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ABSTRACT

The recent advance in Field Programmable Gate Array (FPGA) technology has

been largely embraced by the communication industry, which views this technology as

an effective and economical alternative to the design of Application Specific Integrated

Circuits (ASICs). The primary reasons for switching to FPGAs are lower development

and non-recurring engineering costs, the flexibility to design to a preliminary standard

and adapt the design as the standard evolves, as well as the option of performing

software updates in the field.

A sector with strong interest in FPGAs is the coaxial cable TV/Internet distrib-

ution industry. The creation of soft preliminary standards by the standards organi-

zation governing the industry has been the main catalyst for the massive adoption of

FPGAs by small to medium size companies, which see this technology as an oppor-

tunity to compete in this open market.

Both the circuit speed and the economy of FPGA technology depend upon using

algorithms that map efficiently into its fabric. Often it is prudent to sacrifice per-

formance to improve either clock speed or economy when developing with FPGAs.

The purpose of this research is to both revise and devise synchronization algorithms

/ structures for cable digital receivers that are to be implemented in FPGA.

The main communication scheme used by the coaxial cable distribution industry is

digital Quadrature Amplitude Modulation (QAM). The problem of synchronizing to

the QAM signal in the receiver is not a new topic and several synchronization-related

circuits, which were devised with ASICs implementation in mind, can be found in

the open literature. Of interest in this thesis is the non-data-aided digital timing

synchronizer that was proposed by D’Andrea to recover timing with no knowledge

of the transmitted data. Accurate timing estimation was achieved by reshaping the

received signal with a prefilter prior to estimating the timing.
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A problem with D’Andrea’s synchronizer is that the prefilter for reshaping the

signal is a relatively long Finite Impulse Response (FIR) filter, whose implementation

requires a large number of multipliers. This may not have been an issue with ASICs

in as much as the number of hardwired multipliers on a chip is not limited as it is

in an FPGA chip. One contribution in this research is to propose an alternative to

D’Andrea’s synchronizer by replacing the long FIR filter with two single-pole Infinite

Impulse Response (IIR) filters that are directly placed inside the timing recovery loop.

This novel architecture, which drastically reduces the number of multipliers, is well

suited for FPGA implementation.

Non-data-aided feedforward synchronizers, which use the same prefilter as D’Andrea’s

synchronizer, have been receiving significant attention in recent years. Detailed per-

formance analysis for these synchronizers can be found in the open literature. These

synchronizers have the advantage of using a feedfordward structure rather than a feed-

back structure, as it is the case in D’Andrea’s synchronizer, to estimate the timing.

While D’Andrea’s synchronizer has an advantage in performance over a non-data-

aided feedforward synchronizer, this has not been reported in the literature. In this

thesis a second contribution consists of thoroughly analyzing the steady state timing

jitter in D’Andrea synchronizer by deriving a closed-form expression for the noise

power spectrum and a simple equation to estimate the timing jitter variance.

A third contribution is a novel low-complexity and fast acquisition coherent de-

tector for the detection of Quadrature Phase Shift Keying (QPSK) (i.e., 4-QAM)

symbols. This detector performs carrier phase synchronization much faster than a

conventional coherent detector. The acquisition time is comparable to that of a differ-

ential detector. The fast acquisition comes at the expense of phase jitter, and the end

result is a 1 dB performance loss over theoretical coherent detection. This detector

can be used in place of the differential detector with no economic penalty. Doing so

yields a performance advantage of about 2 dB over differential detection.
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to my wife, Patricia Karen Pélet,

and our children,

Camille and Emmarie.

v



TABLE OF CONTENTS

PERMISSION TO USE i

ABSTRACT ii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS vi

LIST OF FIGURES x

LIST OF ABBREVIATIONS xv

1 Introduction 1

1.1 A QAM system using an all-digital receiver . . . . . . . . . . . . . . . 1

1.2 Motives for research . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Effect of a timing offset . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Non-data-aided timing synchronizers . . . . . . . . . . . . . . 9

1.3.3 Self-noise in non-data aided timing synchronizers . . . . . . . 16

1.3.4 Non-data-aided frequency offset estimation . . . . . . . . . . . 18

1.3.5 QPSK symbol recovery in presence of a frequency offset . . . . 19

1.4 Research problems and thesis outline . . . . . . . . . . . . . . . . . . 25

1.4.1 Self-noise reduction in non-data-aided feedback synchronizers . 25

1.4.2 Timing jitter analysis of the Franks/Gardner synchronizer . . 29

1.4.3 Detection of QPSK symbols in presence of a frequency offset . 30

vi



2 Enhanced Feedback Synchronizers 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Principle of operation of the early-late detector . . . . . . . . . . . . 34

2.3 Analysis of the early-late detector . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Theoretical derivation of S-curve . . . . . . . . . . . . . . . . 41

2.4 Novel self-noise reduction technique for the early-late detector . . . . 45

2.4.1 Enhancing the early-late detector . . . . . . . . . . . . . . . . 45

2.4.2 Verification of theoretical results . . . . . . . . . . . . . . . . . 45

2.4.3 Practical implementation of the enhanced early-late detector . 48

2.5 Steady state self-noise analysis . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Applying the self-noise reduction technique to the Gardner detector . 55

3 Performance of Enhanced Synchronizers and Other Feedback Sys-

tems 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Principle of operation of a timing recovery loop . . . . . . . . . . . . 58

3.3 Linear models for the detectors . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Early-late detector . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Gardner detectors . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Linear analyses of the loops used in these systems . . . . . . . . . . . 69

3.4.1 Closed-loop bandwidth of interest . . . . . . . . . . . . . . . . 69

3.4.2 Linear analysis of the first-order loop . . . . . . . . . . . . . . 70

3.4.3 Linear analysis of the second-order loop . . . . . . . . . . . . 71

vii



3.4.4 Linear analysis of the third-order loop . . . . . . . . . . . . . 74

3.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Performance of the systems . . . . . . . . . . . . . . . . . . . . . . . 88

3.6.1 Description of the systems under evaluation . . . . . . . . . . 88

3.6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Timing Jitter Analysis of the Franks/Gardner Symbol Synchronizer 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 System’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Linear model for the Gardner detector . . . . . . . . . . . . . . . . . 98

4.3.1 Power spectral density of the model noise . . . . . . . . . . . . 98

4.3.2 Slope of S-curve parameter . . . . . . . . . . . . . . . . . . . . 99

4.4 Estimation of the timing jitter variance . . . . . . . . . . . . . . . . . 99

4.5 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Frequency Coherent Detection in QPSK 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Structure of the frequency coherent detector circuit . . . . . . . . . . 115

5.3 Performance analysis for a small carrier frequency offset . . . . . . . . 119

5.3.1 Mean and variance of decision vectors . . . . . . . . . . . . . . 120

5.3.2 Probability of a symbol error . . . . . . . . . . . . . . . . . . 122

5.4 Performance verification . . . . . . . . . . . . . . . . . . . . . . . . . 123

viii



6 Conclusion 127

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.1 Enhanced non-data-aided feedback synchronizer . . . . . . . . 128

6.2.2 Timing jitter analysis of the Franks / Gardner synchronizer . 129

6.2.3 Frequency-coherent detector for QPSK . . . . . . . . . . . . . 130

REFERENCES 132

A 138

B 144

C 146

D 149

D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

E 160

F 162

G 170

ix



LIST OF FIGURES

1.1 Digital QAM transmitter block diagram. . . . . . . . . . . . . . . . . 2

1.2 All-digital QAM receiver front-end block diagram. . . . . . . . . . . . 3

1.3 Eye pattern of the 16-QAM in phase signal in the receiver with no

frequency offset and with no AWGN. . . . . . . . . . . . . . . . . . . 10

1.4 Eye pattern of the 16-QAM in phase signal in the receiver with no

frequency offset and with
Eb
N0

= 20 dB. . . . . . . . . . . . . . . . . . 10

1.5 Timing recovery loop block diagram. . . . . . . . . . . . . . . . . . . 12

1.6 Feedforward timing synchronizer block diagram. . . . . . . . . . . . . 13

1.7 8-PAM signals generated with different signaling pulses. Top wave-

form: raised cosine Nyquist’s pulse. Bottom waveform: Franks’ pulse. 17

1.8 Synchronization in an all-digital QAM receiver. . . . . . . . . . . . . 20

1.9 QPSK symbols plotted as vectors in the complex plane. . . . . . . . . 21

1.10 QPSK constellations with (a) perfect synchronization, (b) presence of

a phase offset equal to 20o , (c) presence of a frequency offset equal to

1 % of the symbol rate, Eb/N0 = 20 dB. . . . . . . . . . . . . . . . . 22

1.11 Gardner / Franks’ synchronizer block diagram. . . . . . . . . . . . . . 26

1.12 Frequency responses of D’Andrea’s prefilter (HP (jΩ)) along with raised

cosine function (GN(jΩ)), and frequency response of shaping pulse

(P (jΩ)) with r = 0.5 and T = 1. . . . . . . . . . . . . . . . . . . . . 28

1.13 Example using Divsalar’s rule withM = 3 to detect modulating phases,

ϕk and ϕk−1, using decision variables, rk, rk−1, and rk−2. . . . . . . . 32

x



2.1 Examples of waveforms producing no self-noise. . . . . . . . . . . . . 35

2.2 Input-output characteristic of early-late detector in the case of an al-

ternating +1,−1 symbol pattern. . . . . . . . . . . . . . . . . . . . . 36

2.3 Example of a waveform producing self-noise (εT = 0). . . . . . . . . . 37

2.4 Early-late detector circuit. . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 QAM signal average power curve as a function of εT . . . . . . . . . . 43

2.6 S-curve of the detector. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Early-late detector enhanced with high-pass filters. . . . . . . . . . . 46

2.8 Frequency response of the 12th order elliptic filter. . . . . . . . . . . . 47

2.9 S-curve of the detector with two sets of simulation results marked with

‘*’ and ‘o’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Performance of enhanced detector as a function of the bandwidth of

the low-pass filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.11 Power spectra of early-late detectors enhanced with ideal (dashed curve)

and real (solid curve) high-pass filters with m = 1, M = 4, r = 0.1,

and A = 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.12 Power spectra of early-late detector and enhanced early-late detector

when the pole is at z = −0.9 and z = −0.98 and m
M

= 0.25, r = 0.1

and A = 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.13 Gardner detector enhanced with high-pass filters. . . . . . . . . . . . 56

3.1 Analog phase-locked loop block diagram. . . . . . . . . . . . . . . . . 58

3.2 Digital timing recovery loop block diagram with synchronous blocks

clocked at the receiver sampling rate. . . . . . . . . . . . . . . . . . . 60

xi



3.3 Phase ramps digitally produced in transmitter (top graph) and receiver

(bottom graph) with samples marked with an “x”. . . . . . . . . . . . 62

3.4 Linear model for digital timing recovery loop. . . . . . . . . . . . . . 64

3.5 Linear model for non-data-aided TED used in a feedback loop. . . . . 65

3.6 Linear model for conventional early-late detector where G = −2πrσ2
d. 66

3.7 Modeling the effect of the high-pass filters in the case of a sinusoidal

input signal, ε� 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Linear model for the enhanced early-late detector. . . . . . . . . . . . 68

3.9 Linear model for the Gardner detector. . . . . . . . . . . . . . . . . . 69

3.10 Linear model for the enhanced Gardner detector. . . . . . . . . . . . 69

3.11 Model for first-order loop. . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Root-locus plot for first-order loop system. . . . . . . . . . . . . . . . 71

3.13 Model for second-order loop. . . . . . . . . . . . . . . . . . . . . . . . 72

3.14 Root-locus plot for second-order loop system. . . . . . . . . . . . . . 73

3.15 Model for third-order loop - case A. . . . . . . . . . . . . . . . . . . . 76

3.16 Root-locus plot for third-order loop - case A. . . . . . . . . . . . . . . 76

3.17 High-level data-flow diagram for algorithm. . . . . . . . . . . . . . . . 77

3.18 Realizations of p(x; a,GL) for a = 0.3 and different values of GL. Only

the portion of the curves between x = 0.2 and x = 0.9 is shown. . . . 79

3.19 Model for third-order loop - case B. . . . . . . . . . . . . . . . . . . . 81

3.20 Root-locus plot for third-order loop - case B. . . . . . . . . . . . . . . 82

3.21 Position of the poles for different bandwidths, BL. . . . . . . . . . . . 83

xii



3.22 First, second, and third-order closed-loop amplitude responses with

three sets of simulation results marked with ‘x’, ‘o’, and squares in the

case of no self-noise, and BL equal to 0.5 % of the symbol rate. . . . . 85

3.23 Third-order closed-loop amplitude response with one set of simulation

results marked with squares in the case of self-noise and BL = 0.1 %

of the symbol rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.24 Normalized timing jitter (T = 1) variances for critically damped sys-

tems with a bandwidth equal to BL = 0.1 % of the symbol rate. . . . 90

3.25 Normalized timing jitter (T = 1) variances for critically damped sys-

tems with a bandwidth equal to BL = 1 % of the symbol rate. . . . . 92

4.1 Linear model for the Gardner detector. . . . . . . . . . . . . . . . . . 95

4.2 Linear model of the digital timing recovery loop in the Franks/Gardner

synchronizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Rearranged model of the timing recovery loop with noise reflected to

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Noise power spectrum of the Gardner detector when Franks’ prefilter

is used to reshape the signal and r = 0.1 and Eb/N0 = 0 dB. . . . . . 101

4.5 Theoretical (dashed curve) and measured (solid curve) normalized tim-

ing jitter variances for a critically damped system with a noise band-

width of 0.5 % of the symbol rate and r = 0.1. . . . . . . . . . . . . . 102

4.6 Normalized timing jitter variances along with the MCRBs for a criti-

cally damped system with a noise bandwidth of 1 % of the symbol rate

and three values of r, 0.1, 0.2 and 0.3. . . . . . . . . . . . . . . . . . 105

xiii



4.7 Normalized timing jitter variances along with the MCRBs for a criti-

cally damped system with a noise bandwidth of 0.5 % of the symbol

rate and three values of r, 0.1, 0.2 and 0.3. . . . . . . . . . . . . . . . 106

4.8 Normalized timing jitter variances along with the MCRBs for a criti-

cally damped system with a noise bandwidth of 0.1 % of the symbol

rate and three values of r, 0.1, 0.2 and 0.3. . . . . . . . . . . . . . . . 107

4.9 Timing jitter variances for the Franks/Oerder synchronizer with L =

50, 100, and 500 along with timing jitter variances for the Franks/Gardner

synchronizer for a critically damped system with bandwidths of 1 %,

0.5 %, and 0.1 % of the symbol rate, and with roll off factor r = 0.1. . 110

4.10 Timing jitter variances for the Franks/Oerder synchronizer with L =

50, 100, and 500 along with timing jitter variances for the Franks/Gardner

synchronizer for a critically damped system with bandwidths of 1 %,

0.5 %, and 0.1 % of the symbol rate, and with roll off factor r = 0.2. . 111

4.11 Timing jitter variances for the Franks/Oerder synchronizer with L =

50, 100, and 500 along with timing jitter variances for the Franks/Gardner

synchronizer for a critically damped system with bandwidths of 1 %,

0.5 %, and 0.1 % of the symbol rate, and with roll off factor r = 0.3. . 112

5.1 Frequency coherent detector for QPSK . . . . . . . . . . . . . . . . . 117

5.2 Construction of Uk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Probability of symbol error vs. Eb/N0 for the frequency coherent de-

tector detector with N = 2, 4, 8 along with curves for conventional

differential detection and coherent detection with differential decoding. 124

5.4 Probability of symbol error curves for the proposed circuit with N = 4

and frequency offsets θ′ = 0, 1, 2 degrees/symbol with 3 sets of simula-

tion results marked with “*”, “+” and “x”. . . . . . . . . . . . . . . . 126

xiv



LIST OF ABBREVIATIONS

AWGN Additive White Gaussian Noise

ASIC Application Specific Integrated Circuit

BPSK Binary Phase Shift Keying

CATV CAble TV

CRB Cramer-Rao Bound

D/A Digital-to-Analog converter

DSP Digital Signal Processing

DTFT Discrete-Time Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

HDL Hardware Descriptive Language

I In-phase

IC Integrated Circuit

IF Intermediate Frequency

IIR Infinite Impulse Response

ISI InterSymbol Interference

LF Likelihood Function

LPF Low-Pass Filter

MCRB Modified Cramer-Rao Bound

MF Matched Filter

ML Maximum Likelihood

MLE Maximum Likelihood Estimator

PAM Pulse Amplitude Modulation

PD Phase Detector

PDF Probability Density Function

xv



PLL Phase-Locked Loop

PSD Power Spectral Density

Q Quadrature

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RAM Random Access Memory

RF Radio Frequency

RV Random Variable

SNR Signal-to-Noise Ratio

TED Timing-Error Detector

VCO Voltage-Controlled Oscillator

VOD Video-On-Demand

xvi



1. Introduction

Digital communication involves sending digital information over some medium.

There are basically four types of media to convey the information electrically: twisted

pair, coaxial cable, fiber, and air (i.e., wireless transmission). The medium of interest

is coaxial cable, where digital Quadrature Amplitude Modulation (QAM) is the most

efficient and widely used communication scheme. In this research synchronization-

related circuits for various digital QAM systems are devised. The particularity of

the QAM system of interest is that the processing in the receiver is done digitally as

explained next.

1.1 A QAM system using an all-digital receiver

A communication system comprises a transmitter and a receiver. The transmitter

is described first. Description of the receiver follows.

A block diagram of the transmitter is shown in Figure 1.1. The transmitted signal

is generated digitally by modulating the amplitude of two digital carriers, cos[2πf0n]

and sin[2πf0n], that are in quadrature. In the digital domain the carrier frequency,

f0, has units of cycles/sample. The quadrature signals are summed and converted to

analog with a digital-to-analog (D/A) converter.

The digital low-pass signals, xI [n] and xQ[n], modulating the carriers are referred

to as the in phase and quadrature signals. Both signals have the same structure in

that they are made of a train of signaling Nyquist’s pulses [1] whose peak amplitudes

take different values to encode the binary data to be transmitted.

1



Binary
data

Symbol

mapping

a[k]

b[k]

M

M

MF

MF

xI [n]

xQ[n]

cos[2πf0n]

sin[2πf0n]

D/A

M

T

sIF (t)

Pulse shaping

Figure 1.1 Digital QAM transmitter block diagram.

The encoding is done by converting the input binary data stream into symbols. A

symbol is a 2-tuple, (a[k], b[k]), whose elements represent discrete amplitude levels for

the pulses. In 64-QAM there are 8 discrete levels so 64 different symbols are available

for encoding the data. The conversion to symbols is performed 6 bits at a time. Each

2-tuple (i.e., symbol) gives rise to the transmission of a pair of signaling pulses: one

pulse whose peak amplitude is equal to a[k] is carried by the in phase signal, and

a second pulse whose peak amplitude is equal to b[k] is carried by the quadrature

signal.

The process to generate xI [n] and xQ[n] consists of first upsampling a[k] and b[k]

by M to set the interval of time between the pulses to M samples, and then passing

the upsampled signals through pulse shaping filters known as Matched Filters (MF).

The interval of time between pulses when expressed in seconds is referred to as the

symbol interval. It is equal to M times the period of the D/A clock. For a D/A clock

of M/T samples per second, the symbol interval is T seconds.

Following digital-to-analog conversion, the analog signal is at an intermediate fre-

quency (IF) of f0 × M/T Hz. It is upconverted to the frequency band of interest

for the actual transmission over cable. Several sources of noise corrupt the transmit-

ted signal. In this research the noise is modeled as Additive White Gaussian Noise

(AWGN). In addition to noise, the signal experiences distortions that are caused by
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Figure 1.2 All-digital QAM receiver front-end block diagram.

the medium. For example signal fading is very common in wireless transmissions. In

cable transmissions the signal distortions are relatively small. The spectrum is chan-

nelized with sufficiently small bandwidths that the frequency response of the channel

is nearly flat and the channel can be modeled as a delay.

The RF received signal is downconverted to IF and passed to an all-digital receiver

for signal sampling and recovery of the transmitted symbols. A block diagram of the

front-end of the receiver is shown in Figure 1.2. The particularity of an all-digital

receiver is that sampling is performed with a free-running oscillator. The IF signal is

sampled at a sampling rate of 1/Ts samples/second, and all processing in the receiver

is done digitally by processing rIF (nTs). With a free-running oscillator the sampling

rate and symbol rate are incommensurate. A consequence is that sampling does not

occur at the correct time (i.e., at the peak of the pulse). The difference between

current and correct sampling times is referred to as the timing offset. An internal

digital resampling [2] [3] is required to generate samples at the correct times.

In phase and quadrature signals yI [n] and yQ[n] are extracted by downconverting

rIF (nTs) to baseband using a pair of quadrature-driven mixers followed by low-pass

filtering. For AWGN corrupting the signal and a flat channel, optimum filtering is

obtained by using a low-pass filter matched to the filter in the transmitter [4].

Downconversion to baseband is often accompanied with cross-coupling between in
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phase and quadrature signals. The problem originates from the up/down conversion

between IF and RF, whereby an unknown frequency shift is introduced in the signal.

Slight differences in frequency between the oscillators in the transmitter and receiver

cause what is referred to as a frequency offset, df0. This frequency offset is modeled

in the receiver by denoting the frequency of the mixers by f0 + df0.

The digital signals yI [n] and yQ[n] are downsampled by M to retain only the

samples at index n = Mk and obtain the sequences, yI [k] and yQ[k]. These sequences

are the components of the complex signal, yI [k] + jyQ[k], whose elements are referred

to as the decision variables. The decision variables serve to recover the transmitted

symbols. Note that in the case of perfect synchronization (i.e., no frequency, phase, or

timing offsets) and a noise-free channel, the decision variables become the transmitted

symbols: the real part is equal to a[k] and the imaginary part to b[k].

The presence of frequency and/or timing offsets make it nearly impossible to re-

cover the transmitted symbols, unless a synchronization circuit has been incorporated

into the receiver to mitigate these impediments. In digital QAM the synchronization

process is usually implemented as follows [5]. Large frequency offsets are removed

first since large offsets frustrate timing recovery, unless the timing recovery circuit

is insensitive to a frequency offset. Synchronization to the carrier phase occurs after

timing recovery. At this point the receiver is synchronized; however fine tuning of

timing and carrier phase often continues during the symbol detection stage.

1.2 Motives for research

Synchronization in QAM receivers has been extensively investigated over the last

thirty years and many synchronization algorithms can be found in the open litera-

ture. The approach taken in this research is to re-investigate some of the proposed

algorithms. The rationale for taking that route has to do with the technology that is

available today for the hardware implementation.

Most of the research took place at a time when the target technology was Appli-
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cation Specific Integrated Circuit (ASIC). Today there is an alternate technology, the

Field Programmable Gate Array (FPGA) [6].

There are several reasons for choosing an FPGA instead of an ASIC. FPGAs are

cheaper than ASICs for low-volume productions. They are re-programmable, which is

an asset in the development of products with soft specifications. The design cycles are

shorter. Development times are on average 55 % less with FPGAs [7]. The availability

of pre-made Hardware Descriptive Language (HDL) modules accelerates time to mar-

ket. In addition FPGA vendors offer devices with embedded hard-wired blocks such

as microprocessors, Digital Signal Processing (DSP) functions, and Random Access

Memory (RAM).

Another factor contributing to the massive adoption of the FPGA technology by

the industry is the creation of standards before products actually exist. Historically

an ASIC was developed by a manufacturer. This ASIC served as a proof-of-concept

and a standards organization, like the IEEE, incorporated its function into a stan-

dard. This approach created problems with patent rights, and limited the number of

manufacturers. The new trend is that standards organizations create/update stan-

dards before a product exists. The establishment of standards before the technology

is available is believed to open doors to small and medium-size companies, and trans-

lates into the creation of more innovative products.

One example is the cable industry. Cable TV operators felt they were held

hostages by manufacturers that had proprietary technology. Cable operators joined

forces by establishing a consortium to define standards for the cable TV industry [8].

This allows them to organize open competitions for the development of new equip-

ment and then have several suppliers for that equipment. The intent was to prevent a

manufacturer from developing a proprietary technology and having a monopoly on a

piece of equipment. In the days when the manufacturers defined the standard, cable

operators had little control over system upgrades, as they would be at the mercy of

the manufacturer to improve its technology.

5



In the new paradigm where the cable operators define the standards, developers

can take advantage of the FPGA technology but need algorithms that fit the fabric of

the FPGA. One limitation factor in FPGA is the number of hard-wired multipliers.

Algorithms to be implemented in an FPGA must be devised with that in mind.

Finally an FPGA may be used in established systems that must be redesigned

to comply with new environmental regulations. For example, electronic equipment

sold on the European market must be made to comply with the “Restriction of the

use of certain Hazardous Substances in electrical and electronic equipment” (ROHS)

directive. This directive came into force in July 2006. It bans the sale of electronic

equipment with high-levels of lead, mercury, and other hazardous substances. If a

product redesign is necessary, an FPGA rather than ASIC is more likely to be used

to minimize cost and development times.

Methods and algorithms for synchronization in QAM are discussed next. This

literature review provides the background to clearly state in Section 1.4 the problems

that are investigated in this research. The ultimate objective is to devise synchro-

nization algorithms that are suitable for FPGA implementation.

1.3 Background

The key component in synchronization is the estimation of the unknown parame-

ters discussed beforehand namely frequency offset, timing offset, and phase offset. A

widely applied method, which yields an asymptotically efficient estimator [9], uses

the Maximum Likelihood (ML) criterion [10]. The general idea is to jointly esti-

mate the unknown parameters (i.e., timing offset, frequency offset, . . .) as well as the

transmitted symbols by correlating a finite observation of the received signal with

various waveforms. The waveforms, which are generated in the receiver, are attempts

at reconstructing a noise-free version of the observed signal by selecting values for

both the unknown parameters and the symbols. The best estimate, referred to as the

Maximum Likelihood Estimate (MLE), is the one that yields maximum correlation.

Mathematically the ML estimate is the one that maximizes the likelihood function of
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both the parameters and symbols.

The maximum likelihood synchronizer for an analog QAM receiver was thoroughly

described in [11], and was re-investigated in [12] for an all-digital receiver. This syn-

chronizer is not practical due to the requirement of jointly estimating both the para-

meters and the symbols. The problem was partly solved by using decision feedback

to provide knowledge of the received symbols and reduce the search to the estimation

of the parameters only [11]. Decision feedback consists of feeding back the symbol

decisions to the synchronizer. This technique assumes that the signal is sufficiently

synchronized so the symbols can be detected with relatively little error. Decision

feedback is normally used to fine tune the estimation of timing and phase offsets. An

implementation of a maximum likelihood receiver using decision feedback was pro-

posed in [13]. If decision feedback is not practical, a preamble can be transmitted.

A preamble is a sequence of symbols that is known to the receiver, and is regularly

transmitted to facilitate synchronization.

A preamble may not always be available and synchronization must occur with no

knowledge of the transmitted symbols. This is usually the case in continuous-mode

transmissions for example in the downstream links of Cable TV (CATV) networks.

Several algorithms known as non-data-aided timing synchronizers, were devised to

address the problem of recovering timing when the symbols or simply the data is

not known [14] [15] [16] [17] [18] [19]. These algorithms, which are discussed in

Section 1.3.2, do not perform as well as the maximum likelihood synchronizer but are

better candidates for FPGA implementation, as they do not use an iterative search

for estimating the timing offset.

For some non-data-aided timing synchronizers, frequency offsets must be removed

prior to using them. This does not limit their use since frequency offset can be

estimated and removed before recovering timing and with no knowledge of the sym-

bols [20]. More is said about it in Section 1.3.4, where a block diagram depicting the

overall synchronization process in a digital QAM receiver is provided.
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Non-data-aided timing synchronizer exhibits a new source of noise known as self-

noise. Self-noise is described in Section 1.3.3 as well as methods to mitigate it. In

this research a novel technique to reduce self-noise is proposed for a non-data-aided

timing synchronizer.

Synchronization in CATV upstream links networks was also investigated in this

research. The application of interest was Video-On-Demand (VOD). VOD is a pop-

ular application, which allows customers to remotely select a video program from a

digital library located at the Headend, and control the streaming from their set-top

box located at home. The upstream channels are utilized to accommodate the player

controls. A receiver is needed to demodulate the upstream channels.

VOD is a unique low-data-rate application, which uses 4-QAM for the modulation

on the upstream channels. The reason for using 4-QAM also known as Quadrature

Phase Shift Keying (QPSK), is that it survives the channel impairments [21] and

pre-equalization is not necessary. The VOD channels, as opposed to the channels for

higher-data-rate applications such as high-speed Internet, do not use ranging [8]. This

makes the QPSK demodulator considerably less complicated. The transmission for-

mat is burst-mode packet, where a preamble is appended to each packet. The pream-

ble is used for detecting the beginning of the burst (packet), acquiring timing, and

performing coarse carrier frequency estimation [22]. The packets are relatively small

and preambles are kept short to save bandwidth. The timing offset can be estimated

with decent accuracy, but only a coarse estimation of the frequency offset is achiev-

able. Short packets make it difficult to completely eliminate frequency offset and

perform coherent detection of the symbols. Several solutions have been proposed to

recover the QPSK symbols in presence of small frequency offsets [23] [24] [25] [26] [27].

These solutions are discussed in Section 1.3.5.

1.3.1 Effect of a timing offset

In high-order QAM a small timing offset can significantly degrade the performance

of the system. The reason is that bandwidth efficient signaling pulses, such as the
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square-root-raised cosine pulse1 [1] with a small roll off factor, extends over several

symbol intervals. No interference between symbols occurs if sampling occurs at the

correct sampling time. In presence of a timing offset, the tails from previous and

future symbols corrupt the current decision variable.

This phenomenon can be observed on an eye pattern [28] as shown in Figure 1.3

where the underlying continuous-time signal, yI(t), (defined in Figure 1.2 on page 3)

has been plotted. To pinpoint the effect of Inter Symbol Interference (ISI), the plot

was generated for 16-QAM with no frequency offset and no AWGN. There is no ISI

if the decision variables are taken at the correct times, i.e., at instants of time where

the eye is maximally opened, i.e., at t/T = 0, t/T = 1, . . ..

The presence of AWGN partly closes the eye as illustrated in Figure 1.4, where

the signal to noise ratio,
Eb
N0

, is 20 dB. Eb is the average energy per bit and N0 is the

one-sided power spectral density constant of the white noise.

1.3.2 Non-data-aided timing synchronizers

In the search for a low-complexity timing synchronizer, one prefers estimating the

timing offset recursively rather than iteratively. In an iterative algorithm the timing

offset is estimated by trying several values for the timing offset and choosing one of

the values. In a recursive algorithm the timing offset is estimated by determining

the quantity that must be added to the timing offset to make it zero. This quantity

is obtained by changing the value of the timing offset by a small increment at each

recursion. The size of the increment and direction (i.e., positive or negative incre-

ment) is adjusted at each recursion. In an iterative algorithm the same input data

is processed several times with different trial values for the timing offset, whereas in

a recursive algorithm new data is used at each recursion but several recursions are

required for the algorithm to converge. In an iterative algorithm the input data is

several symbol intervals long, whereas in a recursive algorithm the input data used

1The expression “square-root raised cosine” refers to the shape of the Fourier transform of the
pulse.
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Figure 1.3 Eye pattern of the 16-QAM in phase signal in the receiver with no
frequency offset and with no AWGN.
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at each recursion is usually one symbol interval long only. A maximum likelihood

algorithm is an iterative algorithm since it involves a search by processing the input

data several times with different values for the unknown parameter to seek the value

of the parameter that maximizes a likelihood function.

A suitable structure for a recursive algorithm is a feedback loop. In the case of

a timing synchronizer, the feedback loop is placed after the matched filters in the

receiver as shown in the block diagram of Figure 1.5. The recovery of the timing

is performed as follows. A circuit known as a Timing Error Detector (TED), is

inserted into the timing recovery loop to estimate the timing error between current

and optimum sampling times. Two detectors are needed, one to process the upper

branch referred to as the in phase branch, and one to process the lower branch referred

to as the quadrature branch. The TEDs process the signals over one symbol interval

to produce an estimate of the timing offset. A correction term that is proportional

to this estimate is used to control the resamplers and adjust the timing. The new

timing is the current timing minus the correction term. On average the adjustments

are made in the direction so as to decrease the timing offset. Convergence will occur

as the number of passes through the loop (i.e., number of recursions) becomes large.

The rate of convergence depends on the loop gain. A small loop gain slows the

convergence but reduces random fluctuations in the timing known as timing jitter.

After convergence the timing offset, which is very small, continues to be estimated.

The resampler is a time-varying filter that interpolates between the receiver’s

samples [3]. The purpose is to produce samples at the sampling rate established

in the transmitter. Depending on whether the receiver’s crystal runs at a slightly

higher or lower frequency than the transmitter’s crystal, the resampler will produce

samples at a slightly lower or higher rate than the A/D converter respectively. Most

of the time the resampler produces a sample every two system’s clock cycles, where

the system’s clock cycle runs at twice the rate of the A/D converter. However if the

relative error between the transmitter’s clock and receiver’s clock is such that the

resampling rate is higher than the sampling rate, the resampler produces on occasion
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Figure 1.5 Timing recovery loop block diagram.

a sample on two consecutive system clock edges. If the resampling rate is less than the

receiver’s sampling rate, the resampler on occasion has samples separated by three

system clock edges.

The coefficients of the resampler are a function of the required sample time with

respect to the receiver’s samples, and so must be adjusted prior to producing each

sample. This adjustment is done to control the location of the interpolation.

A timing estimator that uses a feedback loop is called a feedback synchronizer.

An alternative to the feedback structure is the feedforward structure. The main

difference is that the Timing Error Detector (TED) in the feedforward synchronizer

produces an estimate of the timing offset independently of the size of the offset,

whereas the TED in a feedback synchronizer only produces an error signal, which can

be of large variance when the offset is large. This error signal is used in a feedback

loop to adjust the sampling and ultimately find the correct timing. Figure 1.6 shows
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Figure 1.6 Feedforward timing synchronizer block diagram.

the general structure of a feedfoward estimator. A delay that is equal to the time

(in samples) required to estimate the timing offset precedes the resampler. A more

accurate timing offset estimate is obtained by averaging several estimates produced

by the timing estimator. As in the case of the feedback synchronizer, both in phase

and quadrature branches are processed simultaneously to estimate the timing.

Feedforward synchronizers can produce an estimate from a relatively small num-

ber of samples, which makes them well-suited for burst communication [29]. In con-

trast feedback loops suffer the ills of stochastic descent algorithms, one of which is

hangups [30]. Hangups cause the descent to dwell on incorrect sample points for short

period of times thereby lengthening acquisition times.

Feedforward synchronizers are not investigated in this research; however they re-

ceived significant attention in recent years [31] [32] [33] [34]. Feedback and feedforward

synchronizers are discussed below.
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Feedback synchronizers

It was recognized many years ago that squaring a cyclostationary [35] signal such

as a baseband Pulse Amplitude Modulation2 signal produced a spectral line at the

symbol rate [36] (PAM). The squarer is followed by a Phase-Locked Loop (PLL) to

lock onto the spectral line and reject the noise. Timing is produced by detecting the

zero-crossings of the regenerated clock. Such synchronizers, which are referred to as

clock regenerating synchronizers, can be constructed from analog circuits.

Sampled systems have advantages and disadvantages over analog circuits. One

disadvantage is that zero-crossings are not easily detected digitally, and a clock re-

generating synchronizer with a zero-crossing detector can not be easily built. There

are basically two digital feedback synchronizers, the early-late and Gardner synchro-

nizers, that can be easily constructed. Both of them are briefly described below.

In [14] [37] the likelihood function of the timing offset parameter was approximated

by the output of the matched filter after it had been squared. Using the squared

signal, a Timing Error Detector (TED), referred to as the early-late detector [14] [15]

was proposed. The main idea of the early-late detection scheme is to find where the

likelihood function reaches its maximum by finding recursively where its derivative is

zero using a feedback loop. At each recursion, the derivative of the likelihood function

is estimated at the decision time, and this estimate is used to adjust the timing in

the loop. The decision time is the instant of time when the eye diagram is believed to

be maximally opened. The decision times are the times of the decision variables. An

estimate of the derivative of the likelihood function is computed by using the samples

at the output of the matched filter that precede (i.e., early) and follow (i.e., late) the

decision variable. The difference between the early and late samples after squaring

them is used as an estimate of the derivative of the likelihood function. The circuit

computing this estimate is the early-late detector. This TED is used in a feedback

loop to adjust the timing and force the output of the early-late detector to zero [38].

2In Pulse Amplitude Modulation (PAM), only one carrier is modulated in amplitude. This differs
from QAM where two carriers (in quadrature) are modulated.

14



The synchronizer made of the feedback loop, the associated control and the TED is

referred to as the early-late synchronizer.

A digital version of a zero-crossing based detector was proposed by Gardner as

an improvement to the early-late detector [16]. Zero-crossings based detectors are

more prone to errors when the slope of the signal at the zero-crossings is small, since

Gaussian noise has more effect on small amplitude signals. In his digital detector,

Gardner [16] proposed to weight the time estimates of the zero-crossings by the square

of the slope at the zero-crossings. The Gardner detector operates on samples taken

at twice the symbol rate3 to produce timing offset estimates at the symbol rate.

Samples half-way between decision variables are used as estimates of the timing offset

multiplied by the slope. These estimates are further weighted by multiplying them

with an estimate of the slope at the time of the zero-crossing. The slope is estimated

by taking the difference between two decision variables: the one preceding the zero-

crossing estimate and the one following it.

Feedforward synchronizers

A popular feedforward synchronizer for QAM is the digital counterpart of the ana-

log clock regenerating synchronizer in which the PLL following the squarer is replaced

by a block that computes digitally the phase of the spectral line [18]. Essentially this

is the computation of a Fourier coefficient, the one that corresponds to the frequency

of the symbol rate.

Modifications to Oerder’s estimator [18] were proposed in [19] and [39] with the

purpose of reducing the sampling rate. Lee’s estimator [19] operates at twice the

symbol rate (i.e., half the sampling rate of Oerder’s estimator) but is biased. An

unbiased version is proposed in [39].

3The symbol rate is the inverse of the symbol interval. In the analog domain the symbol rate is
1/T Hz. In the digital domain the symbol rate is Ts/T cycles / sample, so is 1/M cycles / sample
if the sampling rate of the A/D converter is M/T samples / second.
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1.3.3 Self-noise in non-data aided timing synchronizers

Non-data-aided timing synchronizers work well for certain sequences of trans-

mitted symbols and poorly for other sequences. For example the Gardner detector

produces an accurate timing estimate if the pattern is made of alternating symbols

of same magnitude but opposite polarities. In that case the in phase and quadra-

ture signals exhibit regular zero-crossings with large slopes. The repetition of the

same symbol (or symbols with the same polarity) yields noisy estimates. This noise,

which finds its roots in the data itself, is referred to as pattern dependent noise,

self-noise [40], or systematic noise.

Self-noise was extensively studied in the case of analog spectral line regenera-

tors [40] [41] [42], where self-noise caused fluctuations in the position of the zero-

crossings, and gave rise to timing jitter. The self-noise was modeled as a cyclosta-

tionary process to analyze the jitter [41]. Power spectra expressions were derived

in [42].

Self-noise reduction techniques

A natural approach to mitigate self-noise in feedback synchronizers is to operate

the feedback loop with a small loop gain (narrow closed-loop bandwidth). This is

equivalent to averaging a large number of detector outputs to obtain a less noisy

estimate. The trade-off is longer acquisition times.

Franks [43] took a different approach by tackling the problem at its source. Franks

realized that self-noise depended on the signaling pulse in addition to the data pattern.

Franks discovered that certain signaling pulse shapes produced a signal that crossed

zero or became zero exactly halfway between symbols, independently of the symbols

that were transmitted. Franks derived a sufficient condition for non-causal signaling

pulses for this to occur. A condition can be derived for causal pulses to produce

similar signals. To differentiate them from Nyquist’s pulses, pulses meeting Franks’

condition are referred to as Franks’ pulses.
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Figure 1.7 8-PAM signals generated with different signaling pulses. Top waveform:
raised cosine Nyquist’s pulse. Bottom waveform: Franks’ pulse.

Examples of waveforms obtained with a Franks’ pulse and a Nyquist’s pulse are

shown in Figure 1.7. The plot at the top was generated using a raised cosine signaling

pulse. The plot at the bottom was produced using a Franks’ pulse. The same sequence

of input symbols4, 7,−1,−5,−3, . . . , 7, 1, 1 was used to generate both plots. The

samples, which are taken at 4 times the symbol rate, are marked with an x. There

is no timing offset. The samples at the correct sampling times are surrounded by a

square.

In the top plot there is no ISI at the decision times. The samples surrounded by

a square hold the symbol values, 7,−1,−5,−3, . . . , 7, 1, 1. In the bottom plot the

samples halfway between symbols are zero. The amplitude of the waveform is not

constant but varies slowly with respect to the symbol rate. In contrast with the top

waveform, significant ISI is present at the decision times, and the symbols can not be

4The symbols are real (a[k] and not (a[k], b[k]) since PAM is used instead of QAM (only one
carrier is transmitted instead of two.))
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recovered using that waveform.

The Gardner detector performs very well on digital signals that are produced

using a Franks’ pulse. This was reported in [17], where D’Andrea proposed a feedback

synchronizer that uses the Gardner detector as the TED, and a prefilter that is placed

in front of the feedback loop to reshape the QAM signal. The reshaping was performed

by cascading the matched filters in the transmitter and receiver with the prefilter.

This turned the Nyquist’s pulse into a Frank’s pulse. This synchronizer, referred to

as the Franks/Gardner synchronizer in this thesis, does not produce self-noise after

converging to the right timing. In the case of no AWGN, the middle sample half-way

between symbols is zero, and the Gardner detector output remains zero. The system

is nearly clock jitter free when the SNR is high. AWGN causes the middle sample to

fluctuate around zero, which creates timing jitter.

Franks’ pulses can also be effectively employed in feedforward synchronizers, as

reported in [33].

1.3.4 Non-data-aided frequency offset estimation

Frequency offset is estimated with no knowledge of the timing and the received

symbols by measuring the average power at the output of the matched filter [20]. The

average power is maximum when there is no frequency offset.

There are basically two algorithms to estimate the frequency offset, an iterative

algorithm and a recursive algorithm. In the iterative algorithm the frequency offset

parameter is quantized and a power measurement is computed for each value of the

quantized parameter. A power measurement is obtained by despinning the input

signal using the trial value and feeding the resulting signal to the matched filter. The

trial value that yields maximum average power at the matched filter output is the

estimate.

The frequency offset estimate obtained with the iterative algorithm described

previously has a special meaning since it is an estimate of the maximum likelihood

18



estimate of the likelihood function obtained by averaging out the data and timing

offset unwanted parameters. In the recursive algorithm the frequency offset for which

the derivative of the likelihood function is zero is recursively found by using a feedback

loop. Such frequency offset estimator is referred to as a quadricorrelator, and has been

extensively investigated [44] [45] [46] [47]. A spectral analysis of the noise can be found

in [44]. A condition to avoid a Gaussian noise-induced bias is reported in [45]. Design

criteria for self-noise free operation in tracking mode as well as optimum performance

in presence of Gaussian noise are derived in [46] [47].

A block diagram depicting the synchronization process in an all-digital QAM re-

ceiver is given in Figure 1.8. The frequency offset, df0, can be estimated using a

quadricorrelator. The quadricorrelator produces an estimate, d̂f0, of the frequency

offset by processing the matched filters’ and Frequency Matched Filters’ (FMF) out-

puts. A small residual frequency offset, df0 − d̂f0, remains after downconversion to

baseband. Timing can be recovered in the presence of this small frequency offset.

The downsamplers isolate the decision variables after timing has been recovered. The

decision variables, shown in Figure 1.8 as xI [k] and xQ[k], are estimates of a[k] and

b[k]. Coherent detection of the transmitted symbols requires removing the residual

frequency offset df0− d̂f 0. This offset is removed by applying phase corrections to the

NCO. The phase corrections are provided by a decision directed loop that estimates

the angle between the vectors xI [k] + jxQ[k] and â[k] + jb̂[k], where (â[k], b̂[k]) is the

symbol decision at the output of the slicers.

1.3.5 QPSK symbol recovery in presence of a frequency off-

set

Quadrature Phase Shift Keying (QPSK) is a special case of QAM, where the

symbols have the same magnitude. By magnitude it is meant that the magnitude

of the complex number, a[k] + jb[k], where (a[k], b[k]) is the symbol. In the sequel

symbols are written as complex numbers (i.e., a[k] + jb[k]) instead of as a 2-tuples

(i.e., (a[k], b[k])). QPSK has 4 symbols. It is customary to set the magnitude of the
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Figure 1.8 Synchronization in an all-digital QAM receiver.

transmitted symbols to 1, which makes the values of the symbols for QPSK equal to√
2

2
(1 + j),

√
2

2
(1− j),

√
2

2
(−1 + j), and

√
2

2
(−1− j). A plot in the complex plane of

the vectors corresponding to the transmitted symbols is shown in Figure 1.9. Clearly

all four vectors have a magnitude of 1. The vector angle is either 45o, −45o, 135o or

−135o. The angle between two symbols is either ±90o or 180o.

The effect of a phase or a frequency offset on the detection of the transmitted

symbols can be visualized by plotting the decision variables in the complex plane.

Such a plot, often referred to as a constellation plot, is shown in Figure 1.10 for

three cases. Figure 1.10(a) is the case of perfect synchronization, Figure 1.10(b) is

the case of a phase offset of 20 degrees, and Figure 1.10(c) is the case of a frequency

offset of 1 % of the symbol rate. The SNR, Eb/N0, was equal to 20 dB for all three

constellation plots and each plot was drawn using 2000 decision variables.

In Figure 1.10(a) the constellation consists of 4 clouds of points, each of them being
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Figure 1.9 QPSK symbols plotted as vectors in the complex plane.

centered at one of the 4 symbol locations. The deviations of the decision variables

from the symbol locations are due to the Gaussian noise corrupting the signal. Clearly

from Figure 1.10(b), a phase offset of 20 degrees causes a rotation of the constellation

by 20 degrees. It can be seen from Figure 1.10(c) that a frequency offset causes the

constellation to spin. For a frequency offset of 1 % of the symbol rate, the spinning

rate is equal to 0.01 ∗ 360o = 3.6o per symbol interval.

In the QPSK system of interest in this research, the preamble in the packet is

used to find timing [22]. Residual timing offsets may be present after the preamble

has been processed, but they will be small and can be neglected. The problem is the

residual frequency offset that remains after processing the preamble. This will cause

the constellation to spin during the processing of the payload.

A widely-used method to recover the data in presence of a phase offset or even

a small frequency offsets is differential detection. This method requires differential

encoding in the transmitter. Differential encoding consists of mapping the data bits

over two transmitted symbols instead of one. The angle between the two transmitted

symbols is used as a means to convey the information. The angle between symbols is
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Figure 1.10 QPSK constellations with (a) perfect synchronization, (b) presence of
a phase offset equal to 20o , (c) presence of a frequency offset equal to
1 % of the symbol rate, Eb/N0 = 20 dB.
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referred to as the modulating phase. From Figure 1.9 this angle can take on values

0o, +90o, −90o, and 180o.

Systems that use differential encoding have a transient at start-up. The system is

initialized by first transmitting one of the four symbols. This first symbol will serve

as the reference for the transmission of the second symbol, which then will act as the

reference for the transmission of the third symbol, and so on. If the modulating phase

is equal to 0o, the reference symbol is sent a second time. If the modulating phase

is equal to +90o (respectively −90o, 180o), the symbol that is +90o (respectively

−90o, 180o) away from the reference symbol is transmitted. In the receiver, the

modulating phase is recovered by simultaneously processing the current and previous

decision variables. The processing consists of generating a new decision variable,

referred to as the differential decision variable, whose angle is the angle between the

two successive decision variables. It is obtained with a complex multiplication of the

current decision variable and the complex conjugate of the previous decision variable.

The differential decision variable is rounded to the closest of 0o, +90o, −90o, or 180o,

and that rounded phase is taken to be the transmitted modulating phase.

Differential detection is insensitive to a phase offset, but is sensitive to a fre-

quency offset. A frequency offset in differential detection translates into a rotation

of the differential decision variables. This rotation places the differential decision

variables closer to the decision boundaries, which increases the likelihood of making

an error when detecting the modulating phases. This point reinforces the impor-

tance of estimating the frequency offset as accurately as possible, with the infor-

mation in the preamble. Several nearly efficient algorithms were proposed in that

regard [25] [24] [23] [48] [49]. These algorithms were devised under the assumption

that timing had been perfectly recovered. This does not restrict the use of these

algorithms. From an implementation point of view timing is usually found before

complete reception of the preamble. All samples that have been received to that

point are stored in memory. Timing information is then used to resample the stored

signal before it is passed to the frequency offset estimator.
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Under the conditions of perfect timing and knowledge of the symbols, the problem

of estimating the frequency offset reduces to the estimation of the frequency of a

complex sinusoid. Tretter derived an estimator that approaches the Cramer-Rao

Bound (CRB) for reasonably large SNRs [25].

Tretter’s estimator requires phase unwrapping. Kay [24] derives an estimator,

which also approaches the CRB for reasonably large SNRs, but does not need phase

unwrapping. The angle between two consecutive samples is used instead of the angles

of the samples. Taking the difference colors the noise. However the noise is whitened

by using a window, which makes Kay’s algorithm mathematically equivalent to Tret-

ter’s algorithm.

Tretter’s and Kay’s estimators attain the CRB for high SNRs. Improvements to

these estimator were proposed in [23] [48] [49]. The proposed estimators approach the

CRB at lower SNRs. Improvements come from extending the computation of phase

differences to samples that are 2 symbol intervals apart, 3 symbol intervals apart and

so on.

A different strategy to reduce the probability of making an error is to improve

the differential detection scheme. In differential detection, which is referred to in the

sequel as the conventional differential detection, the previous decision variable, which

is corrupted by noise, serves as the reference to detect the current modulating phase.

In coherent detection the reference is noise-free so for moderate to high SNRs the

noisy reference in conventional differential detection results in a 3 dB performance

loss over coherent detection.

In [27] a technique referred to as multiple-symbol differential detection, is proposed

to recover some of the loss associated with the conventional differential detection. The

algorithm consists of jointly processing M decision variables to find using an iterative

search the most likely M − 1 modulating phases that were transmitted.

Timing/frequency estimators for QPSK have also been proposed for a preamble-

less coherent demodulator [50] [51]. The received burst is stored in memory for a

24



two-pass scheme. Timing recovery and frequency offset estimation occur in the first

pass. Following resampling and despinning, phase acquisition occurs in the second

pass by using only the first half of the burst. Demodulation starts in the middle of

the burst with two feedback loops. One loop processes the second-half of the burst

by moving forward through the RAM. The other loop processes the first half of the

burst by moving backward through the RAM.

1.4 Research problems and thesis outline

Three synchronization-related problems are investigated in this research:

• Self-noise reduction in non-data-aided feedback synchronizers.

• Timing jitter analysis of the Franks/Gardner synchronizer.

• Detection of QPSK symbols in presence of a frequency offset.

1.4.1 Self-noise reduction in non-data-aided feedback syn-

chronizers

A block diagram of the Franks/Gardner synchronizer is shown in Figure 1.11.

Notice that the resampler of the timing recovery loop follows the prefilter. The

reshaping of the signal by the prefilter causes distortions in the form of ISI, so the

output of the resampler in the timing recovery loop does not recover the symbols

even if the sampling occurs at the correct times. In the Franks/Gardner synchronizer

a second resampler is placed after the matched filter. The delay block mirrors the

delay of the prefilter.

More is said at this point about the prefiltering performed in the Franks/Gardner

synchronizer. The reason is that an alternative method to Franks’ that also mitigates

self-noise is proposed in Chapter 2.

The nice feature of waveforms produced with a Franks’ pulse is the presence of

zeros half-way between symbols (see Figure 1.7 on page 17). A condition for this to

25



Input Matched
Prefilter

Delay Resampler

Resampler

TED

Loop
processing

filter

To
data
recovery

Timing recovery loop

Figure 1.11 Gardner / Franks’ synchronizer block diagram.

occur at the output of the prefilter is that the overall pulse, p(t), of the cascaded

matched filters and prefilter verifies p(kT +
T

2
) = 0 for all k. Applying the inverse

Fourier transform relation yields

p(kT +
T

2
) =

1

2π

∫ +∞

−∞
P (jΩ)ejΩ(kT+ T

2
)dΩ

=
1

2π

+∞∑
l=−∞

∫ −2πl
T

+ π
T

−2πl
T

− π
T

P (jΩ)ejΩ(kT+ T
2

)dΩ,

where P (jΩ) is the Fourier transform of p(t).

Applying the change of variable Ω = Ω +
2πl

T
results in

p(kT +
T

2
) =

1

2π

∫ + π
T

− π
T

+∞∑
l=−∞

P (j(Ω− 2πl

T
))ej(Ω− 2πl

T
))(kT+ T

2
)dΩ

=
1

2π

∫ + π
T

− π
T

+∞∑
l=−∞

(−1)lP (j(Ω− 2πl

T
))ejΩ(kT+ T

2
)dΩ. (1.1)

A sufficient condition for (1.1) to be zero for all k is that
+∞∑
l=−∞

(−1)lP (j(Ω− 2πl

T
)) = 0.
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For P (jΩ) limited to a bandwidth that is less than 2π/T , the condition reduces to

P (jΩ) = P (j(Ω− 2π

T
)), 0 ≤ Ω <

2π

T
. (1.2)

This condition, which was initially derived by Franks [43], applies to a non-causal

pulse, and states that the Fourier transform of the pulse must be even around π
T
.

For matched filters with a square-root raised cosine frequency response with roll

off factor r, D’Andrea proposed in [17] the following frequency response

HP (jΩ) =

⎧⎨⎩ 1
T
GN(j(Ω− 2π

T
)) 0 ≤ Ω < 2π

T

1
T
GN(j(Ω + 2π

T
)) −2π

T
< Ω < 0,

(1.3)

for the prefilter, where GN(jΩ) is the raised cosine function.

With a prefilter defined as in (1.3), the Fourier transform of the overall shaping

pulse p(t) is

P (jΩ) =

⎧⎪⎨⎪⎩
T

4
cos2

[
π

2r

( |Ω|T
π
− 1

)]
,
π

T
(1− r) ≤ |Ω| ≤ π

T
(1 + r)

0, elsewhere

(1.4)

and in the time-domain the shaping pulse is given by [17]

p(t) =
sin rπt/T

4πt/T (1− (rt/T )2)
cos

πt

T
. (1.5)

The pulse p(t) was used to generate the bottom waveform shown in Figure 1.7.

Plots of GN(jΩ), HP (jΩ), and P (jΩ) are shown in Figure 1.12 for r = 0.5 and

T = 1. Only the positive frequencies are shown. Clearly P (jΩ) verifies (1.2) since it

is even about Ω = π.

Practical systems require p(t) to be causal. p(t) can be made causal by delaying

and truncating it. Delaying p(t) by t0 yields pt0(t) = h(t − t0) cos(
πt

T
− πt0

T
), whose

Fourier transform is Pt0(jΩ) = P (jΩ)e−jΩt0 . Pt0(jΩ) does not verify (1.2), but a

27



0 pi / 2 pi 3 pi / 2 2 pi
0

0.5

1

G
N
(j Ω)

H
P
(j Ω)

P( j Ω)

Ω

F
re

q
u
en

cy
re

sp
on

se
s

Figure 1.12 Frequency responses of D’Andrea’s prefilter (HP (jΩ)) along with raised
cosine function (GN(jΩ)), and frequency response of shaping pulse
(P (jΩ)) with r = 0.5 and T = 1.

condition (for causal pulse) is derived by observing that waveforms produced with

pt0(t) are zero at times t0 +T/2+kT . From (1.1) with kT + T
2

replaced by kT + T
2
+ t0

produces

p(kT +
T

2
+ t0) =

∫ + π
T

− π
T

+∞∑
l=−∞

(−1)lP (j(Ω− 2πl

T
))ej(Ω− 2πl

T
))(kT+ T

2
+t0)dΩ. (1.6)

and the condition becomes

Pt0(jΩ) = e−j
2π
T
t0Pt0(j(Ω−

2π

T
)), 0 ≤ Ω <

2π

T
. (1.7)

Therefore by delaying and truncating a non-causal impulse, a practical FIR pre-

filter can be built such that the frequency response of the overall pulse verifies (1.7).

The problem with reshaping the signal to force zero-crossings is that a relatively

long Finite Impulse Response (FIR) filter is required to implement the prefilter.

From (1.3) a digital implementation of the prefilter requires its length to be equal
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to the length of the filter resulting from cascading matched filters in transmitter and

receiver. It is common to use a matched filter in the transmitter that is 20 symbols

long to limit leakage to the adjacent frequency bands.

In addition to the long FIR filter, the symbols are lost in this reshaping and an

additional resampler is required for recovering the data. In this research a different

approach than D’Andrea’s is taken to reveal an economical way to reduce the self-

noise.

In Chapter 2 a novel filtering technique to mitigate self-noise in the early-late and

Gardner detectors is proposed. This technique consists of incorporating a few single-

pole filters inside the detector instead of using a prefilter, as in the Franks/Gardner

synchronizer. The modified detectors are referred to as enhanced detectors. An

analysis of the steady state self-noise of the enhanced early-late detector is also carried

out. In Chapter 3 the increase in performance obtained with the enhanced early-late

detector is assessed in closed-loop operation. Performance comparisons with other

detectors is also the object of Chapter 3.

1.4.2 Timing jitter analysis of the Franks/Gardner synchro-

nizer

The impact of applying Franks’ prefilter to feedforward synchronizers has been

recently analyzed in [33] [31], where it is shown that the modified Lee’s feedforward

synchronizer [39] is nearly self-noise free when the prefilter is used. In [31] it is found

that the square detector proposed by Oerder and Meyr [18] performs the best in the

class of non-data aided feedforward synchronizer. These papers also provide thorough

analyses of the timing jitter by deriving closed-form expressions for the jitter variance.

No thorough analysis of the timing jitter could be found in the literature for

the class of non-data-aided feedback synchronizers that are equipped with Franks’

prefilter. In this class the Franks/Gardner synchronizer exhibits the best perfor-

mance [52]. In Chapter 4 the timing jitter of the Franks/Gardner synchronizer is an-

alyzed to yield a closed-form expression for the detector’s noise power spectrum. From
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this expression the power spectrum of the timing jitter can be determined from knowl-

edge of the frequency response of the timing recovery loop. A simple equation to es-

timate the timing jitter variance in closed-loop systems with small bandwidths is also

derived. Performance comparisons between the Franks/Gardner feedback synchro-

nizer and the Oerder/Meyr feedforward synchronizer show that the Franks/Gardner

synchronizer outperforms the Oerder/Meyr feedforward synchronizer.

The increase in performance of the Franks/Gardner synchronizer over the Oerder/Meyr

synchronizer was established by plotting the timing jitter variances of both synchro-

nizers as well as the Modified Cramer-Rao Bound (MCRB). The MCRB is a looser

bound than the Cramer-Rao Bound (CRB). However it is often used as it is simpler

to evaluate than the CRB. The MCRB was derived by D’Andrea [53]. The deriva-

tion was done in the case of a continuous-time signal. This thesis deals with digital

signals, so the MCRB for timing offset is rederived in Appendix A in the case of a

discrete-time signal that is sampled at a rate greater than or equal to the Nyquist

rate.

1.4.3 Detection of QPSK symbols in presence of a frequency

offset

An improvement to the conventional differential detection scheme was proposed by

Divsalar in [27]. In conventional differential detection the kth transmitted modulating

phase, denoted by ϕk, is detected in the receiver by essentially selecting for ϕk the

value, ϕ̂k, that maximizes the metric, Re{rkr∗k−1e
−jϕ̂k

}
, where ϕ̂k can be either 0o,

90o, −90o or 180o, rk and rk−1 are the current and previous decision variables, and

Re{·} returns the real part. Divsalar expands this metric to allow for the detection

of multiple modulating phases simultaneously.

Divsalar proposed a decision rule to jointly detect M − 1 modulating phases in

presence of a phase offset. This rule, which for M = 2 is the same as the decision

rule previously given for conventional differential detection, was obtained by using

the maximum likelihood criterion. The probability of making an error is minimized
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if Divsalar’s rule is applied to jointly detect M − 1 modulating phases in presence of

an unknown phase offset. For M = 5 and a SNR of Eb/N0 = 13 dB, an improvement

in performance of 1.5 dB over conventional differential detection was reported in [27].

Essentially the improvement in performance comes from observing more than

two decision variables before making a decision on the modulating phases. This is

illustrated with an example where numerical values were chosen for decision variables,

rk, rk−1, and rk−2, and Divsalar’s decision rule [27] with M = 3 was applied to detect

ϕk and ϕk−1. For M = 3 the decision rule is: select the values ϕ̂k and ϕ̂k−1 from the

possible values for ϕk and ϕk−1 that maximizes Re{dϕ̂k,ϕ̂k−1

}
, where

dϕ̂k,ϕ̂k−1
= rkr

∗
k−1e

−jϕ̂k + rk−1r
∗
k−2e

−jϕ̂k−1 + rkr
∗
k−2e

−j(ϕ̂k+ϕ̂k−1).

Figure 1.13 is a plot that shows three values for the decision variables, rk, rk−1,

and rk−2, and three vectors. The three dϕ̂k,ϕ̂k−1
vectors shown are d0o,90o , d90o,90o , and

d0o,180o .

If conventional differential detection is used to decide ϕk and ϕk−1 then from

Figure 1.13, the values obtained would be ϕ̂k = 90o and ϕ̂k−1 = 0o since rkr
∗
k−1 has

an angle of 110o and rk−1r
∗
k−2 has an angle of 40o. Divsalar’s rule with M = 3 yields

ϕ̂k = 90o and ϕ̂k−1 = 90o, which differ from the values obtained with conventional

differential detection. The reason d90o,90o is chosen over both d0o,90o and d0o,180o is

that it has the largest real part. In this case Divsalar’s rule yields different values for

ϕk and ϕk−1 than the conventional detection.

An intuitive explanation for the difference is that the angle of rkr
∗
k−2 should be

close to 90o if ϕk = 90o and ϕk−1 = 0o. However the angle is equal to 150o, which is

closer to 1800 than 90o, and ϕ̂k = 90o and ϕ̂k−1 = 90o seems to be a better choice as

confirmed by the decision rule.

Despite the iterative search, which can be easily implemented in QPSK as 90o

rotations do not require multiplications, a significant number of multiplications is
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Figure 1.13 Example using Divsalar’s rule withM = 3 to detect modulating phases,
ϕk and ϕk−1, using decision variables, rk, rk−1, and rk−2.

required to implement Divsalar’s decision rule especially if M is large. For M = 5

10 complex multiplications are needed to detect 4 modulating phases, which gives a

ratio of 2.5 complex multiplications per modulating phase.

In this research a different approach than Divsalar is taken. The proposed detec-

tor offers fast carrier synchronization and 2 dB improvement over differential detec-

tion [54], while it still remains a low-complexity detector that is suitable for FPGA

implementation. The proposed detector is described in Chapter 5.
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2. Enhanced Feedback Synchronizers

2.1 Introduction

The problem with non-data-aided feedback synchronizers is that they produce

self-noise. An efficient solution to mitigate self-noise is Franks’ prefiltering technique.

However the prefilter takes the form of a long FIR filter, which consumes significant

hardware resources.

In this research an approach different from Franks’ is taken to reduce self-noise in

feedback synchronizers. Franks’ technique consists of reshaping the signaling pulse to

force mid-symbol zero-crossings into the signal. In his approach Franks does not con-

sider whether or not the reshaping removes timing information. Should the reshaping

remove timing information, then the channel noise would have a greater effect on the

timing jitter.

The approach taken here is to derive an equation for the input-output characteris-

tic of the detector. The detector is isolated from the timing recovery loop. The input

signal has a fixed timing offset. The early-late detector was chosen for the deriva-

tion as the mathematic was believed to be more manageable than with the Gardner

detector. The derivation of an equation for the input-output characteristic reveals

the spectral location of the timing information and an inexpensive way to reduce the

self-noise while preserving most of the timing information [52].

Chapter 2 is organized as follows. A description of the early-late detector operation

is given in Section 2.2. This description is followed by an analysis of the early-late

detector in Section 2.3. The closed-form expression for the input-output characteristic
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or S-curve is also given in that section. From this analysis a novel filtering technique

to mitigate self-noise is proposed in Section 2.4 to enhance the early-late detector.

The performance of the enhanced detector is measured with a computer simulation. A

closed-form expression for the steady state self-noise power spectrum of the enhanced

detector is derived in Section 2.5. In Section 2.6 it is shown how to incorporate the

proposed self-noise reduction technique into the Gardner detector.

2.2 Principle of operation of the early-late detector

The early-late detector estimates the timing offset using two samples per symbol.

One sample is taken before the decision variable. One sample is taken after the

decision variable. The timing offset, εT , is estimated with [x2
I(kT+D+εT ) − x2

I(kT−
D+εT )] +[x2

Q(kT+D+εT ) − x2
Q(kT−D+εT )], where xI(kT+εT ) and xQ(kT+εT )

are the in phase and quadrature decision variables, kT are the instants of time when

the eye is maximally opened, and D specifies the difference in time between the

decision variables and the early/late samples. Usually D = 0.25T . This choice makes

the detector the most sensitive to a timing offset.

The amount of self-noise produced by the early-late detector depends on the trans-

mitted symbol sequence. The early-late detector works very well if the symbol se-

quence is such that the signal is a sinusoid. This is illustrated in Figure 2.1, where

a noise-free BPSK signal with alternating +1,−1 symbols1 is shown. The samples

are marked with either a circle or a star. The sampling rate is exactly four times the

symbol rate. In Figure 2.1(a) timing is perfect (i.e., εT = 0). The decision variables

are marked with a star. The sampling times are correct so the decision variables hold

the symbols. The early sample and late sample that form a pair are on either side of

the decision variables. The difference between late and early samples after squaring

is x2(kT + 0.25T ) − x2(kT − 0.25T )] = 0 for all k.

In Figure 2.1(b) the sampling rate is still four times the symbol rate, but the timing

offset is εT = −0.125T . The difference between the squares of the late and early

1In BPSK, one carrier is transmitted and the symbols reduce to a[k], where a[k] = ±1.
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Figure 2.1 Examples of waveforms producing no self-noise.
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Figure 2.2 Input-output characteristic of early-late detector in the case of an al-
ternating +1,−1 symbol pattern.

samples on either side of the decision variable is x2(kT +0.25T −0.125T ) − x2(kT −
0.25T − 0.125T )] = 1/

√
2 for all k.

Note that in the case of an alternating symbol pattern, the sampled waveform

can be mathematically expressed as cos( π
T
(T

4
n + εT )). For that particular symbol

pattern the early-late detector output remains constant, free of self-noise. The input-

output characteristic of the detector is simply obtained by evaluating x2(kT+0.25T−
εT ) − x2(kT − 0.25T − εT )] for different timing offsets, εT . This curve is shown in

Figure 2.2. The curve is zero at εT = 0 and odd about zero. Note that the point,

εT = 0, serves as the equilibrium point of the feedback loop. Timing is adjusted inside

the loop to force the timing offset toward zero. The sensitivity of the detector to the

timing offset depends on the slope of the input-output characteristic at εT = 0. This

curve, which was obtained for an input signal with alternating symbols, characterizes

the amount of timing information contained in this particular signal.

In the case of interest in this thesis, which is the transmission of random data

(i.e., non-data-aided timing recovery), the input-output characteristic curve, which
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Figure 2.3 Example of a waveform producing self-noise (εT = 0).

in this case is commonly referred to as the S-curve [55], is not derived as easily as

in the case of an alternating symbol pattern. The reason is that the output of the

detector is noisy. Several outputs of the detector are needed to estimate the S-curve

at one point. The detector outputs are averaged as a means to reduce the noise and

estimate the S-curve at that timing offset. Theoretically if the average is long enough,

this is equivalent to taking the expectation of the detector output.

The necessity of averaging several detector outputs to find the S-curve becomes

obvious when looking at a signal generated with random symbols. In Figure 2.3 a

noise-free BPSK signal is shown, where the displayed symbols are 1, 1, 1,−1,−1, 1.

It can be seen from Figure 2.3 that even though the timing is correct, the detector

output varies widely. The large variations at the output depend on the data sequence

that generated the received signal. For this reason the detector noise is referred to as

data-dependent or pattern-dependent noise or self-noise. The origin of the self-noise

is the lack of correlation between the early and late samples in the case of random

symbols. An analysis of the detector output in the case of the transmission of random

symbols is the object of Section 2.3. This analysis leads to of a closed-form expression
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for the S-curve equation.

2.3 Analysis of the early-late detector

An early-late detector circuit is shown in Figure 2.4. Two early-late detectors are

shown. The detector at the top of the figure processes the in phase branch signal

and is referred to as the in phase detector. The detector at the bottom of the figure

processes the quadrature branch signal and is referred to as the quadrature detector.

Both detectors are identical.

There are two system parameters, M and m, both of which are positive integers.

The early and late signals are obtained by downsampling the input signal by M . The

system parameter, m, which is less than M , sets the time between the early and late

samples to 2m samples. Therefore the early signal is produced by delaying the input

signal by 2m samples before downsampling by M . Typically M is 4 and m is 1.

After being delayed by m samples the decision variable is also downsampled by M .

The decision variable is not used by the early-late detector, but the purpose of the

detector is to control the sample time of the decision variable.

The in phase branch input signal is xI((n + m)T/M + εT ) and the quadrature

branch input signal is xQ((n + m)T/M + εT ). The late signal (after downsampling

by M to retain only the samples at index n = Mk) is xI((k + m
M

+ ε)T ) for the in

phase branch and xQ((k + m
M

+ ε)T ) for the quadrature branch. The early signals

(again after downsampling by M) are xI((k − m
M

+ ε)T ) and xQ((k − m
M

+ ε)T ). The

decision variables are xI(kT + εT ) and xQ(kT + εT ).

The output of the in phase detector is denoted by ε̂I [k]T and the output of the

quadrature detector is denoted by ε̂Q[k]T .

The in phase early-late detector output is noisy due to the random nature of the

data. A convenient representation for ε̂I [k]T involves separating the noise component

from the timing information. The timing information is provided by the S-curve of
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Figure 2.4 Early-late detector circuit.
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the detector, and ε̂I [k]T can be written as

ε̂I [k]T = gI(εT ) + nI(kT ),

where gI(εT ) is the S-curve of the in phase detector evaluated at εT , and nI(kT ) is

the detector’s self-noise, which is equal to ε̂I [k]T − gI(εT ). Other sources of noise,

such as Additive White Gaussian Noise (AWGN), are normally present. The analysis

that follows only considers self-noise, which is the dominant noise, and the AWGN

has been neglected.

The S-curve is the expected value of the detector output and

gI(εT ) = E
{
x2
I((k +

m

M
+ ε)T )

}
− E

{
x2
I((k −

m

M
+ ε)T )

}
, (2.1)

where E{·} denotes the expectation operator.

Similarly the S-curve equation for the quadrature detector is given by

gQ(εT ) = E
{
x2
Q((k +

m

M
+ ε)T )

}
− E

{
x2
Q((k − m

M
+ ε)T )

}
, (2.2)

and the S-curve for the combined detectors obtained by summing both outputs is

g(εT ) = gI(εT ) + gQ(εT )

= E
{
x((k +

m

M
+ ε)T )x∗((k +

m

M
+ ε)T )

}
− E

{
x((k − m

M
+ ε)T )x∗((k − m

M
+ ε)T )

}
= P ((k +

m

M
+ ε)T )− P ((k − m

M
+ ε)T ), (2.3)

where x(t) = xI(t) + j ∗ xQ(t) is the complex signal at the output of the matched

filters, and P (t) = E{x(t)x∗(t)} is the average power of x(t) evaluated at t.

From (2.3) finding an equation for the S-curve, g(εT ), boils down to finding

an expression for the average power, P (t), of x(t). In the presence of a frequency
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offset, ∆f , the complex signal becomes x(t)ej2π∆ft. The average power is then

E{x(t)ej2π∆ftx∗(t)e−j2π∆ft} = P (t), which is the average power of x(t). This shows

that the detector is insensitive to a frequency offset, and timing recovery can take

place in presence of a frequency offset with no performance degradation.

2.3.1 Theoretical derivation of S-curve

An expression for the average power, P (t), of the baseband QAM signal is obtained

as follows.

P (t) = E{x(t)x∗(t)}
= E{x2

I(t)}+ E{x2
Q(t)}. (2.4)

Since xI(t) and xQ(t) are independent with identical statistics then P (t) = 2E{x2
I(t)}.

The continuous-time signal, xI(t), is given by

xI(t) =

+∞∑
l=−∞

a[l]h(t− lT ), (2.5)

where h(t) is the impulse response of the cascaded matched filters in the transmitter

and receiver.

Replacing xI(t) in P (t) by the expression for xI(t) given in (2.5) produces

P (t) = 2E

⎧⎨⎩
[

+∞∑
l=−∞

a[l]h(t− lT )

]2
⎫⎬⎭ . (2.6)

Expanding the sums and using the linearity property of the expectation operator

yields

P (t) = 2
+∞∑
l=−∞

+∞∑
m=−∞

E{a[l]a[m]}h(t− lT )h(t−mT ). (2.7)

41



The symbols (a[k], b[k]) are independent and

E{a[l]a[m]} =

⎧⎨⎩ 0, l �= m

σ2
a, l = m,

so

P (t) = 2σ2
a

+∞∑
l=−∞

h2(t− lT ). (2.8)

From (2.8) P (t) = P (t + T ) so P (t) is periodic with period T and P (εT ) =

P (kT + εT ). From (2.8)

P (εT ) = 2σ2
a

+∞∑
l=−∞

h2((l + ε)T ). (2.9)

From Parseval’s theorem [56] with the integration over 2π beginning at −(1− r)π

P (εT ) =
2σ2

a

2π

∫ (1+r)π

−(1−r)π
|H(ejω; εT )|2dω, (2.10)

where H(ejω; εT ) is the Discrete-Time Fourier Transform (DTFT) of h((l + ε)T ). A

closed-form expression for H(ejω; εT ) is derived in Appendix B for the case that h(t)

is a square-root raised cosine pulse.

Using (B.4) in Appendix B the integrand in (2.10) can be expressed as

|H(ejω; εT )|2 =

⎧⎪⎨⎪⎩
1, −(1− r)π ≤ ω ≤ (1− r)π,
cos2(π

εT

T
) + sin2(π

εT

T
) sin2(

π

2r
(
ω

π
− 1)), (1− r)π ≤ ω ≤ (1 + r)π.

(2.11)

Substituting (2.11) into (2.10) results in the closed-form expression for P (εT )
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Figure 2.5 QAM signal average power curve as a function of εT .

given by

P (εT ) = 2σ2
a

[
1

2π

∫ π(1−r)

−π(1−r)
1dω

+
1

2π

∫ π(1+r)

π(1−r)
cos2(π

εT

T
) + sin2(π

εT

T
) sin2(

π

2r
(
ω

π
− 1))dω

]

= 2σ2
a

[
1− r

2
sin2(π

εT

T
)

]
. (2.12)

A plot of the average power, P (εT ), as a function of εT is shown in Figure 2.5.

The average power is maximum at εT = 0 (instant of time when the eye is maximally

opened), is even about εT = 0, and is decreasing for |εT | < 0.5T . The early-late

detector exploits the property that the average power of the QAM signal is an even

concave down function around the correct decision time.

A closed form expression for the S-curve can now be derived using (2.12).
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Figure 2.6 S-curve of the detector.

From (2.12) and (2.3) the S-curve of the detector is given by

g(εT ) = −rσ2
a

[
sin2

(
π

(
εT

T
+
m

M

))
− sin2

(
π

(
εT

T
− m

M

))]
(2.13)

After applying the trigonometric identities sin2(a) = 1
2
− 1

2
cos(2a) and cos(a ± b) =

cos(a) cos(b)∓ sin(a) sin(b), (2.13) reduces to

g(εT ) = −rσ2
a sin(2π

m

M
) sin(2π

εT

T
). (2.14)

A plot of the S-curve, g(εT ), as a function of εT is shown in Figure 2.6. The

S-curve is the same, except for a scaling factor, as the curve obtained in the case of

the deterministic symbol pattern of +1,−1 (see Figure 2.2 on page 36). From (2.14)

the scaling factor depends on the variance of the transmitted symbols, the ratio
m

M
,

and the roll off factor, but is not affected by the order of the modulation.
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2.4 Novel self-noise reduction technique for the early-late

detector

2.4.1 Enhancing the early-late detector

The frequency response of an undersampled (sampled at the symbol rate) raised

cosine impulse response is given in (B.4). From (2.11), it can be seen that |H(ejω; εT )|2
only depends on εT in the interval (1 − r)π ≤ ω ≤ (1 + r)π radians/sample. The

latter means that the power in the frequency band from −(1− r)π to (1− r)π radi-

ans/sample is independent of the sample time. Suppressing the early and late signals

in that frequency band does not change the difference, P ((ε+ m
M

)T )− P ((ε− m
M

)T ),

and therefore does not change the S-curve of the detector.

If the detector is enhanced with ideal high-pass filters placed after the downsam-

plers but prior to the squarer as illustrated in Fig. 2.7, and if the ideal high-pass

filters have pass band corner at (1− r)π radians/sample, then the term,
∫ π(1−r)
−π(1−r) 1dω,

in (2.12) is replaced with
∫ π(1−r)
−π(1−r) 0dω, and the average power, which applies to the

signals inside the enhanced detector, is equal to

PE(εT ) = 2σ2
a[r −

r

2
sin2(π

εT

T
)], (2.15)

where the subscript E symbolizes enhanced.

Since PE(εT ) and P (εT ) only differ by the constant 2σ2
a(1 − r), the difference,

PE((ε+ m
M

)T )−PE((ε− m
M

)T ), is equal to the difference, P ((ε+ m
M

)T )−P ((ε− m
M

)T ).

Therefore the S-curve for the enhanced detector is the same and is given by (2.14).

However the average power is reduced by 2σ2
a(1−r), which translates into a significant

reduction in self-noise as discussed in Section 2.4.3.

2.4.2 Verification of theoretical results

Equation (2.14) was verified with a computer simulation using the Simulink/Matlab

program for both the early-late and enhanced early-late detectors.
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Figure 2.7 Early-late detector enhanced with high-pass filters.

The in phase and quadrature components of a 64QAM signal were generated with

four samples per symbol (i.e., M = 4). The early and late signals were taken from

samples adjacent to the decision variables (i.e., m = 1). The roll off factor was set

to r = 0.1. The symbols, (a[k], b[k]), were mutually independent with a[k] and b[k]

uniformly distributed over the alphabet {−7,−5,−3,−1, 1, 3, 5, 7}.

To validate (2.14) the simulation was performed with a nearly ideal high-pass filter

placed in the early-late detector (see Figure 2.7 for the placement of the high-pass

filters). The high-pass filter does not require a linear phase response since the detector

estimates the timing offset with a power measurement (see (2.10)). The high-pass

filter was implemented with an efficient structure, specifically a 12th order elliptic

filter with a natural frequency of (1 − r)π = 0.9π radians/symbol, 0.1 dB ripple in

the pass-band, and 60 dB attenuation in the stop-band. The frequency response of

the filter is shown in Figure 2.8.

The 64QAM signal was generated with a timing offset. The timing offset was

varied from −0.5T to 0.5T seconds in steps of 0.0625T seconds. A Plot of the S-

curve and the simulation results is shown in Fig. 2.9. The simulation results for the
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Figure 2.8 Frequency response of the 12th order elliptic filter.
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Figure 2.9 S-curve of the detector with two sets of simulation results marked with
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early-late detector are marked with a star. The simulation results for the enhanced

early-late detector are marked with a circle. Each point is the average of 500, 000

detector outputs. Close agreement between simulation and theoretical results confirm

the validity of the theoretical results.

2.4.3 Practical implementation of the enhanced early-late

detector

The early-late detector is operated inside a feedback loop. Enhancing the early-

late detector with high-order high-pass filters will affect the stability of the loop

in addition to increasing the complexity of the implementation. A more practical

approach is to approximate the ideal high-pass filter with a single-pole high-pass

filter to enhance the detector. Four single-pole filters are required, two for the in

phase detector (one to filter the early signal and another one to filter the late signal)

and two for the quadrature detector.

In this Section the timing error variance of the enhanced early-late detector is

measured with a computer simulation, and compared to that of the conventional early-

late detector (i.e., detector with no enhancement in the form of high-pass filters). The

measurement is performed by applying a digital QAM signal with no timing offset

(i.e., εT = 0) to the early-late detector circuit shown in Figure 2.4 on page 39. The

measurement performed is not the same as measuring the timing jitter of the closed

loop system (early-late detector operated in a feedback loop) since the filtering effect

of the loop is not taken into account in this measurement. However such measurement

is performed to isolate the performance of the enhanced detector. The performance

of the enhanced detector in a closed-loop system is the object of Chapter 3.

Self-noise is normally reduced by adding a low-pass filter at the output of the

detector. In the closed-loop system the feedback loop acts as the low-pass filter. To

better assess the improvement gained by adding filters to the detector’s structure,

the simulations are performed by placing a low-pass filter at the detector’s output.

The timing error variance is measured by estimating the variance at the output of the
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low-pass filter, and dividing it by the square of the slope of the S-curve at εT = 0 to

obtain a measurement with units T2. The input signal was a 64QAM signal generated

with random data, and with 4 samples per symbol interval.

The low-pass filter was a single-pole low-pass filter. Simulations were performed

by varying the bandwidth of the low-pass filter from 0.12 radians/symbol-interval

down to 0.05 radians/symbol-interval. In terms of the position of the pole in the

z-plane, the pole was moved from zLPF = 0.88 to zLPF = 0.98 in steps of 0.01.

One set of measurement was generated with the conventional detector, and four

sets of measurements were generated with the enhanced detector. The pole of the

single-pole high-pass filters in the enhanced detector was placed at z = −0.85 for

the first set of measurements, at z = −0.9 for the second set, and z = −0.95 for

the third set of measurements. The fourth set of measurements used a 12th order

elliptic (high-pass) filter, i.e., the filter used in Section 2.4.2 to approximate an ideal

high-pass filter.

The variance of the (zero-mean) output of the low-pass filter was estimated by

squaring and averaging 500, 000 outputs. Dividing it by the square of the slope of the

S-curve at εT = 0 was straightforward in the case of the conventional system since

the S-curve equation was known. In the case of the enhanced system, the S-curve

slope at εT = 0 was determined through simulations. In contrast with the ideal high-

pass filter, the single-pole high-pass filter alters the S-curve because its magnitude

response is not constant for (1− r)π < ω < π radians/sample. This means that some

timing information is lost when filtering the detector’s signals.

The measurements obtained with the conventional detector were used as a ref-

erence to determine the improvement in performance (in dB) obtained with the en-

hanced detector.

In Figure 2.10 the improvements in dB (reduction of the timing error variance)

obtained with the enhanced detectors are plotted against the bandwidth of the low-

pass filter following the detector. Four curves are shown. The dotted curve, which
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Figure 2.10 Performance of enhanced detector as a function of the bandwidth of
the low-pass filter.

is at the bottom, is the improvement in performance when the 12th order high-pass

filter is used. The three other curves show the increase in performance when the

single-pole high-pass filters are used. The dash-dotted curve shows the improvement

when the pole is placed at z = −0.85. The solid line shows the improvement when

the pole is at z = −0.9, and the top curve (dashed line) shows the improvement when

the pole is located at z = −0.95.

Significant reduction in timing jitter is obtained by enhancing the detector with

single-pole high-pass filters. This graph shows that improvement is gained even when

the low-pass filter has a bandwidth of 0.3 % of the symbol rate. The increase in

performance is significantly better with the single-pole high-pass filter than with the

12th order elliptic filter despite the loss in timing information resulting from using

that filter. Also, the performance increases as the pole is moved toward z = −1. This

suggests that most of the timing information is concentrated near ω = π radians /

symbol-interval.
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2.5 Steady state self-noise analysis

The improvement in self-noise reduction is also assessed by finding a closed-form

expression for the steady state self-noise of the enhanced detector. To simplify the

analysis, an ideal high-pass filter is considered in place of the single-pole high-pass

filter. The analysis that follows assumes the timing offset is zero, i.e., εT = 0. The

detector’s output, in the absence of AWGN, is self-noise only. This output is given

by

ysn(kT ) = nI(kT ) + nQ(kT )

= x2
I((k +

m

M
)T ) + x2

Q((k +
m

M
)T )− x2

I((k −
m

M
)T )− x2

Q((k − m

M
)T ).

(2.16)

An expression for the steady state self-noise power spectrum is obtained by evalu-

ating an ensemble average in the frequency domain [57]. The power spectrum of the

self-noise, denoted by Ssn(e
jω), is given by

Ssn(e
jω) = lim

N→∞
1

2N + 1
E{|Ysn(ejω)|2}, (2.17)

where Ysn(e
jω) =

∑N
k=−N ysn(kT )e−jωk is the discrete-time Fourier Transform of

ysn(kT ) truncated at k = ±N . It is shown in Appendix C that

Ssn(e
jω) = σ4

d

{
2

π

∫ π

−π
[U+(θ, ω)− U−(θ, ω)] [U+(θ, ω)− U−(θ, ω)]∗ dθ

− 12(A+ 1)

5(A− 1)

∣∣H+(ejω)⊗H+(ejω)−H−(ejω)⊗H−(ejω)
∣∣2} , (2.18)

where ⊗ denotes the circular convolution operation, the star, ∗, denotes the conjugate,

U+(θ, ω) = H(ejθ; +m
M
T )H(ej(ω−θ); +m

M
T ),

U−(θ, ω) = H(ejθ;−m
M
T )H(ej(ω−θ);−m

M
T ), H+(ejω) = H(ejω; +m

M
T ),

H−(ejω) = H(ejω;−m
M
T ), and A is the modulation order (i.e., A = 64 for 64QAM).

A closed-form expression for (2.18) was derived for the early-late detector en-
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hanced with an ideal high-pass filter. It is derived under the restriction that the

roll off factor is less than 0.5, i.e., r ≤ 0.5. With r ≤ 0.5, the circular convolutions

in (2.18) reduce to linear convolutions, which make the mathematic easier to manage.

The details of the derivations are given in Appendix D. The expression obtained

is

Ssn(e
jω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ4
d ×

r

π

{[
p1(

m

M
) + p2(

m

M
) cos(

ω

r
)
] [

2π − |ω|
r

]
−

[
p3(

m

M
) + p2(

m

M
) cos(

ω

r
) + p4(

m

M
) cos(

ω

2r
)
]
cos(2

m

M
ω)

[
2π − |ω|

r

]
−

[
p5(

m

M
) + p6(

m

M
) cos(2

m

M
ω) + p7(

m

M
) sin(2

m

M
|ω|)

]
sin(
|ω|
r

)

−
[
−2p4(

m

M
) cos(2

m

M
ω) + p8(

m

M
) sin(2

m

M
|ω|)

]
sin(
|ω|
2r

)

}
−σ4

A ×
12(A+ 1)
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The validity of (2.19) was verified with a computer simulation. The system de-

scribed in Section 2.4.3 was simulated to estimate the steady state self-noise power

spectrum of the early-late detector when it is enhanced with the high-pass 12th order

filter whose frequency response was plotted in Figure 2.8 on page 47. The data was

collected at the output of the detector prior to the low-pass filter.

The spectrum was estimated using Welch’s 50% overlapping method with Black-

man windowed blocks of length 8192 symbol intervals [58]. The Blackman window

was chosen to largely decrease the ripple in the stop band. The spectrum estimate is

plotted in Fig. 2.11 (solid curve) along with the theoretical curve (dashed line) for an

ideal high-pass filter. The close agreement between the curves strongly suggests that

(2.19) is correct.

An approximation to the steady state self-noise for small ω can be obtained with

a second-order MacLaurin Series. This approximation has only a second order term

since Ssn(e
jω) and its first derivative are zero at ω = 0. The approximation is

Ssn(e
jω) ≈

(
p12(

m
M

)

r
+ p13(

m

M
) +

A+ 1

A− 1
p14(

m

M
)+(
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M
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A+ 1

A− 1
p16(

m

M
)

)
r +
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A− 1
p17(

m

M
)r2

)
ω2, (2.20)
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Figure 2.11 Power spectra of early-late detectors enhanced with ideal (dashed
curve) and real (solid curve) high-pass filters with m = 1, M = 4,
r = 0.1, and A = 64.

where

p12(
m

M
) = −2 cos4(π

m

M
) + 2 cos2(π

m

M
),

p13(
m

M
) = − 32m

3πM
sin(π

m

M
)
(
2 cos3(π

m

M
) + cos(π

m

M
)
)
,

p14(
m

M
) = − 48

5π2

(
− cos4(π

m

M
) + cos2(π

m

M
)
)
,

p15(
m

M
) =

(m
M

)2 (
6 cos4(π

m

M
) + 4 cos2(π

m

M
) + 6

)
,

p16(
m

M
) =

48m

5πM
sin(π

m

M
)
(
cos3(π

m

M
) + cos(π

m

M
)
)
,

p17(
m

M
) = −12m2

5M2

(
cos2(π

m

M
) + 1

)2

.

For commonly used
m

M
=

1

4
, (2.20) reduces to

Ssn(e
jω) ≈
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(2.21)

for small ω.
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Figure 2.12 Power spectra of early-late detector and enhanced early-late detector
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M
= 0.25, r = 0.1

and A = 64.

Fig. 2.12 shows the self-noise power spectra (after dividing by the square of the

S-curve slope at εT = 0) for both the early-late detector in its conventional form and

in its enhanced form when the pole of the single-pole high-pass filters is placed at

z = −0.9 and z = −0.98. All three power spectrum curves were obtained through

simulations. The theoretical curve, which applies to an enhancement in the form

of an ideal high-pass filter, is shown with a dashed line. Simulations showed that

this theoretical curve approaches the curve for the conventional early-late detector

as ω tends to 0. This means that equation (2.19) or the low-frequency approxima-

tions, (2.20) or (2.21), can be used to estimate the power spectrum of the self-noise

in the conventional (not enhanced) early-late detector for ω near zero.

2.6 Applying the self-noise reduction technique to the Gard-

ner detector

The early-late and the Gardner detectors operate on similar principles. The early-

late detection exploits the property that the average power of the QAM signal is an

even concave down function about the correct decision times (Figure 2.5 on page 43).

The Gardner detector exploits the property that the average power of the QAM signal
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Figure 2.13 Gardner detector enhanced with high-pass filters.

is an even concave up function around the time midway between correct decision

times. Since both estimators use the power curve, the proposed enhancement for the

early-late detector can also be applied to the Gardner detector. Figure 2.13 shows

where the high-pass filters are placed inside the Gardner detector.
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3. Performance of Enhanced Synchronizers and

Other Feedback Systems

3.1 Introduction

The primary objective of this chapter is to evaluate the performance of the en-

hanced early-late detector in closed-loop operation. The early-late detector provides

timing estimates at the symbol rate, which are processed by the loop filter before

being used to control the resampler. The primary interest of this thesis is the steady

state operation, i.e., timing has been acquired and the resampling rate is synchronized

to (an exact multiple of) the symbol rate.

The quality of the enhanced detector is assessed by using the variance of the

timing jitter as the performance measure. A simulation of the timing recovery loop

using the Simulink / Matlab software is performed to determine at the symbol rate

the timing error of the resampled signal after the loop has reached steady state. A

large number of measurements are collected to obtain an accurate estimate of the

timing jitter variance.

Also in Chapter 3 the performance of the enhanced detector is compared to the

performance of other feedback systems. To establish fair comparisons among the

different systems, the systems are operated with identical noise bandwidths. Building

a loop to operate at a given bandwidth is a tedious task especially if the order of the

loop is high. Design equations and algorithms are provided to relate the parameters

of the feedback loop to the closed-loop bandwidth in the cases of first, second, and

third-order loops.
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Chapter 3 is organized as follows. A description of the principle of operation of

a timing recovery loop is given in Section 3.2. The mode of interest is steady state

and the functional operation of the loop can be described with a linear model. Linear

models for the non-linear detectors, which are the conventional, the enhanced early-

late detectors, the Gardner detector and the enhanced Gardner detectors are given

in Section 3.3. The systems of interest, which are described in Section 3.6, include

loops of order 1, 2, and 3. Linear analyses of first, second, and third-order loops are

given in Section 3.4. The results of a computer simulation to verify the validity of

the loops and detector models are reported in Section 3.5. The performance results

of the simulated systems are given in Section 3.6.

3.2 Principle of operation of a timing recovery loop

Insight into the functional operation of a digital timing recovery loop is gained by

describing a classical analog phase-locked loop. The term “classical” refers to a loop

that is used to recover a single tone.

A block diagram of a classical phase-locked loop is shown in Figure 3.1, where

the block labeled PD is the phase detector and the block labeled VCO is the voltage-

controlled oscillator. The PD produces an error signal by comparing the phase of

the periodic input signal against the phase of the VCO signal. This error signal is

filtered by the loop filter. The filtered signal is used to adjust the frequency of the
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VCO in a direction that reduces the phase error [59]. After the loop has locked, the

error signal (PD output) has a DC component if the frequency of the input signal

and the nominal frequency of the VCO (i.e., the frequency when the control voltage

is 0) are not equal. This DC error serves to adjust the VCO frequency so it is the

same as the frequency of the input. A phase difference between the input signal and

the VCO output is necessary to generate the DC error.

A block diagram of a digital timing recovery loop is shown in Figure 3.2. In an

actual QAM system the loop contains two resamplers, one to process the in phase

signal and one to process the quadrature signal. Also there are two TEDs, one

to produce a timing offset estimate of the signal at the output of the “in phase”

resamper and one to produce a timing offset estimate of the signal at the output of

the “quadrature” resampler. The sum of both estimates is fed to the loop filter. Here,

the diagram is simplified by only showing one resampler and one TED.

The digital loop includes two closed-paths, labeled as primary path and secondary

path. The primary path is the path that includes gain K. The secondary path is the

path that includes gain K2. All blocks in the primary path of the digital loop have

an equivalent block in the analog loop. The equivalent of the loop filter and gain K

blocks are obvious. The equivalent of the timing error detector (TED) is the phase

detector (PD). The equivalent of the VCO takes the form of two blocks in the digital

loop: the resampler block and the control block.

The TED, which is either the early-late or Gardner detector, estimates the time

difference between the current sampling points and the correct sampling points. The

TED’s estimate is used to increase or decrease the rate at which the accumulator in

the control block rolls over. This accumulator serves to generate the new sampling

times. The roll over rate is increased or decreased in a direction that reduces the

timing offset. As shown in Figure 3.2 the accumulator is incremented by 1 at each

positive edge of the system clock, equal to 1/Tr
1. The value 1 corresponds to the VCO

1In reality, the accumulator is clocked at twice the sampling rate (i.e., 2/Tr) to allow resampling
at a faster rate than 1/Tr. The explanation given here is simplified by only considering the case of
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center frequency of the analog phase-locked loop. The accumulator rolls over when

its content is greater than or equal to 1. So if the input to the control block is zero,

the accumulator exactly rolls over at the receiver sampling rate, and the resampling

rate is equal to 1/Tr.

By using a free-running oscillator to sample the received signal, sampling rates

1/Tr in the receiver and 1/Tx in the transmitter are close but not equal. Just as a

DC error is necessary in the analog phase-lock loop system, a DC error is necessary

to have the resampling rate equal to 1/Tx. The accumulator located in the secondary

path acquires this DC value. The DC value is not known at start up. The accumulator

content slowly builds up during timing acquisition. Gain K2 is much smaller than

gain K so only a small portion of the timing offset estimate is used to update the

accumulator at each sample. After timing has been acquired and the loop operates in

steady state, the accumulator contains this DC value, which is equal to (Tr/Tx − 1).

The accumulator in the control block generates the new sampling times, as ex-

plained in the following with the help of a graph.

The top graph in Figure 3.3 shows a ramp that is labeled “Transmitter ramp”.

This ramp is essentially a plot of the phase of the sampling clock in the transmitter,

as a function of time. The phase, denoted by ΦT (t), has unit of cycles, and increases

by one (cycle) every Tx seconds so the slope of the ramp is equal to the sampling rate,

1/Tx. This ramp could have been digitally generated in the transmitter (see points

marked with an “x” on the graph) by using an accumulator that is incremented by

one at each positive clock edge of the transmitter sampling clock, so each time a

sample is generated in the transmitter.

To resample at a sampling rate of 1/Tx in the receiver, the accumulator in the

control block, which is clocked at 1/Tr, has to be incremented such that its output is

a ramp that has a slope equal to the slope of the transmitter ramp. For a sampling

rate,
1

Tr
=

3

2

1

Tx
, a ramp with the same slope is generated if, at every positive edge

a resampling rate that is smaller than 1/Tr.
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of the receiver sampling clock, the accumulator is incremented by 2/3. The digital

ramp obtained, which is shown in the bottom graph of Figure 3.3 (labeled “Receiver

ramp”) has the same slope as the transmitter ramp (top graph) although the ramp

is evaluated at different instants of time, namely Tr = 2
3
Tx, 2Tr = 4

3
Tx, 3Tr = 6

3
Tx, . . ..

The phase in the receiver is denoted ΦR.

The resampling is implemented as follows. The accumulator rolls over every time

its content becomes greater than or equal to 1, and only stores the fractional part

of ΦR. The resampler is a time-variant filter whose coefficients are set when the

accumulator rolls over. The remainder (content of accumulator after it rolls over)

gives the position of the new sample with respect to the received sample, and is

used to set the filter’s coefficients. For example, with Tr = (2/3)Tx, the counter

rolls over at 2Tr, and its content is 1/3 (see bottom graph of Figure 3.3). This

indicates the new sample is located 1
3
Tx seconds in time before the received sample.

Unfortunately the time unit in the receiver is Tr and not Tx, so a time conversion is

needed to find the position of the new sample relative to the received sample. Since

Tr/Tx = 2/3 (given by the accumulator in the second path), the new sample is located

(1/3)× (3/2)Tr = (1/2)Tr seconds before the received sample so is half-way between

the received and previously received samples. The “Offset” input of the resampler is

set to −1/2 in that example.

The roll over detector block in Figure 3.2 on page 60 generates a pulse when the

accumulator rolls over. This pulse is used to enable the TED so the new sample

produced by the resampler gets loaded in the TED’s shift registers. The TED pro-

duces timing offset estimates at the symbol rate, 1/T , so its output is only valid

every T/Tx new samples. This means that the loop filter as well as the accumulator

in the secondary path must be enabled only every T/Tx new samples. As illustrated

in Figure 3.2, this is achieved with the use of a down-sampler by T/Tx. The input

to the down-sampler is the roll over detector’s signal. The down-sampler produces a

pulse every (T/Tx)
th input pulse.

This chapter is concerned with steady state operation, which occurs after the loop
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Figure 3.4 Linear model for digital timing recovery loop.

has converged and the accumulator in the secondary branch has settled. In this state,

the resampling rate is 1/Tx. The loop’s behavior in steady state is not affected by

taking 1/Tr = 1/Tx and setting the DC value (accumulator in secondary path) to zero.

A noise model for the timing recovery loop when 1/Tr = 1/Tx is given in Figure 3.4,

where the variable of interest is the timing offset, denoted by ε[k]. This timing offset

is constant. A non-constant timing offset would imply that 1/Tr �= 1/Tx. In the

rest of the chapter T = 1, and the timing offset is simply denoted by ε[k] instead of

ε[k]T . The output is denoted by ε0[k]. The conventional early-late or Gardner TED

is modeled as a gain, when in reality it is a non-linear device. The model for the

enhanced detector includes a low-pass filter in addition to the gain, as explained in

Section 3.3. The output of the detector is ε̂[k], and the AC component causes the

jitter. The models for the resampler and accumulator are identified in Figure 3.4.

Note that the secondary path of the timing recovery loop (see Figure 3.2 on page 60)

is not modeled, since in steady state, the primary path contributes to the jitter, and

the secondary path has very little effects on the jitter as gain K2 � K.
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Figure 3.5 Linear model for non-data-aided TED used in a feedback loop.

3.3 Linear models for the detectors

In this section both the early-late and Gardner detectors are linearized. The

function of the detector is to produce an output that is proportional to the timing

offset. Therefore the input to the detector’s model will be timing offset. The detector

produces noise that is modeled as additive. The analysis of the early-late detector is

done in Section 3.3.1. The analysis of the Gardner detector is carried in Section 3.3.2.

3.3.1 Early-late detector

A general model for a non-data-aided TED that is used in a feedback loop is given

in [55]. This model is used in the sequel to derive models for the early-late detectors.

As illustrated in Figure 3.5, the model consists of a gain, G, and a source of noise.

The gain, G, is the slope of the detector’s S-curve at ε = 0. The input to the model

is the timing offset, ε. G × ε models the signal component of the detector’s output.

The linear model for the conventional early-late detector is given in Figure 3.6, where

from (2.14), G = −2πrσ2
d (m = 1 and M = 4).

The model for the enhanced detector differs from the model of the conventional

detector. The incorporation of high-pass filters inside the detector (see Figure 2.7

on page 46) causes a delay in the response time when a change occurs. Following

a change to the input timing offset, it takes some time for the signal component of

the detector’s output to settle to G times the new timing offset due to the latency

introduced by the high-pass filters. This delay is modeled with the addition of an

appropriate filter.
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Figure 3.6 Linear model for conventional early-late detector where G = −2πrσ2
d.

A convenient way to find the appropriate filter is to analyze the output of the

detector for an input signal that does not produce self-noise. Recall from Section 2.2

that the detector output is noise-free if the input signal is a sinusoid with a frequency

of π radians/symbol-interval, which can be represented by cos(π
4
n+πε) (see Figure 2.1

on page 35). For such an input the downsampled early and late signals are respectively

early[k] = (−1)k cos(−π
4

+ πε)

late[k] = (−1)k cos(
π

4
+ πε).

For small timing offset the output of the early-late detector is

ε̂k = late2[k]− early2[k]

= cos2
(π

4
+ πε

)
− cos2

(π
4
− πε

)
≈

(
1√
2
− πε√

2

)2

−
(

1√
2

+
πε√

2

)2

≈ −πε− πε = −2πε. (3.1)

The squaring operation translates the signal component to baseband. In the case of

a detector enhanced with high-pass filters placed before the squaring operation, the

latency introduced by the high-pass filter can be modeled as latency occurring after

the squaring. The latency of a single-pole high-pass filter can be modeled with a

single-pole low-pass filter placed after the squarer. As illustrated in Figure 3.7, the

pole of the low-pass filter in the model is placed at z = a if the pole of the high-pass

filter in the enhanced detector is at z = −a.
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Figure 3.7 Modeling the effect of the high-pass filters in the case of a sinusoidal
input signal, ε� 1

For the sinusoidal input signal considered here, the insertion of high-pass filters

in the detector does not cause any loss of timing information. The reason is that

the early and late signals are tones with a frequency of π radians/symbol (see (3.1)),

and the high-pass filter gain at ω = π is equal to 1. Therefore the gain following the

low-pass filter in the model is simply −2π.

The input signal of interest in this thesis has random symbols. It is shown below

that the high-pass filters are modeled as in the case of an input sinusoidal signal, ex-

cept that the gain following the low-pass filter changes from−2π to G′, where G′ is the

slope of the altered S-curve at ε = 0. Recall from Chapter 2 that the approximation

to the ideal high-pass filter with a single-pole high-pass filter has the consequence of

removing some of the timing information. This loss in timing information translates

into a decrease in the slope of the detector’s S-curve at ε = 0.

The input signal can be decomposed into a sinusoid,
−G′

2π
cos(

π

4
n + πε), and a

signal, referred to as the noisy signal that is equal to the input signal minus that
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Figure 3.8 Linear model for the enhanced early-late detector.

sinusoid. For small timing offset (i.e., ε � 1), the detector is approximately linear,

and the principle of superposition applies. The output due to the input sinusoid,
−G′

2π
cos(

π

4
n + πε), is modeled as before except that the gain is G′ instead of −2π.

This is the signal component that is equal to the output of the S-curve evaluated at

ε. The signal referred to as the noisy signal only produces a zero-mean noise at the

output, and is modeled as additive noise.

The linear model for the enhanced detector is shown in Figure 3.8. The validity

of the models for both the conventional and enhanced detectors has been verified in

closed-loop operation, the results of which are presented in Section 3.5.

3.3.2 Gardner detectors

The general model for non-data-aided feedback synchronizers [55] is also used to

model the Gardner detector. The Gardner detector’s S-curve is similar to that of

the early-late detector. It has a sinusoidal shape, is odd and nearly linear about

ε = 0 [16]. This model is given in Figure 3.9, where the gain, Gg, is the slope of

the Gardner detector’s S-curve evaluated at ε = 0. This slope, which is a function

of the roll off factor and the variance of the symbols, was evaluated with a computer

simulation.

The model for the enhanced Gardner detector is similar to the model for the

enhanced early-late detector. The gain is denoted by G′
g, where G′

g is the slope of the

altered S-curve of the Gardner detector. This slope was evaluated with a computer

simulation. The model for the enhanced Gardner detector is given in Figure 3.10.
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Figure 3.9 Linear model for the Gardner detector.
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Figure 3.10 Linear model for the enhanced Gardner detector.

Note that the presence of a single-pole filter in the model of the enhanced detector

increases the loop order by 1. The order of the loop also increases if a single-pole

low-pass filter is placed at the output of the detector.

3.4 Linear analyses of the loops used in these systems

3.4.1 Closed-loop bandwidth of interest

Performance comparisons among the different systems were accurately obtained

by simulating the systems with identical closed-loop bandwidths.

There are several ways to define the closed-loop bandwidth. Here the definition

chosen is the one that corresponds to the noise bandwidth. The noise bandwidth,

BL, is defined as [59]

BL =
1

2

1

2π

∫ +π

−π
|H(ejω)|2dω, (3.2)

where H(z)|
z = ejω

is the closed loop frequency response.

The transfer function, H(z), is calculated below for first, second, and third-order

loops. Calculation of H(z) requires linearizing the loop by using the models that were
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derived in Section 3.3 for the early-late and Gardner detectors, and the loop model

given in Section 3.2.

3.4.2 Linear analysis of the first-order loop

A model for the first-order loop is shown in Figure 3.11, where the loop gain, GL,

is equal to G×K if the TED is the early-late detector and Gg ×K if the TED is the

Gardner detector.

The open-loop transfer function is then
GLz

−1

1− z−1
, and the closed-loop transfer

function is given by

H1(z) =
GLz

−1

1− (1−GL)z−1
. (3.3)

The root-locus plot [60] for the closed-loop system, H1(z), is shown in Figure 3.12.

The unit circle is shown with a dotted line. There is only one root-locus path, and

this path is shown with a thick line. The open-loop system has one pole at z = 1 and

a zero at −∞. For loop gains less than 2 the system is perfectly stable.

If h1[k] is the inverse Z-transform of H1(z), then from (3.2) and Parseval’s theo-
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Figure 3.12 Root-locus plot for first-order loop system.

rem [56], the noise bandwidth, BL, is given by

BL =
1

2

+∞∑
k=−∞

h2
1[k]. (3.4)

Equation (3.4) is solved to yield a simple expression that relates BL to the loop

gain, GL. From (3.3) using the z-transform pair, Aku[k]←→ z

z − A , it can be shown

that h2
1[k] = (

GL

1−GL

)2(1 − GL)2ku[k − 1], where u[k] is the unit step function. For

0 < GL < 2, the geometric series,
∑+∞

k=−∞ h2
1[k], converges and

BL =
1

2

(
GL

2−GL

)
≈ GL

4
for |GL| � 2. (3.5)

3.4.3 Linear analysis of the second-order loop

A model for the second-order loop is shown in Figure 3.13, where the loop gain,

GL, can take on values, G×K, Gg ×K, G′ ×K, or G′
g ×K, depending on whether

the TED is the early-late detector, the Gardner detector, the enhanced early-late

detector, or the enhanced Gardner detector. The low-pass filter models either the
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Figure 3.13 Model for second-order loop.

high-pass filters in the enhanced detector (in which case no low-pass filter is placed

at its output) or the single-pole low-pass filter placed at the output of the detector

(in which case the conventional detector is used).

The open-loop transfer function is
GL(1− a)z−1

(1− z−1)(1− az−1)
, and the closed-loop trans-

fer function is

H2(z) =
GL(1− a)z−1

1− (a+ 1−GL(1− a))z−1 + az−2
. (3.6)

The root-locus plot for H2(z) is shown in Figure 3.14. The poles of the open-loop

transfer function are shown with a “x” and the zeros are shown with a circle. There

is a zero at infinity, which is not shown in the Figure. As the loop gain increases,

the poles move toward each other along the real axis. They meet at z =
√
a. As

the gain increases further, the poles become complex conjugate pairs with one pole

traveling on the upper half-circle and the other pole traveling on the lower half-circle.

They meet again on the real axis at z = −√a. As the gain continues to increase, the

poles move in separate directions with one traveling toward the origin and the other

traveling toward minus infinity.

The systems that were simulated were critically damped systems. The system

becomes critically damped when the two poles are at the breakaway point, which is
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1−√a
1 +
√
a

Figure 3.14 Root-locus plot for second-order loop system.

z =
√
a. The value of the loop gain, GL, is the one that makes the discriminant of

the second-order equation equal to zero, i.e., 1− (a+ 1−GL(1− a))z−1 + az−2 = 0.

This yields

GL =
1−√a
1 +
√
a
. (3.7)

For a critically-damped system, using (3.7), H2(z) reduces to

H2(z) =
(1−√a)2z

(z −√a)2
. (3.8)

An expression for the noise bandwidth, BL, as a function of the loop gain, GL, is

determined as follows. From (3.8), and using the z-transform pair, kAku[k] ←→ Az

(z − A)2
,

it is found that

h2[k] =
(1−√a)2

√
a

k(
√
a)ku[k], (3.9)

and

h2
2[k] =

(1−√a)4

a
k2aku[k]. (3.10)
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Using the geometric series,
∞∑
k=1

k2Ak =
A(A+ 1)

(1−A)3
(|A| < 1), and substituting (3.10)

into (3.4) after replacing h1[k] by h2[k], the noise bandwidth, BL, is given by

BL =
(1−√a)4(a+ 1)

2(1− a)3

=
(1−√a)(a+ 1)

2(1 +
√
a)(1 +

√
a)2

=
GL

2

(
1− 2

√
a

(1 +
√
a)2

)
, (3.11)

where (3.7) was used in the last substitution.

For small loop gains (i.e., |GL| � 1),
√
a ≈ 1,

2
√
a

(1 +
√
a)2
≈ 1

2
, and

BL ≈ GL

4
. (3.12)

3.4.4 Linear analysis of the third-order loop

A third-order loop has three poles. The simulated systems that contained a third-

order loop had an enhanced detector and a single-pole low-pass filter at the output

of the detector.

The analysis of the third-order loop is more complex than the analysis of the

second-order loop due to the presence of an extra pole. The linear analysis of the

loop is performed by considering two distinct cases:

Case A: The pole of the high-pass filters inside the detector is placed at the same

distance from the unit circle as the pole of the low-pass filter at the output of

the detector.

Case B: The pole of the high-pass filters is placed closer to or further away from the

unit circle than the pole of the low-pass filter.

A detailed analysis for case A is presented below. The results obtained are easily
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extended to case B.

• Case A analysis:

The poles are at distance, a, from the origin, with the pole of the low-pass filter

placed at z = a, and the pole of the high-pass filter placed at z = −a. The

linear model of the loop is shown in Figure 3.15, where the loop gain, GL, can

take on values, G′ ×K, or G′
g ×K.

The open-loop transfer function is
GL(1− a)2z−1

(1− z−1)(1− az−1)2
, and the closed-loop

transfer function is

H3(z) =
GL(1− a)2z2

(z − 1)(z − a)2 +GL(1− a)2z2
. (3.13)

The root-locus plot for H3(z) is shown in Figure 3.16. The double-pole at z = a

of the open-loop transfer function is shown with two ‘x’s and the double-zero

at the origin with two circles. There is also a pole at z = 1 and a zero at

infinity. As the loop gain increases, one of the poles at z = a and the pole at

z = 1 move toward each other, while the second pole at z = a moves toward the

origin, where its locus path ends. As in the case of the second-order loop, after

merging at the breakaway point, the two poles become complex conjugate, and

travel on upper and lower half-circles. After joining again on the real axis, the

poles separate. One locus path ends at the origin whereas the other path ends

at infinity.

For a critically-damped system, all three poles of H3(z) are on the positive real

axis with two poles at the breakaway point. For smaller order loops, simple

equations were derived to relate BL, GL, and a (see (3.11)). Here, no simple

equation could be found, so an iterative algorithm was devised to find numerical

solutions for GL and a, given a desired value, Bd
L, of the noise bandwidth.

A high-level data-flow diagram of the algorithm is given in Figure 3.17. The

algorithm is based on a dichotomic search to find a value for a that yields a

bandwidth BL that is within 1 % of Bd
L.
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Figure 3.15 Model for third-order loop - case A.

Breakaway point

1a

Figure 3.16 Root-locus plot for third-order loop - case A.
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Start (alow = 0, ahigh = 1)

a =
alow + ahigh

2

Find GL, p1, p2 such that:
p(x; a,GL) ≈ (x− p1)(x− p2)

2

Compute BL using GL, a, p1, p2

|BL − Bd
L|

?
< 0.01× Bd

L

BL

?
< Bd

L

Done
True

True

False

False

alow = a

ahigh = a

action1

action2

action3

action5

action4

Figure 3.17 High-level data-flow diagram for algorithm.
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The algorithm consists of several actions:

Action1: a is set to the mid-point value of (alow, ahigh). At the start, alow =

0, ahigh = 1, and a is set to 0.5.

Action2: For a critically damped system, the roots ofH3(z) are real. From (3.13),

they are the roots of the third order polynomial given by

p(x; a,GL) = x3 + (−2a− 1 +GL(1− a)2)x2 + (a2 + 2a)x− a2. (3.14)

Action2 consists of finding numerical solutions for GL and the polynomial

roots, given a and the condition that p(x; a,GL) can be written in the form

(x − p2)
2(x − p1) (e.g. p(x; a,GL) ≈ (x − p2)

2(x − p1)), where p2 is the

double-root at the breakaway point, and p1 the single root.

Action3: Compute BL using GL, a, p1, and p2.

Following Action3, two tests occur, the outcomes of which are:

Done: BL is within 1 % of Bd
L. The algorithm ends.

|BL −Bd
L| > 0.01×Bd

L and BL < Bd
L: An additional iteration is required with

a larger value for a. alow is set to a (action4).

|BL −Bd
L| > 0.01×Bd

L and BL < Bd
L: An additional iteration is required with

a smaller value for a. ahigh is set to a (action5).

Action2 and Action3 are now described in more details.

– Action2 description:

Solutions forGL, p1, and p2 are found with an iterative search. To facilitate

the search, an upper bound for GL is analytically derived, as follows.

Figure 3.18 shows realizations of p(x; a,GL) for different values of GL and

for a = 0.3. The curves displayed correspond to values of GL equal to 0.15,

0.207, 0.329, and 0.5. Notice that for GL > 0.208, the curves have only

one zero-crossing. In terms of the root-locus plot, two out of the three
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Figure 3.18 Realizations of p(x; a,GL) for a = 0.3 and different values of GL. Only
the portion of the curves between x = 0.2 and x = 0.9 is shown.

poles are complex conjugate. GL ≈ 0.207 is the value of interest since

p(x; a,GL) has a double root (p2 ≈ 0.64), and a single root (p1 ≈ 0.21).

For smaller values of GL, p(x; aGL) has three distinct roots.

Observe that for values of GL that are less than the value of interest, the

curves have two distinct points with zero slope. This situation remains

true until GL ≈ 0.329 (GL greater than the value of interest), where the

curve has only one point with zero-slope, before changing into a strictly

increasing function for larger values of GL. Thus, an upper bound, Gmax
L ,

for GL is obtained when the slope of p(x; aGL) is zero at only one point.

Mathematically,
dp(x)

dx
= 0 has a double root. Setting the discriminant to

zero, after some algebraic manipulations, it is found that Gmax
L is equal to

Gmax
L =

1 + 2a−√
3(a(2 + a))

(a− 1)2
. (3.15)
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Clearly from Figure 3.18, the value, GL, of interest verifies two conditions:

⎧⎨⎩ p(p2; a,GL) = 0,

dp(x; a,GL)

dx
|x=p2 = 0.

(3.16)

As done previously for a, GL is sought with a dichotomic search, where

the initial interval is (0, Gmax
L ), and the starting value is 0.5Gmax

L .

For a given GL, an iteration consists of computing the value of p2 such that
dp(x; a,GL)

dx
|x=p2 = 0. This is easily done since

dp(x; a,GL)

dx
is a second-

order polynomial. A test occurs to determine whether |p(p2; a,GL)| <
10−4, in which case the search ends. If the test fails, then another iteration

is needed. The range of the new interval for GL is determined by the sign

of p2.

– Action3 description:

An expression for BL in terms of GL, a, p1, and p2 is obtained by writing

H3(z) in the form

H3(z) =
GL(1− a)2

(z − p2)2(z − p1)
. (3.17)

After computing the inverse Z-transform of H3(z), (3.4) is used to yield an

equation for BL. The details of the calculations are given in Appendix E,

where it is found that

BL =
1

2

G2
L(1− a)4

(p2 − p1)2

[
p2

1

(p1 − p2)2

(
p2

2

1− p2
2

+
p2

1

1− p2
1

− 2
p1p2

1− p1p2

)
+

2p1

p1 − p2

(
p2

2

(1− p2
2)

2
− p1p2

(1− p1p2)2

)
+
p2

2(1 + p2
2)

(1− p2
2)

3

]
. (3.18)

This completes the description of the algorithm.

• Case B analysis:

The loop’s model and the root-locus plot are shown in Figures 3.19 and 3.20
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Figure 3.19 Model for third-order loop - case B.

respectively. The main difference from case A is that in case B the poles of the

open-loop system are distinct. In Figure 3.20, a first pole is shown at z = a,

a second pole at z = b, and a third pole at z = 1. Note that there are two

systems with the same model. One system has the pole of the low-pass filter at

z = a, and the pole of the high-pass filters at z = −b. The other system poles

of the low-pass and high-pass filters are respectively at z = b and z = −a.

The algorithm devised in case A can be used in case B provided that the fol-

lowing modifications are made:

1. b is fixed, and is passed to the algorithm along with Bd
L.

2. No changes to action1.

3. The third-order polynomial becomes

p(x; a, b, GL) = x3 +(−a− b− 1 +GL(1− a)(1− b))x2 +(a+ b+ ab)x− ab,
(3.19)

and the upper bound for GL is given by

Gmax
L =

1 + a + b−√
3(a+ b+ ab)

(a− 1)(b− 1)
. (3.20)
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1ab

Figure 3.20 Root-locus plot for third-order loop - case B.

4. In (3.18), the term, (1−a)4, is replaced with (1−a)2(1− b)2 to obtain the

new equation for BL.

The algorithm was used to compute the positions of the poles for different band-

widths, BL. The results are shown in Figure 3.21, where the bandwidths are expressed

in percentage of the symbol rate. Each curve shows a as a function of b for a given

BL. The plot shows that minimizing the response time (e.g. having the breakaway

point as close as possible to the origin) and maximizing noise reduction (e.g. having

the poles of both the low-pass filter and high-pass filters as close to the unit circle as

possible) occurs for a = b (i.e., case A).

3.5 Verification

The validity of the feedback loops models was verified by comparing for each model

the theoretical closed-loop amplitude response with measurements of this response

obtained through simulations. The feedback loop was implemented in Simulink. The

TED was the early-late detector. The resampler used an interpolation filter of length

30 samples, which was a truncated version of the impulse response,
sin πt/T

πt/T
[61].
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Figure 3.21 Position of the poles for different bandwidths, BL.

Two types of measurement were made. One set of measurement was obtained with

an input signal that does not produce self-noise in the early-late detector. Such signal

is a sinusoid at frequency π/4 radians/sample. This signal was produced by using the

alternating symbol pattern, −7, 7,−7, 7, . . .. The signal had 4 samples per symbol

interval, and the roll off factor was set to r = 0.1. Measurements were also performed

by feeding an 8-PAM signal with random symbols (4 samples per symbol interval and

r = 0.1). This signal produced self-noise in the early-late detector.

The closed-loop amplitude response was measured at several frequencies. The

timing offset was varied between −1/16 and 1/16 in a sinusoidal fashion at the fre-

quency of interest. This was realized by using a second interpolator that was identical

to the one in the loop, and that was placed in line with the input.

First, second and third-order loops were simulated in the case of no self-noise.

The (noise) bandwidth, BL, was set to 0.5 % of the symbol rate.

A first-order loop was simulated with the conventional early-late detector and
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no loop filter. From (3.5) the loop gain was equal to GL = 0.02 radians/symbol-

interval. In the case of an alternating symbol pattern, here 7,−7, 7,−7, . . ., the S-

curve equation of the detector is −72 sin 2πε (Section 2.2) so the slope of the S-curve

at ε = 0 was −98π.

A second-order loop was simulated with the enhanced early-late detector. In the

case of an enhanced detector, there is no low-pass filter in the loop for a second-order

system. The pole of the high-pass filters was placed at z = −a. From (3.7) the

loop gain was GL = 0.02 radians/symbol-interval, and a was equal to

(
1−GL

1 +GL

)2

=

0.9321. Note that the S-curve is not altered in that case, since the early and late

signals are sinusoidal signals at frequency π radians / symbol-interval, and the gain

of the high-pass filter is unity at that frequency.

A third-order loop was simulated with the enhanced early-late detector and with a

single-pole low-pass filter in the loop. The pole of the high-pass filter was at z = −a,
and the pole of the low-pass filter was at z = a. The parameters of the loop were

determined as follows. Using the algorithm defined in Figure 3.17 on page 77, with

BL = 0.005, numerical solutions for GL and a were found to be GL = 0.0185 and

a = 0.8848.

Each measurement consisted of recording 1256 samples of the timing error of

the resampled signal after the loop had reached steady state. Such signal was a

sinusoid at a frequency equal to the frequency used to vary the timing offset but with

a smaller amplitude due to the filtering effect of the loop. The frequencies chosen

for the measurements were all multiples of 1/1256 cycles/sample. The amplitude

of the sinusoid was estimated by computing the Fourier coefficient of the recorded

signal at the measurement frequency to determine the amplitude response of the

loop at that frequency. Plots of the closed-loop amplitude responses for the first,

second, and third-order loops are shown in Figure 3.22. These plots were obtained

by using (3.3), (3.8), and (3.13). The simulation results are marked with a ‘x’ for the

first-order loop, a ‘o’ for the second-order loop and a square for the third-order loop.
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Figure 3.22 First, second, and third-order closed-loop amplitude responses with
three sets of simulation results marked with ‘x’, ‘o’, and squares in the
case of no self-noise, and BL equal to 0.5 % of the symbol rate.
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The close agreement between the simulation results and the theoretical curves

confirm the validity of the linear models in the case of no self-noise. Notice that the 3

dB bandwidth of the first-order loop is smaller than the 3 dB bandwidth of the second

and third-order loops. This confirms that the 3 dB bandwidth parameter criterion to

establish comparison between the systems would not have been a good choice since

this parameter does not take into account of the roll off sharpness of the frequency

responses.

A third-order loop was simulated in presence of self-noise. The bandwidth, BL,

was set to 0.1 % of the symbol rate. A narrower bandwidth was used to restrict the

self-noise to occur within the linear region of the detector, i.e., to remain within 10%

of the symbol interval. This bandwidth was chosen after visually inspecting timing

error plots, which were obtained by simulating the third-order loop with different

bandwidths.

The third-order loop was simulated with the enhanced early-late detector and

with a single-pole low-pass filter in the loop. The pole of the high-pass filter was at

z = −a, and the pole of the low-pass filter was at z = a. The parameters of the loop

were determined as follows. Using the algorithm defined in Figure 3.17 on page 77,

with BL = 0.001, numerical solutions for GL and a were found to be GL = 0.0036

and a = 0.9761.

Each measurement consisted of recording 12 × 1256 samples of the timing error

of the resampled signal after the loop had reached steady state. An averaged pe-

riodogram [62] was used to estimate the amplitude of the sinusoid corrupted with

self-noise.

A plot of the third-order closed-loop amplitude response along with the simulation

results marked with a square are shown in Figure 3.23.

The close agreement between the simulation results and the theoretical curves

confirm the validity of the linear models in the case of no self-noise, and that the

linear analyses were done without error.
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Figure 3.23 Third-order closed-loop amplitude response with one set of simulation
results marked with squares in the case of self-noise and BL = 0.1 % of
the symbol rate.
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3.6 Performance of the systems

3.6.1 Description of the systems under evaluation

Systems containing either the early-late or Gardner detectors in their conventional

and enhanced forms were simulated. The Franks/Gardner synchronizer was simulated

as well as the Franks/early-late synchronizer. The simulated systems are described

below.

Conventional and enhanced early-late detectors

The conventional detector was simulated in both first-order and second-order

loops. The second-order system had a single-pole low-pass filter placed after the

output of the detector.

The enhanced early-late detector was simulated with and without a low-pass filter

placed after the detector’s output. Since the enhanced detector has a high-pass filter

that appears to be a low-pass filter, the response corresponds to that of a second-order

loop if there is no low-pass filter placed at its output, and a third-order loop if there

is a low-pass filter placed at its output.

Conventional and enhanced Gardner detectors

The Gardner detector was simulated in first-order and second-order loop systems

as in the case of the conventional early-late detector.

The enhanced Gardner detector was simulated in second-order and third-order

loop systems as in the case of the enhanced early-late detector.

Franks/Gardner synchronizer

The prefilter used in the simulation was a 161 tap FIR filter, which was obtained

with a least mean square fit to the frequency response given in (1.3) on page 27.

The Franks/Gardner synchronizer was simulated in a first-order loop and in a
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second-order loop using either none or one single-pole low-pass filter at the output of

the detector.

Franks/early-late synchronizer

The Franks/early-late synchronizer is identical to the the Franks/Gardner syn-

chronizer except that the Gardner detector is replaced with the early-late detector.

The Franks/early-late synchronizer was simulated in a first-order loop and in a

second-order loop as in the case of the Franks/Gardner synchronizer.

3.6.2 Simulation results

The systems previously described were implemented in Simulink. The resampler

used an interpolation filter, as described in Section 3.5. The input signal was a

64-QAM signal of length 16, 000 symbols, which was generated with 4 samples per

symbol and a roll off factor of 0.1. The 64-QAM signal was corrupted with additive

white Gaussian noise, the level of which was determined by the operating
Eb
N0

. The

ratio,
Eb
N0

, was varied in 1 dB step from 13 to 23 dB. The QAM signal was generated

with no timing offset. A step function timing offset of 0.25T was introduced at the

time of the 1000th symbol to strain the detector. The timing error of the resampled

signal was recorded at the symbol rate after the loop reached steady state.

Curves of tracking mode timing jitter variances versus Eb/N0 are shown in Fig-

ure 3.24 for a bandwidth, BL, of 0.1 % of the symbol rate. Six curves are plotted:

three are associated with the early-late detector, and three are associated with the

Gardner detector. The three curves associated with the early-late detector have data

points shown with a square. The three curves associated with the Gardner detector

have data points shown with a diamond.

The three curves for the early-late detector illustrate its performance in three

different systems. The dotted line marked with squares, which is the top curve in

the graph, is the performance of the conventional early-late detector. In this system,
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Figure 3.24 Normalized timing jitter (T = 1) variances for critically damped sys-
tems with a bandwidth equal to BL = 0.1 % of the symbol rate.

the loop was of order 1 with GL = 0.004. The solid line marked with squares shows

the performance of the enhanced early-late detector. The loop was of order 2 with

same loop gain, GL = 0.004. The pole of the high-pass filter was at z = −0.9841.

The dashed line marked with squares shows the performance of the Franks/early-late

synchronizer. The prefilter was placed in front of the resampler of the loop. The loop

was of order 1 with GL = 0.004.

The three curves for the Gardner detector illustrate its performance in the three

scenarios. The dotted line marked with diamonds shows the performance of the

conventional Gardner detector. The solid line marked with diamonds shows the per-

formance of the enhanced Gardner detector. The high-pass filter was the same as the
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one used to enhance the early-late detector. The dashed line marked with diamonds

show the performance of the Franks/Gardner synchronizer.

From these curves it can be seen that the Gardner detector outperforms the con-

ventional early-late detector. The self-noise is the dominant noise in both the early-

late and the Gardner detector since the variance of the jitter does not decrease as

Eb/N0 is increased in either case. When the two detectors are enhanced, the per-

formance of both improves. The timing jitter variance of the enhanced early-late

detector is nearly 8 dB lower than the timing jitter variance of the conventional

early-late detector for Eb/N0 = 23 dB. The Gardner detector looses its advantage

over the early-late detector since the performance of both detectors is nearly iden-

tical after enhancement. The Franks/Gardner and Franks/early-late synchronizers

perform very well with nearly identical timing jitter variances. These synchronizers

offer the best performance. However, the performance improvement comes at a cost

of a long FIR prefilter for each of the in phase and quadrature signal streams, and

two additional resamplers.

A small bandwidth (e.g. 0.1 % of the symbol rate) is an effective solution to

mitigate self-noise in a conventional detector. From Figure 3.24, the addition of single-

pole high-pass filters to the detector also proved to be an effective and economical

solution to further reduce the self-noise. However the problem with small bandwidths

is long acquisition times.

Bandwidths as large as 1 % of the symbol rate can be used provided that the loop

contains a low-pass filter that is placed at the output of the early-late detector to

filter the self-noise.

Simulation results with BL = 0.01 are given in Figure 3.25. The loops containing

either the conventional early-late or Gardner detectors were of order 2. The pole

of the low-pass filter was at z = 0.852. The loops for the enhanced detectors were

of order 3. The poles of the low-pass and high-pass filters were placed at the same

distance from the unit circle (case A in Section 3.4.4). The pole of the high-pass filters
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Figure 3.25 Normalized timing jitter (T = 1) variances for critically damped sys-
tems with a bandwidth equal to BL = 1 % of the symbol rate.

92



was at z = −0.7852 and the pole of the low-pass filter at z = 0.7852. The loop gain

was equal to GL = 0.0373. The Franks/early-late and Franks/Gardner synchronizers

were also equipped with a low-pass filter, which was identical to the one used in the

second-order loop (e.g. z = 0.852).

An improvement in performance is obtained by enhancing the detectors. The

timing jitter variance of the conventional early-late detector is reduced by about 4.5

dB over the 13 to 23 dB range of Eb/N0.
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4. Timing Jitter Analysis of the Franks/Gardner

Symbol Synchronizer

4.1 Introduction

In systems where AWGN is very small, the Franks/Gardner synchronizer works

very well. However in presence of significant AWGN the mid-samples are corrupted

with noise, as Franks’ prefilter can not force the noise to zero. The non-zero mid-

sample causes error in the output of the Gardner detector. This error is injected in

the loop and travels through the resampler. The end effect is timing jitter.

In this chapter the timing jitter in the Franks/Gardner synchronizer is analyzed

after the timing recovery loop has acquired timing and operates in steady state mode.

In this mode the timing jitter is stationary and is referred to as steady state timing

jitter. An analysis of the steady state timing jitter is undertaken by deriving a closed-

form expression for the Power Spectral Density (PSD) of the noise at the output of the

Gardner detector. From that expression the variance of the steady state timing jitter

is found using knowledge of the closed-loop frequency response. A simple equation is

derived to relate the steady state timing jitter variance to the system bandwidth for

small bandwidth systems. The performance of the Franks/Gardner synchronizer is

also compared to the performance of the Oerder/Mehr synchronizer when the latter

is equipped with Franks’ prefilter. This comparison reveals that the Franks/Gardner

synchronizer outperforms the Oerder/Mehr synchronizer.

Chapter 4 is organized as follows. In Section 4.2 models for the Gardner detec-

tor and the system containing the detector are given. A full characterization of the
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Gg

ng[k]

εT ε̂T [k]

Figure 4.1 Linear model for the Gardner detector.

Gardner detector’s model requires knowledge of the PSD of the noise produced by

the detector and the S-curve equation. Closed-form expressions for the noise PSD as

well as the S-curve equation are analytically derived in Section 4.3. A simple approx-

imation for the timing jitter variance in the case of a system with small bandwidth

is derived in Section 4.4. Verification of the Gardner detector’s model and the tim-

ing jitter equation is the object of Section 4.5. In Section 4.6 the performance of

the Franks/Gardner synchronizer and the Oerder/Mehr synchronizer when equipped

with Franks’ prefilter are compared against the MCRB.

4.2 System’s model

The linear model for the Gardner detector, which was given in Figure 3.9 on

page 69, is reproduced in Figure 4.1. The Gardner detector produces timing offset

estimates, ε̂T [k], at the symbol rate. The model is valid for a small input timing offset,

εT . The detector’s output is decomposed into two component: a signal component

and a noise component. The signal component is Gg × εT , where the gain, Gg, is

equal to the derivative of the slope of the S-curve of the detector at εT = 0, and the

noise component, ng[k], has statistical properties that depend on εT . Noise, ng[k],

originates from the Gaussian noise corrupting the QAM signal and the interaction of

the QAM signal with the noise inside the detector.

For a constant timing offset, εT , ng[k] is a stationary sequence. The model is

quite general and does not specify the PSD of ng[k] conditional to εT , nor the value

of Gg. The PSD of the noise and the gain, Gg, depend on the filtering applied to the
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0

z−1

1− z−1

F (z)

k

εjT [k]

ng[k]

Figure 4.2 Linear model of the digital timing recovery loop in the Franks/Gardner
synchronizer.

received signal prior to feeding it to the detector.

A model for the timing recovery loop of the Franks/Gardner synchronizer is given

next. This model uses the model of the Gardner detector previously described.

The linear model for a digital timing recovery loop, which was given in Figure 3.4

on page 64, is reproduced in Figure 4.2, where F (z) is the loop filter and
z−1

1− z−1

models the accumulator. This model applies to steady state operation. Steady state

operation is reflected in the model by setting the input, which is the timing offset, to

zero. The model clearly shows that the steady state timing jitter, denoted by εjT [k],

is caused by the Gardner’s detector noise, ng[k].

From the model given in Figure 4.2, one way to determine the PSD of ng[k] is to

calculate the conditional PSD of ng[k] for a given timing offset. The PSD is then ob-

tained by integrating the product of the conditional PSD and the Probability Density

Function (PDF) of the timing offset with respect to the timing offset. To do this the

PDF of the timing offset must be determined. This approach is somewhat impracti-
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F (z)
εjT [k]

k

Figure 4.3 Rearranged model of the timing recovery loop with noise reflected to
input.

cal since the PDF of the timing offset likely depends on the system bandwidth. An

easier method [55], which is pursued here, is to use an approximation. In practical

applications the steady state timing jitter is small, in which case the PSD of ng[k]

is approximately equal to the PSD conditional to a timing offset of zero. Let the

PSD of ng[k] be denoted by S(ejΩT ). Under the assumption that the timing jitter is

small, ng[k] is independent of the timing offset and can be moved outside the loop as

illustrated in Figure 4.3. The input of this rearranged model is ng[k]/Gg.

From the rearranged model shown in Figure 4.3, the variance of the timing jitter,

εjT [k], is simply given by

σ2
j =

1

2πG2
g

∫ π

−π
S(ejΩT )|H(ejΩT )|2d(ΩT ), (4.1)

where

|H(ejΩT )| = H(z)|z=ejΩT =
kGgF (z)z−1

1− (1− kGgF (z))z−1
|z=ejΩT

is the closed-loop frequency response and σ2
j has units of T 2.

Closed-form expressions for S(ejΩT ) and Gg are derived in Section 4.3.
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4.3 Linear model for the Gardner detector

The linear model shown in Figure 4.1 has parameter Gg and an additive noise

signal. A closed-form expression for the power spectrum of the Gardner detector’s

noise as well as an expression for Gg are analytically derived in this section.

4.3.1 Power spectral density of the model noise

Calculation of the PSD is a tedious task that demands attention to details, many

of which are subtle. The approach taken in this thesis is to find the DTFT of the

noise for a truncated sequence of length, N , then take the ensemble average of its

magnitude squared, and then take the limit as N goes to infinity in order to determine

the PSD.

The details of the derivation of the PSD, which is denoted S(ejΩT ), can be found

in Appendix F. The result, which has been checked by simulation, is given below.

For r ≤ 0.5, the PSD of ng[k] is equal to

S(ejΩT ) =

⎧⎪⎨⎪⎩
2

π

(
Ss×n(ejΩT ) + Sn×n(ejΩT )

)
, 0 ≤ ΩT ≤ 2rπ,

0, 2rπ < ΩT < π,

(4.2)

where

Ss×n(ejΩT ) = σ2
dσ

2
wI

∫ πr

ΩT−πr
(1 + cos θ) cos4 θ

2r
cos2 θ − ΩT

2r
dθ,

Sn×n(ejΩT ) = σ4
wI

∫ πr

ΩT−πr
(1 + cos θ − 2 sin

θ

2r
sin

θ − ΩT

2r
cos

θ

2
cos

ΩT − θ
2

)

× cos2 θ

2r
cos2 θ − ΩT

2r
dθ, (4.3)

where σ2
wI

is the variance of the real component of the low-pass equivalent bandpass

white Gaussian noise.
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4.3.2 Slope of S-curve parameter

A closed-form expression for the S-curve can be derived from Equation (25) in [16],

once the frequency response of the end-to-end filter is specified. The end-to-end filter

is obtained by cascading the two matched filters as well as the prefilter.

The S-curve equation, which is derived in Appendix G, is

g(εT ) =
96

π(64− 20r2 + r4)
σ2
d sin

π

2
r sin

2πεT

T
,

where σ2
d = E{a2[k]} = E{b2[k]} and a[k] + jb[k] are the transmitted symbols.

The slope of g(εT ) at εT = 0 is the parameter, Gg. It is given by

Gg =
dg(εT )

dεT
|εT=0 =

1

T

192σ2
d

64− 20r2 + r4
sin

π

2
r. (4.4)

4.4 Estimation of the timing jitter variance

The variance of the timing jitter can be computed using (4.1), (4.2), and (4.4)

along with numerical integration. In this Section an approximation to (4.1) is used

so that numerical integration can be avoided.

From (4.2) it can be shown that the noise power spectrum, S(ejΩT ), is maximum

at ΩT = 0, and has a slope of 0 at ΩT = 0. This means S(ejΩT ) can be approximated

by its value at ΩT = 0 in systems where the bandwidth is sufficiently small. Using

this approximation (4.1) simplifies to

σ2
j =

1

2πG2
g

S(ej0)

∫ 2πr

−2πr

|H(ejΩT )|2dΩT, (4.5)

The noise bandwidth, Bn, is by definition equal to (Section 3.4)

Bn =
1

4π

∫ 2πr

−2πr

|H(ejΩT )|2dΩT,
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which means (4.5) can be expressed as

σ2
j =

2

G2
g

× Bn × S(ej0). (4.6)

Evaluating (4.2) at Ω = 0 and after a few manipulations, it is found that

S(ej0) =
2

π
(σ2

d × σ2
wI

+ σ4
wI

)

∫ πr

−πr
(1 + cos θ) cos6 θ

2r
dθ. (4.7)

Evaluating the integral in (4.7) produces

S(ej0) =
1

π
σ2
wI

(σ2
d + σ2

wI
)

(
5πr

4
+

45 sinπr

36− r2(r2 − 7)2

)
. (4.8)

Substituting (4.4) and (4.8) into (4.6) yields

σ2
j = C(r)× Bn ×

σ2
wI

σ4
d

(
σ2
d + σ2

wI

)× T 2, (4.9)

where

C(r) =
2

π

(
64− 20r2 + r4

192 sinπr/2

)2 (
5πr

4
+

45 sin πr

36− r2(r2 − 7)2

)
. (4.10)

From Appendix F σ2
d = Es and σ2

wI
= N0/Ts, so

σ2
d

σ2
wI

=
EsTs
N0

, and (4.9) becomes

(σj/T )2 = C(r)× Bn

EsTs/N0

(
1 +

1

EsTs/N0

)
, (4.11)

where (σj/T )2 is the timing jitter variance normalized to the symbol period and is

unit-less.

For r < 0.1, C(r) ≈ 20

9π2r
, and

(σj/T )2 =
20

9π2r
× Bn

EsTs/N0

(
1 +

1

EsTs/N0

)
. (4.12)
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Figure 4.4 Noise power spectrum of the Gardner detector when Franks’ prefilter
is used to reshape the signal and r = 0.1 and Eb/N0 = 0 dB.

4.5 Verification

Eq. (4.2) was verified with a computer simulation in a similar fashion to what was

done in Section 2.5. The spectrum was estimated using Welch’s 50 % overlapping

method with blocks of size 16384 symbols. The PSD is plotted in Figure 4.4 along

with the theoretical curve (dashed line) in the case of r = 0.1 and Eb/N0 = 0 dB. The

agreements between the curves strongly suggest that (4.2) is correct. Furthermore it

shows that S(ejΩT ) is maximum at ΩT = 0 and has a slope of zero at ΩT = 0. This

validates the approach taken to derive (4.12).

To verify (4.12) the Franks/Gardner synchronizer was simulated in a system very

similar to the one described in Section 3.6. The feedback loop was of second-order

with a noise bandwidth equal to 0.5 % of the symbol rate. The loop parameters were
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Figure 4.5 Theoretical (dashed curve) and measured (solid curve) normalized tim-
ing jitter variances for a critically damped system with a noise band-
width of 0.5 % of the symbol rate and r = 0.1.

chosen to critically damp the system.

Curves of steady state normalized timing jitter variance versus Eb

N0
are shown in

Figure 4.5. The curve displaying the simulation results is a solid line with data points

shown with a “+”. The curves show the normalized jitter variance. The theoretical

curve obtained from (4.12) is the dashed line with calculated points shown with a

circle. The curves nearly coincide, which confirms the validity of (4.12) for small

system bandwidths and small r.
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4.6 Performance

In this section the performance of the Franks/Gardner synchronizer is compared

to the Modified Cramer-Rao Bound (MCRB) [53] and to the performance of the

Oerder/Mehr synchronizer for different system bandwidths and roll off factors. The

performance measure is the variance of the steady state timing jitter.

Comparing the performance of both systems is not a simple task. The steady state

timing jitter variance, σ2
j , of the Franks/Gardner synchronizer is given by (4.1), and

thus depends on the closed-loop frequency response, |H(ejΩT )|, whereas the steady

state timing jitter variance of the feedforward Oerder/Mehr synchronizer depends

on the interval of time over which the input signal is observed to produce a timing

offset estimate [18]. So the main difference is that a feedfordward synchronizer (i.e.,

Oerder/Mehr synchronizer) estimates the timing offset over a finite interval, and

a feedback synchronizer (i.e., Franks/Gardner) estimates the timing offset over an

infinite interval due to the recursive nature of the timing recovery loop.

For comparison the two systems must be put on equal footing. This is effected

by choosing an observation interval in the feedforward system to make the noise

bandwidth of the feedforward system the same as the noise bandwidth of the closed-

loop system. The feedforward system is a moving average filter of length L, so the

noise bandwidth is BL =
1

2L
[53]. The noise bandwidth of the closed-loop system is

Bn =
1

4π

∫ π/T

−π/T
|H(ejΩT )|2dΩ, where H(ejΩT ) is the closed-loop frequency response.

Both systems have same noise bandwidth if and only if

L =
1

2Bn
. (4.13)

The expression for the MCRB for timing offset, for which a derivation is given in

Appendix A, is reproduced below

1

T 2
MCRB(εT) =

1

8π2 × ξ × L× Es/N0
, (4.14)
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where L, as in the case of the moving average filter, is an integer that represents the

number of symbol intervals over which the input signal is observed to estimate εT ,

and ξ is a constant that depends on the roll off factor.

Timing jitter variance curves for the Franks/Gardner synchronizer along with the

corresponding MCRB curves are plotted in Figure 4.6 for a bandwidth of 1 % of

the symbol rate and roll off factors 0.1, 0.2, and 0.3. The curves were obtained by

simulating the Franks/Gardner synchronizer with a 64-QAM input signal that was

similar to the one used in the simulations of Chapter 3. The feedback loop was

of second-order with Bn = 0.01 cycle/symbol-interval. The value to use for L in

the MCRB expression is difficult to determine. The safe thing to do is to include

the lengths (in symbol-intervals) of the matched filter and prefilter that precede the

Franks/Gardner synchronizer. The lengths of the matched filter and prefilter used in

the simulations were 20 and 40 symbols respectively, so a value of L = 110 was used

in (4.14) to plot the MCRBs in Figure 4.6. This value L will produce a conservative

MCRB.

Figure 4.6 shows six curves. The three MCRB curves for the three different values

of r nearly coincide. The three curves for the Franks/Gardner synchronizer do not

coincide. Figure 4.6 shows the performance increases as r increases. In the presence

of a timing offset, there is less ISI corrupting the decision variables for a larger r. For

r = 0.1 the timing jitter variance is about 11 dB greater than the MCRB and 7.5 dB

greater than the MCRB for r = 0.3.

Similar plots are given in Figures 4.7 and 4.8 for noise bandwidths of 0.5 % and

0.1 % of the symbol rate. Using the same rule for determining L, a value of L = 160

was used to plot the MCRBs in Figure 4.7, and L = 560 was used for the MCRBs

in Figure 4.8. Comparing the MCRB curves in Figures 4.7 and 4.8 to those in

Figure 4.6 shows the MCRB improves with decreasing noise bandwidths. This is

clear from (4.14), as the MCRB is inversely proportional to L, and L is inversely

proportional to Bn.
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Figure 4.6 Normalized timing jitter variances along with the MCRBs for a criti-
cally damped system with a noise bandwidth of 1 % of the symbol rate
and three values of r, 0.1, 0.2 and 0.3.
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Figure 4.7 Normalized timing jitter variances along with the MCRBs for a criti-
cally damped system with a noise bandwidth of 0.5 % of the symbol
rate and three values of r, 0.1, 0.2 and 0.3.
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Figure 4.8 Normalized timing jitter variances along with the MCRBs for a criti-
cally damped system with a noise bandwidth of 0.1 % of the symbol
rate and three values of r, 0.1, 0.2 and 0.3.
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Comparing the curves for the Franks/Gardner synchronizer shows that the per-

formance also improves for decreasing noise bandwidths. For a noise bandwidth of

0.5 % of the symbol rate and r = 0.1, the timing jitter variance is about 10 dB

above the MCRB as opposed to 11 dB above the MCRB for the case of a 1 % noise

bandwidth. For r = 0.3 it drops from 7.5 dB above the MCRB for a bandwidth of

1 % to 6 dB for a bandwidth of 0.5 %. From Figure 4.8 for a bandwidth of 0.1 %

of the symbol rate and r = 0.1, the timing jitter variance is about 8.5 dB above the

MCRB and 4.5 dB for r = 0.3. The results indicate that the performance gets closer

to the MCRB as r decreases. These results also suggest that the Franks/Gardner

synchronizer approaches the MCRB as the closed-loop bandwidth decreases, however

this may be due in part to the value of L used to evaluate the MCRB being less

conservative for smaller bandwidths.

The performance of the Oerder/Mehr feedforward synchronizer was evaluated for

an input signal that was reshaped with Franks’ prefilter. A 64-QAM signal with four

samples per symbol interval and zero timing offset was corrupted with white Gaussian

noise whose level was controlled by the operating Eb/N0. This signal, after being fil-

tered by the matched filter and Franks’ prefilter, was passed to the Oerder/Mehr

timing offset estimator. The Oerder/Mehr estimator produced an output by process-

ing L × 4 samples to compute the Fourier coefficient at digital frequency, π/2 radi-

ans/sample, and used the phase of that coefficient as an estimate of the timing offset.

5, 000 detector’s outputs were recorded to estimate the variance of the timing jitter.

Timing jitter variance curves for the Franks/Oerder synchronizer (i.e., Oerder/Mehr

synchronizer equipped with Franks prefilter) along with the Franks/Gardner synchro-

nizer’s curves previously shown in Figures 4.6-4.8 are plotted in Figures 4.9, 4.10,

and 4.11. The curves shown in Figure 4.9 were obtained for a roll off factor of

r = 0.1 and noise bandwidths of Bn = 1 %, 0.5 %, and 0.1 % of the symbol rate for

Franks/Gardner and corresponding values of L = 50, 100, and 500 for Franks/Oerder.

The results displayed in Figures 4.10 and 4.11 were obtained for the same three band-

widths and corresponding values for L, but with roll off factors of r = 0.2 and r = 0.3
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respectively.

The Franks/Gardner synchronizer performs consistently better than the Franks/Oerder

synchronizer and significantly better in the cases of high SNRs and small L. From

Figure 4.9 the Franks/Gardner synchronizer has a variance that is 8 dB less than the

Franks/Oerder synchronizer’s variance at Es/N0 = 40 dB, r = 0.1, and L = 50. The

reason is the Franks/Oerder has an additional self-noise component. This component

introduces a noise floor, which causes a decrease in performance compared to the

Franks/Gardner synchronizer as the SNR increases. From Figure 4.11 the variance

of the Franks/Gardner synchronizer is 10.5 dB less than that of the Franks/Oerder

synchronizer at Es/N0 = 40 dB, r = 0.3, L = 50 as opposed to 8 dB at Es/N0 = 40

dB, r = 0.1, and L = 50.
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Figure 4.9 Timing jitter variances for the Franks/Oerder synchronizer with
L = 50, 100, and 500 along with timing jitter variances for the
Franks/Gardner synchronizer for a critically damped system with band-
widths of 1 %, 0.5 %, and 0.1 % of the symbol rate, and with roll off
factor r = 0.1.
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Figure 4.10 Timing jitter variances for the Franks/Oerder synchronizer with
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5. Frequency Coherent Detection in QPSK

5.1 Introduction

Detection schemes are commonly classified as being either coherent or incoher-

ent. Coherent detection schemes are the ones that recover/estimate the phase of the

unmodulated carrier and use that information in the detection of the transmitted

symbol. The unmodulated carrier can be estimated in a variety of ways, one of which

is a type II phase locked loop1. Typically in coherent detection schemes the out-

put of the matched filter is counter-spun by multiplication with the rotating vector

e−j(∆ωn+ψc+ψa), where ∆ω is the carrier frequency offset in radians / sample, ∆ωn+ψc

is the carrier phase offset and ψa is a phase ambiguity that could be 0 or ±π/2 or π

radians/sample. After counter spinning, the decision variables are in an orthogonal

axis system that is rectified to the axis system in the transmitter, except there may be

a rotational ambiguity of ±90o or 180o. The ambiguity in the receiver’s axis system is

usually resolved by using differential encoding/decoding in the transmitter/receiver.

A widely used scheme in the class of incoherent detection is differential detection .

Unlike coherent detection it does not establish a rigid axis system in the receiver that

is rectified to the axis system in the transmitter. The decision variable is obtained by

multiplication with the vector e−jφk−1, where φk−1 is the phase of the output of the

matched filter one symbol interval earlier. In essence this establishes a new axis system

for each output of the matched filter. The axis system for output k is the one that

has output k − 1 on its positive real axis. Differential encoding must be used for the

1A type II phase locked loop is one that has zero steady state phase error in the presence of a
frequency offset.
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decision variable to be properly justified in the axis system. Coherent and differential

detectors both have advantages and disadvantages. Differential detectors set up the

axes system very quickly, with only two symbols. Coherent detectors take much

longer as they must average over a very large number of symbols to get reasonable

estimates of ∆ω and ψc. The price for quick synchronization in differential detection

is performance, as its axes system is based on a single received symbol, which has

random rotation error. It is well known that the performance penalty for differential

detection is 3 dB over coherent detection. However there are applications for example

short-burst asynchronous packet transmission systems, where there is insufficient time

for coherent detectors to recover phase. In these applications differential detection

schemes are used.

In this chapter a novel coherent QPSK detector, referred to in this thesis as a

frequency coherent detector, is proposed [54]. It has a performance penalty of about

1 dB over conventional coherent detectors but it has the advantage of setting up an

axis system very quickly. It can be used in place of differential detectors and offers a

performance advantage of about 2 dB. The carrier phase is recovered by using a novel

scheme. However if the recovery scheme were to be modeled by a phase locked loop,

it would have to be of type I.2 Being a coherent detector, it counter spins the output

of the matched filter. In this case the counter spinning is done by multiplication with

e−j(∆ωn+ψ̂c+ψa), where ψ̂c is a biased estimate of ψc, with the bias depending on the

frequency offset ∆ω.

The remainder of this chapter is organized into 3 sections. Section 5.2 explains the

principle of operation of the proposed detector and provides a circuit that implements

it. The results of a performance analysis are presented in Sections 5.3 and 5.4.

2A type I phase lock loop has a steady state phase error that is proportional to the frequency
offset.
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5.2 Structure of the frequency coherent detector circuit

The operation of the proposed frequency coherent detector hinges on the construc-

tion of the complex sinusoid that counter spins the decision variable. This complex

sinusoid is denoted Uk. Its phase is an estimate of the carrier phase offset, except for

an ambiguity of 0, ±90o, or 180o. Its amplitude is not important and can vary with

time without affecting the performance of the detector.

The practical construction of Uk can be easily described. However it involves

decision feedback, which makes it difficult to understand how the phase of Uk is

an estimate of the carrier phase offset. To help understand how the phase of Uk is

an estimate of the carrier phase offset, the construction of Uk is described from a

behavioral point of view with many of the implementation issues swept aside.

The complex sinusoid, Uk, is derived from the output of the matched filter. The

output, denoted by rk, has the form rk =
√

2Ese
j(kθ′+θ0+φk) + ηk, where kθ′ + θ0 is the

carrier phase offset with θ′ being the frequency offset in radians / symbol-interval, φk

is the information component which is referred to as the modulating phase, ηk is the

complex Gaussian noise at the output of the matched filters, and Es is the symbol

energy of the transmitted QPSK signal. Decision feedback information is used to

remove the modulation phase from rk, to get r̃k =
√

2Ese
j(kθ′+θ0+φa) + η̃k, where φa

is a phase ambiguity that is either 0o, ±90o, 180o. The phase ambiguity can not be

avoided since there is insufficient information in the received signal to remove the

modulating phase without leaving an unpredictable but constant error that may be

0o, ±90o, or 180o. As explained in the sequel, this phase ambiguity does not affect the

recovery of the transmitted modulating phases and is ignored by setting it to zero.

The unmodulated output of the matched filter, which has been denoted r̃k, is

passed through a moving average filter to get Uk. If the moving average filter is of
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length N , then Uk is given by

Uk =

N−1∑
i=0

r̃k−i

=
√

2Es

N−1∑
i=0

ej((k−i)θ
′+θ0) + η̃k−i

=
√

2Ese
j(kθ′+θ0)

N−1∑
i=0

ej(−iθ
′) + η̃k−i (5.1)

As shown in Section 5.3, the expectation of Uk is E{Uk} = Ae
j(kθ′ + θ0 − N − 1

2
θ′)

,

where A =
sin(N/2)θ′

sin θ′/2

√
2Es. The phase of E{Uk} is a biased estimate of the carrier

phase offset with the bias being (
N − 1

2
θ′).

An implementable structure of the proposed frequency coherent detector circuit

is given in Figure 5.1. The structure does not show the timing recovery circuit, but

it assumes that timing has been recovered perfectly and the output of the matched

filter is sampled at the correct decision times. These samples, which are denoted by

rk, are fed to the frequency coherent detector.

As illustrated in Figure 5.1 the construction of the reference involves constructing

reference vector, Uk, by rotating and summing the N vectors, rk, rk−1, . . ., rk−N+1.

The key step is the rotation of vector, rk, by 0, ±90o, or 180o to align it within ±45o

of Uk−1. The rotation is a simple operation since the elements of the rotation matrix

are either 1 or −1. The rotated vector is denoted r̃k. In the circuit shown, N = 4.

The construction of vector Uk is illustrated in Figure 5.2 for N = 2. Vector rk−1

is rotated by 180o to place it within ±45o of Uk−2. The rotated rk−1 is shown as r̃k−1

in the Figure. Then Uk−1 is constructed from the equality Uk−1 = r̃k−2 + r̃k−1. Next

r̃k is found by rotating rk to within ±45o of Uk−1. Finally Uk is calculated with Uk =

r̃k−1 + r̃k.

At startup r̃−N , r̃−N+1, . . . , r̃−1 must be initialized. A natural approach is to
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Figure 5.2 Construction of Uk.

initialize r̃−N , r̃−N+1, . . ., r̃−1 with r−1. Vector U0 is simply r−1, and the detector

behaves like a conventional differential detector. The noise variance component of the

reference vector will decrease over the next N−1 symbols, at which point UN−1 is the

sum of N independent vectors. However if the preamble can be used to initialize r̃−N ,

r̃−N+1, . . . , r̃−1 with N independent vectors, then U0 has minimum noise variance.

Vector Vk is Uk rotated by 45o (see Figure 5.1). The phase of rk is compared to

the phase of the rotated reference, Vk−1, by complex multiplication, where ∗ indicates

complex conjugation. The reference vector Uk is rotated by 45o so that in noise-free

operation the decision vector, r∗k × Vk−1, has an angle of either ±45o or ±135o. The

decision boundaries are then the axes.

The phase of rk with respect to Uk−1 is estimated to be 0, 90o, 180o, or −90o

if the decision vector resides in quadrants 1, 2, 3, or 4 respectively. The quadrant

determination is easily established using the sign bits of the real and imaginary parts

of r∗k × Vk−1. The differential decoder recovers the two bits of information in rk from

the difference between the phase estimates of rk and rk−1.
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5.3 Performance analysis for a small carrier frequency offset

The performance of the proposed circuit is determined analytically for a small

carrier frequency offset, which is denoted by θ′. The matched filters have a square-

root raised cosine frequency response and the complex sample, rk, is given by

rk =
√

2Ese
j(φk+θ0+kθ′) + ηk, (5.2)

where φk ∈ [0o,+90o, 180o,−90o] is the modulating phase, θ0 +kθ′ is the phase offset,

and ηk is the complex Gaussian noise. For small θ′ the distortions caused by the

matched filter are negligible and are not considered in this analysis.

A close approximation to the probability of a symbol error, Ps, is derived as

follows.

For a symmetric signaling set such as QPSK, the probability, Ps, of a symbol

error does not depend on the information in the symbol. With no loss of generality

let φk be zero in (5.2), and rk =
√

2Ese
j(θ0+kθ′) +ηk. The samples rk, k = 0, 1, . . ., are

independent, as they are spaced one symbol interval apart. The variance of ηk is 2N0,

therefore rk has variance 2N0, where 2N0 is the one-sided spectral density constant

of the white Gaussian noise at the input of the matched filter.

The probability that the decision vector, r∗k · Vk−1, is in quadrant 1, which is the

probability of being correct, is denoted by Pc. Pc is given by

Pc =
1

2π(σ2/2)

∫ ∞

0

e
−(x− µx)2

σ2 dx

∫ ∞

0

e
−(y − µy)2

σ2 dy, (5.3)

where µx and µy are the real and imaginary parts of the mean of the decision vector,

denoted by µ, and σ2 is the variance of the decision vector. With changes of variables

x→
√

2(x− µx)/σ and y →
√

2(y − µy)/σ, (5.3) reduces to

Pc =

(
1−Q

(√
2µx
σ

))(
1−Q

(√
2µy
σ

))
, (5.4)
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where Q(y) =
1√
2π

∫ +∞

y

e−x
2/2dx is the Q-function. The Q function if expressed in

terms of the complimentary error function, erfc, is given by Q(y) =
1

2
erfc

(
y√
2

)
.

A symbol error occurs if the algorithm decides on a different quadrant than quad-

rant one. In differential decoding symbol errors usually occur in pairs. Therefore Ps

is very nearly twice that of 1− Pc, and from (5.4) is approximately given by

Ps ≈2Q

(√
2µx
σ

)
+ 2Q

(√
2µy
σ

)

− 2Q

(√
2µx
σ

)
Q

(√
2µy
σ

)
(5.5)

5.3.1 Mean and variance of decision vectors

The mean of the decision vector, µ, is equal to E{r∗k · Vk−1} = E{r∗k}E{Vk−1},
where E{·} is the expectation operator. The reference vector is

Uk−1 =

(
N−1∑
n=0

r̃k−1−n

)

=

N−1∑
n=0

(√
2Ese

j(θ0+(k−1−n)θ′) + η̃k−n−1

)
,

where η̃k−n−1 is the noise component of r̃k−n−1. Since η̃k has zero-mean,

E{Vk−1} = E{ej π
4Uk−1}

=
√

2Ese
j(θ0+(k−1)θ′+ π

4
)
N−1∑
n=0

e−jnθ
′
. (5.6)

Also since η̃k has zero-mean,

E{r∗k} =
√

2Ese
−j(θ0+kθ′).
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The sum in (5.6) is equal to

N−1∑
n=0

e−jnθ
′
=

⎧⎪⎪⎨⎪⎪⎩
N, θ′ = 0

sinNθ′/2
sin θ′/2

e−jθ
′(N−1)/2, θ′ �= 0.

(5.7)

The mean of the decision variable is then

µ =

⎧⎪⎪⎨⎪⎪⎩
2NEse

j π
4 , θ′ = 0

2
sinNθ′/2
sin θ′/2

Ese
j(π

4
−θ′(N+1)/2), θ′ �= 0.

(5.8)

The decision vector variance, σ2, is given by

σ2 = E{|r∗k × Vk−1 − µ|2}
= E{|rk|2}E{|Vk−1|2} − |µ|2. (5.9)

From (5.2)

E{|rk|2} = 2Es + 2N0, (5.10)

and from (5.6)

E{|Vk−1|2} = 2Es

∣∣∣∣∣
N−1∑
n=0

e−jnθ
′

∣∣∣∣∣
2

+

E

{(
N−1∑
n=0

η̃k−1−n

)(
N−1∑
n=0

η̃k−1−n

)∗}
(5.11)

Substituting (5.7) into (5.11) and then (5.8), (5.10), and (5.11) into (5.9) yields

σ2 =

⎧⎪⎪⎨⎪⎪⎩
4(N +N2)EsN0 + 4NN2

0 , θ′ = 0

4(N +
sin2Nθ′/2
sin2 θ′/2

)EsN0 + 4NN2
0 θ′ �= 0.

(5.12)
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5.3.2 Probability of a symbol error

From (5.5), (5.8) and (5.12) it is found after some algebraic manipulations that

Ps ≈ 2Q

(
cos (

π

4
− θ′(N + 1)

2
)

√
2NA(θ′)

NA(θ′) + (1 + N0

Es
)

Es
N0

)

+ 2Q

(
sin (

π

4
− θ′(N + 1)

2
)

√
2NA(θ′)

NA(θ′) + (1 + N0

Es
)

Es
N0

)

− 2Q

(
cos (

π

4
− θ′(N + 1)

2
)

√
2NA(θ′)

NA(θ′) + (1 + N0

Es
)

Es
N0

)

×Q
(

sin (
π

4
− θ′(N + 1)

2
)

√
2NA(θ′)

NA(θ′) + (1 + N0

Es
)

Es
N0

)
, (5.13)

where

A(θ′) =

⎧⎪⎪⎨⎪⎪⎩
1, θ′ = 0(

sinNθ′/2
N sin θ′/2

)2

, θ′ �= 0.

Two approximations were made in the calculation of Ps, both of which are pes-

simistic. The first approximation is that in constructing r̃k, the decision to rotate rk

by 0o, 90o, 180o, or −90o, in order to be within ±45o of Uk−1, is based on rk−ηk (i.e.,

a noise-free rk) rather than rk. A difference between the algorithm and the analysis

only occurs when ηk is sufficiently large to cause r∗k · Vk−1 and (rk − nk)∗ · Vk−1 to be

in different quadrants, e.g. when rk is large enough to cause a symbol error. In such

a case the algorithm rotates rk by an extra ±90o or 180o to place r̃k within ±45o of

Uk−1. This makes the angle between r̃k and Uk−1 smaller in the algorithm than in the

analysis. The end effect is that the analysis yields a variance for Uk−1 that is slightly

higher than what is produced by the algorithm.

The second approximation concerns the differential decoder. If ηk is large enough

to cause an error for rk, then the analysis assumes that the decoder generates a second

error for rk+1. This is slightly pessimistic, since on occasions ηk and ηk+1 may be large
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enough to both create errors. In that case the decoder generates 3 symbol errors, but

the analysis assumes 4.

For Nθ′ small A(θ′) ≈ 1. Also for Es/N0 � 1 the third term on the right side

of (5.13) is very small and can be neglected. Probability Ps can then be approximated

by

Ps ≈ 2Q

(
cos (

π

4
− θ′(N + 1)

2
)

√
2N

N + 1

Es
N0

)

+ 2Q

(
sin (

π

4
− θ′(N + 1)

2
)

√
2N

N + 1

Es
N0

)
. (5.14)

The increase in performance obtained with the proposed frequency coherent de-

tector detector is illustrated in Figure 5.3 for different values of N and no frequency

offset (i.e., θ′ = 0). Using (5.14) the probabilities of a symbol error (i.e., symbol error

rate) for N = 2, N = 4 and N = 8 are plotted against Eb/N0, where Eb = (1/2)Es is

the received energy per bit. The symbol error rate for coherent detection with differ-

ential decoding, which is approximately equal to 4Q

(√
Es
N0

)
, as well as the error rate

for conventional differential detection, which is approximately equal to 2Q

(√
Es
2N0

)
,

are also plotted on the same graph.

As shown in Figure 5.3 the increase in performance over differential detection

when N = 4 is 1.9 dB for Eb/N0 in the 14 to 20 dB range. Performance degradation

over coherent detection (with differential decoding) is 1 dB.

5.4 Performance verification

The performance of the proposed circuit is verified with simulation and compared

to the performances of the conventional differential detector and the coherent detector.

The verifications and comparisons are made for N = 4 and frequency offsets of 0, 1,

and 2 degrees/symbol. The proposed circuit was simulated in Matlab/Simulink. The

in phase and quadrature components of a QPSK signal were generated with 2 samples
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per symbol. The signal was 500, 000 symbols in length. A roll off factor of 0.25 was

used in the matched filter. The complex baseband signal was corrupted with AWGN.

The frequency offset was introduced by multiplying the complex baseband signal by

a complex sinusoid, and the signal obtained was filtered with the matched filter. The

output of the matched filter was down-sampled by 2 to produce rk. The block diagram

in Figure 5.1 was then simulated using rk as input.

The operating Eb/N0 was varied in 1 dB steps from 10 to 20 dB. The mean and

variance of the decision vector, which are denoted µ̂ and σ̂2, were estimated using the

simulation results. Ps was estimated from (5.5) using µ̂x, µ̂y, and σ̂2 in place of µx,

µy, and σ.

Probability of symbol error curves versus Eb/N0 are shown in Figure 5.4 for the

conventional differential detector and the proposed circuit, as well as for the coher-

ent detector. In all cases differential decoding is used. Parameter N is set to 4.

Theoretical curves for frequency offsets of 0, 1 and 2 degrees/symbol are shown for

both the conventional and enhanced differential detectors. The symbol error rate for

conventional differential detection with a small frequency offset, θ′, is approximately

equal to Q

(
cos

(π
4
− θ′

)√
Es
N0

)
+Q

(
sin

(π
4
− θ′

)√
Es
N0

)
. The simulation results

are marked with a “*”, a “+”, and a “x”. The close agreement between the points

found by simulations and the theoretical curves confirm the validity of (5.13).

It can be seen in Figure 5.4 that the proposed circuit is more sensitive to frequency

offset than the conventional differential detector. However for frequency offsets, θ′,

that are less than 1 degrees/symbol, the performance gain is at least 1.7 dB for Eb/N0

in the 14 to 20 dB range of Eb/N0.

A comparison with Divsalar’s algorithm [27] reveals that the frequency coherent

detector outperforms Disvalar’s detector. For Eb/N0 = 13 dB, Divsalar’s detector

offers 1.5 dB improvement over differential detection, versus 1.9 dB improvement

obtained with the frequency coherent detector. This comparison was made in the

case of no frequency offset. The Divsalar’s performance measurement was obtained

125



10 11 12 13 14 15 16 17 18 19 20
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

coherent
differential
enh. differential

θ′ = 0 deg/symb

θ′ = 1 deg/symb

θ′ = 2 deg/symb

θ′ = 1

θ′ = 2

θ′ = 0

Eb/N0, dB

P
s

Figure 5.4 Probability of symbol error curves for the proposed circuit with N = 4
and frequency offsets θ′ = 0, 1, 2 degrees/symbol with 3 sets of simula-
tion results marked with “*”, “+” and “x”.

from the graph given in [27; Fig. 5].
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6. Conclusion

6.1 Summary

Of interest in this research is the non-data-aided timing synchronizers proposed

by D’Andrea [17] to recover timing. High performance is achieved by reshaping the

received signal prior to estimating the timing. Reshaping is performed by means of

a relatively long FIR filter, which consumes a large number of multipliers. In this

research a first contribution is made by proposing an alternative to the Franks / Gard-

ner synchronizer. The long FIR filter is replaced with two single poles IIR filters. This

novel architecture for filtering self-noise is more suited for FPGA design. However

the large reduction in multipliers comes at the expense of a loss in performance.

A second contribution is the analysis of the steady state timing jitter of the

Franks/Gardner synchronizer. A closed-form expression for the noise power spec-

trum is derived along with an equation to estimate the variance of the jitter in sys-

tems with narrow closed-loop bandwidths. It is also shown that the Franks/Gardner

synchronizer outperforms the Oerder/Mehr square detector when the latter also uses

Franks’ prefilter prior to estimating the timing offset. The performance measure is

the variance of the steady state timing error.

A third contribution is made by proposing a novel frequency coherent detector for

QPSK. A detailed description of these three contributions is given next.
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6.2 Research contributions

6.2.1 Enhanced non-data-aided feedback synchronizer

Self-noise reduction in the early-late and Gardner detectors was obtained by ana-

lytically deriving an equation for the S-curve of the early-late detector. This equation

revealed which portion of the spectrum provides timing information and which por-

tion only contributes to self-noise. It was found that the timing information in a

QAM signal that is sampled at the symbol rate is contained in the frequency band

[(1−r)π, (1+r)π] radians / sample. The frequency band [−(1−r)π, (1−r)π] radians

/ sample only contributes to self-noise and can be filtered with a high-pass filter. In

contrast with Franks’ prefilter, the high-pass filter does not need linear phase and a

single-pole IIR filter can be used to approximate the high-pass filter. A novelty in

this research is that the single-pole filter is directly incorporated inside the detector.

Two filters are required: one to process the “early” signal, and one to process the

“late” signal. Only these signals are affected. The “on-time”signal, which is used to

detect the symbol is not affected by the filters, and no second resampler is required.

The addition of single-pole high-pass filters inside the feedback loop do not affect

its stability. This has been verified by deriving a linear model for the detector and

performing a linear analysis of the loop. The addition of the single-pole high-pass

filters increases the order of the loop by 1. The loop is of order 3 if a single-pole

low-pass filter is also present at the output of the detector. An algorithm has been

devised to determine the position of the poles in a loop of order 3 for a given noise

bandwidth.

The presence of single-pole high-pass filters enhances the performance of the detec-

tor. Simulations revealed an 8 dB reduction in timing jitter variance for Eb/N0 = 23

dB and a noise bandwidth of 0.1 % of the symbol rate. The enhanced detector does

not perform as well as the Franks / Gardner detector. This is not a surprise since

the filtering used in the enhanced detector is not as sophisticated as the prefilter of

the Franks / Gardner synchronizer. However the reduction in the number of multi-
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pliers is significant since for both the in phase and quadrature signal streams, only

one resampler is required instead of 2, and the prefilter is replaced with 2 single-pole

filters.

The novel self-noise reduction technique proposed here can also be applied to

the Gardner detector. The simulation shows that the Gardner detector outperforms

the early-late detector when they are used in their conventional form, but loses its

advantage when both detectors are enhanced.

Another contribution is a closed-form expression for the self-noise power spectrum

of the early-late detector when it is enhanced with an ideal high-pass filter. This

expression also serves as an approximation to the power spectrum of the self-noise of

the conventional early-late detector for low frequencies. The steady state self-noise

power spectrum of the early-late detector is proportional to ω2 for small ω whether or

not the detector is enhanced with a high-pass filter. This spectrum can be suppressed

for ω greater than 2rπ radians/sample without affecting the S-curve.

6.2.2 Timing jitter analysis of the Franks / Gardner synchro-

nizer

The peculiar characteristic of the Franks/Gardner synchronizer is that self-noise

is nonexistent when timing is perfect. The presence of steady state timing jitter in

the timing recovery loop is due to 1) the interaction of the Gaussian noise with the

signal inside the Gardner detector and 2) the interaction of the noise with itself. This

dual interaction clearly appears in the closed-form expression for the power spectrum

output of the detector derived in this analysis. This expression contains two terms:

one term is due to the signal times noise interactions and the other terms represent

the noise times noise interactions.

The power spectrum is maximum at ω = 0 radians/sample and flat for low-

frequencies. In the case of a system with a small closed-loop bandwidth, the power

spectrum can be approximated by its value at ω = 0 radians/sample. A simple

equation is derived to estimate the timing jitter variance in systems with a small
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bandwidth. In systems with medium to large bandwidths, the approximation of the

power spectrum by a constant may not hold. In that case the timing jitter vari-

ance is estimated by means of a numerical integration involving the power spectrum

expression and the closed-loop frequency response.

Timing jitter variance curves were plotted for different noise bandwidths and

roll off factors, along with the MCRB. It is found that the performance of the

Franks/Gardner synchronizer closely approaches the bound as the noise bandwidth

becomes smaller and the roll off factor increases. For a noise bandwidth of 0.1 % of

the symbol rate and a roll off factor of r = 0.3, the variance of the timing jitter is

about 4.5 dB above the MCRB.

Timing jitter variance curves for the Oerder/Mehr synchronizer when equipped

with Franks’ prefilter were also plotted along with the timing jitter variance curves

of the Franks/Gardner synchronizer. It is found that the Franks/Gardner performs

consistently better than the Franks/Oerder synchronizer and significantly better in

the cases of high SNRs and small noise bandwidths. The reason is the Oerder/Mehr

synchronizer suffers from an additional noise component that is not present in the

Franks/Gardner synchronizer. This noise component, which is pure self-noise, domi-

nates at high SNRs.

6.2.3 Frequency-coherent detector for QPSK

The proposed circuit essentially builds a less noisy reference than that of con-

ventional differential detection by resorting to the decisions taken on the previous

received transmitted symbols, and use that noise-reduced reference to differentially

detect the current symbol. The improvement over differential detection is that it

outperforms differential detection by about 2 dB without significantly increasing the

complexity nor lengthening the acquisition time to synchronize to the carrier.

In presence of a frequency offset the proposed circuit is more sensitive than the

conventional differential detector. However performance gains remain greater than

1.7 dB for frequency offsets that are less than 1 degrees / symbol-interval and Eb/N0
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in the 14 to 20 dB range.
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A.

The Modified Cramer-Rao Bound for timing offset

Let the signal r(t) be defined as

r(t) = s(t; εT ) + w(t), 0 ≤ t ≤ T0, (A.1)

where s(t, εT ) is the low-pass equivalent of a bandpass QAM signal, and w(t) is the

low-pass equivalent of Additive White Gaussian Noise (AWGN) with power spectral

density constant, equal to 2N0 Watts / Hz.

The low-pass equivalent QAM signal is given by

s(t; εT ) = ej2πµt
+∞∑
l=−∞

(dI(l) + jdQ(l))g(t− lT − εT ), (A.2)

where g(t) is the square-root raised cosine pulse, T is the symbol interval, dI(l)+jdQ(l)

are the random transmitted QAM symbols whose components are independent and

uniformly distributed over the alphabet, µ is an unknown frequency offset, and εT is

an unknown timing offset. The timing offset is assumed to be uniformly distributed

over (−0.5T , 0.5T ). The unknown parameter, µ, is ignored in the sequel since the

frequency offset does not affect the estimation of εT as shown below. Only the timing

offset and data are treated as unknown parameters.

The objective here is to derive a lower bound to the variance of any unbiased

estimator of εT . The bound we use was originally derived by D’Andrea in [53] and

named the Modified Cramer Rao Bound (MCRB). It is rederived here for the discrete-
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time observed signal r(t) after it has been bandlimited and sampled. The sampling

frequency,
1

Ts
, is taken to be equal to

M

T
, where M is a positive integer with M ≥ 2

so the sampling rate is at least equal to the Nyquist rate.

The white noise is bandlimited before sampling by filtering r(t) with an ideal

low-pass filter of bandwidth 1/(2Ts). The sampled signal is given by

x(nTs) = s(nTs; εT ) + wf(nTs), (A.3)

where wf(t) is the complex bandlimited analog noise, and wf(nTs) is a complex digital

white noise with variance 2N0/Ts. Real and imaginary components of wf(nTs) are

independent with same variance, equal to N0/Ts.

The MCRB for the timing offset is derived for the case whereM × L samples of

x(nTs) are observed to estimate εT , and L is a positive integer. LT represents the

corresponding length of time the underlying continuous time signal, x(t), is observed.

The observed sequence is denoted by xT (nTs), where

xT (nTs) =

⎧⎪⎨⎪⎩s(nTs; εT ) + wf(nTs), 0 ≤ n ≤ML − 1

0, otherwise

(A.4)

First an expression for the Cramer-Rao bound [9] of εT is derived assuming the

transmitted symbols, dI(l) + jdQ(l), are known. To differentiate this case from the

case of interest (i.e. unknown transmitted symbols) the observed sequence is denoted

by xTd (nTs), where the subscript, d, is used to indicate that the symbols are known.

As the complex Gaussian noise is white, then the complex Gaussian PDF of

xT
d = [xd(0), xd(Ts), . . . , xd((ML − 1)Ts)] is

p(xT
d , εT ) =

1

(2πN0/Ts)ML/2
exp

{
− 1

2N0/Ts

ML−1∑
n=0

|xd(nTs)− sd(nTs; εT )|2
}

(A.5)
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After evaluating the second derivative of ln p(xT
d , εT ) with respect to εT and

taking the expectation of the derivative,
∂2 ln p(xT

d , εT )

∂2εT
, with respect to p(xT

d , εT ),

the Cramer-Rao bound is found to be

CRB(εT) =
N0/Ts∑ML−1

n=0

∣∣∣∣∂sd(nTs; εT)

∂εT

∣∣∣∣2
, known symbols. (A.6)

When the symbols are unknown, the variance of the unbiased estimator, ε̂T ,

becomes

Var(ε̂T) = Ed,εT

{(
ε̂T − εT

)2
}

= Ed

{
EεT |d

{(
ε̂T − εT

)2
}}

, (A.7)

where Ed,εT{·} is the expectation taken over the symbols and the timing offset,

EεT |d{·} is the expectation taken over the timing offset conditioned of knowing the

symbols, and Ed{·} is the expectation taken over the symbols.

Since EεT |d

{(
ε̂T − εT

)2
}
≥ CRB(εT) defined in (A.6) then from (A.7)

Var(ε̂T) ≥ Ed

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N0/Ts∑ML−1

n=0

∣∣∣∣∂s(nTs; εT)

∂εT

∣∣∣∣2
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A.8)

and [53; Eq. (5)]

Var(ε̂T) ≥ N0/Ts

Ed

{∑ML−1
n=0

∣∣∣∣∂s(nTs; εT)

∂εT

∣∣∣∣2
} ∆

= MCRB(εT), (A.9)

which is the Modified Cramer Rao Bound for the timing offset defined in [53].

Using (A.2)
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∂s(nTs; εT )

∂εT
= ej2πµnTs

+∞∑
l=−∞

c(l)
∂g(nTs − lT − εT )

∂εT
, (A.10)

where c(l) = (dI(l) + jdQ(l)) and

E{c(l)c∗(m)} =

⎧⎪⎨⎪⎩
C2, l = m

0, otherwise.

(A.11)

Further,

g(t− lT − εT ) =

∫ +∞

−∞
G(f)e−j2πf(lT + εT )ej2πftdf, (A.12)

where G(f) is the Fourier transform of g(t), and

∂g(nTs − lT − εT )

∂εT
=

∫ +∞

−∞
−j2πfG(f)e−j2πf(lT + εT )ej2πfnTsdf. (A.13)

From (A.10) and (A.13),

Ed

{∣∣∣∣∂s(nTs; εT )

∂εT

∣∣∣∣2
}

=

+∞∑
l1=−∞

+∞∑
l2=−∞

Ed{c(l1)c∗(l2)}

× ej2πµnTs
(∫ +∞

−∞
−j2πfG(f)e−j2πf(l1T + εT )ej2πfnTsdf

)
× e−j2πµnTs

(∫ +∞

−∞
j2πθG∗(θ)ej2πθ(l2T + εT )e−j2πθnTsdθ

)
.

(A.14)

Note that (A.14) does not depend on the frequency offset, µ, so the MCRB for

timing offset is independent on the frequency offset. Now evaluating the expectation
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using (A.11) yields

Ed

{∣∣∣∣∂s(nTs; εT )

∂εT

∣∣∣∣2
}

= 4π2C2

+∞∑
l=−∞

∫ +∞

−∞

∫ +∞

−∞
fG(f)θG∗(θ)

× ej2π(lT + εT )(θ − f)ej2πnTs(f − θ)dθdf. (A.15)

Using

+∞∑
l=−∞

ej2πlT (θ−f) =
1

T

+∞∑
k=−∞

δ(θ − f − k

T
) by substituting

∑+∞
l=−∞ ej2πlT (θ−f)

by (1/T )
∑+∞

k=−∞ δ(θ − f − k
T
) into (A.15) produces after simplification

Ed

{∣∣∣∣∂s(nTs; εT )

∂εT

∣∣∣∣2
}

=
4π2C2

T

+∞∑
k=−∞

∫ +∞

−∞
(θ − k

T
)G(θ − k

T
)θG∗(θ)

× ej2πεT (k/T )ej2πnTs(k/T )dθ (A.16)

Summing (A.16) over n gives

ML−1∑
n=0

Ed

{∣∣∣∣∂s(nTs; εT )

∂εT

∣∣∣∣2
}

=
4π2C2

T

+∞∑
k=−∞

∫ +∞

−∞
(θ − k

T
)G(θ − k

T
)θG∗(θ)

× ej2πεT (k/T )
ML−1∑
n=0

ej2πnTs(k/T )dθ (A.17)

where since
1

Ts
=
M

T
,

ML−1∑
n=0

ej2πnTs(k/T ) =

⎧⎪⎨⎪⎩ML, k = 0

0, otherwise,

(A.18)

and (A.17) simplifies to

ML−1∑
n=0

Ed

{∣∣∣∣∂s(nTs; εT )

∂εT

∣∣∣∣2
}

=
4π2C2

T
ML

∫ +∞

−∞
θ2|G(θ)|2dθ. (A.19)
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Using
1

Ts
=
M

T
yields

MCRB(εT) =
N0/Ts

4π2C2

T
ML

∫ +∞

−∞
θ2|G(θ)|2dθ

(A.20)

=
N0

4π2C2L

∫ +∞

−∞
θ2|G(θ)|2dθ

. (A.21)

Note that the MCRB for timing offset does not depend on εT .

The Fourier transform, G(f), of g(t) has a square-root raised cosine shape so

|G(f)|2 has a raised cosine shape. From (B.1),

|G(f)|2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T, |f | < 1−r

2T

T

2

[
1 + cos

π

2r
(2|f |T + r − 1)

]
, 1−r

2T
< |f | < 1+r

2T

0, |f | > 1+r
2T
,

(A.22)

so ∫ +∞

−∞
θ2|G(θ)|2dθ =

1 + 3r2 − 24(r/π)2

12T 2
. (A.23)

Letting ξ =
1 + 3r2 − 24(r/π)2

12
in (A.23) gives

∫ +∞

−∞
θ2|G(θ)|2dθ =

ξ

T 2
and (A.21)

becomes

MCRB(εT) =
N0 × T2

4π2 × C2 × L× ξ . (A.24)

Because
∫ +∞
−∞ |G(f)|2df = 1, the symbol energy in s(t) is C2. The symbol energy, Es,

in the bandpass QAM signal is then C2/2 and (A.24) reduces to

1

T 2
MCRB(εT) =

1

8π2 × L× ξ × Es/N0

. (A.25)

This derivation produces D’Andrea’s equation. This is no surprise since the sam-

pling meets the Nyquist rate and thus no information is lost during the sampling

operation.
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B.

Discrete time Fourier transform of a raised cosine impulse

response sampled at the symbol rate

For a raised cosine pulse, h(t), with Fourier transform denoted by HA(jΩ), The

Fourier transform of h(t+ εT ) is given by [63]

HA(jΩ; εT ) = HA(jΩ)ejΩεT (B.1)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
TejΩεT , |ΩT | ≤ (1− r)π,
T

2

[
1 + cos

(
π

2r

( |ΩT |
π

+ r − 1

))]
ejΩεT , (1− r)π ≤ |ΩT | ≤ (1 + r)π,

0, (1 + r)π ≤ |ΩT | <∞.

where r is the roll off factor (0 < r < 1). The Nyquist frequency of HA(jΩ; εT ) is

(r + 1)/2T . Since r is greater than zero, the symbol rate, 1/T , is less than twice

the Nyquist rate, so sampling h(t + εT ) at the symbol rate causes aliasing in the

frequency domain. The DTFT of h((k + ε)T ) can be defined for any 2π interval of

ω, where ω = ΩT . For −(1− r)π < ω ≤ (1 + r)π

H(ejω; εT ) =
1

T

+∞∑
k=−∞

HA(j(
ω − 2πk

T
); εT ), − (1− r)π < ω ≤ (1 + r)π.

Since HA(jΩ; εT ) is band-limited to |Ω| < 2π/T , then

H(ejω; εT ) =
1

T

(
HA(ej

ω
T ; εT )

+ HA(ej(
ω−2π

T
); εT )

)
, − (1− r)π < ω ≤ (1 + r)π. (B.2)
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From (B.1) (1/T )HA(ej
ω
T ; εT ) and (1/T )HA(ej(

ω−2π
T

); εT ) are

1

T
HA(ej

ω
T ; εT ) =

⎧⎪⎨⎪⎩
ejω

εT
T , |ω| ≤ (1− r)π,

1

2

[
1 + cos

( π
2r

(ω
π

+ r − 1
))]

ejω
εT
T , (1− r)π ≤ ω ≤ (1 + r)π,

1

T
HA(ej(

ω−2π
T

); εT ) =

{
1

2

[
1 + cos

( π
2r

(ω
π
− r − 1

))]
ej(ω−2π) εT

T , (1− r)π ≤ ω ≤ (1 + r)π,

(B.3)

over the interval [−(1− r)π, (1 + r)π].

The functionsHA(ej
ω
T ; εT ) andHA(ej(

ω−2π
T

); εT ) overlap in the region ((1−r)π, (1+

r)π). Using (B.2), (B.3) and the trigonometric identity cos(a± b) = cos(a) cos(b)∓
sin(a) sin(b) with a = π

2r
(ω
π
− 1) and b = π

2r
r = π

2
yields

H(ejω; εT ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ejω
εT
T , |ω| ≤ (1− r)π,

ejω
εT
T

2

(
1− sin

ω − π
2r

+ e−j2π
εT
T

+ e−j2π
εT
T sin

ω − π
2r

)
, (1− r)π < ω ≤ (1 + r)π.

Using trigonometric identities, ejπ
εT
T + e−jπ

εT
T = 2 cos(π εT

T
) and ejπ

εT
T − e−jπ εT

T =

2j sin(π εT
T

), the discrete-time Fourier Transform of h((k + ε)T ) can be written

H(ejω; εT ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ejω
εT
T , −(1− r)π < ω ≤ (1− r)π,

ej(ω−π) εT
T

[
cos(π

εT

T
)

−j sin(π
εT

T
) sin(

π

2r
(
ω

π
− 1))

]
, (1− r)π ≤ ω ≤ (1 + r)π.

(B.4)
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C.

Self-noise power spectrum expression for early-late detector

From (2.16) the discrete-time Fourier transform (DTFT) of ysn(kT ) is the sum of

the discrete-time Fourier Transform of four terms, each of which is the square of a

sequence. Squaring in the discrete-time domain corresponds to circular convolution

in the frequency domain. The DTFT of x2
I((k + m

M
)T ) is

1

2π

∫ π

−π
XI(e

jθ;
m

M
T )XI(e

j(ω−θ);
m

M
T )dθ, (C.1)

where XI(e
jω; m

M
T ) is the DTFT of xI((k + m

M
)T ). The DTFT of xI((k + m

M
)T ) is

given by
+N∑
i=−N

dI(i)e
−jωiH(ejω;

m

M
T ) (C.2)

and the DTFT of x2
I((k + m

M
)T ) by (after using the circular convolution)

1

2π

∫ π

−π

+N∑
i=−N

+N∑
k=−N

dI(i)dI(k)e
−jθie−j(ω−θ)kH(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )dθ. (C.3)

The DTFT, Ysn(e
jω), is the sum of four terms like in (C.3). The square of the

magnitude is given by |Ysn(ejω)|2 = Ysn(e
jω) × Y ∗

sn(e
jω) and the power spectrum by
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Ssn(e
jω)

= lim
N→∞

1

2N + 1

1

4π2
E

{(∫ π

−π

+N∑
i=−N

+N∑
k=−N

[dI(i)dI(k) + dQ(i)dQ(k)]e−jθie−j(ω−θ)k

×
[
H(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )−H(ejθ;−m

M
T )H(ej(ω−θ);−m

M
T )

]
dθ

)
×

(∫ π

−π

+N∑
i=−N

+N∑
k=−N

[dI(i)dI(k) + dQ(i)dQ(k)]e−jθie−j(ω−θ)k

×
[
H(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )−H(ejθ;−m

M
T )H(ej(ω−θ);−m

M
T )

]
dθ

)∗}

= lim
N→∞

1

2N + 1

1

4π2
×

∫ π

θ1=−π

∫ π

θ2=−π

+N∑
m=−N

+N∑
l=−N

+N∑
i=−N

+N∑
k=−N

E {[dI(i)dI(k) + dQ(i)dQ(k)]

× [dI(m)dI(l) + dQ(m)dQ(l)]} e−jθ1ie−j(ω−θ1)kejθ2mej(ω−θ2)l

× [U+(θ1, ω)− U−(θ1, ω)] [U+(θ2, ω)− U−(θ2, ω)]∗ dθ1dθ2 (C.4)

where U+(θ, ω) = H(ejθ; +m
M
T )H(ej(ω−θ); +m

M
T ) and U−(θ, ω) = H(ejθ;−m

M
T )

H(ej(ω−θ);−m
M
T ). Since the symbols, dI(i) and dQ(i), have same statistical properties

and are independent, the expectation term in (B.4) can be reduced to

2E{dI(i)dI(k)dI(m)dI(l)}+ 2E{dI(i)dI(k)}E{dQ(m)dQ(l)}. (C.5)
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The quadruple sum of the first term in (C.5) evaluates to

2
+N∑

m=−N

+N∑
l=−N

+N∑
i=−N

+N∑
k=−N

E{dI(i)dI(k)dI(m)dI(l)}

= 2

+N∑
i=−N

E{d4
I(i)}+ 2

+N∑
l=−N

+N∑
i=−N
(i�=l)

σ4
d

+ 2

+N∑
k=−N

+N∑
i=−N
(i�=k)

σ4
d + 2

+N∑
m=−N

+N∑
i=−N
(i�=m)

σ4
d

= 2
+N∑
i=−N

(E{d4
I(i)} − 3σ4

d) + 2
+N∑
l=−N

+N∑
i=−N

σ4
d

+ 2

+N∑
k=−N

+N∑
i=−N

σ4
d + 2

+N∑
m=−N

+N∑
i=−N

σ4
d (C.6)

and the quadruple sum of the second term in (C.5) becomes

+N∑
m=−N

+N∑
l=−N

+N∑
i=−N

+N∑
k=−N

E{dI(i)dI(k)}E{dQ(m)dQ(l)} = 2

+N∑
m=l=−N

σ4
d

+N∑
i=k=−N

σ4
d. (C.7)

Equation (2.18) is obtained after inserting (C.6) and (C.7) into (B.4) and solving each

of the terms obtained separately.

The terms are solved by noticing that the double sum,
∑+N

l=m=−N
∑+N

i=k=−N e
−jωiejωl,

is equal to (
∑N

i=−N e
−jωi)2, where

∑N
i=−N e

−jωi = ejωN−e−jω(N+1)

1−e−jω =
sin(ω(N+ 1

2
))

sin(ω
2
)

and the

limit, limN→∞ 1
2N+1

(
sin(ω(N+ 1

2
))

sin(ω
2
)

)2 = 2πδ(ω).

Using powers of natural numbers, one can show that 2(E{d4
I(i)}−3σ4

d) =−12(A+1)
5(A−1)

×
σ4
d, where A is the modulation order.
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D.

Closed-form power spectrum expression for early-late detector

enhanced with ideal high-pass filters

In this appendix a closed-form expression for Equation (2.18) in Section 2.5 is ana-

lytically derived. This equation, which is re-labeled Equation (D.1) in this appendix,

is given by

Ssn(e
jω) = σ4

d

{
2

π

∫ π

−π
[U+(θ, ω)− U−(θ, ω)] [U+(θ, ω)− U−(θ, ω)]∗ dθ

− 12(A+ 1)

5(A− 1)

∣∣H+(ejω)⊗H+(ejω)−H−(ejω)⊗H−(ejω)
∣∣2} , (D.1)

where ⊗ denotes the convolution operation, the star, ∗, denotes the conjugate and

U+(θ, ω) =H(ejθ; +m
M
T )H(ej(ω−θ); +m

M
T ), U−(θ, ω) =H(ejθ;−m

M
T )H(ej(ω−θ);−m

M
T ),

H+(ejω) = H(ejω; +m
M
T ) and H−(ejω) = H(ejω;−m

M
T ), and A is the modulation or-

der (i.e. A = 64 for 64-QAM).

Equation (B.4) of Appendix B is used here. This equation, which is re-labeled

Equation (D.2) in this appendix, is given by

H(ejω; εT ) =

⎧⎪⎨⎪⎩e
jωε, −(1− r)π < ω ≤ (1− r)π,
ej(ω−π)ε

[
cos(πε)− j sin(πε) sin( π

2r
(ω
π
− 1))

]
, (1− r)π ≤ ω ≤ (1 + r)π.

(D.2)

A closed-form expression for (D.1) is obtained as follows: a closed-form expression
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for the integral on the right hand side of (D.1) is developed in Section D.1 and a closed-

form expression for the magnitude squared in the second term on the right hand side

of (D.1) is developed in Section D.2.

D.1

The 2
π

times the integral on the right hand side of (D.1), when expressed in terms

of H(ejω;±m
M
T ), is equal to

2

π

∫ π

−π

[
H(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )−H(ejθ;−m

M
T )H(ej(ω−θ);−m

M
T )

]
×

[
H∗(ejθ;

m

M
T )H∗(ej(ω−θ);

m

M
T )−H∗(ejθ;−m

M
T )H∗(ej(ω−θ);−m

M
T )

]
dθ. (D.3)

Equation (D.3) is equal to 0 for |ω| > 2rπ, since when an ideal high-pass filter is used

this equation can be viewed as a sum of convolutions of H(ejω; εT ) and H(ejω; εT )

with ε = ±m
M

for (1 − r)π < |ω| < π. It is sufficient to solve (D.3) for 0 ≤ ω ≤ 2rπ

because (D.3) is an even function of ω.

For 0 ≤ ω ≤ 2rπ and r ≤ 0.5 the interval of integration reduces to ((1 − r)π +

ω, (1 + r)π) and (D.3) is equal to

2

π

∫ (1+r)π

(1−r)π+ω

[
H(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )−H(ejθ;−m

M
T )H(ej(ω−θ);−m

M
T )

]
×

[
H∗(ejθ;

m

M
T )H∗(ej(ω−θ);

m

M
T )−H∗(ejθ;−m

M
T )H∗(ej(ω−θ);−m

M
T )

]
=

4

π

∫ (1+r)π

(1−r)π+ω

|H(ejθ;
m

M
T )|2|H(ej(ω−θ);

m

M
T )|2dθ

− 2

π

∫ (1+r)π

(1−r)π+ω

[
(H(ejθ;

m

M
T ))2(H(ej(ω−θ);

m

M
T ))2 + (H(ejθ;−m

M
T ))2(H(ej(ω−θ);−m

M
T ))2

]
dθ

(D.4)

since from (D.2), |H(ejω;−m
M
T )|2 = |H(ejω; m

M
T )|2 andH∗(ejω;∓m

M
T ) = H(ejω;±m

M
T ).

A closed-form expression for (D.4) is obtained as follows. Noticing that (1−r)π <
θ < (1 + r)π over the interval of integration and −(1 + r)π < ω− θ < −(1− r)π over
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the interval of integration, then |H(ejθ; m
M
T )|2|H(ej(ω−θ); m

M
T )|2 is equal to

[
cos2(π

m

M
) + sin2(π

m

M
) sin2(

π

2r
(
θ

π
− 1))

] [
cos2(π

m

M
) + sin2(π

m

M
) sin2(

π

2r
(
ω − θ
π

+ 1))

]
= cos4(π

m

M
) + cos2(π

m

M
) sin2(π

m

M
) sin2(

π

2r
(
θ

π
− 1))

+ cos2(π
m

M
) sin2(π

m

M
) sin2(

π

2r
(
ω − θ
π

+ 1))

+ sin4(π
m

M
) sin2(

π

2r
(
θ

π
− 1)) sin2(

π

2r
(
ω − θ
π

+ 1)) (D.5)

To obtain (D.5) it can be shown that for −(1 + r)π < ω < −(1− r)π,

H(ejω; εT ) = ej(ω+π)ε
[
cos(πε)− j sin(πε) sin( π

2r
(ω
π

+ 1))
]
.

Using the trigonometric identities, sin2(a) = 1
2
− 1

2
cos(2a) and cos(a) cos(b) =

1
2
(cos(a+ b) + cos(a− b)), (D.5) can be reduced to

cos4(π
m

M
) +

1

2
cos2(π

m

M
) sin2(π

m

M
)

[
1− cos(

π

r
(
θ

π
− 1))

]
+

1

2
cos2(π

m

M
) sin2(π

m

M
)

[
1− cos(

π

r
(
ω − θ
π

+ 1))

]
+

1

4
sin4(π

m

M
)

[
1− cos(

π

r
(
θ

π
− 1))− cos(

π

r
(
ω − θ
π

+ 1)) +
1

2
cos(

ω

r
) +

1

2
cos(

π

r
(
ω − 2θ

π
+ 2))

]
(D.6)

Equation (D.6) is an expression for |H(ejθ; m
M
T )|2|H(ej(ω−θ); m

M
T )|2. A closed form

expression for 4
π

∫ (1+r)π

(1−r)π+ω
|H(ejθ; m

M
T )|2|H(ej(ω−θ); m

M
T )|2dθ is then equal to

4

π

{
cos4(π

m

M
) [2rπ − ω] + cos2(π

m

M
) sin2(π

m

M
) [2rπ − ω]− r cos2(π

m

M
) sin2(π

m

M
) sin(

ω

r
)

+
1

4
sin4(π

m

M
)

[
2rπ − ω − 2r sin(

ω

r
) +

1

2
cos(

ω

r
)(2rπ − ω)− r

2
sin(

ω

r
)

]}
. (D.7)

Intermediate calculations to derive (D.7) from (D.6) can be found in Section D.3,

equations (D.24). Applying cos2(π m
M

) sin2(π m
M

) = cos2(π m
M

)(1−cos2(π m
M

)) to replace

the first and second term in (D.7) with cos4(π m
M

) [2rπ − ω] and after rearranging the
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terms, (D.7) can be written as

r

π

{[
p1(

m

M
) + p2(

m

M
) cos(

ω

r
)
] [

2π − ω

r

]
− p5(

m

M
) sin(

ω

r
)
}
, (D.8)

where

p1(
m

M
) = 4 cos2(π

m

M
) + sin4(π

m

M
) = cos4(π

m

M
) + 2 cos2(π

m

M
) + 1

p2(
m

M
) =

1

2
sin4(π

m

M
) =

1

2
cos4(π

m

M
)− cos2(π

m

M
) +

1

2

p5(
m

M
) =

5

2
sin4(π

m

M
) + 4 cos2(π

m

M
) sin2(π

m

M
) = −3

2
cos4(π

m

M
)− cos2(π

m

M
) +

5

2
.

It remains to solve the second term in (D.4). From (D.2) one can show that

(H(ejθ;−m
M
T ))2(H(ej(ω−θ);−m

M
T ))2 = (H∗(ejθ;

m

M
T ))2(H∗(ej(ω−θ);

m

M
T ))2

and therefore

(H(ejθ;
m

M
T ))2(H(ej(ω−θ);

m

M
T ))2 + (H(ejθ;−m

M
T ))2(H(ej(ω−θ);−m

M
T ))2

= 2Real
{

(H(ejθ;
m

M
T ))2(H(ej(ω−θ);

m

M
T ))2

}
, (D.9)

where Real denotes the real part of a complex. From (D.2) with (1−r)π < θ < (1+r)π

and −(1 + r)π < ω − θ < −(1− r)π, (H(ejθ; m
M
T ))2(H(ej(ω−θ); m

M
T ))2 is equal to

e2jω
m
M

[
cos(π

m

M
)− j sin(π

m

M
) sin(

π

2r
(
θ

π
− 1))

]2

×
[
cos(π

m

M
)− j sin(π

m

M
) sin(

π

2r
(
(ω − θ)
π

+ 1))

]2

= e2jω
m
M

[
cos2(π

m

M
)− 2j cos(π

m

M
) sin(π

m

M
)f1(θ; r)− sin2(π

m

M
)f 2

1 (θ; r)
]

×
[
cos2(π

m

M
)− 2j cos(π

m

M
) sin(π

m

M
)f2(ω − θ; r)− sin2(π

m

M
)f 2

2 (ω − θ; r)
]
,

(D.10)

where f1(θ; r) denotes sin( π
2r

( θ
π
−1)) and f2(ω− θ; r) denotes sin( π

2r
(ω−θ

π
+1)). Equa-
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tion (D.10) can be written as e2jω
m
M [C1(

m
M

; θ, ω, r) + jC2(
m
M

; θ, ω, r)], where

C1(
m

M
; θ, ω, r) = cos4(π

m

M
)− cos2(π

m

M
) sin2(π

m

M
)f 2

2 (ω − θ; r)

− 4 cos2(π
m

M
) sin2(π

m

M
)f1(θ; r)f2(ω − θ; r)− cos2(π

m

M
) sin2(π

m

M
)f 2

1 (θ; r)

+ sin4(π
m

M
)f 2

1 (θ; r)f 2
2 (ω − θ; r)

= cos4(π
m

M
) + sin4(π

m

M
)f 2

1 (θ; r)f 2
2 (ω − θ; r)

− cos2(π
m

M
) sin2(π

m

M
)
[
f 2

1 (θ; r) + 4f1(θ; r)f2(ω − θ; r) + f 2
2 (ω − θ; r)]

(D.11)

and

C2(
m

M
; θ, ω, r) = −2 cos3(π

m

M
) sin(π

m

M
)f1(θ; r) + 2 cos(π

m

M
) sin3(π

m

M
)f1(θ; r)f

2
2 (ω − θ; r)

− 2 cos3(π
m

M
) sin(π

m

M
)f2(ω − θ; r) + 2 cos(π

m

M
) sin3(π

m

M
)f 2

1 (θ; r)f2(ω − θ; r)

= −2 cos3(π
m

M
) sin(π

m

M
) [f1(θ; r) + f2(ω − θ; r)]

+ 2 cos(π
m

M
) sin3(π

m

M
)
[
f1(θ; r)f

2
2 (ω − θ; r) + f 2

1 (θ; r)f2(ω − θ; r)
]
.

(D.12)

Using this decomposition (D.9) can be rewritten as

(H(ejθ;
m

M
T ))2(H(ej(ω−θ);

m

M
T ))2 + (H(ejθ;−m

M
T ))2(H(ej(ω−θ);−m

M
T ))2

= 2 cos(2ω
m

M
)C1(

m

M
; θ, ω, r)− 2 sin(2ω

m

M
)C2(

m

M
; θ, ω, r). (D.13)

This implies that

− 2

π

∫ (1+r)π

(1−r)π+ω

[
(H(ejθ;

m

M
T ))2(H(ej(ω−θ);

m

M
T ))2 + (H(ejθ;−m

M
T ))2(H(ej(ω−θ);−m

M
T ))2

]
dθ

= −4

π
cos(2ω

m

M
)

∫ (1+r)π

(1−r)π+ω

C1(
m

M
; θ, ω, r)dθ+

4

π
sin(2ω

m

M
)

∫ (1+r)π

(1−r)π+ω

C2(
m

M
; θ, ω, r)dθ.

(D.14)

It remains to solve (D.14) to obtain a closed-form expression for (D.4).
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From (D.11) a closed-form expression for the first term in (D.14) is equal to

− 4

π
cos(2ω

m

M
)

{
cos4(π

m

M
) [2rπ − ω] +

1

4
sin4(π

m

M
) [2rπ − ω]

[
1 +

1

2
cos(

ω

r
)

]
− sin4(π

m

M
)
5r

8
sin(

ω

r
)

− cos2(π
m

M
) sin2(π

m

M
)
[
2rπ − ω − r sin(

ω

r
) + 4r sin(

ω

2r
)− 2 cos(

ω

2r
)(2rπ − ω)

]}
.

(D.15)

Intermediate calculations can be found in Section D.3, equations (D.25). Applying

cos2(π m
M

) sin2(π m
M

) = cos2(π m
M

)(1−cos2(π m
M

)) to replace [cos4(π m
M

)−cos2(π m
M

) sin2(π m
M

)[2rπ−
ω] with [2 cos4(π m

M
)−cos2(π m

M
)][2rπ−ω] and after rearranging the terms, (D.15) can

be written as

− r

π
cos(2ω

m

M
)
{[
p3(

m

M
) + p2(

m

M
) cos(

ω

r
) + p4(

m

M
) cos(

ω

2r
)
] [

2π − ω

r

]
+ p6(

m

M
) sin(

ω

r
)− 2p4(

m

M
) sin(

ω

2r
)
}
, (D.16)

where

p3(
m

M
) = 8 cos4(π

m

M
)− 4 cos2(π

m

M
) + sin4(π

m

M
) = 9 cos4(π

m

M
)− 6 cos2(π

m

M
) + 1

p4(
m

M
) = 8 cos2(π

m

M
) sin2(π

m

M
) = −8 cos4(π

m

M
) + 8 cos2(π

m

M
)

p6(
m

M
) = −5

2
sin4(π

m

M
) + 4 cos2(π

m

M
) sin2(π

m

M
) = −13

2
cos4(π

m

M
) + 9 cos2(π

m

M
)− 5

2

From (D.12) a closed-form expression for the second term in (D.14) is equal to

4

π
sin(2ω

m

M
)
{
−2 cos3(π

m

M
) sin(π

m

M
)
[
4r sin(

ω

2r
)
]

+ 2 cos(π
m

M
) sin3(π

m

M
)

[
−4r

3
sin(

ω

r
) +

4r

3
sin(

ω

2r
)

]}
. (D.17)

Intermediate calculations can be found in Section D.3, equations (D.26). After rear-
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ranging the terms, (D.17) can be written as

− r

π
sin(2ω

m

M
)
{
p7(

m

M
) sin(

ω

r
) + p8(

m

M
) sin(

ω

2r
)
}
, (D.18)

where

p7(
m

M
) =

32

3
cos(π

m

M
) sin3(π

m

M
) =

32

3
sin(π

m

M
)(− cos3(π

m

M
) + cos(π

m

M
))

p8(
m

M
) = 32 cos3(π

m

M
) sin(π

m

M
)− 32

3
cos(π

m

M
) sin3(π

m

M
)

=
32

3
sin(π

m

M
)(4 cos3(π

m

M
)− cos(π

m

M
))

A closed-form expression for the 2
π

times the integral on the right hand side of (D.1)

is then obtained after summing (D.8), (D.16) and (D.18). This expression is valid for

0 ≤ ω ≤ 2rπ. The absolute value of ω is taken so the expression is valid for |ω| < 2rπ.

D.2

In this Section a closed-form expression for the magnitude squared in the term on

the right hand side of (D.1) is derived. As in Section D.1 it is assumed that r ≤ 0.5,

0 ≤ ω ≤ 2rπ and an ideal high-pass filter is used. First, consider H(ejω; m
M
T ) ⊗

H(ejω; m
M
T ), which is equal to

1

2π

∫ π

−π
H(ejθ;

m

M
T )H(ej(ω−θ);

m

M
T )dθ

=
1

2π

∫ (1+r)π

(1−r)π+ω

ejω
m
M

[
cos(π

m

M
)− j sin(π

m

M
)f1(θ; r)

] [
cos(π

m

M
)− j sin(π

m

M
)f2(ω − θ; r)

]
dθ

(D.19)
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where f1(θ; r) = sin( π
2r

( θ
π
− 1)) and f2(ω − θ; r) = sin( π

2r
(ω−θ

π
+ 1)). It can be shown

that a closed-form expression for H(ejω; m
M
T )⊗H(ejω; m

M
T ) is equal to

ejω
m
M

2π

{
cos2(π

m

M
)[2rπ − ω]− j4r cos(π

m

M
) sin(π

m

M
) sin(

ω

2r
)

− sin2(π
m

M
)

[
r sin(

ω

2r
)− 1

2
cos(

ω

2r
)(2rπ − ω)

]}
. (D.20)

Intermediate calculations to derive (D.20) from (D.19) can be found in Section D.3,

Equations (D.25) and (D.26). H(ejω; m
M
T )⊗H(ejω; m

M
T ) can be denoted ejω m

M

2π
{D1(

m
M

; θ, ω, r)−
jD2(

m
M

; θ, ω, r)}, where from (D.20)

D1(
m

M
; θ, ω, r) =

[
cos2(π

m

M
) +

1

2
sin2(π

m

M
) cos(

ω

2r
)

]
[2rπ − ω]− sin2(π

m

M
)r sin(

ω

2r
)

D2(
m

M
; θ, ω, r) = 4r cos(π

m

M
) sin(π

m

M
) sin(

ω

2r
). (D.21)

It can be shown using (D.20) thatH(ejω;−m
M
T )⊗H(ejω;−m

M
T ) = e−jω m

M

2π
{D1(

m
M

; θ, ω, r)+

jD2(
m
M

; θ, ω, r)}, yielding

|H(ejω;
m

M
T )⊗H(ejω;

m

M
T )−H(ejω;−m

M
T )⊗H(ejω;−m

M
T )|2

= | 1

2π
(ejω

m
M − e−jω m

M )D1(
m

M
; θ, ω, r)− j

2π
(ejω

m
M + e−jω

m
M )D2(

m

M
; θ, ω, r)|2

= | 2j
2π

sin(ω
m

M
)D1(

m

M
; θ, ω, r)− 2j

2π
cos(ω

m

M
)D2(

m

M
; θ, ω, r)|2

=
1

π2
{sin(ω

m

M
)D1(

m

M
; θ, ω, r)− cos(ω

m

M
)D2(

m

M
; θ, ω, r)}2

=
1

π2

{
sin(ω

m

M
)

[[
cos2(π

m

M
) +

1

2
sin2(π

m

M
) cos(

ω

2r
)

]
[2rπ − ω]− sin2(π

m

M
)r sin(

ω

2r
)

]
− cos(ω

m

M
)4r cos(π

m

M
) sin(π

m

M
) sin(

ω

2r
)
}2

(D.22)

The trigonometric identities ejω
m
M − e−jω

m
M = 2j sin(ω m

M
) and ejω

m
M + e−jω

m
M =

2 cos(ω m
M

) were used to obtain (D.22). After rearranging the terms in (D.22) a closed-

form expression for the magnitude squared in the term on the right hand side of (D.1)
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is given by

1

π2

{[
p9(

m

M
) + p10(

m

M
) cos(

ω

2r
)
]
[2rπ − ω] sin(ω

m

M
)

−
[
2p10(

m

M
) sin(ω

m

M
) + p11(

m

M
) cos(ω

m

M
)
]
r sin(

ω

2r
)
}2

, (D.23)

where

p9(
m

M
) = cos2(π

m

M
)

p10(
m

M
) =

1

2
sin2(π

m

M
) = −1

2
cos2(π

m

M
) +

1

2

p11(
m

M
) = 4 cos(π

m

M
) sin(π

m

M
).

This expression is valid for 0 ≤ ω ≤ 2rπ. The absolute value of ω has to be taken to

make this expression valid for |ω| < 2rπ.

D.3

This Section contains intermediate calculations for Sections D.1 and D.2.

∫ (1+r)π

(1−r)π+ω

cos(
π

r
(
θ

π
− 1))dθ = r

[
sin(

π

r
(
θ

π
− 1))

](1+r)π

(1−r)π+ω

= r sin(
ω

r
).∫ (1+r)π

(1−r)π+ω

cos(
π

r
(
(ω − θ)
π

+ 1))dθ
(α=ω−θ+2π)

= −
∫ (1−r)π+ω

(1+r)π

cos(
π

r
(
α− 2π

π
+ 1))dα

=

∫ (1+r)π

(1−r)π+ω

cos(
π

r
(
θ

π
− 1))dθ.∫ (1+r)π

(1−r)π+ω

cos(
π

r
(
(ω − 2θ)

π
+ 2))dθ =

[
−r

2
sin(

π

r
(
(ω − 2θ)

π
+ 2))

](1+r)π

(1−r)π+ω

= −r sin(
ω

r
) (D.24)

The integrals in (D.24) are used to obtain (D.7).

Using the trigonometric identities sin2(a) = 1
2
− 1

2
cos(2a) and cos(a) cos(b) =
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1
2
(cos(a+ b) + cos(a− b)) and the integrals in (D.24), it is found that

∫ (1+r)π

(1−r)π+ω

f 2
1 (θ; r)dθ =

∫ (1+r)π

(1−r)π+ω

f 2
2 (ω − θ; r)dθ =

1

2

[
2rπ − ω − r sin(

ω

r
)
]

∫ (1+r)π

(1−r)π+ω

f 2
1 (θ; r)f 2

2 (ω − θ; r)dθ =
1

4
[2rπ − ω][1 +

1

2
cos(

ω

r
)]− 5r

8
sin(

ω

r
)

∫ (1+r)π

(1−r)π+ω

f1(θ; r)f2(ω − θ; r)dθ =

∫ (1+r)π

(1−r)π+ω

sin(
π

2r
(
θ

π
− 1)) sin(

π

2r
(
(ω − θ)
π

+ 1))dθ

=
1

2

∫ (1+r)π

(1−r)π+ω

cos(
π

2r
(
ω − 2θ

π
+ 2))dθ − 1

2

∫ (1+r)π

(1−r)π+ω

cos(
ω

2r
)dθ

=
1

2

[
−r sin(

π

2r
(
ω − 2θ

π
+ 2))

](1+r)π

(1−r)π+ω

= r sin(
ω

2r
)− 1

2
cos(

ω

2r
)(2rπ − ω), (D.25)

where f1(θ; r) = sin( π
2r

( θ
π
− 1)) and f2(ω − θ; r) = sin( π

2r
(ω−θ

π
+ 1)). The integrals

in (D.25) are used to obtain (D.15) and (D.20).

Using the trigonometric identities sin2(a) = 1
2
− 1

2
cos(2a), sin(a) cos(b) = 1

2
(sin(a+

b) + sin(a− b)) and cos(a) sin(b) = 1
2
(sin(a+ b)− sin(a− b)), it is found that

∫ (1+r)π

(1−r)π+ω

f1(θ; r)dθ = −2r

[
cos(

π

2r
(
θ

π
− 1))

](1+r)π

(1−r)π+ω

= 2r sin(
ω

2r
)∫ (1+r)π

(1−r)π+ω

f2(ω − θ; r)dθ (α=ω−θ+2π)
= −

∫ (1−r)π+ω

(1+r)π

f2(α− 2π; r)dα

=

∫ (1+r)π

(1−r)π+ω

f1(θ; r)dθ
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f1(θ; r)f
2
2 (ω − θ; r) =

1

2
sin(

π

2r
(
θ

π
− 1))

[
1− cos(

π

r
(
ω − θ
π

+ 1))

]
=

1

2
f1(θ; r)− 1

4
sin(

π

2r
(
2ω − θ
π

+ 1)) +
1

4
sin(

π

2r
(
2ω − 3θ

π
+ 3))∫ (1+r)π

(1−r)π+ω

f1(θ; r)f
2
2 (ω − θ; r)dθ = r sin(

ω

2r
)− r

2

[
cos(

π

2r
(
2ω − θ
π

+ 1))

](1+r)π

(1−r)π+ω

+
r

6

[
cos(

π

2r
(
2ω − 3θ

π
+ 3))

](1+r)π

(1−r)π+ω

= r sin(
ω

2r
)− r

2

[
sin(

ω

r
) + sin(

ω

2r
)
]

+
r

6

[
− sin(

ω

r
) + sin(

ω

2r
)
]

= −2r

3
sin(

ω

r
) +

2r

3
sin(

ω

2r
)

f 2
1 (θ; r)f2(ω − θ; r) =

1

2
sin(

π

2r
(
ω − θ
π

+ 1))

[
1− cos(

π

r
(
θ

π
− 1))

]
=

1

2
f2(ω − θ; r)− 1

4
sin(

π

2r
(
ω + θ

π
− 1))

− 1

4
sin(

π

2r
(
ω − 3θ

π
+ 3))

∫ (1+r)π

(1−r)π+ω

f 2
1 (θ; r)f2(ω − θ; r)dθ = r sin(

ω

2r
) +

r

2

[
cos(

π

2r
(
ω + θ

π
− 1))

](1+r)π

(1−r)π+ω

− r

6

[
cos(

π

2r
(
ω − 3θ

π
+ 3))

](1+r)π

(1−r)π+ω

= r sin(
ω

2r
)− r

2

[
sin(

ω

r
) + sin(

ω

2r
)
]

+
r

6

[
− sin(

ω

r
) + sin(

ω

2r
)
]

=

∫ (1+r)π

(1−r)π+ω

f1(θ; r)f
2
2 (ω − θ; r)dθ, (D.26)

where f1(θ; r) = sin( π
2r

( θ
π
− 1)) and f2(ω − θ; r) = sin( π

2r
(ω−θ

π
+ 1)). The integrals

in (D.26) are used to obtain (D.17) and (D.20).
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E.

Noise bandwidth expression for third order loop

A partial fraction expansion of H3(z) yields

H3(z) =
c11

z − p2
+

c12
(z − p2)2

+
c21

z − p1
, (E.1)

where c11 =
GL(1− a)2(p2 − 2p1)

(p2 − p1)2
, c12 =

GL(1− a)2p2
2

(p2 − p1)
, and c21 =

GL(1− a)2p2
1

(p2 − p1)2
.

From (E.1) and using the z-transform pairs Ak−1u[k − 1] ←→ 1

(z − A)
and

(k − 1)Aku[k − 1] ←→ A2

(z − A)
, it is found that

h3[k] =
GL(1− a)2

p2 − p1

[(
p1

p1 − p2

+ k

)
pk2 +

p1

p2 − p1

pk1

]
u[k − 1]. (E.2)

The noise bandwidth, BL, is given by

BL =
1

2

+∞∑
k=−∞

h2
3[k]. (E.3)

Using the geometric series

+∞∑
k=1

Ak =
A

1− A ,

+∞∑
k=1

kAk =
a

(1− a)2
and

+∞∑
k=1

k2Ak =
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a(a+ 1)

(1− a)3
and substituting (E.2) into (E.3) gives

BL =
1

2

G2
L(1− a)4

(p2 − p1)2

[
p2

1

(p1 − p2)2

(
p2

2

1− p2
2

+
p2

1

1− p2
1

− 2
p1p2

1− p1p2

)
+

2p1

p1 − p2

(
p2

2

(1− p2
2)

2
− p1p2

(1− p1p2)2

)
+
p2

2(1 + p2
2)

(1− p2
2)

3

]
. (E.4)
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F.

PSD Derivation of the Gardner detector’s noise

The low-pass equivalent of the bandpass QAM signal is given by

x(t) =
+∞∑
l=−∞

(a[l] + jb[l])h(t− lT − εT ), (F.1)

where a[l]+ j× b[l] are the transmitted symbols that are uniformly distributed across

the alphabet with variance 2σ2
d where σ2

d = E{a2[l]} = E{b2[l]}, h(t) is the square-

root raised cosine signaling pulse, T is the symbol interval, and εT is the timing

offset.

The symbol energy of x(t) is 2σ2
d, since

∫
h2(t)dt = 1. The symbol energy, Es, of

the bandpass QAM signal is then Es = σ2
d.

The transmit signal is corrupted with bandpass white Gaussian noise, whose low-

pass equivalent is denoted by w(t) = wI(t)+j×wQ(t), where wI(t) and wQ(t) are the

real and imaginary components, each with variance σ2
wI

= σ2
wQ

= σ2
w/2. The constant

power spectral density of the low-pass equivalent noise is 2N0. It is assumed that x(t)

is bandlimited to ±1/(2Ts) before being sampled at 1/Ts, so σ2
wI

= σ2
wQ

= N0/Ts.

The PSD is derived in the case of zero timing offset (i.e. εT = 0). The Gardner

detector operates on a signal that is sampled at twice the symbol rate, 1/T , so the

digital signal that is fed to the Gardner detector (assuming perfect timing) is given
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by

y[n](≡ y(nTs)) = x[n]⊗ h[n]⊗ g[n] + w[n]⊗ h[n]⊗ g[n]

=

+∞∑
l=−∞

(a[l] + jb[l])p[n− 2l] + w[n]⊗ q[n], (F.2)

where h[n] is the square-root raised cosine impulse response, h(t), sampled at 2/T ,

g[n] is the impulse response of the prefilter given by

g[n] = (h[n]⊗ h[n])× cos(πn), (F.3)

⊗ is the convolution operator, p[n] = h[n] ⊗ h[n] ⊗ g[n], and q[n] = h[n] ⊗ g[n].

The prefilter is a high-pass version of the raised cosine prefilter (i.e. cascade of two

square-root raised cosine filters), and is obtained by modulating the raised cosine

impulse response, h[n]⊗ h[n], by cos(πn). p[n] is the digital impulse response of the

end-to-end filter resulting from cascading both matched filters with the prefilter. q[n]

is the digital impulse response of the end-to-end filter resulting from cascading one

matched filter, the one in the receiver, with the prefilter. Frequency responses of

filters with impulse responses p[n] and q[n] can be found in Appendix G.

The Gardner detector produces timing estimates at the symbol rate. With n = 2k

(only keep the detector’s output with even indices), the timing estimates, which are

denoted by z[2k] ≡ z(2kTs), are given by

z[2k] = Re {y[2k − 1]× [y[2k]− y[2k − 2]]∗} , (F.4)

where 2kTs and (2k − 2)Ts are the correct sampling times (i.e. eye is maximally

opened) for detecting transmitted symbols k and k−1, y[2k] ≡ y(2KTs) and y[2k−2]

are complex decision variables, y[2k − 1] is the sample between y[2k] and y[2k − 2],

“*” denotes the complex conjugate operator, and R{·} represents the real part. Since
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T = 2Ts, (F.4) can be also be written as

z(kT ) = Re {y((k − 1/2)T )× [y(kT )− y((k − 1)T )]∗} . (F.5)

From (F.2) y((k −∆)T ),∆ = {0, 1/2, 1} can be expressed as

y((k −∆)T ) = sk−∆ + ηk−∆, (F.6)

where

sk−∆ =

+∞∑
l=−∞

(a[l] + jb[l])p((k −∆− l)T ), ∆ = {0, 1/2, 1},

ηk−∆ =
+∞∑
l=−∞

w2lq((k −∆− l)T ) + w2l+1q((k −∆− 1/2− l)T ), (F.7)

where p(t) is the underlying continuous-time signal of p[n], q(t) is the underlying

continuous-time signal of q[n], w2l ≡ w(2lTs), and w2l+1 ≡ w((2l + 1)Ts).

In the case of perfect timing the mid-samples are zero, and sk−1/2 = 0. From (F.5)

and (F.7) the Gardner’s detector output reduces to

z(kT ) = Re{ηk−1/2 × [sk − sk−1 + ηk − ηk−1]
∗} . (F.8)

This expression is rewritten in the form z(kT ) = zI(kT ) + zQ(kT ), where

zI(kT ) = ηI,k−1/2 × [sI,k − sI,k−1 + ηI,k − ηI,k−1] ,

zQ(kT ) = ηQ,k−1/2 × [sQ,k − sQ,k−1 + ηQ,k − ηQ,k−1] , (F.9)

by decomposing sk into its real part, sI,k, and its imaginary part, sQ,k, and decom-

posing ηk into its real part, ηI,k, and its imaginary part, ηQ,k.

The sequences, a[l] and b[l] are independent, zero-mean, and with equal variance,

σ2
d. The Gaussian noise is independent of the data. Under these conditions the

terms zI(kT ) and zQ(kT ) are independent with equal variance. Their power spectral
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densities, respectively denoted by SzI
(ejΩT ) and SzQ

(ejΩT ), are identical, and the

power spectral density, S(ejΩT ), is simply equal to

S(ejΩT ) = SzI
(ejΩT ) + SzQ

(ejΩT )

= 2× SzI
(ejΩT ). (F.10)

As in Section 2.5, an expression for SzI
(ejΩT ) is derived by evaluating an ensemble

average in the frequency domain. This ensemble average is given by

SzI
(ejΩT ) = lim

N→+∞
1

2N + 1
E

{|Zt
I(e

jΩT )|2} , (F.11)

where E{·} denotes the expectation operator, Zt
I(e

jΩT ) is the Discrete Time Fourier

Transform (DTFT) of ztI(kT ), and ztI(kT ) is zI(kT ) truncated to 2N + 1 symbols.

“Truncation to 2N + 1 symbols” means that the infinite sums in (F.7) are replaced

by finite sums from −N to +N . We have from (F.9)

Zt
I(e

jΩT ) = DTFT
{
ηt

I,k−1/2

}⊗ [
DTFT

{
st
I,k − st

I,k−1

}
+ DTFT

{
ηt

I,k − ηt
I,k−1

}]
,

where

DTFT
{
ηt

I,k−1/2

}
=

+N∑
l=−N

[
wI,2lQ(ejΩT ;

T

2
)e−jΩT l + wI,2l+1Q(ejΩT ; 0)e−jΩT (l+1)

]
,

Q(ejΩT ; ∆T ) = DTFT {q((k−∆)T)} , ∆ = {0, 1/2},

DTFT
{
st
I,k − st

I,k−1

}
=

+N∑
l=−N

a[l]P (ejΩT )
[
e−jΩT l − e−jΩT (l+1)

]
,

P (ejΩT ) = DTFT {p(kT)} ,
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DTFT
{
ηt

I,k − ηt
I,k−1

}
=

+N∑
l=−N

[
wI,2lQ(ejΩT ; 0)

(
e−jΩT l − e−jΩT (l+1)

)
+ wI,2l+1Q(ejΩT ;

T

2
)
(
e−jΩT l − e−jΩT (l+1)

)]
.

Since |Zt
I(e

jΩT )|2 = Zt
I(e

jΩT )(Zt
I(e

jΩT ))∗, then Sz(e
jΩT ) is given by

lim
N→+∞

2

2N + 1
E

{
1

4π2

∫ π

−π

N∑
l=−N

[
e−jθ1l − e−jθ1(l+1)

]
×

[
a[l]P (ejθ1) + wI,2lQ(ejθ1; 0) + wI,2l+1Q(ejθ1 ;

T

2
)

]
×

N∑
k=−N

[
wI,2kQ(ej(ΩT−θ1);

T

2
)e−j(ΩT−θ1)k + wI,2k+1Q(ej(ΩT−θ1); 0)e−j(ΩT−θ1)(k+1)

]
dθ1

×
∫ π

−π

N∑
m=−N

[
ejθ2m − ejθ2(m+1)

] [
a[m]P ∗(ejθ2) + wI,2mQ

∗(ejθ2; 0) + wI,2m+1Q
∗(ejθ2;

T

2
)

]

×
N∑

n=−N

[
wI,2nQ

∗(ej(ΩT−θ2);
T

2
)ej(ΩT−θ2)n + wI,2n+1Q

∗(ej(ΩT−θ2); 0)e−j(ΩT−θ2)(n+1)

]
dθ2

}
.

(F.12)

After extensive algebraic manipulations (F.12) reduces to

S(ejΩT ) = Ss×nz (ejΩT ) + Sn×nz (ejΩT ),

where

Ss×nz (ejΩT ) =
σ2
d × σ2

wI

π

∫ π

−π
(2− 2 cos θ)|P (ejθ)|2

(
|Q(ej(ΩT−θ);

T

2
)|2 + |Q(ej(ΩT−θ); 0)|2

)
dθ,

Sn×nz (ejΩT ) = Sn
2
1

z (ejΩT ) + Sn
2
2

z (ejΩT ) + Sn
2
3

z (ejΩT ), (F.13)
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with

Sn
2
1

z (ejΩT ) = 4πσ4
wI

∣∣∣∣Q(ejΩT ; 0)(1− e−jΩT )⊗Q(ejΩT ;
T

2
)

+ Q(ejΩT ;
T

2
)(1− e−jΩT )⊗Q(ejΩT ; 0)e−jΩT

∣∣∣∣2 δ(ΩT ),

Sn
2
2

z (ejΩT ) = 8σ4
wI
× Im

{
Q(ejΩT ; 0)Q∗(ejΩT ;

T

2
)(1− ejΩT )

}
⊗ Im

{
Q(ejΩT ; 0)Q∗(ejΩT ;

T

2
)(1− ejΩT )

}
,

Sn
2
3

z (ejΩT ) = 4σ4
wI

(
[1− cos ΩT ][|Q(ejΩT ; 0)|2 + |Q(ejΩT ;

T

2
)|2]

)
⊗

(
|Q(ejΩT ; 0)|2 + |Q(ejΩT ;

T

2
)|2

)
,

where Im{·} returns the imaginary part of its argument, and δ(·) is the Dirac func-

tion.

Note that Ss×nz (ejΩT ) is the power spectrum of the signal times noise component,

and Sn×nz (ejΩT ) is the power spectrum of the noise times noise component.

Equation (F.13) is further simplified by evaluating P (ejΩT ), Q(ejΩT ;T/2), and

Q(ejΩT ; 0).

The DTFT of p[n], where the sampling rate is 2/T , is given by (G.4). P (ejΩT ) is

the DTFT of p[n] after it has been down-sampled by 2 and is given by [61]

P (ejΩT ) =
1

2

(
P

(
ejω/2

)
+ P

(
ej(ω−2π)/2

)) |ω=ΩT . (F.14)
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so from (G.4) with (1− r)π < ΩT < (1 + r)π

P (ejΩT ) =
1

2

(
cos2

(
1

r

(
ΩT

2
− π

2

))
+ cos2

(
1

r

(
2π − ΩT

2
− π

2

)))
= cos2

(
π

2r

(
ΩT

π
− 1

))
, (F.15)

and

P (ejΩT ) =

⎧⎪⎪⎨⎪⎪⎩
0, −(1− r)π ≤ ΩT ≤ (1− r)π,

cos2

(
π

2r

(
ΩT

π
− 1

))
, (1− r)π < ΩT < (1 + r)π.

(F.16)

The DTFT of q[n] denoted by Q(ejω), where ω = ΩT
2
, is determined using (G.2)

and (G.3) to find

Q(ejω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, |ω| ≤ (1− r)π
2
,√[

1 + cos

(
π

2r

( |2ω|
π

+ r − 1

))]
×

[
1 + cos

(
π

2r

( |2ω|
π
− r − 1

))]
, (1− r)π

2
≤ |ω| ≤ (1 + r)π

2
,

0, (1 + r)π
2
≤ |ω| < π.

(F.17)

Q(ejΩT ) is the DTFT of q[n] after it has been down-sampled by 2 and is given

by [61]

Q(ejΩT ) =
1

2

(
Q

(
ejω/2

)
+Q

(
ej(ω−2π)/2

)) |ω=ΩT . (F.18)

So from (F.17) after some simplifications it is found that

Q(ejΩT ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, −(1− r)π ≤ ΩT ≤ (1− r)π,

cos
ΩT − π

2r

(√
1− sin

ΩT − π
2r

+

√
1 + sin

ΩT − π
2r

)
, (1− r)π < ΩT < (1 + r)π.

(F.19)

168



Now we have

Q(ejΩT ;
T

2
) =

1

2

(
e−jω/2Q

(
ejω/2

)− e−jω/2Q (
ej(ω−2π)/2

)) |ω=ΩT . (F.20)

and

Q(ejΩT ;
T

2
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, −(1− r)π ≤ ΩT ≤ (1− r)π,

cos
ΩT − π

2r

(√
1− sin

ΩT − π
2r

−
√

1 + sin
ΩT − π

2r

)
e−jΩT/2, (1− r)π < ΩT < (1 + r)π.

(F.21)

Equations (F.16), (F.19) and (F.21) are used in (F.13) to yield (4.2).
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G.

Derivation of the Gardner detector’s S-curve

An equation for the Gardner detector’s S-curve that is valid for any band-limited

signaling pulse, p(t), is Equation (25) in [16], which reads

− 2j(
1

T
)

(
ej2πεT/T

1

2π

∫ 2π/T

0

PA(jΩ)PA(j(
2π

T
− Ω)) sin

ΩT

2
dΩ

+ e−j2πεT/T
1

2π

∫ 0

−2π/T

PA(jΩ)PA(j(−2π

T
− Ω)) sin

ΩT

2
dΩ

)
× 2σ2

d, (G.1)

where PA(jΩ) is the Fourier transform of p(t), εT is the timing offset, and 2σ2
d is

the variance of the transmitted symbols, a[k] + jb[k]. The signaling pulse p(t) is the

impulse response of the end-to-end filter resulting from cascading the matched filters

in the transmitter and the receiver as well as the prefilter.

In Appendix F the digital signaling pulse, p[n], was defined as p[n] = h[n]⊗h[n]⊗
g[n], where g[n] was the impulse response of the prefilter defined in (F.3), and h[n]

was the square-root raised cosine impulse response, h(t), that is sampled at 2/T .

The DTFT of p[n] denoted by P (ejω), where ω = ΩT
2
, is determined as follows.

In this analysis, h[n] is scaled such that h[n]⊗h[n] yields a discrete impulse response

that corresponds to the raised cosine impulse response when it is sampled at 2/T .
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From (B.1) in Appendix B the DTFT of h[n]⊗ h[n] is then given by

H(ejω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2, |ω| ≤ (1− r)π

2
,[

1 + cos

(
π

2r

( |2ω|
π

+ r − 1

))]
, (1− r)π

2
≤ |ω| ≤ (1 + r)π

2
,

0, (1 + r)π
2
≤ |ω| < π.

(G.2)

From (F.3) and (G.2) the DTFT of g[n] is given by

G(ejω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, |ω| ≤ (1− r)π

2
,[

1 + cos

(
π

2r

( |2ω|
π
− r − 1

))]
, (1− r)π

2
≤ |ω| ≤ (1 + r)π

2
,

2, (1 + r)π
2
≤ |ω| < π.

(G.3)

The DTFT of p[n] is P (ejω) = H(ejω)G(ejω). From (G.2) and (G.3) after some simple

algebraic manipulations it is found that

P (ejω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, |ω| ≤ (1− r)π

2
,

cos2

(
1

r

(
|ω| − π

2

))
, (1− r)π

2
≤ |ω| ≤ (1 + r)π

2
,

0, (1 + r)π
2
≤ |ω| < π.

(G.4)

The Fourier transform of the continuous-time impulse response, p(t), is required

to determine an expression for the Gardner detector S-curve equation using (G.1).

The Fourier transform of p(t) is PA(jΩ) =
T

2
P (ejω)|ω=Ω(T/2), and from (G.4)

PA(jΩ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, |Ω| ≤ (1− r) π

T
,

T

2
cos2

(
π

2r

( |ΩT |
π
− 1

))
, (1− r) π

T
≤ |Ω| ≤ (1 + r) π

T
,

0, (1 + r) π
T
≤ |Ω| < 2π

T
.

(G.5)
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From (G.5),

∫ 2π/T

0

PA(jΩ)PA(j(
2π

T
− Ω)) sin

ΩT

2
dΩ =

∫ (1+r)π/T

(1−r)π/T

T

2
cos2

(
π

2r

(
ΩT

π
− 1

))
× T

2
cos2

(
π

2r

(
1− ΩT

π

))
sin

ΩT

2
dΩ

=
T 2

4

∫ (1+r)π/T

(1−r)π/T
cos4

(
π

2r

(
ΩT

π
− 1

))
sin

ΩT

2
dΩ

=
24 sinπr/2

(64− 20r2 + r4)T
,∫ 0

−2π/T

PA(jΩ)PA(j(−2π

T
− Ω)) sin

ΩT

2
dΩ = − 24 sin πr/2

(64− 20r2 + r4)T
, (G.6)

and from (G.1) the S-curve equation is

− j 24 sin πr/2

π(64− 20r2 + r4)

(
ej2πεT/T − e−j2πεT/T)× 2σ2

d

=
96σ2

d sin πr/2

π(64− 20r2 + r4)
sin

2πεT

T
. (G.7)
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