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Abstract 

The ever-growing world population brings the challenge for food security in the current 

world. The gene modification tools have opened a new era for fast-paced research on new crop 

identification and development. However, the bottleneck in the plant phenotyping technology 

restricts the alignment in Geno-pheno development as phenotyping is the key for the identification 

of potential crop for improved yield and resistance to the changing environment. Various attempts 

to making the plant phenotyping a “high-throughput” have been made while utilizing the existing 

sensors and technology. However, the demand for ‘good’ phenotypic information for linkage to 

the genome in understanding the gene-environment interactions is still a bottleneck in the plant 

phenotyping technologies. Moreover, the available technologies and instruments are inaccessible, 

expensive and sometimes bulky. 

This thesis work attempts to address some of the critical problems, such as exploration and 

development of a low-cost LiDAR-based platform for phenotyping the plants in-lab and in-field. 

A low-cost LiDAR-based system design, LiDARPheno, is introduced in this thesis work to assess 

the feasibility of the inexpensive LiDAR sensor in the leaf trait (length, width, and area) extraction. 

A detailed design of the LiDARPheno, based on low-cost and off-the-shelf components and 

modules, is presented. Moreover, the design of the firmware to control the hardware setup of the 

system and the user-level python-based script for data acquisition is proposed. The software part 

of the system utilizes the publicly available libraries and Application Programming Interfaces 

(APIs), making it easy to implement the system by a non-technical user. 

The LiDAR data analysis methods are presented, and algorithms for processing the data 

and extracting the leaf traits are developed. The processing includes conversion, cleaning/filtering, 

segmentation and trait extraction from the LiDAR data. Experiments on indoor plants and canola 

plants were performed for the development and validation of the methods for estimation of the leaf 

traits. The results of the LiDARPheno based trait extraction are compared with the SICK LMS400 

(a commercial 2D LiDAR) to assess the performance of the developed system. 

Experimental results show a fair agreement between the developed system and a 

commercial LiDAR system. Moreover, the results are compared with the acquired ground truth as 

well as the commercial LiDAR system. The LiDARPheno can provide access to the inexpensive 

LiDAR-based scanning and open the opportunities for future exploration.
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Chapter 1  

Introduction 

1.1 Global Food Security Challenges and Potential Solutions 

The ever-growing population on earth calls for the need to increase food production by 1.5 

times [1], [2]. The population of the earth is expected to reach 9.73 billion by 2050 [2]. If the 

current practices for farming were to utilize and the agricultural land expansion continues, there 

will be the more significant impact on the environment with substantial CO2 emissions by 

greenhouses and increased nitrogen use [3]. In addition to increasing the food production, global 

temperature rise, flooding and diseases make the food security a primary concerns across political 

leaders [4]. There is a requirement for improvements in farming practices and study to increase 

the crop yield along with high resistance to disease, pests and changing environmental conditions 

[4]. 

The concept of Genotype and Phenotype terms first introduced by Wilhelm Johannsen 

(1909). In general, the genotype is the “genetic constitution of an organism” and phenotype is the 

“collection of traits possessed by a cell or organism that results from the interaction of the genotype 

and the environment” [5]. The food quality and food security improvements can be achieved by 

creating a new crop variety using gene editing technology [4]. While there have been many 

technological improvements and advances in gene editing/sequencing technologies [6]–[8], the 

technologies for the plant phenotyping are still developing and are not fully explored, making it a 

bottleneck for agriculture research [7]. Hence, efforts to make the plant phenotyping high-

throughput is a necessity to balance the advances in genotyping with phenotyping. 

Traditionally, plant phenotyping has been achieved by manually collecting the phenotypes 

from the plants to select the best individual variety [9]. Technological advancement in the plant 

phenotyping has been a topic of interest among interdisciplinary researchers in recent years. The 

efforts have been put into using and optimizing the available technologies to adapt to the need of 

plant phenotyping [7]. Ranging from the use of active sensors to measure the biochemical traits to 
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use of imaging sensors have been explored to find the relation between the genome and the 

environment [9]. However, most of the developments have been focused on lab experiments with 

some for in-field experiments, but are unavailable commercially at large scale. The challenge of 

feeding the increasing population is critical and hence has gained attention from many 

governments around the world. Research institutes and networks have been established to tackle 

the issues faced in the plan phenotyping field. For example, Plant Phenotyping and Imaging 

Research Center (P2IRC) [10] at University of Saskatchewan, International Plant Phenotyping 

Network (IPPN) [11] in Germany, Australian Plant Phenomics Facility (APPF) [12], North 

American Plant  Phenotyping Network (NPPN) [13], and many others. 

Plant imaging using a 2-dimensional (2D) color – visible light spectrum (VIS) – cameras 

were used by numerous researcher to develop a plant trait characterization algorithms [14], [15]. 

However, the VIS cameras are prone to the lighting conditions and might perform differently under 

changing lighting conditions, leaf shadows, overlapping leaves and differentiating leaves from the 

soil background [16]. Moreover, various other imaging such as thermal imaging, fluorescence 

imaging, and hyperspectral imaging can provide information related to canopy temperature, 

biochemical contents and water stress [16]. 

Tomographic imaging such as Magnetic Resonance Imaging (MRI) and X-ray Computed 

Tomography (CT) can provide information from the root and shoot architecture and distribution 

[17], [18]. However, the tomographic imaging is bulky and still remains low-throughput [16]. In 

addition, 3-dimensional (3D) imaging can provide the detailed view of the plant structure above-

ground. Technologies such as Time of Flight (ToF), Light Detection and Ranging (LiDAR), and 

Stereo Vision cameras have been used to create a detailed map of the vegetation and canopy 

structures [16]. In contrast to 2D imaging techniques, 3D imaging is slow, expensive and can be 

bulky for field phenotype acquisition. 

The above ground structure of a plant is an essential characteristic to evaluate the plant’s 

ability to resist environmental changes and diseases. Moreover, the above ground organism of the 

plant is responsible for the process of the photosynthesis – apparently, one of the most critical trait 

to estimate the yield – and growing the fruit or seeds. Leaf area, leaf expansion, and the ground 

cover are some of the traits that can be used to estimate the photosynthetic rate [19]. 
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Commercial technologies available for plant phenotyping are few, inaccessible and 

expensive. Exploring the effect of gene modification and editing at a large scale requires 

phenotyping technologies to be robust, inexpensive and accessible. 

1.2 Research Objectives 

The primary objective of this thesis work is to investigate the application of low-cost 3D 

imaging sensor and to develop an affordable system. The following research objectives were set 

to meet the goal of developing a cost-effective system: 

• To design and develop a scanning system based on low-cost LiDAR sensor that is 

low-cost, portable and easy-to-build. 

• To develop a low-level software program (firmware) to operate the hardware of the 

system using existing libraries and Application Programming Interfaces (APIs). 

• To develop software and algorithms that can process the acquired data including, 

conversion from raw data to generate a 3D point clouds, cleaning, filtering and 

correcting the data, segmentation of individual plant structures (i.e., leaves). 

• To estimate the traits of the plant using the processed data. In this thesis, Leaf’s 

area, length, and width are estimated using the point cloud data. 

• To compare the performance of the developed system with the commercial LiDAR 

scanner with respect to the estimation of the traits. 

1.3 Thesis Organization 

The subsequent chapters are organized as follows: 

Chapter 2 reviews the literature relating the topic of plant phenotyping and various 

phenotyping techniques being utilized. In this chapter, different types of phenotypes and recent 

advances in the estimation of those phenotypes are presented. Moreover, different imaging 

techniques that are currently being studied and developed are explained. 

Chapter 3 provides the detailed design of the low-cost LiDAR scanning system 

(LiDARPheno). The detailed design requirements, assessment of various low-cost LiDAR sensors, 

the design of the firmware and software for portability and remote operability, and power 

consumption and battery life estimation are discussed in this chapter. 



 

4 

 

Chapter 4 describes the experimental material and data acquisition process. This chapter 

also describes the commercial LiDAR used to assess the performance of the LiDARPheno system. 

Various types of plants used for experiments and the acquisition of the ground truth information 

using manual methods are discussed. 

Chapter 5 discusses the processing of the raw data from the LiDAR and introduces the 

algorithms developed to process the data. The conversion of raw data to coordinate system and 

cleaning, filtering and segmentation of the individual leaves is described. It also discusses the 

methods deployed for estimation of the plant leaf area, length, and width. 

Chapter 6 presents the results of the experiments performed and the interpretation of the 

results. Comparison between results obtained with LiDARPheno and commercial LiDAR scanner 

is presented to assess the performance of the low-cost design. 

Finally, Chapter 7 concludes the findings of this research work and provides direction for 

improvements to the designed system as well as analysis software.



 

5 

 

Chapter 2  

Literature Review 

This chapter includes the review of plant phenotyping techniques and transition of the plant 

phenotyping from traditional to modern technological advances in the field. Section 2.1 provides 

an overview of the term ‘plant phenotyping’ and the need for the assessment of the physiological 

characteristics of the plant. Section 2.2 discusses the available sensor technologies and sensors that 

are being utilized to develop plant phenotyping platforms. Section 2.3 reviews past and recent 

works in the LiDAR-based plant phenotyping. Section 2.4 provides insights into the phenotyping 

platforms, and finally, Section 2.5 establishes the need for low-cost phenotyping solutions. 

2.1 The Term ‘Plant Phenotyping’ and its Need 

The term ‘genotype’ and ‘phenotype’ were first introduced by plant scientist Wilhelm 

Johannsen about a century ago [9]. As Johannsen stated in [20]: 

 “All ‘types’ of organisms, distinguishable by direct inspection or only by finer 

methods of measuring or description, may be characterized as ‘phenotypes’.” 

The term ‘phenotype’ is used by a variety of health and life science fields till now. 

However, there is no standard definition of the term and is used in different ways to define a 

particular situation [5]. In general, plant phenotyping is an assessment of all the visible, measurable 

and observable characteristics of a plant. For example, plant height, leaf shape, water contents, 

nitrogen contents, photosynthetic rate, leaf expansion, ground cover, leaf area, etc. 

The technological improvements and new findings in the gene sequencing have brought 

opportunities to both improve the yield as well as the quality of the crops [4], [6], [9], [14], [15]. 

However, there is limited research and development towards improving the ordinary methods of 

the crops’ assessment and hence is the bottleneck for the researchers’ and plant breeders’ capability 

to perform at the same rate as of genetic modification scientists [14], [15], [18]. Manual 

measurement and collection of the phenotypes are labor intensive, prone to errors and tiresome for 
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the breeders. The replacement of the human efforts put into the phenotype collection is required 

to minimize the errors and to fasten the process of the selective breeding. 

The knowledge of how genomic variation interacts with the environment is crucial in 

understanding the function of different genes, which consequently improves the overall process of 

producing the new crop. Hence, the phenotyping process plays a vital role in the development of 

the new crops with higher yield and better resistance to the changing environment. The new crops 

can help in the major food security challenge which is to feed an ever-growing population by 2050. 

 Due to the increasing demand for ‘good’ phenotypic information, which can be helpful in 

the discovery of the gene-environment interaction, technological advancements in phenotyping 

has become a crucial field of research. In recent years, there have been many studies on how 

existing, and new sensors and methods can be deployed at the advantage of the plant phenotyping 

[7], [15], [16]. Researchers have demonstrated the helpfulness of Visible Spectrum (VIS) imaging 

from counting the number of leaves to the estimation of biomass [16]. Scientists have developed 

technologies and processing algorithms by adapting existing sensors for plant phenotyping. 

Moreover, medical imaging techniques such as Magnetic Resonance Imaging (MRI) and X-ray 

Computed Tomography (CT) were also utilized for imaging the plant structures [17], [18]. Overall, 

the imaging technologies might prove to be really helpful in the understanding of the gene-

environment interactions. 

2.2 Sensors and Imaging Technologies in Plant Phenotyping 

The field of digital plant phenotyping may include imaging, measuring and recording 

environmental parameters, and modeling. There are various types of devices and sensors available 

for measuring the environmental parameters, such as soil moisture content, temperature, wind 

speed and direction, humidity, rainfall, sunlight intensity, etc. Also, imaging and reconstruction 

the plants model can be performed using different imaging and scanning techniques such as VIS 

or 2D camera, Infrared (IR) camera, Near Infrared (NIR) camera, Hyperspectral camera, 

fluorescence camera, CT, MRI, Time of Flight (ToF) camera, LiDAR scanners, and laser scanners. 

All the technologies have some advantages and some disadvantages. The following subsections 

discuss the different technologies and techniques being studied and utilized in the plant 

phenotyping. 
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2.2.1 Single Dimension (1D) Sensors in Plant Phenotyping 

1D sensors are capable of measuring some of the plant and environmental traits such as 

temperature, plant height, field moisture, measuring wind speed and rainfall detection. The optical 

sensor such as GreenSeeker (NTech Industries Inc., USA) has been used by researchers to monitor 

the growth and development of the crop [21]. For example, an estimation of the nitrogen uptake 

by crops has been executed [22], [23]. An Internet of Things (IoT) based system was proposed to 

monitor the environmental parameters in the field by [24]. The IoT based system utilizes various 

sensors including soil moisture, rail fall detection, wind speed and wind direction monitoring. 

Also, it uploads the data on the cloud server, and the data can be utilized to detect fungal in the 

crop fields. 

2.2.2 Visible Spectrum Imaging 

Visible spectrum (VIS) imaging has been of great interest to the plant scientists in recent 

years. The main reason for the popularity of VIS imaging is the availability of the imaging sensors. 

Most smartphones have cameras included and can be used to take the pictures in the field. The 

VIS cameras have imaging sensor that captures the light in the visible spectrum of the light (400-

750 nm wavelength). The VIS image raw data is stored as 2D data and provides the information 

in three channels, red (~600 nm), green (~550 nm), and blue (~450 nm) spectrum of the visible 

light; hence, commonly referred as RGB (red, green, blue) images. 

RGB or visible imaging is extensively used by plant scientists due to its ease of use, cost-

effectiveness, and maintenance [16]. Moreover, the vast availability of tools and algorithms for 

RGB images makes the process of data acquisition and analysis easy for plant scientists without 

the need to learn and develop application-specific software programs. The VIS imaging is mostly 

used in the controlled environment. However, in the recent years, there has been a large number 

of attempts to extract the plant traits with the image data taken from the field. Primarily, the RGB 

imaging is used to count number of leaves [25], [26], estimate shoot biomass [27], [28], leaf 

morphology [29] and root architecture [30], [31]. 

Recently many image-based phenotyping algorithms and platforms have been proposed to 

ease the task of estimating the physiological traits of the plants. For example, Phenotiki [32] is 

open software and hardware, affordable image-based phenotyping platform that can perform the 

tasks of analyzing morphology, growth color and leaf count in rosette-shaped plants. The platform 
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uses off-the-shelf components and can be ordered from many available suppliers. Another example 

of the high-throughput phenotyping pipeline is HTPheno [33], a plugin to the image analysis 

software ImageJ, an open source image analysis software. This plugin can analyze the height, 

width and projected shoot area of the plant. 

For past few years, the field of artificial intelligence and machine learning is mostly 

appreciated by many fields of the science and life science if not left alone. The visible images have 

been fed into the deep learning networks to train the model for phenotypic traits and then test the 

network with the data [34]–[36]. The results of the segmentation on images for trait 

characterization shows a promising future for the plant phenotyping community. 

Overall, the visible imaging is a promising technology for the plant phenotyping tasks. 

However, the visible light imaging suffers from the effect of lighting conditions, the color of the 

plants and soil, and controlling the overlapping of leaves. The RGB image analysis methods often 

fail in the presence of minimal brightness differences in the soil and plant, leaf and plant shadows, 

overlapping leaves, and the influence of the lighting conditions. Due to these uncontrollable 

conditions, visible light imaging methodologies suffer from the inaccuracy in segmentation, the 

most crucial step in the image analysis. However, the visible light imaging can provide much 

insightful information when the lighting and plant conditions are favorable. 

2.2.3 Thermal Imaging 

Thermal imaging or infrared thermography technology typically operates in the infrared 

spectrum of the light and detects the radiation by objects in the infrared region of the light 

spectrum. The typical thermal imaging sensitive spectrum range is 3-5 µm for short wavelengths 

[16]. The availability of the highly sensitive thermal imaging cameras and its use in the vegetation 

detection, the thermal imaging is gaining popularity among plant scientists. 

The leaf surface temperature measurements can be helpful in understanding the plant water 

relationship [16]. Thermal imaging has been used for drought phenotyping and understanding the 

behavior of the stomatal [37]. In [38], authors have used thermal/infrared imaging to study the 

response of genetic variation in wheat and barley with respect to water deficiency. This study 

concluded that thermal imaging could prove to be the perfect estimation for water contents in the 

canopy and is a reliable source for high-throughput measurements. The thermal imaging has been 



 

9 

 

widely used for crops and trees [16]. Moreover, thermal imaging has also been combined with the 

spectral imaging to improve the water content estimation [39]. 

Despite the many benefits of the thermal imaging, they are still expensive and difficult to 

operate. Moreover, availability of the thermal image processing algorithms limits the use of 

thermal imaging. It is notable that thermal imaging requires extensive calibration for use in the 

estimation of water contents. High level of calibration and the requirement of specific knowledge 

of the environment when the imaging was performed makes the thermal imaging one of the 

technologies that require technical inclination. Fusion of the information from the thermal imaging 

and RGB imaging can provide means to separate the soil water contents from that of the plant [16]. 

2.2.4 Imaging Spectroscopy 

The plants tend to absorb most of the light in the visible spectrum (400-700 nm) with the 

highest reflectance in the green region (~550 nm) of the visible light spectrum. However, the near-

infrared (NIR) wavelengths ranging from 700 to 1200 nm have better reflectance from the plant 

leaves than that of visible light. Moreover, with the increasing wavelengths near 2500 nm, the 

absorption is higher, resulting in the low reflectance due to water contents in the plant leaves [40]. 

Plant’s spectral reflectance information has been used to develop various vegetation indices by 

using the difference or ratio of the reflectance data at two or more wavelengths. For example, 

normalized difference vegetation index (NDVI), which is a good indicator of detection of the 

vegetation in remote sensing using an aerial vehicle or using handheld detectors. Several indices 

have been developed using the imaging spectroscopy [16]. 

The spectral reflectance indices are used to measure the water status, chlorophyll contents, 

and green biomass in phenotyping the plants. For instance, Schlemmer et al. [41] have acquired 

the reflectance information in the range 350-2500 nm and used the ratios of reflectance at 630 and 

680 nm wavelengths and ratio of 600/680 nm to introduce two new indices, namely orange/red 

chlorophyll absorption ratio (OCAR) and yellow/red chlorophyll absorption ratio (YCAR). The 

two ratios defined by the authors have shown a strong relation (r2 = 0.83) to the chlorophyll 

contents of the plant. Hyperspectral and multispectral cameras are extensively used to estimate the 

water status in the plants. 

The imaging spectroscopy can provide relatively accurate information for plant 

phenotyping. However, the data produced using the spectroscopy is significant in size. Moreover, 
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the devices and instruments used for spectroscopy are expensive and limits the acceptance by the 

breeding programs and plant scientists [16]. Overall, the spectral imaging is a promising 

technology for the prediction of canopy water contents, green biomass and various indices that can 

be used to predict vegetation, biomass or photosynthetic rates. 

2.2.5 3-Dimensional (3D) Imaging 

A 3D imaging can supplement the limitations of the 2D images by adding the 3rd dimension 

to the scene, i.e., depth. The 3D imaging sensors have been used extensively in the computer 

gaming industry. The 3D imaging sensor technologies available are 2D photogrammetry [42], light 

detection and ranging (LiDAR), stereo vision, time-of-flight (ToF) cameras and recently 

consumer-grade gaming interface Microsoft Kinect [16]. These sensor technologies have been 

used in the plant phenotyping tasks in recent years. 

A 3D imaging can help in the estimation of the traits and architectures of the plants. An 

approach to constructing a 3D point cloud by using 2D images taken from different angles has 

been used by researchers. In [43], authors have constructed a 3D model of the plants using 2D 

images taken from multiple view-angles. The stereo vision cameras are also used in the field of 

plant phenotyping to construct a 3D model of the plants. For instance, Frasson et al. [44] have 

generated a 3D digital model of the Maize using stereo vision camera. While 3D model 

reconstruction from the multi-perspective 2D images is possible, the process highly depends on 

the quality of the 2D images, which suffers from the illumination conditions as explained in the 

section 2.2.2. In addition, extensive calibration for the 2D cameras is required to estimate the 3D 

models. 

The Time-of-flight (ToF) based cameras can acquire information at the relatively high 

frame rate (up to 50fps) and are suitable for field data acquisition. However, sunlight affects the 

performance of the ToF cameras [45]. In [30], authors have constructed a 3D approximation of the 

plant by combining ToF and RGB data. A successful attempt was made to fuse the stereo image 

with ToF image by Song et al. [46]. Going a step forward, recently, Li and Tang [47] proposed the 

use of ToF camera to estimate the leaf length, width, area and collar height of the corn plant. A 3D 

model has been constructed with 23 different views. While ToF cameras are ideal for high-

throughput 3D data acquisition, they are influenced by the sunlight, and low resolution limits the 

adaptation in phenotyping applications. 
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The LiDAR is best known for the 3D model reconstruction of the canopy due to its 

accuracy, robustness, and resolution. LiDAR uses a laser light emission and calculates the distance 

to reflecting object by recording the time of travel from and back to LiDAR. In plant phenotyping, 

several attempts toward the reconstruction of the canopy have been made. 3D reconstruction of 

the 3D model allows for the analysis of the complex traits, such as shape, area, and alignment of 

the leaves. LiDAR-based 3D imaging technology is explained in section 2.3. 

2.3 LiDAR-based 3D imaging in Plant Phenotyping 

The light detection and ranging (LiDAR), as its name suggests, uses light to measure the 

distance to the object by calculating the time of travel by the pulse of light. The LiDAR is also 

used by law enforcement agents to measure the velocity of the car on the roads. LiDAR can 

estimate the distance very accurately, and two successive measurements can be used to measure 

the velocity accurately. The fundamental operating principle of the LiDAR is shown in Figure 2-1. 

  

Figure 2-1: The fundamental operating principle of the LiDAR 
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LiDAR uses the laser emitter to emit light, and a photo/laser detector captures the light 

reflected by the surface. By considering that the speed of light is constant, the travel time of the 

light pulse is recorded by a time recorder or timer. The time used for calculation of the distance to 

the reflecting object is from the emission of the pulse of the light until the reflected pulse is 

received by the detector. The time is then divided by two and multiplied with the constant speed 

of light, consequently revealing the distance to reflecting object. 

LiDAR became known to general public in the early 1970s when the astronauts used it to 

map the surface on the moon. Since then, LiDAR has been used in remote sensing applications 

and generally involves data acquisition with an airplane or helicopter. The LiDAR data is then 

combined with other information collected during the same flight, such as GPS information to map 

the acquired data to geolocation [48]. 

In recent years, LiDAR’s accuracy and ability to precisely map the structures drew 

attention across various fields, especially plant phenotyping community. It is believed that LiDAR 

can provide an opportunity to look at the plant with more accurate 3D modeling, consequently 

revealing the critical parameters of the plants such as the shape and structure of the leaves. 

Moreover, LiDAR uses its own light source, eliminating the illumination limitations of 2D 

imaging. A 2D LiDAR collects two-dimensional information, generally using a rotating mirror, at 

a very high speed. The 3D model of the canopy can be constructed while moving the 2D LiDAR 

along the direction of the scanning plane. While 3D model constructed using LiDAR scans is not 

as dense as those constructed using 2D images, the scans can provide useful information for 

extracting the plant morphological traits [49]–[51]. 

Derry et al. [52] have included the 2D LiDAR (LMS400, Sick AG, Waldkirch, Germany) 

in their field-based phenotyping platform, Phenomobile, for estimating the canopy height in the 

different height genotypes of the wheat. The higher correlation between the manual measurement 

of the canopy height and one estimated using LiDAR data was achieved. The study concluded that 

LiDAR is potentially the best alternative to the image based methods. In a similar study, Tilly et 

al.[53], used the terrestrial laser scanner Riegle VZ-1000 to measure the height of the rice crop. 

The study concludes that there is a higher correlation between manual measurements and the ones 

estimated using LiDAR data. In [49], authors have validated the feasibility of 2D terrestrial LiDAR 

to reconstruct the 3D model of the trees. The authors conclude that 3D modeling of the canopy can 

reveal new opportunities for assessing the essential structural and geometric traits of the plants. In 
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[51], the authors use the 2D LiDAR to construct the 3D point cloud by moving the LiDAR along 

the scan direction. The study concluded with an overall error of 6.84% in height estimation of the 

cotton plants. 

The fusion of the LiDAR imaging with various other imaging techniques can provide a 

better understanding of the plant. Omasa et al.[54], in their study of 3D LiDAR imaging for 

understanding plant responses, states that there is a potential for better understanding of the plant 

response to stress condition by combining the approaches of 2D imaging with LiDAR imaging. 

The structural analysis combined with hyper- or multispectral cameras can provide an opportunity 

to understand the plant’s structure as well as the response to different environmental conditions. 

In [55], authors have obtained the high correlation between LiDAR estimated leaf area and dry 

weight of the leaf in the wheat. Moreover, authors prove the usefulness of the LiDAR imaging in 

the phenotyping of the wheat using portable high-resolution LiDAR. 

Recently, in the past two years, the feasibility of LiDAR to construct the 3D model and 

analyze the 3D to understand structural variety in the plants has drawn attention from many 

researchers dealing in the plant phenotyping field. In one of the recent studies, Berni et al. [56] 

analyzed the 3D data captured with a 2D LiDAR (LMS400, Sick Inc., Germany). In the study 

authors integrated the LiDAR on the high-throughput phenotyping platform, Phenomobile, and 

experiments were performed on fields of the wheat. Phenotypic characteristics included plant 

height, ground cover, and above-ground biomass. Authors also compared the results obtained 

using the LiDAR data with the ones obtained using RGB camera and NDVI. The study of wheat 

ground cover, above-ground biomass and plant height using LiDAR concluded the utility of 

LiDAR in the field phenotyping application with the non-destructive approach. In another study 

[57], authors have monitored the leaf movement activity in the indoor plant, linden regel, using 

terrestrial LiDAR. Moreover, in the study, authors have collected data in the varying lighting 

conditions including total absence of the light. The study on indoor plant indicates the utility of 

the terrestrial LiDAR in accurately tacking of the leaf movement parameterization. Following the 

established methods in [51], the authors performed the in-field experiments for growth analysis 

for cotton plants in [58]. The analysis of the plant morphological traits such as height, projected 

canopy area, and plant volume was extracted from the LiDAR data. Moreover, the plot level 3D 

model was created indicating the high accuracy and feasibility of the LiDAR device in the high-

throughput plant phenotyping. 
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2.4 High-Throughput Plant Phenotyping Platforms 

The high-throughput phenotyping platforms (HTPPs) are the platforms that include either 

a single or multiple sensing technologies with the aim of collecting a vast amount of data from the 

field that can reveal some beneficial phenotypic information. The platform generally incorporates 

the high-performance computer or data logger collecting a vast amount of data and storing the data 

either in local storage or in the remote file servers. The primary objective of utilizing those 

platform is to overcome the limitation of the manual phenotypic information collection and to 

generate, organize and store data so that they are accessible and easily accessible for further 

analysis. 

Numerous efforts have been put on developing HTTPs. For example, the Phenomobile 

Lite® [59] developed by APPF, is a lightweight field-based phenotyping platform that includes an 

RGB camera, hyperspectral camera, thermal camera and LiDAR sensors. Another example of the 

field-based platform is HeliPod [59] by the APPF which is equipped with high-resolution RGB 

and thermal camera. The LemnaTec Corporation provides a fully automated platform for field-

based phenotyping as well as solutions for laboratory experiments [60]. PhenoFab® [61] is a 

greenhouse platform by KeyGene for collecting the digital phenotypes. PhenoSpex PlantEye [62] 

is the high-resolution 3D LiDAR-based platform for field phenotyping by PhenoSpex. After its 

introduction to the commercial market, PlantEye has been used to model the plants. In the recent 

review paper, Rebetzke et al. [63] review the high-throughput phenotyping and its effect on  

enhancing the crop genetic resources. 

2.5 Need for Low-Cost Plant Phenotyping Sensors/Platforms 

Despite the availability of technologies and platforms for plant phenotyping, there is a need 

for the low-cost sensors and platforms. The available technologies and platforms are still in the 

research phase and are not ready for commercial use, and those available commercially are highly 

expensive, inaccessible and bulky. The devices and technologies are computationally expensive 

due to sophisticated algorithms for phenotype extraction. For example, 3D photogrammetry using 

2D images requires many high-resolution images taken from different angles and high level of 

calibration is required. Furthermore, the algorithms for processing the images to generate a 3D 

model are computationally expensive, requiring the use of high-end processors and huge memory. 
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On the other hand, LiDAR can provide the phenotypic information accurately with 

reasonably easy processing steps. However, LiDAR sensors are expensive and bulky. The fact that 

available technologies are expensive, monetarily and/or computationally, limits the exploration by 

the research community at large. Hence, there is a need to develop the cost-effective solutions for 

the phenotyping.  

This thesis work attempts to investigate the feasibility of low-cost LiDAR sensor and to 

build a system with inexpensive modules for 3D scanning of plants. The device/system will have 

ability to use existing libraries and APIs as well as provide a depth information to construct a point 

cloud for in-lab experiments. The target application of the system is in-lab or in the greenhouse 

environment and possibly in the challenging field environment for relatively simple trait 

extraction. The principle targets are rosette-shaped plants such as Canola in their early 

development phase with application in plant growth monitoring. The scope of this work is limited 

to controlled environment as the primary objective is to assess the feasibility and utility of the low-

cost system for some of the phenotyping tasks. 
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Chapter 3  

Design and Development of LiDARPheno system 

This chapter discusses the design and development of 3D scanning system (LiDARPheno) 

using low-cost Light Detection And Ranging (LiDAR) sensor as follows: Section 3.1 sets the 

requirement of the low-cost LiDAR-based scanning system. Section 3.2 discusses the design of a 

hardware setup and components used. Section 3.3 explains the firmware design for Arduino Uno 

and different scanning schemes. Section 3.4 provides the insights into a software program for 

Raspberry Pi. Section 3.5 discusses power requirement and battery life calculations. Finally, 

Section 3.6 provides summary of the cost for individual parts of the system. 

3.1 Design Requirements 

For the design of the low-cost LiDAR scanning system, the following requirements have 

been set: 

• The developed system should be low-cost. It is required and was one of the goals 

of this research project that a system be inexpensive. 

• The LiDARPheno system should be able to capture a depth profile of the scene that 

is being scanned and provide control over the horizontal and vertical Field-of-View 

as well as the angular resolution. 

• The system should be portable and capable of utilizing the wireless communication 

with a goal of the remote operation. 

• The LiDARPheno should be able to communicate and find the pre-configured Wi-

Fi access point at the operating system boot-up. 

• The system should have the available hardware resources that can be utilized to 

interface other sensors and devices, if necessary. 

• The developed system should be able to upload data to the user-specified file server, 

ultimately making it remotely accessible. 
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3.2 Design of the Hardware for the System 

Figure 3-1 shows an underlying architecture of the system. Hardware design includes a 

selection of a LiDAR sensor, mechanical structure, controlling devices and power module. Various 

LiDAR sensors and approach to control have been explored to meet the requirement of the 

hardware design. The following sub-sections discuss the selection of sensor, devices, and 

approaches utilized in developing LiDARPheno hardware. 

LiDAR scanner

LiDAR sensor

Control and User 

Interface

Controller

Power Module

Mechanical 

Structure

Motors

Structure 

holding LiDAR

User Software 

(Application)

DC-DC converter

Battery

Power Adapter

Internet

End User

 

Figure 3-1: Basic architecture of the system 

3.2.1 LiDAR Sensor 

LiDAR is a distance measurement technique that uses light in the form of pulsed laser to 

measure range or distance to the reflecting surface. While selecting a LiDAR device, it is necessary 

to take some of the essential characteristics under consideration as described below: 
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• Resolution: the angular aperture of the transmitted dot or laser point, the 

characteristic that defines the smallest detectable area. 

• Scan Rate: It is a property that defines the speed of sample acquisition. For 

example, 50Hz scan rate means 50 samples/second 

• Laser Wavelength: Wavelength of the incident laser light is one of the required 

property to think about as it directly relates to the plant’s ability to reflect the light. 

• Range: Generally measured in meters, range describes the operable range of the 

sensor. The range is a distance unto which the sensor can measure the distance to 

the reflecting object. 

In this selection process, various low-cost (less than CA $1000) LiDAR sensors have been 

explored and assessed against different characteristics as mentioned above. Table 3-1 shows the 

comparison between different low-cost LiDAR sensors. 

Table 3-1: Comparison of the low-cost LiDAR sensors 

After assessing various LiDAR sensors, it was decided to select LiDAR-Lite v3 (Garmin 

Inc., USA) as a potential candidate for the low-cost system. One of the principal reasons for 

LiDAR Sensor/Device Range 
Field of 

View 

Laser 

Wavelength 

Scan Rate 

(Point/ 

second) 

Price 

(as of June 

2018) 

LiDAR-Lite v3 

Laser Rangefinder 

0 – 40 

meters 
N/A 905 nm 500 CA $159.99 

RPLIDAR A2 360° 

Laser Scanner 

0.15 – 12 

meters 
0 - 360° 785 nm 2000-8000 CA $390.00 

Sweep V1 360° 

Laser Scanner 

40 

meters 
0 - 360° 905 nm 1000 CA $450.64 

Benewake TF01 LIDAR 

Rangefinder (10 m) 

0. 3 – 10 

meters 
N/A 850 nm 500 CA $220.19 
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choosing the LiDAR-Lite v3 was the price, as it would allow building extremely low-cost system. 

Other reasons for decision included laser light wavelength of 905 nm (plant leaves reflect most of 

the light at this wavelength), possibility to design customized scanning mechanism, and feasibility 

of using it in an Unmanned Arial Vehicle (UAV) as it has a range up to 40 meters. 

3.2.1.1 LiDAR-Lite v3 

LiDAR-Lite v3 works on the principle of Time of Flight (ToF). ToF uses the time between 

the transmission and reception of pulsed laser light at 905 nm to calculate the distance to the 

reflecting surface. LiDAR-Lite v3 can measure distances with an accuracy of ±2.5 cm. This low-

cost LiDAR sensor is a low power device with operating voltage of 5V DC and current 

consumption of about 130 mA while in continuous operation (105 mA when idle) [64]. Figure 3-2 

presents a picture showing LiDAR-Lite v3. 

 

Figure 3-2: LiDAR-Lite v3 by Garmin Inc. (picture source: https://www.sparkfun.com) 

LiDAR-Lite v3 can operate in -20 to 60°C temperature range and weighs 22 grams. It has 

a maximum repetition rate of 500 samples/second or 500Hz. The sensor provides two interfacing 

options: 1) I2C (Inter-Integrated Circuit) and 2) PWM (Pulse Width Modulation). Either can be 

used to interface the sensor with a controller. However, I2C provides a better option and 

configurable device address, which helps to interface multiple devices to one I2C bus of the 

controller. 

Moreover, the manufacturer provides an open source library for interfacing the sensor with 

Arduino (an open source, open hardware platform) controllers. Full technical details and 

specifications of the LiDAR-Lite v3 are available in [64]. 

https://www.sparkfun.com/
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3.2.2 Rotating Mechanism for the Scanner 

As LiDAR-Lite v3 is not a scanner, the mechanism needs to be designed to use this sensor 

for building a 3D scanner. Two small hobby servo motors have been utilized to build a scanning 

setup, which fulfills the requirement of portability. Figure 3-3 shows the mechanical setup of the 

scanner using two multipurpose, two long “C” brackets and two servo motors. 

 

Figure 3-3: Mechanical design of the scanning setup1 

                                                 
1 (Sources for individual 3D models of the components: www.grabcad.com, www.sketchup.com, and 

www.lynxmotion.com) 

http://www.grabcad.com/
http://www.sketchup.com/
http://www.lynxmotion.com/
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The scanning setup consists of two mini long “C” brackets (ASB-303, lynxmotion – 

RobotShop Inc., Canada), two mini multi-purpose (ASB-301, lynxmotion – RobotShop Inc., 

Canada) and two micro servo motors (HS-85BB, Hitec, South Korea). First servo motor at the 

base level controls the vertical motion of the LiDAR, and another motor in the middle of the setup 

controls the horizontal motion of the system. Servo motor HS-85BB operates at 4.8V-6.0V DC 

with current consumption around 280 mA (8 mA while idle) [65]. Servo motor, brackets and 

LiDAR sensor were assembled using manufacturer supplied screws, bolts, and nuts. 

3.2.3 Microcontroller and its Specifications 

An open-source electronics hardware platform, Arduino [66], has was chosen to control 

the assembly and connect the LiDAR device. Specifically, Arduino Uno Rev3 (Arduino SRL, 

Italy) was utilized due to its operating speed, availability of 14 digital input/output pins (including 

6 PWM outputs) and six analog inputs, and provision of various communication protocols 

consisting of UART, I2C, and PWM. Apart from the proper technical specification, Arduino Uno 

is an inexpensive platform for prototype development and has a vast number of tutorials available 

on their website. Availability of some tutorials makes it an easy-to-use platform. Moreover, the 

manufacturer of the LiDAR sensor provides an open-source library [67] to interface LiDAR-Lite 

v3 with Arduino, which matches with one of the goals for this project – minimum code 

development. 

 

Figure 3-4: A picture of Arduino Uno Rev3 (picture source: https://www.arduino.cc) 

https://www.arduino.cc/
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Figure 3-4 shows a picture of an Arduino Uno rev3 and Table 3-2 provides detailed 

technical specifications of the Arduino Uno rev3 (taken from https://store.arduino.cc/arduino-uno-

rev3) 

Table 3-2: Specification of the Arduino Uno Rev3 

At first, Arduino Uno was used for testing and evaluating LiDAR-Lite v3 and to understand 

the operation of the LiDAR sensor. Arduino Uno was connected to LiDAR using I2C 

communication interface. After some initial knowledge acquisition, the controller platform was 

interfaced with two servo motors to build and operate the scanner. Initial testing and learning were 

performed while Arduino was connected to the computer (Lenovo ThinkCentre, Intel Core i7 @ 

Detailed Specification of Arduino Uno Rev3 platform 

Microcontroller : ATmega328P 

Operating Voltage : 5V 

Input Voltage (recommended) : 7-12V 

Input Voltage (limit) : 6-20V 

Digital I/O Pins : 14 (includes 6 PWM output pins) 

PWM Digital I/O Pins : 6 

Analog Input Pins : 6 

DC Current per I/O Pin : 20 mA 

DC Current for 3.3V Pin : 50 mA 

Flash Memory : 32 KB 

SRAM : 2 KB 

EEPROM : 1 KB 

Clock Speed : 16 MHz 

LED_BUILTIN : 13 

Length : 68.6 mm 

Width : 53.4 mm 

Weight : 25 g 

https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
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3.4 GHz with 64-bit windows operating system, 16 GB RAM) using USB serial communication 

interface. To meet the requirement of portability and remote connectivity, an open-source mini-

computer, Raspberry Pi 3 Model B, was introduced in the design for user software requirement. 

The following sub-section discusses raspberry pi and its specifications. 

3.2.4 Raspberry Pi, a Camera Module, and their Specifications 

Raspberry Pi is a credit-card-sized portable and affordable computer and has been accepted 

by many electronics hobbyist and developers. It has almost all the functionality of a regular 

computer. In this study, raspberry pi provides connectivity to the internet and remote operability. 

It operates on the light-weight distribution of Linux operating system (raspbian OS). Figure 3-5 

shows a photograph of raspberry pi 3 model B. 

In addition to being an inexpensive computer system, raspberry pi provides 40 general-

purpose I/O pins, 4 USB 2.0 ports, HDMI video output, wireless LAN, Bluetooth, Ethernet 

connectivity, CSI camera interface, and DSI interface for connecting a touchscreen display. 

Detailed specification for the raspberry pi 3 model B is available at [68]. 

 

Figure 3-5: A picture showing raspberry pi 3 model B (source: www.raspberrypi.org) 

The primary reason for using the raspberry pi and Arduino together, even though raspberry 

pi is capable of doing the job, is to utilize the already developed and publicly available libraries. 

For instance, manufacturers of the LiDAR device provides the library to interface it with Arduino 

and APIs can be easily installed on the raspberry pi to get the functionality of uploading data. 

Moreover, the raspberry pi can be utilized as the single point processing unit, which can process 

http://www.raspberrypi.org/
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data as it is acquired and finally upload the results to the desired file server. On top of that, if 

necessary an independent scanning system with Arduino alone could be attached to central 

raspberry pi to make a network of the systems. This arrangement provides low code development 

time, plug-and-play operation, simple processing algorithms and cost-effective arrangement. 

3.2.4.1 A Raspberry Pi Camera Module 

 

Figure 3-6: An image showing pi camera module rev1.3 (source: www.amazon.ca) 

A raspberry pi camera module rev1.3 was included in the design to take a still 2D image 

of the scene. A 2D image provides the color details of the scene and can be used to combine with 

3D information if required. The camera module has FoV of about 54° and can acquire 2592x1944 

pixels still images. It uses OmniVision OV5647 camera sensor. Detailed technical specifications 

are available at [69]. Figure 3-6 displays an image of the camera module. 

3.2.5 Power Module 

Power module consists of the DC-to-DC voltage converter, a battery, and a power adapter. 

These three components/devices are necessary to provide portability of the LiDARPheno. With 

the addition of the battery to this design, the system could be placed in the anywhere to acquire 

data without the hassle of the wires. 

For this project, a step-down DC-DC power converter by DFRobot is used [70]. This DC-

DC converter has 5V or variable voltage selection switch. The input voltage can range from 3.6V 

to 25V and can provide up to 5A power at the 5V output. Moreover, it provides three different 

http://www.amazon.ca/
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interfaces for output and total of 5 output ports, making it the best device to include in the design 

as variability of the components in the system. Figure 3-7 (A) shows the DC-DC converter. 

A battery is an essential component of any mobile/portable system. Lithium-Polymer (Li-

Po) battery was included in the LiDARPheno design. A 7.4V 2000mAh LiPo battery by Robotshop 

Inc. is a better option as it provides three different connectors and has a capacity of 2Ah [71]. 

Figure 3-7 (B) represents a picture of this LiPo battery. 

A manufacturer recommended power adapter, which can charge the LiPo battery and 

provide power supply to the system, was used with this design and is shown in Figure 3-7 (C). 

 

Figure 3-7: (A) DC-DC power converter, (B) LiPo 7.4V battery, and (C) power adapter. 

In addition to the components mentioned above in the power module of the system, a power 

MOSFET was included to restrict the power to servo motors while they are not operational. Design 

includes power MOSFET IRL 620 by Vishay Siliconix, USA, which is a fast switching and cost-

effective device. A control output pin on raspberry pi operates the MOSFET, which provides the 

power saving by reducing the current requirement while the system is not operational. 

3.2.6 Full Design of the Hardware and Wiring Diagram 

All the components and rotating mechanism were integrated to make a final full design of 

the LiDARPheno system. These components and setup were then placed into a housing box to 

make the system portable and easy to carry. Figure 3-8 shows the prototype of the system. 

The prototype of the LiDARPheno system consists of all the modules, devices and setup 

described earlier in this chapter. A red colored housing box holds all the wires, raspberry pi, power 

module and Arduino Uno inside of it. Moreover, the box was carved so that the raspberry pi’s USB 
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and Ethernet ports are accessible. A camera module is aligned and fixed so that the camera can 

capture the still 2D color images of the scene being scanned. The power supply wires are left open 

so that either power adapter (for in-lab use) or a LiPo battery (for remote use) can be connected to 

power the system. 

The system on the back side of it has two holes on each side, which are used to hold the 

system. The prototype system can be attached to an aluminum bar to hold it on the tripod or attach 

it wherever required. 

 

Figure 3-8: A prototype of the LiDARPheno 

The wiring diagram of the LiDARPheno system prototype is presented in Figure 3-9. The 

LiDAR sensor (LiDAR-Lite v3) has six pins, out of which two are for power supply (red and 

black), green and blue colored wires are for communication using I2C communication interface, 

yellow is for mode control or PWM communication interface and orange is for power enable pin. 

The power supply pins were connected through the power module, and I2C (SCL and SDA) pins 

were connected to Arduino Uno’s I2C interface pins (SCL and SDA). Mode control and power 

enable pins (PWM interface) are left non-connected. 

Servo motors, in general, have three pins (two for power supply and one for control using 

PWM). Power supply pins of both the servo motors (horizontal scan control and vertical scan 
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control) are connected to the power MOSFET to restrict the power supply while the system is not 

operational. This arrangement reduces power usage while in a remote location. On the other hand, 

control pins of both the servo motors are connected to Arduino’s digital PWM pins (pin #9 and 

#11) to control the movement of the servo motors. 

Arduino Uno and Raspberry Pi receive power supply from the power module (constant 5V 

DC). Both the controllers/devices communicate using Universal Serial Bus (USB) interface. 

Moreover, the MOSFET that controls the power to servo motors is connected to a raspberry pi’s 

general purpose I/O (GPIO) pin and controls when to provide power to servo motors. 

M

Servo 2

M

Servo 1

Power Module

Arduino Uno Raspberry Pi

LiDAR-Lite v3

5V DC

NC
NC

9

11

SDA SCL

5V DC

MOSFET

GPIO

I2C

PWM

PWM

USB

Battery or power 

adapter

Input

 

Figure 3-9: Wiring diagram of the LIDARPheno hardware system 
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3.3 Firmware for Arduino Uno 

The firmware of the LiDARPheno system provides an operating instruction for the system. 

As mentioned earlier in the design section, the Arduino platform controls the operation of the two 

servo motors as well as data acquisition from the LiDAR sensor. Hence, the program for Arduino 

(firmware) should be able to control the scanning operation and be the point of contact for 

communication between the raspberry pi and the scanning system. Figure 3-10 shows a flowchart 

of the program for Arduino. 

Arduino software is a forever running program, i.e., a loop that keeps running forever or 

until rebooted. As it is visible from the Figure 3-10, at the boot-up/start of Arduino, the program 

initializes the required libraries. In this firmware, libraries include Servo [72], Serial [72] and 

LIDARLite [67] for Arduino Uno. After the library initialization, some of the macros are defined 

that are required for the operation of the LiDARPheno prototype. In this program, the following 

macros are defined: 

• centerPos: the center position of the servo motors, typically 1500 µs. 

• cornerPos: corner position for the system, set to 1900 µs. By setting a servo to this 

value, the servo will move to about 130° making it parallel to the surface of the 

housing box. It is used so that the LiDAR mechanism is not in the FoV of the pi 

camera module while capturing the 2D image. 

• angularStep: This defines the angular resolution of the scan in microseconds 

• horStart: this macro defines the angle at which scan starts for the horizontal 

direction 

• horEnd: angle at which the horizontal scanning stops 

• verStart: vertical angle at which the scanning starts 

• verEnd: vertical angle at which the scanning stops 

After the macros are defined, the LiDAR and Servo instances are created. At the same time, 

some of the variables that are required for setting the servo positions and reading distance 

information are defined. This results in the creation of myLidarLite, myServoVer, myServoHor, 

posH, horDirection, doScan, and posV. 

In the method setup() servo objects are initialized by attach() method of Servo class to 

connect the servo motors to PWM pin number 9 and 11 of the Arduino Uno and LiDAR object is
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Figure 3-10: Flowchart of the program for Arduino in the prototype for LiDARPheno 
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initialized using the begin() method of the LIDARLite class. After the initialization, the servo motor 

is set to cornerPos using the method writeMicroseconds() of the Servo class. 

The Arduino program then enters into an infinite loop which keeps running until 

interrupted by resetting the Arduino. The scanning and data acquisition functionalities are written 

inside the loop() function of the Arduino program. 

First of all the Boolean variable doScan is verified, if the variable is set to false, then the 

program checks for the availability of the serial interface and if there is any data on the serial 

buffer. If there are data, program checks if the data that were received is a scan initialization 

command. If the scan command is received, the variable doScan is set to true and returns to the 

condition where it checks for the doScan variable. 

On the other hand, if the Boolean variable doScan is set to true, the program checks the 

direction of the horizontal servo motor, i.e., left-to-right or right-to-left, and adjusts the horizontal 

servo motor to horStart. After setting the position of the horizontal motor, the program enters into 

a for() loop, where the distance and signal strength data is acquired while increasing the position 

of the horizontal servo motor by step angle after each point acquisition. Once the horizontal motor 

position reaches the defined stopping angle, the program increases the position of the vertical 

scanning motor with a stepping angle and starts the horizontal scan. The process of the horizontal 

line acquisition repeats until the vertical servo motor reaches the verEnd position. During this 

operation, after each horizontal line scan, the program sends data to the raspberry pi using serial 

communication. 

After the scan finishes, the Arduino waits for the command to start the scanning as 

described earlier. It is worth to note that the use of each writeMicroseconds() method needs 

15miliseconds before servo motor can respond the set the specified position. The time calculation 

for different FoV and step angle are discussed below. 

3.3.1 Scan Time: the Time Required for a Single Scan 

The calculation of the scanning time for different FoV and step angle is calculated using 

the following equation: 

ScanningTime = Timepoint ∗
Vertical FoV

Step Angle
∗ (

Horizontal FoV

Step Angle
+  1) (3-1) 

where 𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 is a time required to acquire one point, Step Angle is an angular resolution 

in degrees, Vertical and Horizontal FoVs are the Field-of-View for each direction. 
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The time required to scan a particular scene at a defined FoV and required angular 

resolution varies because of the use of servo motors in the design. The time to acquire one point is 

approximately 18 milliseconds, which includes 15 milliseconds for a servo to detect a change in 

the PWM wave and 3 milliseconds to acquire the data from the LiDAR sensor. Figure 3-11 shows 

the comparison between different FoV and angular resolution in terms of approximate time 

required to scan. 

 

Figure 3-11: Comparison of scanning time for different FoV and angular resolution. 

The bar graph in Figure 3-11 indicates that the angular resolution or stepping angle of the 

scanner mostly affects the time required to scan at different Field of View. Also, it is worth to note 

that the stepping angle determines the distance between two points, i.e., smaller the stepping angle, 

smaller the distance between two points. In a way, it can also be thought of as the smallest 

detectable area. In this study, different FoV experimented, and it was concluded that, if the 

LiDARPheno is kept about 100 cm from the scan subject and scanned with the FoV of 40°x40°, it 

can scan the area of approximately 68cm x 68cm. Also, the angular resolution of 0.2° provides the 

distance resolution (distance between two points) of about 4 mm and the scanning time required 

to perform the scan with this FoV, and angular resolution is about 12 minutes. 
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3.4 A Software Program for Raspberry Pi and Data Formats for LiDAR Raw Data 

The software for raspberry pi offers and user interface, where the user can operate the 

scanner and provide the instruction on how the scan should be performed. It should also provide 

the user with the flexibility of defining where the data should be stored and in which format. For 

this study, however, the pre-defined or hard-coded parameters are used. However, it is feasible 

and easy to implement the user-defined parameter selection in raspberry pi as well as Arduino 

program. Figure 3-12 shows the flowchart of the software script written using Python [73] 

programming language. 

Start

Import libraries

Set GPIO for servo power control

Create serial object to connect to 

Arduino

Create directory with name 

consisting of time and date

Capture a 2D image using 

PiCamera

Enable servo motors using GPIO

Read Distance and SigStrength 

information from serial

Store the information in CSV file

Upload the directory to DropBox

End

 

Figure 3-12: Flowchart of the software program in the raspberry pi 
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The raspberry pi software script written using Python programming language provides the 

operation of storing and transmitting the data to the file server. In this project, the DropBox cloud 

storage service is used to store the data. Raspberry pi was configured to connect to the internet at 

the operating system boot-up. Once connected, the raspberry pi can be remotely connected to the 

RealVNC viewer, and the user can start the software program mentioned above. 

The program can be executed using the command line or by using the mouse pointer. To 

use the command line user can use the command “python filename.py”, where filename is the 

name of the script. The script utilizes the following python libraries: 

• serial: The serial library provides access to functions that can be used to operate 

serially connected devices. 

• numpy: NumPy library is scientific computation library and is similar to matrices 

in MATLAB. 

• RPi.GPIO: The GPIO library has functions to control the General Purpose 

Input/Output of the raspberry pi. 

• Picamera: This library provides functionality for operating the camera attached 

using the CSI interface. 

• Datetime: Date and time library provides functions to access the current time and 

date and to represent it in different formats. 

• OS: the operating system (OS) library can be used to access the operating system 

commands. 

The execution of the program starts with importing the above-mentioned libraries. Then 

the GPIO pin is configured to control the power to servo motors as mentioned in the wiring 

diagram of the system. Then the program creates a serial object to connect to Arduino Uno over 

USB serial port (baud rate of 115200 was used). After the serial object creation, a directory is 

created to using the naming convention so that the scan time and date can be easily identified. At 

the same time, the file names have a naming convention that follows the same format. Following 

are the directory and file names created: 

• Directory: ‘LidarPheno_Data_%Y_%m_%d_%H_%M_%S’ 

• Distance Info: ‘depthVal_Data_%Y_%m_%d_%H_%M_%S.csv’ 

• RGB image data: ‘rgb_Data_%Y_%m_%d_%H_%M_%S.png’ 
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• Signal Strength data: ‘sigVal_Data_%Y_%m_%d_%H_%M_%S.csv’ 

where %Y, %m, %d, %H, %M, %S are Year, Month, Date, Hour, Minute, and Seconds, 

respectively. 

The still 2D image of the scene is captured using the PiCamera library. When a GPIO pin 

is set to allow power to the servo motors and a command to start the scan is sent over the serial 

communication to Arduino. While the scan is in progress, the program continuously monitors for 

the data on serial bus and stores the received data to a NumPy array. When the scan finishes, the 

raspberry pi stores all the data received to a Comma Separated Value (CSV) file with a comma 

delimiter and at the same time power to servo motors is disconnected by setting GPIO to a LOW 

level. 

The program utilizes the dropbox_uploader bash script by Andrea Fabrizi and is publically 

available at [74]. The setting-up of the script on the raspberry pi is easy and requires the user to 

create an Application Programming Interface (API) on Dropbox developers DBX platform. The 

API key provides access to the user-specified app folder on Dropbox. The API key is supplied to 

the dropbox_uploader bash script, and then simple commands can be used to upload, delete and 

list the contents of the application folder on the Dropbox server. This script match with one 

requirement of the project, i.e., lowest code development, and is easy to use by a non-technical 

person. The use of Dropbox makes it easy to upload the scan data files and access from the remote 

terminal.  

The file format for storing the raw LiDAR data is CSV. The CSV file format has been used 

for a long time now and is particularly easy to import in most of the programming languages. The 

typical file size of the CSV file for the scan is dependent on the FoV, angular resolution and 

distance to object. For example, a single scan of 40°x40° at an angular resolution of 0.2° and 

distance about 1 meter has a file size of approximately 150 KiloBytes (KB). 

3.5 Power Consumption Analysis for LiDARPheno 

The power consumption analysis provide an estimate of the battery life. Table 3-3 provides 

details of the power consumption by each device used in the LiDARPheno design. From the 

measurement of current consumption of the devices, the most power is used by raspberry pi while 

the lowest consumption is by servo motors, as they are only operational when the power is allowed 

to them. 



 

35 

 

Table 3-3: Power consumption analysis of individual devices of the LiDARPheno 

Based on the current consumption data, the running time of the battery can be estimated. 

LiDARPheno uses LiPo battery with 7.4V and 2Ah capacity, which means the battery can last one 

hour if the constant current of 2 amperes is drowned. Based on the knowledge of battery capacity 

and average power consumption of the system while operational, total time for which the battery 

can supply enough power is estimated. The LiDARPheno system consumes an average current of 

0.4A while operational and about 0.3A while idle. Using the information on current consumption 

the battery can last up to 5 hours while operated continuously. Moreover, one scan at 40°x40° FoV 

and 0.2° angular resolution take about 14 minutes including the data transfer to the Dropbox. If 

operated continuously, about a maximum of 20 scans can be obtained with the one full charge of 

the battery. 

3.6 Summary of the Hardware Cost 

Summary of the hardware cost for building the LiDARPheno system is given in Table 3-4. 

Most parts are available in Canada from various suppliers including Amazon Canada and 

RobotShop Canada. The total hardware cost for building the LiDARPheno system is CAD $409.68 

as shown in the table. The enclosure is used for housing all the components of the system. 

Moreover, the enclosure is a made from the hard plastic and can be easily carved to make the 

required modifications. The raspberry pi, Arduino and power module including all the wiring 

needs are enclosed in the enclosure box. This red color box is shown in Figure 3-8. 

 

Device Power consumption  

PiCamera 120 mA 

LiDAR 105 mA 

Arduino   65 mA 

Rpi 150 mA 

Servos   60 mA 
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Table 3-4: Summary of the hardware cost for the LiDARPheno system 

Component/Module Quantity Total Cost 

LiDAR-Lite v3 Laser Rangefinder 1 @ $159.99 $159.99 

Raspberry Pi 3 Model B 1 @ $54.99 $54.99 

Arduino Uno Rev3 1 @ $35.99 $35.99 

Servo HS-85BB 2 @ $26.19 $52.38 

Multi-Purpose Micro Servo Bracket Pack of Two 1 @ $15.32 $15.32 

Long "C" Micro Servo Bracket Pack of Two 1 @ $4.09 $4.09 

Step-down DC-DC converter 1 @ $11.89 $11.89 

7.4 V LiPo Battery 1 @ $19.72 $19.72 

LiPo battery charger 1 @ $21.54 $21.54 

Enclosure 1 @ $11.78 $11.78 

Total: $409.68 
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Chapter 4  

Experimental Setup and Data Acquisition 

This chapter discusses the laboratory experiments, setup and data acquisition process. 

Section 4.1 describes the materials (plants and devices) used in the experiments. Section 4.2 

describes the setup for data acquisition. Section 4.3 provides information on data acquisition using 

a commercial LiDAR, LiDARPheno system, and ground truth acquisition. Finally, Section 4.4 

explains the data formats used to store the data acquired. 

4.1 Materials Used for the Experiments 

4.1.1 Plant Material 

The laboratory experiments were performed on different plants. In the first experiment, 

five different indoor plants from three different families were used. In the second experiment, three 

plants of canola were used as scan subjects.  

In the first experiment, plant varieties include Orchid, Aglaonema and an arbitrary wild 

plant, which are readily available from gardening stores. Total of five plants have been brought to 

a laboratory and was given adequate water every two days. There were three different plants of 

Aglaonema with varying sizes and leaf numbers. Figure 4-1 shows a digital image of all five of 

them. All three different species of plants have varying leaf shape and sizes. The images shown in 

the figure are taken from the top of the plants using the raspberry pi camera module. 

For use in the second experiments, canola plants were used. The canola seeds were put into 

the regular drinking water in a transparent bag and hanged on the window for them to get the 

sunlight on March 22nd, 2018. After two days, the canola seeds started growing roots, and these 

seeds with emerged roots were transferred to a pot on March 24th, 2018. Approximately a week 

after transferring to the pot, canola started emerging. Pictures of the canolas growing are shown in 

Figure 4-2. The experiment was performed on the canola plants on June 3rd, 2018 and June 17th, 

2018. Canola has more compound leaves and is hard to phenotype due to surface curvature and 
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non-uniform structure of leaves. The indoor plants are used for the development and canola plants 

for validation of the post-processing algorithms and software. 

 

Figure 4-1: Digital images of the indoor plants used for the experiment in the laboratory: 

(A) an arbitrary wild plant, (B) orchid and (C-E) Aglaonema plant 

4.1.2 High-Resolution Commercial 2D LiDAR 

A commercial 2-dimensional (2D) LiDAR was used to capture the 3D information from 

the plants. The data acquired with the 2D LiDAR were used to assess the performance of the 

LiDARPheno system. The LiDAR LMS400-2000 (Sick Inc., USA) is a 2D LiDAR that can capture 

the distance and reflectance information and uses the red laser-light with a wavelength of 650-670 

nm. Figure 4-3 shows the image of an LMS400-2000 LiDAR. Moreover, many researchers have 

proved the utility of SICK LMS400 LiDAR in plant phenotyping tasks [51], [52], [56], [58], [75]. 

Hence, the proven utility of this particular LiDAR device and availability of this expensive LiDAR 

from one of our collaborators Scott Noble (Mechanical Engineering, University of Saskatchewan) 

makes this device an ideal candidate to assess and compare the performance of the developed 

system. From now on the LiDAR device is addressed as LMS400. 
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Figure 4-2: Growing canola in the laboratory 

LMS400 is used for commercial applications and is utilized in the production lines. 

Furthermore, the library for accessing the data acquisition has already been developed by our 

collaborator Scott Noble (Mechanical Engineering, University of Saskatchewan). The availability 
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of the program for data acquisition and the LMS400’s popularity among researchers will make the 

use of this device easy to operate. LMS400 utilizes a rotating mirror to capture distance and 

reflectance information at speed up to 320 Hz, i.e., 320 lines per second. 

 

Figure 4-3: Sick LMS400-2000 (source: https://www.nexinstrument.com/LMS400-2000) 

4.1.3 Document Scanner 

The document scanner LiDE 220 (flatbed document scanner) by Canon (USA) was used 

to scan individual leaves of the plants for the ground truth data acquisition. The individual leaf 

scan provides a color picture with the resolution at which the scanning is performed. Flatbed 

document scanner can be used to accurately estimate the area of the pixel by using the information 

of dots per inch (DPI), which is a number of pixels in one-inch physical dimension. A picture 

showing the document scanner is presented in Figure 4-4. 

 

Figure 4-4: Canon LiDE 220 (Canon, USA) 
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4.2 Experimental Setup 

The data acquisition setup consists of two parts, setup for LiDARPheno and setup for 

LMS400. 

4.2.1 Experimental Setup for LMS400 

The data acquisition or experimental setup for the laboratory experiments using SICK 

LMS400-2000 LiDAR is shown in Figure 4-5. 

 

Figure 4-5: Data acquisition setup for LMS400 
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The conveyer belt based mechanical setup consists of: 

1) An aluminum railing which can support the weight of LiDAR system combined 

with a conveyer belt and an alternate current (AC) motor with forward and reverse 

switched control has been built by our collaborator Scott Noble (Mechanical 

Engineering, University of Saskatchewan) group for in-lab experiments. It provides 

control over forward and reverses the motion of the attached device for scanning 

and data acquisition purpose. The setup moves at the constant speed of 18.0724 cm 

s-1. 

2) The mount for LiDAR is made from aluminum sheet capable of holding LMS400-

2000 and providing access to power and Ethernet cable. This makes LiDAR data 

accessible from a computer that can be placed far away. 

3) A data acquisition computer that can run a python script for acquiring the data from 

the LMS400 via Ethernet. 

LMS400 has been attached to this setup when data acquisition was performed. At a 

scanning frequency of 360 Hz (line scans per second), each line scan is approximately 0.5mm 

apart. A data acquisition computer controls the operation of user-access control and operation of 

the LMS400. 

4.2.2 Experimental Setup for LiDARPheno 

LiDARPheno is designed to avoid the need for any external moving part. Unlike LMS400, 

where the external moving mechanism is required to acquire data along the scan direction, the 

LiDARPheno has two servo motors to control the horizontal and vertical scanning operations. 

Hence, the LiDARPheno can be attached to any tripod or railing. In the laboratory experiments, 

the LiDARPheno was attached to the same aluminum railing used for LMS400, except the railing 

will not move. For simplicity, the LiDARPheno is attached with the aluminum railing with Velcro 

(hook and loop fastener). Moreover, the use of the aluminum railing, which is used for the 

LMS400, for LiDARPheno provides the same height from the plant as LMS400. The benefit of 

having the same height as that of LMS400 will provide a better opportunity to compare the results 

of the two different systems and assess the performance of the developed LiDARPheno system. 

Figure 4-6 shows the setup for data acquisition with LiDARPheno. 
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Figure 4-6: Data acquisition setup for LiDARPheno system 

4.3 Data Acquisition 

Data acquisition process for both the experiments using both LiDARPheno and LMS400 

are described in the following sub-sections. Moreover, calculation of ground truth leaf area 

measurement, leaf length measurement, and leaf width measurement for reference is discussed. 

4.3.1 Data Acquisition using LMS400 

The data acquisition using LMS400 LiDAR device was performed using the Python 2.7 

program. As described in the experimental setup, the LMS400 LiDAR device communicates using 
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the Ethernet connection. Accessing the data from LMS400 is based on the message passing 

between acquisition computer and LiDAR using the Ethernet communication.  

Python is easy to use and learn open source programming language, providing access to 

many functionalities including file storage, scientific computation libraries, hardware control and 

parallel processing. The python library for controlling and accessing the data from LMS400 is 

written by David Pastl (Mechanical Engineering, University of Saskatchewan) as part of the 

instrument integration project of theme 1.2 of the P2IRC project. In this work, the developed library 

for LMS400 is used as the base program to write a python script to control the LiDAR operation 

as well as access the reflectance and distance information from the LMS400. 

The distance information from LMS400 contains the polar distance to the reflecting 

surface. Reflectance information is a digital number ranging from 0 to 255 and indicates the 

percentage reflectance of the surface is illuminated with the laser light. The reflectance data is 

essential information regarding the surface because each object has a different response to a 

particular wavelength of the light. The reflectance percentage can help in distinguishing the plant 

and non-plant objects, ultimately making the background removal task easier. As recently 

published in a research article by Berni et al. [56], the plants typically absorb the most light in the 

red spectrum, the separation of the plant from the soil can be done just by introducing a threshold 

in the red reflectance data. 

The data were acquired with a Lenovo G500 (Intel Core i5 @2.6 GHz, 8 GB RAM) via 

Ethernet communication to the LMS400 LiDAR. The python script initializes the LMS400 and 

logs into the LiDAR system at the user-level access. Then file names with the current time and 

date are created. The forward/reverse switch is used to move the LMS400 along the scan direction. 

As the speed of the motor that moves the LMS400 is constant, the distance between two successive 

line scans calculates to approximately 0.5 mm. This distance separation between two successive 

lines scans, the angles of a single line scan and angular resolution are the prior knowledge for the 

post-processing of the data acquired with LMS400. The files are stored in the local storage of the 

acquisition computer. Each of the plants was scanned using the above-mentioned data acquisition 

process. 
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4.3.2 Data Acquisition using LiDARPheno 

Unlike LMS400, data acquisition process for the LiDARPheno low-cost system is straight-

forward. The LiDARPheno itself is a whole scanning setup and does not require the external setup 

for data acquisition. The low-cost LiDAR-based design is genuinely wireless and can be remotely 

operated due to the advantage of wireless connectivity already integrated with Raspberry Pi mini-

computer. The system connects to available Wi-Fi and user can control it via a remotely located 

computer system. Once the user command is received, the system starts scanning the scene. The 

data being captured are LiDAR distance data, reflectance information and a digital image of the 

scene. Once acquired, it automatically sends all the data to predefined Dropbox (Dropbox, Inc., 

https://www.dropbox.com/) directory. Distance and reflectance information is stored in a CSV file 

whose name is according to the time and date of the scan. The acquired digital image is also 

uploaded along with CSV files so that data from a distance can be compared to the digital image. 

Figure 4-7 shows the data flow diagram of the data acquisition using a low-cost design. 

A user initiates a command via the remote terminal (a computer or a smartphone) to scan 

the scene, raspberry pi creates files for storing data and forwards the command to Arduino via 

Universal Serial Bus (USB) communication and then Arduino communicates to LiDAR scanning 

using I2C communication protocol and controls the servo motors using Pulse Width Modulated 

(PWM) signals. After a scan of the scene is finished, raspberry pi uploads all the data to a remote 

file storage server. In this work, DropBox is used as file storage server. 

Alternate mode of communication can be used if the Wi-Fi connectivity is not available. 

For example, the acquired data can be stored in the local storage and later transferred to the local 

file server using ad-hoc network between raspberry pi and remote system. 

 

Figure 4-7: The data flow diagram of the acquisition using LiDARPheno 

https://www.dropbox.com/
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4.3.3 Ground Truth Data Acquisition 

For this study, the aim is to estimate the leaf geometric parameters such as length, width, 

and area of individual leaves of the plants. Hence, the ground truth data or manual measurement 

of the traits is recorded. The ground truth data is necessary to evaluate and validate the reliability 

of the estimated traits using LiDAR data. In the later stage of this thesis, the estimates of the plant 

leaf traits are compared with the manually acquired ground truth information to calculate the error 

rate. 

Leaf length and width are manually measured using the measuring tape, and leaf area is 

estimated by scanning and processing each leave of the plant using the flatbed document scanner 

(Canon LiDE 220). The document scanner flattens the leaf while scanning it, which ensures the 

whole leaf area has been exposed to the scanner. As the whole area of the leaf is exposed to the 

scanner, the measurement of the leaf area can be done using the simple image processing 

technique. The ground truth data acquisition process, each leaf is scanned at the resolution of 300 

dots per inch (DPI). If calculated for 300 DPI, area of each pixel accounts to ~7168.44 𝝁m2. The 

calculation for the area of one pixel can be done by simply diving the equivalent of 1 inch2 in cm, 

which is ~6.4516 cm2, by a number of pixels in the area, which is 90,000. By doing this calculation 

area of one pixel is obtained and the obtained image can be considered as a large graph paper with 

each grid of 7168.44 𝝁m2. The process of acquiring the ground truth leaf area is shown in Figure 

4-8. 

 

Figure 4-8: The process of acquiring ground truth leaf area information 
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After acquiring the scan of the leaf, the image is segmented using a color threshold to get 

the number of pixels belonging to the leaf. The area of the leaf is obtained by multiplying the 

number of pixels to the area of one pixel (7168.44 𝝁m2) as obtained by the calculation on the scan 

resolution. All the ground truth data, with a leaf number assigned to each leaf while looking from 

the top, were stored into a comma separated value (CSV) file. 

This method of obtaining the ground truth information for leaf area was validated by using 

a centimeter graph paper. One of the grids of the centimeter graph paper was colored green and 

then scanned using the document scanner at the resolution of the 300 DPI. Then the process of 

segmentation was performed as mentioned above and the accuracy for estimating the green colored 

box in a graph paper was 99.98%. With this validation experiment performed, the ground truth 

leaf area can be considered highly accurate measurement. The utility of the flatbed document 

scanner voids the need to buy a commercial leaf area measurement device and meets the primary 

goal of the thesis – low-cost development. 

4.4 Data Formats 

The format for storing the data acquired using LMS400, LiDARPheno, and ground truth 

information is dependent on the type of data. The LMS400 has two different data and are stored 

in separate files. One is reflectance data, and another is distance information. The comma-

separated value (CSV) file format has been used for both the reflectance and distance information. 

Each line scan has a fixed number of points that are acquired, and each line is one row in the CSV 

files. A number of columns in the CSV file are equivalent to the number of points in the single line 

scan. Moreover, the naming of the files is kept such that each filename contains the information 

regarding the type of data it contains, i.e., reflectance or distance, and time and data when the data 

was acquired. The naming convention for files helps in identifying the data files from a large 

number of files. 

The LiDARPheno uploads all the information to the dropbox containing the date, time and 

directory with the information. Three different types of the information are acquired by the 

LiDARPheno, signal strength, distance information, and an RGB image of the scene. Signal 

strength values and distance information is stored in the CSV files in the same manner as that of 

the LMS400. However, the number of points or values that these files contain differ from that of 
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the LMS400 data. An RGB image of the scene is stored with high resolution in a portable network 

graphics (PNG) file format. 

The ground truth data, as mentioned in the ground truth acquisition section, are stored in 

the CSV file and contains the length, width, and area for the individual leaf. Moreover, the scan 

images are stored in uncompressed TIFF file format. Furthermore, an image containing the leaf 

number assigned while collecting the ground truth information is also stored as PNG file for 

reference to the numbered leaves. 
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Chapter 5  

Data Analysis/Post-Processing 

This chapter seeks to provide an understanding of the post-processing and analysis of the 

acquired LiDAR data. Section 5.1 discusses the data import and conversion from raw data to the 

3D point cloud. Section 5.2 provides the procedure to convert the raw data to the Cartesian 

coordinate system to generate 3D point cloud data. Section 5.3 discusses the background removal 

process. Section 5.4 describes the data cleaning and algorithm developed for filtering the point 

cloud data. Section 5.5 explores the segmentation in 3D point cloud data. Finally, Section 5.6 

explains the techniques for extracting the leaf traits. 

5.1 LiDAR Raw Data  

The LiDAR raw data is stored in the CSV file and can be imported in most computer 

programming languages. The raw data is polar distances from the sensor to the reflecting surface 

and needs to be converted to the Cartesian coordinate system to get the additional dimensions of 

the point cloud (i.e., X and Y coordinates). Figure 5-1 shows the raw polar distances represented 

by scaled color. 

The CSV files containing raw distance information from the LMS400 and LiDARPheno 

were imported to the MATLAB R2017a® (MathWorks, USA) workspace using the CSV file 

manipulation functions. The imagesc() function of the image processing toolbox provides 

functionality to represent any numerical data with scaled colors. Another raw information from 

the LiDAR-based systems is reflectance data. In LMS400 reflectance data is a digital number from 

0 to 255, whereas for LiDARPheno the data ranges from 0 to 255 representing the strength of the 

returned signal and can be directly related to the reflectivity of the target surface. The scaled color 

image of the reflectance and signal strength information is shown in Figure 5-2. 
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Figure 5-1: Raw distance data acquired from an arbitrary wild plant 

 

Figure 5-2: Reflectance and signal strength information for an arbitrary wild plant 
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5.2 Conversion to Cartesian coordinate system 

As the LiDARPheno system is standalone system and horizontal and vertical angles are 

known from the user-specified FoV, range data acquired with LiDARPheno system are converted 

to Cartesian coordinates using following equations (5-1), (5-2), and (5-3) below:  

𝑋 = 𝑟ℎ𝑜 ∗ 𝑐𝑜𝑠(𝜙)  (5-1) 

𝑌 = 𝑟ℎ𝑜 ∗ 𝑠𝑖𝑛(𝜙) ∗ 𝑐𝑜𝑠(𝜃)  (5-2) 

𝑍 = 𝑟ℎ𝑜 ∗ 𝑠𝑖𝑛(𝜙) ∗ 𝑠𝑖𝑛(𝜃) (5-3) 

where: 

- “rho” is the polar distance between reflecting surface and a sensor 

- ϕ is Azimuth (vertical) angle of scan for particular point 

- θ is Elevation (horizontal) angle of scan for a particular point 

On the other hand, LMS400-2000 has only one rotating mechanism that is horizontal 

movement angles and hence does not require the full conversion. In our experiments, we assumed 

X to be the values of the moving part, i.e., the start of scan is 0 cm, and each line scan is 0.5 

millimeters (mm) apart. Hence, only Y and Z values need to be converted from a polar distance. 

This conversion is performed using equation (5-4) and (5-5). 

𝑌 = 𝑟ℎ𝑜 ∗ 𝑐𝑜𝑠(𝜃)  (5-4) 

𝑍 = 𝑟ℎ𝑜 ∗ 𝑠𝑖𝑛(𝜃)  (5-5) 

After conversion to the Cartesian coordinate system, X, Y, and Z represent corresponding 

coordinates in the real-world system in centimeters (cm). These coordinates can be plotted using 

a 3D scatter plot to visualize a point cloud of the scene. Figure 5-3 shows a sample 3D point cloud 

obtained with LMS400 and LiDARPheno for one of the scanned indoor plants represented by 

scaled color according to Z distances. 
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Figure 5-3: Point cloud representation after conversion to Cartesian coordinates 

5.3 Background Removal 

The LiDAR data contains the information that might not be necessary for the use in the 

plant trait extraction. For example, the point clouds shown in Figure 5-3 contains the data 

belonging to the floor, which is not useful in the task of leaf traits extraction. Hence, the data that 

doesn’t belong to the plant is considered the background and needs to be removed so that the 

information can be reduced, and processing algorithms don’t have to process the background data. 

This process of background removal makes the processing of point cloud computationally light-

weight. 

For the background removal task, two thresholds were introduced. One is distance 

threshold which is applied to the Z (distance) information and another is reflectance threshold, 

which is applied to the reflectance (for LMS400) and signal strength (for LiDARPheno) data. The 

thresholds remove the background or non-plant objects from the point cloud data. Figure 5-4:

 Histograms of the percentage reflectance and signal strength of the wild plant.Figure 

5-4shows the histograms of the reflectance data and signal strength data obtained using LMS400 

and LiDARPheno, respectively. 

Red reflectance data of the LMS400 can be used to differentiate between the materials of 

the objects. A typical plant absorbs the light in the 650-670 nm wavelength region and has 

relatively low-reflectance. It can be seen from the histogram of the LMS400 reflectance data from 
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an arbitrary wild plant that there are mainly two peaks, one is below 10%, and another is above 

10%. This reflectance can be applied to the point cloud to reduce the background points. However, 

for LiDARPheno, the signal strength values are difficult to use for differentiating the plant from a 

non-plant object in the scan. 

 

Figure 5-4: Histograms of the percentage reflectance and signal strength of the wild plant. 

Another threshold is applied to the distance or depth values of the point cloud. The same 

technique of plotting the histogram is applied for the distance threshold. Figure 5-5 shows the 

histograms of the Z distances in both the LMS400 and LiDARPheno data. It is visible from both 

the histograms that there are peaks for the background object as well as the plant surface. The 

threshold can be determined from the peaks, making it possible to remove the background without 

the computationally large operations as in the image based background removal. 

The histograms for both LiDARPheno and LMS400 acquired distance clearly represents a 

peak at the highest distance. This highest distance corresponds to the ground or floor data. In the 

background removal process, these peaks were used to determine the distance and/or reflectance 

thresholds. For example, an arbitrary wild plant’s reflectance and distance thresholds are 10% 

reflectance, more than that is discarded, and distance threshold is 140, points with distance more 

than 140 cm are discarded. By this process of applying a threshold, the point that does not belong 
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to plant surface is removed from the point cloud and are not processed in further steps. Figure 5-6 

shows the point clouds after the thresholds are applied. 

 

Figure 5-5: Histogram of the distance to the sensor 

 

Figure 5-6: Point cloud representation after applying the distance and reflectance threshold 
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5.4 Filtering and Cleaning the Point Cloud Data 

LiDAR range data tends to be noisy and have outliers because of the scattering of the light 

near the edges, reflectance property of an object, inclination angle of an object surface, and some 

environmental parameters (such as light intensity). Hence, often, it is required that the acquired 

point cloud be processed and filtered through a filtering algorithm. In our experiments, we have 

processed the point cloud data using various filtering algorithms including bilateral filter [76], but 

due to the nature of the plant leaf surface, they fail to perform satisfactorily. Consequently, a 

neighborhood-based filtering algorithm was developed for processing the point clouds. The 

algorithm developed for the point cloud filtering is presented in Algorithm 1. As there is no 

standard optimized algorithms (that the author know of) are available for specific trait extraction 

for LMS400 sensor, the ones presented in this thesis are used for processing and comparing the 

performance of the LiDARPheno acquired data. 

Neighborhood-based filtering has been used widely in the field of image processing. The 

main idea behind this filtering algorithms is to find the neighbor points based on the user-defined 

window side. For each point in the point cloud, the algorithm finds its neighborhood based on the 

user-defined 3D window and number of points within that 3D box (voxel). If neighbor points 

within that window are more than the user-defined threshold, then the point is refined based on the 

average height of the neighboring points otherwise that point is discarded. Hence, it provides the 

functionality of both, point cloud filtering and outlier removal, in a straightforward algorithm. In 

the experiments, two iterations of this algorithm were used to refine the obtained point cloud. 

Parameters (3D voxel size and number of neighbors) can change for different leaf structures and 

sizes. The result of data point cleaning and filtering is shown in Figure 5-7. 

5.4.1 Choosing parameters for Point Cloud Filtering algorithm 

The parameters voxelSize and numOfNeighbours are dependent on each other. For 

example, the scan obtained at with the sensor at height of 80 centimeters and angular resolution of 

0.2° will result in distance of ~3mm between two acquired points. Considering this theory, for a 

particular point in the point cloud, a box (voxel) of 2x2 cm around the point should have about 40 

points in it when the point is located on the center of the leaf. The point that is on the edge of the 

plant’s leaf might have around 20 points and the one on the tip of the leaf will have at least 5 or 6 

neighboring points in the voxel of size 2 x 2 cm. The parameters for the filtering algorithm have 
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been chosen with this theory. Also, it is worth to note that angular resolution for LiDARPheno and 

LMS400 are different. Hence, the parameters change accordingly as well for LiDARPheno and 

LMS400. 

 

Figure 5-7: Point clouds after cleaning and filtering the noisy data points 

Algorithm 1: Point Cloud Filtering 

input: ptCloud, voxelSize, numOfNeighbours 

output: filteredPtCloud 

for each point ∈ ptCloud do: 

  find euclidian distance to all points of ptCloud; 

  find neighbors belonging to the voxel of size voxelSize; 

  if neighbours >= numOfNeighbours 

   point = mean(neighbours); 

  else 

   point = 0; 

  end 

end 
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5.5 Point Cloud Segmentation 

Segmentation is the process of identifying each individual object from the image/point 

cloud. Generally, segmentation algorithms look at the features of the image or point cloud and use 

the pixels to group them into a region. This group of pixels in single or multiple regions indicates 

the individual object in the captured scene. In image-based segmentation methods, the intensity of 

a pixel is the sole support for the process. In contrast to images-based, point cloud segmentation 

provides a physical location of the point, and the 3 coordinates (X, Y, and Z) plays a vital role in 

the identification of the objects. However, the noise present in the point clouds may affect the 

performance of the algorithms. Hence, a proper point cloud filtering is required for the 

segmentation task. 

In this work, a modified region-growing algorithm for segmentation of each leaf is used. 

Region-growing is a neighborhood-based algorithm that determines whether neighbors belong to 

a region or not. Conventional region growing segmentation algorithm (for image processing) 

requires a seed (pixel) to be selected beforehand and then the algorithm segments the image in 

different regions. In the modified algorithm, it not only selects seeds itself, but it also works with 

3D point clouds. However, this modified region-growing algorithm segments the data at a slow 

rate and hence the improvement was added for it to work with so-called OcTree data structure, 

which improves the processing time by a massive amount because of the fact that instead of 

processing all the data points in the point cloud, it processes a block of points. This process of 

individual leaf segmentation results in each leaf identified and provides a set of points belonging 

to a particular leaf. Algorithm 2 below presents the working of the developed region-growing 

based segmentation algorithm. 

In the segmentation algorithm, the octree structure of the point cloud is passed as an input 

along with maximum distance for the points to be considered in the region, a number of voxels 

necessary for a voxel to be in the region and threshold to merge the labels that belong to the same 

region. The segmentation algorithm checks each voxel in the octree of the point cloud and finds 

the neighbor within the maximum distance threshold. These neighbors are assigned a label that 

they belong to a particular region. After the main segmentation task is performed, there will be 

points which have been assigned different labels even though they belong to a single region. 
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Hence, the merging of that region is necessary. The merging is performed using the merge 

threshold. The threshold defines the maximum distance, in which if there are two different labels, 

Algorithm 2: Point Cloud Segmentation 

input: ocTree, maxDist, numOfNeighbours, mergThresh 

output: labels, ptCloud 

for each voxel ∈ ocTree do: 

  if voxel∈ labels 

   do nothing; 

  else 

   find euclidian distance to all voxels of ocTree; 

   find neighbor voxels within maxDist; 

   if neighbours >= numOfNeighbours 

    assign a label to points belonging to that voxel; 

   else 

    voxel belongs to non-region; 

   end 

  end 

end 

 

for each label ∈ labels do: 

  find euclidian distance to all other labels; 

  if any label within mergThresh 

   merge labels; 

  else 

   do nothing; 

  end 

end 
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that two labels will be merged into a single label. Similar to point cloud denoising algorithm, the 

parameters for the segmentation have been chosen. 

A result of segmentation on both the point clouds acquire with LMS400 and LiDARPheno 

are shown in Figure 5-8. 

 

Figure 5-8: Result of segmentation on the point cloud data 

5.6 Leaf Trait Extraction 

Segmentation process identifies each leaf and assigns different color labels to each region 

identified which can be seen from Figure 5-8. These individual segments are treated as individual 

leaf and fed to the trait extraction module, where different traits (length, width, and area) are 

estimated using the point cloud data. In this work, the focus was on the extraction of leaf length, 

leaf width and leaf surface area. Methods of extracting each trait are explained in the following 

subsections. 

5.6.1 Leaf Length 

Extraction of leaf length from each of the segment was tricky part as each leaf might have 

a different orientation, size, and structure. Curve fitting on X and Y coordinates of the segmented 

points are used for the leaf length extraction. 

First, the orientation of leaf is estimated using the minimum and maximum values of the X 

and Y coordinates of the segment. The absolute difference between the minimum and maximum 
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values provides the distance between these two. If the leaf is oriented along X-axis, the distance 

value between minimum and maximum along the X-axis will be the highest and vice versa. Then 

a polynomial of degree 2 is applied to fit X and Y coordinates which results in an equation (5-6). 

𝑌 = 𝑎 ∗ 𝑋2 + 𝑏 ∗ 𝑋 + 𝑐 (5-6) 

where: 

- X is a vector  of X coordinates in the segment containing 3D data points 

- Y is a vector  of Y coordinates that can be estimated using the equation 

- a, b, and c are constants that are obtained using polynomial fit to X and Y 

coordinates of the point cloud data 

If the leaf is oriented along X-axis, 50 equally spaced samples are taken between the 

minimum and maximum value of X coordinates in that segment, and corresponding Y coordinates 

are estimated and vice-versa. With these obtained X and Y coordinates, nearby points from the 

original segment are obtained to get a straight line between the minimum and the maximum value 

of the X or Y coordinate. After that Euclidean distance between each point of the obtained line is 

calculated using equation (5-7). 

𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑎, 𝑏) = √(𝑎𝑥 − 𝑏𝑥)2 + (𝑎𝑦 − 𝑏𝑦)
2

+ (𝑎𝑧 − 𝑏𝑧)2 (5-7) 

where: 

- “a” and “b” are two points in a 3D space 

-  ax, ay, az  and bx, by, bz are corresponding x, y, and z coordinates of point “a” and 

“b”, respectively. 

All these Euclidean distances are added together, which results in the length of the leaf. 

This process of obtaining leaf length is repeated for all the segments (leaves). Figure 5-9 presents 

the point cloud of a single leaf, segmented using a segmentation algorithm. This one segment is 

used to measure the leaf length using the above-mentioned method of curve fitting on the X and 

Y coordinated of the segment of the point cloud. The red color dots in the 3D scatter plot shows 

the curve fitting points, and blue color points are the actual point cloud data points. The similar 

technique is used for width measurement. 
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Figure 5-9: Measurement of leaf length using a curve fitting method 

5.6.2 Leaf Width 

Similar to the process of the leaf length estimation, each segment is processed through 

curve fitting and estimation of line. However, the only difference in width estimation is that if the 

leaf is aligned to X-axis, leaf width is estimated along the Y-axis and vice-versa. The main idea 

here is to use the processing of leaf length estimation and drawing a parallel line with the leaf 

length estimation line. Consequently, estimation of leaf length makes leaf width estimation 

relatively less complicated as it used the same technique as the length estimation. 

 

Figure 5-10: Measurement of leaf width using a curve fitting method 
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Similar to Figure 5-9, Figure 5-10 represents a single leaf, segmented using the 

segmentation algorithm. The red colored points represent the sampling points used for leaf width 

measurement and blue points are the actual point cloud points. Values on the graph are in 

centimeters (cm). 

5.6.3 Leaf Area 

Leaf surface area estimation is a different process than the estimation of leaf length and 

leaf width. Data points for each leaf are available, which can be used to estimate the leaf surface 

area. We have used a widely accepted Delaunay triangulation [77] method for generating triangles 

or surface from 3D point cloud data. Figure 5-11 shows the triangulation of one of the segmented 

leaf of an arbitrary wild plant scan using LMS400 and LiDARPheno. All the axis values are in 

centimeters (cm). 

We use MATLAB function delaunayTriangulation() for generating triangles from the 3D 

data points2. Then the area of each triangle is calculated and added to get the area of the surface. 

For any three points A(x, y, z), B(x, y, z), and C(x, y, z) in a 3D space, surface area of that 3D 

triangle can be calculated using equation3 (5-8). 

 

                                                 
2 https://www.mathworks.com/help/matlab/ref/delaunaytriangulation.html 
3 https://en.wikipedia.org/wiki/Triangle 
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Figure 5-11: Delaunay triangulation of the leaf point cloud data 

𝐴𝑟𝑒𝑎(𝐴, 𝐵, 𝐶) =
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 (5-8) 

Area of each triangle generated using Delaunay triangulation are calculated and added to 

get the final surface area of the leaf. 

5.7 Parameters used in post-processing steps. 

Post-processing steps on the LiDARPheno data and LMS400 data involves mainly two 

algorithms, cleaning and segmentation. For cleaning the point cloud data obtained using 

LiDARPheno, the voxel of 2x2 centimeter and minimum number of neighbors of 5 were chosen 

with trial-and-error methods and obtained visually appealing results. For LMS400 data, as the 

point cloud is dense, the parameters voxel size of 1x1 cm and 10 number of neighbors were 

adequate for filtering the LMS400 acquired data. As the scanning distance was same for all the 

experiments, the same threshold parameters were used for all the acquired data. 

For segmentation algorithm, 1.5 cm was chosen as the distance threshold while the 

minimum number of neighboring voxels were kept to one. Also, merge threshold of 0.8 cm was 

applied for checking the overlap between labels as well as merging the nearby labels. The 

segmentation algorithm first does the rough segmentation and then merges the labels generated. 

Hence, there were no assumptions made of how many labels will be there in the scene. All the 

results presented in the chapter 6 are obtained using these threshold and parameters. 

 

 



 

64 

 

Chapter 6  

Results and Discussion 

This chapter provides the results and comparative analysis of the estimation of the plant 

leaf traits using LMS400 and LiDARPheno acquired 3D data. Section 6.1 provides the annotated 

images of the plants used in the experiments. Section 6.2 compares the results of estimation of the 

traits with the ground truth data. Finally, Section 6.3 discusses the comparison between estimates 

of the LMS400 and LiDARPheno acquired data and a comparative analysis of the two systems 

and their utility in the plant phenotyping tasks. 

6.1 Leaf Number Annotation 

 

Figure 6-1: Annotated RGB images of the plants for Experiment 1 
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Figure 6-1 shows the images of the different plants used in experiment 1. These images are 

used as a reference to represent the leaf in the results section of this thesis. Generally, leaf numbers 

are given in the clockwise direction. For example, if the result table refers to the leaf 1 of an 

arbitrary wild plant, the leaf annotated with number 1 is being referred. Also, the annotated leaf 

number was used in the auto-calculation of the error rate and generate a report in the form of an 

excel file. Similarly, Figure 6-2 shows the leaf number annotation for the experiment 2 of this 

study. 

 

Figure 6-2: Annotated RGB images of the canola for Experiment 2 

6.2 Trait Extraction Results 

Absolute Percentage Error (APE) is used to evaluate the results of the estimation of the 

leaf traits (length, width, and area). Two experiments were performed in this work, one is on the 

indoor plants shown in Figure 6-1 and another, for validation, on canola plants presented in Figure 

6-2. Following subsection present the results of the trait estimation using the developed 

methodologies. Equation (6-1) is used to calculate the percentage error of estimation. 

𝐴𝑃𝐸 =
|𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒|

𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒
∗ 100 (6-1) 

 



 

66 

 

6.2.1 Leaf Length Estimation Results 

6.2.1.1 Experiment 1 Leaf Length Estimation Results 

Experiment 1 consisted of five plants with three different species of indoor plants. Table 

6-1 shows the results of the leaf length estimation using LMS400 and LiDARPheno and the error 

rate of the estimation. 

Table 6-1: Leaf length estimation results for an arbitrary wild plant 

                                                 
4 N/A: Not detected in the segmentation process 

Leaf # 

Ground 

Truth 

Length (cm) 

LMS400 

Estimated 

Length (cm) 

%Error 

LiDARPheno 

Estimated 

Length (cm) 

%Error 

1 14.10 12.14 13.90 14.42 2.24 

2 16.90 17.53 3.71 11.88 29.70 

3 11.10 10.26 7.57 10.16 8.45 

4 7.80 7.18 8.00 8.58 10.05 

5 14.40 13.98 2.91 13.04 9.43 

6 17.00 18.11 6.52 15.81 6.97 

7 14.00 14.26 1.85 10.85 22.52 

8 11.40 11.62 1.91 11.67 2.33 

9 14.00 13.07 6.63 N/A4 N/A 

10 15.20 15.04 1.03 N/A N/A 

11 14.60 14.83 1.56 12.85 11.97 

12 14.90 11.20 24.82 N/A N/A 

13 9.40 6.78 27.83 8.00 14.93 

Mean %Error:   8.33  11.86 

Minimum %Error:  1.03 2.24 

Maximum %Error:  27.83 29.70 
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It is evident from the Table 6-1 that leaf length estimations using the developed 

LiDARPheno system data are reasonably comparable to the one acquired using the LMS400 

commercial LiDAR. However, the LiDARPheno acquired point cloud is not as dense and due to 

the density of the point cloud, some of the leaves are not detected or filtered out in the filtering 

algorithm. These leaves in an arbitrary wild plant are leaf numbers 9, 10 and 12. If looked carefully 

in Figure 6-1, those leaves are occluded by another leave, or they are inclined, i.e., due to the 

inclination angle, LiDARPheno was not able to capture enough number of points to be considered 

by algorithms to be an object. 

The mean (average) error rate for the LiDARPheno and LMS400 are quite similar, 

LMS400’s mean error rate for estimation of the leaf length is 8.33% while that of the LiDARPheno 

is 11.86%. The maximum error rate for the leaf length estimation using the LiDARPheno data was 

29.7% while for the LMS400 it was 27.83%. The minimum error rate of estimating the leaf length 

is about 1.03% for the LMS400 data, and 2.24% for the LiDARPheno acquired data. Table 6-2 

shows the results of the estimation for the remaining plants in experiment 1. It can be seen from 

the table that results for length estimation on the orchid plant are similar for LiDARPheno and 

LMS400. However, the mean error rate remains below 25%. 

Table 6-2: Leaf length estimation results for the Experiment 1 
 

Orchid 
Aglaonema 

Plant 1 

Aglaonema 

Plant 2 

Aglaonema 

Plant 3 

%Error 
LMS-

400 

LiDAR- 

Pheno 

LMS-

400 

LiDAR-

Pheno 

LMS-

400 

LiDAR-

Pheno 

LMS-

400 

LiDAR-

Pheno 

Mean: 22.85 20.75 9.08 18.43 10.52 23.24 3.75 11.16 

Minimum: 0.08 5.44 0.58 5.19 2.65 8.52 0.87 5.47 

Maximum: 37.54 35.03 29.30 38.45 36.10 35.61 8.37 18.22 

Not 

detected: 
Leaf #5 Leaf #5 
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6.2.1.2 Experiment 2 Leaf Length Estimation Results 

Experiment 2 consists of two parts and three canola plants. The data for experiment 2 – 

part “a” were acquired on June3rd, 2018 and for part “b” of the experiment on June 17th, 2018. In 

part “a” of the experiment, data from two canola plant pots, one with only canola and other with 

two canola plants in it, were acquired. An RGB image of the two pots for part “a” of the experiment 

are shown in Figure 6-2 as “Canola Plant 1” and “Canola Plant 2”. Results of experiment 2 on 

canola plants are presented in Table 6-3. 

Table 6-3: Results of leaf length estimation on Canola plants. 

The results presented indicate that the leaf length of the canola plant estimated using 

LMS400 and LiDARPheno remains similar, but the number of leaves that remain undetected has 

increased. This is due to the shape and size of the canola plants used in the experiment. The average 

length of the leaf for both canola pots was around 5 cm, and the shape was circular. This leads to 

the less number of points being acquired from the plant object, i.e., leaves. Furthermore, the 

number of points being acquired also depends on the distance of the LiDAR sensor to the plant as 

the less distance mean the small area being scanned and high resolution between two points 

acquired. 

The impact of the distance to LiDAR on the performance was evaluated. Part “b” of 

experiment 2 was performed while keeping the plant distance to LiDAR at approximately 80 cm, 

60 cm, and 40 cm, respectively. However, the LMS400 was not moved due to its limitation of the 

distance where it can acquire data (70 cm minimum distance to object). Only LiDARPheno was 

used to acquire data at different distances mentioned above and only one data acquisition with 

 
Canola Plant 1 Canola Plant 2 

LMS400 LiDARPheno LMS400 LiDARPheno 

Mean %Error: 23.56 28.97 11.36 14.73 

Minimum %Error: 0.14 7.99 0.32 0.51 

Maximum %Error: 39.77 50.70 30.22 39.40 

Non-detected Leaves: Leaf #5, 10 Leaf #2,4,5,10 Leaf #9 Leaf #2,3,8 
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LMS400. The canola plant used for this part of the experiment is shown in Figure 6-2 as “Canola 

Plant 3”. Results of the leaf length estimation when data were acquired with different distance to 

the sensor are presented in Table 6-4. 

Table 6-4: Results of experiment 2 – part “b” on Canola Plant 3 

The error rate for the canola 3 reduces, and all the leaves of were detected when the plant 

was kept approximately 40cm away from the LiDARPheno during data acquisition. Hence, the 

distance of the device to plant is a critical parameter in data acquisition. The distance to the object 

being scanned using the LiDARPheno device is also responsible for the distance between two 

points when converted to the Cartesian coordinate system. Results of experiment 2 – part “b” have 

proven the theory of dependency of the point cloud and the estimation accuracy or the error rate. 

6.2.1.3 Estimation and Ground Truth Leaf Length Relation 

The relation between the ground truth and estimation results can be best represented using 

the linear correlation plot. In this work, the Root Mean Square Error (RMSE) and coefficient of  

determination (r2) are used to represent the relationship between the ground truth data acquired 

using the manual measurement of the leaf length and the estimated leaf length using the LMS400 

data. Figure 6-3 shows the relation between the estimation using LMS400 data and the ground 

truth leaf length. RMSE was calculated using the equation (6-2).  

𝑅𝑀𝑆𝐸 = √
∑ (𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑖−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖)2𝑛

𝑖=1

𝑛
 (6-2) 

 

Canola Plant 3 

LMS40

0 

LiDARPheno 

at ~80cm 

LiDARPheno 

at ~60cm 

LiDARPheno 

at ~40cm 

Mean %Error: 23.57 29.61 54.92 20.83 

Minimum %Error 3.88 8.07 4.74 3.89 

Maximum %Error: 57.49 63.45 190.75 59.57 

Non-detected Leaves:  Leaf #1,5 Leaf #1,5  
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Figure 6-3: Relation between estimation with LMS400 data and ground truth leaf length 

 

Figure 6-4: Relation between LiDARPheno estimated leaf length and ground truth 
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RMSE = 1.65

Exp 2 - Canola

y = 0.8978x - 0.4757

R² = 0.6642

RMSE = 1.79 cm
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The data acquired with LMS400 for experiment 1 on indoor plants show a good 

relationship between the two with r2 = 0.7971 and RMSE of 1.65 cm. Experiment 2 on the canola 

plants, however, has an r2 = 0.6642 and RMSE = 1.79 cm. 

On the other hand, the estimate for the leaf length from the LiDARPheno data indicates 

RMSE of 2.08 and 1.8 cm for experiment 1 and experiment 2 respectively. Moreover, the 

coefficient of determination for experiment 1 and experiment 2 is r2 = 0.6811 and r2 = 0.5042, 

respectively. 

6.2.2 Leaf Width Estimation Results 

6.2.2.1 Results for Leaf Width Extraction 

Similar to the leaf length estimation, the leaf width estimation is done using the curve fitting 

method described in section 5.6. Results of the leaf width extraction done on experiment 1, 

experiment 2 – part “a” and experiment 2 – part “b” are represented in Table 6-5, Table 6-6 and 

Table 6-7, respectively. 

Table 6-5: Leaf width estimation results using LiDARPheno (LP) and LMS400 (LMS) 

The leaf width estimation for the data acquired in experiment 1 is shown in Table 6-5. 

From the table, it can be interpreted that the estimation of the width with the LMS400 acquired 

data and the LiDARPheno data are quite similar, except for the Aglaonema plant. The reason for 

the error increase in the Aglaonema plant might be the plant itself. However, in this study, the 

reason for the increase in error is not explored. The best distinguishable feature is the leaf color, 

 
Arbitrary 

Wild plant 
Orchid 

Aglaonema 

Plant 1 

Aglaonema 

Plant 2 

Aglaonema 

Plant 3 

%Error LMS LP LMS LP LMS LP LMS LP LMS LP 

Mean: 17.82 10.77 13.61 17.81 19.21 37.73 11.37 16.24 8.67 15.35 

Min: 2.21 0.93 3.27 5.12 6.05 0.27 1.60 3.07 7 5.21 

Max: 42.14 28.35 27.30 36.09 58.69 90.37 22.10 39.45 10.65 33.99 
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which is reddish around the edge of the leaf, which might be a potential reason for increased error 

for the LiDARPheno data. 

Table 6-6: Results of Leaf width estimation on canola plants – experiment 2 

Table 6-7 : Results of leaf width estimation at a different height 

Experiment 2 with two parts and different distance for the second part of the experiment 

shows the similar results. In Table 6-7, it can be seen that LiDARPheno at the distance of 80 cm 

performs best for width estimation. However, the number of leaves detected in the data acquired 

at 80 cm were just a few and hence the overall estimation for leaf width are better. Moreover, it 

can be seen that the estimation results when the data was acquired while keeping the distance 

around 40 cm are similar to that of the LMS400. Overall, the width estimation also depends on the 

density of the point cloud, highly dense point cloud exhibits the better estimations. 

 
Canola Plant 1 Canola Plant 2 

LMS400 LiDARPheno LMS400 LiDARPheno 

Mean %Error: 27.32 35.23 21.14 30.59 

Minimum %Error: 8.98 10.53 2.88 14.03 

Maximum %Error: 52.63 45.00 42.78 65.59 

 

Canola Plant 3 

LMS400 
LiDARPheno 

at ~80cm 

LiDARPheno 

at ~60cm 

LiDARPheno 

at ~40cm 

Mean %Error: 19.83 4.67 31.46 18.26 

Minimum %Error 3.48 0.14 20.34 3.33 

Maximum %Error: 58.21 7.87 54.82 52.03 
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6.2.2.2 Estimation and Ground Truth Leaf Width Relation 

The relationship between the ground truth data and the estimated leaf width with LMS400 

and LiDARPheno data is shown in Figure 6-5 and Figure 6-6. 

 

Figure 6-5: Correlation plot for estimated width using LMS400 and ground truth 

 

Figure 6-6: Correlation plot for estimated width using LiDARPheno and ground truth 
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The estimation of the leaf width using LMS400 data has RMSE of 1 cm in experiment 1 

and RMSE = 1.97 cm for experiment 2. Coefficient of determination r2 = 0.47 and r2 = 0.5168 was 

achieved for experiment 1 and experiment 2, respectively. 

On the other hand, estimation of the width using LiDARPheno data have RMSE = 1.6 cm 

for plants in experiment 1 and RMSE = 1.73 cm for plants in experiment 2. The correlation 

coefficients r2 are 0.29 and 0.56 for experiment 1 and experiment 2, respectively. 

6.2.3 Leaf Area Estimation Results 

6.2.3.1 Results for Leaf Area Estimation 

Results for the area estimation using the triangulation method on point cloud data is shown 

in Table 6-8, Table 6-9, and Table 6-10 for experiment 1, experiment 2 – part “a”, and experiment 

2 – part “b”, respectively. 

Table 6-8: Leaf Area estimation results using LiDARPheno (LP) and LMS400 (LMS) 

In the above table, the error rate for the estimation of the leaf area using the point cloud is 

provided. The estimation of leaf area for the wild plant outperforms the results for the LMS400. 

The wild plant’s most leaves are facing straight at the scanning system, which can be seen in Figure 

6-1. Due to the better exposure of leaves to the scanning system, most of the area of the leaves is 

captured by the scanning system. However, due to the loss near the edge of the leaves and 

inclination angle of the leave, some of the points belonging to the leaf gets discarded and results 

in the erroneous estimation of the area of the leaves. 

 
Arbitrary 

Wild plant 
Orchid 

Aglaonema 

Plant 1 

Aglaonema 

Plant 2 

Aglaonema 

Plant 3 

%Error LMS LP LMS LP LMS LP LMS LP LMS LP 

Mean: 34.37 27.5 26.51 21.82 26.16 42.00 23.41 42.44 16.57 11.16 

Min: 11.84 3.30 9.55 12.26 12.02 2.10 10.45 28.34 1.46 3.31 

Max: 62.70 52.84 44.78 39.97 49.44 68.27 49.79 58.29 32.11 20.86 
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Table 6-9: Results of leaf area estimation on canola plants – experiment 2 

Results of the estimation of the leaf area in canola plants (experiment 2) are represented in 

Table 6-9. The error rates for the leaf area estimation are disappointing, but the canola plants tend 

to have curvy surface and to get all the points belonging to the leaf is difficult with the scan 

performed using the only top view. Hence, an alternate method to capture the whole 3D point from 

a different view angle is necessary.  

Table 6-10: Results of leaf area estimation at a different height 

Error rate results for the canola, while keeping the LiDARPheno at different distances, are 

presented in Table 6-10. When the distance between the canola plant and LiDARPheno was about 

40 cm, all of the leaves of the canola plant can be detected. However, leaf number 1, 3 and 5 

produces the most error (more than 40%). The reason behind this substantial error rates is the 

inclination angle, overlapping leaves, and size of the leave. Leaf number 1 is profoundly declined 

and obtaining all the points belonging to that leaf is nearly impossible with just a top view scan. 

 
Canola Plant 1 Canola Plant 2 

LMS400 LiDARPheno LMS400 LiDARPheno 

Mean %Error: 49.93 44.75 40.76 48.20 

Minimum %Error: 27.92 4.20 13.43 30.30 

Maximum %Error: 62.71 75.95 62.97 71.63 

 

Canola Plant 3 

LMS400 
LiDARPheno 

at ~80cm 

LiDARPheno 

at ~60cm 

LiDARPheno 

at ~40cm 

Mean %Error: 28.5 43.04 22.80 44.54 

Minimum %Error 2.16 16.54 11.35 9.34 

Maximum %Error: 78.07 65.56 35.91 91.86 
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Leaf number 3 is relatively small (~ 5 cm2), which does not provide enough points to be processed. 

Leaf 4 and 5 are overlapping and are at the same height as well as leaf number 5 is a curved leaf. 

These reasons make the estimation process erroneous. However, leaf numbers 2, 4 and 6 are 

providing a relatively accurate estimation of the leaf area (below 25%) for both LMS400 and 

LiDARPheno. 

6.2.3.2 Estimation and Ground Truth Leaf Area Relation 

 

Figure 6-7: LMS400 Estimate area and ground truth area relation 

The relation between LMS400 estimated area and ground truth leaf area us shown in the 

plot of Figure 6-7. For the experiment 1, the coefficient of the determination r2 is 0.5611 and 

RMSE of 17.41 cm2. The experiment 2 on canola plants shows a better correlation with the ground 

truth leaf area with r2 = 0.8583 and RMSE of 11.32 cm2. This suggests the LMS400 is able to 

correctly estimate the leaf area for the values below 60 cm2 and more than that it fails to estimate 

the leaf area correctly. However, the quality of data acquisition is also dependent on the plant 

material. For example, the better reflection is necessary for any LiDAR sensor to correctly estimate 

the distance to that plant, which results in the point cloud. 
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Figure 6-8: LiDARPheno estimated leaf area and ground truth relation. 

The leaf area computed using the LiDARPheno point cloud data, and ground truth are 

related using the scatter plot and linear regression in Figure 6-8. Experiment 1 on the various plants 

of three different species has an RMSE of 19.51 cm2 when compared to the ground truth leaf area 

while r2 = 0.3368. For experiment 2 on the canola plants, the leaf area estimation results using the 

LiDARPheno data are compared to the ground truth, and the RMSE of 15.22 cm2 is achieved. 

Moreover, the r2 of 0.5957 shows good relation to ground truth data. 

6.3 Comparing LiDARPheno and LMS400 Derived Results 

The comparisons of the results derived with two different systems, LiDARPheno and 

LMS400, are presented using the correlation plots of the trait estimation data. Figure 6-9 shows 

the comparison of the LMS400 and LiDARPheno derived leaf length; Figure 6-10 shows the 

comparison of the leaf width extraction using two different data, and the relation between the leaf 

areas estimated using the two systems is presented in Figure 6-11. The relation can be determined 

using the coefficient of determination (r2) and RMSE between two results. 
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Figure 6-9: Relationships between LiDARPheno-derived and LMS400-derived leaf lengths 

 

Figure 6-10: Relationships between LiDARPheno-derived and LMS400-derived leaf widths 
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Figure 6-11: Relationships between LiDARPheno-derived and LMS400-derived leaf areas 

The leaf length estimation using the commercial LiDAR system LMS400 and 

LiDARPheno data has a good correlation with the r2 of 0.64 and 0.66 for experiment 1 and 

experiment 2, respectively. Moreover, the RMSE of 2 cm in experiment 1 and 1.76 cm in 

experiment 2 was achieved. The leaf length measurements relation between LMS400-derived and 

LiDARPheno-derived results indicate that there is a reasonable level of agreement between results 

estimated using two different data obtained with two different LiDAR sensors. 

In Figure 6-10, the relationships between the leaf width measurements using the LMS400 

and LiDARPheno data is compared using the linear regression plot. The RMSE of 1.61 cm for 

experiment 1 and 1.16 cm for experiment 2 indicates the error of estimation in cm. However, the 

correlation between the two is r2=0.3021, and r2=0.6118 for experiment 1 and experiment 2 are 

presented. This indicates the feasibility of the developed LiDARPheno system to compete with the 

commercial LiDAR system. The agreement in results of experiment 2, where relatively small 

canola leaves were scanned, is more satisfactory than the leaf length. 

The leaf area measurement agreement between the two LiDAR-based systems is shown in 

Figure 6-11. The leaf area measurements with both the systems show a functional relationship 

between the two LiDAR data. For the experiment on indoor plants, the r2=0.5693 and RMSE of 
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12.9 cm2 are achieved, and experiment on canola plants show r2=0.832 and RMSE = 6.96 cm2. 

The relation of the estimating the leaf area using the 3D point cloud data is entirely satisfactory. 

The results on a canola show excellent agreement for leaf area extraction using LMS400 and 

LiDARPheno. 

Table 6-11: Comparison of the LMS400-based system with LiDARPheno 

 LMS400–based system LiDARPheno 

Material Cost ~ $10,000 ~ $400 

Scan ready? 

No 

(Requires external setup to 

hold the LiDAR and move it 

along scan direction) 

Yes 

(The LiDARPheno is designed to 

work independently of any 

external requirements) 

Setup 
Bulky 

(~1.5kg for LMS400) 

Light-weight 

(Less than 500 grams) 

Battery Powered? 
Could be 

(Requires large battery) 

Yes 

(can run for up to 5 hours on 7.4V 

2Ah LiPo battery) 

Scan time (for 1x1 m2) ~ 5 seconds ~ 16 minutes 

File Size (for 1x1 m2) ~10 Mbytes ~ 300 Kbytes 

Point cloud density 

(for 1x1 m2) 
~ 2.4 Million points ~ 40,000 points 

Post-processing 

computational complexity 

Highly complex 

(due to dense point cloud) 
Relatively simple 

Do-it-yourself (DIY)? 

No 

(Sound technical knowledge is 

required to acquire data) 

Yes 

(The system can be bilt by anyone 

with little technical knowledge) 

Other external 

equipment? 

Yes 

(an external computer is 

required to acquire the data) 

No 

(the system itself has a mini-

computer in the design) 
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Table 6-11 shows the comparison of the developed LiDARPheno system with the 

LMS400-based 3D scanning system. The first and most important parameter in comparison is the 

cost of the system. The cost to build LiDARPheno is almost 96% less than the LMS400 device 

itself. Moreover, the LMS400-based system requires external setup to acquire the 3D point cloud 

data, while LiDARPheno is an independent system. The LiDARPheno system is much more 

lightweight than the LMS400-based setup for data acquisition. The power requirement for 

LMS400 is 25 Watts compared to about 3 watts for LiDARPheno, and hence the small 

rechargeable LiPo battery can power the LiDARPheno system. LiDARPheno, due to its low-

resolution, acquires relatively fewer points and hence, has small file-size. Consequently, the post-

processing of the LiDARPheno data is faster compared to the LMS400-based system. The 

LiDARPheno is designed so that anyone with a little or no technical knowledge can build it using 

the widely available off-the-shelf components used in the system. 

On the other hand, even though LiDARPheno has many benefits, the LiDARPheno is a 

slow system due to use of two servo motors and the LiDAR sensor used itself. Hence, the 

LiDARPheno may take up to 16 minutes for the scan of 1 m2 area, while the LMS400-based system 

can scan the same area in about 5 seconds. Moreover, the density of the acquired point cloud using 

LiDARPheno does not permit the analysis of the smaller areas of the object. Also, availability of 

the reflectance information from the LMS400 device can be used in many cases which are not 

provided by the LiDARPheno. 

Overall, the LiDARPheno system is an excellent combination of cost-feature trade-off. 

With just a fraction of the cost for a commercial LiDAR-based scanning system, the LiDARPheno 

enables to monitor some of the critical characteristics of the plants while losing some details. The 

combination of multiple LiDARPheno systems might prove beneficial and may surpass the results 

of the commercial LiDAR-based systems. 
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Chapter 7  

Conclusion and Recommendations for the Future Work 

7.1 Conclusion 

Increasing world population is raising concerns regarding the global food security 

including producing enough good quality food to feed the ever-rising population. Improving the 

current farming practices is the key to meeting the demand for the quality food. The improvement 

process involves increasing the ability of crop plants to produce more food produces and creating 

new crops with higher resistance to the environmental changes and diseases. The improved gene 

modification and sequencing technologies have provided opportunities to change the genetic 

information to make crops more resistive to the disease and environmental stress. However, the 

advances in phenotyping technologies are a bottleneck in the fast-paced development of the new 

and modified crops. The available technologies are expensive, inaccessible and need significant 

improvements. 

In this thesis, the new low-cost, accessible LiDAR-based technology is developed. A 

miniature version of the “LiDARPheno” is designed and developed with low-cost, off-the-shelf 

components and modules. A detailed design keeping in mind the low-cost, portability, remote 

accessibility, and low power consumption is described in detail. Moreover, the design included the 

use of the wireless communication for the actual remote operation of the device with the feasibility 

of deploying the device in the greenhouse as well as field environment. Use of the existing libraries 

and APIs provide the feasibility for non-technical users to build and operate a system. 

The experimental setup consisting the commercial LiDAR was presented, and a low-cost 

ground-truth leaf area acquisition method was thought and developed. Moreover, naming 

convention suggestions were made to maintain the consistency of identifying the data including 

time, data and type of the data. A method of conversion from raw LiDAR data to the Cartesian 

coordinates to generate a point cloud was discussed. Simple algorithms for cleaning and 

segmenting the point clouds were developed and presented. The simple operation of the algorithms 
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helps the user in developing the software for analysis. The high correlation between the estimates 

of leaf traits with commercial LiDAR and the developed LiDARPheno system was achieved. 

Moreover, the estimation of the leaf traits using the developed methods shows considerable 

accuracy. Performance analysis for the developed system and methodologies were carried out in 

this work to provide the utility of the low-cost system in plant phenotyping tasks. 

The main contribution of this thesis work is in the arrangement of the hardware components 

to develop a 3D scanning system capable of extracting plant traits. The use of consumer grade 

LiDAR Lite v3 to develop a system should be seen as the low-cost approach to extraction of 

phenotypic traits. Moreover, this work contributes to a relatively simple LiDAR data analysis and 

provides a base for development of the more complex (with added constraints) algorithms for 

achieving higher accuracies and may be utilizing the developed device in the controlled 

environment. The section 7.2 will provide insights into recommended future exploration and 

challenges needed to be handled while utilizing the developed system in the field. 

Finally, this work shows the utility of low-cost LiDAR device in the plant phenotyping 

tasks. The leaf length, width, and area were estimated using the developed methods for the traits 

characterization. Research objectives for this master’s thesis were met by designing, developing 

and testing the LiDARPheno system for the in-laboratory experiment. This work also compared 

the performance of the developed system with commonly used LiDAR sensor for phenotyping. 

The developed prototype shows the utility and advantages of the low-cost devices in the plant 

phenotyping research. Devices developed with the aim of the low-cost system can help fill the gap 

of the plant phenotyping research and provide opportunities for the researchers in the field to 

explore the possibilities to 3D imaging and may lead to findings that are entirely novel. 

7.2 Recommendations for the Future Work 

Despite having many benefits, the developed system and methodologies have considerable 

opportunities to explore the possibilities and improving the methods. Some of the suggestions for 

the exploration are given below: 

• For the hardware part of the system, with the proven methodologies in this thesis, 

an effort can be put into exploring other low-cost, high-speed LiDAR sensors to 

meet the demand of high-throughput. 
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• Alternate arrangements for the scanning setup, other than mentioned in this work, 

can be explored. For example, use of high-speed servo motors, use of rotating 

mirror with high-speed DC motor or use of the moving setup as was used in the 

LMS400 setup. 

• Exploring the potential sources of errors, whether the sensor itself has a significant 

error or the algorithms and correcting the data accordingly. 

• The segmentation algorithm used here is a modified region-grow algorithm and in 

3D graphics or gaming graphics field might have many better algorithms for 

processing the point cloud. However, the field of computer graphics is a vast field, 

and extensive review and experimentation might be required to explore the 

possibilities of the low-cost device fully. 

• The algorithms developed for data analysis are the simplest possible workflow of 

the LiDAR data analysis and does not consider all the possible corner cases. The 

algorithms are the simple base idea of how the data can be processed. By adding 

more constraints and optimizations, it might provide better processing speed as well 

as accuracy. 

• Experiments with a different view angle and combining the data to generate a fully 

3-dimensional model of the objects may prove to be the better approach for 

exploring different phenotypic information extraction. 

• Exploration and extraction of other phenotypic information such as biomass 

estimation using the point cloud data, leaf angle, plant angle with respect to ground, 

or leaf length, width, or area’s relationship to photosynthetic rate as well as 

biomass. However, the experiments to explore the potential match for biomass and 

photosynthetic rate estimations will need extensive collaboration with plant 

scientists and breeders. 

7.2.1 Limitations and improvement suggestions:  

This thesis work might provide satisfactory performance while the plants are in early 

growth stage. However, it will be interesting to see the performance in the challenging field 

conditions. The potential challenges for in-field application could be: 



 

85 

 

• Blowing wind may create movements in the plant, consequently making the 

scanning difficult. Hence, exploring the effects and mitigating the error caused by 

that may be of interest. 

• Overlapping leaves might not be captured just by taking a scan from the top. Hence, 

scans from multiple view angle may be required to construct a full 3D model of the 

plant and extract traits from that model. 

• Canopy size and lodging in canola may create difficulties in segmentation and leaf 

identification. So, individual plant identification methods and then leaf 

segmentation might be an area to explore for mitigating these challenges. 

• The scanning speed is relatively large in terms of time it take and might not be 

acceptable in field environment conditions if there is plant movement due to wind. 

However, sunlight does not affect the performance of the LiDARPheno system and 

it has been simulated in the lab using 3 halogen lights giving about 3000 lx 

intensity. Hence, improvements in scanning speed might overcome the problem and 

may make the LiDARPheno usable in the field. 

With the above-mentioned suggestions, there may be the higher potential of exploring the 

phenotypic information as well as establishing new phenotypes with the use of 3D models. 

Consequently, the technological advancements in phenotyping will help in meeting the 

tomorrow’s food demand.
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