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ABSTRACT 

Plant immune system comprises three main layers. Recognition of conserved microbe-

associated molecular patterns (MAMPs) initiates the first layer of immune response, MAMP-

triggered immunity (MTI). However successful pathogens utilize virulent strategies, such as 

effector proteins, to suppress MTI and facilitate their growth, resulting into effector-triggered 

susceptibility (ETS). In response to ETS, plants acquire resistance proteins to monitor the 

presence of the effector proteins, leading to stronger immune response, effector-triggered 

immunity (ETI). During the plant immune response, large-scale transcriptional reprogramming is 

activated by numerous transcription (co)factors. The Arabidopsis TGA factors have been shown 

to be required for resistance to disease. In the present study, the biological functions of clade I 

TGA factors (TGA1 and TGA4) during plant immune responses were investigated in depth. 

My results demonstrate that TGA1 and TGA4 are positive regulators in disease resistance 

against virulent pathogens, such as bacterial pathogen Pseudomonas syringae and fungal 

pathogen Colletotrichum higginsianum. In addition, TGA1 and TGA4 positively contribute to 

disease resistance against a nonpathogenic strain, P. syringae pv. tomato hrcC
-
, an avirulent 

strain, P.s.t. AvrRpt2 and a nonhost pathogen, P. syringae pv. phaseolicola 1448a.  

Loss of resistance in the tga1-1 tga4-1 double mutant was shown to be associated with 

defects in cell wall-based defence responses, including callose deposition, apoplastic oxidative 

burst and extracellular PATHOGENESIS-RELATED 1 (PR-1) protein accumulation. 

Interestingly, transcript levels of PR-1, callose synthase and other genes encoding defence 

proteins accumulated at, or above, wild-type levels in the mutants. Furthermore, the double 

mutant is more sensitive to the glycosilation inhibitor, tunicamycin, indicative of a compromised 

endoplasmic reticulum (ER) stress response. These results suggest that clade I TGA factors 

control defence-related secretion events that are required for cell wall-associated defence 

responses. 

Analysis of the non-expressor of pathogenesis-related genes 1 (npr1-1) mutant and an 

tga1-1 tga4-1 npr1-1 triple mutant indicate that clade I TGA factors act substantially 

independent of NPR1 during plant immune responses. Moreover, mutation of clade I TGA 

factors also results in developmental changes, including curly leaves and late flowering. 

Together, these results demonstrate that clade I TGA factors play a unique role in mediating both 

defence responses and developmental processes. 
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CHAPTER 1 LITERATURE REVIEW 

To live or die: this is an everlasting and common theme between plants and microbes 

since the establishment of the first land plants. Microbes have evolved to plunder plant nutrients 

and energy which they cannot produce by themselves, whereas plants have developed a powerful 

defence system to protect themselves from microbial attacks. The plant defence system is similar 

to immune systems described in animals. Both consist of biological structures and processes 

responsible for protecting against disease and avoiding unwanted biological inasions. These 

similarities extend to the molecular level, where the plant defence system has been found to 

share many common features with animal innate immunity, including defined receptors for 

microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades, 

transcriptional reprogramming and the production of antimicrobial compounds (Ausubel, 2005). 

Therefore, the plant defence system is also referred to as the plant immune system, which relies 

on the innate immunity of each cell and on systemic signals spreading from infection sites. 

1.1 Plant pathogens 

Many plant-microbe interactions can be described as parasitism. A microbe is called a 

parasite if it lives on or in a plant and obtains its nutrients and energy from the latter (Agrios, 

2005). Similarly, the plant that produces nutrients and food for the parasite is referred to as the 

host. In some cases of parasitism, both the plant and the microbe benefit from the interaction. 

This phenomenon is known as symbiosis. However, in most cases the removal of nutrients and 

water by the parasite from the host plant usually interrupts the normal growth of the plant and 

becomes detrimental to further development and reproduction of the host. Such parasites are 

considered as pathogens, which cause disease on the host plants. The qualitative ability of a 

pathogen to invade and multiply in the host and finally cause disease is termed pathogenicity, 

while the degree of the pathogen to cause disease is termed virulence. Moreover the process of 

pathogen infection, colonization, and pathogen reproduction, or the mechanism by which the 

disease is caused, is known as pathogenesis (Agrios, 2005). 
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According to their lifestyles, plant pathogens can be classified as necrotrophs or 

biotrophs (Glazebrook, 2005). Necrotrophs kill plant tissues immediately after entry into the host 

and derive nutrients from the resulting dead material. Necrotrophs can synthesize chemical 

toxins to poison plant cells or can produce hydrolytic enzymes to break down the polymers of the 

plant cell wall. For example, the fungal pathogen Botrytis cinerea and bacteria of the genus 

Erwinia are considered necrotrophs (van Kan, 2006). In contrast, biotrophic pathogens, including 

mildew and rust fungi, must grow on living tissue to complete their normal life cycle. Biotrophs 

usually plunder metabolites from hosts and alter the balance of host phytohormones involved in 

growth and development (Jones, 2009). These infections can result in delayed senescence of host 

tissues as well as stunting and abnormal growth patterns. Many pathogens display both lifestyles 

during their life cycle. These pathogens initially deploy a biotrophic strategy, and then switch to 

a necrotrophic mode at later stages of the infection (Glazebrook, 2005). The switch is usually 

triggered by increasing nutritional demands as the pathogen biomass increases. Such pathogens 

are called hemibiotrophs. 

The bacterial pathogen Pseudomonas syringae can be best considered as a 

hemibiotrophic pathogen (Katagiri et al., 2002). After entering through wounds and natural 

openings, P. syringae multiplies in intercellular spaces without host cell death. During the late 

stage of pathogenesis, however, host cells are killed and infected tissues show water-soaked 

patches, which eventually become chlorotic and necrotic (Agrios, 2005). It is noteworthy that 

there are also numerous references in the literature of P. syringae as a biotrophic pathogen 

(Alfano and Collmer, 1996). 

Like many bacterial pathogens of animals, P. syringae uses the type III secretion system 

(T3SS) as its major virulence strategy (Grant et al., 2006). The T3SS is structurally similar to the 

bacterial flagellum, forming a pilus between the bacteria and the host membrane to establish cell-

to-cell contact, through which is injected a diverse group of bacterial proteins, known as T3SS 

effectors (T3SE), into host plant cells. Components of the T3SS are encoded by a suite of hrp 

(hypersensitive response and pathogenicity) and hrc (hypersensitive response and conserved) 

genes (Alfano and Collmer, 2004). Mutations in hrp/hrc genes result in malfunctioning of the 

T3SS and prevent bacterial colonization within plant tissue, highlighting the critical role of T3SS 

and T3SE for bacterial pathogenesis. Effectors display high specificity both within and among 
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bacterial species, and their presence is highly polymorphic within a species (Chisholm et al., 

2006). Effectors delivered by the T3SS possess diverse enzymatic activities, such as cystein 

protein protease, ubiquitin-like protease, E3 ubiquitin ligase, transcriptional activity and protein 

phosphatase activity (Abramovitch et al., 2006; Block and Alfano, 2011; Zhou and Chai, 2008). 

These effectors can modify host proteins to suppress host defence responses and create a more 

favorable niche for the microbe, thereby promoting proliferation (Grant et al., 2006; Mudgett, 

2005). More than thirty effectors are delivered by P. syringae pathovar (pv.) tomato (P.s.t.) into 

the plant cell (Chang et al., 2005; Petnicki-Ocwieja et al., 2002). 

In addition to effector proteins, bacterial pathogens may also produce phytotoxins, such 

as coronatine (COR), to promote disease. Plant hormones such as salicylic acid (SA), jasmonic 

acid (JA) and ethylene (ET) play important signaling roles in the plant defence response (see 

section 1.4). In general, SA-dependent signaling is responsible for resistance against biotrophic 

pathogens, whereas JA/ET-mediated signaling is important for resistance against necrotrophs 

and chewing insects (Glazebrook, 2005; Vlot et al., 2009). These two pathways act 

antagonistically to some extent. P. syringae exploits this fact to secrete COR into host cell, 

which is structurally similar to JA and suppresses SA-mediated defence responses (He et al., 

2004; Reymond and Farmer, 1998). Furthermore, P. syringae uses COR to induce opening of 

plant stomata to permit entry of the pathogen (Melotto et al., 2006). 

As a plant pathogen, P. syringae can infect a wide variety of plant species and cause 

disease symptoms ranging from leaf spots to stem cankers (Agrios, 2005). Over 50 different 

pathovars exist in the species of P. syingae (Hirano and Upper, 2000). P. syringae had already 

been proven to be an excellent genetically tractable pathogen of many crop plants (Keen, 1990). 

The interaction between P. syringae and Arabidopsis thaliana (herein referred to as Arabidopsis) 

was characterized in detail following the identification of several strains of P. syringae which 

can infect this model dicot plant in the 1980‟s (Katagiri et al., 2002). Owing to availability of 

both genome sequences (Arabidopsis Genome Initiative, 2000; O'Brien et al., 2011), the 

Arabidopsis-P. syringae pathosystem has emerged as an important model system for 

experimental characterization of the molecular mechanism underlying plant-pathogen 

interactions. 
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1.2 Plant defence responses 

In nature, several physical structures and preexisting chemicals form the first line of 

defence when microbes come into contact with plant surfaces through different media (Agrios, 

2005). Water-repellent waxes and a thick mat of hairs on the plant surface can prevent the 

formation of a water film where microbes might be deposited, germinate and multiply. The thick 

cuticle and epidermal cell wall form hard physical barriers against microbial penetration. 

Moreover, plants possess a large variety of secondary metabolites which have antimicrobial 

properties and are sequestered in vacuoles or organelles in the outer cell layers of plant tissues. 

These are sometimes referred to as phytoanticipins (Morrissey and Osbourn, 1999). 

In addition to preexisting physical and chemical barriers, plants also employ an active 

immune system to detect and repel invading microbial pathogens (Figure 1.1). The first and most 

ancient layer of this inducible system relies on the recognition of conserved microbe/pathogen-

associated molecular patterns (MAMPs/PAMPs) and is known as MAMP-triggered immunity 

(MTI) (Boller and Felix, 2009; Chisholm et al., 2006; Jones and Dangl, 2006). MAMPs play an 

essential role in microbial lifestyle, are widely distributed among different microbes, and are 

absent in the host (Nurnberger et al., 2004). Examples of MAMPs include cell-surface 

components of Gram-negative bacteria, such as flagellin, the protein subunit of the flagellum, 

and lipopolysaccharide (LPS), a major constituent of the outer membrane, as well as chitin and 

ergosterol in the cell wall of fungi (Baureithel et al., 1994; Gomez-Gomez and Boller, 2002; 

Granado et al., 1995; Newman et al., 2002). Intracellular proteins, such as the bacterial cold 

shock protein (CSP) (Felix and Boller, 2003) and the translation elongation factor Tu (EF-Tu) 

are also recognized by plant hosts as MAMPs (Kunze et al., 2004). Besides these non-self 

molecules, plants also can sense non-self activity through damage-associated molecular patterns 

(DAMPs), sometimes also referred to as danger-associated molecular patterns (Boller and Felix, 

2009). For example, cutin derivatives degraded by fungal cutinases are able to elicit plant 

defence responses and prime plants for further responsiveness to MAMPs (Fauth et al., 1998; 

Hückelhoven, 2007). 

Perception of MAMPs is carried out by plant pattern recognition receptors (PRRs) 

located on the plasma membrane (Boller and Felix, 2009; Chisholm et al., 2006; Jones and Dangl, 
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2006). Plant PRRs can be divided into two classes: Receptor-like kinases (RLKs) containing an 

intracellular serine/threonine kinase domain, and receptor-like proteins (RLPs) with a short 

cytoplasmic tail on the intracellular side. The extracellular domains of PPRs can contain leucine-

rich repeats (LRRs) or LysM-motifs, which are responsible for MAMPs perception (Boller and 

Felix, 2009). FLAGELLIN SENSING 2 (FLS2) and EF-Tu receptor (EFR) are the two best 

characterized PRRs in Arabidopsis, and recognize bacterial flagellin and EF-Tu, respectively 

(Gomez-Gomez and Boller, 2000; Zipfel et al., 2006). Loss-of-function of FLS2 or EFR results 

in enhanced susceptibility to bacterial strains in Arabidopsis, providing evidence for a key role of 

both PRRs in host immunity (Zipfel et al., 2004; Zipfel et al., 2006). 

Downstream of MAMP perception, multiple defence responses are activated that restrict 

the growth of attacking pathogens. For example, some early defence events occur within minutes 

after perception, including changes in ion-fluxes across the plasma membrane, increased 

intracellular Ca
2+

 concentration, production of reactive oxygen species (ROS) and activation of 

MAPK (mitogen activated protein kinase) signaling (Schwessinger and Zipfel, 2008). Later on, 

within 30 min and up to several days after recognition, global transcriptional changes are 

induced to produce antimicrobial products, such as PR (pathogenesis related) proteins and 

phytoalexins. At this stage, MTI can efficiently prevent pathogen proliferation in the apoplast 

and no or very few macroscopic disease symptoms occur (Göhre and Robatzek, 2008). 

However, successful pathogens have evolved to overcome MTI by different means. As 

discussed in section 1.1, pathogenic Gram-negative bacteria deliver T3SEs into the host cells 

(Staskawicz et al., 2001). Also, biotrophic fungal phytopathogens can form a specialized 

infection structure, called haustorium, to deliver effectors into the intercellular space of the host 

(Chisholm et al., 2006). Fungal and bacterial effectors can suppress MTI and alter plant 

physiology in susceptible hosts to benefit pathogen colonization. As a consequence, plant 

defences are compromised in their ability to stop pathogen propagation and can only limit its 

level of virulence: This is called effector-triggered susceptibility (ETS) (Chisholm et al., 2006; 

Jones and Dangl, 2006). The identification of mutants hyper-susceptible to virulent pathogens, 

sometimes referred to as an enhanced disease susceptibility (EDS) phenotype (Glazebrook et al., 

1996; Rogers and Ausubel, 1997) has provided genetic evidence for the existence of defence 

responses operating during ETS. 
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Plants, in turn, have acquired resistance (R) proteins to detect pathogen effectors or their 

effects on host targets, resulting in a strong immune response known as effector-triggered 

immunity (ETI) (Chisholm et al., 2006; Jones and Dangl, 2006). Thus, effectors function as 

virulence factors to suppress MTI and facilitate pathogen growth in plants where the 

corresponding R protein is absent. Otherwise, effectors can be recognized by corresponding R 

proteins as avirulent factors (Avr) to trigger ETI. Plant-pathogen interactions where effectors are 

not recognized by R proteins and result in disease are said to be compatible, while those where 

one or more effector is recognized as an Avr factor, triggering ETI, are called incompatible. 

These pairwise associations have been characterized genetically as gene-for-gene resistance (Flor, 

1971). 

Most characterized R proteins are receptor-like proteins which contain a nucleotide 

binding (NB) site and LRR domains (Collier and Moffett, 2009). According to their N-terminal 

domain, many NB-LRR R proteins can be further divided into coiled-coil (CC) NB-LRR or Toll-

interleukin-1 receptor (TIR) NB-LRR. R proteins can act as receptors that directly interact with 

the pathogen effectors. This ligand-receptor model is supported by a few R-Avr combinations, 

such as the interaction between the rice Pi-ta R protein and the Magnaporthe grisea effector 

AvrPita (Jia et al., 2000). However, in most cases R proteins recognize effectors indirectly. 

Based on experimental data, two conceptual models have been proposed to understand the 

indirect effector perception mechanism. The „guard‟ model predicts that R proteins guard a host 

protein(s) (or guardee) that is targeted and modified by pathogen effectors (Dangl and Jones, 

2001). Modification of its target(s) by the effector activates the corresponding R protein, leading 

to ETI in the host. According to the model, this guarded protein is required for the virulence 

function of the effector protein in the compatible host. However, new data have shown that 

guardee proteins are often dispensable for the virulence activities of effectors in plants lacking 

the R protein. To resolve this discrepancy, the „decoy model‟ was proposed, in which a host 

protein, termed „decoy‟, mimics effector targets to trap the pathogen into a recognition event 

(van der Hoorn and Kamoun, 2008). Different from the guardee in the guard model, the decoy 

only functions in perception of pathogen effectors without contribution either in the development 

of disease or resistance. 



 

 7 

ETI will accelerate and reinforce the defence response of a host having compromised 

MTI. Two levels of ETI have been observed, weak and strong. Weak ETI usually does not cause 

any macroscopic symptoms, while strong ETI is often associated with a hypersensitive response 

(HR), a rapid form of programmed cell death (PCD), localized at the site of infection to limit the 

access of pathogen to water and nutrients (Göhre and Robatzek, 2008). 

During the co-evolutionary “arms race” between pathogens and their host plants, 

selection pressure drives pathogens to avoid ETI by altering or eliminating the effectors that are 

recognized or to suppress the ETI response by acquiring novel effectors (Jones and Dangl, 2006; 

Mudgett, 2005). Ultimately, this dynamic co-evolution continuously selects novel pathogen races 

that overcome ETI and new plant genotypes that resurrect ETI. 

The above “zig-zag, zig” model provides a useful framework to describe various types of 

plant-pathogen interactions. For example, non-host resistance (NHR), wherein an entire plant 

species displays resistance against all members of a pathogen species (Heath, 2000; Lipka et al., 

2008), has been proposed to result from a combination of MTI and ETI, with the relative 

contribution of either form of immunity varying depending on the specific interaction (Schulze-

Lefert and Panstruga, 2011). Host-compatible interactions, in which plants display what is 

sometimes referred to as basal resistance, have been described as “MTI plus weak ETI, minus 

ETS” (Jones and Dangl, 2006; Nishimura and Dangl, 2010). In these interactions, the level of 

MTI suppression by ETS is sufficient to cause disease and residual defences can only limit the 

extent of disease. Finally, resistance in host-incompatible interactions is mediated by R-genes 

according to the gene-for-gene hypothesis, and is largely attributed to ETI. 

Although the zig-zag, zig model has been widely accepted by molecular plant 

pathologists, increasing evidence argues that the conceptual and artificial dichotomies between 

MAMPs and effectors, PRRs and R proteins, and ETI and MTI are often difficult to resolve in 

nature (Thomma et al., 2011). For example, some effectors are widely distributed and qualify to 

be designated as MAMPs, while some MAMPs are only narrowly conserved or contribute to 

pathogen virulence. Furthermore, ETI and MTI seem to share many, common downstream 

signaling and responses, such as the ROS burst (Torres et al., 2006), activation of MAPKs 

(Pitzschke et al., 2009), hormonal changes (Tsuda and Katagiri, 2010), transcriptome 
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reprogramming (Navarro et al., 2004), callose deposition (Ham et al., 2007; Tang et al., 1999) 

and the HR (Thomma et al., 2011). Therefore, MTI and ETI should instead be considered as 

opposite ends of a continuum in which plant immune receptors recognize appropriate ligands to 

activate defence responses, the amplitude of which is likely determined by the level required for 

effective immunity (Thomma et al., 2011). 

1.3 Systemic immunity 

Besides the local and primary defence responses discussed above, plants can mount long 

lasting and systemically induced resistance against a broad spectrum of microbes. Depending on 

the microbes that interact with the plant, there are three well known types of induced resistances. 

Systemic acquired resistance (SAR) is triggered by pathogens causing limited infection such as 

HR or necrosis (Durrant and Dong, 2004). Rhizobacteria-induced systemic resistance (ISR) is 

activated upon colonization of roots by selected strains of non-pathogenic rhizobacteria (van 

Loon et al., 1998), and wound-induced resistance (WIR) is typically elicited upon tissue damage, 

such as that caused by insect feeding (Kessler and Baldwin, 2002). 

1.4 Defence-related plant hormones 

Plant defence in response to pathogen challenge is regulated through a complex network 

of signaling pathways involving plant hormones. The importance of SA, JA, and ET as key 

defence-related hormones is well established (Broekaert et al., 2006; Browse, 2009; Vlot et al., 

2009). In addition, other plant hormones, including abscisic acid, auxin, gibberellins, cytokinin 

and brassinosteroids have been implicated in plant defence against microbial pathogens (Robert-

Seilaniantz et al., 2007; Robert-Seilaniantz et al., 2011). In general, SA-dependent signaling is 

responsible for resistance against biotrophic pathogens, whereas JA/ET-mediated signaling is 

important for resistance against necrotrophs (Glazebrook, 2005). These two pathways are mostly 

antagonistic: elevated SA-dependent resistance against biotrophs is often correlated with 

increased susceptibility to necrotrophs, and vice versa (Pieterse et al., 2009; Robert-Seilaniantz 

et al., 2011). Besides the antagonistic crosstalk between SA and JA/ET pathways, synergistic 

interactions also have been reported (Pieterse et al., 2009). Analysis of a quadruple mutant 

blocking three signaling pathways revealed that JA, ET and SA signaling all contribute   
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Figure 1.1 Model for the plant immune system. 

Recognition of MAMPs by PRR initiates MAMP-triggered immunity (MTI), which prevents 

infection of most microbes in the apoplast. However successful pathogens have evolved 

mechanisms to suppress MTI and promote disease. Specifically, the bacterial pathogen 

Pseudomonas syringae uses a type III secretion system (T3SS) to deliver effectors into the 

plant cytoplasm, resulting in effector-triggered susceptibility (ETS). In response to ETS, plants 

have acquired resistance (R) proteins to detect pathogen effectors or their effects on host 

targets, resulting in a stronger immune response, known as effector-triggered immunity (ETI). 

(Modified from Chisholm et al., 2006.) 
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positively to MTI and ETI (Tsuda et al., 2009). Several key regulators in SA-JA crosstalk have 

been identified, such as NPR1/NIM1 (section 1.7) (Spoel et al., 2003), clade II TGA factors 

(section 1.8), glutaredoxin GRX480 (Ndamukong et al., 2007) and transcription factor WRKY70 

(Li et al., 2004). 

1.5 The JA/ET signaling pathway 

A key regulator in the JA signaling pathway is an F-box protein CORONATINE 

INSENSITVE1 (COI1) (Feys et al., 1994; Xie et al., 1998; Yan et al., 2009). Upon stimulation 

of the JA response, jasmonoyl-isoleucine (JA-Ile), the active form of JA, promotes COI1 to 

interact with the JASMONATE ZIM-DOMAIN (JAZ) proteins, which negatively regulate JA 

signaling by inactivating transcription factor AtMYC2/JIN1 (JASMONATE-INSENSITIVE1) 

(Chini et al., 2007; Thines et al., 2007). After COI1-mediated ubiquitinylation and subsequent 

degradation of JAZ proteins, AtMYC2 can activate JA-responsive genes specific to wounding 

and insect attack, such as VSP2 (VEGETATIVE STORAGE PROTEIN 2) and LOX2 

(LIPOXYGENASE2) (Lorenzo et al., 2004; Lorenzo and Solano, 2005). At the same time, 

AtMYC2 is a negative regulator of PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), 

which are ET/JA-co-responsive genes induced by necrotrophic pathogens (Lorenzo et al., 2004). 

The cooperation of the ET and JA signals relies on transcriptional factors, such as ORA59 and 

ERF1 (ETHYLENE RESPONSE FACTOR 1) (Lorenzo et al., 2004). 

1.6 The SA signaling pathway 

The plant hormone salicylic acid (SA) has been shown to play a critical signaling role in 

the various plant defence responses against pathogen infection. MTI- and ETI-mediated 

pathogen recognition can both trigger endogenous SA accumulation which correlates with the 

induction of PR genes and the activation of disease resistance (Malamy et al., 1990; Metraux et 

al., 1990; Mishina and Zeier, 2007a; Mishina and Zeier, 2007b; Tsuda et al., 2008). In addition, 

exogenous treatment with SA or its synthetic functional analogs, such as benzo (1,2,3) 

thiadiazole-7- carbothioic acid S-methyl ester (BTH) and 2,6-dichloroisonicotinic acid (INA), 

can stimulate PR gene expression and/or enhance disease resistance in many plant species (Vlot 

et al., 2009). 
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Conclusive evidence supporting the importance of SA in plant defence comes from the 

studies of transgenic and mutant plants with altered levels of this phenolic metabolite. For 

example, transgenic tobacco or Arabidopsis plants expressing the bacterial NahG gene, encoding 

salicylate hydroxylase that converts SA to catechol, fail to accumulate high SA levels and 

express PR genes, resulting in enhanced susceptibility to a variety of pathogens (Delaney et al., 

1994; Gaffney et al., 1993; Kachroo et al., 2000). Mutation in a gene responsible for SA 

biosynthesis, SALICYLIC ACID DEFICIENT2/ENHANCED DISEASE SUSCEPTIBILITY16 

(SID2/EDS16), abolishes PR gene activation and disease resistance after biotrophic pathogen 

infection (Durrant and Dong, 2004). Furthermore, a lipase-like protein ENHANCED DISEASE 

SUSCEPTIBILITY 1 (EDS1) and its sequence-related interacting partner PHYTOALEXIN 

DEFICIENT 4 (PAD4) are also required for activation of SA accumulation in basal resistance 

against biotrophic pathogens as well as in ETI initiated by TIR-NB-LRR R proteins (Wiermer et 

al., 2005). Recently, EDS1 has been shown to behave as an effector target and guarded by R 

proteins during ETI (Bhattacharjee et al., 2011; Heidrich et al., 2011). 

As a marker gene in the SA signaling, the positive regulation of PR-1 (At2g14610) 

expression largely relies on NPR1/NIM1 (section 1.7), TGA factors (section 1.8) and other SA-

signaling components mentioned above. In addition, the mechanisms of negative regulation of 

PR-1 gene expression have been also well studied. PR-1 promoter contains two negative cis-

elements: WRKY-binding site LS4 and TGA factor-binding site LS5 (Lebel et al., 1998). 

Mutations in LS4 enhanced promoter activity (Lebel et al., 1998), suggesting that WRKY 

transcription factors binding to LS4 negatively regulate PR-1 expresion. Due to the repression of 

basal PR-1 expression by clade II TGA factors, it was proposed that they bind to LS5 (Boyle et 

al., 2009; Kesarwani et al., 2007; Zhang et al., 2003b). In addition, the NIMIN1 (NIM-

INTERACTING 1) protein, negatively regulates PR-1 expression through interaction with NPR1 

and TGA factors (Weigel et al., 2005). The two NPR1 paralogs NPR3 and NPR4 have been 

shown to interact with TGA factors (Liu et al., 2005; Zhang et al., 2006). The npr3 npr4 double 

mutant displayed elevated basal PR-1 expression, suggesting a role for NPR3 and NPR4 in 

repressing PR-1  transcription in the absence of pathogen challenge (Zhang et al., 2006). 

Another, indirect, mechanism of PR-1 regulation relies on signal transduction events. For 

example, mutation in a TIR-NB-LRR-type R gene, SNC1 (SUPPRESSOR OF npr1-1, 
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CONSTITUTIVE 1; At4g16890), results in constitutive PR-1 gene expression and enhanced 

resistance to several pathogens (Li et al., 2001; Zhang et al., 2003a). It has been proposed that 

enhanced resistance in snc1 mutants relies on ETI (Germain et al., 2010). In addition, some 

mutants defective in the secretion pathway and cell wall biosynthesis also constitutively activate 

PR-1 expression level. For example, mutation in two secretion-related syntaxin proteins, 

SYP121/PEN1 (At3g11820) and SYP122 (At3g52400), result in the elevated PR-1 expression 

(Zhang et al., 2007). Loss of function of callose synthase gene CalS12 (also known as 

POWDERY MILDEW RESISTANCE 4, PMR4; At4g03550) also results in constitutively elevated 

PR-1 transcript levels (Nishimura et al., 2003). 

1.7 NPR1 

Signaling transduction from SA to activated PR gene expression and disease resistance is 

largely regulated by NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1; 

also known as NO-INDUCED IMMUNITY1 or NIM1), a key regulator of plant immunity 

(Dong, 2004; Durrant and Dong, 2004; Pieterse and van Loon, 2004). While plants with 

mutation in NPR1 continue to accumulate high levels of SA following pathogen challenge, they 

are compromised in SA-induced PR gene expression and fail to develop SAR (Cao et al., 1994). 

The npr1 mutants also show enhanced disease susceptibility to virulent pathogens and are 

impaired in ETI against avirulent pathogens (Delaney et al., 1995; Glazebrook et al., 1996; Shah 

et al., 1997). However, NPR1 is not required for NHR against P. syringae pv. phaseolicola 

(P.s.p.) (van Wees and Glazebrook, 2003) or MAMP-induced resistance (Zipfel et al., 2004). 

NPR1 contains two protein-protein interaction domains, a BTB/POZ (Broad-Complex, 

Tramtrack, and Bric-a-brac/Pox virus and Zinc finger) domain at the N-terminus and an ankyrin 

repeat domain in the central region (Cao et al., 1997; Rochon et al., 2006; Ryals et al., 1997), as 

well as a nuclear localization signal and a transactivation domain containing two oxidized 

cysteine residues at the C-terminus (Kinkema et al., 2000; Rochon et al., 2006). 

In resting cells of wild type Arabidopsis, endogenous NPR1 was detected in both the 

cytoplasm and the nucleus (Després et al., 2000). In the cytoplasm, NPR1 has been postulated to 

predominantly exist in the form of oligomer complex through analysis of an NPR1:GFP fusion 
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protein (Mou et al., 2003). Cytosolic NPR1:GFP oligomers are held together by redox-sensitive 

intermolecular disulfide bonds between conserved cysteine residues. Upon pathogen infection, 

accumulation of SA induces a change in cellular redox state, resulting in partial reduction of 

NPR1 oligomer to monomer (Mou et al., 2003; Tada et al., 2008). NPR1 monomer is 

subsequently translocated into the nucleus, where it functions as a coactivator of gene 

transcription (Kinkema et al., 2000). The NPR1 protein does not possess a canonical DNA 

binding domain and has never been shown to bind DNA directly. Therefore, NPR1 was proposed 

to regulate PR gene expression through interactions with other transcription factors, such as 

WRKY and TGA transcription factors (Eulgem, 2005). 

1.8 TGA transcription factors 

TGA factors are members of the basic region/leucine zipper (bZIP) class of transcription 

factors originally isolated based on their ability to bind to the SA-, JA-, and auxin-inducible 

activating sequence-1 (as-1) element found in the cauliflower mosaic virus (CaMV) 35S 

promoter (Katagiri et al., 1989) or a similar element in the octopine synthase (ocs) promoter from 

the Agrobacterium tumefaciens tumour-inducing (Ti) plasmid (Fromm et al., 1989). 

The bZIP domain in TGA factors contains two structural features located on a contiguous 

α-helix: the N-terminal basic region responsible for DNA binding activity, and the C-terminal 

region containing a heptad repeat of leucines or other bulky hydrophobic amino acids which 

mediates dimerization by forming a parallel coiled coil called the leucine zipper (Jakoby et al., 

2002). TGA factors typically function as homodimers and/or heterodimers when bound to DNA 

(Fobert, 2007). 

The as-1 element is a 21 base pair (bp) sequence containing two TGACG motifs which is 

recognized by TGA factors. This has been demonstrated in vitro using gel mobility shift and in 

vivo by chromatin immunoprecipitation (ChIP) assays (Johnson et al., 2003; Jupin and Chua, 

1996; Lam and Lam, 1995; Miao and Lam, 1995; Rochon et al., 2006). The as-1 or as-1-like 

elements have been found to be over-represented in the promoters of genes differentially 

expressed under abiotic stress and pathogen infection (Mahalingam et al., 2003) and also appear 

on the promoters of many SA-responsible genes, such as PR-1 gene (Lebel et al., 1998). Linker-
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scanning (LS) mutagenesis of the PR-1 promoter revealed two TGACG motifs (LS5 and LS7), 

which have opposite effects on PR-1 expression in response to SA and INA (Lebel et al., 1998). 

TGA factors have been shown to bind to the PR-1 promoter in planta, presumably on these same 

TGACG motifs (Johnson et al., 2003; Rochon et al., 2006). 

The Arabidopsis TGA family consists of 10 members (Jakoby et al., 2002). Seven TGA 

factors (TGA1 to TGA7) have been shown to interact with NPR1 (Després et al., 2000; Després 

et al., 2003; Zhang et al., 1999; Zhou et al., 2000) and play overlapping roles in plant disease 

resistance and stress responses (Kesarwani et al., 2007; Shearer et al., 2012; Zhang et al., 2003b). 

Based on sequence similarity, Arabidopsis TGA factors can be divided into three subclasses: 

clade I (TGA1 (At5g65210) and TGA4 (At5g10030)); clade II (TGA2 (At5g06950), TGA5 

(At5g06960) and TGA6 (At3g12250)); and clade III (TGA3 (At1g22070) and TGA7 

(At1g77920)) (Figure 1.2) (Hepworth et al., 2005; Xiang et al., 1997). In addition, TGA9/bZIP21 

(At1g08320) and TGA10/bZIP65 (At5g06839) form a distinct subclade and PERIANTHIA 

(PAN, At1g68640) is a unique member in the phylogenetic tree (Figure 1.2). These last three 

TGA factors have been shown to contribute developmental process (Chuang et al., 1999; Murmu 

et al., 2010; Running and Meyerowitz, 1996). 

Emerging data indicate that the Arabidopsis TGA factors regulate the expression of PR 

genes and are required for resistance to disease. Mutation in all three members of clade II TGA 

factors compromise SA-induced PR-1 expression and SAR against virulent strains of P. syringae 

and the NOCO2 isolate of the biotrophic oomycete Hyaloperonospora arabipodsidis (formerly 

known as Peronospora parasitica) (Zhang et al., 2003b). However, the tga2-1 tga5-1 tga6-1 

triple mutant retained wild type levels of basal resistance to virulent strains of these pathogens 

and displayed elevated basal levels of PR-1 in the absence of SA or pathogen elicitation (Zhang 

et al., 2003b). 

Further studies have revealed a dual role of clade II TGA factors on PR-1 induction. In 

fact, TGA2 is a transcriptional repressor which constitutively binds to the PR-1 promoter 

(Kesarwani et al., 2007; Rochon et al., 2006). After stimulation with SA, TGA2 is incorporated 

into a transactivating complex with NPR1, forming an enhanceosome in which the C terminus of 

NPR1 functions as a transcriptional transactivator (Boyle et al., 2009; Rochon et al., 2006). In 
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contrast to this negative role of TGA2 on PR gene expression, TGA5 and TGA6 may have 

positive roles. An activation-tagged mutant of TGA6 displayed elevated basal as well as induced 

PR-1 expression (Kesarwani et al., 2007), while overexpression of TGA5 in Arabidopsis 

enhanced disease resistance against a virulent strain of H. arabipodsidis NOCO2 without altering 

PR gene expression (Kim and Delaney, 2002). The dual activity of clade II TGA factors is 

consistent with the results of the PR-1 promoter study showing that the two TGA-binding 

elements have opposite effects on transcription (Fobert, 2007; Lebel et al., 1998). 

In addition to regulating PR-1 expression with NPR1, clade II TGA factors have been 

found to interact with other proteins to regulate as-1-containing genes which are expressed in an 

NPR1-independent manner (Blanco et al., 2009; Thurow et al., 2005). For example, microarray 

analyses revealed that clade II TGA factors regulate transcriptional responses to xenobiotic stress 

through interaction with a regulatory protein, SCARECROW-like 14 (SCL14) (Fode et al., 2008; 

Mueller et al., 2008). 

More recently, clade II TGA factors have been implicated in JA/ET-dependent defence 

mechanisms. Clade II TGA factors can interact with glutaredoxin-like proteins, including 

AtGRXC9 (At1g28480, also named GRX480), which is involved in the suppression of PDF1.2 

during SA-JA crosstalk (Ndamukong et al., 2007). In addition, the tga2-1 tga5-1 tga6-1 triple 

mutant is impaired in JA/ET-dependent defence responses against the necrotroph B. cinerea 

(Zander et al., 2010). Clade II TGA factors have been shown to repress the expression of the 

AtGRXS13 (At1g03850) gene, which encodes a glutaredoxin-like protein required for a 

successful colonization of Arabidopsis by B. cinerea (La Camera et al., 2011). 

Members of Clade III TGA factors also interact with NPR1 (Després et al., 2000; Shearer 

et al., 2009; Zhou et al., 2000). Transcripts of clade III TGA factors accumulate following 

treatment with SA or pathogen challenge (Shearer et al., 2009), suggesting that they may also 

contribute to disease resistance. Genetic analysis has shown that a loss-of-function (knockout) 

mutant, tga3-1, is impaired in SA-induced PR gene expression and compromised in basal 

resistance against virulent pathogen P. syringae pv. maculicola (P.s.m.) ES4326 (Kesarwani et 

al., 2007). However, by testing a different allele, the knockdown
 
mutant tga3

kd
, an independent 
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study argued that TGA3 is only involved in a novel form of cytokinin-induced resistance, but not 

basal resistance (Choi et al., 2010). 

Members of clade I (TGA1 and TGA4) are particularly interesting because their 

interaction with NPR1 is regulated by SA-induced redox changes (Després et al., 2003; Fobert 

and Després, 2005). This property has been reported to depend on two conserved cysteine 

residues (Cys-260 and Cys-266) located in TGA1 and TGA4. Under oxidizing conditions, these 

two Cysteines form an intramolecular disulfide bridge in TGA1 to preclude interaction with 

NPR1 (Després et al., 2003). Site-directed mutagenesis of these cysteine residues, which mimics 

the reduced state of cysteine residues, permits interaction with NPR1 in yeast (Després et al., 

2003). Analysis in plants has revealed that NPR1 preferentially interacts with wild type TGA1 in 

the presence of increased levels of SA; however, the interaction between NPR1 and mutated 

TGA1 is equally strong in the present or absence of SA (Després et al., 2003). Using a novel 

labeling strategy that distinguishes between protein sulfhydryls and disulfides, Després et al. 

(2003) demonstrated that the redox status of cysteines in TGA1 and /or TGA4 shifted following 

SA treatment to become predominantly reduced (note that the antibody used in these studies did 

not distinguish between members of clade I TGA). Thus, strong interaction of TGA1 and/or 

TGA4 with NPR1 is correlated with the reduced state of their cysteines. In addition to Cys-260 

and Cys-266, the other two cysteines (Cys-172 and Cys-287) of TGA1 also have been shown to 

be involved in the formation of intramolecular structures (Lindermayr et al., 2010). Interestingly, 

transforming a TGA1 site-directed mutant of these two cysteines into tga1-1 tga4-1 knockout 

plants resulted in hyperexpression of PR genes, suggesting that reduction of these Cys residues is 

important for TGA1 activity, since the mutations mimic their reduced status (Lindermayr et al., 

2010). 

Redox regulation of TGA1 and NPR1 has been proposed to be regulated by nitric oxide 

(NO) (Lindermayr et al., 2010). Both proteins can be S-nitrosylated in vitro following treatment 

with S-nitroglutathione (GSNO) (Lindermayr et al., 2010; Tada et al., 2008), which is a general 

physiological transport and storage form of NO in plants and animals. This S-nitrosoglutathione 

protects TGA1 from oxygen-mediated modification and enhances DNA binding activity of 

TGA1 towards its cognate target in the presence of NPR1.  
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Figure 1.2 Phylogenic tree of the ten Arabidopsis TGA factor proteins. 

This tree was drawn using Clustal W as implemented in the DNAStart-Laser Gene MegAlign 

module (v6) using default settings. The bar represents an evolutionary distance of 0.1 

nucleotide substitutions per site. Arabidopsis Genome Initiative numbers are shown under each 

member. 
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Transgenic hairpin RNA interference (RNAi) studies demonstrated that Arabidopsis 

TGA4 has a negative role in regulating reporter gene expression under the control of the as-1-

like element ocs (Foley and Singh, 2004), while virus-induced gene silencing (VIGS) indicated 

that a tomato TGA1 homologue is required for AvrPto-mediated resistance against P.s.t. 

(Ekengren et al., 2003). Analysis of Arabidopsis T-DNA insertion alleles indicated that clade I 

TGA factors contribute to basal resistance against virulent P. syringae, but not to SAR against 

virulent P. syringae (Kesarwani et al., 2007; Lindermayr et al., 2010; Shearer et al., 2012). 

Unexpectly, tga1 tga4 double mutant plants accumulated elevated levels of basal PR-1 

transcripts (Lindermayr et al., 2010; Shearer et al., 2012). Introducing cDNA clones of wild type 

TGA1 into tga1-1 tga4-1 did not complement this hyperexpression of PR genes and enhanced 

disease susceptility to P. syringae (Lindermayr et al., 2010). 

1.9 Cell wall associated defence reponse 

Unlike mammalian pathogens, most plant pathogens do not have an intracellular life style 

and usually colonize tissues intercellularly. Therefore, cell wall-associated defence responses 

play an important role in plant disease resistance. One well-characterized and very rapid 

response following recognition of bacterial phytopathogens is a transient apoplastic burst of ROS 

(Torres et al., 2006). This oxidative burst relies on the plasma membrane resident RBOH 

(RESPIRATORY BURST OXIDASE HOMOLOG) and can function as an antibiotic agent 

directly, or contribute indirectly to defence by causing cell wall cross-linking and acting as a 

secondary stress signal to induce defence responses (Boller and Felix, 2009). At a later time 

following pathogen detection, the plant cell wall in regions of pathogen attack is reinforced with 

several polymers. Most commonly observed is the deposition of papillae containing the β-D 1,3 

glucan callose, lignin-like polymers, phenolics, and structural proteins (Hematy et al., 2009). As 

a marker response of the papillae formation, pathogen-induced callose deposition has been well 

studied. Callose is synthesized by a series of callose synthase enzymes located on the plasma 

membrane. In Arabidopsis, twelve genes encoding putative callose synthases have been 

identified (Richmond and Somerville, 2000; Verma and Hong, 2001). CalS1 (At1g05570) and 

CalS12 are highly induced by SA and pathogens (Dong et al., 2008) with CalS12 being required 

for callose deposition in response to fungal and bacterial pathogens (Jacobs et al., 2003; Kim et 

al., 2005; Nishimura et al., 2003). In addition to these physical barriers, plant cells secrete toxic 
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cocktails of antimicrobial compounds in response to challenge by bacterial pathogens. Genes 

encoding many of these secreted proteins are activated following pathogen detection as part of 

massive transcriptional reprogramming of the genome (Hauck et al., 2003; Thilmony et al., 

2006). 

The success of cell wall-associated defence is dependent on effective secretion processes. 

Newly synthesized defence-related proteins have to be translocated into endoplasmic reticulum 

(ER)/Golgi apparatus for proper folding and assembly, and then delivered by vesicles to the 

plasma membrane (PM) or extracellular space. 

The quality of folding and assembly is monitored by a mechanism, called ER quality 

control (ERQC) (Liu and Howell, 2010b). ERQC dictates transportation of properly folded 

proteins to their functional sites and elimination of misfolded proteins through ER-associated 

degradation (ERAD). Three main systems in the ERQC have been well characterized in yeast 

and mammals (Sitia and Braakman, 2003). Primarily, protein folding in the ER is aided by 

chaperones and cochaperones that bind directly to client proteins and help their folding. This 

group of protein includes BINDING PROTEIN (BiP) from heat shock protein (HSP70) family, 

ERdj proteins from HSP40 family and GLUCOSE REGULATED PROTEIN 94 (GRP94) from 

HSP90 family. Secondly, proteins containing free thiol groups are thought to form disulfide 

bonds by protein disulfide isomerases (PDIs) and oxidoreductases. Finally, the best studied 

system is specific to glycoproteins which are modified by the addition of N-linked 

oligosaccharides and then folded through calnexin/calreticulin (CNX/CRT) cycle. 

However, when protein folding is inhibited because of mutations or unbalanced subunit 

synthesis, or when the folding machinery is overloaded under stressful conditions, unfolded or 

misfolded proteins accumulate in the ER in an event called ER stress (Liu and Howell, 2010b; 

Schröder and Kaufman, 2005). Consequently, cells activate the unfolded protein response (UPR), 

which alleviates ER stress by increasing the capacity of folding and degradation or by 

attenuating translation (Rutkowski and Kaufman, 2004). The major activity for UPR is the 

transcriptional upregulation of genes related to protein folding and degradation. 
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Ttranscripts encoding components of the ER machinery were shown to accumulate at 

higher levels during environmental stress, including pathogen attack, drought, heat, cold, and 

salinity, reflecting the need for cells to accommodate a massive buildup of secreted proteins 

under these conditions (Anderson et al., 1994; Gao et al., 2008; Jelitto-Van Dooren et al., 1999; 

Liu et al., 2007c). Although the importance of the secretory machinery has been well 

documented, less is known on the mechanism of transcriptional regulation of these genes during 

stress responses. Pathogen-induced upregulation of these genes is likely to be directly and 

coordinately controlled by NPR1 (Wang et al., 2005). Due to lack of DNA-binding domain in 

NPR1, this regulation needs other unknown transcription factor(s), which act through a common 

cis-acting element present in the promoters of these genes (Wang et al., 2005). In addition, 

abiotic stress-induced transcriptional upregulation of these genes relies on three ER membrane-

associated bZIP transcription factors, bZIP17 (At2g40950), bZIP28 (At3g10800), and bZIP60 

(At1g42990) (Iwata et al., 2008; Liu et al., 2007b; Liu et al., 2007c; Liu and Howell, 2010a). 

Cargo proteins that pass the ERQC are then delivered to the Golgi apparatus, where 

additional modifications can occur (Bassham et al., 2008). Vesicles containing the final products 

fuse to the plasma membrane or other cellular destinations. Vesicle trafficking at each stage is 

mediated by specific SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor) complexes. Each SNARE complex comprises a vesicle membrane-localized VAMP 

(vesicle-associated membrane protein), a soluble SNAP (synaptosomal-associated protein) 

protein, and a target membrane-localized syntaxin protein (Kwon et al., 2008b). 

The importance of protein secretion to resistance against bacterial pathogens has been 

recently confirmed by several reports showing that mutation of genes encoding components of 

the ER machinery responsible for folding and processing of nascent polypeptides compromise 

defence responses and disease resistance. For example, the Arabidopsis EF-Tu receptor, EFR, is 

a PRR and transmembrane protein which has to mature in the ER (Zipfel et al., 2006). Mutations 

in several components of ERQC affect the biogenesis of EFR and defence responses induced by 

efl18, a peptide derived from EF-Tu (Li et al., 2009a; Lu et al., 2009; Nekrasov et al., 2009; 

Saijo et al., 2009). However, unexpectedly, the mutant plants were not impaired in FLS2 

accumulation, indicating the existence of different genetic requirements for these two PPRs 

(Saijo, 2010). 
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In addition, secretion of extracellular PR-1 protein is impaired in the plants lacking 

functional ER chaperone proteins, such as BiP2 (At5g42020) and DEFENDER AGAINST 

APOPTOTIC DEATH 1 (DAD1; At1g32210) (Wang et al., 2005). These reductions in PR-1 

secretion impair SA-induced resistance against bacterial pathogens. Moreover, silencing a 

Syntaxin protein (NbSYP132) in Nicotiana benthamiana, resulted in a delay of PR protein 

accumulation in the cell wall after inoculation with P. syringae pv tabacina (Kalde et al., 2007). 

To counteract cell wall-based defences, virulent pathogens suppress the accumulation of 

extracellular proteins either by blocking the transcriptional activation of genes encoding 

putatively secreted cell wall and defence proteins (Hauck et al., 2003) or by inhibiting the host 

secretion system (Nomura et al., 2006). For example, the conserved P. syringae effector HopM1 

(Hrp outer protein M1; formerly hopPtoM) interferes with the plant secretion system by 

degredation of the host protein, AtMIN7 (HopM interactors 7; At3g43300), an ADP ribosylation 

factor guanine nucleotide exchange factor (ARF-GEF), which is key component involved in 

vesicle trafficking (Nomura et al., 2006). 

1.10 Arabidopsis-Colletotrichum pathosystem 

Colletotrichum higginsianum is an economically important fungal pathogen, causing 

anthracnose diseases in a wide range of cruciferous plants (Agrios, 2005). Under laboratory 

conditions, C. higginsianum can also infect Arabidopsis through a hemibiotrophic infection 

process (Narusaka et al., 2004; O'Connell et al., 2004). During interactions with its hosts, C. 

higginsianum develops a series of specialized infection structures, including germ tubes, 

appressoria, biotrophic primary hyphae and secondary necrotrophic hyphae. Arabidopsis 

accessions display variation in their susceptibility to C. higginsianum (Narusaka et al., 2004; 

O'Connell et al., 2004). For example, ecotype Eilenburg (Eil-0) and Wassilewskija (Ws-0) 

appear to be resistant, whereas Landsberg erecta (Ler-0) is more susceptible and Columbia (Col-

0) is intermediate (Birker et al., 2009; Narusaka et al., 2004). 

By inoculating different Arabidopsis accessions with isolates of C. higginsianum, 

Narusaka et al. (2004) found that Arabidopsis resistance to C. higginsianum is controlled 

primarily by two dominant R gene loci, designated RCH1 and RCH2 (RECOGNITION OF C. 
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higginsianum). RCH1 is a single dominant gene identified in the accession Eil-0 and mapped to 

Arabidopsis chromosome 4 (Narusaka et al., 2004). The RCH2 locus contains two TIR-NB-LRR 

type R genes, RPS4 (RESISTANCE TO PSEUDOMONAS SYRINGAE 4; At5g45250) and RRS1 

(RESISTANCE TO RALSTONIA SOLANACEARUM 1; At5g45260), which are both required for 

resistance to C. higginsianum in Ws-0 (Narusaka et al., 2009). In addition, EDS1, which acts 

downstream of RPS4/AvrRps4 recognition, is also required for resistance to C. higginsianum in 

Ws-0 (Birker et al., 2009). In ecotype Col-0, however, the intermediate resistance to C. 

higginsianum does not rely much on RPS4 or RRS1 (Birker et al., 2009). 

Defence-related hormone signaling pathways have been shown to play an important role 

during defence responses to C. higginsianum. Genetic analysis of each signaling pathway 

indicated a requirement for the SA- and ET-dependent signaling pathways (Liu et al., 2007a; 

O'Connell et al., 2004). In contrast, microarray analysis showed that signaling by JA and ET was 

more important than SA (Narusaka et al., 2004). In addition, disease resistance to C. 

higginsianum is compromised in the edr1 (enhanced disease resistance 1) mutant (Hiruma et al., 

2011), which was previously shown to activate SA signaling and enhance resistance to the 

biotrophic pathogen Erysiphe cichoracearum, the causal agent of powdery mildew in 

Arabidopsis (Frye et al., 2001; Frye and Innes, 1998). Microarray analysis also revealed that JA-

responsive genes, such as plant defensin (PDF) genes, were severely impaired in edr1 plants 

(Hiruma et al., 2011). 

1.11  Link between defence response and flowering time 

The transition to flowering in plants is tightly controlled by a fine regulatory network that 

requires the perception of proper endogenous developmental stage and favorable environmental 

conditions (Boss et al., 2004). However, when plants are exposed to stressful conditions, such as 

pathogen infection, the floral transition can be accelerated as a means to survive a transient 

threatening condition. For example, infection with P. syringae has been shown to accelerate 

reproductive development of Arabidopsis plants and to alter their shoot architecture (Korves and 

Bergelson, 2003). The effects of pathogen infection on plant flowering have been shown to be 

mediated, at least in part, through plant hormones (Davis, 2009). 
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As a major defence related hormone, SA has been proposed to regulate flowering in 

plants (Rivas-San and Plasencia, 2011; Vlot et al., 2009). Exogenous SA treatment accelerates 

the transition to flowering (Martínez et al., 2004). SA-deficient plants, including NahG, 

eds5/sid1 and sid2 mutants, exhibit a late-flowering phenotype (Martínez et al., 2004). 

Correlating with this phenotype, these plants expressed higher mRNA levels of the floral 

repressor gene FLOWERING LOCUS C (FLC), while decreased levels of genes that promote 

flowering such as FLOWER LOCUS T (FT) (Martínez et al., 2004). Furthermore, TGA4 was 

shown to physically interact with CONSTANS, a positive regulator of floral induction (Song et 

al., 2008), suggesting that clade I TGA factors may also be involved in flowering transition. 

1.12 Research goals 

The primary goal of this thesis is to characterize the biological functions of clade I TGA 

factors during plant immune responses. Specific objectives addressed in this thesis were: 

Objective 1: Confirm that the phenotypes reported for the tga1-1 and tga4-1 mutants are 

specifically due to loss of clade I TGA factors. Prior to initiating this project, the Fobert lab had 

identified one T-DNA insertional mutant in each of TGA1 and TGA4 (tga1-1 and tga4-1) and 

generated the double mutant (tga1-1 tga4-1). Subsequently, the phenotype of these single or 

double mutants has been published by the Fobert lab and others (Kesarwani et al., 2007; 

Lindermayr et al., 2010; Shearer et al., 2012). However, all reports have relied on single mutant 

alleles, and an attempt to demonstrate specificity by complementation through transgenic 

expression of TGA1 was not successful (Lindermayr et al., 2010). Thus, to demonstrate 

specificity, additional T-DNA alleles and transgenic lines were generated and analyzed. 

Objective 2: Characterize the contribution of clade I TGA factors to different types of plant 

immunity, as defined by the zig-zag model. Most analysis of clade I TGA factors has focused on 

interactions with virulent strains of P. syringae, which trigger ETS in the plant host. To better 

ascertain the contribution of clade I TGA factors to plant immunity, I analyzed Arabidopsis-P. 

syringae interactions in which effective defence responses, such as MTI and ETI, are fully 

deployed. I also tested the interaction of Arabidopsis clade I TGA factor mutants with the 

hemibiotrophic fungus C. higginsianum. 
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Objective 3: Investigate defence responses regulated by clade I TGA factors. After pathogen 

perception, multiple defence response events occur, such as PR gene expression, callose 

deposition and ROS burst (section 1.2). I employed different assays to investigate the 

involvement of clade I TGA factors in these responses.  

Objective 4: Determine the requirements of NPR1 towards clade I TGA factor function. Clade I 

TGA factors interact with NPR1 in leaves after SA treatment (Després et al., 2003) and in vitro 

S-nitrosylation enhances DNA-binding activity of TGA1 in the presence of NPR1 (Lindermayr 

et al., 2010). This suggests that clade I TGA factors may share a common pathway with NPR1 

during defence responses. However, epistasis and microarray analyses indicate that a substantial 

portion of clade I TGA function is independent of NPR1 (Shearer et al., 2012). To ascertain their 

relationship during plant defence responses, a tga1-1 tga4-1 npr1-1 triple mutant was analyzed. 

Objective 5: Characterize the role of clade I TGA factors in developmental processes. During 

the course of this study, developmental abnormalities, such as curly leaves and altered flowering 

time, were observed in the clade I TGA mutant plants. The involvement of clade I TGA factors 

in development is also suggested by the observation that clade I TGA factors have been shown to 

interact with several developmental regulators, such as NPR1 paralogs, BOP1 (BLADE-ON-

PETIOLE1; At3g57130) and BOP2 (At2g41370) (Hepworth et al., 2005), the glutaredoxin-like 

protein, ROXY1 (At3g02000) (Li et al., 2009b), the floral regulator CONSTANS (Song et al., 

2008) and that other members of TGA factor family have been shown to play a role in 

development (Chuang et al., 1999; Murmu et al., 2010; Running and Meyerowitz, 1996). 
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CHAPTER 2 MATERIAL AND METHODS 

2.1 Plant material and growth conditions 

Arabidopsis thaliana L., herein referred to as Arabidopsis, was used throughout this 

study. The npr1-1, npr1-3, tga1-1, and tga4-1, single mutants, tga1-1 tga4-1 double mutant and 

tga1-1 tga4-1 npr1-1 triple mutant are in the ecotype Columbia (Col-0) genetic background and 

have been previously described (Cao et al., 1994; Shearer et al., 2012). The npr1-1 mutant was 

isolated in a screen for plants that failed to activate SA-inducible PR genes after exposure to INA 

(Cao et al., 1994). The npr1-1 allele contains an EMS (Ethylmethane Sulphonate) -induced point 

mutation altering a highly conserved histidine (residue 334) in the third ankyrin-repeat consensus 

sequence to a tyrosine (Cao et al., 1997). The npr1-3 mutant was isolated in a different genetic 

screen aimed at identifying genes involved in resistance against virulent P. syringae pv. 

maculicola (P.s.m.) ES4326 (Glazebrook et al., 1996). The npr1-3 allele contains a nonsense 

codon (residue 400) that results in a truncated protein lacking the last 194 amino acids. The 

npr1-5 mutant in the Nössen background, earlier known as SA insensitive1 (sai1), was identified 

in a different genetic screen for genes involved in SA-induced PR gene expression (Shah et al., 

1997). The tga1-1 and tga4-1 single mutants (Salk_028212 and Salk_127923, respectively) are 

T-DNA insertion mutants generated by the Salk Institute Genome Analysis Laboratory (SIGnAL) 

project (Alonso et al., 2003) and obtained from the Arabidopsis Biological Resource Center 

(ABRC; Columbus, Ohio, USA). The T-DNA in tga1-1 is located 77 base pair (bp) downstream 

of the start codon in the first exon of TGA1, resulting in a truncated product which only has 32 

amino acids. The tga4-1 allele contains a T-DNA 550 bp downstream of the start codon in the 

second exon of TGA4. The product of tga4-1 is predicted to encode a protein of 108 amino acids 

containing the basic domain, but lacking an intact leucine zipper. 

Additional insertional mutant lines were obtained from the corresponding stock centers. 

The tga1-2 allele (FLAG_027G07), in the Wassilewskija (WS) background, was obtained from 

the Versailles Center of the National Institute for Agronomical Research (INRA); tga1-3 

(RATM15-2760-1), in Nössen (Nö), is from the RIKEN BioResource; and tga4-2 

(WiscDsLox441E10) in Col-0 is from the ABRC. The tga1-2 and tga4-2 contain T-DNA 

insertions while tga1-3 contains an insertion of the maize Ds transposable element.  

http://signal.salk.edu/index.html
http://www.biosci.ohio-state.edu/~plantbio/Facilities/abrc/abrchome.htm
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For surface sterilization, seeds were first treated with 70% ethanol for 2 min, then with 30% 

bleach (5.25% sodium hypochloride) containing 0.09% Tween-20 for 10 min, followed by five 

rinses with sterile water. Seeds were resuspended in 0.1% agarose, and stratified at 4˚C for 2 

days prior to sowing on 1 x Murashigue and Skoog (MS) medium (M-5519, Sigma, St. Louis, 

MO) and 2% sucrose supplemented with 4.5g l
-1

 phytagel (P-8169, Sigma, St. Louis, MO) in 100 

x 25 mm Petri dishes and sealed with micropore tape (3M, St. Paul, MN). Seven days post-

germination, seedlings were transplanted to 72-cell flats (4 x 4 cm
 
per cell) of Sunshine mix #4 

(Sun Gro, Bellvue, WA). Plants, in soil or on plates, were grown in controlled environmental 

chambers maintained at 70% relative humidity, at an irradiance of 150 µE (cool white 

fluorescent), with a 10 h, 21˚C light period, and a 19˚C, 14 h dark period. For seed production 

purposes, plants were grown on soil at 22˚C with 16 h photoperiods. Plants were fertilized once a 

week (3g l
-1

 of 20-20-20). For seedling assays, seeds were poured on 1/2 x MS supplemented 

with 1% (w/v) sucrose and 8g l
-1

 phytagar (A1296, Sigma, St. Louis, MO) and grown at 22˚C 

with a 16-h-light/8-h-dark cycle. 

2.2 Isolation of T-DNA insertion mutants 

T-DNA insertion Information was obtained from the SIGnAL website at 

http://signal.salk.edu (Alonso et al., 2003). The location of the T-DNA insertions were confirmed 

by sequencing of PCR fragments using the T-DNA border primers (T-DNA_LB and T-DNA_RB) 

and gene-specific primers (RP and LP) (Table 2.1). Plants homozygous for the T-DNA insertion 

were identified by screening self-fertilized progeny from the mutant using PCR amplification. 

The presence of the T-DNA was confirmed using LB/RP and RB/LP and subsequently, 

homozygous plants were identified by the lack of PCR products using gene-specific primers only. 

The number of T-DNA insertion loci in the mutants was estimated by the segregation ratio of 

kanamycin-resistant:kanamycin-sensitive plants in the T1 and T2 selfed progeny and analyzed 

using the chi-squared test (Witte, 1989). Third or fourth generation self-pollinated generations 

(T3 or T4), homozygous for T-DNA insertions were used throughout this study. 
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Table 2.1 Information of PCR oligonucleotides for T-DNA identification 

mutant 
Transformation 

vector 
Primer name 5‟ to 3‟ sequence 

tga1-2 

pGKB5 

(Bouchez et al., 

1993) 

tga1-2:T-DNA-RB TTTCTACAGGACGTAACATAAGG 

tga1-2:T-DNA-LB CGTGTGCCAGGTGCCCACGGAATAGT 

tga1-2:TGA1-RP GTTCCTCTACGAAAAATCGCC 

tga1-2:TGA1-LP TTGCCACATTTTGATGTCTTG 

tga1-3 

pCGN 

(Fedoroff and 

Smith, 1993) 

tga1-3: Ds3-4 CCGTCCCGCAAGTTAAATATG 

tga1-3: Ds5-3 TACCTCGGGTTCGAAATCGAT 

tga1-3:TGA1-RP AGGGAATCTCCGTGTCCCCTCTGG 

tga1-3:TGA1-LP AACCTGTTGTCTAGCACGATCGAG 

tga4-2 

pDs-Lox 

(Woody et al., 

2007) 

tga4-2:T-DNA-RB AGATCCGTCGACCTGCAGATCG 

tga4-2:T-DNA-LB AACGTCCGCAATGTGTTATTAAGTTGTC 

tga4-2:TGA4-RP TTAACCACGCGACAAGCGGCTAG 

tga4-2:TGA4-LP AGCCGTTGATCTGACCGATTGGG 

2.3 Plasmid constructions 

For TGA1 overexpression in the tga1-1 tga4-1 background, the full-length coding region 

from the TGA1 cDNA, under the control of the enhanced 35S Cauliflower Mosaic Virus (CaMV) 

promoter, was cloned into binary vector pCAMBIA2300 by Ms Catherine DeLong (NRC-PBI) 

using a strategy similar to the one described in Liu et al. (2005).  

To determine which gene is responsible for the tga1-2 phenotype, genomic DNA 

corresponding to TGA1 and the adjacent gene RPL29 (RIBOSOMAL PROTEIN L29; At5g65220) 

were separately cloned into transformation vectors. For TGA1, BAC MQN23 (ABRC) was 

digested with SacII and SalI, yielding a 7,274-bp genomic fragment containing the TGA1 gene. 

This fragment was gel-purified and redigested with SpeI and ApaI to create a fragment 

containing TGA1 genomic coding sequence as well as 2000 nucleotides upstream of the start 

codon and 700 nucleotides downstream of the stop codon. The resulting digestion product was 

cloned into the modified pH2GW7 vector (Karimi et al., 2002), in which the 35S CaMV 

promoter/terminator were removed. For RPL29, 1.2-kb of genomic DNA was amplified from the 

BAC MQN23 template by PCR using EX Taq DNA polymerase (Takara Bio Inc., Madison, WI) 

with the primers at5g65220-5'-SpeI: 5‟-CTTCTTCCTCCGCCACTAGTCTACAATGCTTAG-3‟ 

and at5g65220-3'-XhoI: 5‟-AATAACAGAGATTAACAACATCTCGAGGAAAC-3‟, and 

cloned into the modified pER330 vector (Teerawanichpan et al., 2007). All plasmid constructs 

were verified by sequencing. 
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2.4 Arabidopsis transformation 

Transformation of Arabidopsis plants was achieved by the Agrobacterium-mediated 

floral dip method (Clough and Bent, 1998). The vectors were separately transformed into 

Agrobacterium tumefaciens strain GV3101 (pMP90) (Koncz and Schell, 1986). Flowering plants 

of the tga1-1 tga4-1 double mutant were dipped into infiltration medium with A. tumefaciens 

containing the TGA1 cDNA vector. The tga1-2 plants were separately dipped into medium with 

A. tumefaciens containing TGA1 and RPL29 genomic DNA. Seeds (T1) were surface-sterilized 

and plated on ½ MS medium supplemented with kanamycin (50 µg ml
-1

) or hygromycin (25 µg 

ml
-1

). Two-week-old healthy seedlings were transferred to soil and two leaves from each plant 

were collected to test transgene expression levels two weeks later. Plants with high transgene 

expression level were kept for seed harvest. The number of T-DNA insertion was estimated by 

the segregation ratio of antibiotic-resistant: antibiotic-sensitive plants in the T1 and T2 selfed 

progeny and analyzed using the chi-squared test (Witte, 1989). Third or fourth generation self-

pollinated generations (T3 or T4), homozygous for T-DNA insertions were used throughout this 

study. 

2.5 Bacterial pathogen infections 

All Pseudomonas strains were propagated at 28˚C on King‟s B medium (Difco, Becton 

Dickinson, Sparks, MD, USA) containing streptomycin (300 µg ml
-1

) or rifampicin (100 µg ml
-1

). 

Overnight cultures having OD600 between 0.3 and 0.6 were pelleted and resuspended in a volume 

of 10 mM MgCl2 equivalent to the original culture. The OD600 were measured on a 

spectrophotometer blanked with 10 mM MgCl2. The bacterial suspension was diluted to an 

appropriate concentration and syringe-infiltrated into 4-week-old leaves. Virulent P.s.m. ES4326, 

at 1 x 10
6
 colony forming units (cfu) ml

-1
 (OD600=0.001 in 10 mM MgCl2 equaling to 1 x 10

6
 cfu 

ml
-1

), was used for basal resistance tests. The T3SS-deficient mutant P.s.t. hrcC
-
 (1 x 10

5
 cfu ml

-1
) 

was used for MAMP-triggered immunity (MTI) tests. Avirulent P.s.t. AvrRpt2, at 1 x 10
5
 cfu ml

-

1
, was used for effector-triggered immunity (ETI) tests. P. syringae pv. phaseolicola (P.s.p.) 

1448a, at 1 x 10
6
 cfu ml

-1
, was used for non-host resistance (NHR) tests. The P.s.t. ΔCEL mutant 

(1 x 10
5
 cfu ml

-1
) was used for testing the contribution of effectors implicated in vesicle transport. 

Leaf bacterial titres were measured at 0 and 3 or 4 days post-inoculation (dpi). Four leaves per 
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plant were inoculated and two discs were cut from each leaf by using a cork borer. Eight leaf 

discs from one plant were collected as one replicate and 6 or 8 replicates were analyzed per 

experiment. Leaf discs were then homogenized in 10 mM MgCl2, serially diluted and plated onto 

King‟s B medium supplemented with appropriate antibiotics. The massive multiplication of the 

virulent bacteria (P.s.t. DC3000) correlates well with symptom development (Katagiri et al., 

2002). However, the nonpathogenic (P.s.t. hrcC
-
), avirulent (P.s.t. AvrRpt2), and non-host strains 

(P.s.p. 1448a) do not multiply to high titres and do not produce disease symptoms (Katagiri et al., 

2002). For these reasons, and because of its quantitative aspect, emphasis was placed on bacterial 

counts rather than visual disease symptoms. The pathogens P.s.t. DC3000 and P.s.t. AvrRpt2 

were a generous gift from Dr. Robin Cameron (McMaster University, Hamilton, ON) and P.s.m. 

ES4326, P.s.t. hrcC
-
, and P.s.p. 1448a were kindly provided by Dr. Darrell Desveaux (University 

of Toronto, Toronto, ON). P.s.t. ΔCEL mutant was kindly provided by Dr. M. Hossein Borhan 

(Agriculture and Agri-Food Canada, Saskatoon, SK). 

2.6 Fungal pathogen infections 

The fungal pathogen, Colletotrichum higginsianum Sacc., kindly provided by Dr. 

Yangdou Wei (University of Saskatchewan, Saskatoon, SK), was maintained on potato dextrose 

agar (PDA) plates (Difco Laboratories, Detroit, MI) at 24°C in the dark (Wei et al., 2004). 

Conidia were obtained by gentle scraping of cultures incubated for 7 to 10 days and filtered 

through two layers of sterile cheesecloth. The spore concentration was determined by using a 

hemacytometer (Cambridge Instruments Inc., Buffalo, NY). Four-week-old plants were either 

sprayed with conidial suspensions (1 x 10
6
 spores ml

-1
 in distilled water) or spotted with 5 µl 

droplets on the leaf surface on either side of the leaf mid-vein. After inoculation, plants were 

covered with a dome and kept in a 100% humidity chamber. 

Infected leaves of the same developmental stage were harvested at different time points 

and fixed in a solution of 60% methanol, 30% chloroform and 10% acetic acid. After 

rehydration, the material was examined by light microscopy. Disease symptoms were also scored 

at 4 dpi. A Vernier caliper (Manostat, Switzerland) was used to measure lesion sizes in spot-

inoculated leaves. Each experiment was repeated at least twice and each included 30 to 50 

individual leaves. 
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2.7 RNA isolation and kinetic reverse-transcriptase PCR analysis  

Total RNA was extracted from leaves or seedlings using the RNeasy plant mini kit 

(Qiagen, Mississauga, ON) according to the supplier‟s instructions. After treatment with DNase I 

(Invitrogen, Carlsbad, CA), first strand cDNA synthesis was generated using SuperScript II 

reverse transcriptase (Invitrogen, Carlsbad, CA), and the (dT)17VN oligo in the presence of 0.4 U 

RNasin (Fisher Scientific, Pittsburg, PA). The newly-synthesized cDNA was diluted 1/200 to 

reflect a concentration of 10 ng μL
-1

 input total RNA. 

Kinetic RT-PCR was performed on an MX3000 spectrofluorometric thermal cycler 

(Stratagene, LaJolla, CA) using a two temperature cycling regime initiated with a 15 min 

activation at 95˚C, followed by 40 cycles of 2 min of annealing and extension at 66 ˚C and 10 

sec denaturation at 95 ˚C. Each assay contained 0.5 pmol oligonucleotides, 5 ng cDNA, and 1 X 

SYBR Green® (Quantitech; Qiagen, Mississauga, ON), prepared as described in Rutledge and 

Stewart (2008). The fluorescence data collected at the end of each PCR cycle was analyzed by 

absolute quantification via the Ct method (Rutledge and Stewart, 2008). Values were normalized 

against UBIQUITIN5. The primer sets used in the different experiments are listed in Table 2.2. 

2.8 Callose deposition 

Four-week-old leaves were infiltrated with 1 x 10
8
 cfu ml

-1
 of P.s.t. hrcC

-
 or P.s.p.1448a, 

5 µM flg22, a peptide derived from the MAMP flagellin (Boller and Felix, 2009) and 10 mM 

MgCl2. After 12h or 13h, whole leaves were harvested and stained with 0.01% aniline blue (Kim 

et al., 2005). Callose depositions were observed with a Leica FluoIII (Leica Microsystems, 

Wetzlar, Germany) epifluorescence microscopy. The numbers of callose depositions were 

counted by the GENETOOLS software (Syngene, Frederick, MD) and verified by manual counts. 

Three plants for each genotype were analyzed. Four leaves were collected from each plant and 

the average of four areas on each leaf was photographed for counting callose deposits. Flg22 was 

kindly provided by Dr. Darrell Desveaux (University of Toronto, Toronto, ON). 
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Table 2.2 PCR oligonucleotides for k-RT-PCR 

Target Primer name 5‟ to 3‟ sequence 
Efficiency 

(%) 

Amplicon 

Size (bp) 

Tm 

(˚C) 

Oligos for Figure 3.1 and Figure 3.2 

TGA1 

At5g65210 

TGA1-P1 
AAATGAAGAAAATGGAAAGACCTCA

AAAAT 
100.9 109 62 

TGA1-P2 
GCAGAGTAAAAATAAATATCAGC

AGCAACC 

TGA4 

At5g10030 

TGA4-P1′ 
AGAAACTGCAACATACATTAGCA

GAGAGTG 
96.5 215 62 

TGA4-P2 
ATACTCCCCTAATGCTAACAAAC

CTCTAGC 

Oligos for Figure 3.2  

TGA4-T-

DNA 

TGA4-RP TTAACCACGCGACAAGCGGCTAG 

108.9 455 62 
T-DNA-LB 

AACGTCCGCAATGTGTTATTAAG

TTGTC 

Oligos for Figure 3.3 

RPL29 

RPL29-P1 
ACCCGCTATTGATTTATGGTCTCT

TCCTTGTT 
107.8 163 66 

RPL29-P2 
GAATCCCTTAAAGATTGAAATCG

TTCCTTCA 

Oligos for Figure 3.4 

TGA1-HA 

HA-5‟ 
CCTTATGATGTCCCTGATTATGCT

TCTCTG 
99.4 207 66 

HA-TGA1 
CACGTTGTTGTCTAGTTTCTGATT

ATTCGGTATTAT 

Oligos for Figure 3.13;3.14;3.15 

PR1 

At2g14610 

PR1F 
GCTCTTGTAGGTGCTCTTGTTCTT

CC 
104.4 173 66 

PR1R 
AGTCTGCAGTTGCCTCTTAGTTGT

TC 

Oligos for Figure 3.16 

PAL1 

At2g37040 

PAL1-Q5‟ 
GAGCTGCAGCGGAGCAAATGAA

AGGTAGCC 
97.7 137 66 

PAL1-Q3‟ 
ACCAATAGTTGAGATCGCAGCCA

CTTGTCC 

FRK1 

At2g19190 

FRK1-Q5‟ 
ATTAGATGCAGCGCAAGGACTAG

AGTATCTT 
101.6 124 62 

FRK1-Q3‟ 
GAAGTCCGCCATCTTCGCTTGGA

GCTTCTC 
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Table 2.2 continued     

NHO1 

At1g80460 

NHO1-Q5' 
CTTCTGATGCAGATTCAGGCTGA

TCTGATGG 
101.6 95 66 

NHO1-Q3' 
CCAGCTGCATAGGCTGCTCCTAA

TGCTGTTGT 

PEN2 

At2g44490 

PEN2-Q5‟ 
GACTTCATGCTTGGTTGGCATCA

GCATCC 
105.5 148 66 

PEN2-Q3‟ 
AGTTTATACCAACGTAATCGCAA

GAGCCTA 

CalS1 

At1g05570 

CalS1-Q5‟ 
TCAAAAAACAAGGAGTGACATGT

ACACATG 
98.6 173 66 

CalS1-Q3‟ 
CTTTCTATTATAATGGACGCGAA

CTTATGG 

CalS12 

At4g03550 

CalS12-Q5‟ 
TGAAGAATTACACTATTTTCTGG

AATGCTG 
107.2 199 62 

CalS12-Q3‟ 
GATTTCTTCCCAGTGACAATCTGC

ATGATG 

Oligos for Figure 3.17 

PR2 

At3g57260 

At3g57260-5′a 
TAAGCGTATTTAAAAATTGGGAA

CTTGTTG 
90.5 119 66 

At3g57260-3′a 
TTTCCTTATTTATGCTTGCAGCTC

ATTTAT 

PR5 

At1g75040 

At1g75040-5′a 
TAACTACGAAATCACTTTCTGCCC

TTAAAA 
105.9 124 66 

At1g75040-3′a 
TCATCAGCTTTCCTTATTTATCTT

TCCGTA 

WRKY70 

At3g56400 

At3g56400-5′a 
CATGGATTCCGAAGATCACAAGA

GTCCTAGTT 
101.0 186 66 

At3g56400-3′a 
TCGATAGATGTACTCGTTTTCCCA

TTGACGTA 

At3g29240 

At3g29240-F1 
TATAGGAGTCATCCTAAACCGTC

CATCTCT 
104.8 103 66 

At3g29240-R1 
AAAGAAGAGTCTTTTGTCTGAAA

ACGTTCC 

NIMIN1 

At1g02450 

At1g02450-5b‟ 
TCTGGCGTCGTGAGGAGGAAATC

TAAC 
94.8 121 66 

At1g02450-3b‟ 
AAACAAACATCAATGGCGGCTTC

AAAC 

WRKY54 

At2g40750 

At2g40750-5‟ 
GTGGAGATTCCGGTGAGAGTAAG

AAGAAGAGA 
104.3 118 66 

At2g40750-3‟ 
GTGGAGATTCCGGTGAGAGTAAG

AAGAAGAGA 
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Table 2.2 continued     

TAT3 

At2g24850 

At2g24850Q1 
TTGTCTCTTTTGTCCCAAGAAACC

CGAATC 
110.4 189 66 

At2g24850Q2 
TCGGTTCCTATCGATATCCTCACC

CAATTC 

CxxS9 

At2g30540 

CxxS9Q1 
CCACGCCGGTCCCAGCCATCTTT

GTGGGTG 
96.9 210 66 

CxxS9Q2 
CTACATTACAAAGGTTGCATAGG

CTATAAG 

At4g21830 

At4g21830F1 
CTATGATCTGTGTGAGCTTGCTAG

GTTTCT 
107.9 120 62 

At4g21830R1 
GTACATCGAACGAAGTGGAATCA

ATATCAT 

At1g22550 

At1g22550Q1 
GTTCCAACTTATGAGCGTGTTTTC

CTTCCG 
98.9 169 62 

At1g22550Q2 
CATGTTCTTTAGCCGTCTCGAGCC

GTTTCA 

At5g52390 

At5g52390Q1 
AGTGCATTAAAGCGTGTGGTCTA

GACCGGA 
100.3 148 66 

At5g52390Q2 
GCAGCAAGGTTGAAGTAGAGATC

GACTACG 

Reference gene for all experiments 

Ubiquitin 5 

At3g62250 

Ubiquitin5 5′a 
ACCTACGTTTACCAGAAAGAAGG

AGTTGAA 
102.9 102 66 

Ubiquitin5 3′a 
AGCTTACAAAATTCCCAAATAGA

AATGCAG 
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2.9 Measurement of ROS generation 

The production of ROS was measured by the H2O2-dependent luminescence of luminal 

(Gomez-Gomez et al., 1999). Leaf discs, cut from four-week-old leaves, were floated on water 

overnight and treated with 2µM flg22 in 200 µl of buffer containing 400 µM luminal (A8511, 

Sigma, St. Louis, MO) and 20 µg ml
-1

 horseradish peroxidase (HRP; P8125, Sigma, St. Louis, 

MO). The flg22-induced H2O2 combined with HRP oxidized luminal to generate 

chemiluminescence, which was detected by a luminometer (VICTOR
3
 multilabel readers; 

PerkinElmer, Waltham, MA) at 30 s intervals for 20 min. 

2.10 MAMP-inhibited seedling growth 

Seedlings grown for 5 days after germination on MS agar plates were transferred to liquid 

MS medium supplied with flg22, or elf18, a peptide derived from the MAMP EF-Tu (Boller and 

Felix, 2009) (two seedlings per 400 µl of medium in wells of 24-well-plates). The effect of 

treatment with the different peptides on seedling growth was analyzed after 7-14 days by 

weighing (fresh weight). 

2.11 Protein extraction and western blot 

Four-week-old leaves were syringe-infiltrated with bacterial suspensions of P.s.t. hrcC
-
 

or P.s.t. DC3000 at a high concentration (1 x 10
8
 cfu ml

-1
). Leaves were harvested at 1 dpi and 2 

dpi. Fresh leaf tissues were immersed in ice-cold extraction buffer (100 mM Tris-HCl pH7.8, 

500 mM sucrose, 10 mM MgCl2, 10 mM CaCl2, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 

mM β-mercaptoethanol; Wang et al., 2006) and vacuum-infiltrated for three periods of 1-min 

each. The tissues were then gently blotted dry, packed in a syringe and placed in a 50 ml conical-

bottom tube and centrifuged at 3000 rpm, for 10 min at 4 °C. The fluid collected in the conical-

bottom tube was designated 'intercellular fluid' (IF). The protein concentration was determined 

using the Bio-Rad protein assay (Bio-Rad, Hercules, CA). Fifty µg IF protein were run on 15% 

SDS-PAGE gels, transferred to PVDF (polyvinylidene difluoride) membrane (Bio-Rad, Hercules, 

CA), and probed with antibodies specific to the PR-1 protein. After primary antibody 

hybridization, the blot was hybridized with AP (Alkaline phosphatase)-conjugated secondary 

antibodies (A2306, Sigma, St. Louis, MO) and then incubated with a chemiluminescent AP 
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substrate (Millipore, Billerica, MA). The blot was exposed to X-ray film (Agfa-Gevaert N.V., 

Mortsel, Belgium) for an appropriate duration and the X-ray film was manually developed 

(White Mountain imaging, Webster, NH). Two different PR-1 antisera were used and kindly 

provided by Dr. Daniel J. Kliebenstein (University of California, Davis, CA) (Kliebenstein et al., 

1999) and Dr. Darrell Desveaux (University of Toronto, Toronto, ON) (unpublished), 

respectively. 

2.12 Tunicamycin assays 

Plants were grown in the presence of this glycosilation inhibitor to assess for potential 

defects in ER secretion pathways. Two assays were used in this study. In the first, seeds were 

poured on ½ MS medium containing tunicamycin (TM) (T7765, Sigma, St. Louis, MO) at 

different concentration. At 5 days after germination, seedlings were transferred to TM-free MS 

medium and grown for another five days. 

In the second assay, seeds were poured on ½ MS and 1% sucrose medium without TM. 

Five days after germination, seedlings were immersed in ½ MS liquid with or without 0.8 µg ml
-

1
 TM for 6 h. After treatment, seedlings were rinsed three times with TM-free ½ MS liquid, and 

grown for a further 5 days on TM-free ½ MS agar. Fresh weight of TM-treated or untreated 

seedlings were measured. 

2.13 Flowering time measurement 

Plants were grown on soil under long day (16h light) conditions. Flowering time was 

measured by counting the total number of leaves (rosette plus cauline), excluding the cotyledons, 

once the bolt was 5 cm tall. The number of days from sowing to the bolting was also recorded. 

Twenty four plants were analyzed for every genotype and the mean value ± standard error was 

calculated. 

2.14 Statistical analysis 

Data were analyzed statistically using unpaired Student‟s t-test (P<0.05) (Witte, 1989) or 

Analysis of Variance (ANOVA) at α = 0.05, General Linear Model, as implemented in the SAS 
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software package (SAS Institute Inc., Cary, NC). Detail information on number of replicates and 

repeats performed is shown in each figure legend. 
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CHAPTER 3 RESULTS 

3.1 Clade I TGA factor gene expression is induced by SA, pathogen and flg22 

In planta, Clade I TGA factors interact with NPR1 following SA treatment of leaves 

(Després et al., 2003). To determine whether TGA1 and TGA4 gene expression is regulated by 

SA or NPR1, four-week-old leaves of Col-0 and npr1-3 mutants were sprayed with 1 mM SA 

and transcript levels of clade I TGA factors were measured by k-RT-PCR (Figure 3.1a). In Col-0 

leaves, TGA1 transcripts gradually accumulated and reached their highest level (3.25-fold 

induction) relatively late (8 h) after SA treatment. In contrast, TGA4 transcripts rapidly increased, 

peaking (1.70-fold induction) at an early time point (1 h) following treatment with SA. In 

addition, levels of SA-induced TGA1, but not TGA4, transcripts, were reduced in npr1-3 mutant 

plants (Figure 3.1a). 

The SA signaling pathway is a major component for disease resistance against the 

bacterial pathogen Pseudomonas syringae (Katagiri et al., 2002). As the first step in investigating 

the potential involvement of TGA1 and TGA4 in disease resistance, levels of their transcripts 

were measured by k-RT-PCR following pathogen challenge. Leaves of Col-0 plants were 

infiltrated with four different Pseudomonas strains which elicit different immune responses in 

Arabidopsis. Virulent strain P.syringae pv tomato (P.s.t.) DC3000 triggers basal resistance 

(ETS); P.s.t. DC3000 harboring the avirulence gene AvrRpt2 is avirulent on Col-0 and activates 

gene-for-gene resistance or ETI; P.s.t. hrcC
-
 harbours a mutation in the hrcC gene and does not 

produce a functional T3SS, triggering MTI; Finally, isolates of P. syringae pv. phaseolicola 

(P.s.p.) do not cause disease and activate non-host resistance (NHR), likely a combination of 

MTI and ETI, on Arabidopsis. As shown in Figure 3.1, TGA1 and TGA4 transcripts accumulated 

to higher levels after inoculation with all these four strains, with the fold change for TGA1 

ranging from 2.13 to 5 and for TGA4 from 1.35 to 5.89. Consistent with expression patterns after 

SA treatment, TGA1 transcripts started to increase after inoculation and remained elevated at the 

later time point. In contrast, TGA4 transcripts increased to its highest level early and then 

decreased at the later time point. Treatment of Arabidopsis plants with purified MAMPs, such as 

flg22 and elf18, cause a large number of transcriptional changes (Boller and Felix, 2009). TGA1 

(3.13-fold induction at 24 h) and TGA4 (5.22-fold induction at 3 h) transcripts also accumulated   



 

 38 

 
 

 
Figure 3.1 Expression of TGA1 and TGA4 in response to SA, pathogen infection and flg22 

treatment. 

Four-week-old leaves of Col-0 and npr1-3 were sprayed with 1 mM SA or H2O as control (a). 

Col-0 leaves were separately syringe-infiltrated with 10 mM MgCl2 as control or with P.s.t. 

DC3000 (1 x 10
6 

cfu ml
-1

) (b), P.s.t. AvrRpt2 (1 x 10
6 

cfu ml
-1

) (c), 5 µM flg22 (d), P.s.t. hrcC
-
 

(1 x 10
8 

cfu ml
-1

) (e), and P.s.p. 1448a (1 x 10
8 

cfu ml
-1

) (f). Values were normalized to the 

expression of UBIQUITIN5 and represent the average of 3 biological replicates ± standard 

error. cDNA templates for analysis presented in b and c were generated by Dr. Heather Shearer. 

Fold induction is the ratio of normalized mRNA values in treated relative to untreated plants.  
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to higher levels following treatment with 5µM flg22 (Figure 3.1d). Taken together, the data 

demonstrate that clade I TGA factors transcripts accumulate to higher levels after SA, pathogen 

and MAMPs treatment, suggesting that clade I TGA factors could mediate disease responses 

during biotic stress. 

3.2 Identification and characterization of T-DNA insertion mutants and transgenic 

overexpression lines for clade I TGA factors 

Previously, the Fobert lab had identified one T-DNA knockout allele in each of TGA1 

and TGA4 (tga1-1 and tga4-1), and generated the double mutant (tga1-1 tga4-1). Their results 

indicated that both single mutants, as well as the double mutant, are more susceptible to virulent 

strains of P. syringae (Shearer et al., 2012). These results are consistent with data published on 

tga1-1 and tga4-1 by Kesarwani et al. (2007) and suggest partial redundancy in gene function 

between clade I TGA factors. They also indicate that clade I TGA factors act as positive 

regulators of disease resistance. However, the mutants were not compromised in SAR against 

virulent P. syringae (Shearer et al., 2012). 

To confirm the specificity of the reported tga1-1 and tga4-1 phenotypes, I employed two 

different approaches; the analysis of additional, independent T-DNA insertion lines and 

complementation assays by introducing the TGA1 cDNA into the double mutant background. 

First, I identified additional T-DNA insertions in or near the TGA1 and TGA4 coding regions 

(Figure 3.2a). The FLAG_027G07 line in the Wassilewskija (WS) background was named tga1-

2, The RATM15-2760-1 line in the Nössen (Nö) background was named tga1-3, while the 

WiscDsLox441E10 line in Col-0 was named tga4-2. In addition to demonstrating specificity, 

these new alleles could provide information about TGA function in diverse Arabidopsis genetic 

backgrounds. This is relevant in light of findings that SA signaling differs substantially between 

Arabidopsis ecotypes (van Leeuwen et al., 2007). 

Homozygous individuals were identified using a PCR-based strategy. Sequencing of PCR 

products confirmed the presence and specific locations of T-DNA insertions (Figure 3.2a). The 

insertion in tga1-2 is located 1,853 bp downstream of the ATG start codon in the 3‟ untranslated 

region (3‟UTR) of TGA1 and the insertion in tga1-3 is located 70 bp downstream of the ATG 
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start codon in the first exon of TGA1. The tga4-2 allele contains a T-DNA insertion towards the 

end of the TGA4 3‟ UTR. 

Kinetic-RT-PCR analysis was employed to determine whether transcript levels were 

altered by the T-DNA insertions in the new alleles. For TGA1, one pair of primers (TGA1-P1 

and P2) was designed after or overlapping the T-DNA insertion site (Figure 3.2a). Large 

reductions of TGA1 transcripts were observed in leaves of the tga1-2 and tga1-3 mutants (Figure 

3.2b and c). This decrease in transcript abundance, together with a T-DNA insertion that disrupts 

the reading frame after 23 amino acids, strongly suggests that tga1-3 is a loss-of-function allele 

(knockout). Because tga1-2 is not affected in the protein coding region of TGA1, it can be 

considered a knock-down allele. The T-DNA insertion site in tga4-2 is close to the end of 3‟UTR 

of TGA4. Accordingly, gene-specific primers (TGA4-P1 and P2) could only be designed before 

the T-DNA insertion site (Figure 3.2a). Analysis with this primer pair detected near wild type 

transcript levels of TGA4 in the tga4-2 mutant (Figure 3.2d). To resolve whether chimeric 

transcripts are produced in this mutant, a primer pair consisting of one TGA4-specific oligo 

(TGA4-RP) and one T-DNA-specific oligo (T-DNA-LB) was designed. These detected the 

presence of a chimeric TGA4-T-DNA transcript in the tga4-2 mutant, but not in the wild type 

(Figure 3.2e). We speculate that this chimeric structure may disrupt 3‟ UTR functions, such as 

forming secondary structure, interacting with proteins and regulating transport, translation, and 

stability of the mRNA (Mazumder et al., 2003), thereby compromising TGA4 function. 

The T-DNA insertion in tga1-2 locates in the 3‟UTR region of TGA1, which also 

corresponds to the promoter region of the closest neighbouring gene (At5g65220; Figure 

3.3Figure 3.3a). The transcript level of At5g65220 was also found to be reduced in tga1-2, but 

not in the other tga1 mutants available in the Col-0 background (Figure 3.3b), indicating that the 

tga1-2 T-DNA reduces expression of both TGA1 and At5g65220. In light of this observation, it 

is noteworthy that tga1-2 plants are dwarfed and have a light green leaf phenotype, which is not 

observed with other tga1 alleles or other tga mutants (Figure 3.3c; Shearer et al., 2012). To 

determine which of the two affected genes (TGA1 or At5g65220) is responsible for the dwarf 

phenotype, the genomic DNA of both genes were isolated by PCR, separately cloned into 

transformation vectors and introduced into tga1-2 plants. Twenty successful transformants for 

each construct were identified by the selective antibiotic resistance marker. Only At5g65220,   
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Figure 3.2 Characterization of clade I TGA factor T-DNA insertion mutants. 

Schematic representations of the tga1 and tga4 genomic DNA showing the location of the T-

DNA insertion sites. Blue boxes represent exons; interconnecting lines represent the introns; 

grey boxes represent the 5‟ and 3‟ untranslated regions (utr). The locations of T-DNA insertion 

sites, represented as triangles, are relative to the first nucleotide of the coding region and were 

confirmed by DNA sequencing. The arrows represent primers for k-RT-PCR. With the 

exception of primer and T-DNA sizes, the diagram is to scale. b), c), d) and e) K-RT-PCR 

analysis of TGA gene expression in the mutants. Total RNA was extracted from two-week-old 

seedlings grown on MS plates. The bars in b) to d) show the relative amount of the transcript of 

the corresponding TGA gene in wild type and mutants normalized to the levels of the 

UBIQUITIN5 (UBQ5) gene. The bar in e) shows the number of chimeric TGA4-T-DNA 

transcripts per µg RNA in wild type and tga4-2 mutant. All values represent the average ± 

standard error of four biological samples, each analyzed twice (technical replicates).  
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which encodes ribosomal protein L29, RPL29, was found to complement the mutant phenotype 

(Figure 3.3d and e). Many studies show that mutation in other RPL members have a similar 

phenotype as tga1-2 (Imai et al., 2008; Nishimura et al., 2005). Given the nonspecific nature of 

tga1-2, this allele was not be used in the following study. 

To further verify the function of clade I TGA factors, molecular complementation 

experiments were also performed. The tga1-1 tga4-1 double mutant was transformed with a 

transgene containing the wild type TGA1 cDNA under the control of strong constitutive CaMV 

35S promoter (Figure 3.4a). Transformants were screened from MS medium with kanamycin. 

TGA1 transcript levels of 70 primary transgenic plants were analyzed by k-RT-PCR. Among 

them, three independent transgenic lines expressing high transgene levels were selected for 

further studies (Figure 3.4b). This material is referred to as TGA1OE/tga1x4 lines. 

3.3 Clade I TGA factors contribute to basal resistance against virulent Pseudomonas syringae 

At the onset of this study, preliminary data from our lab indicated that loss of function in 

TGA1 and TGA4, in the form of the tga1-1 and tga1-4 alleles, resulted in enhanced disease 

susceptibility (EDS) to virulent P.s.m. ES4326 and P.s.t. DC3000 (Shearer et al., 2012). To 

confirm that these phenotypes were specifically attributed to loss of clade I TGA factor function, 

EDS tests were carried out on the tga1-3 and tga4-2 mutants as well as TGA1OE/tga1x4 lines. 

Three- or four-week-old leaves were infiltrated with virulent P.s.m. ES4326. As shown in 

Figure 3.5a and b, tga1-3 and tga4-2 mutant plants harboured statistically more bacterial growth 

than wild type 3 dpi, confirming previous findings that loss of function of either gene results in 

enhanced disease susceptibility to P.s.m. ES4326. 

Analysis of the three independent TGA1 transgenic lines indicated that levels of bacterial 

growth were statistically lower than those observed in the double mutant plants, but similar to 

that in the wild type, indicating that re-introducing TGA1 into this genetic background is able to 

complement the EDS phenotype of the tga1-1 tga1-4 double mutant (Figure 3.5c). Taken 

together, both lines of evidence confirm the specificity of the disease phenotype attributed to 

clade I TGA factors. Having demonstrated specificity of TGA1 and TGA4 insertion alleles, and   
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Figure 3.3 Characterization of tga1-2 mutant plants. 

Schematic representation of the T-DNA insertion site in tga1-2 showing the location of both 

TGA1 (At5g65210) and RPL29 (At5g65220). The arrows represent primers for k-RT-PCR of 

RPL29. b) k-RT-PCR analysis of RPL29 gene expression in different tga1 mutants. Total RNA 

was extracted from two-week-old seedlings grown on MS plates. The bars show the relative 

amount of RPL29 transcripts in wild type and mutants normalized to the levels of the 

UBIQUITIN5 (UBQ5) gene. All values represent the average ± standard error of four 

biological samples, each analyzed twice (technical replicates). c) Morphological phenotypes 

observed in tga1-2 plants. Four-week-old plants were grown in long day conditions (16h light 

photoperiod). d) and e) the phenotype of transgenic plants expressing the RPL29 cDNA in 

tga1-2 (RPL29OE line). The photos were taken at 2 and 8 weeks after germination, 

respectively.  
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Figure 3.4 Analysis of TGA1 transgenic plants. 

a) Diagram showing the expression vector for transformation. RB and LB, right and left T-

DNA border repeats; CaMV35:35S/AMV, double Cauliflower Mosaic Virus 35S promoter 

with Alfalfa Mosaic Virus translational enhancer; HA tag, TGA1, Arabidopsis TGA1 cDNA; 

NOSt, Nopaline synthase terminator; NPTII, Neomycin phosphotransferase II, a gene coding 

for kanamycin resistance. HA-TGA1 and HA-5‟ were used for k-RT-PCR to detect transgene 

expression level. b) k-RT-PCR for transgenic plants. Total RNA was extracted from four-

week-old plants which were selected on kanamycin. Seventy (70) individual plants were 

analyzed and three lines with highest transgene level, shown here, were used for further 

analysis. Values represent the average ± standard error of four technical replicates per sample. 
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Figure 3.5 Growth of P.s.m. ES4326 in Col-0, tga1-3, Nö, tga4-2, mutants, and 

TGA1OE/tga1x4 lines. 

Four leaves were syringe-infiltrated with 1 x 10
6
 cfu ml

-1
 P.s.m. ES4326. Bacteria were 

extracted from leaf discs 3 days later. Error bars represent the standard error of 8 replicates. a) 

and b) An asterisk indicates a statistically significant difference compared with WT (p<0.05, 

Student‟s t-test). c) An ANOVA of the log-transformed data was performed at α = 0.05; 

treatments with common letters over the error bars are not significantly different from each 

other. The experiments in b) and c) were repeated twice with similar results. Experiment in c) 

was performed once.  
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due to functional redundancy within clade I TGA factors, all subsequent studies involving 

bacterial pathogens were performed with the tga1-1 tga4-1 double mutant together with 

corresponding single mutants. 

3.4 Clade I TGA factors contribute to MTI against the hrcC mutant of P. syringae pv. tomato 

DC3000 

All functional analyses of clade I TGA factor mutants against P. syringae reported to date 

have focused on interactions with virulent strains of this bacterial pathogen (Kesarwani et al., 

2007; Lindermayr et al., 2010; Shearer et al., 2012), which suppress MTI (Chisholm et al., 2006; 

Jones and Dangl, 2006). To ascertain the possible role of clade I TGA factors in MTI and ETI, 

loss-of-function mutants in these transcription factors were challenged with isolates of P. 

syringae previously reported to elicit predominantly one or both of these immune responses in 

the Col-0 ecotype.  

I first tested P.s.t. hrcC
-
, which does not produce a functional T3SS, and accordingly, is 

incapable of delivering T3SEs into the plant cell (Hauck et al., 2003). In the absence of T3SEs, 

MTI is the predominant immunity response limiting bacterial growth and disease symptoms of 

Col-0 against P.s.t. hrcC
-
 (Hauck et al., 2003). 

Leaves from four-week-old plants were infiltrated with P.s.t. hrcC
-
 and bacterial growth 

monitored for several days. To confirm that similar amounts of bacteria were originally 

infiltrated into leaves, bacterial titres were measured immediately after inoculation. As shown in 

Figure 3.6b and c, titres in different genotypes were indeed similar on the day of infiltration (day 

0). Four days after infection (day 4), bacterial titres measured in leaves of the tga1-1 single 

mutants were similar to those in Col-0 (Figure 3.6a). However, leaves of the tga4-1 single 

mutant or the tga1-1 tga4-1 double mutant harboured significantly higher titres of P.s.t. hrcC
-
 

than Col-0 at 4 dpi (Figure 3.6). Analysis of TGA1OE/tga1x4 lines indicated that leaf bacterial 

titres at 4 dpi were slightly lower than those in the double mutant but still higher than those in 

Col-0 (Figure 3.6c). While bacterial titres in none of the three lines were statistically different 

from the mutant at this time point, two lines were also no different from the Col-0. Results that 

overexpression of TGA1 cannot completely rescue the double mutant phenotype suggest possible 
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unique functions for each member of clade I TGA factors and that the relative contribution of 

TGA4 to resistance against P.s.t. hrcC
- 
may be more important than it is against virulent P.s.t. 

DC3000. This notion is supported by the observation that slight increases in P.s.t. hrcC
-
 growth 

were observed in tga4-1 but not tga1-1, although differences were not statistically different. 

Additional repeats of the experiments will be required to confirm these results. 

Microarray and genetic studies have shown that clade I TGA factors act in both NPR1-

dependent and -independent defence pathways against virulent pathogens (Shearer et al., 2012). 

To determine the relationship between clade I TGA factors and NPR1 during defence against 

P.s.t. hrcC
-
, this strain was also infiltrated into leaves of npr1-1 and the tga1-1 tga4-1 npr1-1 

triple mutant. Unlike the tga1-1 tga4-1 mutant, npr1-1 did not support higher titres of P.s.t. hrcC
-
 

at 4 dpi (Figure 3.6b). Furthermore, P.s.t. hrcC
-
 multiplied to similar titres in leaves of the triple 

tga1-1 tga4-1 npr1-1 and the double tga1-1 tga4-1mutants. Together these results suggest that 

clade I TGA factors act mainly in an NPR1-independent fashion with respect to resistance 

against P.s.t. hrcC
-
. 

3.5 Clade I TGA factors contribute to non-host resistance against the bacterial pathogen P. 

syringae pv. phaseolicola 

Isolates of P.s.p. do not cause disease on Arabidopsis. These interactions are classified as 

type 1 NHR and occur in the absence of an hypersensitive response (HR) (Mysore and Ryu, 

2004). Non-host resistance of P.s.p. strain NPS3121 on Col-0 was shown to involve both MTI 

and ETI (Ham et al., 2007), although a recent study attributed resistance predominantly to MTI, 

with possible weak ETI (Zhang et al., 2010). 

Leaves of different genotypes were infiltrated with P.s.p. 1448a and bacterial growth 

monitored for several days post-infection. In either single clade I TGA factor mutant, bacterial 

titres were similar to those in Col-0 at 4 dpi (Figure 3.7a). However, leaves of the tga1-1 tga4-1 

double mutant harboured significantly higher titres of P.s.p. 1448a than Col-0 at this time 

(Figure 3.7). Bacterial titres in the double mutant were similar to those measured in Col-0 at 0 

dpi (Figure 3.7b and c). The three TGA1OE/tga1x4 lines partially rescued the double mutant   
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Figure 3.6 Clade I TGA factors are required for disease resistance against P.s.t. hrcC

-
. 

Four-week-old leaves were syringe-infiltrated with 1 x 10
5
 cfu ml

-1
 P.s.t. hrcC. Leaf bacterial 

titres were measured at 0 and 4 dpi. The error bars represent the standard error of 6 replicates. a) 

An asterisk indicates a statistically significant difference compared with Col-0 (p<0.05, 

Student‟s t-test). This experiment was performed once. b) and c) An ANOVA of the log-

transformed data was performed at α = 0.05; treatments with common letters over the error 

bars are not significantly different from each other. The experiments in b) and c) were repeated 

twice with similar results.  
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disease resistance phenotype; titres in one OE lines were statistically lower than those in the 

double mutant (Figure 3.7c). These findings suggest that TGA1 and TGA4 perform overlapping 

functions with respect to resistance against the non-host pathogen P.s.p. 

Previous studies demonstrated that NPR1 plays a limited role in NHR against P.s.p. 

(Ham et al., 2007; van Wees and Glazebrook, 2003). Consistent with these studies, bacterial 

growth in the npr1-1 mutant was similar to that in wild type (Figure 3.7b). However, when 

combined with mutations in clade I TGA factors, the tga1-1 tga4-1 npr1-1 triple mutant 

supported significantly higher bacterial titres than wild type and similar to that in the tga1-1 

tga4-1 double mutant (Figure 3.7b), suggesting that the higher bacterial titres observed in the 

triple mutant is primarily due to loss of function in clade I TGA factors. 

3.6 Clade I TGA factors contribute to ETI against P.s.t AvrRpt2 

As a model for ETI, we infiltrated leaves of the tga1-1 tga4-1 double mutant with P.s.t. 

harboring the avirulence gene AvrRpt2. In this host-incompatible interaction, resistance ensues 

following the recognition of AvrRpt2 by the R-gene RPS2 (Axtell and Staskawicz, 2003; Mackey 

et al., 2003). In order to better assess bacterial growth in planta, leaves were infiltrated with a 

low dose of P.s.t. AvrRpt2 that does not elicit an HR. As shown in Figure 3.8, titres of P.s.t. 

AvrRpt2 were similar in leaves of Col-0 and tga1-1 tga4-1 at day 0, but the double mutant 

harboured significantly more bacterial growth at 4 dpi. Thus, clade I TGA factors are positive 

regulators of ETI against P.s.t. AvrRpt2. The response of single TGA1 or TGA4 mutants was not 

determined. 

NPR1 has been reported to be required for ETI against a subset of R genes (Delaney et al., 

1995; Glazebrook et al., 1996; Shah et al., 1997). Our analysis that bacterial titres in npr1-1 

mutant are higher than those in Col-0 and similar to tga1-1 tga4-1, confirms a requirement of 

NPR1 for ETI against P.s.t. AvrRpt2 (Figure 3.8b). Interestingly, the triple tga1-1 tga4-1 npr1-1 

mutant supported higher bacterial growth than the npr1-1 single mutant and the tga1-1 tga4-1 

double mutant (Figure 3.8b), indicating that the function of TGA1 and TGA4 in ETI against P.s.t. 

AvrRpt2 is at least partly independent of NPR1. 
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Figure 3.7 Clade I TGA factors are required for non-host resistance against P.s.p. 1448a. 

Four-week-old leaves were syringe-infiltrated with 1 x 10
6
 cfu ml

-1
 P.s.p. 1448a. Leaf bacterial 

titres were measured at 0 and 4 dpi. The error bars represent the standard error of 6 replicates. a) 

An asterisk indicates a statistically significant difference compared with wild type (P<0.05, 

Student‟s t-test). b) and c) An ANOVA of the log-transformed data was performed at α = 0.05; 

treatments with common letters over the error bars are not significantly different from each 

other. The experiments in a) and c) were performed once. The experiment in b) was repeated 

twice with similar results.  
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Figure 3.8 Clade I TGA factors are required for resistance against P.s.t. AvrRpt2. 

a) and b) Bacterial growth in leaves of Col-0, tga1-1 tga4-1, npr1-1, and tga1-1 tga4-1 npr1-1 

plants. Leaf bacteria were quantified at day 0 and day 4 after inoculation of 4-week-old plants. 

Error bars represent the standard error of 8 replicates. An ANOVA of the log-transformed data 

was performed at α = 0.05; treatments with common letters over the error bars are not 

significantly different from each other. Data in a) and b) are from two separate repeats. 
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3.7 The tga1-1 tga4-1 double mutant is impaired in pathogen- and MAMP-induced callose 

deposition 

To ascertain which defence responses may be compromised in clade I TGA factor 

mutants, leading to higher bacterial titres, I first measured callose deposition as an example of a 

typical cell wall-associated defence response induced by MAMPs or non-infectious pathogens 

(Nicaise et al., 2009). The number and size of callose deposits were measured in wild type and 

mutant leaves following challenge with various pathogens and after staining with aniline blue. In 

wild type Col-0 leaves, visible callose cell wall modifications were observed after inoculation 

with P.s.t. hrcC
-
 (Figure 3.9). In contrast, the number of callose foci following challenge with 

virulent, wild type P.s.t. DC3000 was no higher than observed in buffer controls (Figure 3.9). 

This is likely due to an inability of the hrcC
-
 mutant to suppress host defence responses through 

the secretion and action of T3SEs, such as AvrPto, AvrRpt2 and AvrRpm1 (Hauck et al., 2003; 

Kim et al., 2005). 

A substantially lower number of callose depositions was observed in the tga1-1 and tga4-

1 single mutants after challenge with P.s.t. hrcC
-
, indicating that TGA1 and TGA4 both 

contribute to this cell wall-based modification against P.s.t. hrcC
-
 (Figure 3.9a). Moreover, the 

number of callose deposits in the double mutant is lower than either of the single mutant, 

indicating that TGA1 and TGA4 perform overlapping functions during the P.s.t. hrcC
-
-induced 

callose deposition (Figure 3.9a). 

Callose numbers in the TGA1 overexpressing line challenged with P.s.t. hrcC
-
 was 

significantly higher than that in the double mutant, and reached the level in Col-0 (Figure 3.9a), 

indicating that TGA1 can complement this phenotype in the double mutant. Interestingly, when 

challenged with P.s.t. DC3000, the overexpressing line also supported higher callose numbers, 

similar to those after P.s.t. hrcC
-
 challenge (Figure 3.9a). This suggests that the abundant 

transgenic TGA1 may enhance the signal(s) activating callose deposition and that T3SEs fail to 

suppress this stronger signal in the overexpression line. 

To directly monitor the response of clade I TGA factor mutants to MAMPs, plants were 

also treated with a purified MAMP, the flg22. A large number of callose deposits were observed 
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after flg22 treatment in leaves of Col-0 plants (Figure 3.9b). In leaves of tga1-1 tga4-1, the 

number of deposits was reduced by 50% following flg22 treatment. These reductions were found 

to be statistically significant (p<0.05). The intensity of aniline blue staining was also weaker in 

the tga1-1 tga4-1 mutants. Together, these results indicate that clade I TGA factors are required 

for flg22-induced callose deposition.  

The non-host pathogen P.s.p. NPS3121 induces two morphologically different types of 

callose deposits (small and big) in Col-0 (Ham et al., 2007). These two types of callose are 

separately triggered by MAMPs and T3SEs of P.s.p. As shown in Figure 3.9b, P.s.p. 1448a 

infiltration also triggered both types of callose deposits. A lower number of both big and small 

callose deposits were induced in the tga1-1 tga4-1 mutant, indicating that clade I TGA factors 

are potentially involved in both MTI- and ETI-mediated callose productions. 

3.8 The tga1-1 tga4-1 double mutant is impaired in the MAMP-induced oxidative burst response 

An oxidative burst is an early defence response triggered upon pathogen perception 

(Boller and Felix, 2009). The availability of purified MAMPs such as flg22 and elf18 provide 

convenient reagents for testing this response. To ascertain whether clade I TGA factors are 

involved in this early MAMP-induced response, we measured ROS production in leaves of the 

double tga1-1 tga4-1 mutant after treatment with flg22. An oxidative burst was rapidly induced 

in Col-0 plants, peaking after 4 min (Figure 3.10). This response was clearly reduced in the 

double mutant, reaching only about half the intensity of Col-0. This indicates that clade I TGA 

factors are positive regulators of the oxidative burst during MTI. 

3.9 The tga1-1 tga4-1 double mutant is more susceptible to P.s.t. ΔCEL mutant 

In P. syringae strains, type III secretion–associated hrp/hrc genes and a conserved 

effector locus (CEL) are located on a common genomic pathogenicity island (Alfano et al., 2000). 

A partial deletion of the CEL region in the ΔCEL mutant of P.s.t. DC3000 results in the notable 

reduction of bacterial virulence (Alfano et al., 2000; Debroy et al., 2004). The severe loss of 

virulence in the ΔCEL mutant bacteria is primarily caused by the deletion of the effector genes 

hopM1 (Debroy et al., 2004). HopM1 interrupts the plant secretion system by inducing 

degradation of host protein AtMIN7 important for vesicle trafficking to the cell surface   
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Figure 3.9 Clade I TGA factors are required for pathogen- and MAMP-induced callose 

deposition. 

Four-week old leaves were syringe-infiltrated with 1 x 10
8
 cfu ml

-1
 of P.s.t. hrcC

-
, P.s.t. 

DC3000, P.s.p. 1448a, 5µM flg22, or 10mM MgCl2 as control. Leaves were stained with 

aniline blue and observed under florescent microscopy 12h after treatment. a) An ANOVA of 

data was performed at α = 0.05; treatments with common letters over the error bars are not 

significantly different from each other. b) Microscopic photographs of callose deposits are 

shown with the corresponding number of callose deposits indicated below each photograph. An 

asterisk indicates a statistically significant difference compared with Col-0 (p<0.05, Student‟s 

t-test), and two asterisk indicate p<0.01. Each treatment was repeated three times with similar 

results. For both a) and b) error bars indicate standard error. For control and hrcC
-
 treatments, 

the same data are shown in a) and b).  
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Figure 3.10 MAMP-induced oxidative burst in wild type Col-0 and tga1-1 tga4-1 plants. 

Four-week-old leaf discs were treated with or without 2 µM flg22 in presence of luminol, and 

the H2O2 generated was measured at every 30 seconds after treatment for 20 min. Results are 

means ± standard error. Statistical differences were analyzed between genotypes at each time 

point and an asterisk indicates treatments different from Col-0 (p<0.05, student‟s test). The 

experiment was repeated five times with similar results. Data for two repeats are shown above. 
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(Nomura et al., 2006). The virulence of ΔCEL mutant can be restored by mutation in the AtMin7 

or by treatment of Col-0 with brefeldin A, an inhibitor of vesicle trafficking (Nomura et al., 

2006). Because of the inability to suppress the host secretion pathway, the ΔCEL mutant induces 

a SA-dependent cell wall defence response in Col-0 (Debroy et al., 2004). Taken together, the 

disease resistance against ΔCEL mutant is mainly dependent on the vesicle-related secretion 

pathway and cell wall associated defence responses. 

Results from my study presented above demonstrate that clade I TGA factors regulate 

cell wall-associated defence response, such as callose deposition and apoplastic ROS production, 

during plant immunity. To examine whether clade I TGA factors are involved in disease 

resistance against ΔCEL mutant, the tga1-1 tga4-1 double mutant and Col-0 plants were 

inoculated with ΔCEL mutant strain. As shown in Figure 3.11, the double mutant plants 

supported a significantly higher bacterial growth than Col-0, suggesting that clade I TGA factors 

play a role in disease resistance against the ΔCEL mutant. 

3.10 Clade I TGA factors are not involved in MAMP-induced seedling growth inhibition (SGI) 

MAMPs such as flg22 and elf18 cause a strong inhibition of seedling growth in 

Arabidopsis (Gomez-Gomez et al., 1999; Zipfel et al., 2006). This response may reflect a 

physiological change from growth to a defence program (Boller and Felix, 2009). To determine 

whether clade I TGA factors are required for this MAMP-induced seedling growth inhibition 

(SGI), five-day-old seedlings of Col-0 and tga1-1 tga4-1 were transferred to liquid 1 x MS 

medium containing 1 % sucrose supplemented with flg22 or efl18 peptide. The fresh weight of 

seedlings was measured one week after treatment. Similar to Col-0 seedlings, double mutant 

seedlings show dose-dependent inhibition with increasing flg22 concentration (Figure 3.12a). 

The fresh weights between Col-0 and double mutant did not show statistical differences at any 

given flg22 concentration. 

The flg22-induced SGI signaling pathway in Arabidopsis is different from the elf18-

induced. Some mutant plants are impaired in elf18-induced SGI, but retain flg22-dependent SGI 

(Li et al., 2009a; Lu et al., 2009; Nekrasov et al., 2009; Saijo et al., 2009). Therefore, seedlings 

were also treated with elf18. Similar to the result obtained with flg22 treatment, the fresh weight   
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Figure 3.11 Growth of P.s.t. ΔCEL mutant in wild type and tga1-1 tga4-1 plants. 

Four-week old leaves were infiltrated with a bacterial suspension (1 x 10
6 

cfu ml
-1

). Bacterial 

titres were measured at 4 dpi. Error bars represent the standard error of 6 replicates. Two 

asterisks indicate a statistically significant difference compared with Col-0 (p<0.01, Student‟s 

t-test). This experiment was repeated twice with similar results. 
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Figure 3.12 MAMP-induced seedling growth inhibition in wild type and tga1-1 tga4-1 

mutants. 

Five-day-old seedlings were transferred to liquid MS medium containing 1% sucrose 

supplemented with the indicated concentrations of peptides. BT indicates fresh weight of 

seedling before treatment. Fresh weight of seedlings was measured one week after treatment. 

Two seedlings were counted as one sample for measurement and 6 samples were measured for 

each genotype. Results are means ± standard error (n=6). Student‟s t-test were performed 

between Col-0 and double mutant at each concentration (p<0.05). These experiments were 

repeated three times with similar results.  
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of double mutant seedlings are comparable to those of wild type (Figure 3.12b). Taken together, 

loss-of-function in clade I TGA factors did not affect flg22- or elf18-induced SGI. 

3.11 PR-1 gene expression is not reduced in clade I TGA factor mutants 

PR-1 is a marker gene for SA-mediated defence against biotrophic pathogens (Durrant 

and Dong, 2004). Application of SA or the SA analog, benzo (1,2,3) thiadiazole-7- carbothioic 

acid S-methyl ester (BTH), results in higher steady-state levels of PR-1 transcipt in Arabidopsis. 

To evaluate the role of clade I TGA factors in regulating PR-1 gene expression, we analyzed the 

steady-state transcript levels of PR-1 in tga mutants following different inducing conditions. 

First, two-week-old seedlings grown on MS medium containing 75 mg l
-1

 BTH were collected 

for RNA isolation and k-RT-PCR analysis. Compared with Col-0 seedlings, all available clade I 

TGA factor mutants showed higher PR-1 expression (from 1.4- to 20.8-fold) under this chronic 

exposure to BTH (Figure 3.13), suggesting the negative role for clade I TGA factors in 

regulating SA-mediated PR-1 gene expression. This is consistent with results previously 

obtained in the Fobert lab (Shearer et al., 2012) and another recent study (Lindermayr et al., 2010) 

who analyzed PR-1 transcript levels in plants shortly after spraying with SA. 

To expand on these results, two TGA1OE/tga1x4 transgenic lines were analyzed to 

examine whether they can rescue the higher PR-1 expression levels in the double mutant. Four-

week-old plants grown in soil were sprayed with water or 1 mM SA. One hour after treatment, 

leaf tissue was harvested for RNA isolation. This time point was chosen because previous trials 

indicated that it is when wild type and tga mutants showed the greatest difference in PR-1 

expression (Shearer et al., 2012). Untransformed Col-0 plants possessed very low steady-state 

PR-1 mRNA 1 h after SA treatment (Figure 3.14a). However, substantially higher levels of 

transcript were detected in tga1-1 tga4-1 leaves, regardless of whether plants were treated with 

water or SA (Figure 3.14b). Plants overexpressing the TGA1 transgene possessed levels of PR-1 

intermediate between the wild type and tga1-1 tga4-1 mutant (Figure 3.14b). Although these 

results suggest that TGA1 may be able to partially rescue this aspect of the tga1-1 tga4-1 

phenotype, the large variation in PR-1 levels observed in the double mutant makes it difficult to 

reach any firm conclusions. 
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Figure 3.13 BTH-induced PR-1 gene expression in wild type and clade I TGA factor 

mutants. 
RNA was extracted from two-week-old seedlings grown on MS plates containing 75 mg/L 

BTH. The bars show the relative amount of steady-state transcript for the PR-1 gene in wild 

type and mutants normalized to the levels of the UBIQUITIN5 (UBQ5) gene. All values 

represent the average ± standard error of four biological samples, each analyzed twice 

(technical replicates).  
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Figure 3.14 SA-induced PR-1 gene expression in wild type, tga1-1 tga4-1 and 

TGA1OE/tga1x4 lines. 

Four-week-old leaves were sprayed with water or 1mM SA. Leaf tissues were collected for 

RNA isolation at 1h after treatment. Three plants were pooled as one biological replicate and 

three biological replicates per genotype were analyzed. Values were normalized to the 

expression of UBIQUITIN5. The error bars represent standard error. a) fine-scale 

representation of wild type data shown in b).  
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Furthermore, I examined the PR-1 expression levels in double mutant plants following 

pathogen challenge. The Fobert lab has previously reported that PR-1 transcript levels in the 

tga1-1 tga4-1 double mutant continues to accumulate at or above wild type levels following 

infection with virulent or avirulent P.s.t. DC3000 (Shearer et al., 2012). In this study, PR-1 

transcript levels were analyzed in leaves of Col-0 and the double mutant plants infiltrated with 

T3SS-deficient mutant P.s.t. hrcC
-
 and the non-host pathogen P.s.p. 1448a (Figure 3.15). At the 

early time points, the levels of PR-1 transcripts in the double mutant were comparable to those in 

wild type; however, the double mutant accumulated higher PR-1 at later time points (Figure 

3.15). Although they display enhanced susceptibility to these pathogens, the double mutant 

plants continued to accumulate higher pathogen-induced PR-1 transcripts, which usually 

correlate with disease resistance. These results suggest that clade I TGA factors do not contribute 

to disease resistance by increasing PR-1 expression. 

3.12 Defence-related gene expression is not impaired in the tga1-1 tga4-1 double mutant 

Pathogen challenge involves massive changes in plant gene expression (Eulgem, 2005). 

To investigate whether clade I TGA factors play a role in regulating genes other than PR-1 

during defence responses, transcript levels of some well-known defence-related markers were 

quantified in leaves of Col-0 and tga1-1 tga4-1 after challenge with P.s.t. hrcC
-
. Phenylalanine 

ammonia lyase 1 (PAL1; At2g37040) is a key enzyme of phenylpropanoid biosynthesis and is 

involved in lignification during cell wall fortifications at the inoculation site (Rohde et al., 2004). 

Its transcripts are rapidly upregulated by P. syringae hrp mutants, avirulent P.s.t., or non-host 

bacteria, but supressed by virulent P.s.t. bacteria (Mishina and Zeier, 2007a). FLG22-INDUCED 

RECEPTOR-LIKE KINASE 1 (FRK1; At2g19190) is a MAMP-induced marker gene (Asai et al., 

2002). NONHOST RESISTANCE 1 (NHO1; At1g80460) encodes a glycerol kinase, which is 

required for NHR against P.s.p. (Kang et al., 2003; Lu et al., 2001). PENETRATION2 (PEN2; 

At2g44490) encodes a glycosyl hydrolase that localizes to peroxisomes and acts as a component 

of preinvasion resistance mechanism (Lipka et al., 2005). As shown in Figure 3.16a, transcripts 

for all these marker genes were up-regulated 5 h after infiltration with P.s.t. hrcC
-
. However, 

levels of transcripts measured in leaves of the tga1-1 tga4-1 mutant following challenge with 

P.s.t. hrcC
- 
were comparable to those found in Col-0. In several instances, levels in the mutant 

were slightly higher than in Col-0, but in no case were levels reduced.  
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Figure 3.15 Pathogen-induced PR-1 gene expression in wild type and the tga1-1 tga4-1 

mutant. 
Four-week-old leaves were syringe-infiltrated with P.s.t. hrcC

-
 (1 x 10

8
 cfu ml

-1
) or P.s.p. 

1448a (1 x 10
8
 cfu ml

-1
). Values were normalized to the expression of UBIQUITIN5. The error 

bars represent standard error. a) and c) are short time-course experiments. b) and d) are long 

time-course experiments. These two time-course experiments were independently performed at 

different times.  
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Because pathogen-induced callose deposition was impaired in the tga1-1 tga4-1 mutant, I 

next examined whether this phenomenon was associated with reduced transcripts of callose 

synthase genes in the double mutant. There are 12 callose synthase genes in Arabidopsis (Verma 

and Hong, 2001). CALLOSE SYNTHASE 1 (CalS1; At1g05570) and CALLOSE SYNTHASE 12 

(CalS12; At4g03550) are highly induced by SA and pathogens (Dong et al., 2008). CalS12 (also 

known as POWDERY MILDEW RESISTANCE 4, PMR4) is required for callose deposition in 

response to fungal and bacterial pathogens (Jacobs et al., 2003; Kim et al., 2005; Nishimura et al., 

2003). As shown in Figure 3.16, transcripts of both CalS genes in the double mutant plants were 

similar to those in Col-0. 

3.13 Clade I TGA factors regulate NPR1-dependent and NPR1-independent genes 

Physical interaction between clade I TGA factors and NPR1 after SA treatment (Després 

et al., 2003) suggests that they may function together. However, the results obtained in the 

genetic studies presented above and by Shearer et al. (2012) also suggest that clade I TGA 

factors have NPR1-independent functions. To further understand the relationship between NPR1 

and clade I TGA factors in regulating gene expression, microarray analysis was performed on 

wild type, tga1-1 tga4-1 and npr1-3 mutants following SA treatment (Shearer et al., 2012). 

Consistent with other studies (Blanco et al., 2009; Pan et al., 2004; Wang et al., 2005), NPR1 

was found to regulate a large number of SA-induced genes (960) (Shearer et al., 2012). In 

contrast, only a small number of genes (93) were found to be differentially regulated in the tga1-

1 tga4-1 mutant (Shearer et al., 2012). Based on different expression patterns in npr1-3 and tga1-

1 tga4-1 mutants, these genes can be classified into three different groups. 

The biggest group contains genes (867) that are differentially regulated by npr1-3, but not 

tga1-1 tga4-1. Four representative genes from this group were selected and their expression 

patterns in the different mutants were validated by k-RT-PCR (Figure 3.17a). Some of these 

genes have been well studied. For example, WRKY70 (At3g56400) is a NPR1-dependent and 

SA-induced gene which play a role in SA-JA crosstalk during plant immunity (Li et al., 2004). 

NIMIN1 (At1g02450) encodes an NPR1-interacting protein that negatively regulates PR-1 gene 

expression and disease resistance against pathogens (Weigel et al., 2005). The gene expression of 

WRKY54 (At2g40750) has previously been shown to be regulated by NPR1 (Wang et al., 2006).  
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Figure 3.16 Defence-related gene expression in wild type and tga1-1 tga4-1 mutant plants. 

Four-week-old leaves were syringe-infiltrated with P.s.t. hrcC
-
 (1 x 10

8
 cfu ml

-1
) or P.s.p. 

1448a (1 x 10
8
 cfu ml

-1
). Values were normalized to the expression of UBIQUITIN5. All 

values represent the average ± standard error of three biological samples, each analyzed twice 

(technical replicates).  
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The second group is most interesting, because these genes (45) are differentially 

regulated in both npr1-3 and tga1-1 tga4-1, but in all cases, the direction of change was opposite 

in the two mutants. Four representative genes from this group validated by k-RT-PCR include 

the SA marker genes, PR-1, PR-2, PR-5 and a JA-responsive gene TAT3 (TYROSINE 

AMINOTRANSFERASE3; At2g24850) (Figure 3.17b). As shown in Figure 3.17b, these genes are 

up-regulated in tga1-1 tga4-1 relative to wild type and were only affected at the early time points 

(0 h and 1 h); by 8 h after the SA treatment, the expression levels in wild type and tga1-1 tga4-1 

were similar. However, the transcripts of these genes failed to be induced in the npr1-3 mutant 

through the entire time series (Figure 3.17b). 

The third group is the genes (48) are differentially regulated by tga1-1 tga4-1 but not in 

npr1-3. The representative genes in this group were also analyzed by k-RT-PCR (Figure 3.17c). 

These data confirmed the conclusion that clade I TGA factors regulated both NPR1-dependent 

and NPR1-independent genes. 

3.14 Clade I TGA factors are required for the extracellular accumulation of PR-1 

An important defence response against intercellular bacterial pathogens is the production 

of extracellular proteins and metabolites that reinforce cell walls or have antimicrobial activities 

(Kwon et al., 2008a). To study defence-related production of extracellular proteins in the tga1-1 

tga4-1 mutant, I monitored the accumulation of PR-1 in the apoplastic fluids following challenge 

with P.s.t. hrcC
- 

and P.s.t. DC3000 by immunoblotting (Figure 3.18a and b). PR-1 protein 

accumulated in the extracellular space of Col-0 leaves two days after pathogen inoculation. 

However, this extracellular accumulation was reduced in the double mutant, indicating that clade 

I TGA factors contribute to pathogen-induced PR-1 secretion. 

3.15 Clade I TGA factors are involved in ER secretion pathway 

The observations that loss of clade I TGA factors affected callose deposition and 

extracellular PR-1 accumulation (Figure 3.10 and 3.18), but not the steady-state levels of either 

callose synthase or PR-1 transcripts (Figure 3.15 and 3.16), suggested that the mutant may be 

compromised in some aspect of protein secretion. Examination of genes differentially expressed 

between leaves of Col-0 and tga1-1 tga4-1 treated with SA revealed an enrichment for gene   
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Figure 3.17 SA-induced gene expressions in wild type, npr1-3 and tga1-1 tga4-1. 

a) Genes differentially regulated by npr1-3 but not tga1-1 tga4-1; b) genes differentially 

regulated in both npr1-3 and tga1-1 tga4-1; c) genes differentially regulated by tga1-1 tga4-1 

but not npr1-3. Values were normalized to the expression of UBIQUITIN5 and represent the 

average of 3 biological replicates ± standard error. Depending on specific genes analyzed, 

analyses were repeated at least twice with similar results. 
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Figure 3.18 Western blot analysis of accumulation of extracellular PR-1 protein in wild 

type and tga1-1 tga4-1 plants after pathogen challenge. 
Four-week-old plant leaves were syringe-infiltrated with of P.s.t. hrcC

-
 (1 x 10

8
 cfu ml

-1
) (a), 

or P.s.t. DC3000 (1 x 10
6
 cfu ml

-1
) (b). Intercellular fluid (IF) was collected at day 1 and 2 post 

inoculation and separated on 15% SDS-PAGE gels. PR-1 protein (16 kDa) was detected with 

PR-1 antisera kindly provided by Dr. Darrell Desveaux (unpublished). These experiments were 

repeated three times with similar results. Additionally, similar results were obtained with a 

different PR-1 antiserum, described in (Kliebenstein et al., 1999).  
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ontology classifications related to the ER, other membranes, extracellular, and protein binding 

(Shearer et al., 2012). Of note, eight genes known to be involved in ER quality control were 

impaired in tga1-1 tga4-1 (Shearer et al., 2012; Table 3.1). In all cases, transcript levels of these 

genes in the double mutant were higher than those in Col-0 prior to SA treatment or shortly 

thereafter (1 h), and by 8 h post-treatment, expression levels were similar to or slightly lower 

than those in Col-0 (Table 3.1). Among this group of genes, seven were also regulated by NPR1, 

which has been shown to regulate ER-related gene expression during plant defence (Shearer et 

al., 2012; Wang et al., 2005; Table 3.1). However, in all cases, the direction of change in tga1-1 

tga4-1 and npr1-3 mutants is always opposite, while expression following treatment of npr1-1 

with dexamethasone, which resulted in nuclear localization of a NPR1-glutacorticoid receptor 

transgene, paralleled that in the tga1-1 tga4-1 mutant. 

However, as summarized in the Table 3.1, the larger number of NPR1-dependent genes 

(29) identified by microarray analysis suggests that other transcription factors may work with 

NPR1 (Table 3.1). There are three ER membrane-associated bZIP transcription factors, bZIP17, 

bZIP28, and bZIP60, which are responsible for transcriptional upregulation of these ER-related 

genes during ER stress (Iwata et al., 2008; Liu et al., 2007b; Liu et al., 2007c; Liu and Howell, 

2010a). Through comparision between four microarray datasets, NPR1-dependent genes largely 

overlap with the genes dependent on bZIP28 (12 out of 15) or bZIP60 (14 out of 16) (Table 3.1). 

In addition, seven out of eight TGA1/4-dependent genes are also regulated by bZIP28 or bZIP60, 

although, once again, the direction of change is opposite (Table 3.1). Taken together, these 

comparisions suggest that clade I TGA factors and NPR1 may play a role in response to ER 

stress by regulating ER-related gene expression, although with opposing effects. 

To further explore the possible role of clade I TGA factors in ER stress, the seeds of Col-

0 and the tga1-1 tga4-1 double mutant were germinated on MS plates containing different 

concentrations of tunicamycin (TM), an inhibititor of asparagine N-linked glycosylation that can 

trigger ER stress (Liu and Howell, 2010b). Five days after treatment, seedlings were transferred 

to TM-free MS plates for 10 days. In the seedlings transferred from MS without TM, there were 

no differences in growth between wild type and the double mutant, indicating that seedling 

growth is normal in the double mutant (Figure 3.19a). However, seedlings transferred from 

different concentrations of TM displayed substantial differences between genotypes, with double   
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Table 3.1 Comparisons among microarray datasets of ER-related gene expression in 

different mutants 

  

  
Shearer et al., 2012 Wang et al., 2005 

Liu and 
Howell, 

2010a 

Iwata et al., 2008 

Microarray 
method 

Plant 

material 
Four-week-old rosette leaves Four-week-old rosette leaves 

1-week-old 

seedlings 

10-day-old 

seedlings 

Treatment 

Spray with 1mM SA, and harvest at 0h, 1h, and 8h 
after treatment 

Spray with 0.5mM SA for 
24h, followed by 5µM Chx 

for 2h, and then 5µM Dex 

for 8h 

Treated with 
5µg ml-1 TM 

or DMSO 

(mock) for 2h 

Treated with or 
without 5 µg ml-1 

TM for 5h  

Microarray 

Affymetrix Arabidopsis gene chips (ATH1) Affymetrix ATH1 Affymetrix 

ATH1 

Arabidospsis 2 

oligo Microarrays 
(Agilent 

Technologies) 

Genotype tga1-1tga4-1/Wt  npr1-3/Wt  NPR1-GR/npr1-3  Wt/bzip28 Wt/bzip60  

AGI ID 
gene 

description 
0h 1h 8h P-value 0h 1h 8h P-value 

R1  

F.C 
 P-value 

R2  

F.C 
P-value 

D.o

.D 
P-value FI/FI P-value 

Chaperones/Co-
chaperones 

                                

At5g28540

/ 

At5g42020 

Bip1/Bip2; 

ATP 

binding  

1.4 2.8 0.8 7.3E-03 0.9 1.0 0.2 8.6E-04 3.2 7.0E-06 2.5 0         

At1g09080 
Bip3; ATP 

binding  
3.3 4.3 1.0 6.2E-02 1.1 1.0 0.1 6.8E-04   

 

    8.9 0.07 4.6 0.008 

At4g24190 

SHD 

(SHEPHER
D)/ GRP94 

1.7 2.0 0.9 2.0E-02 0.9 0.8 0.2 4.1E-05 7.5 0 2.3 0 4.5 0.03 1.5 0.002 

At3g62600 ERdj3B 1.6 2.4 0.9 1.0E-02                 2.3 0.00     

At3g08970 ERdj3A          0.9 0.9 0.1 2.0E-07             1.5 0.004 

At4g21180  ERdj2B         1.1 1.1 0.3 5.1E-03             1.5 0.024 

At2g25110 SDF2 1.3 2.1 0.9 3.5E-03         2.4 4.0E-03 2.1 4.0E-03 2.7 0.06     

At4g16660 

heat shock 

protein 70 
(HSP70) 

1.6 2.1 0.8 8.4E-03 0.8 1.0 0.3 6.3E-05         1.7 0.08 1.4 0.039 

Disulfide bond 
formation (PDI) 

                                

At1g21750 
PDI-LIKE 

1-1 
        1.0 1.0 0.2 5.1E-06 3.6 5.0E-03 2.1 5.0E-03 1.6 0.03 1.4 0.021 

At1g77510 
PDI-LIKE 

1-2 
1.8 4.5 0.8 3.7E-03 0.8 1.1 0.1 2.5E-07             1.5 0.007 

At3g54960 
PDI-LIKE 
1-3 

        0.6 0.7 0.1 1.3E-02 1.6 8.0E-04 3.0 1.0E-06     1.8 0.012 

At2g47470 PDI         1.0 1.0 0.3 1.0E-04 3.2 3.1E-05 2.0 1.0E-06 1.3 0.01 1.2 0.022 

At1g04980 
PDI-LIKE 
2-2 

        0.8 1.3 0.2 1.7E-05   

 

    1.0 0.06     

At2g32920 
PDI, 

putative  
        0.9 1.1 0.5 3.6E-03             2.2 0.018 

At1g72280  

ER oxido-

reductin 
(ERO1)  

                            2.1 0.001 

N-glycosylation 
       

  
 

  
 

  
 

  
 

  

At1g32210 DAD1         1.0 1.0 0.4 1.9E-04 3.0 
1.0E-06 

2.0 0         

At1g56340  
Calreticulin

1 (CRT1) 
        1.1 1.3 0.4 3.0E-05             1.4 0.037 

At1g09210 
Calreticulin

2 (CRT2) 
        1.1 1.2 0.3 2.0E-04 4.3 1.0E-06 3.1 0     1.2 0.006 
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Table 3.1 continued 

At1g08450 
Calreticulin
3 (CRT3) 

                4.0 0 2.3 0         

At5g61790 
Calnexin 1 

(CNX1)  
1.5 2.2 0.8 1.4E-03 0.9 1.1 0.3 7.6E-05 6.1 4.3E-05 2.6 0 3.6 0.03     

At5g07340 
Calnexin 2 
(CNX2) 

        1.0 1.0 0.4 2.2E-03 1.4 
5.0E-06 

2.1 1.2E-05 1.5 0.09 1.1 0.032 

Translocation                                 

At2g34250 
Sec61α 

subunit 
        1.0 1.0 0.4 2.9E-03 2.1 5.4E-05 1.5 0         

At2g45070 
Sec61β 

subunit 
                1.4 4.0E-02 1.3 1.0E-02         

Secretion pathway 
       

  
 

  
 

  
 

  
 

  

At2g45770 

Signal 

recognition 
particle 

receptor 

                4.9 3.1E-05 6.1 0         

At2g01720 
Ribophorin 

I 
                3.7 8.0E-06 1.5 1.0E-06         

At4g22670 
Tetratrico-

redoxin 
        0.9 0.9 0.3 2.3E-04 3.2 0 1.9 0         

At2g47320 Cyclophilin                 4.0 2.0E-06 1.4 7.9E-05         

At1g10730 

Clathrin-

coat 

assembly 
protein 

                3.7 5.8E-02 2.0 4.7E-05         

At1g14010 

Trans-

membrane 
trafficking 

protein 

                4.3 2.2E-04 2.0 1.0E-06         

At1g30900 
Vacuolar 
sorting 

receptor 

        0.5 0.4 0.0 1.8E-02 7.0 1.0E-05 3.5 0         

At2g03120 

signal 

peptide 
peptidase 

family 

protein 

        1.0 1.0 0.4 4.5E-04 2.4 2.0E-02 1.8 2.0E-02 1.5 0.08 1.3 0.032 

At3g07680 

emp24/ 

gp25L/p24 

family 
protein 

        0.9 0.9 0.4 5.4E-03         1.2 0.06     

others   
       

  
   

  
 

  
 

  

At4g29520 
unknown 

protein 
        0.8 1.5 0.2 6.2E-03         2.0 0.05     

At1g61780 

Post-

synaptic 
protein-

related 

                        1.1 0.10     

At5g35630 GS2                         1.0 0.01     

At3g51980  
SIL1, 
putative 

                            1.6 0.035 

SDF2 (STROMAL CELL-DERIVED FACTOR 2-LIKE PROTEIN PRECURSOR); GS2 (GLUTAMINE SYNTHETASE 2); 

glutamate-ammonia ligase; F.C. Fold Change; D.o.D. difference of differences  means that the difference in TM-treated versus 

untreated wild type less the difference in TM-treated versus untreated zip28-2 mutnat; FI/FI fold induction of wild type/fold 

induction of bzip60 mutant 
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mutant seedlings being more sensitive to growth inhibition by TM than Col-0. Most Col-0 

seedlings recovered from TM treatment after transplanting, whereas most tga1-1 tga4-1 mutant 

seedlings did not (Figure 3.19a). In addition, increasing the TM concentration resulted in fewer 

seedlings being recovered, indicating that growth inhibition is determined by TM. At the highest 

TM concentration tested (0.7 µg ml
-1

), none of the double mutant seedlings recovered from TM 

inhibition (Figure 3.19a). These results further implicate clade I TGA factors in the proper 

functioning of the ER secretion pathway. 

To examine whether NPR1 is involved in TM-induced ER stress, the npr1-1 single and 

tga1-1 tga4-1 npr1-1 triple mutant were added to the anlaysis. In addition, to confirm the results 

in Figure 3.19a, two TGA1 overexpression lines were also analyzed. To do quantitative 

comparisons between different genotypes, different TM assays were employed. Five-day-old 

seedlings grown on TM-free solid MS medium were submerged in MS liquid with or without 0.8 

µg ml
-1

 TM for 6 h, and were allowed to recover for 5 days in the absence of TM. The fresh 

weight of TM-treated seedlings were measured and normalized by the fresh weight of untreated 

seedlings. 

Compared to the untreated seedlings, fresh weight of wild type was reduced by 30% after 

TM treatment, indicating that TM efficiently inhibited the seedling growth in this assay (Figure 

3.19b and c). In addition, the reduction of fresh weight in tga1-1 tga4-1 (60% of non-treated) 

was statitistically siginificant, compared with that in wild type. However, two TGA1OE/tga1x4 

lines displayed similar fresh weight reductions to wild type. These results confirm the above 

conclusion that clade I TGA factors are involved in the ER secretion pathway. 

The seedling growth of npr1-1 is also inhibited by TM and the TM sensitivity in npr1-1 

is similar to that in the tga1-1 tga4-1 (Figure 3.19b and c). The combination of npr1-1 and tga1-

1tga4-1 did not increase sensitivity to TM, suggesting that clade I TGA factors and NPR1 

function in the same pathway during TM-induced ER stress. 

3.16 The tga1-1 tga4-1 double mutant is more susceptible to Colletotrichum higginsianum 

Clade I TGA factors have been shown to positively contribute to disease resistance 

against the bacterial pathogen P. syringae (see sections 3.3-3.15; Shearer et al., 2012) and the   
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Figure 3.19 Seedlings of the tga1-1 tga4-1 mutant are hypersensitive to tunicamycin. 
a) Five-day-old seedlings of wild type (Col-0) and the tga1-1 tga4-1 double mutant grown on 

MS with different TM concentration were transplanted to TM-free MS agar and grown for a 

further 5 days prior to photography. This experiment was repeated three times with similar 

results. b) Five-day-old seedlings of Col-0, tga1-1 tga4-1, npr1, tga1-1 tga4-1 npr1-1 and two 

TGA1OE/tga1x4 lines grown on TM-free MS were submerged in MS liquid with or without 

0.8 µg ml
-1

 TM for 6 h, and were allowed to recover for 5 days without TM. c) Fresh weight of 

seedlings in b) was quantified. Each fresh weight of TM-treated seedlings was divided by the 

average fresh weight of 5 untreated seedlings to generate percentage of control. The results are 

averages +/- standard error (n=5) An ANOVA of data was performed at α = 0.05; treatments 

with common letters over the error bars are not significantly different from each other. This 

experiment was repeated twice with similar results.  
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obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Shearer et al., 2012). 

However, little is known on the involvement of clade I TGA factors in disease resistance against 

other pathogens, such as fungi. To address this question, hemibiotrophic fungal pathogen 

Colletotrichum higginsianum was inoculated onto tga1-1 tga4-1 and Col-0 leaves. C. 

higginsianum induced larger lesions on the double mutant plants compared to Col-0 (Figure 

3.20b and c). Microscopic examination revealed that the fungal development in the double 

mutant leaves was faster than wild type (Figure.3.20a). These data indicate that clade I TGA 

factors function in basal resistance responses against this fungal pathogen. 

To determine the contribution of each member of clade I TGA factors to disease 

resistance against C. higginsianum, single mutants of clade I TGA factors were inoculated by 

droplet of conidial suspension. The infection lesion sizes in tga4-1 and tga4-2 mutants are 

statistically similar to that in wild type (Figure 3.21a). However, tga1-1 and tga1-3 displayed 

enhanced susceptibility to C. higginsianum (Figure 3.21). In addition, the level of disease 

susceptibility in tga1-1 is the same as that in the double mutant (Figure 3.21a), suggesting that 

the increased susceptibility observed in the double mutant is primarily caused by mutation in 

TGA1. These results suggest that TGA1 may be more important than TGA4 for disease 

resistance against C. higginsianum. 

Arabidopsis accessions display variation in their susceptibility to C. higginsianum 

(Narusaka et al., 2004; O'Connell et al., 2004). As shown in Figure 3.21b, Nössen plants are 

more resistance than Col-0 to C. higginsianum. In addition, npr1-5 is more susceptible than wild 

type Nössen plants and reaches the susceptible level of Col-0 (Figure 3.21b), suggesting that 

NPR1 is important for disease resistance in Nössen background. 

3.17 The tga1-1 tga4-1 mutant displays morphological and developmental abnormalities 

In addition to the important roles in the defence responses, clade I TGA factors are also 

involved in developmental processes, such as leaf curling and late flowering. Leaves of tga1-1 

tga4-1 double mutant displayed right-handed petiole torsions (Figure 3.22a). Neither single 

mutant had this phenotype, suggesting that TGA1 and TGA4 function redundantly to regulate 

this phenotype (Figure 3.22a). In addition, although the curly leaves were not observed in the  
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Figure 3.20 The tga1-1 tga4-1 double mutant plants show enhanced disease susceptibility 

to C. higginsianum. 

a) Microscopic examination of fungal development in wild type (Col-0) and tga1-1 tga4-1 

double mutant plants. Four-week-old leaves were sprayed with C. higginsianum conidial 

suspension (1 x 10
6
 spores ml

-1
) and stained with trypan blue at 3 dpi. b) Representative 

disease symptoms. Leaves either sprayed with C. higginsianum conidial suspension (upper 

panel), or spotted with 5 µl droplets of conidial suspension (lower panel) were photographed at 

4 dpi. c) Lesion size in spot-inoculated leaves. The lesion size was measured from 20 to 30 

independent leaves per genotypes at 4 dpi. An asterisk indicates a statistically significant 

difference compared with Col-0 (p<0.05, Student‟s t-test). This is one of three independent 

experiments with similar results. Error bars indicate standard error.  
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Figure 3.21 Lesion size in leaves spot-inoculated with C. higginsianum. 

Four-week-old leaves were spotted with 5 µl droplets of a C. higginsianum conidial suspension 

(1 x 10
6
 spores ml

-1
). The lesion size was measured from 20 to 30 independent leaves per 

genotypes at 4 dpi. An ANOVA of data was performed at α = 0.05; treatments with common 

letters over the error bars are not significantly different from each other. This is one of two 

independent experiments with similar results. Error bars indicate standard error.  
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npr1-1 mutant plants, the tga1-1 tga4-1 npr1-1 triple mutant plants displayed the phenotype 

(Figure 3.22a). 

To quantitatively measure flowering time, at least 24 plants per genotype were grown 

under long day (LD, 16 h light and 8 h dark) growth conditions. The total leaf number and the 

day number at bolting were recorded. As shown in Figure 3.22d and e, Col-0 plants have on 

average 16 leaves and are 25 days-old when their primary inflorescence apex is first visible. This 

result is similar to most published results on flowering time of Col-0 under LD conditions 

(Koornneef et al., 1991), indicating that plant growth was not under environmental stress which 

alters the flowering time. Compared to Col-0, the tga1-1 tga4-1 double mutant plants flowered 

later (Figure 3.22d and e). The late flowering phenotype was also observed in tga1-1 single 

mutant, but not in tga4-1 single mutant plants when the primary inflorescence apex appeared. 

The leaf number and day number required for tga1-1 to flower is significantly higher than Col-0, 

but similar to the double mutant, suggesting that the late flowering phenotype observed in the 

double mutant is primarily caused by mutation in TGA1.At a late stage (6 weeks old) after 

bolting, both single mutant plants are similar to Col-0, while the double mutant displayed shorter 

primary inflorescence stems and fewer secondary inflorescences (Figure 3.22b). This suggests 

that TGA1 and TGA4 are both involved in controlling development at this stage and function 

redundantly. 

Although SA signaling has been shown to be involved in regulating flowering (Martínez 

et al., 2004), the role of NPR1 has not been reported yet. As shown in Figure 3.22d and e, the 

npr1-1 mutant displayed an early flowering phenotype. However, the tga1-1 tga4-1 npr1-1 triple 

mutant plants are similar to the tga1-1 tga4-1 double mutant in flowering late (Figure 3.22d and 

e). Furthermore, like the double mutant, the triple mutant plants have shorter primary 

inflorescence stems fewer secondary inflorescences at late stage after bolting (Figure 3.22c). 
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Figure 3.22 Morphological and developmental phenotypes of wild type and clade I TGA 

mutants. 

All plants were grown under long day (16 h light/8 h dark) conditions. Photographs were taken 

at 3 weeks (a) and 6 weeks (b and c) after germination. d) and e) An ANOVA of data was 

performed at α = 0.05; treatments with common letters over the error bars are not significantly 

different from each other. The total leaf number (blue bar) and day number (red bar) at bolting 

were counted. Values represent the means ± standard errors. A representative experiment of 

four independent repeats with n=24 each is shown. 
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CHAPTER 4 DISCUSSION 

4.1 The role of clade I TGA factors in response against the bacterial pathogen P. syringae 

Large-scale transcriptional reprogramming is an important aspect of plant defence in 

response to pathogen infection. The regulation of the defence transcriptome requires members of 

several groups of transcription factors, such as WRKY, ERF, TGA, Whirly and Myb factors 

(Eulgem, 2005; Fobert, 2007). The Arabidopsis TGA factors have been shown to regulate the 

expression of PR genes and are required for resistance to disease. In the present study, the 

biological functions of clade I TGA factors during plant immune response were investigated in 

depth. 

Disease-testing results on additional mutant alleles and overexpression lines (Figure 3.5) 

confirmed previous findings (Kesarwani et al., 2007; Lindermayr et al., 2010; Shearer et al., 

2012) that clade I TGA factors positively contribute to basal resistance against virulent isolates 

of the bacterial pathogen P. syringae. According to the “zig-zag, zig” model, basal resistance has 

been described as “MTI plus weak ETI, minus ETS”. MAMP-induced defence responses are 

suppressed by virulence effectors, meanwhile other effectors are recognized by R proteins to 

trigger ETI defences (Jones and Dangl, 2006). Accordingly, compatible interactions involving 

virulent pathogens, wherein plant defence responses are suppressed, may not be the most 

appropriate to study the contribution of clade I TGA factors to disease resistance. This prompted 

me to investigate the role of these transcription factors towards different immune responses. 

Transcripts of clade I TGA factors accumulate to higher levels after treatment with the 

MAMP flg22 or inoculation with P.s.t. hrcC
-
 that cannot transfer T3SE to the plant cytoplasm 

(Figure 3.1d and e), suggesting that clade I TGA factors may play a role in MTI. This notion is 

supported by disease-testing results that the tga1-1 tga4-1 double mutant was compromised in 

resistance against P.s.t. hrcC
-
 (Figure 3.6). The involvement of clade I TGA factors in MTI is 

also supported by the results that the tga1-1 tga4-1 double mutant was impaired in two responses, 

callose deposition and the ROS burst, following treatment with a purified MAMP (Figure 3.9 

and 3.10). 
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The requirement of clade I TGA factors for another type of immunity, ETI, was also 

examined in this study. The tga1-1 tga4-1 double mutant was found to be defective in ETI-

mediated resistance against the avirulent pathogen P.s.t. AvrRpt2 (Figure 3.8). Furthermore, P.s.t. 

AvrRpt2 inoculation induced high transcript levels of clade I TGA in the Col-0 plants (Figure 

3.1c). The involvement of clade I TGA factors in ETI is also supported by findings that enhanced 

resistance triggered by constitutive activation of SNC1, an NB-LRR-type of R protein, is 

compromised in the tga1-1 tga4-1 snc1 npr1-1 quadruple mutant (Shearer et al., 2012). Together, 

these results indicate that clade I TGA factors act as positive regulators of ETI. 

Since clade I TGA factors are involved in both types of immunity (MTI and ETI), I 

further asked whether clade I TGA factors contribute to NHR which requires MTI and ETI at the 

same time (Mysore and Ryu, 2004). Non-host resistance against P.s.p. is compromised in the 

tga1-1 tga4-1 double mutant (Figure 3.7). Furthermore, not only the MAMP-induced small 

callose, but also the effector-induced big callose was reduced in the double mutant, suggesting 

that clade I TGA factors are involved in both MTI and ETI during the interaction with P.s.p 

(Figure 3.9b). 

The enhanced disease susceptibility (EDS) phenotype observed in the double mutant 

(Figure 3.5) suggests that TGA1/4-dependent immune response was not completely eliminated 

following challenge with virulent P.s.m., but attenuated by virulence effectors. Compared to the 

fold induction after P.s.t. hrcC
-
 inoculation, the fold induction of clade I TGA factors is 

relatively small after P.s.t. DC3000 inoculation (Figure 3.1b and e), suggesting that effectors 

may suppress the function of clade I TGA factors at the transcriptional level. In addition, 

virulence effectors may also interrupt clade I TGA factors at the posttranscriptional level or the 

signaling pathway acting downstream of these transcription factors. However, if and how 

effectors suppress TGA1/4-dependent immunity remains to be determined. 

Taken together, the broad TGA1/4-dependent disease resistance suggests that clade I 

TGA factors may regulate a universal and basal mechanism to control disease resistance. 

Although a growing number of studies suggest that MTI and ETI share common signaling 

pathways and defence responses (Dodds and Rathjen, 2010; Thomma et al., 2011), less is known 

on the common regulators of both types of immunity. It has been recently proposed that  MTI 
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and ETI should be considered as opposite ends of a continuum in which plant immune receptors 

recognize appropriate ligands to activate defence responses, the amplitude of which is likely 

determined by the level required for effective immunity (Thomma et al., 2011). Despite this 

possibility, MTI and ETI show differential requirements for other known regulators of plant 

defence responses, including NPR1 (Delaney et al., 1995; Shah et al., 1997; van Wees and 

Glazebrook, 2003; Zipfel et al., 2004). My results suggest that clade I TGA factors are common 

regulators which contribute to both MTI and ETI. 

4.2 Clade I TGA factors regulate multiple defence signaling pathways 

Plant defence in response to pathogen challenge is regulated through a complex network 

of signaling pathways involving plant hormones, such as SA, JA, and ET (Broekaert et al., 2006; 

Browse, 2009; Vlot et al., 2009). Many lines of evidence suggest that clade I TGA factors are 

involved in the SA signaling pathway, which plays an important role in disease resistance against 

virulent P. syringae. The involvement of clade I TGA factors in SA-meditated signaling was 

originally based on two lines of evidence: their ability to bind to the SA-, JA-, and auxin-

inducible as-1 DNA element (Fromm et al., 1989; Katagiri et al., 1989), and interaction with 

NPR1 upon SA-induced redox changes (Després et al., 2003). The observation that transcript 

levels of clade I TGA factors increased following SA treatment (Figure 3.1a) further suggests 

that clade I TGA factors may play a role in SA signaling. The most convincing evidence for a 

role of clade I TGA factors in SA-dependent defence comes from reverse genetic studies 

revealing that mutant plants of clade I TGA factors are impaired in resistance against virulent P. 

syringae (Kesarwani et al., 2007; Lindermayr et al., 2010; Shearer et al., 2012; Figure 3.5). 

However, the contribution of clade I TGA factors to SA signaling is limited, because they 

are not required for SA-dependent SAR against virulent pathogen P.s.m. ES4326 (Shearer et al., 

2012). Microarray analysis further demonstrated that clade I TGA factors are not major 

regulators for SA-induced genes expression (Shearer et al., 2012). Compared to hundreds of 

genes controlled by NPR1 (Shearer et al., 2012; Wang et al., 2006), relatively few genes are 

regulated by clade I TGA factors after treatment with SA. Moreover, most genes differentially 

expressed between Col-0 and the tga1-1 tga4-1 double mutant only appeared at early time points 

after SA treatment (Shearer et al., 2012; Figure 3.17). Those genes, including SA-marker gene 
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PR-1, were up-regulated in tga1-1 tga4-1 at 0 h and 1 h, and by 8 h after SA treatment, the 

expression levels were similar to those in Col-0. These results indicate that clade I TGA factors 

may act as repressors of SA-responsive gene expression in the absence of elicitation. The 

repressive action of clade I TGA factors on SA-inducible genes is minor and gradually 

disappears. It is possible that upon stress stimulation, either TGA1/4 (Després et al., 2003; 

Lindermayr et al., 2010) and/or NPR1 (Mou et al., 2003; Spoel et al., 2009) undergo redox-

mediated posttranslational modifications to facilitate TGA1/4-NPR1 interaction , relieving 

transcriptional repression of TGA1/4. 

No well-known SA-inducible gene was downregulated in tga1-1 tga4-1 at the 8 h after 

SA treatment, suggesting that clade I TGA1 factors are not important activators of SA-regulated 

gene expression. This function appears to be attributed to other transcription (co)factors, such as 

NPR1, TGA2, and WRKY (Eulgem, 2005; Fobert, 2007).  

Disease-testing results also suggest that clade I TGA factors may regulate defence 

responses other than those mediated by the SA signaling pathway. Although continuing to 

express SA pathway marker genes at or above wild type levels following challenge with different 

types of pathogen (Shearer et al., 2012; Figure 3.15), the tga1-1 tga4-1 double mutant is more 

susceptible to the corresponding pathogens than Col-0 plants (Shearer et al., 2012; Figure 3.5, 

3.6 and 3.7). In addition, NHR against P.s.p. relies on multiple defence-signaling pathways, such 

as SA-induced PR-1 protein accumulation and morphologically distinct types of callose 

deposition (Ham et al., 2007). Disrupting the SA signaling pathway with mutations does not 

affect callose deposition and is not enough to compromise NHR against P.s.p. (Ham et al., 2007; 

van Wees and Glazebrook, 2003; Figure 3.7b). However, loss of function in the clade I TGA 

factors caused defects in callose deposition and compromised NHR against P.s.p. (Figure 3.7 and 

3.9b), indicating that clade I TGA factors contribute to additional defence pathways during the 

plant immune response. 

Although SA-dependent signaling is a major pathway for disease resistance against 

virulent P. syringae, other signaling pathways, such as JA/ET-mediated signaling have been 

reported to be important (Robert-Seilaniantz et al., 2007; Robert-Seilaniantz et al., 2011). My 

prelimimary results suggest that levels of JA/ET mediated markers such as PDF1.2, VSP and 
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LOX2 continue to be expressed at levels comparable or higher than wild type in the tga1-1 tga4-

1 double mutant (Wang, Chatur and Fobert, unpublished result). Considering the elevated PR-1 

expression in the double mutant after pathogen challenge (Figure 3.15), clade I TGA factors may 

be involved in SA-JA/ET crosstalk during immunity. Of note, clade II TGA factors have been 

also shown to be involved in SA-JA/ET crosstalk (Ndamukong et al., 2007). 

Signal transduction events downstream of pathogen recognition rely heavily on mitogen 

activated kinases (MAPK) (Asai et al., 2002). Accordingly, transcript levels of some representive 

markers for these pathways were quantified in Col-0 and tga1-1 tga4-1 after challenge with P.s.t. 

hrcC
-
 (Figure 3.16). Although the expression of these genes was not affected in the double 

mutant following a short time course (24 h), some genes were expressed differentially in the 

double mutant and wild type following longer exposures (2 dpi and 3 dpi). For example, the 

MAPK signaling pathway marker FRK1 is induced early and levels of its transcripts decrease at 

later times after pathogen challenge (Asai et al., 2002). However, FRK1 expression remained 

high in the double mutant at 3 day after P.s.t. hrcC
-
 challenge (Wang, Chatur and Fobert, 

unpublished result). Furthermore, microarray data also show that FRK1 was upregulated in the 

seedling of the double mutant (Wang and Fobert, unpublished result). These results demonstrate 

that clade I TGA factors may play a role in regulating genes implicated in the MAPK signaling 

pathway. As was the case with markers for the SA and JA/ET pathways, clade I TGA appear to 

be negative regulators of gene expression for MAPK markers. 

4.3 Clade I TGA factors are involved in cell wall-associated defence responses 

Cell wall associated defences are critical for disease resistance against bacterial 

pathogens. Impairment of pathogen-induced callose deposition and oxidative burst in the tga1-1 

tga4-1 double mutant (Figure 3.9 and 3.10), indicate that clade I TGA factors also contribute to 

cell wall associated defence responses. 

Moreover, clade I TGA factors are involved not only in MTI-type small callose 

deposition induced by P.s.t. hrcC
-
, flg22 or MAMPs of P.s.p., but also in ETI-type big callose 

deposition induced by T3SEs of P.s.p. (Figure 3.9). This suggests that these two different types 

of callose deposition rely to some extent on common signaling pathways which require clade I 
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TGA factors. To date, only mutation of the callose synthase gene, CalS12/PMR4, has been 

shown to affect all of the above types of callose deposition (Ham et al., 2007; Kim et al., 2005). 

Therefore, we asked whether the contribution of clade I TGA factors to pathogen-induced callose 

deposition is due to their transcriptional regulation of the callose synthase genes. However, 

pathogen-induced gene expression level of CalS12 and another callose synthase gene, CalS1, in 

the double mutant are similar to those in the Col-0 (Figure 3.16), suggesting that the pathogen-

induced callose synthase gene expression does not require clade I TGA factors. Interestingly, 

despite loss of pathogen-induced callose deposition, the pmr4 mutant, impaired in CalS12, still 

retained NHR against P.s.p. (Ham et al., 2007). Considering the requirement of clade I TGA 

factors for NHR against P.s.p., we further speculated that clade I TGA factors may regulate other 

cell wall defence responses in addition to callose deposition to account for loss of resistance. 

4.4 Clade I TGA factors play a role in the defence-related secretory pathway 

The observation that loss of clade I TGA factors affected cell wall defence responses and 

disease resistance against pathogens, but not the steady-state levels of either callose synthase or 

PR-1 transcripts, suggested that the mutant may be compromised in some aspect of 

posttranscriptional regulation required for plant immunity. The success of cell wall-associated 

defence is dependent on effective secretion processes. Disrupting the secretion pathway results in 

seriously reduced extracellular accumulation of PR-1 protein (Kalde et al., 2007; Wang et al., 

2005). Callose deposition in the papillae is delayed in mutant plants defective in vesicle-

associated secretion processes (Kwon et al., 2008b), implicating callose precursors and/or the 

callose synthase protein as one potential defence component delivered to infection sites by the 

vesicle-related secretion pathway. 

Therefore, we tracked the extracellular accumulation of PR-1 protein in the double 

mutant after pathogen challenge. Less extracellular PR-1 protein was detected in the double 

mutant, compared to that in Col-0 (Figure 3.18), consistent with the existence of an abnormal 

secretion pathway in the double mutant affecting the secretion of defence-related proteins 

following pathogen challenge. In addition, since MTI and NHR rely on multiple defence 

pathways, I speculated that a TGA1/4-dependent secretion pathway may also regulate the 

secretion of defence-related proteins other than PR1, such as callose synthase proteins and the 
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enzymes responsible for apoplastic ROS production. This would account for the observed 

defects of multiple cell wall-associated defence responses in the double mutant plants, including 

PR-1 protein accumulation, callose deposition and the ROS burst. 

Microarray analysis has revealed that clade I TGA factors may regulate ER-related gene 

expression after SA treatment (Shearer et al., 2012; Table 3.1). These ER-related genes are 

upregulated under ER stress and contain conservered cis-elements in their promoters, called ER 

stress-response elements (ERSEs) (Yoshida et al., 1998). One of the ERSEs is UPRE, 

corresponding to TGACGGTGG, which contains a TGA binding motif, suggesting that clade I 

TGA factors may bind on this element to directly regulate the expression of these genes. The 

involvement of clade I TGA factors in response to ER stress is also supported by the result that 

tga1-1 tga4-1 seedlings are more sensitive to TM treatment than Col-0 (Figure 3.19). Although 

experiments have shown that the motif TGACG is sufficient for TGA factor binding in vitro 

(Lam et al., 1989), it is necessary to  prove the binding ability of clade I TGA factors to ERSEs 

in promoters of these genes in vitro by EMSA (electrophoretic mobility shift assay) or in vivo by 

ChIP (chromatin immunoprecipitation) (Després and Fobert, 2006). 

In Arabidopsis, three bZIP membrane-bound transcription factors (bZIP17, bZIP28 and 

bZIP 60) have been identified that regulate gene expression in response to ER stress (Liu and 

Howell, 2010b). Under ER stress, these ER membrane-located transcription factors are activated 

and translocated into the nucleus where they activate gene expression (Liu and Howell, 2010b). 

Comparisions of microarray data demonstrate that many TGA1/4-dependent genes are also 

regulated by bZIP28 or bZIP60 (Table 3.1). Clade I TGA factors do not have a transmembrane 

domain and haven‟t been shown to locate on ER membranes (Stonehouse, 2002). Therefore, it is 

speculated that clade I TGA factors may interact with these transcription factors to form 

heterodimers to activate gene expression together during ER stress. However, this idea is 

speculative and needs to be tested. 

NPR1 is another potential candidate which co-regulates ER-related gene expression with 

clade I TGA factors. Microarray analysis (Shearer et al., 2012; Wang et al., 2005) and the 

hypersensitivity of the npr1-1 mutant to TM (Figure 3.19) indicate that NPR1 also plays a role in 

the response to ER stress. Furthermore, tga1-1 tga4-1 npr1-1 triple mutant seedlings displayed 
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the same sensitivity level as either the tga1-1 tga4-1 double mutant or the npr1-1 single mutant 

(Figure 3.19b), suggesting that clade I TGA factors and NPR1 function in the same pathway 

during TM-induced ER stress. Microarray data also revealed that many ER-related genes are 

regulated by both clade I TGA factors and NPR1, although in all cases, the direction of change 

was opposite in the two mutants (Shearer et al., 2012; Table 3.1). If this is in the case, several 

questions need to be addressed. For example, cytosolic NPR1 is translocated into the nucleus 

upon pathogen infection or SA treatment (Mou et al., 2003; Spoel et al., 2009). Can this 

translocation occur under ER stress conditions, such as TM treatment? The interaction between 

NPR1 and TGA1/4 is mediated by SA-induced redox changes (Després et al., 2003). Can this 

interaction occur under ER stress conditions? It is noteworthy that ER stress in mammalian cells 

causes changes in the redox status, which further activate redox sensitive transcription factors, 

such as NF-κB (Fedoroff, 2006; Schröder and Kaufman, 2005). Finally, since NPR1 does not 

locate on the ER membrane, NPR1 needs to be activated by additional ER-located protein which 

sense the ER stress. What is this ER-stress sensor? 

In addition to contributing to ER-related secretion, clade I TGA factors may also play a 

role in the vesicle-related secretion pathway. The tga1-1 tga4-1 double mutant displayed 

enhanced disease susceptibility to the ΔCEL mutant of P.s.t. which lacks virulence on wild type 

Arabidopsis due to an inability to suppress the host vesicle-related secretion pathway (Figure 

3.11). 

The TGA1/4-dependent secretion pathway may not regulate all defence-related protein 

secretion. For example, biogenesis of receptor proteins, such as EFR, requires the functional ER 

secretion pathway (Saijo, 2010). Due to an inability to accumulate functional EFR on the plasma 

membrane, mutants in ER components loose seedling growth inhibition (SGI) in response to the 

MAMP elf18 (Li et al., 2009a; Lu et al., 2009; Nekrasov et al., 2009; Saijo et al., 2009). The 

tga1-1 tga4-1 double mutant still retains the SGI response to efl18 and flg22 (Figure 3.12), 

suggesting that secretion pathways responsible for EFR or FLS2 are normal in the double mutant 

plant. 
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4.5 Clade I TGA factors act in NPR1-dependent and -independent pathways 

NPR1-dependency of TGA1 and TGA4 is consistent with the observation that they 

physically interact with NPR1 in planta following SA treatment (Després et al., 2003). However, 

the involvement of clade I TGA factors in NPR1-independent pathways is largely 

uncharacterized. Based on my findings and recent work from the laboratory, NPR1-

independence of clade I TGA factors can be summarized in four points.  

First, clade I TGA factors and NPR1 can function in parallel and have additive effects. 

This was demonstrated by focusing on well-known NPR1-dependent responses. NPR1 is 

required for ETS-mediated resistance against the virulent pathogen P. syringae and ETI-

mediated resistance against P.s.t. AvrRpt2 and H.a. (Delaney et al., 1995; Glazebrook et al., 1996; 

Shah et al., 1997). The single and double mutants of clade I TGA factors are compromised in 

resistance against these pathogens, suggesting a requirement for these transcription factors 

(Shearer et al., 2012; Figure 3.5 and 3.8). Furthermore, combining the npr1-1 mutation with 

tga1-1 tga4-1 resulted in increased susceptibility to these pathogens (Shearer et al., 2012; Figure 

3.8), indicating that the enhanced disease susceptibility phenotype in tga1-1 tga4-1 and npr1-1 is 

additive and the function of TGA1 and TGA4 in disease resistance is at least partially 

independent of NPR1. 

Secondly, clade I TGA factors may function in the same pathway as NPR1, but have 

opposite effects. This is best exemplified by pathogen- and SA-induced PR-1 expression which 

is dramatically reduced in npr1 mutants (Cao et al., 1994; Liu et al., 2005), but not in any 

mutants of clade I TGA factors. Instead, clade I TGA mutants showed higher expression of PR-1 

after treatment with BTH or SA, or pathogen inoculations (Figure 3.13; 3.14 and 3.15), which 

was abolished in the tga1-1 tga4-1 npr1-1 triple mutant (Shearer, Wang and Fobert, unpublished 

data). Increased expression of PR-1 in clade I mutants is consistent with results previously 

obtained in the Fobert lab (Shearer et al., 2012) and another recent study (Lindermayr et al., 2010) 

who analyzed PR-1 transcript levels in plants shortly after spraying with SA. The same 

expression pattern of PR-1 also appeared in double mutant after inoculation with different P. 

syringae strains (Shearer et al., 2012; Figure 3.15). In contrast, Kesarwani et al. (2007) reported 

no increase, and a possible reduction, in PR-1 expression in single mutants of tga1-1 and tga4-1. 
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These authors did not analyze PR-1 expression shortly after treatment with SA but rather 

germinated and grew seedlings in the presence of the SA analog INA. Since SAR-inducing 

chemicals, such as BTH, SA or INA, induce PR-1 transcript accumulation in both a temporal and 

dose-dependent manner (Kesarwani et al., 2007; Lawton et al., 1996), I germinated and grew 

seedlings under conditions similar to those reported by Kesarwani et al. (2007) except that the 

SA analog BTH was used instead of INA. Under these conditions, PR-1 levels continued to be 

elevated in clade I TGA mutants (Figure 3.13). The reasons for these discrepencies in results 

between this thesis and Kesarwani et al. (2007) remain to be determined. 

Thirdly, clade I TGA factors have functions that are independent of NPR1. This was 

ascertained by asking whether clade I TGA factors can function in defence responses which do 

not require NPR1. Data shown in Figure 3.6 and 3.7 indicte that clade I TGA factors contribute 

to MAMP-mediated resistance against P.s.t. hrcC
-
 and NHR against P.s.p., which do not 

required NPR1 (van Wees and Glazebrook, 2003; Zipfel et al., 2004; Figure 3.6 and 3.7). 

Furthermore, the snc1 mutation has been reported to constitutively activate an NPR1-

independent defence response (Li et al., 2001; Zhang et al., 2003a). The observation that this 

activated defense response is blocked by mutation in TGA1 and TGA4 (Shearer et al., 2012), 

suggests that clade I TGA factors are involved in an NPR1-independent pathway during 

immunity. 

In addition to clade I TGA factors, NPR1-independent function has been reported for 

other clades of TGA factors. In tobacco, clade II factor TGA2.2 regulates NPR1- and NPR1-

independent promoters, indicating the existence of the two different signaling networks regulated 

by this TGA factor (Butterbrodt et al., 2006; Thurow et al., 2005). Arabidopsis TGA2 can 

interact with a transcriptional regulatory protein, SCARECROW-like 14 (SCL14) to activate 

NPR1-independent, SA- and 2,4-D-inducbile genes which are involved in the detoxification of 

xenobiotics and possibly endogenous harmful metabolites (Fode et al., 2008). Furthermore, 

TGA2 can interact with a glutaredoxin-like protein to regulate JA/SA crosstalk which shows 

partial independence from NPR1 (Ndamukong et al., 2007). The clade III factor TGA3 has also 

been suggested to function in a partially NPR1-independent fashion based on the analysis of a 

tga3 npr1 double mutant (Kesarwani et al., 2007). Thus, it appears that interactions with NPR1 

are required to mediate only some of the functions of TGA factors. It is possible that NPR1-
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independent functions rely on NPR1 paralogues, such as NPR3 and NPR4, which have been 

implicated in mediating defense responses (Zhang et al., 2006). Alternatively, they may require 

other transcriptional cofactors. 

Lastly, previous literatures also suggest that some NPR1-dependent phenomena 

phenotypes did not require clade I TGA factors. For example, the npr1 mutant is impaired in 

SAR against virulent pathogen, but clade I TGA factors are not required for SAR (Shearer et al., 

2012). Seedlings lacking NPR1 are hypersensitive to the toxic effects of high concentrations of 

SA (Cao et al., 1997). In contrast, TGA1 and TGA4 are not required for the regulation of 

tolerance to SA (Shearer et al., 2012). 

4.6 Clade I TGA factors play a role in developmental processes 

Besides the role in plant immunity, clade I TGA factors are involved in several 

developmental processes, including leaf shape, floral transition and branch development 

(Figure3.22). Abnormal growth phenotypes have been observed in mutants with altered SA level 

(Dong, 2001; Lorrain et al., 2003; Rivas-San and Plasencia, 2011). For example, altered leaf 

shape was always observed in consititutive defence mutants with high SA levels and disease 

resistance, such as agd2 (aberrant growth and death2) (Rate and Greenberg, 2001), lsd6 (lesions 

simulating diesease6) (Weymann et al., 1995), and sum1 sum2 (small ubiquitin-like modifier1 

and 2) (van den Burg et al., 2010). Moreover, a late flowering phenotype was observed in SA-

deficient plants, such as NahG, eds5 and sid2 (Martínez et al., 2004). Therefore, considering 

their involvement in SA pathway during immunity, I speculate that clade I TGA factors may 

regulate these development processes through an SA-mediated pathway. If this is the case, it is 

worth testing whether the tga1-1 tga4-1 double mutant plants have altered SA levels. 

The involvement of clade I TGA factors in floral transition also has been suggested in 

other studies. In a microarray analysis, seedlings of the tga1-1 tga4-1 double mutant expressed 

higher transcript levels of FLC, a key repressor of flowering time (Wang and Fobert, 

unpublished results). TGA4 was shown to physically interact with CONSTANS (CO), a positive 

regulator of floral induction, and to bind to the promoter of the FLOWERING LOCUS T (FT), a 

direct target of CO (Song et al., 2008). In addition, like CO, the abundance of TGA4 mRNA 
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oscillates diurnally in both LDs and SDs (Song et al., 2008). However, tga1 tga4 single mutant 

plants do not show a late flowering phenotype (Figure 3.22d and e). This may be explained if 

TGA4 functions redundantly with CO. Considering the multiple pathways regulating floral 

transition, one possibility is that TGA4 plays a role in the signaling pathway other than the 

photoperiod pathway under long day conditions. In contrast to TGA4, TGA1 was not shown to 

interact with CO (Song et al., 2008), but is involved in regulating flowering time (Figure 3.22d 

and e), suggesting that TGA1 may play a role upstream or downstream of CO to regulate floral 

transition. 

After floral transition, plants develop flowers and branches. The tga1-1 tga4-1 double 

mutant, but not single mutants, displayed shorter primary inflorescences and fewer secondary 

inflorescences (Figure 3.22b), suggesting TGA1 and TGA4 function redundantly to regulate 

developmental processes at later stages after floral transition. Consistent with this idea, TGA1 

and TGA4 have been shown to interact with two NPR1-like proteins, BOP1 and BOP2, which 

control growth asymmetry, an important aspect of patterning in leaves and flowers (Hepworth et 

al., 2005). 

In addition, clade I TGA factors interact with the glutaredoxin (GRX)-like protein, 

ROXY1, which functions redundantly with its closest homolog ROXY2 to regulate anther 

development and microspore formation (Li et al., 2009b; Xing et al., 2005; Xing and Zachgo, 

2008). GRXs are small, ubiquitous oxidoreductases that mediate the reversible reduction of 

intracellular disulfide bonds (Buchanan and Balmer, 2005). GRXs have been shown to be 

involved in many cellular processes and play an important role in the response to oxidative stress 

(Rouhier et al., 2004). Considering the redox regulation of clade I TGA factors in immunity, the 

redox regulation of clade I TGA factors through GRXs proteins may also occur during plant 

development. 

A dual role in development and immunity is unique to clade I TGA factors within the 

TGA family. For example, clade II and clade III TGA factors have been reported to play a role 

only in immunity (Kesarwani et al., 2007; Zhang et al., 2003b), while TGA9, TGA10 and PAN 

are specifically involved in flower developmental processes (Chuang et al., 1999; Murmu et al., 

2010; Running and Meyerowitz, 1996). Interestingly, this distinct function in the TGA family is 
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coincident with their ability to interact with NPR1. Clade II and clade III TGA factors 

constitutively interact with NPR1 (Després et al., 2000; Després et al., 2003; Zhang et al., 1999; 

Zhou et al., 2000), while TGA9, TGA10 and PAN have not been shown to interact with NPR1. 

Other than these TGA factors, the interaction between clade I TGA factors and NPR1 does not 

occur under non-stressed conditions, but do occur after SA treatment (Després et al., 2003). 
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CHAPTER 5 CONCLUSIONS AND FUTURE STUDIES 

5.1 The specificity of the reported tga1-1 and tga4-1 phenotypes 

Additional T-DNA alleles (tga1-3 and tga4-2) (Figure 3.2) and TGA1 overexpressing 

lines in the tga1-1 tga4-1 double mutant background (TGA1OE/tga1x4 lines) (Figure 3.4) were 

identified and analyzed to confirm the specificity of the reported tga1-1 and tga4-1 phenotypes. 

Like tga1-1 and tga4-1, tga1-3 and tga4-2 displayed enhanced disease susceptibility (EDS) to 

virulent pathogen P.s.m. ES4326 (Figure 3.5a and b), and expressed elevated PR-1 transcripts 

after BTH treatment (Figure 3.12). In addition, TGA1OE/tga1x4 lines complemented the EDS 

phenotype (Figure 3.5c) and partially rescued the high PR-1 expression level in the tga1-1 tga4-1 

double mutant (Figure 3.13). These data provide greater confidence that the phenotypes 

associated with tga1-1 and tga4-1 are indeed specifically due to loss of gene function. Of note, 

while I was able to demonstrate complementation of the tga1-1 tga4-1 double mutant using an 

overexpression transgene, Lindermayr et al. (2010) could not rescue the mutant phenotype with 

either wild type or mutant versions of TGA1. 

5.2 Clade I TGA factors are important regulators in plant immunity 

Results presented in this thesis demonstrate a broad role for clade I TGA factors in 

disease resistance against various pathogens. First, clade I TGA factors contribute positively to 

basal resistance against virulent bacterial pathogen P.m.s. ES4326 (Figure 3.6) and the fungal 

pathogen Colletotrichum higginsianum (Figure 3.20 and 3.21). Second, clade I TGA factors act 

as positive regulators in MTI-mediated disease resistance against P.s.t. hrcC
-
 (Figure 3.6) and 

ETI-mediated disease resistance against P.s.t. AvrRpt2 (Figure 3.8). Finally, clade I TGA factors 

are required for non-host resistance against P.s.p. 1448a (Figure 3.7). My results suggest that 

clade I TGA factors are common regulators which contribute to both MTI and ETI. 

5.3 Clade I TGA factors are involved in cell wall-associated defence responses 

The observation that loss of resistance in mutants of clade I TGA factors was not 

associated with reduced levels of PR gene transcripts was unexpected. However, I was able to 
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demonstrate that the tga1-1 tga4-1 double mutant is impaired in well-known cell wall-associated 

defence responses including callose deposition (Figure 3.9), the oxidative burst (Figure 3.10), 

and the accumulation of extracellular PR-1 protein (Figure 3.18). Thus, I conclude that loss of 

resistance is attributed to defects in these, and possibly other cell wall-associated defences. These 

responses appear to be compromised at the post-transcriptional level, since mRNA levels for key 

defence genes are not affected in a negative fashion in clade I TGA factor mutants. 

5.4 Clade I TGA factors are involved in defence-related secretion pathways 

The success of cell wall-associated defence is dependent on effective secretion processes. 

The tga1-1 tga4-1 double mutant displayed hypersensitivity to the ER stress inducer, 

tunicamycin (Figure 3.19), implicating clade I TGA factors in the proper functioning of the ER 

secretion pathway. Comparisons between different microarray datasets revealed that clade I TGA 

factors regulate many ER-related genes which have been shown to be regulated by well-known 

ER related transcription factors (Table 3.1). In addition, the tga1-1 tga4-1 double mutant 

displayed enhanced disease susceptibility to the P.s.t. ΔCEL which lacks virulence on wild type 

Arabidopsis due to an inability to suppress the host vesicle-related secretion pathway (Figure 

3.11). Taken together, these results suggest that clade I TGA factors function in the secretion 

pathway, possibly through transcriptional regulation to ER related gene expression. Furthermore, 

the abnormal secretion pathway in the double mutant affects the defence-related protein secretion, 

eventually resulting in defects in cell wall-associated defence responses and loss in disease 

resistance against pathogens. In summary, the contributions of clade I TGA factors in plant 

immunity are described in Figure 5.1. 
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Figure 5.1 A proposed working model for clade I TGA factors during plant immunity. 

After pathogen recognition through PRR (pattern recognition receptors) or R proteins, SA-

activated clade I TGA factors regulate defence-related genes expression (indicated with red 

arrow and circled 1). These clade I TGA factors-dependent genes encode proteins responsible 

for different defence events, including ROS burst (2), extracellular PR protein accumulation 

(3), callose deposition (4), and ER-related secretion (5). Some genes directly function in 

certain event. For example, callose synthases are directly responsible for callose synthesis. And 

other genes indirectly affect defence events. For example, ER components are responsible for 

secretion of defence-related proteins, such as PR proteins. Since clade I TGA factors affect 

these defence events indirectly through transcriptional regulation on related genes, the 

relationships between them are indicated with gray arrows. 
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5.5 Clade I TGA factors function NPR1-independently 

Analysis of the npr1-1 mutant and a tga1-1 tga4-1 npr1-1 triple mutant indicate that 

clade I TGA factors act substantially independent of NPR1 during plant immune responses. 

Taken together, a working model for the relationship between clade I TGA factors and NPR1 

during plant immunity is presented in Figure 5.2. After pathogen recognition, SA accumulation 

triggers the change in cellular oxido-reduction (ΔRedox) balance, which results in post 

translation modification of clade I TGA factors and NPR1 (Després et al., 2003; Mou et al., 

2003). Clade I TGA factors independently regulate a group of genes, which may contribute to 

MTI and non-host resistance. Later on, activated NPR1 translocate into nucleus and interact with 

clade I TGA factors to co-regulate second group of genes (type II), which may contribute to ETS 

and ETI. Meanwhile NPR1 also independently regulate another group of genes (type III) to 

contribute to NPR1-dependent resistance. 

5.6 Clade I TGA factors are involved in development processes 

Besides the role in plant immunity, clade I TGA factors are involved in several 

developmental processes, including leaf shape, floral transition and branch development 

(Figure3.22). These results indicate that clade I TGA factors are uniqe among the TGA factors in 

having dual functions in regulating development and immunity. 

5.7 Futere work 

Clade I TGA factors have been shown to be required for disease resistance against three 

different pathogen species, the bacterial pathogen P. syringae, the fungal pathogen C. 

higginsianum, and the oomycete pathogen H. arabipodsidis. In the case of P. syringae, use of 

different isolates has shown that clade I TGA factors are broadly involved in different types of 

disease resistance responses, such as basal resistance, MTI, ETI and NHR. All tested pathogens 

are biotrophs or hemibiotrophs, and it is still worth testing the response of the mutants to 

necrotrophs. Of note, preliminary results revealed that the tga1-1 tga4-1 double mutant is 

impaired in JA/ET mediated marker gene expression after pathogen challenge, such as PDF1.2, 

VSP and LOX2 (Wang, Chatur and Fobert, unpublished result), suggesting that response to  
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Figure 5.2 A proposed working model for the relationship between clade I TGA factors 

and NPR1 during plant immunity. 

After pathogen recognition, SA-mediated redox changes activate clade I TGA factors and 

NPR1. Three types of genes are regulated by clade I TGA factors and NPR1. Expression of 

type I genes is only dependent on clade I TGA factors; expression of type II genes relies on 

clade I TGA factors and NPR1 through their interaction. Expression of type III genes is only 

dependent on NPR1. 
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necrotrophic pathogens, such as Botrytis, may also be compromised. This would establish clade I 

TGA factors among the relatively few genes that have been shown to be required for resistance 

to both biotrophs and necrotrophs. 

The tga1-1 tga4-1 mutant plants were impaired in cell wall associated defence responses 

such as callose deposition and the ROS burst. To futher study the role of clade I TGA factors in 

cell wall associated defense responses, it would be desirable to perform disease tests on the 

double mutant by using biotrophic fungal pathogen Erysiphe. This pathogen is an excellent 

experimental system to test cell wall defense responses because successful infection relies mostly 

on cell wall penetration. 

The results obtained in this study suggest that clade I TGA factors are involved in 

regulating the plant secretion pathway. However, the molecular mechanisms involved are still 

unknown. To better understand these, several experiments should be performed in the future. 

First of all, it is necessary to perform microarray analysis on the double mutant and wild type 

under ER stress induced by TM. This would identify the transcriptome regulated by clade I TGA 

factors. Meanwhile, the binding ability of clade I TGA factors to ERSEs can be examined in 

vitro by EMSA (electrophoretic mobility shift assay) or in vivo by ChIP (chromatin 

immunoprecipitation). The relationship between clade I TGA factors and other ER-related bZIP 

transcription factors can be characterized by several experiments, such as protein interaction 

assays, epistasis analysis with mutants in controlling key ER stress processes, and gene 

expression analysis. In addition, the function of NPR1 in the ER secretion pathway should also 

be addressed. For example, can the nuclear translocation and interaction of NPR1 with clade I 

TGA factors be activated by ER stress? 
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