nodes for execution. As the results are returned by the worker nodes, the results are

saved on the server and more sub-jobs are sent out until the entire job is complete. Client

requests for results can then be returned with the actual results, instead of a message

telling them to try again later.

While this “behind the scenes” view may also appear rather simple, in reality is re-

quires complex interactions between many classes. The JOLTS system consists of 108

Java classes, and nearly 11,000 lines of code. The remainder of this chapter is meant to

give a high-level view of the various modules that make up the JOLTS system, and the

design decisions that went into their creation. For a detailed look at some of the more

challenging/interesting implementation problems refer to Appendix A. A layered view of

the JOLTS system is given in Figure 4.1. The system is composed of four main modules:

1. Client side

2. Worker side
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Figure 4.1: A layered view of the JOLTS system architecture

3. Server side

4. Utilities

All but the first of these modules is further decomposed into sub-modules. Coupling

between the various modules has been kept to a minimum; however, it is neither possible

nor desirable to eliminate coupling entirely. Depending on which component (client, server,

or worker) is being used, only the corresponding module (as well as the utilities module)

is needed to execute that component. Each of the four modules will now be discussed in

turn.

4.1 JOLTS Utilities

This module, and its sub-modules, contain many of the classes and interfaces that are

required for the client, server, and worker to function properly. Figure 4.2 shows the

classes at the top level of this module, along with some of the relationships between

them and classes outside this module. Two important components at this level are the

GridLoader hierarchy and the CheckpointMech interface.

The JOLTS system is capable of running several independent jobs from distinct users

at the same time. Part of a job submitted by a user is the binary for the job as either a

class file or a jar file. Regardless of the type of file submitted, the Java Virtual Machine

(JVM) will be unable to see the supplied binary file because it isn’t in any of the default

paths the JVM looks in, when it attempts to load a class. Thus, a custom class loader

is required for loading the user’s binary file into the JVM. As seen in the hierarchy of
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Figure 4.2: The top level of the utilities module

ClassLoader

GridClassLoader 
 
name : String 
data : byte[] 
loadedClass : Class 

 
+GridClassLoader(f : File) 
+loadClass(String name) : Class 
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GridLoader* 
 
 
 
#trimName(name : String) : String 
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GridJarLoader 
 
nameSizeHash : Hashtable 
cachedClasses : Hashtable 

 
+GridJarLoader(f : File) 
+loadClass(String name) : Class 
+getClassData() : JarData[]

Figure 4.3: The GridLoader hierarchy

Figure 4.3, custom loaders exist for both jobs submitted by class files and jar files. Each

job submitted to the JOLTS system will be loaded by a new instance of the appropriate

class.

An additional benefit of using a custom class loader for each job is it eliminates the

possibility of naming conflicts between distinct jobs that happen to be run on the same

worker node. Solving this problem is highly language-dependent; e.g., C# uses name
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spaces (see Section 3.8). When the JVM attempts to load a new class, it is the responsi-

bility of the class loader to find the requested class description and load it into memory.

When multiple class loaders exist (as is the case in JOLTS), knowing which class loader

will service the request is very important. First the class that originated the request is

found. The loader for the class originating the request is used to service the request. If

this loader is unable to service the request, the request is passed back up the runtime

loader hierarchy for servicing. If no loader can find the request class description, an error

is thrown by the JVM.

Consider the case where two programs, A and B are each running on the same worker

node. Each program has been loaded by its own class loader; e.g., loaderA and loaderB,

respectively. Suppose program A needs to create a new instance of class B. Because A made

the request, loaderA is responsible for loading the class B instance. The existing class B

instance, loaded by loaderB, is not used because loaderA and loaderB are completely

disjoint (and thus, so are the programs for which they are responsible). In the situation

where multiple sub-jobs from the same multi-part job are on the same worker node, they

will all be using the same class loader. These custom class loaders will play an important

role when dealing with object spaces.

As mentioned as the start of this section, the other important piece in the top level of

the utilities module is the CheckpointMech interface. To create a checkpoint, the user’s

job must pass a number to the system to indicate the version of the checkpoint. This was

done for several reasons:

• It saves disk space when storing checkpoints on the server, only the most recent is

stored.

• It allows bandwidth to be saved when multiple checkpoints for the same job need to

be sent over the network at the same time, only the most recent is sent. Consecutive

waiting checkpoints can only occur if the user has elected to create non-blocking

checkpoints. This reason will be discussed shortly.

Checkpoints are an extremely useful feature, but very few systems support them. To

prevent programmers from abusing the checkpoint mechanism, the decision was made to

make the version numbers for the checkpoints only 16-bits long, instead of the more com-

mon 32-bit numbers. When the programmer is writing a program that uses checkpoints
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they will most likely have to typecast the checkpoint version number passed to the system.

The intention is that the programmer will realize there are a limited number of check-

points they can create when doing the typecast, and the programmer will spend some

time determining when a checkpoint really needs to be created. For example, if a program

is manipulating a lot of records, instead of creating a checkpoint after every record is

modified, the programmer will hopefully space out the checkpoints; e.g., one after every

15000 records have been modified.

Depending on the nature of the user’s program, it is possible for the program to

generate checkpoint data faster than the data can be sent over the network and stored on

the server. If this happens a queue will form on the worker node for all the checkpoints

that need to be sent to the server. This queue is in fact a priority queue, where newer

checkpoints take priority over older checkpoints in the queue. The newer checkpoint

removes the older checkpoint entirely from the queue. Multiple checkpoints can only

occur in the queue if the user has elected to create non-blocking checkpoints.

Sending checkpoints to the server is an I/O bound operation, while the user’s job

is usually CPU bound. By default, checkpoints are sent to the server using a separate

thread. This allows the user’s job to continue executing while the checkpoint is being

sent. However, there are times when it may be desirable for the job to know that a

specific checkpoint has reached the server before the job continues executing; e.g., in

object space jobs. In such a case the checkpoint mechanism can be placed in blocking

mode using setBlockingMode(true). The blocking mode of the checkpoint mechanism

can be obtained using the function inBlockingMode(). When the checkpoint mechanism

is in blocking mode, any request made for a checkpoint will only return once the checkpoint

has successfully been transmitted to the server.

4.1.1 Task Utilities

Possibly the most important utilities sub-module, even more so than the object space (see

Section 4.1.4) is the tasks sub-module. The classes that makeup this sub-module, and

their relationships, are given in Figure 4.4. A task is a unit of operation that needs to be

performed, ranging from executing a user’s job to the heart beater on a worker node. Most

tasks are independent of each other, and thus can be run in parallel. The pieces of interest

in this module are the interface PoolJob and class GridThreadPool. Many of the classes
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Figure 4.4: The classes of the tasks utilities sub-module

scattered throughout the JOLTS system are descendants of PoolJob, which allows these

descendants to be run in parallel from inside a thread pool. The GridThreadPool class,

along with the other classes/interfaces in this package create a concrete implementation of

the Thread Pool design pattern. The pool is initially created with several threads inside

that can execute any descendants of PoolJob placed inside the thread pool.

GridThreadPool incomingJobsPool = new GridThreadPool("incoming job requests",
5, Thread.NORM PRIORITY);

...
PoolJob task = new IncomingCodeJob(sockChannel);
incomingJobsPool.addNewJob(task);

If there are no free threads, the tasks just wait in a queue until a thread inside the

pool becomes free. When a task finishes, the executing thread doesn’t disappear, it stays

inside the pool waiting for another task; if no tasks are waiting the thread is put to sleep

until a tasks arrives. Thus, the expensive operation of creating threads is isolated to the

initialization of the pool, and not scattered through the life of the system each time a new

task needs execution. The GridThreadPool’s services are used extensively throughout the

server, and to a lesser extent in the worker nodes and is a key component in the Reactor

Pattern.
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4.1.2 Constant Pool Utilities

The classes in this sub-module are used exclusively by the security manager on the server,

and are used in the creation of the constant pool stored inside an individual class file.

The security manager uses this constant pool information to determine if a class accesses

any restricted components in the Java library (see Section 3.4). For details on how this

module works, refer to Appendix A.1.

4.1.3 I/O Utilities

Like the tasks sub-module discussed in Section 4.1.1, the I/O sub-package is used basically

everywhere, as indicated by its placement in Figure 4.1. The most important class in this

sub-package is GridFileStorage. This class is a singleton, only one instance exists on

each computer of the JOLTS system. Because the various JOLTS components can run

anywhere the JVM has been ported, the GridFileStorage class is designed to abstract

away file access to the underlying hardware. This is especially important for storing various

temporary files in the properly designated “temp” directory, whose contents are needed

both locally and remotely. Thus, a GridFileStorage object also has the capability to

send and receive files over a socket channel.

Another important class in this sub-module is GridObjectInputStream. Its job is

very simple, but also very important. Since JOLTS operates on programs that are actually

objects, these objects need to be passed around the system at various points. When objects

are deserialized from an input stream, the default system loader is used to deserialize them.

As already mentioned in Section 4.1, the default system loader can’t be used to deserialize

jobs. To get the JVM to use a different class loader to deserialize objects, a custom object

input stream is needed; thus, why class GridObjectInputStream exists. It reads in bytes

from the stream and deserializes the incoming object using the proper custom loader.

The final relevant class in this sub-module is GridInputStream, already discussed in

Section 3.5.3.

4.1.4 Object Space Utilities

The relationships between the classes and interfaces in this sub-package are given in Fig-

ure 4.5. All of the components in this package (with the exception of class ObjectSpace-
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Figure 4.5: The classes and interfaces of the object space utilities sub-module

Exception) are defined according to the Objective Linda specification discussed in Sec-

tion 2.2.5. Each of these components will now be discussed in turn.

The OILObject interface defines the single match() method. It is defined as an inter-

face so that programmers that wish to use the object space can still extend a class, if they

need to. Only descendants of OILObject can be placed in the object space. It is important

to note that the ObjectSpace interface is not a child of OILObject, because object spaces

can’t be nested inside of each other. To overcome this limitation, the OSLogical class can

be used.

An OSLogical instance is used to take the place of an object space inside another

object space. This creates the illusion of nested object spaces. An active object creates

an OSLogical object by giving it a String identifier and the object space it is supposed

to represent. The newly created OSLogical object can then be placed in any available

object space. Any active object can then retrieve this object and perform an attach()

operation to get a reference to the object space the OSLogical object represents. In this

manner active objects are able to gain access to object spaces besides their default self

and context.

The ObjectSpace component is defined as a interface because both the workers and

server have different implementations, described in detail in Appendices A.2 and A.3,

respectively.
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4.1.5 Additions to Objective Linda

Two additional features have been added to the object space that aren’t part of the original

Objective Linda specification:

public int rm(OILObject template, int min, int max, long timeout)
public int rmOut(OILObject template, int min, int max, long timeout, MultiSet m)

The first method, rm(), is very similar to the default in() operation, except that instead

of returning a multiset like in(), rm() returns the size of the multiset, which indicates

the number of objects removed from the object space. Originally, objects could only

be removed from the object space using in(), which returns the removed objects in a

multiset, regardless of whether the objects were needed or not. This is a waste of network

bandwidth if the multiset’s contents aren’t needed. Thus, the rm() method should be

used instead, if the returned objects aren’t needed.

As just mentioned, the in() operation is used to remove objects from the object space.

Often an object is removed from the object space and a duplicate object in a different state

is immediately placed back into the object space using the out() operation. Because these

are two separate operations, it can potentially cause timing problems with other active

objects that are looking for either the objects just removed or for the new objects being

inserted. The rmOut() method listed above is meant to deal with this problem. It performs

a rm() operation followed by an out() operation, that are executed as an atomic operation

on the object space. The result returned by method rmOut() is the number of objects

removed by the rm() half of the operation. If the rm() half fails; e.g., the minimum

number of matches were not found, the out() half will not be executed. If the rm() half

works, the out() half is guaranteed to succeed. The rmOut() operation is beneficial when

creating the illusion of changing the state of object(s) already in the object space, which

isn’t normally possible as a single operation.

The Objective Linda specification doesn’t state the behavior of the features for the

multiset, so a best attempt was made to make class MultiSet compatible. The public

features provided by the JOLTS MultiSet are:

public OILObject get(int i)
public OILObject get(OILObject obj)
public void put(OILObject obj)
public int numItems()
public boolean equals()
public String toString()

There is no remove method for the JOLTS multiset. Once method put() places an object
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into a multiset, it stays there permanently. Some versions of Objective Linda have a get()

method with no arguments that returns and removes the first item in the set. This feature

was deemed undesirable, because it is a function with side effects. Thus, this is why there

are multiple get() methods listed above.

The final class in the object space sub-module is ObjectSpaceException. This ex-

ception is only thrown when a precondition is violated on an object space. The main

preconditions are:

1. All objects passed to any object space method must be non-null.

2. For the methods requiring a timeout value, 0 ≤ timeout ≤ inifinite timeout must

hold true.

3. For the methods performing matches on a template, 0 ≤ min ≤ max ≤ infinite mat-

ches must hold true.

4. Each item in the multiset passed to method eval() must be a descendant of interface

ObjectSpaceJob.

An ObjectSpaceException instance is a runtime exception, so programmers don’t have

to deal with handling this exception, if they don’t want to. The current active object will

crash, if it isn’t handled, but all the other active objects will remain unaffected.

4.2 Client Side Module

This module contains both the classes used to submit/retrieve jobs from the server (both

CLI and GUI versions), as well as the main JOLTS API needed by the programmer when

creating programs to run on the JOLTS system. Figure 4.6 shows the main classes and

interfaces available to the programmer. Depending on the nature of the program being

written, I/O or object space classes may also be needed (see Sections 4.1.3 and 4.1.4,

respectively). Most of the components in this module are interfaces. A few abstract

classes also exist. After building several test programs, a pattern began to emerge in the

implementation of the test programs. These common methods were used to create the

abstract “template” classes to save the programmer from redundant implementations.
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It is important to note that while the client is capable of submitting, retrieving, and

displaying jobs, it isn’t limited to working in isolation. If a program created by a program-

mer needs the capabilities offered by JOLTS for only part of its execution, it is possible to

incorporate the class GridClient into this external program to interact with the server

on behalf of the user’s main program. For example:

GridClient client = new GridClient("MyProg.jar");
int jobID = client.submitJob("StartClassName", inputFiles);
. . . // perform other operations
Object obj = client.retrieveJob(jobID);
if(obj instanceof . . . ) // make sure that results are actually returned
{

. . .
}

As mentioned earlier (page 57), the JOLTS system supports four main job types. Each job

has a corresponding class/interface in this module that the programmer needs to inherit

from to get his/her program to run on the JOLTS system. The name of the child class

goes on the right-hand side of the instanceof in the above code fragment.

Most grid systems that support executing parameter experiments, such as Condor,

require special configuration files be submitted with the job. These configuration files are

used to describe information about the job, such as the minimum amount of memory and

processor type required for the job. While these type of configuration files are beneficial,

they are often confusing to create for beginners because the user may not have the skills

required to gather the information needed in the configuration file. JOLTS requires no

such configuration file in the hopes it will lessen the learning curve for programmers

to start using the system. Also, these configuration files deal with hardware/software

requirements, while the JOLTS system is designed to intentionally abstract that away

from the programmer, so configuration files are not necessary.

Simple, or sequential jobs are created by implementing interface GridJob. This in-

terface is used for jobs that can’t be decomposed into parallel components, and for the

smaller components of a job that has been decomposed into sub-jobs. It defines a method,

execute(), where the job starts and a method to pass in a checkpoint mechanism (see

Section 3.3), called setCheckpointMech(). There are two reasons why there is a set

method for the checkpoint mechanism instead of passing it to a constructor.

1. It is very difficult to enforce constructor parameters in Java. While it can be done,

allowing any additional parameters to the same constructor makes it even more
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difficult. Also, if there are multiple constructors that have the proper parameter

type, it isn’t always clear which one should be used to create the object.

2. If a job is resumed from a checkpoint, a new checkpoint mechanism needs to be given

to the object, since the checkpoint mechanism isn’t checkpointed along with the rest

of the job (see Appendix A.4 as to why). Since the object already exists, using the

constructor to pass in the new checkpoint mechanism isn’t feasible. Thus, the only

remaining option is to use a set method. Note: Whether or not the object stores

the argument passed to the “set” method is up to the programmer. If they don’t

want to use the checkpoint feature, the argument can be ignored.

The ObjectSpaceJob interface adds methods for setting both the “self” and “context”

object spaces. The reason for these two “set” methods is similar to that just given for

the setCheckpointMech() method. When a regular object is to be converted to an active

object by way of the eval() method on an object space, it needs to be given access to

the proper object spaces. Again, since the object already exists, using the constructor

is not an option. Additionally, only active objects should be assigned a “self” object

space, and the object only turns into an active object when it is passed to eval(). If

every object that was created instantly had its own object space, it would end up wasting

a lot of memory on the server where the object spaces actually exist. Because active

objects rarely need to match each other, the abstract class ObjectSpaceJobTemplate has

an empty implementation of match() that always returns false. It also has methods and

fields for setting and storing the default object spaces.

Most grid system don’t have a way to allow communication between jobs, but they

do support independent sub-jobs. The JOLTS system supports independent sub-jobs,

specifically parameter experiments, using the MISD and SIMD interfaces. Because JOLTS

already supports simple jobs using the GridJob interface, the MISD and SIMD interfaces

merely acts as a way to describe the sub-jobs (each of which is a GridJob), and a place

to assemble all the completed results. A MISD job adds very little new functionality over

the simple jobs. It is basically a convenient way to submit multiple simple jobs at once.

A SIMD job, on the other hand, adds some important features.

All of the SIMD’s sub-jobs are started using a constructor that takes a single Parameter

argument, while regular jobs and MISD sub-jobs are started using a constructor that
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takes no arguments. This parameter is the “data” in the Single Instruction Multiple

Data. Each sub-job is given a different instance of Parameter, determined by the

SIMD descendant written by the programmer. Storing and retrieving the sub-jobs was

often identical between the MISD and SIMD interfaces during testing, so the abstract class

JobGroupDescriptorTemplate was created. This class is defined as abstract, even though

it has no abstract methods, because its children are meant to be used in conjunction with

the MISD or SIMD interfaces. The child class uses the abstract parent for storing/retrieving

the sub-jobs, but it needs the interface parent to inform the system what type of parameter

experiment is to be run. Consider the following class header:

public class MySIMD extends JobGroupDescriptorTemplate implements SIMD

The class MySIMD can then focus on describing what the parameters are for the sub-jobs,

instead of worrying how to store and retrieve results.

Figure 4.6 shows the storing and retrieving of results is declared to be using class

Object. Ideally the objects being stored as results would be descendants of the GridJob

interface, allowing the store and retrieve method signatures to be:

public GridJob getResults(int cp)
public void storeResults(GridJob job, int cp)

However, using these signatures instead of the ones given in Figure 4.6 has one impor-

tant flaw: dealing with crashed sub-jobs. If a sub-job crashes (not the worker node ex-

ecuting the sub-job) because of an exception; e.g., a null pointer exception, the thrown

exception is caught and is returned as the result for the sub-job. Because the interface

GridJob is not a descendant of class Exception, if an exception is stored using the method

storeResults(), the entire job would crash because of a typecasting exception. Using

the method signatures from Figure 4.6, it is possible to store anything as the results for

a sub-job, including exceptions. The other option that was considered when designing

this capability of the system was to have the JOLTS system just leave the results for the

crashed sub-jobs as null. While this would have made the JOLTS system easier to imple-

ment, it would prevent the job’s programmer from obtaining any useful feedback about a

potential problem in a sub-job. The programmer can now use the exception result to help

determine why the sub-job crashed.

A final point about the client module before moving onto the worker node is that any-

thing that needs to get sent over the network (or checkpointed) must be serializable. Only
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so much can be checked before executing a job. If a job/sub-job is serialized that has non-

serializable fields, the results for the job/sub-job will be an exception. A full understanding

of how serialization works isn’t required by a programmer to use the JOLTS system, but

the programmer should be aware of potential serialization problems and prevent them

from occurring; e.g., by using transient.

4.3 Worker Node Modules

At a high-level, the responsibility of a worker node is to receive jobs and sub-jobs from

the server, download any required files, execute the user’s job, and send the results back

to the server. Periodically, the worker also must send new load and job statistics to the

server, which are used by the scheduler on the server to determine where to send pending

jobs.

The JOLTS worker node modules consists of three main areas:

1. Statistics collection

2. Execution of independent jobs

3. Execution of object space jobs

Each of these areas will now be discussed in turn.

4.3.1 Statistics Collection

Sending periodic updates about the load and current jobs on a worker node is done using

the Heart Beat pattern, implemented using the Heartbeater class. Because the method

used to determine the current load of the computer varies between operating systems,

this is one of only two locations (the other being class GridFileStorage discussed in

Section 4.1.3) where the underlying hardware and operating system come into play. For-

tunately, it doesn’t cause much of a problem, as the OS-dependent calls are hidden away

using the Factory pattern in the WorkerNodeProperties hierarchy, shown in Figure 4.7.

If JOLTS is to be run on a new operating system, all that is needed is a new child of

WorkerNodeProperties. Users of the hierarchy don’t need to know about the child classes,

only the parent class WorkerNodeProperties. They merely obtain the proper child using
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WorkerNodeProperties* 
 
 
 
+getProperties() : WorkerNodeProperties 

+getLoad() : float[]* 
+consoleInUse() : boolean* 

UnixNodeProperties 
 
 
 
#UnixNodeProperties()

WindowsNodeProperties 
 
average : float[] 
numAvgs : int 

 
#WindowsNodeProperties() 
fiveMinAverage() : float 
fifteenMinAverage() : float 
rotateAverages()

Figure 4.7: The WorkerNodeProperties hierarchy

method getProperties() defined in the abstract class WorkerNodeProperties. Only

this class knows which child should be created.

One of the main uses of the heart beater in network systems is to send some type of

periodic notification between computers to inform one computer that the second computer

is still running. The type of information contained in this heart-beat message depends on

the nature of the application.

Because heart-beat information is outgoing and fairly frequent, it is beneficial to leave

the socket used for the communication open for the life of the worker node. This also

implies the other end of the socket is permanently open on the server to receive the

communication. To help prevent opening excessive sockets on the server, heart-beat data,

job results, and checkpoints are all sent over the same socket. This also has the advantage

of acting as a security measure on the server, since only worker nodes that are already

verified can send data to the server. Because many threads can be competing for this one

socket on the worker node, all writing to this socket (there is no reading) is done inside a

critical section. Without this protection, the server could see scrambled data from many

different jobs all arriving at once. Competing with class HeartBeater for the outgoing

socket is class ReturnResults, discussed in Section 4.3.2.

One important feature of class Heartbeater is its ability to kill any executing job on the

worker node. Because the Heartbeater is the only class that knows the load of the worker

node, it is the responsibility of this class to indicate that a job must be killed, if the load
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has passed its maximum specified threshold (specified by the worker node administrator).

This process continues until the current load is under the threshold. The server will detect

which job has been killed in this manner and will attempt to restart/resume the job on

another worker node. This job-killing feature is the reason why JOLTS worker nodes

don’t have to be, and in fact shouldn’t be run at a low priority, i.e., be “niced.” If the

worker node is run at a low priority, any jobs running on that node will receive fewer

cycles when the node is under high load; thus, increasing the time until the job/sub-job is

completed. However, if the worker node is running with regular priority and the machine

load becomes too high, the worker node will begin killing jobs; in effect causing them to

move somewhere else where there are more free cycles available. This can be represented

by a simple equation where there are more free computers than jobs to execute:

n jobs× 1
n

CPU < n× (1 job× 1 CPU)

Any number of jobs, n, will be faster if they are each run on their own CPU, as opposed

to all having to share one CPU.

The migration of executing jobs benefits both the job and the person using the worker

node as a desktop computer. The job moves to a worker node with more free cycles, and

the cycles released by the job can be applied to whatever the user is doing that caused

the load to surpass the specified threshold.

4.3.2 Handling Independent Jobs

The worker node listens to a server channel for incoming (sub)jobs from the server. This

channel, and its resulting worker job are done using the Reactor Pattern. While this may

seem like overkill for the worker node, this pattern was used to keep a constant appearance

with the server, where the Reactor pattern is essential to its operation. Depending on the

type of incoming job, the appropriate class of the ExecuteNewGridJob hierarchy, shown

in Figure 4.8, is used to begin servicing the job. An explanation of each class is as follows:

• ExecuteNewGridJob a class used to execute new simple/sequential jobs, and MISD

sub-jobs.

• ExecuteNewSIMDJob a class used to execute new SIMD sub-jobs. It is much more

complicated that the previous class because it needs to download the parameters
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CheckpointMech

ExecuteNewGridJob

ExecuteNew 
SIMDGridJob

Execute 
Resumed 
GridJob

Execute 
Object 

SpaceJob

PoolJob

Figure 4.8: The ExecuteNewGridJob hierarchy

from the server, and find the proper constructor for the sub-job, before it can create

it and begin executing the sub-job.

• ExecuteObjectSpaceJob a class used for executing active objects (see Section 4.3.3).

• ExecteResumedGridJob a class used when resuming any of the four jobs types

from a checkpoint file.

Each of these objects is executed from inside a thread pool (see Section 4.1.1). Regardless

of the job type, a record is created about the sub-job. The object representing the user’s

job is obtained (created or downloaded) in conjunction with a custom class loader. The

job is then given a checkpoint mechanism, and finally, the user’s job is started executing.

When either final or checkpoint results need to be sent to the server, an instance of

ReturnResults is used. Instances of this class are executed from inside a separate thread

pool. The reason a separate thread is used is that the ReturnResults instance can

potentially block while waiting to obtain a lock on the outgoing channel (recall from

Section 4.3.1 that it competes with the Heartbeater for the outgoing channel). If the

ReturnResults instance is sending checkpoint data and wasn’t in a separate thread, the

job that wanted to create a checkpoint would also block until its checkpoint was sent to

the server, which is a waste of resources. However, when blocking checkpoints are used,

the ReturnResults instance doesn’t operate in a separate thread. Once the final results

for the job are queued to be sent to the server, the thread that executed the user’s job

returns to it’s thread pool.

The checkpoint mechanism that is passed to the user’s job is a reference to the same

object that is responsible for executing the user’s job, an instance from the ExecuteNew-
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GridJob hierarchy. When a checkpoint is requested by the job, the job is serialized and

written to disk with a checkpoint version number becoming part of the file name. A

ReturnResults object is created to send the checkpoint file to the server, while the job

continues executing (assuming non-blocking checkpoints). Because the user’s job continues

executing while the checkpoint is waiting to be sent, it is possible another checkpoint could

be created before the previous one was sent (recall that a lock on the outgoing channel

must be obtained before the data can be sent). If this happens, the newer ReturnResults

object will delete the previous one waiting in the queue for objects trying to obtain a

lock on the outgoing channel. This saves bandwidth by only sending the most recent

checkpoint to the server. As beneficial as checkpoints are to user jobs, they require a little

more caution when used with object space jobs.

4.3.3 Executing Object Space Jobs

As just mentioned, object space jobs need to be more cautious when using checkpoints.

The reason is that although the active object is checkpointed, the object space(s) used by

the active object are not checkpointed. The reason is that it would require checkpointing

all the active objects and object spaces associated with the entire object space job at the

same time to create a snap-shot of the job. This is impractical to do for many reasons.

The biggest reason is that it would be impossible to guarantee that every active object

was in a safe, stable state when the checkpoint was requested.

Starting an object-space job on a worker node is very similar to resuming a check-

pointed job and involves the following:

• The active object is downloaded from the server.

• The checkpoint mechanism is set.

• The self, and context if necessary, object spaces are set.

• The active object is started executing.

Checkpoints are created the same way as non-object space jobs, and when an active object

finishes, a message is sent to the server indicating the active object’s completion. What

makes object space jobs unique is the object space that all the active objects, potentially
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scattered across various worker nodes, use to communicate with each other. The actual

object space is maintained on the server for several reasons:

1. Stability it is assumed the server won’t crash, unlike the worker nodes.

2. Resources the server usually has more memory and a larger/faster bus than the

worker nodes, allowing it to handle communication with a large number of worker

nodes simultaneously.

3. Location the server is a known location, that can’t change during the life of the

worker node. Thus, all worker nodes know which computer is the object space server.

The object space on the worker nodes, used by active objects, are really just stubs that

communicate with the real object space on the server over socket channels. This network

communication is completely abstracted away from the user’s job. For details on how this

is implemented, refer to Appendix A.2.

An interesting capability of the object space is that of timed function execution. Every

object space operation has a timeout value associated with it. If the operation can’t

be performed in the requested time, a default value is returned. These are function

operations, not procedure operations; however, the same techniques can be applied to

procedures by turning them into Boolean functions that return false or true whether or

not the timeout value was reached or not, respectively. No modern universal programming

language supports such a feature as timed-function execution as described here. The

following section will describe how to create this functionality and gives a design pattern

that arose while implementing the solution. For details on how this was implemented in

the worker node and server, refer to Appendix A.2 and A.3, respectively.

4.3.3.1 Creating the Timed Function Execution Pattern

There are really two possible solutions to the problem of timed-function executions, and

which one is used is dependent on the nature of the function that requires time-limited

execution. The first option is the simpler of the two, both conceptually and to implement.

However, it is also more limited in that it only works for a small set of functions, ones

that rely heavily on a looped body. Consider a contains() method on some generic data

structure with the following signature:
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public boolean contains(Object template, int timeout)

This function will return true if the object is found in the data structure in the allotted

time, and false, otherwise. One way to implement this function would be to loop through

each item (assuming it is unsorted; otherwise, a binary search would be used) looking for

a match. After each comparison the clock will have to be checked to see if there is

time remaining to continue searching. Assuming an array data structure, an example

implementation is:

long start = System.curentTimeMillis();
long current;
for(int i = 0; i < array.length; i++)
{

current = System.currentTimeMillis();
if(current - start >= timeout)

return false;
if(template.equals(array[i]))

return true;
}
return false;

While this serves the purpose of only continuing to search if time remains, it has two

distinct disadvantages:

1. It only works for functions where the main body is inside a loop, or is recursive.

2. A large amount of processor time is wasted by continually checking the clock to see

if the function can continue.

The second option that can be used to create a timed function is similar to turning it

into an asynchronous function call. Two paths of execution are required for this to work

(either threads or processes) and they must have a way to communicate data between

them. For the purpose of this discussion, we will assume threads are being used. The

primary thread is the one that calls the timed function; however, this function is merely

a stub used to create the second (worker) thread. The primary thread then goes into a

wait state, where the amount of time to wait is the same as the timeout value for the

function. The worker thread first initializes a shared-memory area to contain the return

value if the function fails; e.g., false, or -1. The worker then proceeds to execute the

actual timed function. When it is complete, the result is placed into the shared-memory

area, and the worker thread then notifies the primary thread to wakeup. The worker

thread then enters a sleep state. The primary thread, when awakened, returns the value

in the shared-memory space as the results for the stub function. If the primary thread
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was awakened early by the worker, it means the function completed in time and the real

value exists in the shared-memory area. If the primary thread woke up on its own (the

wait timed out), it means the shared-memory area will still contain the default/failure

value. The worker thread will always receive a message from the server. If the message is

late arriving the worker thread will still enter its sleep state after receiving the message.

Note: it is unimportant to the primary thread which method was used to wake it up. This

solution to timed-function execution has several advantages over the previous solution:

1. There is no wasted CPU time by continually checking the clock to see if the function

can continue.

2. The actual function is cleaner, because it doesn’t contain the extra code related to

timing the function.

3. It can be applied to a broader range of functions, not just those that have looped or

recursive bodies.

This solution does have the following disadvantages when compared to the first solution:

1. It requires some standard thread/process capabilities that might not always be avail-

able.

2. There is a small overhead for creating the worker thread (more if processes are used).

However, the time required for creation should ideally be less than the time wasted

by continually checking the clock as in the first solution. The problem could also be

further reduced by using a thread pool (see Section 4.1.1).

3. It can be conceptually more difficult to understand than the first solution because

parallelism is required.

As mentioned earlier, each solution has its place, and in fact both solutions are used

in the JOLTS system. The first, non-threaded solution is used in the server, while the

second, threaded solution is used in the worker node. For details on how this pattern was

implemented in the worker and server, refer to Appendices A.2 and A.3.2, respectively.
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4.4 Server Side Modules

The JOLTS server side modules are by far the largest modules in the system. The server

consists of four separate implementations of the Reactor pattern, and unlike the worker

node implementations, all four are required for proper operation of the server. Because of

the large number of different types of requests, each group/type of request is handled by

a different Handler child, as shown in Figure 4.9. Each of the children are in their own

sub-modules with all their relevant support classes. Each of these child handlers will now

be discussed in turn.

4.4.1 File Handler

The FileStreamHandler class is by far the simplest handler on the server. The default

configuration of the JOLTS system doesn’t permit user jobs to access local files. Any

input files required by the job must be submitted along with the job. A special stream

class, GridInputStream, can be used to access the input files submitted along with the

job. The files are stored on the server, but when a request is made to read data from the

file by the job executing on a worker node using a GridInputStream object, a request is

sent to the FileStreamHandler object. This handler determines what file is to be read,

how much data to read, and from where in the file the data is to be read. The requested

data is sent back to the user’s job and the handler returns to listening for more incoming

data requests. This process creates the illusion of reading local files to the user’s job.

4.4.2 Worker Node Handler

Every worker node that registers with the server as being willing to host one (or more)

user jobs has a corresponding record created on the server that stores information about

the worker node. These records not only keep track of what job(s) the node is currently

executing, but also contain general information about the node. This information is used

by the scheduler when selecting worker nodes to host submitted jobs. Figure 4.10 contains

the WorkerNodeRecord class with all its fields and methods.

The WorkerNodeHandler class is used to receive messages from worker nodes. As a

proper Reactor, the actual processing of the message is done by another thread. The type

of incoming message determines which class is responsible for processing the message;
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WorkerNodeRecord 
 
machineName, operatingSystem : String 
architecture, javaVer : String 
sockChannel : SocketChannel 
numProc, maxJobs, serverPort : int 
gridJobs, limboJobs : Vector 
freeMem, lastMessageTime : long 
maxLoad, load1Min, load5Min, load15Min: float 

 
+WorkerNodeRecord(sock : SocketChannel) 
#getSockChannel() : SocketChannel 
+willingToAccept() : boolean 
+getName() : String 
+addJob(job : GridJobRecord) 
+removeJob(id, subid : int) 
+getJob(id, subid : int) : GridJobRecord 
+getAllJobs() : GridJobRecord[] 
+setCurrentJobs(reportedJobs : int[][]) : GridJobRecord[] 
+newChannelToNode() : SocketChannel 
+updateLoad(l1, l5, l15 : float) 
+touch() 
+isAlive() : boolean 
+toString() : String

Figure 4.10: The WorkerNodeRecord class

Results 
Message

Update 
Message

Checkpoint 
Message

WorkerMessage* 
 
#nodeRec : WorkerNodeRecord 
#storage : GridFileStorage 

#nodeHandler : WorkerNodeHandler 

#sockChannel : SocketChannel 
 
+WorkerMessage(sc : SocketChannel; 

wnr : WorkerNodeRecord) 
+toString() : String 
+execute()*

PoolJob

Figure 4.11: The WorkerMessage hierarchy

however, it will always be a child of abstract class WorkerMessage as given in Figure 4.11.

Processing each request in a separate thread, using a thread pool, allows the server to

handle incoming data from multiple worker nodes simultaneously.

The UpdateMessage class is responsible for updating the statistics of the worker node’s

corresponding record, so the scheduler can make informed decisions. The incoming mes-

sage will have originated from a Heartbeater object discussed in Section 4.3.1. The
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ResultsMessage and CheckpointMessage instances are used to update the record of a

specific job, and to store the incoming data to disk on the server. This incoming message

will have originated from the ReturnResults class discussed in Section 4.3.2.

4.4.3 Client Handler

The ClientRequestHandler class is another implementation of the Reactor pattern de-

signed to handle incoming requests from instances of GridClient. Only two types of

requests are possible: those submitting a new job to JOLTS, and those wanting to retrieve

the results of a previously submitted job, handled by instances of IncomingCodeJob and

RetrieveResultsJob, respectively. The RetrieveResults class is much simpler, so it

will be described first.

When the results for a job are requested there are only three possible options:

1. There is no job matching the ID supplied by the user. In this case an error message

is returned stating the problem.

2. The job hasn’t completed yet. In this case a message is returned informing the user

to try again later for the results.

3. The job is complete and the results are returned to the client. All traces of the job;

e.g., records and temp files, are deleted from the server.

Options 1 and 2 are straightforward, but the last option requires more elaboration.

Most grid systems that support job submissions return some type of output file (usually

plain text) as the results for a job. This was deemed infeasible for JOLTS because many

of the job types supported consist of many smaller sub-jobs (MISD, SIMD, and Object

Space). How to unify the results of the various sub-jobs into one file is not clear, and may

not be the best option for the user receiving the results. This problem is even more difficult

for object space jobs, since each object space might have a clearly-defined ordering. User

programs could potentially create the output files themselves; however, writing files is not

supported in JOLTS (by default) because it can potentially cause damage to the worker

nodes. As a result, the JOLTS system returns objects as program results. The type of

object(s) returned is dependent on the programmer who wrote the job.
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For simple/sequential jobs, the completed job is sent back as is. For MISD and SIMD

jobs, the results are the job descriptor defined by the programmer as being a descendant of

MISD or SIMD, respectively (see Figure 4.6). This descriptor will contain the results of each

sub-job in its proper location according to the sub-job ID number. Because each sub-job

is in fact a simple/sequential job, this is an efficient way to return multiple results. For

object-space jobs, the contents of the object space is returned in a multiset, not the active

objects that used the object space. (If the active objects are needed, they can just be

placed in the object space before they finish executing.) Thus, any important results need

to be stored in the object space so they can be retrieved with the results. While this may

seem complicated, in reality processing a RetrieveResultsJob request is very simple: a

serialized object is read from disk and written to a socket channel to return the results.

Submitting a new job for execution, on the other hand, is a very complicated process.

New incoming jobs are processed by an instance of IncomingCodeJob. The very first

thing done is to receive the job’s binary description (either a class or jar file) and run it

through the JOLTS security manager. This security manager is designed to protect the

JOLTS system from malicious code and enforce restrictions that are not definable directly

in the Java language. How the security manager works is discussed in Appendix A.1. For

the discussion here, it is important only to know that if a job doesn’t pass through the

security manager, a message is sent to the client explaining why the job was rejected. If

the code passes the security manager, it is deemed to be “safe” and the server can begin

deciding how to process the job further. The type of job submitted to the JOLTS system

is determined by the security manager and information supplied by the user. Depending

on the type of the job, the appropriate child of class NodeCommunicationJob, shown in

Figure 4.12, is created to farm out the job out to the worker nodes. As can be seen

in the figure, farming out an entire SIMD job is done using a second class that is used

for individual sub-jobs (FarmOutSIMDJob). The same holds true for MISD jobs, except

that the class used to farm out the individual sub-jobs is the same as the one used for

simple/sequential jobs, FarmOutGridJob. One important design decision when farming

out jobs is how to deal with the multiple parts of MISD/SIMD jobs. Ideally there would

be enough available worker nodes to handle all the sub-jobs at once, but this is unlikely

to happen when the job has a large number of sub-jobs. This means any remaining sub-

jobs will have to wait for a free node, which can potentially block all further incoming
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NodeCommunicationJob* 
 
#jobRec : GridJobRecord 
#storage : GridFileStorage 
#scheduler : Scheduler 
 
+NodeCommunicationJob(gjr : GridJobRecord) 
#sendGeneralInfo(sc : SocketChannel; 

message : byte) 
+execute()*

PoolJob

FarmOut 
GridJob

FarmOut 
MISDGroup

Resume 
GridJob

FarmOut 
SIMDGroup

FarmOut 
SIMDJob

Figure 4.12: The NodeCommunicationJob hierarchy

jobs from being executed until all the sub-jobs in a large MISD/SIMD job are completed.

This is deemed undesirable, so instead of all the sub-jobs being farmed out to separate

threads inside a thread pool, they are all farmed out from the thread responsible for the

entire group. Thus, any new job that is submitted while a multi-part job is currently

being farmed out has an equal chance of being assigned to the next available worker node.

Consider the following example:

The JOLTS system is running with five worker nodes, each capable of only

hosting one job. A SIMD job is submitted that consists of ten sub-jobs. The

first five sub-jobs are started, one on each node, while sub-job 6 waits for the

next free worker node (jobs 7 through 10 must wait for 6 to be serviced before

they can be serviced). At this time a simple/sequential job is submitted to

JOLTS for execution. This simple job waits for a free worker node as well,

behind sub-job 6, not behind sub-job 10. Thus, when the first free node comes

up, sub-job 6 is assigned to it, while the second free node will be assigned the

simple job, not sub-job 7. In this manner smaller sub-jobs are able to squeeze

into the waiting queue in the middle of large multipart job.

Along with each job submitted for execution, the server creates a record to store in-
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formation about the job, and each of its sub-jobs. This record hierarchy can be seen

in Figure 4.13. The only odd thing to note about this hierarchy is the aggregation

between the Collector and MultipartGridJobRecord classes. This is in fact a bidi-

rectional relationship, as can be seen by the presence of the collector field in the

MultipartGridJobRecord class. The result is that each item knows about its enclos-

ing container. While this does go against standard software engineering practices, it is

done for several reasons:

1. The collector is responsible for knowing about all its sub-jobs, and properties of the

job as a whole.

2. The sub-jobs keep track of their own data (e.g., sub-job ID) while other data, such

as the worker nodes that have host any of the sub-jobs, can only be determined by

the collector.

All of this record keeping is entirely hidden from the user. However, user-supplied classes

are incorporated into this hierarchy in the descriptor field of the Collector class and

the params field in the SIMDGridJobRecord class.

4.4.4 Server Object Space

The final module in the server to be discussed is the object space sub-module. It was

initially suggested that the object spaces be hosted on another machine than the primary

central server, or at least in another process on the central server. This would be done for

both stability/redundancy reasons and to allow for more resources to be made available

for the object spaces. The current version of JOLTS is not implemented this way because

of the large interprocess communication required between a central server and a separate

object space server; however, hooks are present to make adding this functionality in the

future easier if it becomes a requirement.

Just like the client and worker modules on the server, this module also contains an

implementation of the Reactor pattern in the form of class ObjectSpaceHandler (see

Figure 4.9) and the ObjectSpaceRequest hierarchy, shown in Figure 4.14. When a request

arrives that wishes to perform an operation on an object space, the appropriate child

instance of class ObjectSpaceRequest is created to process the request, and is executed
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ObjectSpaceRequest* 
 
#sockRec : ChannelRecord 
#sockChannel : SocketChannel 
#osHandler : ObjectSpaceHandler 
#startTime : long 
 
+ObjectSpaceRequest(sc : SocketChannel; 

cr : ChannelRecord) 
#setHandler(osh : ObjectSpaceHandler) 
#readIncomingObject(size : int) : Object 
+toString() : String 
+execute()*

PoolJob

InRequest

OutRequest RdRequest

RmRequestEvalRequest

RmOutRequest

Figure 4.14: The ObjectSpaceRequest hierarchy

from inside a thread pool. All of the children, with the exception of EvalRequest instances,

operate on an instance of ConcreteObjectSpace, whose implementation is discussed in

Appendix A.3.2.

The reason that an EvalRequest instance doesn’t operate directly on an object space

is that its responsibility of creating active objects doesn’t require any manipulation of the

actual object space. When an eval() request arrives, each object in the multiset is turned

into an active object and its “self” object space is created along with a corresponding

record (class ObjectSpaceGridJobRecord in Figure 4.13). If all the objects were created

in the allotted time, the active objects are farmed out to worker nodes for processing.

Note: It is important to realize that while these active objects are being farmed out,

there is no guarantee they will begin executing right away, since it is possible that

there are no free worker nodes currently available. The Boolean result of the eval()

method only indicates that the active objects where created successfully, not that

they have all started executing. If the programmer wishes to know when the active

objects are actually executing they can create their own message objects to be used
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in the object space for confirmation.

The next chapter will give several example programs for the JOLTS system. Included

with these example programs will be a discussion of how the system was tested, as well as

experimental performance results.
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Chapter 5

Empirical Evaluation of the JOLTS System

The JOLTS system was designed according to the goals listed in Section 3.2, and repro-

duced here for convenience.

1. The system should keep overhead to a minimum.

2. The system should make efficient use of the available resources.

3. The system should be scalable.

4. The system should support several different parallel/concurrent programming mod-

els.

This chapter examines if these goals have been met using the Goal Question Metric (GQM)

methodology from [2]. The first step in GQM is to convert the goals into questions that

can be easily measured. Experiments can then be created to answer these questions. Each

section in this chapter focuses on determining if a specific goal has been met.

5.1 Resource Usage

While JOLTS is designed to use the collective resources of many computers to solve any

submitted job, it is also important to not needlessly waste these resources. Chapter 3

described the design decisions made to help keep resource usage to a minimum. Chapter 4

described how the high-level design was converted to a detailed design. The three main

resources that were carefully considered when designing JOLTS are:

1. CPU any periodic waiting required is done using passive waits, as opposed to

active waits. This mean more CPU cycles are available for the jobs executing on the

worker nodes, and searching through the object space on the server.
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Table 5.1: Computer Specifications Used for Initial Experiments
Properties Worker Nodes Server
Model Dell - n Series Sun Fire 3800
OS Version Mandrake 9.2 Solaris 8
Processor Pentium 4 (HT) Ultra Sparc III (x4)
Processor Speed 2.4GHz 750MHz
RAM 512MB 8 GB
Disk Type ATA 100 SCSI Ultra2 Wide LVD (RAID 1)
Network 100Mbs 100Mbs
Java Version 1.4.2 02-b0 1.4.2 04-b0

2. Network all the protocols are byte-based because they require less bandwidth

than text-based protocols. Where appropriate, caching was used to prevent possible

transmission of redundant data. Also tied closely to the previously mentioned idea of

only using passive waits, most of the JOLTS networking also runs on push technology.

This reduces the amount of time that the CPU is waiting for data to arrive over the

network, as is the case when using pull technology.

3. Disk although caching is used to keep network usage to a minimum, only the

most recent data is cached. For example, if a job is generating checkpoints faster

than they can be transmitted (only occurs in non-blocking mode), any checkpoints

waiting for transmission are deleted if a newer checkpoint is created before the older

checkpoint begins transmission to the server. This results in only the most recent

checkpoint being cached to disk.

It would be difficult, if not impossible, to find the optimal balance between using these

resources. Additionally, the optimal balance would be highly dependent on the nature of

each job submitted to run on JOLTS.

5.2 Setup

The various experiments were run at the University of Saskatchewan using the computer

science undergraduate computer labs. Worker nodes consisted of standard desktop ma-

chines, available for undergraduate use, while the server machine was a dedicated server

with restricted access. The specification of the worker nodes and server are given in Ta-

ble 5.1. While only Linux machines were used as worker nodes during the initial testing,

any of the JOLTS components can run anywhere Java 1.4 is available.
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Standard output for the server was redirected to /dev/null, while standard error was

written to the terminal. Output from each worker node, both standard out and standard

error, was redirected to a file on a network file system. This was done so that progress

could be checked during the experiments. Both the server and worker nodes were started

remotely over SSH using scripts. Nodes were added to the grid based on the number

required for the current experiment; i.e., all the nodes were not started at the beginning

of the experiment session. Nodes were set to execute a single job at a time.

The experiments were run late at night (spread over several weeks) to help guarantee

network traffic was low, and also to help ensure the worker nodes would not be currently in

use by any students. If a worker node was currently in use, it was not used; however, this

was impossible to guarantee completely, so small fluctuations in results can be expected.

If large deviations from the expected results were obtained, the problem node(s) were

eliminated from the grid and the corresponding experiment was rerun. When results were

requested from the system, a single request was made, instead of repeatedly querying the

server. This helps to reduce the server load. Only one job was submitted to the server at

a time.

5.3 Overhead

Overhead is inevitable in a system such as JOLTS. The goal of keeping the overhead to a

minimum is subjective, because it is hard to define what the minimum would be. Overhead

can also be dependent on the program that is being measured. Creating a question about

the overhead for JOLTS is thus based on the notion of keeping the overhead below some

acceptable margin. Without a clear definition of what is deemed “acceptable” the question

that needs to be asked is:

What is the overhead penalty for using the JOLTS system?

To answer this question two programs were designed and run on the JOLTS system with

various configurations. The programs run on JOLTS are different approaches that can

be used to determine RSA private keys from known public keys. These approaches were

chosen because they are simple to parallelize, and they match the programming models

offered by JOLTS.
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5.3.1 RSA

RSA encryption is based on the notion that it is computationally expensive to factor large

numbers [1]. Without going into depth on how RSA works, the process of breaking RSA

encryption is to take a large value n (public) and determine what its factors, p and q (both

private), where both p and q are prime numbers. Using a second public value k, it is then

possible to determine all the values required to do RSA encryption and decryption.

At its heart, this is an O(2n/2) problem there is no known polynomial solution (yet).

There are many different algorithms, and various optimizations, that can be done to try

and factor large prime numbers. Certain algorithms only work once the key sizes pass a

certain number of bits, or they rely on special hardware instructions. Because this thesis

is not about encryption, the approach taken here is the simplest approach.

1. Find the square root of n, and take the floor of the result.

2. Break the numbers from 1 to the square root into small pieces.

3. The prime numbers in each piece must then be checked to see if they are a factor of

n.

In normal RSA use, the size n is usually several hundred to several thousand bits in

length. In the example programs used here, the size of n is only 56-bits. The following

two subsections describe test programs run on JOLTS that attempt to find p and q using

only n.

5.3.2 SIMD Example

This subsection describes a SIMD approach that can be used to break RSA keys. Because

this example is designed to be an SIMD program, three main components are needed,

the collector, worker, and the parameters. The collector is responsible for creating all

the RSA key values, sqrt(n), and breaking the key space into the appropriate number of

pieces for the experiment. The worker is assigned a piece of the key space and checks

the prime numbers in that key space against n. The parameters are the data used to

create the worker. The source code for the collector and worker are in Figures 5.1 and 5.2,

respectively. The parameters aren’t shown because it contains no interesting methods.
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import clientside.*;

import java.math.*;
import java.util.Random;

/** This class is responsible for assembling all the sub-jobs as they are completed by the
worker nodes. */

public class RSACollector extends JobGroupDescriptorTemplate implements SIMD
{

/** The various values used in RSA encryption. */
private BigInteger p, q, n, k, phi, d, sqrt;

/** Variables for recording when the job starts and finishes. */
private long startTime, endTime;

/** The constructor used to initialize all the RSA values. */
public RSACollector()
{

super(400); // the number of pieces
BigInteger message, p1, q1, gcd;
startTime = System.currentTimeMillis();
Random r = new Random(10);
message = new BigInteger("20");

// calculate all the RSA key values
p = BigInteger.probablePrime(27, r); // 27-bit prime number
q = BigInteger.probablePrime(28, r); // 28-bit prime number
n = p.multiply(q); // will be the combined bit lengths of p and q
sqrt = sqrt(n).toBigInteger();
p1 = p.subtract(BigInteger.ONE);
q1 = q.subtract(BigInteger.ONE);
phi = p1.multiply(q1);
do
{

// k must be relatively prime to phi AND mˆk > n
k = BigInteger.probablePrime(14, r); // 14-bit prime number
gcd = phi.gcd(k);

}while(!(gcd.equals(BigInteger.ONE)
&& message.pow(k.intValue()).compareTo(n) > 0));

d = k.modInverse(phi);
}

/** Simple method to store the results for a specific sub-job.
@param obj The results for the sub-job.
@param cp The number for the sub-job. */

public void storeResults(Object obj, int cp)
{

super.storeResults(obj, cp);
endTime = System.currentTimeMillis();

}

/** Simple method to get the name of the class that represents the sub-jobs.
@return A String containing the name of the sub-job class. */

public String getStartingClassName()
{

return "RSAWorker";
}

Figure 5.1: The SIMD collector for RSA keys (part 1)
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/** Simple method to get the parameters for a specific sub-job.
@param cp The number of the sub-job to get the parameter for.
@return The parameter for the specified sub-job. */

public Parameters getParametersForCopy(int cp)
{

BigInteger temp = sqrt.divide(BigInteger.valueOf(results.length));
BigInteger start = temp.multiply(BigInteger.valueOf(cp));
BigInteger end = start.add(temp).subtract(BigInteger.ONE);
return new Range(n, start, end);

}

/** This method is used to find the square root of the parameter (since one isn’t provided
for the BigInteger class). It only goes to 15 decimal places of accuracy. */

private BigDecimal sqrt(BigInteger n)
{

BigDecimal newN = new BigDecimal(n);
BigDecimal guess = new BigDecimal("1");
BigDecimal two = new BigDecimal("2");
BigDecimal oldGuess = guess;
while(true) // intentional infinite loop
{

BigDecimal f = oldGuess.multiply(oldGuess);
f = f.subtract(new BigDecimal(n));
BigDecimal fPrime = oldGuess.multiply(two);
guess = oldGuess.subtract(f.divide(fPrime, 15, BigDecimal.ROUND HALF DOWN));
BigDecimal test = guess.multiply(guess);
if(newN.compareTo(test) == 0) // dead match

return guess;
if(guess.equals(oldGuess)) // no movement in guess

return guess;
oldGuess = guess;

}
}

/** Simple method to display the main key values created, and the discovered factor.
@return The calculated keys, and the key discovered by the worker nodes. */

public String toString()
{

String temp = "Keys\n----\n";
temp += "p: " + p "\n";
temp += "q: " + q "\n";
temp += "time: " + (endTime - startTime) + "\n";
for(int i = 0; i < results.length; i++)
{

RSAWorker worker = (RSAWorker) results[i];
if(worker.getAnswer() != null)

return temp + "calculated factor: " + worker.getAnswer() + "\n";
}
return temp;

}
}

Figure 5.1: The SIMD collector for RSA keys (part 2)
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import clientside.*;
import gridutil.CheckpointMech;

import java.math.*;

/** This class is responsible for looking for a factor for n inside a specific range of values.
The range to be searched is passed into the constructor. */

public class RSAWorker implements GridJob
{

/** Instance variables for designating the range to be searched, n, and the found factor. */
private BigInteger start, end, n, answer;

/** Simple constructor used to set the instance variables, taken from the paramter to the
constructor. */

public RSAWorker(Parameters p)
{

Range r = (Range) p;
n = r.n;
start = r.start;
end = r.end;

}

/** Empty method, checkpoint mechanism isn’t being used. */
public void setCheckpointMech(CheckpointMech cpm) {}

/** Simple method to get the answer found by this object. */
public BigInteger getAnswer()
{

return answer;
}

/** The heart of the worker. It tries to find a factor of n in the range between start and
end. If it found a factor, it stores it in an instance variable. */

public void execute()
{

BigInteger p = factor(n, start, end);
if(!p.equals(BigInteger.ZERO)) // found factor

answer = p;
}

/** This method tries to find the factors for a given number. It only checks for a factor
inside a given range. If it isn’t found, it returns 0. */

private BigInteger factor(BigInteger n, BigInteger start, BigInteger end)
{

BigInteger two = new BigInteger("2");
BigInteger current = start;
if(current.remainder(two).equals(BigInteger.ZERO)) // make sure the number is odd

current = current.add(BigInteger.ONE);
while(current.compareTo(end) <= 0)
{

if(current.isProbablePrime(100)) // 0.9990234375 certainty
{

BigInteger rem = n.remainder(current);
if(rem.equals(BigInteger.ZERO))

return current;
}
current = current.add(two);

}
return BigInteger.ZERO;

}
}

Figure 5.2: The worker for breaking RSA keys
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The server was configured to handle 15 parallel worker node requests, and the heart

beat length was set at 5 seconds. The Java bytecode for the job was 3.5K in size. The

results of this program with increasing number of nodes are given in Figure 5.3. The data

used to created the graph can be found in Appendix B. An explanation of each line in

the graph is as follows:

1. Standalone This version was run on a worker node, but not as part of the JOLTS

system. This was done to determine the amount of time required by a single-threaded

version, with no system overhead. This line is horizontal because it is a base line for

comparison outside the system.

2. Thread Ideal Because this program can easily be decomposed into parallel pieces,

this line represents the ideal case of no overhead when running multiple threads. A

special run of the program was made to determine the time required to search the

entire key space. The ideal value for parallelizing the program is to take this time

(approximately two hours), and divide it by the number of threads/nodes. As can

be clearly seen, there are diminishing returns as more threads are used, even with

no overhead.

3. Threaded Local Again, since this program can easily be decomposed into parallel

pieces, it might seem natural to run each piece in its own thread on a single machine.

This line represents the program run with multiple threads, all on the same machine.

The number of threads used corresponds to the number of worker nodes in the graph.

4. Blocks = Nodes This version was run on increasing numbers of worker nodes inside

the JOLTS system. The key space was divided evenly among the worker nodes, with

each worker node assigned a single block to process.

5. Blocks = 400 This version is similar to the preceding one, except the number of

pieces the key space was divided into was fixed at 400 pieces. As a node finished its

assigned piece, it was assigned another piece to process until all 400 blocks had been

processed. This represents the case where the number of parameters experiments to

run is much larger than the number of available nodes.

The timing for the experiments run inside the JOLTS system are based on the time between

when the job record is created on the server, until the final result is returned by the worker
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node. Normally the results of a completed job are only assembled when the results are

requested by the user; however, to facilitate proper timing for these experiments, the

results are assembled as a soon as the last sub-job result arrives from a worker node. No

checkpoints were created while the program was running.

As can be seen from the graph, the Thread Local line has a general upward trend,

when more than two nodes are used. The reason why with only two threads the execution

time decreases is that there are still free cycles available when only one thread is used,

which this second thread is able to use. With more than two threads present, the processor

begins thrashing, decreasing the available time for the threads and increasing the execution

time of the program.

The two experiments run using JOLTS, Blocks = Nodes and Blocks = 400, show an

obvious trend matching the Thread Ideal line. The gap between the Thread Ideal line and

the two Block lines is the overhead incurred when using the JOLTS system. The overhead

is very small for this example program as more nodes are added to the grid, indicated

by the fact that the lines converge rather quickly. Although it is hard to tell from the

graph due to the fact the lines appear to be overlapping, there is still a small measurable

overhead. The overhead for this experiment is defined to be

overhead% =
(

1− experimental time
ideal time

)
∗ 100

The minimum overhead reached on the Blocks = Nodes line is 2.98%, obtained with six

nodes in the grid. After this point, overhead continues to rise at progressively smaller

increments, approaching 12% at the tail end of the graph. While the percentage difference

between the ideal theoretical value and the experimental results is growing, the actual

value represented by this difference is decreasing throughout the graph.

The minimum overhead reached on the Blocks = 400 line is 5.26%, obtained with four

nodes in the grid. After this point, overhead continues to rise, approaching 25% at the

tail end of the graph. This line has a larger overhead than the Blocks = Nodes line, which

is consistent with the expected results. With more blocks, there is more network traffic

as additional blocks are sent to worker nodes that finish their assigned block. While new

blocks are in transit to the worker nodes, the worker is sitting idle. This idle time is the

cause of the slower program performance. In the Blocks = Nodes line, there is no idle
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worker time, because once a worker node finishes its assigned block, there are no more

blocks that need to be sent to the worker node.

There are two possible values that can directly affect the execution time on a worker

node: the heart-beat length, and whether or not the sub-jobs are sent to the worker nodes

in sequence, or in parallel. As mentioned in Section 4.3.1, the heart-beat length is the

amount of time between the periodic updates from the worker node to the server. When

this heart beater is executing, it consumes CPU cycles that could otherwise be used by

jobs running on the worker node. With a smaller value, more CPU cycles are available for

running jobs; but conversely, the worker node is then less responsive to changes outside

the JOLTS system. The heart-beat length was kept constant at five seconds throughout

the experiments.

As mentioned earlier in the example on page 85, it was decided that the sub-jobs that

create SIMD/MISD jobs are sent to worker nodes in a sequential manner. This allows

smaller jobs equal opportunity to begin execution instead of having to wait for a large

multipart job to finish executing first. Thus, rerunning the experiments sending out all

the sub-jobs in parallel was not done.

5.3.3 Object Space Example

This subsection describes an object space approach that can be used to break RSA keys.

Unlike the SIMD approach discussed in the previous section, communication is possible

between sub-jobs using the object space. Thus, once either p or q has been found, no

more subsequent blocks from the key space are searched. Blocks that are currently being

processed are allowed to finish.

One active object places the ranges to be processed in the object space. Workers are

responsible for retrieving a range from the object space and checking if p or q is in the

given range. If it is not found, another range is retrieved and the process repeats. If

the factor is found in the range, that active object removes all the other ranges from the

object space, and then inserts the results into the object space. If there are no ranges left

in the object space when an active object attempts to retrieve a range, the active object

just exits. The source code for the starting active object and the workers are given in

Figure 5.4 and 5.5, respectively.

The worker nodes and server are the same machines given in Table 5.1. The object
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import clientside.*;
import gridutil.objectspace.*;

import java.math.*;
import java.util.Random;

/** This class generates all the RSA key values. Some of them are random (e.g., p and q), while others
are the result of calculations (e.g., n and phi). The keys are placed in the object space. Then the key
space is broken down into segments, and the ranges for these segments are placed into the object
space. Finally, several workers are created to process the ranges, looking for the factors of n. */

public class Starter extends ObjectSpaceJobTemplate
{

/** The number of blocks to decompose the key space into. */
private final int NUM BLOCKS = 400;

/** The number of active objects to process the key space. */
private final int NUM WORKERS = 64;

/** This method first generates the random RSA keys, which are then stored in the object
space in a ‘Key’ object. Then the range values for the primes p & q are broken into
100 blocks, whose ranges are placed in the object space. Finally, some workers are
created to process the blocks looking for a valid factor for n. */

public void execute()
{

Random r = new Random(10);
BigInteger message = new BigInteger("20");

// calculate all the RSA key values
BigInteger p = BigInteger.probablePrime(27, r); // 27-bit prime number
BigInteger q = BigInteger.probablePrime(28, r); // 28-bit prime number
BigInteger n = p.multiply(q); // will be the combined bit lengths of p and q
BigInteger p1 = p.subtract(BigInteger.ONE);
BigInteger q1 = q.subtract(BigInteger.ONE);
BigInteger phi = p1.multiply(q1);
BigInteger k, gcd, d;
do
{

// k must be relatively prime to phi AND mˆk > n
k = BigInteger.probablePrime(14, r); // 14-bit prime number
gcd = phi.gcd(k);

}while(!(gcd.equals(BigInteger.ONE)
&& message.pow(k.intValue()).compareTo(n) > 0));

d = k.modInverse(phi);

// place data in object space for processing
MultiSet m = new MultiSet();
m.put(new Keys(p, q, k));

// break range of factors into blocks and insert into object space
BigInteger sqrt = sqrt(n).toBigInteger();
BigInteger blockSize = sqrt.divide(new BigInteger(NUM BLOCKS + ""));
BigInteger start, end = BigInteger.ZERO;
for(int i = 0; i < NUM BLOCKS; i++)
{

start = end.add(BigInteger.ONE);
end = start.add(blockSize);
m.put(new Range(i, start, end));

}
self.out(m, ObjectSpace.INFINITE TIMEOUT);

// create workers to process range blocks
m = new MultiSet();
for(int i = 0; i < NUM WORKERS; i++)

m.put(new Cracker());
self.eval(m, ObjectSpace.INFINITE TIMEOUT);

}

Figure 5.4: The class for the starting active object (part 1)
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/** This method is used to find the square root of the parameter (since one isn’t provided
for the BigInteger class). It only goes to 15 decimal places of accuracy. */

private static BigDecimal sqrt(BigInteger n)
{

BigDecimal newN = new BigDecimal(n);
BigDecimal guess = new BigDecimal("1");
BigDecimal two = new BigDecimal("2");
BigDecimal oldGuess = guess;
while(true) // intentional infinite loop
{

BigDecimal f = oldGuess.multiply(oldGuess);
f = f.subtract(new BigDecimal(n));
BigDecimal fPrime = oldGuess.multiply(two);
guess = oldGuess.subtract(f.divide(fPrime, 15, BigDecimal.ROUND HALF DOWN));
BigDecimal test = guess.multiply(guess);
if(newN.compareTo(test) == 0) // dead match

return guess;
if(guess.equals(oldGuess)) // no movement in guess

return guess;
oldGuess = guess;

}
}

}

Figure 5.4: The class for the starting active object (part 2)

space was configured to handle five parallel object space requests at a time. The rest of

the server values are the same as those given in Section 5.3.2. The Java bytecode for the

job was 5.2K in size. The results of this experiment with increasing number of nodes are

given in Figure 5.6. The data used to created the graph can be found in Appendix B. An

explanation of each line in the graph is as follows:

1. Ideal This version was calculated based on the time required for a single worker

running outside of JOLTS to find a factor. This number is then divided by the

number of threads/nodes to create the ideal time required if the program was run

in parallel, with no overhead.

2. Threaded (Blocks = Nodes) For this version a special object space was created that

ran outside of the JOLTS system. It was run on a single machine, while the number

of threads (on the same machine) was increased. Each active object processed a

single range before finishing.

3. Threaded (Blocks = 400) This version is identical to the previous one except that

the number of blocks to be processed was held constant at 400.

4. JOLTS (Blocks = Nodes) This version was run on JOLTS, with each worker being
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import clientside.*;
import gridutil.objectspace.*;

import java.math.*;

/** This class is responsible for trying to factor a large number, finding its two factors (which are
both prime numbers). This is useful in breaking RSA keys. */

public class Cracker extends ObjectSpaceJobTemplate
{

/** The keys being processed. Only the public ones are accessed. */
private Keys keys;

/** The current range being processed. It is stored here so that it can be checkpointed. */
private Range range;

/** The current checkpoint number. */
private short cpNum;

/** The heart of the class. It first gets the public keys (n and k). It then obtains a block
range for processing, looking for a factor of n in the range. This repeats until either there
are no blocks left, or a factor is found. If a factor is found, all the result is placed in
the object space, and all the remaining blocks are deleted. */

public void execute()
{

BigInteger n, k;
MultiSet m = null;
if(range == null)
{

keys = new Keys();
m = context.rd(keys, 1, 1, ObjectSpace.INFINITE TIMEOUT);
keys = (Keys) m.get(0);
range = new Range();
m = context.in(range, 1, 1, 5000); // 5 seconds
range = (Range) m.get(0);
cpMech.checkpoint(++cpNum);

}

n = keys.n;
k = keys.k;

while(range != null)
{

BigInteger p = factor(n, range.start, range.end);
if(!p.equals(BigInteger.ZERO)) // found factor
{

BigInteger q = n.divide(p);
Results results = new Results(p, q, k);
m = new MultiSet();
m.put(results);
context.out(m, ObjectSpace.INFINITE TIMEOUT);
while(context.rm(range, 1, 5, 3000) == 5)

; // just keep deleting
break;

}
m = context.in(range, 1, 1, 5000); // 5 seconds
range = (Range) m.get(0);
cpMech.checkpoint(++cpNum);

}
}

Figure 5.5: The class for the worker active object (part 1)
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/** This method tries to find the factors for a given number. It only checks for a factor
inside a given range. If it isn’t found, it returns 0. */

private BigInteger factor(BigInteger n, BigInteger start, BigInteger end)
{

BigInteger two = new BigInteger("2");
BigInteger current = start;
if(current.remainder(two).equals(BigInteger.ZERO)) // make sure the number is odd

current = current.add(BigInteger.ONE);
while(current.compareTo(end) <= 0)
{

if(current.isProbablePrime(100)) // 0.9990234375 certainty
{

BigInteger rem = n.remainder(current);
if(rem.equals(BigInteger.ZERO))

return current;
}
current = current.add(two);

}
return BigInteger.ZERO;

}
}

Figure 5.5: The class for the worker active object (part 2)

assigned to its own worker node. Each active object processed a single range before

finishing. No checkpoints were used.

5. JOLTS (Blocks = 400) This version was run on JOLTS, with each worker being

assigned to its own worker node. The number of blocks was held constant at 400.

No checkpoints were used.

6. JOLTS (Blocks = 400 with Checkpoints) This version was run on JOLTS, with

each worker being assigned to its own worker node. The number of blocks was held

constant at 400. Checkpoints were created each time an active object retrieved a

block for processing from the object space. The size of the resulting checkpoint was

1147 bytes.

The timing for the experiments run inside the JOLTS system are based on the time between

when the job record is created on the server, until the final active object exits and the

object space is serialized to disk. This resulting value can only be obtained by looking at

the server logs there is no way for the user to accurately determine this value. The code

to perform this timing was added only for these experiments, and is not normally present.

As can be seen in the graph, the two “Threaded” lines have a general upward trend.

The line where the number of blocks matches the number of nodes rises more quickly

because a large amount of processor time is wasted searching unnecessary blocks. Basically,

104



�
�

��
��

��
	



��

��
�

�
�

�
	

�
��

�
�
�

�

�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

	
�
�
�



�
�
�

�
�
�
�
�

�
�



�
�

�
�

�
�

�
�

�



�
�

�
�

�
�

�
�

�



�
�

�
�

�
�

�
�

��


�

��
�

�
�

�
�

��������������

�
�
�
��
��
��
�
��
��
��
�
��
�
�
��
�

�
�
�
��
��
��
�
��
��
��
�
��
�
�
�

��
��
�
��
�
��
��
��
�
��
�
�
��
�

��
��
�
��
�
��
��
��
�
��
�
�
�

��
��
�
��
�
��
��
��
�
��
�
�
� 
!"
�
�#
�
��
�$
�
!%
"�
�

&�
��
�

F
ig

ur
e

5.
6:

T
he

re
su

lt
s

of
th

e
R

SA
ob

je
ct

sp
ac

e
ex

pe
ri

m
en

t

105



each block will be fully searched, except for the single block where a matching factor is

found. The second “Threaded” line rises slower because as soon as the factor is found,

no other blocks are processed. This saves processor time, resulting in a lower slope to the

line.

The three experiments run using JOLTS show an obvious trend matching the “Ideal”

line. The experiment where the number of blocks equals the number of nodes is noticeably

above the ideal line for the same reason just mentioned in the previous paragraph. The

entire key space is being searched, instead of just until a factor is found. This results in

an average percentage overhead of 53% over the length of the graph, with only 43% with

only two nodes, up to 59% with 64 nodes.

The two experiments where the number of blocks is held constant at 400 virtually

overlap the Ideal line. Also, the percentage overhead between these two lines shows little

difference between whether or not checkpoints are used. In some experiments the line

with no checkpoints is faster, and it others the line with checkpoints is faster. The time

difference between these two is always within three or four seconds, well within the general

time fluctuations between runs. The important thing to realize is that there is basically

no performance penalty present in using checkpoints versus not using checkpoints. The

percentage overhead for both lines range from 2% overhead to 28% overhead. Again,

although the overhead percentage continues to rise, the actual time difference between the

experimental runs and the Ideal line continues to get smaller.

While these overhead values may seem high, when using the object space the choice of

computer used as the server can have a significant impact on the performance on object

space jobs, shown in the following section. As it turns out the server used for the object

space experiments in this section was not the best choice. Using a different server can

result in faster execution, which will in turn lower the percentage overhead.

5.4 Scalability

Scalability is an important attribute in distributed systems. Every system, no matter

what it is, has a bottleneck. Bottlenecks can’t be eliminated, they can only be shifted

between areas; e.g., from the CPU to the network connection. A grid environment such

as JOLTS is scalable if it can handle a large number of nodes. Because all the nodes in
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the system need to communicate with the server, the server is a potential bottleneck. In

theory, if the number of nodes in the system is large enough, it should have a noticeable

impact on performance.

For most job types, the server performs very few calculations. However, for object

space jobs, the server can potentially perform a sizeable amount of work while performing

various requested operations on object spaces. Thus, to stress test the server, it is ideal

to use object space jobs that make frequent calls to the object space. The system can

be run using different types of servers, to help determine the type of server required for

acceptable performance. For example, is a standard PC just as effective as the JOLTS

server compared to a $100,000 mainframe?

The example program used to test the scalability of the system is a slight modification

of the RSA program discussed in Section 5.3.3. The modifications made to the program

to stress test the server are:

• The checkpoints performed by the active objects are done in blocking-mode. Thus,

each checkpoint is sent to the server, not just the most recent. This eliminates the

possibility of potentially loosing the factor of n to a failed worker node, and also has

the effect of keeping the network busy all the time.

• The number of blocks in the key space was increased from 400 to 2000. This reduces

the size of each block, and thus the time required to process the block. The worker

nodes can process a block in three to five seconds, depending on the type of worker

node.

• The checkpoint size was artificially increased. The experiment in Section 5.3.3 used

checkpoints of 1K. For the experiment here, the checkpoints are increased in size to

101K. This was done by creating a large int array in the active object that needs to

be included with the checkpoint data. This stresses not only the network, but also

the disk on the server for storing all these checkpoints.

• A total of 5000 dummy objects were placed near the front of the object space. This

increases the load on the server, as each block request by an active object must

first search through these 5000 blocks, before finding a valid block to be processed.

When an active object finds the desired factor of n, it not only removes the remaining
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Table 5.2: Server Specifications Used for Stress Testing
Server Name Tangra Sprite Penguin/Morph Stealth
Model Sun Fire 3800 Xserve G5 Dell - n Series IBM NetVista
Processor Type Ultra Sparc III PowerPC 970fx Pentium 4 (HT) Pentium 4
Processor Speed 750MHz (x4) 2GHz (x2) 2.4GHz 1.8GHz
OS Solaris 8 OSX Server 10.3.4 Mandrake 9.2 Mandrake 9.2
Memory 8GB 2GB 512MB 256MB

Hard Drive SCSI Ultra2 Wide SATA ATA 100 ATA 100
LVD (RAID 1)

Network 100 Mbs 1 Gbs 100 Mbs 100 Mbs

Java Version 1.4.2 04-b05 1.4.2 03-117.1 1.4.2 02-b03 1.4.2 02-b03
(64-bit)

Server Name Skorpio Glycogen Sobek
Model Sun E450 Sun Blade 1000 IBM X335
Processor Type Ultra Sparc II Ultra Sparc III Xeon
Processor Speed 296MHz (x4) 600MHz 2.4GHz
OS Solaris 7 Solaris 8 Mandrake 9.1
Memory 2GB 512MB 512MB

Hard Drive SCSI2 (RAID 1) Fibre Channel Ultra SCSI
320 (RAID 1)

Network 100 Mbs 100 Mbs 100 Mbs

Java Version 1.4.2 04-b05 1.4.2 04-b05 1.4.2 03-b02
(64-bit) (64-bit)

blocks from the object space, it also removes these dummy objects five at a time

with a three second timeout. This creates a flood over 1000 requests to the server

in a very short span of time.

• Two thread pools on the server were increased in capacity to handle the large number

of nodes. The WorkerNodeHandler’s pool size was increased from 15 to 30 threads.

The ObjectSpaceHandler’s pool size was increased from 5 to 20.

As mentioned earlier, this experiment was designed to stress test the server. To find a

“good” server for JOLTS, this test was run on many different servers. The specifications

for the servers and worker nodes used are given in Tables 5.2 and 5.3, respectively. The

nodes were added to the system, five nodes at a time, starting with the Penguin/Morph

machines, followed by the Stealth, and lastly the Spinks machines. Standard out for the

server was redirected to /dev/null, while standard error was displayed on the terminal.

For worker nodes, both standard out and error where redirected to a file (each node had

their own file) on a NFS mount point. For the Windows worker nodes, standard out and

error was just displayed to the DOS prompt.
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Table 5.3: Worker Node Specifications Used for Stress Testing
Node Name Penguin/Morph Stealth Spinks
Model Dell - n Series IBM NetVista Dell - n Series
Processor Type Pentium 4 (HT) Pentium 4 Pentium 4 (HT)
Processor Speed 2.4GHz 1.8GHz 2.8 GHz
OS Mandrake 9.2 Mandrake 9.2 Windows 2000 Pro
Memory 512MB 256MB 512MB
Hard Drive ATA 100 ATA 100 ATA 133
Network 100 Mbs 100 Mbs 100 Mbs
Java Version 1.4.2 02-b03 1.4.2 02-b03 1.4.2 02-b03
Nodes used 60 45 35

The results of the experiment are shown in Figure 5.7. The values for experiments

with 5 and 10 nodes have values of around 18.5 minutes and 9.4 minutes, respectively.

These are not shown in the graph because such large values make the differences present

in the tail of the graph less noticeable. The general trend of the graph is a downward

curve with diminishing returns, much like several of the lines in Figure 5.6.

The first thing to note about this graph is the data using Sprite as the server only

goes up to 100 nodes. The entire server would crash when higher number of nodes were

attempted, and none of the debugging messages displayed. In an attempt to isolate the

cause of the instability using Sprite, tests were run on an older Xserve machine (not

shown), and it too exhibited the same instability when high numbers of nodes were used.

Thus, it appears to a be a problem with the JVM on that operating system. This is not

a problem with the JOLTS system, because the exact same server bytecode was used on

all the servers, and only those running OSX Server exhibited this instability.

The system using the servers Penguin, Stealth, and Sobek appear to handle the in-

creasing number of nodes without problems. Multiple test runs resulted in only small time

fluctuations of approximately 1.5 seconds. As expected, the performance gained by adding

new nodes is very small near the tail end of the graph, with speeds increasing only 2 to 3

seconds when adding 5 additional nodes. However, this trend cannot continue indefinitely,

eventually the network would become saturated.

Assume that a worker node can process a data block in 3.5 seconds, and that the

checkpoints returned by the worker nodes are spread out evenly over those 3.5 seconds.

Network Speed = Nodes ∗ Checkpoint size/Checkpoint frequency

100Mb/s = x ∗ 101K/3.5s
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12.5M/s = x ∗ 0.0289M/s

432 ≈ x

This indicates that in an ideal case, the system would at most be able to handle 432 nodes

when using a checkpoint size of 101K before the network became saturated. In reality, it

would require fewer nodes because there are other items that lower the available network

speed; e.g., TCP retransmissions, heartbeat data, and packet overhead. It would also

require a fast server to handle that many concurrent connections.

Looking at the graph, it is apparent that three servers, Skorpio, Tangra, and Glycogen

begin increasing in time as more nodes are added around 90 nodes. The network cards

on these servers appear to be unable to cope with that many concurrent connections,

even though the network cards are supposedly rated at 100Mbs. When the network cards

become saturated, the server is unable to process worker node requests to the object space

before the timeout value has been reached (3 seconds for this example program). When a

node times out, it no longer contributes any of its cycles to the job being processed. For

example, with 100 nodes in the system, if 30 nodes reach their timeout value, it in essence

becomes a 70 node grid. Based on how many nodes timeout, it can drastically affect the

results for a test run. Because nodes are bursting data at 101K, as opposed to an even

stream of data, this bursting can cause a large number of nodes to timeout at once. This

behavior was observed by examining the files in the JOLTS “temp” directory on the server.

When an active object finishes, a results file is sent to the server. Normally these results

files only appear when a sub-job is finished; but when an active object times out, the

results file is sent to the server well before the job finishes, which did occur on the servers

where the execution time is increasing. The values given in Figure 5.7 are the best/fastest

recorded times. For the Skorpio and Tangra servers, with large number of nodes, the

fluctuations between test runs easily approach two minutes in variance. Glycogen, the

other server that performed poorly when using lots of nodes also had fluctuations between

runs, but only around 50 seconds in variance.

This experiment shows that one of the most important factors for the JOLTS server

is the network interface. If object space requests can’t get to the server fast enough, it

doesn’t matter how fast the server is, the requests will timeout. Once the request does

manage to reach the server, the faster the CPU, the better. The disk speed on the server
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appears to have little influence, since even with the 140 nodes all checkpointing at the

same time, it is easily handled by the disks in the servers being tested.

5.5 Programming Models

One of the goals of the JOLTS system was to support many different programming models.

This goal can easily be converted into a question:

Does the JOLTS system support multiple programming models?

Answering this question doesn’t require any detailed experiments, merely a discussion of

the features supported in JOLTS. JOLTS supports several different programming models,

some directly and some indirectly. The sequential model is the simplest to support and is

done so using the GridJob interface. This interface is also used in supporting both MISD

and SIMD programming models. Each of the remaining subsections discusses a different

programming model supported by JOLTS.

5.5.1 SIMD/MISD

SIMD and MISD models depend strongly on the ability to specify the multiple compo-

nents that make up a single job. This is supported using the SIMD and MISD interfaces,

respectively. An example of using SIMD was given in Section 5.3.1. As mentioned earlier,

there are many different algorithms that can be used to do prime number factorization.

Each of these algorithms could be created in a separate class and assembled into a MISD

job. Thus, the various algorithms (multiple instructions) could be compared to see how

long they take to break the same key (same data). Figure 5.8 contains an example class

that could be used to describe such a MISD job. Each of the String names stored in the

array names correspond to a different class (not shown) that implements the corresponding

algorithm.

5.5.2 Object Space

The most interesting programming model supported by JOLTS is the object-space model.

Using the object space, programs can be designed using either high-level models such as

shared memory, or low-level models using semaphores. It is even possible to emulate both
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import clientside.*;

/** This class is responsible for describing a MISD grid job that consists of several different
classes, each using a different algorithm for factorization of prime numbers. */

public class FactorizationAlgs extends JobGroupDescriptorTemplate implements MISD
{

/** An array for storing the names of all the various classes making up this MISD job. */
private String names[ ];

/** Simple constructor that stores the name of the various sub-jobs in the ‘names’ array. */
public FactorizationAlgs()
{

super(4);
names = new String[results.length];
names[0] = "BruteForce";
names[1] = "NumberSieve";
names[2] = "QuadraticSieve";
names[3] = "PollardStraassen";

}

/** Simple method to get the name of the class for a specific sub-job of this MISD job. */
public String getClassNameForCopy(int cp)
{

return names[cp];
}

}

Figure 5.8: An example class for various prime number factorization sub-jobs

unicast and multicast message-passing programming models using the object space. As

soon as multiple entities are able to communicate and coordinate with each other, many

different programming models are possible. The most common use for object spaces is

the creation of master/slave programs, where one active object is responsible for placing

data in the object space, while multiple slave active objects retrieve the data and do any

necessary processing on it.

The canonical example for demonstrating coordination using a tuple/object space is

the dining philosophers problem. There are many variations of this problem, with varying

degrees of detail. The example used here is the same as the one given in [16], which consists

of philosophers, chopsticks, chairs, a door, and a waiter. The waiter, shown in Figure 5.9,

is responsible for opening/closing the restaurant, setting the table, and cleaning the dirty

chopsticks. For the purpose of this example, the waiter is also responsible for creating the

philosophers.

The closing of the restaurant is indicated by the removal of the Door object from the

object space by the waiter. A new door, created in the “closed” state is then placed

back into the object space so that the philosophers can’t enter the restaurant (the door is

closed). This is an ideal case of where the rmOut() function, introduced in Section 4.1.4
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import clientside.ObjectSpaceJobTemplate;
import gridutil.objectspace.*;

/** This class is the waiter in the classical Dining Philosophers problem. The waiter is responsible
for opening the restaraunt, setting the table, cleaning the table, and closing the restaraunt. */

public class Waiter extends ObjectSpaceJobTemplate
{

/** The number of seats in the restaurant (and chopsticks). */
private final int NUM SEATS = 5;

/** The number of philosophers for the program. */
private final int NUM PHIL = 3;

/** How long the restaurant will be open for (in milliseconds). */
private final long OPEN HOURS = 30000; // 30 seconds

/** The waiter first lays out the chopsticks and seats. Next the waiter creates all the philosophers,
and then open the store. While the store is open, the waiter cleans the chopsticks. When the
restaurant closes, the waiter put away the seats and chopsticks. */

public void execute()
{

long openingTime;
MultiSet m = new MultiSet();

// layout chopsticks on table
for(int i = 0; i < NUM SEATS; i++)
{

m.put(new Seat(i));
m.put(new Chopstick(i, (i+1) % NUM SEATS));

}
self.out(m, ObjectSpace.INFINITE TIMEOUT);

// create philosophers
m = new MultiSet();
for(int i = 0; i < NUM PHIL; i++)

m.put(new Philosopher());
self.eval(m, ObjectSpace.INFINITE TIMEOUT);

// open for business
openingTime = System.currentTimeMillis();
m = new MultiSet();
m.put(new Door(true));
self.out(m, ObjectSpace.INFINITE TIMEOUT);

while(System.currentTimeMillis() - openingTime < OPEN HOURS)
cleanChopsticks();

// close the door
m = self.in(new Door(), 1, 1, ObjectSpace.INFINITE TIMEOUT);
m = new MultiSet();
m.put(new Door(false));
self.out(m, ObjectSpace.INFINITE TIMEOUT);

// clean up objectspace
self.rm(new Seat(), NUM SEATS, NUM SEATS, ObjectSpace.INFINITE TIMEOUT);
cleanChopsticks();
for(int i = 0; i < NUM SEATS; i++)

self.rm(new Chopstick(i), 1, 2, 1000);
}

Figure 5.9: The waiter for the Dining Philosophers problem (part 1)
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/** While the restaurant is open, the waiter periodically needs to clean the dirty chopsticks off
the table and replace them with clean ones. */

private void cleanChopsticks()
{

Chopstick c = new Chopstick(0);
c.setMatchDirty();

MultiSet dirty = self.in(c, 0, NUM SEATS, 5000); // 5 seconds
if(dirty.numItems() != 0)
{

MultiSet clean = new MultiSet();
for(int i = 0; i < dirty.numItems(); i++)
{

c = (Chopstick) dirty.get(i);
c.markClean();
clean.put(c);

}
self.out(clean, ObjectSpace.INFINITE TIMEOUT);

}
}

}

Figure 5.9: The waiter for the Dining Philosophers problem (part 2)

should be used. Because the door removed by the waiter is not really important, and is

immediately replaced by a different object, the rmOut() function could be used instead.

Thus, the code to close the restaurant can be changed to:

m = new MultiSet();
m.put(new Door(false));
self.rmOut(new Door(), 1, 1, ObjectSpace.INFINITE TIMEOUT, m);

Hence, from the philosopher’s point of view, there will always be an instance of Door in

the object space, because the removal of the open door and replacement by a closed door

is an atomic operation.

Before examining the philosopher, it is important to realize that the true power of

this program hinges on how chopsticks are obtained. Finding matching objects in the

object space is done using the match() method. However, the waiter wants to find dirty

chopsticks, while the philosopher is interested only in the chopsticks on either side of their

seat. Thus, it is important to realize how matching chopsticks is done. Figure 5.10 shows

the fields and method from the Chopstick class that are essential to performing matches.

Recall that the match() method is called on the template object passed to the object

space, not the objects already in the object space. This allows the waiter to pass in a dirty

chopstick to the object space to find all the dirty chopsticks. The philosopher passes in a

chopstick with his current seat number, so the chopsticks on either side of the seat can be

found.

The philosopher, shown in Figure 5.11, tries to enter the restaurant if the door is open.
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/** Flags for dealing with a dirty/used chopstick. */
private boolean isDirty, matchIfDirty;

/** The various seat positions related to this chopstick. */
private int leftSeat, rightSeat, mySeat;

/** How this method operates depends on whether or not it is matching dirty chopsticks. If we want
to match dirty ones (only done by Waiter), all dirty chopsticks match, regardless of their seat.
If we want clean chopsticks, they only match if they are to the left or right of the seat
associated with ‘this’ chopstick. */

public boolean match(OILObject obj)
{

if(obj instanceof Chopstick)
{

Chopstick temp = (Chopstick) obj;
if(matchIfDirty) // find a dirty chopstick

return temp.isDirty;
// find the chopstick on the other side of the plate
return !temp.isDirty && (temp.leftSeat == mySeat || temp.rightSeat == mySeat);

}
return false;

}

Figure 5.10: Part of the Chopstick class

He then tries to find a free seat, and the chopsticks on either side of the seat. Since the

philosophers are busy people, they are only willing to wait so long for both seats and

chopsticks. If neither can be obtained, the philosophers leave the restaurant to go think.

After they’re done thinking, the whole process repeats. For the purpose of this example,

when the restaurant is closed, the philosophers place themselves in the object space then

finish executing. By placing themselves in the object, when the result for the program are

displayed, it is possible to see how many times each philosopher managed to get something

to eat. The eat() and think() methods are not shown.

5.5.3 Semaphores

The semaphore programming model can easily be emulated with the object space. Each

critical section that is protected by a different semaphore can have a different semaphore

class protecting it. For example, for the standard multiple readers, single writer problem

the following could be used:

MultiSet multi = new MultiSet();
WriterSemaphore wSem = new WriterSemaphore();
multi.put(wSem);
for(int i = 0; i < 5; i++)
{

ReaderSemaphore rSem = new ReaderSemaphore();
multi.put(rSem);

}
self.out(multi, ObjectSpace.INFINITE TIMEOUT);
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import clientside.ObjectSpaceJobTemplate;
import gridutil.objectspace.*;

import java.util.Random;

public class Philosopher extends ObjectSpaceJobTemplate
{

/** A counter for the number of times this Philosopher managed to eat. */
private int timesEaten;

/** A random number generator, used for creating random time lengths for eating and
thinking. */

private Random rand = new Random();

/** The Philosopher first checks to make sure the restaurant is open. He then tries to get a
free seat. Once he is seated, he tries and get the two chopsticks for his seat. If he
gets them he can eat, and then places the dirty chopsticks and his seat back in the
object space. Finally, he goes to think for a while and the loop repeats. */

public void execute()
{

Chopstick c1, c2;
MultiSet m, table;
Door d = new Door();
Seat s = new Seat();

self = null;
m = context.rd(d, 1, 1, ObjectSpace.INFINITE TIMEOUT);
d = (Door) m.get(0);
while(d.open)
{

m = context.in(s, 1, 1, 10000); // wait max 10 seconds for a free seat
if(m.numItems() == 1)
{

s = (Seat) m.get(0);
c1 = new Chopstick(s.number);
table = new MultiSet();

// try and grab two chopsticks
m = context.in(c1, 2, 2, 5000); // wait max 5 seconds for chopsticks

// have both chopsticks
if(m.numItems() == 2)
{

c1 = (Chopstick) m.get(0);
c2 = (Chopstick) m.get(1);
eat();
c1.markDirty();
c2.markDirty();

// place chopsticks back on table
table.put(c1);
table.put(c2);

}
table.put(s); // get out of seat
context.out(table, ObjectSpace.INFINITE TIMEOUT);

}
think(); // leave restaurant to think
m = context.rd(d, 1, 1, ObjectSpace.INFINITE TIMEOUT);
d = (Door) m.get(0);

}

// used to collect results, outside of main problem area
m = new MultiSet();
m.put(this);
context.out(m, ObjectSpace.INFINITE TIMEOUT);

}

Figure 5.11: The philosopher for the Dining Philosophers problem (partial listing)
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Thus, when an active object needs to enter the read critical section (maximum five allowed

entrance at a time), it merely removes the appropriate semaphore from the object space.

When the critical section is exited, the semaphore can simply be placed back into the

object space. For the writer to enter its critical section, it obtains the proper semaphore

(wSem), and will also need to read all the instances of ReadSemaphore (rSem) from the

object space to make sure no readers are active while writing is taking place. Once it has

exited its critical section, both the wSem and rSem will need to be placed back into the

object space.

5.5.4 Message Passing

One of the main strengths of message-passing libraries, such as PVM and MPI, is the

automatic translation of data types between heterogeneous machines. This feature is really

a non-issue in JOLTS because of the fact it is based on Java, translation between different

architectures is handled by the JVM. There are two main types of message passing, unicast

and multicast, both of which can be emulated using an object space.

Unicast message passing uses the sending/receiving of the message as a synchronization

point, where both the sender and receiver can only advance once they have both reached

their half of the message. The receiver is simpler because it can check the object space

for the message, and whether or not the message is present indicates whether or not the

sender is at the synchronization point. The sender, on the other hand, is more complicated.

When the message is placed in the object space, there is no guarantee that the receiver

is ready for the message. As a result, the sender must wait for some form of notification

that the receiver has in fact received the sent message. The are two options for this

problem. The first option is to indicate message reception by the absence of the sent

message in the object space. The second option requires the receiver to place some type

of acknowledgement message back into the object space. The messages for either option

can be defined as follows:
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class Message implements OILObject
{

public final String sender, receiver;
public final Object payload;

public boolean match(OILObject obj)
{

if(obj instanceof Message)
{

Message temp = (Message) obj;
return sender.equals(temp.sender) && receiver.equals(temp.receiver);

}
return false;

}
... // any additional methods

}

When the sender creates the message, it need to properly identify itself as the sender, and

the ID of the receiver. To receive the message, the receiver needs to know the ID of the

sender so the proper Message can be retrieved from the object space. This type of class is

very close to the message-passing idea that both the sender and receiver know about each

other. JOLTS has the advantage of removing the requirement of knowing what computer

the sender/receiver is one, only some type of unique ID is required; e.g., a String in the

above Message.

Emulating multicast message-passing is very similar. Since there are multiple receivers

with multicast, the problem of the sender recognizing that all the receivers got the proper

message is a little more of a challenge. The challenge is whether or not the receivers

are allowed to continue executing as they got the message, or only after all the receivers

have received the message. If the former case is desired, the receivers can simply place an

acknowledgement message back in the object space and continue executing. If the later

case is required, each receiver will need to place an acknowledgement message in the object

space, and then check for the existence of the proper number of acknowledgements in the

object space; i.e., the number of receivers. Once the proper number is seen, all the receivers

can continue executing. If desired, the sender can then remove the acknowledgements from

the object space.
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Chapter 6

Conclusion

This chapter is meant to just be a short summary of both the research contributions of

this thesis, and the future related work in Sections 6.1 and 6.2, respectively.

6.1 Research Contributions

The research contribution of this thesis can broadly be grouped into three main areas:

1. The JOLTS system.

2. The rm and rmOut additions to Objective Linda.

3. The Timed Function Execution Pattern.

Each of these areas are discussed in turn in the following subsections.

6.1.1 JOLTS

Many of the papers that discuss Linda [4, 18], and its subsequent extensions [10, 15, 16,

18, 20], have few, if any, performance metrics or discussion of how to implement this

coordination model. In many of the papers it is even unclear whether the system being

discussed in run locally, or distributed across multiple machines. While a large part of

this thesis is the implementation of the JOLTS system, it is meant not only to be a usable

grid system, but a design document describing how a particular extension of Linda, the

Objective Linda extension, can be implemented.

A large amount of research has gone into the Linda coordination model as seen in

Section 2.2. Extensions usually consist of modifying the primitives, and adding new prim-

itives. No system appears to have a pervasive checkpoint mechanism such as the one
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offered by JOLTS. As mentioned in the previous paragraph, it is unclear if the other sys-

tems designed around Linda and its extensions use a single, or multiple machines. If they

use only a single machine, the lack of a checkpoint mechanism is understandable. How-

ever, when multiple machines are being used, such as in JOLTS, checkpointing becomes

a very useful feature. Without checkpoints, any program, whether or not it is run on a

grid, needs to be restarted from the beginning.

Chapter 5 gave experimental results of the JOLTS system. It shows that this partic-

ular implementation of object spaces is a viable form of coordination in a grid system.

The server hosting the object space doesn’t need to be a powerful computer, merely one

that has a fast network connection. The processing power of the server is almost of sec-

ondary importance. When checkpoints are used, the performance hit is negligible on a

fast network. If the checkpoints are rather large, checkpointing will have an impact on

performance; however, it is felt that any performance penalty is more than offset by the

protection offered against worker-node failure.

It is important to realize that while the JOLTS system is designed to handle object

space jobs, the system didn’t initially support such a complex job structure. Section 5.5

gives examples of some of the other programming models supported by JOLTS. For a

more thorough discussion of additional example programs for JOLTS, as well as to obtain

the latest build of the system, refer to [19].

6.1.2 Extensions to Objective Linda

This thesis proposes two new primitives to the Objective Linda specification: rm and

rmOut. These two primitives are really only important to implementations that operate

over a network utilizing multiple computers. Without these two new primitives, any

time an object needs to be deleted from an object space using the in primitive, valuable

network bandwidth is wasted transmitting the results to an active object that doesn’t

require the results. The rm primitive is meant to eliminate that wasted bandwidth by only

transmitting the number of objects removed from the object space. This value is small

enough to fit inside a single network packet, keeping the network usage to an absolute

minimum.

A feature that appears to be missing from Linda and all of its various extensions is

the ability to modify an object already in an object space. Because the object space is a
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shared-memory area, it makes sense to protect it from potentially deadly modifications.

Thus, the only way to change an existing object was to remove the object, and then replace

it with a modified form. Because these are two separate operations, it is possible that the

time between the removal and the insertion of a replacement can cause problems for other

active objects using the object space. The solution is the rmOut primitive introduced in

this thesis. It combines the tasks of removing an object and replacing it with another

object into a single atomic operation. There is no longer a visible gap to another active

object where the object in question isn’t present in the object space.

Neither of these two new primitives are necessary for JOLTS to work; however, their

addition does help eliminate network waste. It is important to eliminate all unnecessary

network traffic because, as shown in Section 5.4, network bandwidth can very quickly

become the limiting factor of job performance in JOLTS.

6.1.3 Timed Function Execution Pattern

Using patterns when designing and building large systems is a growing trend. Patterns

are an efficient way to document common problem/solution pairs that can then be used

by other software developers when the same problem arises in a different project. This

thesis documents a new design pattern called the Timed Function Execution Pattern. The

word “timed” in this case does not mean examining how long a function is to execute, but

instead refers to limiting the amount of time a function has to execute.

Many of the primitives offered by Linda and its extensions have timeout values. None

of the papers that discuss Linda or any of its various extensions describe how these timed

functions are implemented. To deal with this special class of functions, the Timed Function

Execution Pattern, described in Section 4.3.3.1, was created. There are two possible ways

to implement this design pattern, depending on the situation where it will be used. Option

one uses a multi-threaded approach, while option two uses a loop checking mechanism

described in Appendices A.2 and A.3.2, respectively.

While this pattern may not be as widely applicable as some patterns, such as the

Facade pattern in information systems, it is indispensable when its problem/solution pair

arises in a system. It obviously can be used by anybody implementing a system based on

Linda, but its use isn’t limited just to grid systems. For example, it can be used to limit

the amount of time a genetic algorithm executes.
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6.2 Future Work

Like any medium-scale system, there is always additional features that could be added, and

JOLTS is no different. One major assumption when creating JOLTS was that the main

server wouldn’t fail. For very long running jobs, on the order of several months, it may

be required to shutdown/restart the server for a variety of reasons. An additional feature

would be to give the server itself the ability to checkpoint, so when it is restarted any

jobs that were executing when the server went down would automatically restart. There

are several different ways this feature could potentially be implemented. Further research

will be required to determine which method is most desirable. Additionally, resuming the

server from a checkpoint would also require the ability to checkpoint entire object-space

jobs.

As noted in Section 4.3.3, it is not possible to checkpoint an object space, only the

active objects that manipulate the object space. This is because there is no way to

guarantee that every active object is in a safe state. Such a feature is desirable, but

determining how to design and implement such capabilities is a non-trivial task. Also,

there are many unanswered questions regarding such a feature that include:

• Should a polling mechanism be used between all the active objects to allow check-

pointing, or can any active object cause an object space to be checkpointed?

• Is only one object space checkpointed, or are all the object spaces associated with

the user’s job?

• How do you recover an object space from a saved checkpoint?

• How do you inform currently executing active objects that an object space they

are using is about to be recovered from a checkpoint, and what is the checkpoint

number?

All of these questions need to be answered before such a feature could possibly be incorpo-

rated into JOLTS. This feature, along with the previously mentioned server checkpointing

would add a great deal of flexibility to JOLTS.

One of the more interesting features of JOLTS, from an implementation point of view,

is the security manager. It offers great flexibility allowing the administrator to configure
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how open or restrictive the JOLTS server behaves. However, as noted in Appendix A.1,

the list of restricted methods is currently hardcoded into the system. To increase the

ease of security configuration, a graphical interface could be implemented that allowed

the administrator more control over what components of the Java library are restricted,

including methods. This tool would be responsible for translating the list of restricted

components between human-readable and JVM-readable forms.

While both the JOLTS server and worker components can be configured using a prop-

erties file, these components are rather static once they are started. There is no way to

dynamically update any of the configuration values once the component is running. This

is desirable for the server, but not necessarily for the worker nodes. A feature that could

be added to the worker node is the ability to dynamically change some of the configuration

values while the node is running. For example, some person using their desktop PC as a

worker node may allow JOLTS full CPU control during the night when the computer is

not being used, but may only want to give 40% of their CPU to JOLTS during the day

while they are working. To do this now, the worker node would need to be shut down,

the configuration file changed, and the worker node restarted. Ideally the file could be

changed, or a graphical interface used, to dynamically update the worker node with how

much CPU the user is willing to dedicate to JOLTS at the current time. This feature is

not necessarily very important, it is more of a convenience than anything else.

Java was picked as the implementation language for JOLTS for several reasons, includ-

ing the sandbox environment created by the JVM, and the fact that the implementor was

very familiar with the language. It has been suggested that JOLTS should be ported over

to the .Net platform. This will open up the JOLTS system to more potential languages.

The system is well documented, as shown throughout Chapter 4, so porting JOLTS to an-

other language shouldn’t be too complicated, with one exception, the security subsystem.

The security mechanism in JOLTS is highly dependent on the capabilities of the JVM,

and how Java bytecode is defined. The .Net platform has an equivalent to Java byte-

code, so porting should be possible; however, the security system will most likely require

a complete rewrite. Whether the porting of JOLTS to .Net takes place is undetermined,

mainly because the size of such an undertaking would require several months of full-time

effort by a highly skilled programmer, knowledgeable in .Net and all it’s capabilities and

limitations.
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Appendix A

Implementation Details

While Chapter 4 described the high-level functionality of the JOLTS system, as well as
what some of the various classes do, very few details were given as to how these classes
worked. This appendix is meant to provide detailed discussion on how some the more
interesting aspects of the JOLTS system are actually implemented. The main areas that
will be discussed include:

• how the security manager works,

• implementing the Time Function Execution pattern,

• implementing the object space for both the worker and server, and

• dealing with a multiplexor.

It is assumed that the reader has a detailed understanding of the features in the Java
language, and a basic understanding of how the Java Virtual Machine (JVM) works. For
the discussions relevant to the Timed Function Execution pattern, a basic understanding
of threads and critical sections is also needed.

A.1 JOLTS Security Manager

The original goal of the security manager was to make sure the class indicated by the user
as the starting class for the submitted job was present in the submitted class/jar file, and
that is was a descendant of a valid interface defined in the clientside package. Over
time the security manager evolved into a class capable of enforcing restrictions that aren’t
normally possible in Java, such as making sure a specific method is never called in a class.
The main features of the security manager include:

1. Making sure restricted classes aren’t used.

2. Making sure restricted fields aren’t accessed.

3. Making sure restricted methods aren’t invoked.

4. Ensuring the proper constructor exists for SIMD sub-jobs.

5. Ensure the checkpoint mechanism (if used) is declared as transient.

6. Allowing only authorized clients to submit jobs.
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The first three features are only capable with access to the class files for the job being
submitted. This obviously isn’t a problem as the user must submit his compiled code to
the JOLTS system for the system to know what code to run.

The first step in performing the first three security checks involves processing the class
file looking for the relevant data. Simply loading the class and using reflection is unable
to handle the first three security checks (although it is used for checks 4 and 5). Often,
examining certain properties using reflection will raise security exceptions in the JVM;
however, by examining the class files directly (in byte form) no such problem exists. The
entire class file doesn’t need to be checked, the only area of interest is the constant pool.
Before the discussion can proceed, a basic understanding of the structure of the Java class
file, specifically the constant pool, is required.

The Java class file is a binary file. All information stored inside the file is based
on unsigned 8-byte characters (with a few exceptions). Multiple bytes can be grouped
together to form 2-byte or 4-byte numbers. Bytes are always written to the class file,
high-order byte first. The first eight bytes in the class file are the numbers 0xCAFEBABE
(in hexadecimal), 3, and 45, which are the magic, Java minor, and Java major version
numbers, respectively. The next two bytes indicate the number of entries in the constant
pool. In a Java program, any time something other than a local variable or parameter is
being used, chances are it is being accessed from the constant pool. The constant pool is
used to store several different types of information.

• Literals

– all string literals

– float literals (other than 0.0, 1.0, and 2.0)

– integer literals greater than 16-bits in size

• Method names and signatures

• Class variables

• Instance variables

• Other class names

The constant pool is a large byte array, where consecutive entries combine to create
simple data types. Constant pool entries can vary in length. This makes jumping to a
particular entry difficult, since all previous entries must be checked first to determine how
large they are, so the start of the following entry can be found. The first byte inside each
constant pool entry indicates what type of structure it is. Each type is represented in the
hierarchy given in Figure A.1. These names are short forms for the names used inside the
JVM. The structures relevant to the security manager will now be discussed in turn.

• UTF8 The most common constant pool structure is the UTF8. UTF8 is an encod-
ing scheme for string values, designed to allow ASCII-based strings to be represented
using a single byte, but still retain the functionality required to also represent uni-
code characters. Each UTF8 structure consists of 3 + n bytes, where n is the length
of the string being represented. The first byte is 1, indicating that it is a UTF8
structure. The next two bytes indicate the length of the string, and the remaining
n bytes contain the string (in ASCII form).
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ConstPoolEntry

ClassInfoDoubleInfoIntegerInfo LongInfoFloatInfo

FieldRefInfo Interface 
RefInfo

NameAnd 
TypeInfo

StringInfo

UTF8Info

MethodRefInfo

ConstPool

implements implements

Figure A.1: The gridutil.constantpool package

• Class The Class structure contains three bytes. The first byte is a 7, to represent
that the structure is for a Class. The other two bytes are used as an index into the
constant pool. At the specified index a UTF8 must be found, containing the name
of the class in fully qualified form.

Note: the fully qualified form for a class name inside the virtual machine
is slightly different than that used in the Java language. Where a fully
qualified name usually has periods as separators; e.g, java.lang.String,
the periods are replaced with forward slashes inside the virtual machine;
e.g., java/lang/String.

• Fieldref The Fieldref structure contains five bytes. The first byte is a 9, to represent
that the structure is for a Fieldref. The next two bytes are used as an index into the
constant pool. At the specified index, a Class structure must be found, which is the
class that contains the field. The final two bytes are also used as an index into the
constant pool. At the specified index, a NameAndType structure must be found,
which represents the name and type of the field.

• Methodref The Methodref structure contains five bytes. The first byte is a 10,
to represent that the structure is for a Methodref. The next two bytes are used as
an index into the constant pool. At the specified index, a Class structure must be
found, which is the class that contains the method. The final two bytes are also
used as an index into the constant pool. At the specified index, a NameAndType
structure must be found, which represents the name and signature of the method.

• NameAndType The NameAndType structure contains five bytes. The first byte
is 12, to represent that the structure is for a NameAndType. The next two bytes are
used as an index into the constant pool. At the specified index, a UTF8 structure
must be found, which is the “name.” The final two bytes are also used as an index
into the constant pool. At the specified index, a UTF8 structure must be found,
which represents the “type” or descriptor associated with the name. This structure
never exists on its own, it is also pointed to by another structure. This other structure
is what indicates what the “name” and “type” are supposed to represent.
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Figure A.2: Methodref structure for InputStreamReader constructor

To better understand these various constant pool structures, consider a simple exam-
ple. When creating a keyboard reader in Java, a BufferedReader must be attached to
System.in. This is usually accomplished in a line of code such as

BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in));

The first step is to create a BufferedReader object and place it on the operand stack. The
second step is to create an InputStreamReader object and place it on the operand stack.
The third step in executing this statement is to place the field System.in on the top of
the operand stack. The fourth step is to call the constructor for the InputStreamReader
class, using the field System.in as the argument to the constructor. This is done using
opcode 183 (invokespecial), followed by the location of a Methodref that represents this
constructor. This Methodref structure is given in Figure A.2. Notice that the Metho-
dref structure has a value 10, indicating that the structure is in fact a Methodref. Its
class index points to a Class, which points to a UTF8 containing the name of the class.
The NameAndType is used to describe the signature of the method. The special name
<init> indicates that it is a constructor, while the descriptor index points to the
constructor signature.

As demonstrated in the previous example, determining if methods are used from other
classes can be accomplished by looking at the constant pool. The ConstPool class is
designed to take the raw bytes from the constant pool of a class file and turn them into a
more usable form for traversal. The class is designed to create an array of ConstPoolEntry
where the index of each entry correspond to the position of the entry in the byte-form
constant pool from the class file. It is much easier to search through the entries for a specific
entry in this form, than to be jumping around in a byte array. For example, by default,
user programs aren’t allowed to use the FileReader class. This is because the program
could then read files from the worker node’s disk, clearly a potential security problem.
Thus, if any class that is submitted with the user’s job tries to use the FileReader class
it will appear in the class’s constant pool, detected by the security manager, and the job
will be rejected. The code to perform the search is:
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public boolean usesClass(String str)
{

str = str.replace(‘.’, ‘/’); // convert to proper JVM format
for(int i = 1; i < entries.length; i++)

if(entries[i] instanceof ClassInfo)
{

ClassInfo temp = (ClassInfo) entries[i];
int nameIndex = temp.getIndex();
UTF8Info temp2 = (UTF8Info) entries[nameIndex];
if(temp2.getUTF8().equals(str)) // found matching String name

return true;
}
else if(entries[i] instanceof NameAndTypeInfo)
{

NameAndTypeInfo temp = (NameAndTypeInfo) entries[i];
int descripIndex = temp.getDescripIndex();
UTF8Info temp2 = (UTF8Info) entries[descripIndex];

/* Class names in parameter list and return types are modified slightly, so
this modification makes it match the JVM spec. */

if(temp2.getUTF8().indexOf("L" + str + ";") != -1)
return true;

}
return false;

}

This method checks for both direct classes and parameters types in method signatures.
To check if a class uses FileReader, the fully qualified name is passed in as an argument:

boolean uses = constPool.usesClass("java.io.FileReader");

This process is repeated for each forbidden class, and is run on each class that is part of
the submitted job. A similar process is used for checking for restricted fields and methods.

The list of restricted classes and fields is contained in a configuration file read by the
server when it starts up. This allows the administrator of the system to create a more or
less secure grid to run programs in. The restricted methods are currently hardcoded in
the GridSecurityManager class. It would be possible to allow these to also be set in a
configuration file; however, the format required is based on the internal form of the JVM,
which most administrators don’t know. Thus, to prevent more harm than good, the list
of restricted methods can’t be modified.

The last three functions of the security manager, listed on page 127, can be performed
using standard reflection techniques (features 4 and 5), and network programming (feature
6). Making sure any checkpoint fields are transient is rather simple:
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/** This class is responsible for checking a class to see if it has any non-transient fields that
are of type {@link CheckpointMech}. If one is found, an exception is thrown with a message
giving the name of the class and the field in question.
@param c The class to be checked.
@throws GridException Thrown if a non-transient {@link CheckpointMech} field is found in the

parameter class. */
private void checkCheckpointMechField(Class c) throws GridException
{

Field fields[ ] = c.getDeclaredFields();
for(int i = 0; i < fields.length; i++)
{

Class type = fields[i].getType();
if(type.getName().equals("gridutil.CheckpointMech"))
{

int modifiers = fields[i].getModifiers();
if(!Modifier.isTransient(modifiers))

throw new GridException("Class ’" + c.getName()
+ "’ has a non-transient checkpoint mech field ’"
+ fields[i].getName() + "’.");

}
}

}

A similar reflection technique is used to check the constructor of SIMD sub-jobs

result = loader.loadClass(jobName);
Constructor cons[ ] = result.getDeclaredConstructors();
for(int i = 0; i < cons.length; i++)
{

params = cons[i].getParameterTypes();
if(params.length != 1)

continue;
// constructor only has 1 parameter of type clientside.Parameters
if(params[0].getName().equals("clientside.Parameters"))

return simd;
}
throw new GridException("Class ’" + jobName

+ "’ doesn’t have a constructor with the required parameters.");

The check for whether or not a client is authorized to submit jobs is simply a matter of
checking the IP address of the client. Under the current JOLTS configuration, only clients
from the University of Saskatchewan are allowed to submit jobs.

A.2 Implementing the Worker Node Object Space

As mentioned in Section 4.3.3.1, there are two ways to implement the Timed Function
Execution pattern, each of which is used in the JOLTS system. This section describes the
multi-threaded approach used on the worker nodes, while Appendix A.3.2 discusses the
loop approach used on the server.

When object space jobs are executed on a worker node, the instance of ObjectSpace
passed to the setSelf() and setContext() methods, shown in Figure A.3, are actually
instances of ObjectSpaceStub. The important instance variable to note is helper inside
class ObjectSpaceStub. Its type is declared as the abstract class StubHelper, whose
hierarchy is given in Figure A.4. As can be seen by the name of the children in Figure A.4,
each object space operation has a corresponding class. Some operations, such as in and
rd are combined into a single class because the type and order of the data sent to the
server, and the type of the returned result is the same. The important fact to note about
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ObjectSpace 
 
+INFINITE_TIMEOUT : int 
+INFINITE_MATCHES : int 
 
+out(m : MultiSet; timeout : int) : boolean 
+eval(m : MultiSet; timeout : int) : boolean 
+in(obj : OILObject; min, max, 

timeout : int) : MultiSet 
+rd(obj : OILObject; min, max, 

timeout : int) : MultiSet 
+rm(obj : OILObject; min, max, 

timeout : int) : int 
+rmOut(obj : OILObject; min, max, 

timeout : int; m : MultiSet) : int 
+createNew() : ObjectSpace 
+attach(log : OSLogical; 

timeout : int) : ObjectSpace

ConcreteObjectSpace 
 
container : Vector 
activeWriter : boolean 
readers, writers : int 

 
#ConcreteObjectSpace() 
#transferContentsTo(m : MultiSet) 
obtainReadLock() 
obtainWriteLock() 
releaseReadLock() 
releaseWriteLock() 
timedWait(start : long; timeout : int) 
timeLeft(start : long; timeout : int) : boolean 
vectorToMultiSet(v : Vector) : MultiSet 
find(obj : OILObject; max, timeout : int; 

start : long) : Vector 
removeStale(vec : Vector; min : int) 

+toString() : String

ObjectSpaceStub 
 
osServerName : String 
osServerPort, spaceID, jobID : int 
loop : boolean 
sockChannel : SocketChannel 
helper : StubHelper 
extraObjectSpaces : Vector 

#TIME_PADDING : int = 250 
loader : GridLoader 

 
+ObjectSpaceStub(server : String; 

port : int; l : GridLoader; 
id, space : int) 

initializeConnection() 
switchActiveThread() 
combinedOutEval(m : MultiSet; 

timeout, op : int) 
combinedInRead(obj : OILObject; 

min, max, timeout, op : int) 
readObject(ois : ObjectInputStream) 

+run() 
+getID() : int 
#close()

SerializableRunnable

Figure A.3: The ObjectSpace hierarchy

class ObjectSpaceStub is that it implements interface Runnable.
When an instance of class ObjectSpaceStub is created by the system (user jobs can’t

directly create instances of this class), hidden inside the object is a thread, which is the
“worker thread” in the Timed Function Execution pattern. This thread is responsible for
executing the helper instance variable in the class ObjectSpaceStub. When an object
space method is invoked, the method creates the appropriate helper object to do the
network communication with the server, and then the primary thread goes into a wait
state. The worker node then contacts the server (from inside the worker thread), sends
the relevant information, and waits for the results. If the results arrive before the timeout
expires, the results are placed in the result field in StubHelper and the worker thread
wakes up the primary thread. Lastly, the worker thread goes back to sleep. The primary
thread retrieves the result from the helper using getResult(), and typecasts it into the
appropriate type. In the event the appropriate response was not received in time from
the server, the value returned by method getResult() will be the default value for the
requested object space method. The worker thread will eventually receive a response from
the server, and which point the worker thread will go back to sleep. Consider the following
example that demonstrates how the rm() method is performed.
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public synchronized int rm(OILObject obj, int min, int max, int timeout)
throws ObjectSpaceException

{
verifyParameters(obj, min, max, timeout);
helper = new RmHelper(sockChannel, timeout, obj, min, max);
notify();
try
{

// worker thread will now use newly created ‘helper’
wait(timeout + TIME PADDING);

}catch(InterruptedException e) {} // do nothing
// time to return results from the helper object
Integer temp = (Integer) helper.getResult();
return temp.intValue();

}

The first line deals with enforcing the preconditions on object space methods. Once the
parameters are checked, the RmHelper object is created. The call to method notify()
causes the worker thread to wakeup; however, it won’t actually start executing until the
wait() method is called because it needs to get a lock on the object, which the primary
thread currently has (note that this method is synchronized). Observe that a small amount
of additional time padding is added to the wait length. This is used to account for a small
amount of network delay. When the wait() returns, either by time expiring or by the
worker thread waking it up, the result is retrieved from the helper, and the result is
returned. Figure A.5 contains the complete source code for the RmHelper class, as a
example helper class.

A similar structure is used for each of the remaining object-space primitives. The
method in the stub class creates the appropriate helper object to communicate with the
server in a different thread, while the primary thread waits for either a timeout or the
response from the server.

Checkpointing causes and interesting problem for object-space jobs. Because commu-
nication with the real object space on the JOLTS server is done through socket channels,
if an active object is resumed from a checkpoint, that socket channel will no longer be
connected to the server. There are two possible solutions to this problem:

1. When an active object is resumed from a checkpoint, pass in fresh references to the
object space(s) using the setSelf() and setContext() methods.

2. Have the underlying object space stub object automatically reconnect to the object
space on the server itself.

Option 1 won’t work for one simple reason: active objects can have additional object
spaces beyond the default self and context. If new object space references need to
be passed to the active object when it is resumed from a checkpoint, how would these
references be passed to the active object? There is no way to ensure any additional object
spaces are reconnected to the server by relying only on the two “set” methods. The object
space must automatically reconnected itself to the server.

One of the important implementation details of class ObjectSpaceStub is the existence
of a customized deserialization method, readObject(). When an object-space job is
resumed from a checkpoint, as soon as the active object is deserialized on a worker node,
the ObjectSpaceStub instance will attempt to re-attach itself to the server. Because
any additional objects spaces created by the active object are in reality also instances of
ObjectSpaceStub, they too will automatically reconnect to the server when the active
object is deserialized.
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package workerside.objectspace;

import gridutil.objectspace.OILObject;
import gridutil.MessageBytes;

import java.nio.channels.*;
import java.nio.ByteBuffer;
import java.io.*;

/** This class is responsible for sending the necessary data to the server to perform the {@link
gridutil.objectspace.ObjectSpace#rm rm} operation on an object space. It also reads the result
back, and makes it available to the calling class if the operation was performed in the
required time.

@author Jeremy Pfeifer
@version 1.0 - initial implementation, April 7/04 */

public class RmHelper extends StubHelper
{

/** A reference to the object that will be used as a template for performing the matches in the
object space. */

protected OILObject template;

/** The minimum number of matches to find. */
protected int min;

/** The maximum number of matches to find. */
protected int max;

/** Simple constructor used to initialize the instance variables, both from this class and the
ones inherited from the parent.
@param s The channel attached to the object space on the server.
@param t The timeout value of how long this operation is allowed to execute.
@param temp The template used to find matches in the object space.
@param mi The minimum number of matches to find.
@param ma The maximum number of matches to find. */

protected RmHelper(SocketChannel s, int t, OILObject temp, int mi, int ma)
{

super(s, t);
template = temp;
min = mi;
max = ma;
result = new Integer(0);

}

/** This method sends the relevant data (the arguments for the {@link
gridutil.objectspace.ObjectSpace#rm rm} object space operation) to the server. It then reads
the results of the operation from the server. If this all happened before the timeout
expired, the results are stored in a location so that the {@link ObjectSpaceStub
ObjectSpaceStub} can access them. Otherwise, the default value (<tt>0</tt>)) is left in the
storage space.
@throws IOException Thrown if a problem occurs while reading/writing to the channel. */

protected void execute() throws IOException
{

int temp;
long start = System.currentTimeMillis();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(baos);
oos.writeObject(template);

Figure A.5: The complete listing for RmHelper (part 1)
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byte array[ ] = baos.toByteArray();
// sum all the bytes required
ByteBuffer buffer = ByteBuffer.allocate(1 // the REMOVE flag

+ 4 // the min value
+ 4 // the max value
+ 4 // the timeout value
+ 4 // the template size
+ array.length); // the template data

buffer.put(MessageBytes.REMOVE);
buffer.putInt(min);
buffer.putInt(max);
buffer.putInt(timeout);
buffer.putInt(array.length);
buffer.put(array);
buffer.flip();

while(buffer.hasRemaining())
sockChannel.write(buffer);

buffer = ByteBuffer.allocate(4);
try // in case timeout is reached and the job exists, closing the channel
{

sockChannel.read(buffer);
buffer.flip();
temp = buffer.getInt();

if(timeLeft(start))
result = new Integer(temp);

}catch(AsynchronousCloseException e)
{

System.err.println("Some other thread closed my socket while in Rm :(");
sockChannel.close();

}
}

}

Figure A.5: The complete listing for RmHelper (part 2)

On careful examination of Figure A.4, the reader will notice that class InRdHelper
contains a loader field while none of the other classes in the hierarchy do. The reason
is only the in() and rd() methods retrieve actual objects from the object space. Since
these objects are coming from a socket channel, they will need to be deserialized upon
their arrival. By default, the JVM uses the default class loader when deserializing objects.
This will cause a problem, since the default loader is unable to dynamically load user
jobs; thus, the custom loader must be used. To use a custom loader for deserialization,
a custom object input stream class is required that uses the custom loader to resolve the
class instead of the default loader. Thus, the class ObjectSpaceObjInputStream is used
to deserialize incoming object from the object space. This class is overkill for deserializing
most incoming objects, but it is required to properly deserialize ObjectSpaceStub objects.

This section has shown one possible way to implement the Timed Function Execution
pattern. By creating a stub function for each timed function and a corresponding class for
each timed function that is executed in a separate thread, it is rather simple to implement
this pattern. Additionally, adding a new timed function only requires adding a new stub
method and creating the corresponding helper class. While implementation of the worker
node object space may seem complex, thankfully the server implementation isn’t nearly
as complicated.
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A.3 Implementing the Server Object Space

As mentioned in Section 4.4.4, handling incoming object space server requests from worker
nodes on behalf of active objects is handled using the Reactor pattern. When an object-
space job is first submitted to JOLTS, a single ConcreteObjectSpace is created and stored
in a list of object spaces for that job (since object-space jobs invariably contain more than
one active object, each of which has its own self object space). When an active object
is executed on a worker node, the index of the ConcreteObjectSpace in the list of object
spaces is stored in the spaceID field in the ObjectSpaceStub (see Figure A.4). When
an ObjectSpaceStub object attempts to connect to the server, the connection request is
received by the ObjectSpaceHandler object. The proper ConcreteObjectSpace target
for the connection is located and a special ChannelRecord object is created to keep the
incoming socket channel and ConcreteObjectSpace connected. The advantage of this
setup is:

1. When any new data arrives on the channel, the system instantly knows what object
space the request is for.

2. The channel is only created once for all requests for a specific object space, from a
specific active object; i.e., the channel is left open between requests.

3. Multiple channels can easily be watched by a single multiplexor.

The one disadvantage of this setup is that if enough active objects exist on the system
at once, there is a possibility that the server might run out of available ports. Once the
ChannelRecord object is created, its associated channel is registered with the multiplex
so it can be watched.

A.3.1 Object Space Multiplexor

When an object space request arrives, the socket channel is deregistered from the multi-
plexor and the type of request is determined (e.g., an out request) and the proper child
object of ObjectSpaceRequest is created to handle the request, see Figure 4.14 on page 88.
The child object is executed from inside a thread pool, which allows multiple requests to
the same (or different) object space to be processed at the same time. The children objects
of ObjectSpaceRequest are responsible for reading in the arguments for the requested
operation, invoking the method on the object space, and returning the results through the
channel. Recall that the target object space is attached to the invoking socket channel
in a ChannelRecord object. This object is passed to the constructor of the object that
will actually service the incoming object space request. The result of the operation is sent
back through the channel regardless of the time required for the operation. The timing
concerns are handled by the ConcreteObjectSpace instance discussed in Appendix A.3.2.
Once the results have been sent back to the active object on the worker node, the channel
must be reregistered with the multiplexor, which is not a simple process.

A multiplexor is supplied as part of the Java NIO package in the form of the Selector
class. Channels can be watched for different state changes in the Selector object, the
main ones of interest here are:

• acceptable a new connection has arrived, used mainly on server channels
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• readable some data has arrived on the channel that need to be processed

The steps for handling acceptable are as follows:

1. The new channel is obtained.

2. The target object space is located (or created).

3. A ChannelRecord object is created to connect the object space and the channel.

4. The channel is registered with a Selector object to monitor it for entry into the
readable state.

When a channel enters the readable state, it stays in that state as long as any data
remains in the channel that can be read, not just if new data has arrived on the channel.
This is not really a problem if the thread operating the multiplexor is also responsible
for processing all the data from the channel, such as in the FileStreamHandler class
discussed in Section 4.4.1. However, if data from the channel is processed by a different
thread, as is the case in the ObjectSpaceHandler object, it can cause a serious problem
if a channel isn’t deregistered when it first entered the readable state.

If a channel that just entered the readable state isn’t removed from the set of chan-
nels being monitored by the multiplexor, each time the multiplexor checks its monitored
channel, it will see the same channel. This will cause an additional thread to start pro-
cessing the data from the channel. The process will repeat until there is no data in the
channel. Now multiple threads will be reading concurrently from the same channel, which
is a big problem. Removing the channel from the set of channels being monitored by
the multiplexor when it is first detected to be in the readable state solves the problem,
resulting in only one thread processing the data in the channel. Once the thread used to
process the data has finished executing (the channel is no longer in the readable state),
the channel needs to be reregistered with the multiplexor so it can be watched until it en-
ters the readable state again. The process of reregistering a channel with the multiplexor
is non-trivial.

A very poorly documented feature is that the Selector/multiplexor has a lock on the
set of channels it is watching, so a new channel can’t just be added to the set blindly (it
usually results in deadlock if tried). The multiplexor must be forced to release it’s lock
by performing an immediate selection of channels whose state have changed (the result is
often zero when forced). Since a thread switch is required for this to take place, often the
multiplexor releases and then re-obtains the lock its channel set before any new channels
can be added. The solution is the two methods shown in Figure A.6. When an object
space request finishes, it invokes the reregister() method. The ChannelRecord object
is placed in a temporary list and the multiplexor is forced to release its lock by calling
method selector.wakeup(). When the thread using the multiplexor wakes up, the first
thing it does is add any pending channels to be registered to its set of watched channels
by calling method moveOverPendingRec(). Now the multiplexor has the proper/complete
set of channels it is supposed to be monitoring.

A.3.2 Implementing the ConcreteObjectSpace Class

As mentioned earlier, when an object-space operation request arrives, a descendant of class
ObjectSpaceRequest is created to service the request. All the children instances (except
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/** This method is used to reregister a channel with the selector. Because the thread watching
the selector is most likely waiting, to get it successfully into the set being watched again, it needs
to be placed in a list, then the selector woken up so it can check the list.
@param chanRec The record containing the channel to be registered.
@throws IOException Thrown if a problem occurs moving the channel back into non-blocking mode. */

protected synchronized void reregister(ChannelRecord chanRec) throws IOException
{

chanRec.sockChannel.configureBlocking(false);
toRegister.add(chanRec);
selector.wakeup(); // force main thread to return from ‘select’ even if none available

}

/** This method is used to take all the channels waiting to be registered, and actually register
them with the selector. Only the main thread, the one controlling the selector, calls this
method. It needs to be synchronized to prevent more channels from being added while {@link
#toRegister toRegister} is being emptied. */

private synchronized void moveOverPendingReg()
{

while(!toRegister.isEmpty())
try
{

ChannelRecord temp = (ChannelRecord) toRegister.removeFirst();
temp.sockChannel.register(selector, SelectionKey.OP READ, temp);

}catch(ClosedChannelException e)
{

System.err.println("attempted to register a closed channel");
}

}

Figure A.6: The two methods responsible for adding channels to the multiplexor

EvalRequest) operate on a specific instance of ConcreteObjectSpace. The first thing
to realize when implementing this class is that it must be designed to handle concurrent
access. The specific problem to be dealt with can be categorized as the standard multiple
reader, multiple writers problem, with a few small additions. The main addition is the fact
that both the readers and writers may enter and leave the same critical sections multiple
times before they are complete. The following table classifies each of the available object-
space operations.

Operation reader writer
rd yes
in yes
out yes
rm yes
rmOut yes
eval N/A N/A

As previously mentioned, the eval() method doesn’t directly use the object space.
Before any operation can begin, the thread must obtain the appropriate lock on the object
space. Multiple readers can have concurrent access, while only one writer can be active
at a time. Additional readers must wait if one (or more) writers are also waiting to gain
the lock on the object space. No queues are needed to implement this functionality, only
two counters and a Boolean. Manipulation of these three variables are only done inside
critical sections. This is basically a primitive semaphore implementation, without using a
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custom semaphore class. Future version of JOLTS may change to use an inner Semaphore
class.

Once a request obtains the appropriate lock, it begins execution. Most of the operations
require first finding the min/max number of matches to a supplied template. After each
object in the object space is checked, the clock is also checked to make sure there is time
remaining. If time has expired the results are calculated based on the matches found so far,
the lock is released, and the function exists. If the maximum number of required matches
are found, the same set of steps happen. Object space operations become interesting when
all the items have been checked, but the maximum number of matches haven’t been found
and there is still time remaining. If this happens, the lock is released and the thread waits!
Two different events can cause the waiting thread to wakeup:

1. The time for the operation has expired. In this case the matches already found
are verified to still be present in the object space (they may have been removed by
another thread). The results are determined using the remaining matches, the lock
is released, and the results of the function is returned.

2. Some other thread has performed some type of write operation on the object space,
either adding or removing objects. The awakened thread then starts checking the
entire object space for a new set of matches, discarding the old set of matches. The
whole process starts over again depending on whether or not the maximum number
of matches were found.

Because so many operations on the object space require finding matches, this functionality
was moved to a support method, given in Figure A.7. This is the second way to implement
the Timed Function Execution pattern. As mentioned in Section 4.3.3.1, the looped
implementation is only applicable to a small set of functions. Luckily, the object space
primitives in ConcreteObjectSpace fall inside this set of applicable functions.

Using the rd function as an example, Figure A.8 contains the rd() function from inside
the ConcreteObjectSpace class. As can be seen at the start of the loop, the first step
is to call method find() to attempt to find the maximum number of matches. If either
the maximum number of matches has been found or time has expired, the loop is exited,
the lock released, and the function returns. If the maximum number hasn’t been reached
and time remains, the thread releases the lock and waits. When it wakes up, if the time
remains the loop is restarted; otherwise, the method removeStale() is called to remove
any stale objects in the set of matches. Most of the other object-space write operations
are performed in a similar manner.

A rare occurrence can happen to methods rm, rmOut, rd, or in when it’s timeout value
is reached while executing method timedWait(), and some other thread has a write lock.
When the awakened/expired thread finally obtains its lock, it is too late to do another
pass through the object, since this can potentially be a long operation and the timeout
value has already been reached. Instead, the matches that were found earlier are checked
to see if they still exist in the object space, since they potentially could have been removed
by a “write” thread that was executing when the current thread’s time expired. Thus,
the removeStale() method, shown in Figure A.7, is used to check each of the previously
found matches to see if they still exist in the object space. If an object no longer exists,
it is removed from the list of previously discovered matches. If the size of the list drops
below the min required, the entire list is emptied. In the case that a “write” thread was
not executing when the thread executing timedWait() awoke, all the awoken thread’s
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/** This method is responsible for searching through the object space for matches. So many of the
object space primitives require this feature, this method was created to prevent code
duplication in all the methods that require it. All the objects will be compared with
<tt>obj</tt> using the {@link OILObject#match(OILObject) match} method. It will return right
away either if the time has run out, or <tt>max</tt> matches have been found.
@param obj The object that will be treated as a template to find matching objects.
@param max The maximum number of matches required.
@param timeout The amount of time for the entire object-space operation, <i>not</i> just this

method.
@param start The time when the entire object-space operation started, so it can be determined

if the amount of time allowed has expired. */
private Vector find(OILObject obj, int max, int timeout, long start)
{

Vector tempVec = new Vector();
int size = container.size();
for(int i = 0; i < size; i++)
{

OILObject temp = (OILObject) container.get(i);
if(obj.match(temp))
{

tempVec.add(temp);
if(tempVec.size() == max)

return tempVec;
}
if(!timeLeft(start, timeout))

return tempVec;
}
return tempVec;

}

/** When a search operation times out, it is possible that matches previously found have been
removed by some other thread while the operation was waiting. This method is responsible
for taking those results, and checking to make sure they are all still here. This method
will remove any entries in <tt>vec</tt> that are no longer in the object space. If the
number of remaining entries is below <tt>min</tt>, they will all be removed.
@param vec The matches to check to make sure they aren’t stale. It is possible this set

will be emptied completely by this method.
@param min The minimum number of items allowed in <tt>vec</tt>.
@see java.util.Vector#containsAll
@see java.util.Vector#contains */

private void removeStale(Vector vec, int min)
{

if(vec.size() < min) // do we even have the minimum?
vec.clear();

else if(!container.containsAll(vec)) // need to eliminate the ones missing
{

for(int i = 0; i < vec.size(); i++) // can’t use a size variable optimization
if(!container.contains(vec.get(i)))

vec.remove(i--);
if(vec.size() < min) // do we have enough remaining objects after removing stale objects?

vec.clear();
}

}

Figure A.7: Two support methods from ConcreteObjectSpace
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/** This method implementation is identical to {@link #in} except that the matches found
aren’t removed from the object space, and it works on a read lock instead of a write lock. */

public MultiSet rd(OILObject obj, int min, int max, int timeout)
{

Vector tempVec = new Vector();
long start = System.currentTimeMillis();

obtainReadLock();
while(true) // intentional infinite loop
{

tempVec = find(obj, max, timeout, start);
if(tempVec.size() == max)

break;
if(!timeLeft(start, timeout))
{

if(tempVec.size() < min)
tempVec.clear();

break;
}

releaseReadLock();
timedWait(start, timeout); // time to sleep
obtainReadLock();

if(timeLeft(start, timeout)) // woken by someone doing a write operation
continue;

removeStale(tempVec, min);
break;

}
releaseReadLock();
return vectorToMultiSet(tempVec);

}

Figure A.8: The rd function in ConcreteObjectSpace

previous matches will still be in the object space, and the call to method removeStale()
isn’t required. However, it is impossible to determine which thread(s) were executing when
the time expired inside method timedWait(); thus, method removeStale() must always
be invoked.

A.4 Implementing CheckpointMech

As mentioned in Section 4.3.2 on page 74, the actual checkpoint mechanism passed to user
jobs is an instance of (or descendant) of class ExecuteNewGridJob, shown in the left-hand
branch of Figure A.9. Depending on the type of incoming job, the appropriate class from
the ExecuteNewGridJob hierarchy is used to begin servicing the job.

1. ExecuteNewGridJob a class used to execute new simple/sequential jobs, and MISD
sub-jobs.

2. ExecuteNewSIMDJob a class used to execute new SIMD sub-jobs. It is much more
complicated than the previous class because it needs to download the parameters
from the server, and find the proper constructor for the sub-job before it can create
it and begin executing the sub-job.

3. ExecuteObjectSpaceJob a class used to for executing active objects (see Sec-
tion 4.3.3).
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4. ExecteResumedGridJob a class used when resuming any of the four jobs types
from a checkpoint file.

Only class ExecuteNewGridJob contains the method for creating checkpoints, but it is
inherited by all its descendants. The checkpoint mechanism that is passed to the user’s
job by way of the setCheckpointMech() method must be declared as transient because
as can plainly be seen in Figure A.9, class ExecuteNewGridJob and its descendants are
not serializable. It would be possible to declare the class as serializable, and then make
the appropriate fields transient; e.g., thread would have to be transient. This would mean
the checkpoint mechanism stored in the user’s program wouldn’t have to be transient.

There is no real advantage to doing this, since a new checkpoint mechanism would
still have to be passed to the user’s job when it is deserialized on a worker node. It is
much easier to check to ensure that checkpoint mechanism is declared transient in the
user’s program (see Appendix A.1), than it would be to properly deserialize an instance
of ExecuteNewGridJob properly. To do this would require a lot of typecasting to obtain
values out of the current thread and assign them to the deserialized object.
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Appendix B

Experimental Data

This appendix contains the experimental data for some of the experiments run in Chap-
ter 5. The data for the server stress test experiment is not given. The following is the
data for Figure 5.3 on page 98, all times are in seconds.

Threads/ Thread Threaded
Nodes Standalone Ideal Local Blocks = Nodes Blocks = 400

1 7647.67 7647.67 7647.67 5540.78 7417.33
2 7647.67 3823.84 5643.13 3954.99 4044.88
3 7647.67 2549.22 5382.38 2639.54 2693.86
4 7647.67 1911.92 7366.91 1973.93 2012.54
5 7647.67 1529.53 7020.53 1577.01 1612.51
6 7647.67 1274.61 6766.35 1312.59 1348.15
7 7647.67 1092.52 7721.25 1128.16 1151.21
8 7647.67 955.96 7457.45 989.49 1008.05
9 7647.67 849.74 7471.05 905.45 906.87

10 7647.67 764.77 7427.60 823.69 807.54
11 7647.67 695.24 7797.64 743.44 743.34
12 7647.67 637.31 7562.77 674.20 683.23
13 7647.67 588.28 7458.63 650.83 625.69
14 7647.67 546.26 7991.32 613.60 587.34
15 7647.67 509.84 8088.54 569.98 547.87
16 7647.67 477.98 7652.54 527.38 507.79
17 7647.67 449.86 8100.99 498.31 484.56
18 7647.67 424.87 8240.18 474.41 464.63
19 7647.67 402.51 7864.62 443.27 430.78
20 7647.67 382.38 7937.26 427.05 407.47
21 7647.67 364.17 8465.49 393.46 387.50
22 7647.67 347.62 8017.88 375.88 382.61
23 7647.67 332.51 7990.22 359.54 364.93
24 7647.67 318.65 8210.01 344.91 351.17
25 7647.67 305.91 8154.70 331.27 326.71
26 7647.67 294.14 8112.11 318.33 325.48
27 7647.67 283.25 8359.89 307.11 305.06
28 7647.67 273.13 8567.85 296.09 303.84
29 7647.67 263.71 8204.17 286.51 285.00
30 7647.67 254.92 8166.06 277.11 284.18
31 7647.67 246.70 8400.90 268.80 265.86
32 7647.67 238.99 8544.64 260.74 267.02
33 7647.67 231.75 8553.05 253.21 263.14
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Threads/ Thread Threaded
Nodes Standalone Ideal Local Blocks = Nodes Blocks = 400

34 7647.67 224.93 8535.04 245.84 245.92
35 7647.67 218.50 8554.72 239.29 245.48
36 7647.67 212.44 8430.27 233.07 242.45
37 7647.67 206.69 8655.58 226.92 227.00
38 7647.67 201.25 8651.49 220.91 226.07
39 7647.67 196.09 8845.89 215.58 223.76
40 7647.67 191.19 8622.20 210.30 208.29
41 7647.67 186.53 8991.68 205.59 205.69
42 7647.67 182.09 8772.19 200.67 207.62
43 7647.67 177.85 8914.38 196.17 206.81
44 7647.67 173.81 8971.25 191.77 204.33
45 7647.67 169.95 8933.83 187.71 190.38
46 7647.67 166.25 8855.60 183.79 189.38
47 7647.67 162.72 9072.92 179.97 189.81
48 7647.67 159.33 8947.87 176.41 188.82
49 7647.67 156.07 8977.68 172.64 185.69
50 7647.67 152.95 8955.72 169.38 169.51
51 7647.67 149.95 9094.27 165.85 172.68
52 7647.67 147.07 9036.48 162.86 172.27
53 7647.67 144.30 8997.21 159.95 168.48
54 7647.67 141.62 9180.27 157.20 171.60
55 7647.67 139.05 9210.01 154.38 171.30
56 7647.67 136.57 9190.36 151.75 167.16
57 7647.67 134.17 9361.10 149.40 153.04
58 7647.67 131.86 9361.72 146.85 157.21
59 7647.67 129.62 9236.08 144.68 154.91
60 7647.67 127.46 9314.24 142.26 153.36
61 7647.67 125.37 9826.14 140.03 151.72
62 7647.67 123.35 9825.68 138.02 150.47
63 7647.67 121.39 9482.70 135.82 148.72
64 7647.67 119.49 9866.74 133.81 150.33

The following is the data for Figure 5.6 on page 105, all times are in seconds.

Thread Stand Alone Stand Alone
Threads Ideal Blocks = nodes Blocks = 400

1 5395.73 5339.36 5545.93
2 2697.87 5401.21 5595.74
3 1798.58 5473.96 5659.28
4 1348.93 7442.21 5681.44
5 1079.15 7094.31 5614.57
6 899.29 6813.51 5682.85
7 770.82 7797.43 5680.82
8 674.47 7566.59 5676.11
9 599.53 7385.93 5862.46

10 539.57 7253.74 5904.31
11 490.52 7910.69 5783.41
12 449.64 7728.56 5956.78
13 415.06 7560.83 5922.11
14 385.41 8151.66 5957.64
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Thread Stand Alone Stand Alone
Threads Ideal Blocks = nodes Blocks = 400

15 359.72 7909.19 5822.85
16 337.23 7794.73 6066.34
17 317.40 8195.70 6093.31
18 299.76 8083.36 5965.67
19 283.99 8030.35 6066.39
20 269.79 7958.03 6341.66
21 256.94 8334.82 6271.65
22 245.26 8155.91 6149.60
23 234.60 8154.14 6479.36
24 224.82 8460.81 6261.77
25 215.83 8441.11 6506.82
26 207.53 8408.95 6246.40
27 199.84 8565.29 6493.03
28 192.70 8531.08 6755.89
29 186.06 8461.65 6293.34
30 179.86 8452.05 6544.62
31 174.06 8577.86 6699.68
32 168.62 8602.60 6426.05
33 163.51 8538.23 6664.84
34 158.70 8827.81 6756.36
35 154.16 8735.35 7115.73
36 149.88 8682.44 6413.40
37 145.83 8924.65 6601.33
38 141.99 8948.43 6948.61
39 138.35 8883.84 7147.91
40 134.89 8785.77 7743.59
41 131.60 9012.35 6684.05
42 128.47 8991.62 7404.07
43 125.48 9029.68 6989.83
44 122.63 9188.43 7220.49
45 119.91 9141.07 7383.61
46 117.30 9115.38 7590.08
47 114.80 9363.87 6749.42
48 112.41 9247.31 6757.81
49 110.12 9272.45 7047.29
50 107.91 9269.99 7329.79
51 105.80 9518.26 7442.84
52 103.76 9449.89 8025.54
53 101.81 9401.11 8104.10
54 99.92 9551.42 8143.09
55 98.10 9594.31 8002.62
56 96.35 9533.07 8125.44
57 94.66 9712.64 7035.76
58 93.03 9671.02 7192.67
59 91.45 9624.50 7363.31
60 89.93 9628.12 7429.52
61 88.45 9745.61 7567.75
62 87.03 9756.70 7748.46
63 85.65 9736.10 7989.58
64 84.31 9949.47 8051.68
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On Grid On Grid
On Grid Blocks = 400 Blocks = 400

Threads Blocks = nodes No Checkpoints Checkpoints
1 5486.74 5452.09 5507.99
2 3888.14 2747.17 2767.11
3 2651.47 1856.19 1845.13
4 2006.68 1398.73 1398.49
5 1601.09 1125.20 1124.01
6 1341.20 943.77 937.04
7 1140.95 812.08 812.74
8 1004.85 713.48 714.62
9 884.85 635.99 634.91

10 802.82 582.35 575.52
11 749.50 528.00 523.18
12 670.31 485.35 483.02
13 623.81 447.63 451.10
14 572.66 423.69 420.01
15 539.15 388.38 387.41
16 501.50 366.43 366.10
17 475.96 345.68 343.04
18 454.69 329.92 322.90
19 431.42 305.39 303.53
20 406.59 303.90 300.86
21 395.40 289.36 283.91
22 385.32 275.00 264.55
23 360.70 268.74 262.44
24 357.97 253.68 247.93
25 326.86 245.25 245.55
26 314.02 229.92 227.08
27 307.64 225.14 225.38
28 293.50 225.36 225.05
29 282.70 212.05 207.35
30 274.31 206.99 205.88
31 261.95 205.85 205.91
32 255.36 188.32 187.69
33 249.30 189.34 186.81
34 243.53 186.51 184.96
35 234.45 188.18 185.55
36 229.98 174.15 168.77
37 226.47 168.35 167.76
38 218.50 167.17 166.55
39 216.54 167.48 165.40
40 208.55 168.73 166.01
41 203.23 147.20 146.61
42 195.90 148.28 146.61
43 191.53 149.04 147.32
44 187.75 145.78 146.18
45 187.72 147.56 146.24
46 183.70 149.50 146.19
47 181.23 128.17 131.89
48 176.75 128.49 131.47
49 172.68 127.77 131.43
50 169.99 131.88 131.44
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On Grid On Grid
On Grid Blocks = 400 Blocks = 400

Threads Blocks = nodes No Checkpoints Checkpoints
51 166.25 131.44 127.13
52 159.88 130.36 128.75
53 159.20 129.50 126.87
54 154.64 129.85 126.27
55 153.13 128.81 130.19
56 150.52 126.85 125.96
57 148.76 107.35 108.94
58 147.11 107.12 108.80
59 142.88 108.87 107.77
60 142.53 109.33 108.32
61 140.87 109.86 106.28
62 137.82 107.40 110.86
63 133.64 107.44 111.17
64 134.43 107.51 110.18
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Appendix C

Glossary

ADT Abstract Data Type An abstract specification of a set of values and associated
operations on those values.

ALU Arithmetic Logic Units part of the CPU responsible for performing arithmetic
and logic operations.

API Application Programmer’s Interface a set of functions/procedures that a program
either needs to implement or use to tie into an existing system.

CAVE A recursive acronym, CAVE Automatic Virtual Environment. The CAVE is a
projection-based VR display, where the user stands in the center of display area.

CLI Command Line Interface a text-only way of interacting with a program.

CORBA Common Object Request Broker Architecture a protocol used to help perform
RPC between multiple languages.

DSM Distributed Shared Memory a technique used to manage memory on multiple
computers. It can be implemented using either hardware or software.

GUI Graphical User Interface a visual way of interacting with a program using windows,
buttons, menus, and so on.

HPC High Performance Computing an area of computer science that grid computing
started from.

HPF High Performance FORTRAN a common language which is used to implement
large scale concurrent systems.

IPC Inter-Process Communication processes are able to communicate with each other
using either message passing or shared memory.

JOLTS Java Objective Linda Tuple Space a Java-based grid system that uses the
Objective Linda specification for communications between multiple sub-jobs.

JVM Java Virtual Machine a stack based virtual machine capable of executing Java
bytecode.

K Kilobyte a unit of measure consisting of 1024 bytes.
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Kb Kilobit a unit of measure consisting of 1024 bits, used primarily when talking about
network speeds.

M Megabyte a unit of measure consisting of 1024 Kilobytes.

Mb Megabit a unit of measure consisting of 1024 Kilobits, used primarily when talking
about network speeds.

MISD Multiple Instruction Single Data different instructions repeated using the same
data set. Often also referred to Multiple Program Multiple Data.

MPP Massively Parallel Processor a computer with a large number of processors.

OIL Object Interchange Language a language-independent notation for describing
ADTs in Objective Linda.

ORB Object Request Broker a middleware technology that manages communication
and data exchange between objects.

RMI Remote Method Invocation a Java specific version of RPC.

RPC Remote Procedure Call short form for invoking functions/procedures on non-local
resources.

SIMD Single Instruction Multiple Data the same set of instructions that is repeated
using different data sets. It is often also referred to as Single Program Multiple Data.

Switchboard An intermediary between an open socket connection and a remote com-
puter. Used to help keep socket connections alive when a program migrates between
computers.

TCP/IP Transmission Control Protocol Internet Protocol a set of state-based protocols
used by computers to communicate with each other over the Internet.

UDP User Datagram Protocol a stateless protocol used to transmit data packets be-
tween computers.

XML Extensible Markup Language a flexible “meta” language used for defining markup
languages.
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