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Abstract

Computers are networked together in order to share the information they store and

process. The internet connects many of these networks together, offering a multitude

of options for communication, productivity and entertainment. It also offers the

opportunity for unscrupulous individuals to contact these networked computers and

attempt to appropriate or destroy the data on them, the computing resources they

provide, and the identity or reputation of the computer user. Measures to secure

networks need to be implemented by network administrators and users to protect

their computing assets.

Firewalls filter information as it flows through a network. This filter can be

implemented in hardware or software and can be used to protect computers from

unwanted access. While software firewalls are considered easier to set up and use,

hardware firewalls are often considered faster and more secure. Absent from the

marketplace is an embedded hardware solution applicable to desktop systems.

Traditional software firewalls use the processor of the computer to filter packets;

this is disadvantageous because the computer can become unusable during a network

attack when the processor is swamped by the firewall process. Traditional hardware

firewalls are usually implemented in a single location, between a private network and

the internet. Depending on the size of the private network, a hardware firewall may

be responsible for filtering the network traffic of hundreds of clients. This not only

makes the required hardware firewall quite expensive, but dedicates those financial

resources to a single point that may fail.

The dynamic silicon firewall project implements a hardware firewall using a soft-

core processor with a custom peripheral designed using a hardware description lan-

guage. Embedding this hardware firewall on each network interface card in a network

would offer many benefits. It would avoid the aforementioned denial of service prob-

lem that software firewalls are susceptible to since the custom peripheral handles the
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filtering of packets. It could also reduce the complexity required to secure a large

private network, and eliminate the problem of a single point of failure. Also, the

dynamic silicon firewall requires little to no administration since the filtering rules

change with the users network activity. The design of the dynamic silicon firewall

incorporates the best features from traditional hardware and software firewalls, while

minimizing or avoiding the negative aspects of each.
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Chapter 1

Introduction

This chapter begins by outlining the computer security problems motivating this

research. The research goals are then presented, followed by an outline of the entire

thesis.

1.1 Motivation

This research is motivated by many factors in the realm of home computer security.

It is becoming quite common in developed nations for people to have high-bandwidth

internet connections in their homes, often connected to powerful personal computers.

This combination of computing power and communication capability has become an

inviting target for malicious hackers and programmers. By corrupting or gaining

access to a computer, a malicious programmer may destroy or steal the informa-

tion stored on that computer. Furthermore, they may appropriate the computer

and network resources and use them for their own purposes, denying access to the

legitimate user. Some malicious programmers then use these co-opted computers to

spread worms, viruses and other forms of malicious software, often called malware.

Email spam is sent out from these computers as well, in an effort to make money

through fraudulent means and continue the spread of malware.

Gaining access to one computer system using another computer on a remote

network is not trivial. To formulate a plan of attack requires knowledge of the

victim computer, which operating system (OS) it is running, the services that the

victim is providing to the network, and/or the software installed on that computer.

Also, the underlying technology being used to provide network access to the victim
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computer provides information on how to find and communicate with the victim.

The operating system, software, and network services being used on a computer are

choices left to the computer user. These choices are often made without security in

mind. Users may choose to use an operating system because it comes pre-installed

when they purchase a computer, or because it is the only one compatible with their

favorite software. Similarly, the networking technology being used is a choice the

user must make, though this choice is often determined by the choice of network

service provider, since the home network technology must be compatible with the

service provider’s network technology. This most often results in choices which are

not consciously made by the user, leading to the majority of home computer users

running a Windows R© operating system on their computer, with Ethernet network-

ing technology connecting their computer to a home network or the internet. The

popularity of Windows R© operating systems and the Ethernet networking protocol

has resulted in these technologies being the primary targets of malicious program-

mers. By designing malware for a Windows R© operating system, the programmer

knows that a large number of computers will be vulnerable to it, simply due to the

popularity of the OS. Similarly, software for monitoring Ethernet networks has been

developed which allows malicious hackers to get information from network traffic

regarding which computers are on the network and which services they are using or

providing.

The responsibility to maintain secure computers and networks for the average

home user falls to three entities. First, Microsoft R©, the maker of Windows R©

operating systems, releases security patches to help secure the operating system.

Second, the user’s internet service provider must monitor their networks to mitigate

the spread of malicious software and to look for unusual network traffic that may

be an indicator of a network attack. Finally, a large portion of computer security is

left to the home user. Many commercial software products for home users have been

developed to address the threats presented by the various malicious programs, such

as viruses. In addition to software, there have been consumer hardware security

products developed for computer users at home. The problem which has arisen
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is that many of these consumer products require knowledge, about the underlying

technology being used, to be used effectively. This is knowledge which the average

home user does not possess. The malicious programmers developing security attack

strategies do have this knowledge, and they are using it.

1.2 Research Objective and Thesis Outline

This research explores how an embedded firewall, designed using a hardware descrip-

tion language, may improve upon the positive features and mitigate the negative

aspects of traditional firewall implementations. The main focus is on the method of

implementing a simple yet useful firewall for network users who are naive to the un-

derlying technology and communication protocols involved in computer networking.

This project will build upon and seek to improve upon the limited research done in

the area of embedded hardware firewalls [1, 2].

The fundamentals of network functionality and security are presented in chapter

2. In chapter 3, the components and tools used in the design of embedded systems

are discussed. The hardware design of the dynamic silicon firewall is presented in

chapter 4, while the software components of the design are discussed in chapter 5.

In chapter 6, the testing process and results of the conducted tests are explained. In

chapter 7, the conclusions drawn from this project are presented and the direction

for future work is suggested.
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Chapter 2

Computer Networking

This chapter focusses on the functionality and security vulnerabilities of computer

networks. In order to better understand the way computer networks are attacked

and the ways in which data is vulnerable, the fundamentals of computer networking

are presented. Approaches to keep computer networks secure are also discussed, with

an emphasis on network packet filters.

2.1 Network Models

Computers are networked together so that information can be shared. Networks, such

as the internet, are very complex and made up of multiple communication protocols.

Often, engineers and computer scientists organize the protocols into layers for easier

understanding. Two main models of these layers exist [3], the most widely used are

the Open Systems Interconnection (OSI) and the Transmission Control Protocol /

Internet Protocol (TCP/IP) models. The TCP/IP model focusses on the hardware

involved in computer networking, while the OSI model extends the TCP/IP model to

include the software involved in computer networking. For the purposes of discussion,

the TCP/IP model is more than adequate.

The TCP/IP model consists of five layers: Application, Transport, Network,

Data Link and Physical. The application layer concerns the network software the

end user is using. In the TCP/IP model, examples of the application layer would

include web browsers and instant messaging software. The transport layer involves

the protocols that applications use to communicate with each other. The transport

layer is also the layer where any desired communication reliability is implemented,
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since the network, data link, and physical layers provide no guarantees for success-

ful transmission. Furthermore, flow control is implemented at the transport layer.

Examples of transport layer protocols are the Transmission Control Protocol (TCP)

and the User Datagram Protocol (UDP). The network layer is responsible for routing

information from one computer to another. It is also responsible for connecting mul-

tiple networks together. This is accomplished in the internet with the aptly-named

Internet Protocol (IP). The data link layer is where data is encoded into bits for

transmission onto the network medium. The most popular data link layer protocol

used in home networking is the Ethernet protocol. Another example of a data link

layer protocol is the Point-to-Point Protocol (PPP). The lowest layer in the TCP/IP

network model is the physical layer. The physical layer is the actual medium used

for communication. Examples of networking media are twisted-pair copper wires,

coaxial cable, and optical fiber. Figure 2.1 illustrates a network using the TCP/IP

network model. Data being sent from the PC on the left of the diagram travels down

through the layers of the network model and onto the network. As the data is routed

to its destination it may encounter a number of routers, requiring inspection of the

data contained at the network layer. When the message reaches its final destination,

the PC must go back up through the various layers in the network model to get to

the application data.

2.1.1 Application Layer

Many protocols operate at the application layer since applications often provide a

variety of services. For example, a web browser application could implement not

only the HyperText Transport Protocol (HTTP), used to access web sites, but also

the File Transfer Protocol (FTP) if a user directs the web browser to an FTP server.

Application layer protocols implement the functionality needed for a specific appli-

cation to function, but they abstract the underlying network and rely only on the

transport layer for transmission of data across the network.
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Figure 2.1: Example TCP/IP Modeled Network

2.1.2 Transport Layer

The transport layer takes data from the application layer and passes it to the network

layer. The main protocols that operate at the transport layer are the Transmission

Control Protocol [4] (TCP) and the User Datagram Protocol [5] (UDP). The message

passed from the application layer has data prepended to it, this data forms a header

used to implement the transport layer protocols. Essential to all transport layer

protocols are the source and destination port numbers. Port numbers represent a

service running on a host, and they provide a way to differentiate data from multiple

applications running on a single host.

UDP is a simple transport layer protocol. It is made up of only four pieces of data,

each consisting of two bytes, that are prepended to the application layer message.

This UDP header consists of the source and destination ports, as well as the length

and checksum fields. The length field contains the size of the UDP segment, in
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bytes. The checksum field allows the destination host to check if any errors were

introduced during transmission. This does not ensure successful transmission, but it

does allow corrupted data to be discarded. As mentioned, the port numbers allow

the application layer data to be delivered to the proper application running on the

destination host.

TCP is a more complex transport layer protocol, providing reliability and con-

gestion control to the network. The TCP segment structure is shown in figure 2.2.

The source and destination ports remain, as in UDP, but many other header fields

are also required. The sequence and acknowledgement numbers are used to ensure

reliable delivery of data. When a large piece of data is being transferred across a

network, it is broken into pieces. The total data bytes being transferred are counted

and each group of bytes in each TCP segment are given sequence numbers so that the

data can be reconstructed after being delivered out of order. The acknowledgement

number of an outgoing packet is the sequence number for the next byte expected

from an incoming packet. Sending an acknowledgement number means that all data

prior to the specified byte has been received successfully. The other feature that TCP

provides to the network is congestion control. This is a service that benefits the net-

work as a whole. When a network is very busy and saturated with packets, data can

be lost due to packet buffer overflows. TCP provides mechanisms for recognizing

network congestion, and reducing packet flow until the congestion is reduced.

2.1.3 Network Layer

The network layer takes a UDP or TCP segment from the transport layer and sends

it to the data link layer for transmission. As with the transport layer, network layer

protocols are implemented by adding data to the transport layer segment, forming

what is called a network layer datagram. Internet Protocol datagram is an appropri-

ate term when the network layer protocol being used is IP. The Internet Protocol [6]

operates at the network layer and is responsible for the routing of datagrams from

one computer to another across a network.

Figure 2.3 illustrates the IP datagram format. At the heart of the Internet
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Figure 2.2: TCP Segment Structure

Protocol is the Internet Protocol address, or IP address. The IP address is made up

of four bytes that define a specific computer on a network. These four bytes can be

divided into the network and host portions of the IP address. The network portion is

used to identify a group of hosts that all belong to the same network, while the host

portion of the IP address specifies an individual host on a network. The network and

host portions of the IP address are essential in routing, as packets must first reach

the proper destination network before they can reach the proper destination host.

The Address Resolution Protocol [7] (ARP) also operates at the network layer

and is responsible for connecting hardware media access control addresses and IP

addresses. Media access control addresses will be discussed further in the data link

layer section. ARP is an essential service provided by the network layer as it connects

the network IP address with the addresses used at the data link layer.
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Figure 2.3: IP Datagram Structure

2.1.4 Data Link Layer

The Ethernet Protocol [8] operates at the data link layer and defines what signals

to send on the physical layer to allow two computers to communicate. Since its

invention in the 1970s, it has become the dominant networking protocol for local

area networks. An Ethernet network can run over twisted-pair copper wire, coaxial

cable, or optical fiber. It can also run at a variety of speeds: 10Mbps, 100Mbps or

1Gbps. Independent of transmission medium and speed, all Ethernet flavors share a

few characteristics.

All Ethernet variants are unreliable connectionless services. Ethernet is connec-

tionless in that an adapter does not directly contact the adapter with which it wants

to communicate. An Ethernet adapter encapsulates information into a frame of

data, often called a packet, and transmits that onto the transmission medium. All

adapters connected to the medium then receive that frame of information. Ethernet
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is considered unreliable because there is no acknowledgement from the intended re-

cipient of the information as to whether the frame was received without error. This

raises the question of how the intended recipient knows whether a frame is meant

for it, and how it knows the frame is error-free.

Ethernet relies on hardware addresses that are unique to each hardware adapter.

These addresses are often called Media Access Control (MAC) addresses, and they

consist of a unique six-byte identifier. The MAC address of the intended recipient

of an Ethernet frame is included in the frame itself (as is the MAC address of the

transmitting adapter), so adapters can check each packet of information to see if

it is for them. Once an adapter has determined that it is the intended recipient

of a packet, it must check if any errors were introduced during transmission. This

is done with a Cyclic Redundancy Check (CRC). Before sending a frame out onto

the transmission medium, an adapter appends four bytes to the end of the frame

which are obtained from a mapping of the other bits in the frame. This allows

receiving adapters to check for errors by performing the same mapping of the data

and comparing the results. If the CRC code calculated by the transmitting adapter

and sent with the frame does not match the CRC code calculated at the receiving

adapter, then it can be concluded that an error occurred during transmission.

Now that the functionality of the Ethernet protocol has been discussed, the Eth-

ernet packet structure can be examined. Figure 2.4 illustrates the fields of an Eth-

ernet packet. The preamble consists of 8 bytes where the first seven bytes consist

of the repeated binary pattern 10101010. The eighth byte is 10101011. Alternating

bit values allow a receiving adapter to synchronize to the clock of the transmitting

adapter, allowing bit positions to be determined. The final byte ends with two high

bits. These bits let the adapter know that the preamble is over. The destination

and source MAC addresses, along with the CRC field allow adapters to recognize

packets that are destined for them and to ensure they have been received without

error. Encapsulated between the MAC addresses and the CRC are the type and

data fields, which make up the information from the network layer. The type field is

a two-byte value that defines the network layer protocol being used, while the data

10



Figure 2.4: Ethernet Packet Structure

field contains the information being sent by the network layer.

2.1.5 Physical Layer

As previously mentioned, the physical layer is the lowest layer in the TCP/IP network

model. It represents the physical medium used in communication. This could be

optical fiber, coaxial cable, or twisted-pair copper wire. Twisted-pair copper wire is

widely used in Ethernet networks [3].

2.2 Network Security

There are many reasons for people to connect computers together into a network.

Some examples of internet applications include: banking, where someone may pay

bills or set up investments; entertainment, where people may enjoy multiplayer online

games or streaming media; and sharing information, by sending email or surfing the

world-wide web. To accomplish these tasks, personal information often needs to
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be shared and transmitted over a network. Since personal information can be used

for financial gain, some people try to gather this information and either sell it or

use it to make money. The internet, by connecting different networks together, can

provide a means for unscrupulous people to search for and steal valuable personal

information. Network security measures must be taken to protect this data, ensuring

only authorized individuals can access it.

2.2.1 Common Network Attacks

Computers execute instructions. These instructions can be pre-defined and orga-

nized into computer programs, or software, that tells the computer what to do in

certain circumstances. Unfortunately, the people writing computer software can not

consider all possible circumstances under which a computer may be executing instruc-

tions. These overlooked conditions can leave vulnerabilities which someone may use

to gain unauthorized access to a computer [9]. Software containing overlooked or

unintentional errors can lead to someone gaining remote access to a computer over

the internet, especially if the erroneous software is a networked application. Before

software can be exploited, a remote attacker must first find a target for his attack

and then gain information about the system which the software is running on.

Many attempts at computer intrusion begin with port scanning [10]. Port scan-

ning is the process of sending out packets to either a specific IP address or an IP

address range and attempting to connect to specific UDP or TCP ports. Since most

networked programs accept connections only on specific port numbers, any attempts

to connect that succeed identify both that a host is connected to the network and that

it is running a specific application. Even connection attempts that fail can identify

a host as being connected to the network if the host explicitly denies the connection.

Once an attacker knows a host IP address and some services that are running on

that host, they may begin trying to gain access to the system with usernames and

passwords, or by using any known vulnerabilities in the code of the running network

application.

Another way to gain information from a network is by network sniffing [9]. In
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Ethernet networks, recall that packets are sent to all hosts on the local network and

each Ethernet adapter is trusted to only look at packets destined for themselves.

Unfortunately, it is easy to get an adapter to look at all packets being sent to it,

whether the packets are destined for that adapter or not. This can allow people to

not only gain network information such as IP addresses, but even usernames and

passwords used to access network services. For example, when someone signs into

an email server, the packets that leave their computer with the private username

and password in them are first sent to all hosts on the user’s local network. Anyone

sniffing packets on that local network could then recover the private username and

password. For this reason, some email servers encrypt all data including usernames

and passwords.

Some network attacks are designed to gain information by attempting to trick a

network host into communicating with a different host than was intended. This type

of attack can be implemented in a number of ways, but they all rely on manipulating

the networking protocols. Spoofing network packets is the act of sending packets out

from a host, but changing the IP and/or MAC address to make it appear that the

packets were sent from a host other than the actual sender [9]. This type of attack

usually needs to be used in conjunction with an attack against a specific service or

networked application at one of the higher layers in the network stack. An example

of this type of attack is ARP cache poisoning.

As mentioned earlier, ARP is used to associate IP and MAC addresses. When an

Ethernet adapter wants to transmit packets to a specific host, it needs to know the

MAC address of the destination host. The source host sends out an ARP request,

which is a request for the MAC address associated with the destination IP address.

The ARP reply contains the association of a MAC address with an IP address. Once

the source host has the destination IP and MAC addresses, it can send packets

out onto the network to the destination host. However, when ARP was created,

it was assumed that ARP replies would only come as responses to ARP requests.

Unfortunately, a spoofed ARP reply packet will be accepted by hosts as a response

to a request. A packet could be sent out from a host that associates its own MAC
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address with the IP address of a different host. In this case, all traffic destined for

the second host would be delivered to the first host.

Not all network attacks seek to steal data or services. Some are designed to deny

use of network resources to legitimate users. These types of attack are aptly named

denial of service attacks [9]. There are two main types of denial of service attacks,

those that seek to flood services and those that seek to crash services. Flooding a

service refers to sending so much traffic to a specific host on a specific port that

the host is unable to answer service requests. If enough traffic is sent to a victim

host, it will be overloaded and unable to respond to even authorized service requests.

Crashing a service refers to using vulnerabilities in the way the service software was

written to halt execution of the software. For networking services, this is usually

accomplished by sending packets that are malformed or have invalid data in them

to the victim host [9]. If the service software doesn’t know how to deal with the

malformed packets, it may cause the program to halt execution, which also stops the

service from being available.

2.2.2 Security Strategies

There are many strategies that have been developed to try to prevent the above at-

tacks from succeeding [11]. The simplest, and least effective, is often called “security

through obscurity” and doesn’t implement any security measures at all. Security

through obscurity relies on believing that a host would not be attacked because no

one knows about it or because it is assumed no information of interest is on the host.

Since it is incredibly easy to gain information about hosts on a network, obscurity

doesn’t last long if someone is probing a network for weak points. The idea that a

host is of little interest no longer holds true either, as many attackers will gain access

to unprotected systems and use them to attack more interesting and valuable hosts.

A better, and more widely adopted, security strategy is host security [11]. Host

security means that each individual host on a network has security measures in place

to protect them from attacks. This could include additional hardware or software

added to the host machine that prevents or counters the attacker’s methods. Host
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security can work well on individual systems, however it can become quite complex

when trying to secure a large network with many connected hosts. Each host requires

individual attention because different hosts will have different software and services

running on them. As discussed, different pieces of software will have different in-

herent vulnerabilities in them. Even if all machines on the network were configured

identically, it could still be very difficult and time-consuming to implement host

security if the number of hosts is large.

A more efficient and effective method is to secure the underlying network [11],

instead of securing individual hosts on the network. This network security strategy is

composed of using: authentication to limit who is allowed to use network resources,

encryption to prevent unauthorized individuals from gaining information by sniffing

network packets, and filters that look at network traffic and remove packets that are

malformed or come from untrusted hosts or networks. Filtering network packets as

they travel through the network is considered key to securing the network infrastruc-

ture. Network packet filters are relatively easy to set up and maintain, they scale

to support large networks, and they remain transparent to network users [12]. The

term “firewall” is a common name for a network packet filter being used to restrict

communication between two or more networks.

2.2.3 Packet Filtering

Packet filtering is the process of filtering network traffic based on various rules. By

default, the packet filter can either allow or deny all traffic, meaning the rules specify

conditions under which specific packets are allowed onto the network or are dropped,

respectively. The most secure method is to deny all packets that try to come onto the

network and only allow specific packets to pass when they match certain filter rules.

The filter compares the data in individual packets with a set of rules that defines what

to do when there is a match between a rule and a packet. The data used to define

filtering rules is primarily based on the information used to implement the various

network protocols, such as TCP port numbers, IP addresses or MAC addresses. The

consequences of a rule match are often to drop the matching packet, though it will

15



depend on the default filter conditions. For example, a filter could allow all traffic

by default and have rules looking for packets containing matching source MAC or

IP addresses with specific transport layer port numbers. By dropping packets that

match this rule, a network could prevent specific service requests coming from a

specific host. Packet filtering requires a tradeoff between the number of memory

accesses needed to implement the filter and the maximum achievable network transfer

speed [13]. There is some overhead as the filter rules need to be compared to the

network traffic and each memory access takes time to complete. This overhead needs

to be minimized in order to achieve a desired network transmission rate and keep

the network filter transparent to the end users. Several algorithms exist to minimize

this overhead for software-based packet filters, but great speed gains can be made

by selecting fast memory, or by using memory that has been adapted for pattern

matching, to reduce filtering time.

2.3 Content-Addressable Memory

Content-addressable memory (CAM) is similar to random access memory (RAM)

except logic comparison circuitry is associated with each bit of storage. This logic

comparison circuitry serves to compare all data storage locations in memory at the

same time when a search is being conducted. Random access memory associates a

piece of data with an address. When an address is provided to RAM, the data at

that location is returned. To search for a specific piece of data in RAM requires

one to check the data at each address sequentially. This means that the time it

takes to search through RAM is dependent upon the number of addressable loca-

tions. Content-addressable memory, on the other hand, accepts a piece of data as

input and returns the address where that data is located in memory. It searches

all data locations at the same time and can identify the location of the data in one

clock cycle. This makes CAM an excellent tool for pattern matching applications

such as the comparison between internet packet data and pre-defined packet filter

rules [14]. Content-addressable memory has become popular with hardware firewall
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manufacturers because it offers massive parallelism.
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Chapter 3

Embedded Systems

This chapter focusses on the components and design of embedded systems. After

discussing the general components that make up an embedded system and the tools

used to create them, the specific tools and components used in designing the dynamic

silicon firewall embedded system will be presented.

3.1 Embedded System Overview

An embedded system is a computer system that has been designed to perform spe-

cific tasks, in contrast to a personal computer which is designed to perform general

tasks. Also, this specific computer system has been incorporated into a larger system

or product [15]. Many consumer electronics products are embedded systems, such as

digital music players, personal digital assistants, or cellular phones. Since embedded

systems perform specific tasks, the required hardware is customized to the specific

application. By selecting only the hardware needed to perform the required task,

embedded systems efficiently use hardware and are therefore economical. Any soft-

ware that may be running in an embedded system is called firmware [16]. Firmware

would also be customized to the specific task being performed, and to the limited

hardware chosen for the system. The hardware and software in combination are

often referred to as an embedded device.

3.1.1 Embedded System Components

The hardware components that make up an embedded system are chosen depending

on the purpose of the embedded device, but they are drawn from the same types
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of hardware that general computers use [15, 17]. Embedded systems may have a

variety of hardware devices, including: processors, volatile and non-volatile storage,

displays, and other input/output peripherals.

The hardware controlling the entire system may consist of a simple logic cir-

cuit, or it may be more complex, such as a microcontroller or microprocessor. If

a microprocessor is required, then it will likely be executing some sort of firmware.

Volatile or non-volatile memory may be used to store data in the system. This may

be flash-memory for storage of firmware or other non-volatile information, or simple

random access memory used for temporary storage. If user input is required, simple

buttons may suffice, however, some embedded systems use more traditional input

devices such as a keyboard and mouse. In short, embedded computer systems can

draw on hardware available for general computing systems, but are tailored for the

specific task they need to accomplish.

For embedded devices that contain a microprocessor and software, the software

needs to be compiled to run on the specific hardware in the system. This may

be done using cross compilers [16], where the firmware is compiled on a general

purpose computer, then transferred into the embedded system. Some embedded

devices run an embedded operating system that bridges the gap between hardware

and software. These embedded operating systems are also called real-time operating

systems [15, 16], as they can change program execution in real-time, depending on

external inputs. For embedded systems without an operating system, the firmware

needs to include the routines used to access each peripheral being used in the system.

3.2 System on a Programmable Chip

The components used in an embedded system draw from the same types of hardware

as a general computing system, but they are chosen so that the system is efficient and

economical to produce. While many embedded systems will use individual, discretely

packaged components that are combined together on a printed circuit board, there

is another alternative. Many embedded systems are defined in software and imple-
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mented on a programmable logic device (PLD), such as a field-programmable gate

array (FPGA). This type of embedded system is called a system on a programmable

chip (SOPC) [15].

3.2.1 SOPC Design

Systems on a programmable chip contain components that are defined using a hard-

ware description language (HDL) such as VHDL [18] or Verilog [19]. Defining a

system using an HDL offers many benefits. First, components can be designed once

and re-used in different systems. Second, components can be purchased as intellec-

tual property and used in system design. Third, the entire system can be extensively

tested through simulations before a hardware version is put to market. Finally, the

entire system can be tested in hardware on an FPGA and then transferred into an

application-specific integrated circuit (ASIC) if desired. Also, since the system is

defined with software modules which are then translated into logic on a PLD, any

custom logic that is needed in addition to standard components can be easily added

in a custom software module.

3.2.2 Altera R© SOPC Design Software

The Altera R© corporation specializes in SOPC solutions, including PLDs, associ-

ated software tools and intellectual property software blocks. The primary software

package from Altera R© is the Quartus R© II design software [20]. It contains tools

for all aspects of the design cycle. Designs can be created in block diagram form,

with blocks representing the individual HDL modules. The design as a whole is then

synthesized as each HDL module is compiled. The compiled project is then fitted

to the individual PLD and the result can then be used to program the logic device

being used. Tools for design analysis and verification are also included in Quartus R©

II. Timing requirements and logic functionality can be analyzed through software

simulations or they can be investigated on a PLD as the design operates.

For embedded systems, Quartus R© II also comes with a tool called SOPC Builder
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[20]. SOPC Builder integrates the various components required for an embedded sys-

tem. Altera R© provides many HDL modules, as commercially available intellectual

property, that work with SOPC Builder. This includes memories, communication

interfaces, and even a configurable soft-core processor. SOPC Builder integrates

the processor, busses and peripherals into a memory-mapped system. Firmware can

then be written for the processor to access and manipulate the peripherals as needed.

Various software libraries and application examples are also provided by Altera R©

for firmware development.

3.3 Dynamic Silicon Firewall Embedded System

The dynamic silicon firewall is an embedded system on a programmable chip. The

decision to implement the design on a PLD allowed the use of pre-written intellec-

tual property components, the ability to test the system using simulation, and the

capability to easily transition the design to an ASIC, if desired. The network filter

was to be designed in hardware as a module of custom logic, which lends itself well

to PLDs and the use of an HDL. As an HDL module, the filter was relatively easy

to test and modify as needed throughout the design cycle.

3.3.1 Dynamic Silicon Firewall Testbed

The dynamic silicon firewall was developed and tested on an FPGA development

kit from Altera R© [21]. This kit includes a number of features and peripherals that

work in conjunction with SOPC Builder and Quartus R© II. The FPGA on the board

is the Stratix R© EP1S25F1020C5 device, a general purpose FPGA featuring 25,660

logic elements, 1,994,576 bits of RAM, 10 digital signal processing blocks and 6 phase

locked loops. The board comes with 33MHz and 100MHz oscillators, though other

clock speeds can be synthesized using HDL modules. The onboard memory includes

256MB of dual data rate RAM and 8MB of flash memory. The hardware board

comes in the form of a Peripheral Component Interconnect (PCI) board supporting

both the 32 and 64 bit PCI bus configurations. There are expansion ports on the
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Figure 3.1: Altera R© Stratix R© PCI Development Kit

board that support daughter-cards which can be custom made, or purchased from

Altera R©. Various communication interfaces are also included, such as serial, parallel

and Ethernet ports. The hardware board is shown in figure 3.1.

In addition to the hardware, various software components are also used in the

testbed. The firmware being used to test the system is based on an example web

server program from Altera R©. The web server accepts HTTP requests and serves

simple web pages. The dynamic silicon firewall was tested by monitoring which

specific hosts were allowed or denied access to the web server. The web server relies

on another firmware component from Altera R©. The Plugs Ethernet Library [22]

is a set of routines, provided by Altera R©, used to configure Ethernet devices, and

to transmit and receive data packets. Plugs provides the use of the raw Ethernet

protocol at the link layer, ARP and IP at the network layer and both TCP and UDP

at the transport layer. For the example web server application, Ethernet, ARP, IP

and TCP are used from the Plugs library.
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Chapter 4

Silicon Firewall Hardware Components

In this chapter, the hardware design of the dynamic silicon firewall is presented.

The core hardware components of the design: the Ethernet chip, the CAM, the

soft-core processor, and the firewall HDL module are discussed in detail.

4.1 Ethernet Device

The Ethernet chip being used in this design is the LAN91C111 from Standard Mi-

crosystems corporation. It is a mixed-signal analog/digital device that implements

the Ethernet protocol at transmission rates of 10 or 100 Mbps in either half or full

duplex mode. It has 8kB of buffer memory, which is used for both transmission and

reception. The registers used to configure and utilize the MAC implementation on

the chip are mapped into four banks, each bank holding eight of the 16-bit registers.

4.1.1 Configuration

The LAN91C111 is configured by accessing various registers in the device. In this

application, auto-negotiation is enabled so that the Ethernet device can achieve

the highest performance when it is connected to various networks with differing

speeds. Auto-negotiation on the LAN91C111 can result in 10 or 100 Mbps speeds,

in either full or half duplex mode. Three interrupt sources are also enabled during

configuration. Reception and transmission completions are denoted by an interrupt,

as are Ethernet protocol handler (EPH) errors. EPH errors can occur if the physical

medium is disconnected or if a fatal transmission error occurs, such as if collisions

occur or a transmit buffer under-run occurs.
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4.1.2 Transmission

The first step in Ethernet transmission for the LAN91C111 is to allocate a portion

of the onboard 8kB buffer memory to hold the packet being transmitted. The packet

is then loaded into the allocated memory and assigned a packet number, which is

used to enqueue the packet for transmission. Once the packet number has been

enqueued, the packet will be keyed onto the transmission medium, assuming that

transmissions have been enabled. When the transmission is completed, the first

word in the allocated buffer memory is written with a status word. This status word

contains important information on the most recently transmitted Ethernet frame,

noting if an error occurred or if the transmission succeeded. An interrupt occurs

in either case, however the transmission sequence stops in the case of a failure. In

addition, the packet number is reported if a failure occurred, whereas the number

is moved to a completed transmission queue upon success. When handling the

inevitable transmission interrupt, the status word needs to be examined to determine

success or failure. If the transmission succeeded, then acknowledging the interrupt

is all that is needed to remove the completed packet number from the completed

transmission queue, and to continue further transmissions. If the transmission failed,

the type of error can be determined from the status register. To retransmit a failed

packet, the packet number can be re-enqueued for transmission and it will be sent

out again once transmissions have been re-enabled.

4.1.3 Reception

Assuming the LAN91C111 has been enabled to receive packets, the device will first

request a portion of buffer memory to hold an incoming packet. When a packet

arrives on the interface, it is assigned a packet number and the incoming data is

written to the allocated segment of memory. If an overrun of memory occurs, the

packet is dropped and the allocated memory is released. When reception has fin-

ished, the first word in the allocated buffer memory is written with a status word.

This status word contains information on any errors that may have occurred during
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reception, and denotes if the packet was longer or shorter than a standard Ethernet

frame size. A cyclic redundancy check (CRC) is performed on the received frame,

and if the result shows that no errors are present in the received data, then the asso-

ciated packet number is written to a reception queue and an interrupt occurs. If the

CRC shows that errors exist in the received data, the packet is dropped, the memory

is freed, and no interrupt occurs. When a reception has successfully occurred, the

data can be retrieved from the reception area of buffer memory by using the packet

numbers in the reception queue. As each packet in the reception queue is processed,

commands to remove the packet number from the reception queue and to release the

allocated buffer memory must be issued.

4.2 Content-Addressable Memory

The content-addressable memory (CAM) used in the dynamic silicon firewall holds

32 32-bit words and was created using dual-port random access memory blocks [23].

Since the system is synthesized on an Altera R© Stratix R© FPGA, the Altera R© alt-

syncram megafunction was used for the dual-port memory blocks. The altsyncram

megafunction supports single and dual-port configurations for both random-access

and read-only memory [24]. Each port of the dual-port RAM is configured indepen-

dently to provide the separate write and read functionalities of the CAM.

4.2.1 CAM Writes

Write operations are performed by storing a one-hot encoded value. For example,

take a 16-byte sized CAM. Each byte would be translated into a 256-bit one-hot

word. With 16 of these one-hot encoded bytes, the total storage needed is 4,096

bits. Each write operation toggles one of these bits. The write port of the dual-port

RAM has a single bit as the data input and 12 bits for the address input. These

12 bits are used to access the 4,096 individual bits. The 12-bit address going to the

RAM is made up of the data and address inputs to the CAM. The CAM data byte

and the four bits used to address the 16 CAM locations are concatenated together
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Figure 4.1: CAM made from dual-port RAM: write functionality

to provide the 12-bit address going to the RAM, with the CAM data byte in the

most significant position. Figure 4.1 illustrates an example write operation for the

16-byte sized CAM. In this example, it is desired that a decimal data value of seven

is written to address number two in the CAM. The concatenation shows that the

address presented to the RAM is 114, meaning a one is written to the 114th bit of

the 4,096-bit storage area. This example will be furthered by looking at the CAM

read functionality.

4.2.2 CAM Reads

The port of the dual-port RAM being used for CAM reads, considering our example

16-byte CAM, has a byte-wide address as input and a 16-bit data output. This

equates the 4,096 bits of storage into 256 words, each 16 bits in length. The 16 bits

of output data represent the 16 storage locations in the CAM. The byte-wide RAM
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Figure 4.2: CAM made from dual-port RAM: read functionality

address is connected to the CAM input data byte. When a CAM search is performed,

the data byte used as input results in a 16-bit one-hot output, effectively searching

all 16 storage locations in the CAM. A value of one at any bit in the output denotes

that the input data byte was previously written to one of the 16 storage locations

in the CAM. Figure 4.2 shows an example read operation, assuming that a data

value of seven was previously written to address number two in the CAM. The input

byte has the value of seven, and the 16-bit output has the value one at the third bit

location. This represents address number two, counting up from zero. Looking back

at the write example, we can see this result comes about because a one was written

to the 114th bit of the 4,096-bit storage area. When this storage area is configured

as 256 16-bit words, the 114th bit is the third bit of the seventh word, representing

a value of seven written to address number two.
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4.3 Nios R© Soft-core Processor

The Nios R© central processing unit (CPU) is a soft-core, pipelined, general purpose,

reduced instruction set microprocessor provided by Altera R© for use in PLDs in

either a 16 or 32-bit architecture form [25]. Both variants use a 16-bit instruction

set, which reduces instruction-memory bandwidth requirements. Since the Nios R©

core is configurable, it is possible to add custom logic directly into the arithmetic logic

unit and to add custom instructions to the Nios R© instruction set. The Nios R© CPU

has a five-stage pipeline with separate data and instruction busses in accordance with

the Harvard computer architecture. Each bus follows the Avalon R© bus specification,

which is an Altera R© bus specified for use with the Quartus R© II and SOPC Builder

design tools. The instruction bus master only reads instructions from memory and

provides them to the CPU for execution, it never writes any information to memory.

It can use an optional cache memory if the instruction memory being used has slow

access speeds. The data bus master is a 16-bit wide bus when the 16-bit Nios R©

architecture is used, and is 32 bits wide for the 32-bit architecture. The data master

is used for three purposes. It reads data from memory when the CPU is executing

a load instruction, it writes data to memory when the CPU is executing a store

instruction, and it reads interrupt vectors from the interrupt vector table when an

interrupt occurs.

Altera R© provides a number of soft-core peripherals for use with the Nios R©

CPU. These peripherals exist as HDL modules which integrate with the Altera R©

design tools and allow rapid development of complete systems, since the peripherals

operate on the Avalon R© bus and come with software drivers for use with Nios R©

software programs. Two Nios R© peripherals are used in the dynamic silicon firewall

project.

4.3.1 Nios R© Peripherals

The timer peripheral is essential, as it provides the dynamic aspect of the project.

A timer is used to determine when the IP addresses, used as filtering rules, should
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be purged so that packets received from those addresses are no longer trusted. The

Nios R© timer peripheral is a simple interval timer that is configured and controlled

through six 16-bit registers [26]. Two of these registers are used to hold the value

of the timer period. Another two of these registers can be used to determine the

current value of the timer while it is running. This leaves two registers for status

information and timer control. The status register simply denotes whether the timer

is currently running or if it has reached the period value stored in the timer period

registers. The control register contains four bits of interest. Two bits are used to

start or stop the timer. The start and stop bits are event driven, not value driven,

meaning the start or stop function occurs when written with a one. Writing a zero

to either bit has no effect. The other two bits in the control register are used to

enable timer interrupts and to determine how the timer reacts at the end of each

period. When the interrupt bit is set to one, the timer will generate an interrupt at

the end of every period. Setting this bit to zero ensures no timer interrupts occur.

The continuous bit, when set to one, causes the timer to reload and restart at the

end of every period. When the continuous bit is zero, the timer reloads, but does

not restart at the end of the period. Use of the start bit is then required to restart

the timer. For the dynamic silicon firewall project, the timer generates an interrupt

every two minutes. It is in the interrupt service routine that the purging of IP

addresses occurs. The timer operates in continuous mode, meaning the timer will

simply continue to generate interrupts every two minutes for the periodic removal of

filtering rules.

The parallel input/output (PIO) peripheral is used to provide a memory-mapped

interface between software running on the Nios R© CPU and user-created logic that

is operating external to the system created using SOPC Builder [26]. The PIO port

can be configured for input-only, output-only, or bi-directional accesses between the

internal Avalon R© bus and external logic. Data reads or writes occur through

register accesses, as does configuration. The PIO can be configured to capture edge

transitions and to generate edge or level-triggered interrupts, if desired. For the

dynamic silicon firewall project, PIO peripherals are used to connect the custom
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Verilog packet filter to the Nios R© CPU.

4.4 Verilog Silicon Firewall Module

The system component that is performing the filtering operation on Ethernet packets

is a finite state machine designed as a custom Verilog module. A state diagram for

this finite state machine is shown in figure 4.3. From this diagram, it can be seen that

there are eight states in total, with a number of labeled transitions. A more detailed

state diagram can be seen in figure 4.4. This diagram includes some state information

regarding the last and next states, as well as what functionality is performed in each

state.

The finite state machine is implemented using nested case statements. In the

outer case statement, each case represents one of the finite states, while the inner

case statement has a case select parameter that is incremented on each system clock

cycle to step through command execution and to determine the next state. This

allows timing requirements to be met for any Ethernet chip instructions, since the

system clock speed will always be known and any instructions being executed in the

inner case statement can be ordered to execute in any multiple of clock cycles so

that the LAN91C111 timing requirements are met.

4.4.1 State Machine Entry

The entry point to the state machine occurs when an interrupt is generated by the

LAN91C111 Ethernet chip. The first state (Wait for Interrupt) simply waits for

a new interrupt to occur, and then transitions to the second state (Read Interrupt

Type). A diagram illustrating the flow of the second state is shown in figure 4.5. The

second state begins by storing specific LAN91C111 registers, so that the Ethernet

chip can be restored to pre-interrupt status after the interrupt has been processed.

The next transition is then determined by finding out the cause of the interrupt,

which may be due to reception, transmission, or errors. Ethernet is an unreliable

transmission protocol, meaning that ensuring successful communication is relegated
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Figure 4.3: State Diagram for Silicon Firewall
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Figure 4.4: Detailed State Diagram for Silicon Firewall
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Figure 4.5: Read Interrupt Type State Diagram
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to the higher levels of the network stack, like the transport layer. Therefore, the

error condition is the easiest to deal with, as it simply requires an acknowledgement

of the interrupt and the restoration of the system to allow future transmissions and

receptions. In this case, the second state transitions to the fifth state (Restore Chip

Status).

4.4.2 Transmit Interrupt State

In the case of a transmission interrupt, the second state (Read Interrupt Type)

transitions to the fourth state (Transmit Interrupt). A diagram of the Transmit

Interrupt state is shown in figure 4.6. The purpose of the fourth state is to obtain

and store the destination IP address from the last successfully transmitted Ethernet

packet. First, the packet number of the last transmitted packet must be read from the

transmission-completed queue and written to the packet number register. This makes

the data of the last transmitted packet available at the transmit area in memory.

After a data pointer is set to the location of the status word of the last transmitted

packet, in transmit memory, a data pre-fetch must occur before reading occurs. Due

to the way the LAN91C111 chip was used by Altera R© on their development board,

this pre-fetch requires a wait period of at least 370ns. This wait period is done in

state seven (Data Pre-fetch), so a state transition to state seven occurs whenever

a data pre-fetch is required. After the wait period has passed, a transition from

the seventh state back to the previous state occurs. Once the data pre-fetch has

occurred, the status word of the last transmitted packet can be read. This status

word determines if the last transmission completed successfully. If it did not, and

some error occurred, then the transmit interrupt is acknowledged and a transition

to state five (Restore Chip Status) occurs. If the transmission succeeded, then the

location of the destination IP address to store needs to be determined. The location

of the IP address is different depending on if the network layer protocol of the packet

in question is IP or ARP. The determination of the Ethertype and the corresponding

IP address location is done in state eight (Read Ethertype). A transition to state

eight occurs after it has been determined that the transmission succeeded, and a
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Figure 4.6: Transmit Interrupt State Diagram
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return to state four occurs after the IP address location has been determined. The

data pointer is then pointed to the IP address location and another pre-fetch occurs.

After this pre-fetch has finished, the destination IP can be read. This IP address is

then tested to see if it is already in the CAM, in which case the previous entry simply

needs to be refreshed. If the IP address is not in the CAM, then it is stored as one

of the 32 CAM words, and the entry is marked as fresh. Entries are marked fresh or

stale to provide the dynamic aspect of the project. A 32-bit RAM is used for this,

where the 32 bits represent the 32 CAM addresses. When an entry in the CAM is

written, the corresponding address in the RAM has its data value set to one. A value

of one represents a fresh entry, while a zero represents a stale entry. Entries are only

marked fresh by the Verilog module, and only marked stale by software running on

the Nios R© CPU. Stale entries are periodically removed from the CAM by software.

After the destination IP has been stored and marked fresh, a transition to state

five occurs, where the Ethernet chip is restored to the enable future receptions or

transmissions, and where the system is restored to an initial state where it is ready

to handle future interrupts.

4.4.3 Receive Interrupt State

In the case of a reception interrupt, the second state transitions to the third state

(Receive Interrupt). A diagram of the Receive Interrupt state is shown in figure 4.7.

The purpose of the third state is to obtain the source IP address from each incoming

packet and to compare that address with those stored in the CAM. When matches

are found between source IP and CAM entries, the packet is accepted. However, if

no matching entry is found, then the packet is dropped from the reception queue.

The first step in obtaining the source IP address is to check the status of the last

received packet. The packet at the top of the reception queue is available at the

receive area in memory. As in the case with transmitted packets, a data pointer is

pointed to the location of the status word in the received packet, after which a data

pre-fetch must occur. This requires a transition to state seven for a wait period,

followed by a transition back to the previous state. Once the pre-fetch has finished,
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Figure 4.7: Receive Interrupt State Diagram
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the status word is read and it is determined if any errors occurred during reception.

If there were any reception errors, the packet needs to be dropped from the reception

queue. This action is performed in state six (Release Packet), requiring a transition

from state three to state six. If no errors occurred, then the Ethertype of the packet

must be read, in order to determine the source IP address location. This occurs as in

the transmit interrupt case. A transition to state eight occurs where the Ethertype is

read and the source IP address location is determined. After that, the data pointer

is pointed to the IP address location, and a transition to state seven occurs for a data

pre-fetch, after which the IP address is read. This source IP address is provided to

the CAM, where a search occurs. If the source IP address is found in the CAM, then

the packet will not be filtered-out, and a transition to state five will occur, where

the Ethernet chip is restored to enable future receptions and transmissions. A flag

is stored, denoting whether any higher level entities waiting for incoming packets

need to be notified that a successfully received packet is waiting to be read. In the

case that the source IP address was not found in the CAM, the packet needs to be

dropped from the reception queue. This means a transition will occur from state

three to state six (Release Packet). A diagram of the Release Packet state can be

seen in figure 4.8. In state six, a command that removes the packet at the top of

the reception queue and releases the associated memory is given to the LAN91C111.

The Ethernet chip is polled to determine when these actions have finished. Once

the remove and release command has finished successfully, a transition to state five

occurs, where the Ethernet chip is restored in order to receive and transmit future

packets, and the system is restored to an initial state where it is ready to handle

future interrupts.

4.4.4 Common States

A few of the system states are common to the way both the receive and transmit

interrupts are handled. As mentioned, the Data Pre-fetch state is required in order to

provide a delay while information is read from the packet memory in the LAN91C111.

This is due to the way the Altera R© daughtercard, containing the LAN91C111 chip,
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Figure 4.8: Release Packet State Diagram
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Figure 4.9: Data Pre-fetch State Diagram

was designed. The Altera R© development board communicates with the Ethernet

daughtercard using an asynchronous bus. For asynchronous bus operation, a pin

named ARDY (Asynchronous Ready) is provided on the Ethernet chip to denote

when valid data has been delivered after a pre-fetch operation. However, there is no

connection between the ARDY pin and the daughtercard in the Altera R© implemen-

tation. The LAN91C111 datasheet says that a minimum wait time of 370ns should

be allowed for the data register to fill, if the ARDY pin is not being used on the

chip [27]. This wait period is done in state seven, where 12 clock cycles pass before

returning to the previous state. However, 13 clock cycles pass in total, because an

additional clock cycle is needed to transition into state seven. Since the system clock

has a 30ns period, a total of 390ns pass each time a data pre-fetch occurs. This state

is illustrated in figure 4.9.

Another commonly used state is the Read Ethertype state. It is in this state that

IP address locations are determined. A diagram showing the Read Ethertype state

is shown in figure 4.10. In the transmit interrupt case, the destination IP address

location is of interest, while in the receive interrupt case, it is the source IP address

location which is of interest. In addition to the differences in source and destination

IP locations, the IP address location is different depending on the network layer

protocol in the packet. The first step in determining the IP address location is to

determine the network layer protocol in question. To do this, the previous state

must be inspected to determine whether the data pointer needs to point into receive

or transmit memory. Once this is determined, the data pointer is set to the location
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of the Ethertype and a data pre-fetch occurs. After the pre-fetch has occurred, the

location of the IP address can be determined to be in one of four locations depending

on if the packet was in receive or transmit memory, and if the Ethertype showed that

the network protocol was either IP or ARP. The final step in this state is to return

to the previous state with the IP address location stored.

Four of the states in the system end by transitioning to state five, Restore Chip.

State five is illustrated in figure 4.11. This state is responsible for restoring the

Ethernet chip to a status where it can transmit or receive future packets, and for

restoring the system to an initial state where it is ready to handle future interrupts.

State five is entered into after errors have been found in received or transmitted

packets, or after an interrupt has been handled by the system. The first action in

this state is to restore the registers that were stored in the Read Interrupt state to

their pre-interrupt values. Next, if the flag was set that marks an incoming packet

as one accepted through the firewall, any higher level entities waiting for incoming

packets must be notified. In our test system, this would mean sending an interrupt to

the Nios R© processor to notify it of a waiting packet. Finally, all flags and variables

used in the Verilog module must be re-initialized so that the system is ready to

handle future Ethernet interrupts. Once this is completed, state five transitions

back to state one, where the system awaits a new interrupt.
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Figure 4.10: Read Ethertype State Diagram
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Figure 4.11: Restore Chip State Diagram
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Chapter 5

Silicon Firewall Software Components

The software components of the dynamic silicon firewall will be discussed in this

chapter. These software modules rely upon example software supplied by Altera R©

corporation. The functionality of this example software will be covered, as well as

the changes made to the example which were required for the dynamic silicon firewall

project.

5.1 Altera R© Plugs Ethernet Library

Altera R© provides software libraries to support network connections when using the

Nios R© soft-core processor. These software libraries are collectively known as the

Plugs Ethernet libraries and they essentially are the TCP/IP stack implementation

for the Nios R© processor. Plugs offer similar functionality to the Nios R© proces-

sor, as traditional network sockets do to an operating system running on a general

purpose computer. The Plugs Ethernet libraries support a number of network proto-

cols, including those with which the dynamic silicon firewall concerns itself, namely

Ethernet, IP and ARP. The Plugs source code is abstracted from the underlying

hardware so that it is compatible with differing Ethernet hardware. A change in

hardware simply requires a change in the underlying hardware drivers relied upon

by Plugs to ensure functionality.

5.1.1 Changes to the Plugs Ethernet Library

The software routines supplied by the Plugs Ethernet libraries can be used by includ-

ing the plugs.h header file in any applications designed for the Nios R© processor. The
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majority of the hardware-abstracted routines, defined in plugs.h, are implemented

in the plugs.c file, while the lower-level hardware driver routines for the LAN91C111

Ethernet chip are implemented in the lan91c111.c file. Due to the way various rou-

tines were implemented by Altera R©, a few changes were required in the plugs.c and

lan91c111.c files to ensure the functionality of the dynamic silicon firewall project.

Since both the silicon firewall module and the Nios R© CPU need to communicate

with the LAN91C111 Ethernet chip, it must be ensured that only one of these entities

are in communication with the chip at any one time. This is handled by forcing the

Nios R© processor to request access to the Ethernet chip before communicating with

it. This request is sent to the silicon firewall, and then the firewall module grants

the request when the Ethernet chip is not being used. The time it takes until a

request is answered will depend on which state the firewall module is in when the

request is made. If the firewall module is in the middle of communication with the

Ethernet chip, the request is not granted until the end of communication. Examples

of this delay are the time it would take the Verilog firewall module to handle an

incoming packet, or the time it takes to store the destination IP address of an

outgoing packet. The silicon firewall module checks for any transmit requests from

the Nios R© processor after each packet is handled, meaning the Nios R© processor will

never be completely prevented from communicating with the Ethernet chip. After

the Nios R© CPU has finished communicating with the LAN91C111 it must notify

the silicon firewall module that it no longer requires access to the Ethernet adapter.

Transmit requests needed to be inserted into the plugs.c file in all places where

chip-specific routines from lan91c111.c were being called. The lan91c111.c routines

are accessed through a structure representing the specific Ethernet adapter functions.

This structure is declared in plugs.c but defined in lan91c111.c. Figure 5.1 shows

the declaration and definition of the ns plugs adapter description structure. As can

be seen, all communication between the hardware-abstracted plugs routines and the

LAN91C111-specific routines go through the adapter description structure and the

8 routines contained therein. Of the 8 routines in the adapter description, only 6 are

called in the plugs.c file. The routines nr lan91c111 dump registers and
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Figure 5.1: Plugs Adapter Description
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Figure 5.2: Plugs Example Routine

nr lan91c111 set promiscuous are never called by any routines in plugs.c.

There are a total of 16 calls in plugs.c to the 6 remaining adapter description

routines, requiring each of these calls to be wrapped by code which requests access to

the Ethernet adapter before being called, and code which notifies the Verilog firewall

that communication has finished after the routine returns. Figure 5.2 illustrates an

example routine from plugs.c named nr plugs set mac led which is simply used to

turn the media access control activity light-emitting diode on or off. This simple

routine calls another routine from lan91c111.c, requiring a transmit request before

the set led proc routine is called, and a notification that communication has finished

after the set led proc routine returns.

In addition to the changes made in plugs.c, some modifications were needed in

lan91c111.c. As previously stated, lan91c111.c contains the software routines that are

specific to the actual hardware Ethernet adapter being used. Two important changes

were made in this file. Upon receipt of a packet, the routine where received packets
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are read from the on-chip buffer memory was designed to read multiple queued

incoming packets. Without modification, this would mean that once the packet at

the front of the queue had passed through the firewall, all subsequent packets in the

queue would also pass through by default. This is undesirable, since we want to

ensure that each packet came from a trusted IP address for security purposes. A

modification was made so that packets are individually read from the Ethernet buffer

memory, meaning each packet is tested by the firewall before being read by the Nios R©

software. The other modification required for the silicon firewall to function properly

concerns the LAN91C111 interrupts. By default, the Plugs libraries do not enable

transmit interrupts. Transmissions were conducted by queueing the outgoing packet

without monitoring if the transmission was successful. This is acceptable in the

sense that Ethernet is an unreliable protocol, where any communication reliability

is left to higher level protocols such as TCP. However, the silicon firewall project

depends on knowing when packets have been transmitted, so that it can find and

store the destination IP address. Therefore, the transmit interrupt needed to be

added to the interrupt mask used when the LAN91C111 interrupts are enabled during

initialization of the adapter.

5.2 Project Software

In addition to the Plugs Ethernet library, custom software was needed to manage

three aspects of the project. The dynamic aspect of the project was provided by a

software-controlled timer and associated routines. Also, as previously mentioned, the

Plugs libraries were modified to ensure either the Nios R© CPU or the firewall module

is in sole communication with the Ethernet chip. Some custom software routines

were also needed to accomplish this. Finally, for ease of use in the prototype test

system, initialization of the project components was handled in software. Provisions

to provide for these three additional project components are in the file sfw.c and the

associated header, sfw.h.
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5.2.1 Silicon Firewall Routines

To ensure that IP addresses are not trusted forever, a timer is used to periodically

remove them from the trusted list stored in the CAM. For the prototype test system,

a timer interrupt was generated after each two minute period. While the timer is

a hardware component to the system, software handles the IP removal during an

interrupt service routine. The interrupt service routine is installed when the timer

is started and the Plugs software is initialized. When called, the interrupt service

routine cycles through each address in the RAM, checking whether the associated

data is a one or zero. As previously discussed, a one represents a fresh IP address

is stored in the CAM at the same memory address, while a zero represents a stale

entry. For each RAM address containing a one in data, the interrupt service routine

simply re-writes the data with a zero. In this way, IP addresses are marked stale

every minute, on average, using the two minute timer period. For the RAM entries

denoting stale IP addresses, the matching CAM entry is deleted. Therefore, an IP

address is trusted for an average of three minutes from the time an outgoing packet

is sent; an average of one minute until a CAM entry is marked stale, followed by two

full minutes until it is deleted.

Two software routines are used by the Nios R© CPU to keep track of what piece

of hardware is in communication with the LAN91C111 Ethernet chip. The system

was designed so that the Nios R© processor must request Ethernet access from the

silicon firewall. This request and clear to transmit process is accomplished with two

signals between the Nios R© processor and silicon firewall, tx request and tx allowed.

When the Nios R© processor needs to transmit a packet onto the network, it calls

a routine which sets the tx request signal to one. The silicon firewall checks if a

transmit request has been made on the rising edge of every clock cycle that is not

being used to process an Ethernet interrupt. If a transmit request has occurred, then

the silicon firewall sets the tx allowed signal to one, notifying the Nios R© CPU that

it may communicate with the Ethernet chip. In addition to the two signals used

for negotiating access to the Ethernet chip, another signal is used to keep track of

49



whether the Nios R© processor or the silicon firewall is in communication. This signal

is called the mode signal. The entire system can also be viewed as being separated

into two modes, hardware mode, where the silicon firewall is in communication with

the LAN91C111, and software mode, where the Nios R© processor is in communica-

tion. The mode signal is set by the Nios R© processor, but monitored by both the

Nios R© processor and the silicon firewall. Two software routines are used by the

Nios R© processor to set and get the value of the mode signal. When the Nios R©

processor successfully requests access to the Ethernet chip, it sets the mode signal

to zero, representing software mode. After communication is over, it returns the

signal to one, representing hardware mode. The silicon firewall module monitors the

mode and only processes packets in hardware mode, when it has exclusive access to

the Ethernet chip. Just as the silicon firewall module checks for pending transmit

requests from the Nios R© processor after each packet is processed, the Nios R© pro-

cessor sets the mode signal back to hardware mode after each transmission. This

way, neither the Nios R© processor nor the silicon firewall could block communication

with the Ethernet chip (and associated external network) forever.

To simplify testing of the silicon firewall project, a number of initialization rou-

tines were added and used in the system. As mentioned, a timer initialization routine

was used to install an interrupt service routine for the periodic removal of IP ad-

dresses from the CAM. In addition, RAM and CAM initialization routines were used

for setting up known states for both the RAM and CAM entries. These were used

in testing various aspects of the project and will be covered again when discussing

the testing and results of the project.
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Chapter 6

Testing and Results

The SignalTap R© [20] embedded logic analyzer and Ethereal R© [28] network ana-

lyzer were used to monitor and test the dynamic silicon firewall. Both pieces of soft-

ware will be introduced, and their functionality explained before the testing method

and results of the project are presented.

6.1 Analytical Software Tools

The SignalTap R© embedded logic analyzer is a software tool provided by Altera R©

corporation for use in debugging a system on a programmable chip created using

the Quartus R© II software. It allows engineers to monitor all signals in the system

in real time during operation. Since the SignalTap R© logic analyzer is a soft-core

tool, multiple instances may be used if desired, each monitoring a different clock

source in the system. Furthermore, it is capable of monitoring up to 1,024 signals

while taking up to 128 thousand samples per signal. SignalTap R© also supports

up to ten trigger levels to denote when the capture of data begins. Since each

SignalTap R© instance resides on the same PLD as the system being monitored, all

of the above features are dependent upon the resources available on the device being

used. Smaller logic devices may not have enough memory to support the full amount

of signals or samples. As samples are taken, the information is stored on the PLD

and then streamed via a communication cable to the Quartus R© II software running

on a computer. Quartus R© II then displays the waveform output for each signal

captured. The sampled data can also be exported in various formats for verification

using other software tools.
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Ethereal R© is an open-source software tool used to monitor network traffic. It

can capture packets directly off of an Ethernet network, or open a set of previously

saved network packets, and then display detailed information about the data con-

tained in those packets. It should be noted that Ethereal R© supports a few data link

layer protocols other than Ethernet, but since this project concerns itself solely with

Ethernet, the functionality of Ethereal R© on other networks will not be discussed.

Ethereal R© can dissect 750 higher-level network protocols (application, transport,

etc.), displaying the bytes of the various packet fields in a graphical user interface. It

also has the capability to sort a set of captured packets based on packet fields, such

as TCP ports or the IP addresses. The real-time capture of data off of a functioning

network is accomplished by monitoring all network packets seen by the network in-

terface in the computer on which Ethereal R© is running. This requires the network

adapter to be in promiscuous mode, and that the computer running Ethereal R© is

not on a switched network. Switched networks direct traffic destined for a particular

computer to the specific portion of the network containing the destination. Non-

switched networks send all data packets to each adapter on the network, relying on

each network adapter to determine if the data is destined for itself. Promiscuous

mode allows the adapter to see packets that are not destined for its own particular

MAC address. Therefore, a combination of a non-switched network and a promiscu-

ous mode adapter is needed to monitor all traffic on a network.

6.2 Testing Method

To test the functionality of the dynamic silicon firewall, a real-world situation (some

application layer protocol) needed to be chosen. Web browsing was chosen because

Altera R© provides a sample web server application for the Nios R© processor, and be-

cause the HyperText Transfer Protocol (HTTP) is a simple application layer protocol

which is extensively used by most people who have internet access.

A local area network (LAN) was set up, containing the Stratix R© development

board and multiple computers. The web server application was set up to run on
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the Nios R© processor, serving HTTP requests to the computers on the network.

The dynamic silicon firewall was used to protect the web server’s Ethernet interface

from unwanted access. As previously mentioned, software routines were used during

initialization to specify some IP addresses granted initial access, since the dynamic

silicon firewall only accepts incoming packets from IP addresses to which packets

have previously been transmitted. Due to the dynamic aspect of the project, the IP

addresses written to the CAM during start up are trusted for an average of three

minutes unless communication during this period continues.

To test basic functionality, computers on the LAN attempted to access the web

server running on the development board, while the Ethernet traffic was monitored

using Ethereal R©. In this way, it could be seen if the computers whose IP addresses

were entered into the CAM during initialization received access, as they should, while

checking whether all requests from other computers were ignored. The dynamic

aspect of the project could also be tested using this set up, by checking whether

continued communication between the web server and trusted computers resulted in

continued access. Finally, sending another HTTP request after a period of inactivity,

and monitoring the network traffic, allowed verification of the IP removal from the

trusted list stored in the CAM.

Running the above tests while monitoring on-chip operation using SignalTap R©

provided a means for verification of timing requirements and state machine opera-

tion. SignalTap R© triggers could be set up for each state of the finite state machine,

allowing the capture and verification of signals between the Nios R© processor, dy-

namic silicon firewall HDL module and the LAN91C111 Ethernet chip.

6.3 Results

The basic tests of functionality showed that the dynamic silicon firewall operated

as intended. Using the testing method described above, it was seen that the IP

addresses entered into the CAM during initialization were trusted as intended. The

Ethernet packets transferred between a trusted host and the Stratix R© development
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Figure 6.1: Host Communication Succeeding

board were captured using Ethereal R© and are presented as an example in figure 6.1.

In the example shown, the host computer has an IP address of 192.168.129.58, while

the development board has the IP address 192.168.129.126, which can be translated

to the domain name dhcp6.sask.trlabs.ca. The first packet sent from the host is an

ARP request, because the host needs to know the MAC address of the development

board for communication to succeed. Since the host is trusted, an ARP reply is sent

out, followed by the expected TCP handshake and HTTP request packets. The web

server has the capability to access and transmit web pages stored in flash memory

on the development board, however, this feature was not utilized due to hardware

problems resulting from the way flash memory was connected to the FPGA on the

development board. A simple hard-coded message is delivered in response to all

web page requests successfully delivered to the development board. This is shown

figure 6.2, which is a screen capture of the web browser running on the trusted host
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Figure 6.2: Host Web Browser Received Message

computer.

As designed, the dynamic silicon firewall prevented untrusted hosts from commu-

nicating with the development board. Also, trusted hosts were purged after a period

of inactivity as expected. Ethernet traffic for the case of a previously trusted host

attempting to contact the development board after a period of inactivity is shown

in figure 6.3. In this case, because the computer making the HTTP request is not

trusted, the dynamic silicon firewall drops the packets containing the ARP request.

All that is seen in the captured packet data are two unanswered ARP requests from

the host. There is no response from the web server, since the packets were dropped,

and thus the host making the web request can not even tell that the development

board is connected to the network. The host web browser sent two ARP requests

before timing out and reporting an error, as seen in the web browser image shown

in figure 6.4.
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Figure 6.3: Host Communication Failing

The SignalTap R© logic analyzer was used to capture a set of signal samples

for each state of the dynamic silicon firewall. These samples were then displayed

in Quartus R© II as a set of waveforms, allowing verification of the operation of

each state. Figure 6.5 shows sample waveforms from the reception interrupt state.

The signals were sampled on the rising edge of the system clock, with each clock

cycle numbered across the top of the image, starting from the initial trigger point.

The command cycle and timing cycle signals show the state of the system, while

the enet Data and enet Address signals show the communication lines between the

dynamic silicon firewall and the Ethernet chip. While testing, additional signals

were captured to show the operation of the CAM in the system, as well as the timer

function and IP address purge.

The SignalTap R© waveform data also offered a way to ensure that all timing

requirements were met in the project. The LAN91C111 data sheet [27] illustrates
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Figure 6.4: Host Web Browser Timed Out

a number of setup and hold times required for use of the chip. These timing re-

quirements are shown in figure 6.6. Since the system clock operates using a 30ns

period, the timing requirements of the Ethernet chip were easily met when signals

were changed once per clock cycle. As an example, for the dynamic silicon firewall

to read information from the LAN91C111 it is required that a register address is

set, then the Ethernet read line must be dropped low, held low for 15ns, after which

the data can be read from the Ethernet chip. Each of these operations are done in

one 30ns clock cycle, satisfying the timing requirements for the LAN91C111 since

the greatest requirement is a hold time of 15ns. The timing for communication with

the Ethernet chip was verified using SignalTap R©, which could show that each of the

LAN91C111 signal lines were changed in compliance with the specifications laid out

in the data sheet. Also discussed in the LAN91C111 data sheet is a wait period of

370ns which is required between the time the pointer register is directed to buffer
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Figure 6.5: SignalTap R© Waveform Data

memory, and when that data can be accessed. Since the system clock period is 30ns,

13 clock cycles were used, resulting in a wait period of 390ns, complying with the

370ns requirement. This wait period for the data pre-fetch is required due to the

fact that the asynchronous ready signal of the LAN91C111 was not available in the

implementation used on the Stratix R© development board, and therefore could not

be monitored by the system to determine when the data pre-fetch finished and valid

data was available.

Finally, it is important that the dynamic silicon firewall does not negatively

impact network transmission speeds in any great way. The LAN91C111 chip is

capable of 100Mbps transfer speeds, and the dynamic silicon firewall project was

designed while keeping in mind that these speeds should not be hampered due to

the firewall processing delay. By counting the number of 30ns clock cycles required

for a transmit or receive interrupt to be processed by the dynamic silicon firewall, it

can be shown that 2.91µs is the maximum amount of time a packet will be delayed

by processing. This is the case for a successfully transmitted packet, though the
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Figure 6.6: LAN91C111 Timing Requirements

case for a received packet from an untrusted source is roughly the same, requiring

2.85µs to process. Three data pre-fetch wait periods of 370ns each are required in

the above two cases, making up about a third of the maximum processing delay. As

previously mentioned, the data pre-fetch delay is constant due to the development

board design, and a reduction could be made using a different hardware design where

the asynchronous ready signal is available to the dynamic silicon firewall. This aspect

of the project will be discussed further in the future work section.
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Chapter 7

Summary, Conclusion and Future Work

This thesis has sought to address some of the network security issues prevalent in

home networking by improving upon network firewall technology. Current firewalls

targeted to the home user often require knowledge regarding the underlying network

communication protocols to set up and manage. Furthermore, they usually do not

have a default setting which works for the majority of home users. The dynamic

silicon firewall was designed to mitigate these two main problems. In this chapter,

a summary of the entire thesis will be presented, followed by the conclusions drawn

from the work, and suggestions on the direction future work should take.

7.1 Summary

This thesis began by offering introductory information on the functionality of com-

puter networking and the communication protocols used every day in home networks.

The problem of network security was then presented by looking at how the majority

of common computer intrusions begin and the security strategies which have been

developed to counter these network attacks. Background on embedded systems, and

system on a programmable chip design was then offered before introducing the dy-

namic silicon firewall project as an embedded system created using system on a chip

design tools.

After the introductory and background information had been presented, chapter

4 began by discussing the core hardware components of the dynamic silicon firewall.

These components consist of the Ethernet controller, the CAM, the Nios R© soft-

core embedded processor, and the Verilog-synthesized firewall module. The rest of
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that chapter discussed the design and functionality of the custom HDL module, de-

scribed as a finite state machine. This illustrated the manner in which information

flows through the system by explaining the interaction between the Nios R© pro-

cessor, the Verilog filter module and the Ethernet controller. Chapter 5 completed

the picture of the entire system by describing the software used in the design. The

software consisted of both custom code, and code which was provided by Altera R©

corporation and modified for use with this design. The custom software components

were given the responsibility of initializing the system and providing the dynamic

aspect to the project. In chapter 6, two software analytical tools were introduced,

followed by a discussion on how these tools could be used to monitor the dynamic

silicon firewall system to prove functionality. The testing method of using the system

to protect a simple web server was presented, followed by the results of monitoring

the testbed.

7.2 Conclusion

The goal of this research was to investigate how an embedded hardware firewall

could improve upon existing firewall technology. Furthermore, the goal was set to

simplify the administration of the firewall for home users who are naive to network

technology, while maintaining the security benefits provided by firewalls.

Test results have shown that the dynamic silicon firewall filters Ethernet network

traffic at the network layer. Administration has been minimized by monitoring the

user’s network activity and basing the filter rules on whom the user chooses to

contact. The ability to dynamically trust selected network hosts for limited periods

of time adds a significant layer of protection from remote network attacks.

An analysis of the processing delay has shown that the dynamic silicon firewall

requires approximately 3µs to filter a network packet. This value is dependent on

the clock speed of the system, which was 33MHz for the system under test. The

3µs value represents a threefold increase in speed over the only previous embedded

hardware firewall found in research, and a hundredfold increase in speed over a
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software firewall run on the Nios R© embedded processor [1]. By increasing the clock

speed, the dynamic silicon firewall should easily scale to network transfer speeds

above the tested 100Mbps link speed.

It should be noted that there is an embedded hardware firewall on the market,

intended for large corporate networks [2]. Unlike the dynamic silicon firewall, the

3Com R© embedded hardware firewall uses filtering rules administered from a central

location. This affords a central point of failure, which would lead to a network-wide

compromise of security if the central computer administrating the filtering rules

was accessed by unauthorized individuals. Also, since the filtering rules are not

determined by user activity, a significant amount of setup is required. However,

since this product is intended for corporations, the setup and maintenance required

would be handled by information technology professionals employed by corporations.

The 3Com R© embedded hardware firewall is protected intellectual property, so no

direct comparisons in performance could me made, and since it is targetted toward a

different audience than the dynamic silicon firewall, it will not be discussed further.

The design of the dynamic silicon firewall required 138kB of memory and 3339

logic elements when synthesized on the development board. This represents a small

amount of resources, 13% of the logic elements and 7% of the memory available

on the Stratix R© EP1S25F1020C5 FPGA. Therefore, if this design were developed

as an ASIC product, it would result in a small device. Also, this design would be

efficiently incorporated into an existing ASIC due to the small size of the dynamic

silicon firewall.

This research has found a number of ways to improve upon existing network secu-

rity technology [29]. This project filters network packets using dedicated hardware.

A host computer protected by the dynamic silicon firewall instead of a software fire-

wall would not experience general performance degradation during stressful network

conditions such as those experienced during a denial of service attack. A software

firewall running on a general purpose computer would be using the host processor’s

resources to filter packets. Secondly, the dynamic silicon firewall is designed to be

in each host on a network, so there is no large concentration of financial resources
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required to manage a large network. This also eliminates the single point of failure

problem, which could render a large number of systems unprotected if a network

were only protected by a single hardware firewall. Another advantage to embedding

the dynamic silicon firewall as close to the ethernet controller as possible is the re-

duction in queueing delay, which occurs when packets are concentrated at a single

exit point to the external network because packet filtering requires time. Finally,

since the firewall rules are dependant upon network use, there is no need to learn

packet filtering syntax before being able to use the firewall. The dynamic silicon

firewall offers a simple network security solution for non-tech-saavy internet users.

7.3 Future Work

Though the overall goals of this research were met, there are a number of improve-

ments that would be required before this project could be included as part of a

larger device. To be included on an Ethernet network interface card for use with

a general purpose home computer, a bus interface and associated operating system

drivers would be needed. When designing any future hardware boards containing

the LAN91C111 and the dynamic silicon firewall, the ARDY signal should be used

in conjunction with the asynchronous bus interface to the Ethernet chip. This would

reduce the time it takes to filter a network packet by roughly one-third. Care should

also be taken to limit the reliance of the final design on any software. For example,

the dynamic aspect of the project is currently provided by a hardware timer whose

interrupts trigger a software routine to remove IP addresses from CAM. If the Nios R©

processor were hacked, a malicious programmer could potentially cause early removal

of IP addresses, leading to a denial of service attack. This is quite unlikely, since

the Nios R© processor does not run a real-time operating system, however the timer

interrupt could be fed into another custom Verilog module, which then does the IP

address removal. This would limit the ability to remove any individual IP addresses

early, and further isolate the embedded firewall from the general purpose computer.

The dynamic silicon firewall could also be tailored for use with other systems,
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such as cellular phones or other network-capable devices. Viruses and malicious

programs have been written to prove that portable network devices, such as cellular

phones and personal digital assistants (PDAs), are susceptible to network attack.

Since these devices have limited resources, using a software firewall to protect them

would impact device performance. Including the dynamic silicon firewall in a PDA

would be an effective solution to the problem of mobile device network security. This

would likely require a number of changes to the dynamic silicon firewall system to

operate with any wireless networking protocols being used by the device.

Administrative capabilities could be developed for information technology experts

that may be using the dynamic silicon firewall as part of a larger layered network

security approach. In this case, the dynamic silicon firewall would be distributed in

each computer in a corporate network, and there would still likely be a large gateway

firewall separating the internal network from the internet. Currently, packets which

are filtered out by the dynamic silicon firewall are simply dropped. If this project was

used as part of a large corporate network, it would be desirable to keep information

such as how many packets have been dropped and where those dropped packets

originated. An administrative access point could be created so that information

technology experts could then retrieve this stored data for use in improving overall

network security. This would also open up the ability to distribute or synchronize

the firewall filtering rules amongst the different dynamic silicon firewalls in the local

network.

Changes to the dynamic silicon firewall could be made to add filtering capabilities

to different network layers. For example, the same technology being used for IP

address filtering could be used for port filtering at the transport layer or MAC

address filtering at the data link layer. This would offer additional capabilities, like

restricting specific network applications such as instant messaging or web browsing.

Due to the parallelism afforded by use of content-addressable memory, there would

be little additional delay in adding these features, at the expense of a larger overall

design in terms of the logic elements required to synthesize the project.

Finally, stateful packet filtering could be investigated to provide additional func-
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tionality. Stateless packet filters make filtering decisions by comparing the filter rules

with the static header information contained in each network packet. Stateful packet

filters add information based on communication history to the filtering decision. This

could add a layer of protection when connection-oriented network protocols are in

operation. When stateful communication is initiated with an outgoing packet, infor-

mation about the source and destination sockets would be stored. Incoming packets

would then be inspected to examine the connection state before a filtering decision

would be made. This is needed for connection-oriented protocols, such as TCP, when

connection state needs to be maintained, regardless of how often data packets are

sent and received. In the current design of the dynamic silicon firewall state is not

maintained, and if there is no constant communication, then the connection is bro-

ken when the IP addresses are flushed from the CAM. To implement stateful packet

filtering, additional information would need to be stored, such as transport layer

ports, connection state for connection-oriented protocols, and a time-stamp for each

individual entry. This way, each entry would only be removed after the connection

was closed, or after an individual pre-determined time interval had passed.
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Appendix A

Verilog Code

/∗
sfw . v − S i l i c o n F i r ewa l l
Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

module sfw ( c lk , enablen , r e s e t , nedk int , tx r eque s t ,
n i o s n edk i o r , n ios nedk iow , n ios nedk addr ,
n ios cam pattern , n i o s cam ct l , n i o s b i d i r d a t a ,
n i o s r am ct l , ram data out , enet data , mode in , tx a l lowed
, en e t i o r , enet iow , enet addr , n i o s nedk in t , l e d s ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Inputs
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

input c l k ; // system c l o c k
input r e s e t ; // r e s e t s i g n a l
input enablen ; // enab l e a c t i v e low s i g n a l
input mode in ; // nios mode s i g n a l
input nedk int ; //91c111 i n t e r r u p t s i g n a l
input t x r eque s t ; // nios r e qu e s t i n g i t wants to t ransmi t
input n i o s n edk i o r ; // nios nedk read pu l s e
input n ios nedk iow ; // nios nedk wr i t e pu l s e
input [ 2 : 0 ] n ios nedk addr ; // nios nedk address
input [ 3 1 : 0 ] n io s cam patte rn ; // nios cam pa t t e rn
input [ 7 : 0 ] n i o s c am c t l ; // nios cam address , enab l e and

read or wr i t e command
input [ 1 0 : 0 ] n i o s r am c t l ; // nios ram enable , addre s se s

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ B i d i r e c t i o n a l po r t s
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

inout [ 1 5 : 0 ] n i o s b i d i r d a t a ; // enet data to n ios
inout [ 1 5 : 0 ] enet data ; //91c111 data

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Outputs
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

output e n e t i o r ; //91c111 read enab l e ( a c t i v e low )
output enet iow ; //91c111 wr i t e enab l e ( a c t i v e low )
output [ 2 : 0 ] enet addr ; //91c111 address
output n i o s n edk i n t ; // i n t e r r u p t n ios t h i n k s i s from nedk
output tx a l l owed ; // a l l ow nios to t x
output ram data out ; //ram output f o r n ios

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Outputs f o r t e s t i n g purposes
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

output [ 1 : 0 ] l e d s ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Reg i s t e r s f o r Outputs
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

reg en e t i o r , enet iow ;
reg [ 2 : 0 ] enet addr ;
reg n i o s n edk i n t ;
reg tx a l l owed ;
reg ram data out ; //ram output f o r n ios
reg [ 1 : 0 ] l e d s ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Reg i s t e r s f o r l o c a l use
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

reg [ 3 1 : 0 ] cam pattern ; // pa t t e rn to wr i t e or read in CAM
reg [ 4 : 0 ] wraddr e s s s i g ; //cam wr i t e address
reg cam cmd ; //cam read when 0 , wr i t e when 1
reg cam en ; //cam c l o c k enab l e
reg cam mfound d , cam mfound s ; //cam match found
reg wrbusy s ig d , wrbusy s i g s ; //cam wr i t e busy ( might not

use )

reg [ 1 5 : 0 ] data to 91c111 ; // sfw data to enet
reg [ 1 5 : 0 ] data from 91c111 ; // sfw data from enet

reg [ 2 : 0 ] command cycle ; //hw mode s t a t e s
reg [ 4 : 0 ] t im ing cy c l e ; // c l o c k c y c l e counter f o r s t a t e s
reg a rp rx tx ; // rx or t x occur ing f o r ARP hand l ing
reg i r q i n p r o g r e s s ; //1 i f an i r q i s in progre s s
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reg [ 1 5 : 0 ] saved bank ; // saved bank s e l e c t r e g i s t e r
reg [ 1 5 : 0 ] s aved po in t e r ; // saved po in t e r r e g i s t e r
reg [ 1 5 : 0 ] ISR data ; // i n t e r r u p t r e g i s t e r
reg [ 5 : 0 ] las t packet num ; //number o f l a s t t ransmi t t ed

packe t
reg [ 1 : 0 ] wa i t r e tu rn ; // r e g i s t e r f o r r e tu rn ing from wai t

s t a t e
reg sw mode f lag ; // f l a g to t e l l s fw to turn over to Nios

reg [ 2 : 0 ] s fw nedk addr ; // sfw address f o r enet
reg s fw nedk io r , s fw nedk iow ; // sfw nedk read/ wr i t e pu l s e s

reg sfw cam cmd , sfw cam en ; // sfw cam enab l e and read or
wr i t e command

reg [ 3 1 : 0 ] s fw cam pattern ; // sfw cam pa t t e rn
reg [ 4 : 0 ] s fw wradd r e s s s i g ; // sfw cam wr i t e address
reg [ 4 : 0 ] maddress d , maddress s ; //cam match address

reg sfw ram wren ; // sfw ram wr i t e enab l e
reg [ 4 : 0 ] s fw ram wraddress ; // sfw ram wr i t e address
reg ram wren ; //ram wr i t e enab l e
reg [ 4 : 0 ] ram wraddress ; //ram wr i t e address
reg r am wr i t e r equ i r ed ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ parameter i ze 91c111 r e g i s t e r IDs so the code
∗ i s more readab le , or at l e a s t more ”Altera− l i k e ”
∗ more in format ion on 91c111 r e g i s t e r s in da ta shee t
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

parameter mmu reg = 3 ’ d0 ;
parameter pnr reg = 3 ’ d1 ;
parameter f i f o r e g = 3 ’ d2 ;
parameter po i n t e r r e g = 3 ’ d3 ;
parameter data1 reg = 3 ’ d4 ;
parameter data2 reg = 3 ’ d5 ;
parameter i n t e r r up t r e g = 3 ’ d6 ;
parameter b s r r e g = 3 ’ d7 ;

// Hardware/ Sof tware Mode Parameters
parameter SW = 1 ’ d0 ;
parameter HW = 1 ’d1 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ The Core
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

always @ (posedge c l k )
begin

i f ( enablen ) // f i r e w a l l d i s a b l e d
begin

tx a l l owed <= 1 ;
n i o s n edk i n t <= nedk int ;
i r q i n p r o g r e s s <= 0 ;
sw mode f lag <= 0 ;
command cycle <= 0 ;
t im ing cy c l e <= 0 ;
s fw nedk i o r <= 1 ;
s fw nedk iow <= 1 ;
s fw cam pattern <= 0 ;
sfw cam en <= 0 ;
sfw cam cmd <= 0 ;
sfw ram wren <= 0 ;
s fw ram wraddress <= 0 ;
l e d s [ 1 ] <= 1 ;
l e d s [ 0 ] <= 1 ;

end

else i f ( ( nedk int==1)&&( i r q i n p r o g r e s s==0)&&(mode in==HW)
&&(tx a l l owed==0)&&(n i o s n edk i n t==0))

//new i n t e r r u p t case occurs when e t h e rne t i n t e r r u p t occurs ,
t h e r e i s no e t h e rne t i n t e r r u p t a l r eady be ing processed ,
the system i s in hardware mode , and no communication i s
a l l owed between Nios and 91c111

begin // s t a r t p roce s s ing e t h e rne t i n t e r r u p t in case
s ta tements

command cycle <= 0 ;
t im ing cy c l e <= 0 ;
i r q i n p r o g r e s s <= 1 ;
l e d s [ 0 ] <= 1 ;

end
else i f ( i r q i n p r o g r e s s==0)
begin

// we ’ re doing nothing , n e i t h e r a new int , nor one in
progress , t h i s may mean so f tware mode , or communication i s
a l r eady a l l owed between Nios and 91c111

// l e t ’ s see i f Nios wants to t a l k to the 91c111 , i f so , l e t
i t , s ince we are doing noth ing wi th the 91c111
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i f ( ( t x r eque s t==1)&&(mode in==HW) )
tx a l l owed <= 1 ;

else
tx a l l owed <= 0 ;

// i f we ’ re a l r eady in so f tware mode , then the Nios i s
handl ing , or has handled , the most recen t i n t e r r u p t from
the SFW, make sure we don ’ t ask the Nios to check f o r
i n t e r r u p t s n e e d l e s s l y

i f ( mode in==SW)
n i o s n edk i n t <= 0 ;

// prepare system fo r next 91c111 i n t e r r u p t
command cycle <= 0 ;
t im ing cy c l e <= 0 ;
l e d s [ 0 ] <= 0 ;

end
else // i n t in progress , so handle i t
begin
case ( command cycle )

// save ch ip s t a tu s , read i n t e r r u p t to determine next s t a t e
0 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : s fw nedk addr = bs r r e g ; // ge t bank s e l e c t r e g i s t e r
2 : s fw nedk i o r = 0 ;
// 3 : wai t f o r v a l i d read

4 : begin
s fw nedk i o r = 1 ;
data to 91c111 = 16 ’ d2 ; //go to bank 2
saved bank = data from 91c111 ; // save bsr
end

5 : s fw nedk iow = 0 ; // wr i t e b s r to bank 2
6 : s fw nedk iow = 1 ;
7 : s fw nedk addr = po i n t e r r e g ; // ge t po in t e r r e g i s t e r
8 : s fw nedk i o r = 0 ;
// 9 : wai t f o r v a l i d read

10 : begin
s aved po in t e r = data from 91c111 ; // save po in t e r
s fw nedk i o r = 1 ;
end

11 : s fw nedk addr = i n t e r r up t r e g ;
12 : s fw nedk i o r = 0 ;
// 13: wai t f o r v a l i d read
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14 : begin
ISR data = data from 91c111 ; // read i n t r e g i s t e r
s fw nedk i o r = 1 ;
end

15 : i f ( ISR data [ 5 : 4 ] == 2 ’ b11 ) // both overrrun & EPH
in t s

begin
data to 91c111 = { ISR data [ 1 5 : 8 ] , 8 ’ h30 } ;
s fw nedk iow = 0 ; //ack the eph and overrun i n t s
end

else i f ( ISR data [ 4 ] == 1 ’ b1 ) // j u s t overrrun i n t
begin
data to 91c111 = { ISR data [ 1 5 : 8 ] , 8 ’ h10 } ;
s fw nedk iow = 0 ; //ack the overrun i n t
end

else i f ( ISR data [ 5 ] == 1 ’ b1 ) // j u s t EPH in t
begin
data to 91c111 = { ISR data [ 1 5 : 8 ] , 8 ’ h20 } ;
s fw nedk iow = 0 ; //ack the eph i n t
end

else i f ( ISR data [ 0 ] == 1 ’ b1 ) // r e c i e v e i n t
begin
command cycle = 1 ;
t im ing cy c l e = 0 ;
end

else i f ( ISR data [ 1 ] == 1 ’ b1 ) // transmi t i n t
begin
command cycle = 2 ; // t x i n t e r r u p t
t im ing cy c l e = 0 ;
end

else command cycle = 3 ; //no int , r e s t o r e ch ip
16 : begin // shou ld on ly g e t pas t 15 i f eph or ovrn
s fw nedk iow = 1 ;
t im ing cy c l e = 0 ;
i f ( ISR data [ 0 ] == 1 ’ b1 ) // r e c i e v e i n t
command cycle = 1 ;

else i f ( ISR data [ 1 ] == 1 ’ b1 ) // transmi t i n t
command cycle = 2 ; // t x i n t e r r u p t

else // no i n t
command cycle = 3 ; // r e s t o r e ch ip

end
endcase

end

// read r e c i e v ed packe t s t a t u s
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1 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : begin
s fw nedk addr = po i n t e r r e g ;
data to 91c111 = 16 ’hA000 ; // read from s t a r t rx area
end

2 : s fw nedk iow = 0 ;
3 : s fw nedk iow = 1 ;
4 : begin
s fw nedk addr = data1 reg ; //where to ge t s t a t u s from
command cycle = 5 ; // wai t f o r p r e f e t c h
t im ing cy c l e = 0 ;
wa i t r e tu rn = 0 ;
end

5 : s fw nedk i o r = 0 ;
// 6 : wai t f o r v a l i d read

7 : begin
i f ( data from 91c111 & 16 ’hAC00) // i f t h e r e were ANY

rcv e r ro r s
begin
command cycle = 4 ; // r e l e a s e packe t
t im ing cy c l e = 0 ;
end

else
begin
command cycle = 6 ; // read e t h e r t y p e
t im ing cy c l e = 0 ;
a rp rx tx = 0 ;
end

s fw nedk i o r = 1 ;
end

8 : s fw nedk iow = 0 ; // wr i t e to po in t e r address
9 : s fw nedk iow = 1 ;
10 : begin
s fw nedk addr = data1 reg ;
command cycle = 5 ; // wai t f o r p r e f e t c h
t im ing cy c l e = 0 ;
wa i t r e tu rn = 1 ;
end

11 : s fw nedk i o r = 0 ;
// 12: wai t f o r v a l i d read

13 : begin
s fw cam pattern [ 3 1 : 1 6 ] = data from 91c111 ; //upper ip

word

74



s fw nedk i o r = 1 ;
end
// 14: s fw nedk addr = da ta2 reg ;

15 : s fw nedk i o r = 0 ;
// 16: wai t f o r v a l i d read

17 : begin
s fw cam pattern [ 1 5 : 0 ] = data from 91c111 ; // lower ip

word
s fw nedk i o r = 1 ;
sfw cam cmd = 0 ; // s e t cam to read
end

18 : sfw cam en = 1 ; // enab l e cam c l o c k s
20 : begin
i f ( ( cam mfound d==1) | ( cam mfound s==1))
begin
// prepare turn over to n ios
sw mode f lag = 1 ;
command cycle = 3 ; // r e s t o r e ch ip s t a t u s
t im ing cy c l e = 0 ;
end

else
begin
command cycle = 4 ; // r e l e a s e packe t
t im ing cy c l e = 0 ;
end

sfw cam en = 0 ; // d i s a b l e cam
end

endcase
end

// read transmi t packe t number
2 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : s fw nedk addr = f i f o r e g ; // ge t t x pk t num
2 : s fw nedk i o r = 0 ;
// 3 : wai t f o r v a l i d read

4 : begin
l a s t packet num = data from 91c111 [ 5 : 0 ] ;
s fw nedk i o r = 1 ;
end

5 : begin
data to 91c111 = {10 ’d0 , las t packet num [ 5 : 0 ] } ;
s fw nedk addr = pnr reg ;
end
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6 : s fw nedk iow = 0 ; // wr i t e pk t num to pnr
7 : s fw nedk iow = 1 ; // ge t t x s t a t u s
8 : begin
s fw nedk addr = po i n t e r r e g ;
data to 91c111 = 16 ’ h2000 ; // s e t po in ter , read t x area
end

9 : s fw nedk iow = 0 ;
10 : s fw nedk iow = 1 ;
11 : begin
s fw nedk addr = data1 reg ;
command cycle = 5 ; // wai t f o r p r e f e t c h
t im ing cy c l e = 0 ;
wa i t r e tu rn = 2 ;
end

12 : s fw nedk i o r = 0 ;
// 13: wai t f o r v a l i d read

14 : begin
i f ( data from 91c111 [ 0 ] == 1 ’ b0 ) // t x f a i l e d
begin
sfw cam cmd = 0 ; //make sure cam i s in read mode
t im ing cy c l e = 28 ; //do the t x i n t ack ( wi th cam read )
end

r am wr i t e r equ i r ed = 0 ;
s fw nedk i o r = 1 ;
end

15 : begin // read t x e t h e r t y p e
command cycle = 6 ;
t im ing cy c l e = 0 ;
a rp rx tx = 1 ;
end

// put ip in t o cam fo r t x
16 : s fw nedk iow = 0 ; // t x succeeded ge t ip
17 : s fw nedk iow = 1 ;
18 : begin
s fw nedk addr = data1 reg ;
command cycle = 5 ; // wai t f o r p r e f e t c h
t im ing cy c l e = 0 ;
wa i t r e tu rn = 3 ;
end

19 : s fw nedk i o r = 0 ;
// 20: wai t f o r v a l i d read

21 : begin
s fw cam pattern [ 3 1 : 1 6 ] = data from 91c111 ; //upper word
s fw nedk i o r = 1 ;
end
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// 22: s fw nedk addr = da ta2 reg ;
23 : begin
s fw nedk i o r = 0 ;
sfw cam cmd = 0 ; // ensure cam read mode
end
// 24: wai t f o r v a l i d read

25 : begin
s fw cam pattern [ 1 5 : 0 ] = data from 91c111 ; // lower word
s fw nedk i o r = 1 ;
end

26 : sfw cam en = 1 ; // enab l e cam c l o c k to check i f i p i s
in cam

28 : begin
i f ( ( cam mfound d==0)&(cam mfound s==0)) //IP not in

CAM
begin
//we need to put IP in cam
sfw cam cmd = 1 ; // wr i t e to cam
// pu t t i n g IP in RAM cache at same address as CAM
s fw ram wraddress = wraddr e s s s i g ;
r am wr i t e r equ i r ed = 1 ;
end

else //IP in CAM
begin
i f ( cam mfound d==1)
begin
// s e t ram address to match address o f CAM
s fw ram wraddress = maddress d ;
r am wr i t e r equ i r ed = 1 ;
end

end
end

29 : begin
s fw nedk addr = i n t e r r up t r e g ; // goto i n t reg to ack TX

in t
data to 91c111 = { ISR data [ 1 5 : 8 ] , 8 ’ h02 } ; //ack TX in t
end

30 : begin
sfw cam en = 0 ; //needed max 2 c l o c k c y c l e s i f a cam

wr i t e
s fw nedk iow = 0 ;
i f ( r am wr i t e r equ i r ed==1)
sfw ram wren = 1 ;

end
31 : begin
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s fw nedk iow = 1 ;
sfw ram wren = 0 ;
sfw cam cmd = 0 ;
// prepare turn over to n ios
command cycle = 3 ; // r e s t o r e ch ip s t a t u s
t im ing cy c l e = 0 ;
end

endcase
end

// r e s t o r e ch ip s t a t u s
3 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : begin // r e s t o r e po in t e r
s fw nedk addr = po i n t e r r e g ;
data to 91c111 = saved po in t e r ;
end

2 : s fw nedk iow = 0 ;
3 : s fw nedk iow = 1 ;
4 : begin
s fw nedk addr = bs r r e g ; // r e s t o r e bank
data to 91c111 = saved bank ;
end

5 : s fw nedk iow = 0 ;
6 : begin
s fw nedk iow = 1 ;
i f ( sw mode f lag == 1)
n i o s n edk i n t =1;

end
7 : begin
sw mode f lag = 0 ;
i r q i n p r o g r e s s = 0 ;
t im ing cy c l e = 0 ;
command cycle = 0 ;
end

endcase
end

// r e l e a s e packe t
4 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : begin
s fw nedk addr = mmu reg ;
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data to 91c111 = 16 ’ h0080 ; // i s s u e remove & r e l e a s e
end

2 : s fw nedk iow = 0 ; // wr i t e r&r
3 : s fw nedk iow = 1 ;
// wai t a coup le c l o c k c y c l e s between p o l l i n g
6 : s fw nedk i o r = 0 ; // read busy b i t
// 7 : wai t f o r v a l i d read

8 : begin
i f ( data from 91c111 [ 0 ] ) // then busy
t im ing cy c l e = 4 ;

s fw nedk i o r = 1 ;
end

9 : begin
command cycle = 3 ; // a f t e r remove and r e l e a s e i s

r e s t o r e ch ip
t im ing cy c l e = 0 ;
end

endcase
end

// wai t s t a t e f o r n ios data p r e f e t c h (370 ns t o t a l , 12 c l o c k s
here though )

5 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
12 : i f ( wa i t r e tu rn==2’d0 )

begin
command cycle = 1 ; // rx s t a t u s
t im ing cy c l e = 4 ;
end

else i f ( wa i t r e tu rn==2’d1 )
begin
command cycle = 1 ; // rx ip
t im ing cy c l e = 10 ;
end

else i f ( wa i t r e tu rn==2’d2 )
begin
command cycle = 2 ; // t x s t a t u s
t im ing cy c l e = 11 ;
end

else
begin
command cycle = 2 ; // t x ip
t im ing cy c l e = 18 ;
end
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endcase
end

// wai t s t a t e f o r read ing e t h e r t y p e
6 : begin
t im ing cy c l e = t im ing cy c l e + 5 ’ d1 ;
case ( t im ing cy c l e )
1 : begin // s e t po in t e r to read e t h e r t y p e
s fw nedk addr = po i n t e r r e g ;

i f ( a rp rx tx==0)
begin
data to 91c111 = 16 ’hA010 ; // rx
end

else
begin
data to 91c111 = 16 ’ h2010 ; // t x
end

end
2 : s fw nedk iow = 0 ;
3 : s fw nedk iow = 1 ;
//4−15: wai t f o r pre−f e t c h
16 : s fw nedk addr = data1 reg ;
17 : s fw nedk i o r = 0 ;
// 18: wai t f o r v a l i d read

19 : begin
s fw nedk i o r = 1 ;
i f ( a rp rx tx == 0) // r e c e i v e
begin
// s e t po in t e r f o r source ip
i f ( data from 91c111 == 16 ’ h0608 )
begin
s fw nedk addr = po i n t e r r e g ; //ARP
data to 91c111 = 16 ’ hE020 ;
command cycle = 1 ;
t im ing cy c l e = 7 ;

// prepare turn over to n ios f o r ARP pkt
// sw mode f lag = 1;
//command cycle = 3; // r e s t o r e ch ip s t a t u s
// t im in g c y c l e = 0;
end

else
begin
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s fw nedk addr = po i n t e r r e g ; //IP
data to 91c111 = 16 ’hE01E ;
command cycle = 1 ;
t im ing cy c l e = 7 ;
end

end
else // transmi t
begin
i f ( data from 91c111 == 16 ’ h0608 )
begin
//command cycle = 2; //ARP
// t im in g c y c l e = 28;
s fw nedk addr = po i n t e r r e g ;
data to 91c111 = 16 ’h602A ;
command cycle = 2 ;
t im ing cy c l e = 15 ;
end

else
begin
s fw nedk addr = po i n t e r r e g ; //IP
data to 91c111 = 16 ’ h6022 ;
command cycle = 2 ;
t im ing cy c l e = 15 ;
end

end
end

endcase
end

endcase
end

end

// i n s t a n t i a t e the module t ha t w r i t e s s e q u en t i a l addre s se s
f o r the CAM

cam addresser c a i n s t (
. r e s e t ( enablen ) ,
. wraddress ( s fw wradd r e s s s i g ) ,
. sfw cam cmd ( sfw cam cmd )
) ;

// i n s t a n t i a t e the dynamic cam
sfwcam dyn cam inst (

. patte rn ( cam pattern ) ,

. wraddress ( wraddr e s s s i g ) ,

. wren ( cam cmd ) ,
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. i n c l o c k ( ˜ c l k ) ,

. i n c l o cken ( cam en ) ,

. outc lock ( c l k ) ,

. outc locken ( cam en ) ,

. maddress ( maddress d ) ,

. mfound ( cam mfound d ) ,

. wrbusy ( wrbusy s ig d )
) ;

// i n s t a n t i a t e the s t a t i c cam fo r t e s t i n g
sfwcam s t a t c am in s t (

. patte rn ( cam pattern ) ,

. wraddress ( wraddr e s s s i g ) ,

. wren ( n i o s c am c t l [ 7 ] ) ,

. i n c l o c k ( ˜ c l k ) ,

. i n c l o cken ( cam en ) ,

. outc lock ( c l k ) ,

. outc locken ( cam en ) ,

. maddress ( maddress s ) ,

. mfound ( cam mfound s ) ,

. wrbusy ( wrbusy s i g s )
) ;

// i n s t a n t i a t e the ram , nios & sfw need wr i t e acces s
ip ram ip ram in s t (
. data ( mode in ) , // j u s t because we want data=1 when HW

mode and 0 during SW mode i t works out w e l l
. wraddress ( ram wraddress ) ,
. rdaddress ( n i o s r am c t l [ 4 : 0 ] ) ,
. wren ( ram wren ) ,
. c l o ck ( ˜ c l k ) ,
. q ( ram data out )
) ;

// i n s t a n t i a t e the g l u e l o g i c (muxes and such )

g l u e l o g i c g l u e l o g i c i n s t (
. s fw nedk i o r ( s fw nedk i o r ) ,
. n i o s n edk i o r ( n i o s n edk i o r ) ,
. e n e t i o r ( e n e t i o r ) ,
. s fw nedk iow ( s fw nedk iow ) ,
. n io s nedk iow ( n ios nedk iow ) ,
. enet iow ( enet iow ) ,
. s fw nedk addr ( s fw nedk addr ) ,
. n io s nedk addr ( n ios nedk addr ) ,
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. enet addr ( enet addr ) ,

. s fw wradd r e s s s i g ( s fw wradd r e s s s i g ) ,

. n i o s w r add r e s s s i g ( n i o s c am c t l [ 4 : 0 ] ) ,

. w raddr e s s s i g ( wraddr e s s s i g ) ,

. data from 91c111 ( data from 91c111 ) ,

. data to 91c111 ( data to 91c111 ) ,

. n i o s b i d i r d a t a ( n i o s b i d i r d a t a ) ,

. enet data ( enet data ) ,

. mode ( mode in ) ,

. s fw cam pattern ( s fw cam pattern ) ,

. n io s cam patte rn ( n io s cam patte rn ) ,

. cam pattern ( cam pattern ) ,

. sfw cam cmd ( sfw cam cmd ) ,

. nios cam cmd ( n i o s c am c t l [ 5 ] ) ,

. cam cmd ( cam cmd ) ,

. sfw cam en ( sfw cam en ) ,

. n ios cam en ( n i o s c am c t l [ 6 ] ) ,

. cam en ( cam en ) ,

. s fw ram wraddress ( s fw ram wraddress ) ,

. n ios ram wraddress ( n i o s r am c t l [ 9 : 5 ] ) ,

. ram wraddress ( ram wraddress ) ,

. sfw ram wren ( sfw ram wren ) ,

. n ios ram wren ( n i o s r am c t l [ 1 0 ] ) ,

. ram wren ( ram wren ) ,

. c l k ( c l k )
) ;

endmodule

/∗
cam addresser . v − a s imple module to increment the address

used when s t o r i n g IP addres se s in the CAM
Darre l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

module cam addresser ( r e s e t , wraddress , sfw cam cmd ) ;

input r e s e t ;
input sfw cam cmd ;
output [ 4 : 0 ] wraddress ;
reg [ 4 : 0 ] wraddress ;

// changing ”negedge wrbusy” to ” posedge sfw cam cmd”
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always @(posedge r e s e t or posedge sfw cam cmd )

i f ( r e s e t )
wraddress = 0 ;

else
wraddress = wraddress + 5 ’ d1 ;

endmodule

/∗
ip ram . v − a dual−por t ram used in prov i d ing the dynamic

aspec t o f the SFW pro j ec t , b u i l t wi th the Al tera ram
lpm ram dp us ing the megafunction wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM RAM DP%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: lpm ram dp

module ip ram (
data ,
wraddress ,
rdaddress ,
wren ,
c lock ,
q ) ;

input [ 0 : 0 ] data ;
input [ 4 : 0 ] wraddress ;
input [ 4 : 0 ] rdaddress ;
input wren ;
input c l o ck ;
output [ 0 : 0 ] q ;

wire [ 0 : 0 ] sub wire0 ;
wire [ 0 : 0 ] q = sub wire0 [ 0 : 0 ] ;

lpm ram dp lpm ram dp component (
. rdc l o ck ( c l o ck ) ,
. wren (wren ) ,
. wrc lock ( c l o ck ) ,
. data ( data ) ,
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. rdaddress ( rdaddress ) ,

. wraddress ( wraddress ) ,

. q ( sub wire0 ) ) ;
defparam

lpm ram dp component . lpm width = 1 ,
lpm ram dp component . lpm widthad = 5 ,
lpm ram dp component . rden used = ”FALSE” ,
lpm ram dp component . i n t ended dev i c e f am i l y

= ”APEX20KE” ,
lpm ram dp component . lpm type = ”LPM RAM DP”

,
lpm ram dp component . lpm indata = ”

REGISTERED” ,
lpm ram dp component . lpm wraddre s s cont ro l =

”REGISTERED” ,
lpm ram dp component . l pm rdaddre s s con t ro l =

”REGISTERED” ,
lpm ram dp component . lpm outdata = ”

UNREGISTERED” ,
lpm ram dp component . use eab = ”ON” ;

endmodule

//
============================================================

// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : PRIVATE: WidthData NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: WidthAddr NUMERIC ”5”
// Re t r i e v a l i n f o : PRIVATE: Clock NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: rden NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: UseDPRAM NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: INTENDED DEVICE FAMILY STRING ”

APEX20KE”
// Re t r i e v a l i n f o : PRIVATE: REGdata NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: REGwraddress NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: REGwren NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: REGrdaddress NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: REGrren NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: REGq NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: enab l e NUMERIC ”0”
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// Re t r i e v a l i n f o : PRIVATE: CLRdata NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: CLRwraddress NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: CLRwren NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: CLRrdaddress NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: CLRrren NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: CLRq NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: BlankMemory NUMERIC ”1”
// Re t r i e v a l i n f o : PRIVATE: MIFfilename STRING ””
// Re t r i e v a l i n f o : PRIVATE: UseLCs NUMERIC ”0”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTHAD NUMERIC ”5”
// Re t r i e v a l i n f o : CONSTANT: RDEN USED STRING ”FALSE”
// Re t r i e v a l i n f o : CONSTANT: INTENDED DEVICE FAMILY STRING ”

APEX20KE”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM RAM DP”
// Re t r i e v a l i n f o : CONSTANT: LPM INDATA STRING ”REGISTERED”
// Re t r i e v a l i n f o : CONSTANT: LPM WRADDRESS CONTROL STRING ”

REGISTERED”
// Re t r i e v a l i n f o : CONSTANT: LPM RDADDRESS CONTROL STRING ”

REGISTERED”
// Re t r i e v a l i n f o : CONSTANT: LPMOUTDATA STRING ”

UNREGISTERED”
// Re t r i e v a l i n f o : CONSTANT: USE EAB STRING ”ON”
// Re t r i e v a l i n f o : USED PORT: data 0 0 1 0 INPUT NODEFVAL

data [ 0 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: q 0 0 1 0 OUTPUT NODEFVAL q

[ 0 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: wraddress 0 0 5 0 INPUT

NODEFVAL wraddress [ 4 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: rdaddress 0 0 5 0 INPUT

NODEFVAL rdaddress [ 4 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: wren 0 0 0 0 INPUT VCC wren
// Re t r i e v a l i n f o : USED PORT: c l o c k 0 0 0 0 INPUT NODEFVAL

c l o c k
// Re t r i e v a l i n f o : CONNECT: @data 0 0 1 0 data 0 0 1 0
// Re t r i e v a l i n f o : CONNECT: q 0 0 1 0 @q 0 0 1 0
// Re t r i e v a l i n f o : CONNECT: @wraddress 0 0 5 0 wraddress 0 0

5 0
// Re t r i e v a l i n f o : CONNECT: @rdaddress 0 0 5 0 rdaddress 0 0

5 0
// Re t r i e v a l i n f o : CONNECT: @wren 0 0 0 0 wren 0 0 0 0
// Re t r i e v a l i n f o : CONNECT: @wrclock 0 0 0 0 c l o c k 0 0 0 0
// Re t r i e v a l i n f o : CONNECT: @rdclock 0 0 0 0 c l o c k 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l
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/∗
sfwcam2 . v − t h i s module c r e a t e s a 32 entry , 32− b i t CAM. I t

does t h i s by connect ing t o g e t h e r 16 entry , 5− b i t CAM
modules which , in turn , are crea t ed us ing dua l por t RAM
in s t a n t i a t e d from the Al tera ram al tsyncram component .
More in format ion on the method used can be found in the
X i l i n x document ”xapp204 . pdf ”

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

module sfwcam2 ( clk0 , c lken0 , c lk1 , c lken1 , pattern , wrpos , wren ,
w r i t e e r a s e , pos , mfound ) ;

input clk0 , c lken0 , c lk1 , c lken1 ;
input [ 3 1 : 0 ] patte rn ;
input [ 4 : 0 ] wrpos ;
input wren , w r i t e e r a s e ;
output [ 3 1 : 0 ] pos ;
output mfound ;

wire [ 1 5 : 0 ] p0 , p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 , p9 , p10 , p11 , p12 , p13 ;

cam16x5 cam0( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 4 : 0 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p0 [ 1 5 : 0 ] ) ;

cam16x5 cam1( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 9 : 5 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p1 [ 1 5 : 0 ] ) ;

cam16x5 cam2( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 1 4 : 1 0 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p2 [ 1 5 : 0 ] ) ;

cam16x5 cam3( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 1 9 : 1 5 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p3 [ 1 5 : 0 ] ) ;

cam16x5 cam4( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 2 4 : 2 0 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p4 [ 1 5 : 0 ] ) ;

cam16x5 cam5( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 2 9 : 2 5 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p5 [ 1 5 : 0 ] ) ;

cam16x5 cam6( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 3 4 : 3 0 ] , wrpos
[ 3 : 0 ] , wren&˜wrpos [ 4 ] , w r i t e e r a s e , p6 [ 1 5 : 0 ] ) ;

cam16x5 cam7( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 4 : 0 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p7 [ 1 5 : 0 ] ) ;
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cam16x5 cam8( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 9 : 5 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p8 [ 1 5 : 0 ] ) ;

cam16x5 cam9( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 1 4 : 1 0 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p9 [ 1 5 : 0 ] ) ;

cam16x5 cam10 ( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 1 9 : 1 5 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p10 [ 1 5 : 0 ] ) ;

cam16x5 cam11 ( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 2 4 : 2 0 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p11 [ 1 5 : 0 ] ) ;

cam16x5 cam12 ( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 2 9 : 2 5 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p12 [ 1 5 : 0 ] ) ;

cam16x5 cam13 ( clk0 , c lken0 , c lk1 , c lken1 , pattern [ 3 4 : 3 0 ] , wrpos
[ 3 : 0 ] , wren&wrpos [ 4 ] , w r i t e e r a s e , p13 [ 1 5 : 0 ] ) ;

assign pos={p13&p12&p11&p10&p9&p8&p7 , p6&p5&p4&p3&p2&p1&p0 } ;
assign mfound=pos [ 0 ] | pos [ 1 ] | pos [ 2 ] | pos [ 3 ] | pos [ 4 ] | pos [ 5 ] | pos

[ 6 ] | pos [ 7 ] | pos [ 8 ] | pos [ 9 ] | pos [ 1 0 ] | pos [ 1 1 ] | pos [ 1 2 ] | pos [ 1 3 ] |
pos [ 1 4 ] | pos [ 1 5 ] | pos [ 1 6 ] | pos [ 1 7 ] | pos [ 1 8 ] | pos [ 1 9 ] | pos [ 2 0 ] |
pos [ 2 1 ] | pos [ 2 2 ] | pos [ 2 3 ] | pos [ 2 4 ] | pos [ 2 5 ] | pos [ 2 6 ] | pos [ 2 7 ] |
pos [ 2 8 ] | pos [ 2 9 ] | pos [ 3 0 ] | pos [ 3 1 ] ;

endmodule

module cam16x5 ( clk0 , c lken0 , c lk1 , c lken1 , pattern , wrpos , wren ,
w r i t e e r a s e , pos ) ;

input clk0 , c lken0 , c lk1 , c lken1 ;
input [ 4 : 0 ] patte rn ;
input [ 3 : 0 ] wrpos ;
input wren , w r i t e e r a s e ;
output [ 1 5 : 0 ] pos ;

a ltsyncram altsyncram component (
. c locken0 ( c lken0 ) ,
. c locken1 ( c lken1 ) ,
. wren a (wren ) ,
. c l ock0 ( c lk0 ) ,
. c l ock1 ( c lk1 ) ,
. addre s s a ({ pattern , wrpos })

,
. addres s b ( pattern ) ,
. data a ( w r i t e e r a s e ) ,
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. q b ( pos ) ) ;
defparam

altsyncram component . operat ion mode = ”
DUAL PORT” ,

altsyncram component . width a = 1 ,
altsyncram component . widthad a = 9 ,
altsyncram component . numwords a = 512 ,
altsyncram component . width b = 16 ,
altsyncram component . widthad b = 5 ,
altsyncram component . numwords b = 32 ,
altsyncram component . lpm type = ”altsyncram”

,
altsyncram component . width byteena a = 1 ,
altsyncram component . width byteena b = 1 ,
altsyncram component . outdata reg b = ”

UNREGISTERED” ,
altsyncram component . ou tdata r eg a = ”

UNREGISTERED” ,
altsyncram component . i n d a t a a c l r a = ”NONE” ,
altsyncram component . w r c on t r o l a c l r a = ”

NONE” ,
altsyncram component . a dd r e s s a c l r a = ”NONE”

,
altsyncram component . add r e s s r e g b = ”CLOCK1

” ,
altsyncram component . a dd r e s s a c l r b = ”NONE”

,
altsyncram component . ou tda ta a c l r b = ”NONE”

,
altsyncram component .

r ead dur ing wr i t e mode mixed por t s = ”
DONT CARE” ,

altsyncram component . ram block type = ”M512”
,

altsyncram component . i n t ended dev i c e f am i l y
= ” S t r a t i x ” ;

endmodule

/∗
g l u e l o g i c . v − t h i s module i n s t a n t i a t e s a l l o f the

in t e r connec t l o g i c used to connect the Nios CPU, s i l i c o n
f i r e w a l l module , CAM and Lan91c111 e t h e rne t ch ip

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
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∗/

module g l u e l o g i c ( s fw nedk io r , n i o s n edk i o r , e n e t i o r ,
s fw nedk iow , n ios nedk iow , enet iow , sfw nedk addr ,
n ios nedk addr , enet addr , s fw wraddre s s s i g ,
n i o s wradd r e s s s i g , wraddre s s s i g , data from 91c111 ,
data to 91c111 , n i o s b i d i r d a t a , enet data , mode ,
s fw cam pattern , n ios cam pattern , cam pattern ,
sfw cam cmd , nios cam cmd , cam cmd , sfw cam en ,
nios cam en , cam en , sfw ram wraddress , n ios ram wraddress
, ram wraddress , sfw ram wren , nios ram wren , ram wren , c l k
) ;

input s fw nedk io r , n i o s n edk i o r ; //
read s t r o b e s

input s fw nedk iow , n io s nedk iow ; // wr i t e
s t r o b e s

input [ 2 : 0 ] s fw nedk addr , n io s nedk addr ; // enet
addre s se s

input [ 1 5 : 0 ] data to 91c111 ; //
data going to 91c111

input mode ;
//HW or SW mode

input sfw cam cmd , nios cam cmd ; //
cam read or wr i t e command

input sfw cam en , nios cam en ; //
cam c l o c k enab l e

input [ 3 1 : 0 ] s fw cam pattern , n io s cam patte rn ;
// pa t t e rn f o r CAM

input [ 4 : 0 ] s fw wraddre s s s i g , n i o s w r add r e s s s i g ;
//cam wr i t e address

input [ 4 : 0 ] s fw ram wraddress , n ios ram wraddress ;
//ram wr i t e address

input sfw ram wren , nios ram wren ;
//ram wr i t e enab l e

input c l k ;

inout [ 1 5 : 0 ] n i o s b i d i r d a t a ; // nios
b i d i r e c t i o n a l data l i n e

inout [ 1 5 : 0 ] enet data ; //91
c111 data

output [ 1 5 : 0 ] data from 91c111 ; // data
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coming from 91c111
output e n e t i o r ;

//91c111 read enab l e ( a c t i v e low )
output enet iow ;

//91c111 wr i t e enab l e ( a c t i v e low )
output [ 2 : 0 ] enet addr ; //91

c111 address
output cam en , cam cmd ; //

cam enab l e and read or wr i t e command
output [ 3 1 : 0 ] cam pattern ; //

pa t t e rn to wr i t e or read in CAM
output [ 4 : 0 ] wraddr e s s s i g ; //

cam wr i t e address
output [ 4 : 0 ] ram wraddress ; //

ram wr i t e address
output ram wren ;

//ram wr i t e enab l e

reg de l ay s i g , de lay s fw nedk iow ;

wire [ 3 1 : 0 ] w data from 91c111 ;

always @ (negedge c l k )
begin

i f ( s fw nedk iow == 0)
d e l a y s i g = 0 ;

else
d e l a y s i g = 1 ;

end

and and in s t ( de lay s fw nedk iow , d e l ay s i g , s fw nedk iow ) ;

io mux io mux inst ram wren (
. data1 ( sfw ram wren ) ,
. data0 ( nios ram wren ) ,
. s e l ( mode ) ,
. r e s u l t ( ram wren )
) ;

cam addr mux ram wraddr mux inst (
. data1x ( s fw ram wraddress ) ,
. data0x ( n ios ram wraddress ) ,
. s e l ( mode ) ,
. r e s u l t ( ram wraddress )
) ;
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io mux i o mux in s t n edk i o r (
. data1 ( s fw nedk i o r ) ,
. data0 ( n i o s n edk i o r ) ,
. s e l ( mode ) ,
. r e s u l t ( e n e t i o r )
) ;

io mux io mux ins t nedk iow (
. data1 ( s fw nedk iow ) ,
. data0 ( n ios nedk iow ) ,
. s e l ( mode ) ,
. r e s u l t ( enet iow )
) ;

io mux io mux inst cam cmd (
. data1 ( sfw cam cmd ) ,
. data0 ( nios cam cmd ) ,
. s e l ( mode ) ,
. r e s u l t ( cam cmd )
) ;

io mux io mux inst cam en (
. data1 ( sfw cam en ) ,
. data0 ( nios cam en ) ,
. s e l ( mode ) ,
. r e s u l t ( cam en )
) ;

cam addr mux cam addr mux inst (
. data1x ( s fw wradd r e s s s i g ) ,
. data0x ( n i o s w r add r e s s s i g ) ,
. s e l ( mode ) ,
. r e s u l t ( wraddr e s s s i g )
) ;

cam pattern mux cam pattern mux inst (
. data1x ( s fw cam pattern ) ,
. data0x ( n io s cam patte rn ) ,
. s e l ( mode ) ,
. r e s u l t ( cam pattern )
) ;

nedk addr mux nedk addr mux inst (
. data1x ( s fw nedk addr ) ,
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. data0x ( n ios nedk addr ) ,

. s e l ( mode ) ,

. r e s u l t ( enet addr )
) ;

da ta l a t ch d a t a l a t c h i n s t (
. data ( w data from 91c111 ) ,
. gate ( ˜ s fw nedk i o r ) ,
. q ( data from 91c111 )
) ;

nedk bus mux nedk bus mux inst s fw (
. data ( data to 91c111 ) ,
. enabledt ( ˜ de lay s fw nedk iow ) ,
. enab l e t r ( ˜ s fw nedk i o r ) ,
. t r i d a t a ( enet data ) ,
. r e s u l t ( w data from 91c111 )
) ;

nedk bus mux nedk bus mux ins t n io s (
. data ( n i o s b i d i r d a t a ) ,
. enabledt ( ˜ n ios nedk iow ) ,
. enab l e t r ( ˜ n i o s n edk i o r ) ,
. t r i d a t a ( enet data ) ,
. r e s u l t ( n i o s b i d i r d a t a )
) ;

endmodule

/∗
d a t a l a t c h . v − a data l a t c h used to l a t c h the data ou tpu t s

o f the 91c111 chip , b u i l t wi th the Al tera l pm la t ch
func t i on us ing the megafunction wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM LATCH%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: l pm la t ch

module da ta l a t ch (
data ,
gate ,
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q ) ;

input [ 3 1 : 0 ] data ;
input gate ;
output [ 3 1 : 0 ] q ;

wire [ 3 1 : 0 ] sub wire0 ;
wire [ 3 1 : 0 ] q = sub wire0 [ 3 1 : 0 ] ;

lpm latch lpm latch component (
. data ( data ) ,
. gate ( gate ) ,
. q ( sub wire0 ) ) ;

defparam
lpm latch component . lpm width = 32 ,
lpm latch component . lpm type = ”LPM LATCH” ;

endmodule

//
============================================================

// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : PRIVATE: nBit NUMERIC ”32”
// Re t r i e v a l i n f o : PRIVATE: a c l r NUMERIC ”0”
// Re t r i e v a l i n f o : PRIVATE: a s e t NUMERIC ”0”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”32”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM LATCH”
// Re t r i e v a l i n f o : USED PORT: data 0 0 32 0 INPUT NODEFVAL

data [ 3 1 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: q 0 0 32 0 OUTPUT NODEFVAL q

[ 3 1 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: ga te 0 0 0 0 INPUT NODEFVAL

gate
// Re t r i e v a l i n f o : CONNECT: @data 0 0 32 0 data 0 0 32 0
// Re t r i e v a l i n f o : CONNECT: q 0 0 32 0 @q 0 0 32 0
// Re t r i e v a l i n f o : CONNECT: @gate 0 0 0 0 ga te 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l

/∗
io mux . v − a mu l t i p l e x e r f o r i n d i v i d u a l s i g n a l l i n e s , b u i l t
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with the Al tera mux lpm mux us ing the megafunction wizard
Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM MUX%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: lpm mux

module io mux (
data1 ,
data0 ,
s e l ,
r e s u l t ) ;

input data1 ;
input data0 ;
input s e l ;
output r e s u l t ;

wire [ 0 : 0 ] sub wire0 ;
wire [ 0 : 0 ] sub wire1 = sub wire0 [ 0 : 0 ] ;
wire r e s u l t = sub wire1 ;
wire sub wire2 = s e l ;
wire sub wire3 = sub wire2 ;
wire sub wire4 = data0 ;
wire sub wire6 = data1 ;
wire [ 1 : 0 ] sub wire5 = { sub wire6 , sub wire4 } ;

lpm mux lpm mux component (
. s e l ( sub wire3 ) ,
. data ( sub wire5 ) ,
. r e s u l t ( sub wire0 ) ) ;

defparam
lpm mux component . l pm s i z e = 2 ,
lpm mux component . lpm widths = 1 ,
lpm mux component . lpm width = 1 ,
lpm mux component . lpm type = ”LPMMUX” ;

endmodule

//
============================================================
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// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : CONSTANT: LPM SIZE NUMERIC ”2”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTHS NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM MUX”
// Re t r i e v a l i n f o : USED PORT: r e s u l t 0 0 0 0 OUTPUT NODEFVAL

r e s u l t
// Re t r i e v a l i n f o : USED PORT: data1 0 0 0 0 INPUT NODEFVAL

data1
// Re t r i e v a l i n f o : USED PORT: data0 0 0 0 0 INPUT NODEFVAL

data0
// Re t r i e v a l i n f o : USED PORT: s e l 0 0 0 0 INPUT NODEFVAL s e l
// Re t r i e v a l i n f o : CONNECT: r e s u l t 0 0 0 0 @resu l t 0 0 1 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 1 1 data1 0 0 0 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 1 0 data0 0 0 0 0
// Re t r i e v a l i n f o : CONNECT: @sel 0 0 1 0 s e l 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l

/∗
nedk addr mux . v − a mu l t i p l e x e r f o r the Ethernet address

l i n e s , b u i l t wi th the Al tera mux lpm mux us ing the
megafunction wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM MUX%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: lpm mux

module nedk addr mux (
data1x ,
data0x ,
s e l ,
r e s u l t ) ;

input [ 2 : 0 ] data1x ;
input [ 2 : 0 ] data0x ;
input s e l ;
output [ 2 : 0 ] r e s u l t ;
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wire [ 2 : 0 ] sub wire0 ;
wire [ 2 : 0 ] r e s u l t = sub wire0 [ 2 : 0 ] ;
wire sub wire1 = s e l ;
wire sub wire2 = sub wire1 ;
wire [ 2 : 0 ] sub wire3 = data0x [ 2 : 0 ] ;
wire [ 2 : 0 ] sub wire5 = data1x [ 2 : 0 ] ;
wire [ 5 : 0 ] sub wire4 = { sub wire5 , sub wire3 } ;

lpm mux lpm mux component (
. s e l ( sub wire2 ) ,
. data ( sub wire4 ) ,
. r e s u l t ( sub wire0 ) ) ;

defparam
lpm mux component . l pm s i z e = 2 ,
lpm mux component . lpm widths = 1 ,
lpm mux component . lpm width = 3 ,
lpm mux component . lpm type = ”LPMMUX” ;

endmodule

//
============================================================

// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : CONSTANT: LPM SIZE NUMERIC ”2”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTHS NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”3”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM MUX”
// Re t r i e v a l i n f o : USED PORT: r e s u l t 0 0 3 0 OUTPUT NODEFVAL

r e s u l t [ 2 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data1x 0 0 3 0 INPUT NODEFVAL

data1x [ 2 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data0x 0 0 3 0 INPUT NODEFVAL

data0x [ 2 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: s e l 0 0 0 0 INPUT NODEFVAL s e l
// Re t r i e v a l i n f o : CONNECT: r e s u l t 0 0 3 0 @resu l t 0 0 3 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 3 3 data1x 0 0 3 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 3 0 data0x 0 0 3 0
// Re t r i e v a l i n f o : CONNECT: @sel 0 0 1 0 s e l 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l
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/∗
nedk bus mux . v − a t r i−s t a t e mu l t i p l e x e r f o r the Ethernet

data l i n e s , b u i l t wi th the Al tera mux lpm mux us ing the
megafunction wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM BUSTRI%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: l pm bu s t r i

module nedk bus mux (
data ,
enabledt ,
enab le t r ,
t r i da ta ,
r e s u l t ) ;

input [ 1 5 : 0 ] data ;
input enabledt ;
input enab l e t r ;
inout [ 1 5 : 0 ] t r i d a t a ;
output [ 1 5 : 0 ] r e s u l t ;

wire [ 1 5 : 0 ] sub wire0 ;
wire [ 1 5 : 0 ] r e s u l t = sub wire0 [ 1 5 : 0 ] ;

l pm bust r i lpm bustr i component (
. t r i d a t a ( t r i d a t a ) ,
. enab l e t r ( enab l e t r ) ,
. enabledt ( enabledt ) ,
. data ( data ) ,
. r e s u l t ( sub wire0 ) ) ;

defparam
lpm bustr i component . lpm width = 16 ,
lpm bustr i component . lpm type = ”LPM BUSTRI”

;

endmodule

//
============================================================
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// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : PRIVATE: nBit NUMERIC ”16”
// Re t r i e v a l i n f o : PRIVATE: BiDir NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”16”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM BUSTRI”
// Re t r i e v a l i n f o : USED PORT: t r i d a t a 0 0 16 0 BIDIR

NODEFVAL t r i d a t a [ 1 5 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data 0 0 16 0 INPUT NODEFVAL

data [ 1 5 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: enab l ed t 0 0 0 0 INPUT

NODEFVAL enab l e d t
// Re t r i e v a l i n f o : USED PORT: r e s u l t 0 0 16 0 OUTPUT

NODEFVAL r e s u l t [ 1 5 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: ena b l e t r 0 0 0 0 INPUT

NODEFVAL enab l e t r
// Re t r i e v a l i n f o : CONNECT: t r i d a t a 0 0 16 0 @tr ida ta 0 0 16

0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 16 0 data 0 0 16 0
// Re t r i e v a l i n f o : CONNECT: @enabledt 0 0 0 0 enab l ed t 0 0 0

0
// Re t r i e v a l i n f o : CONNECT: r e s u l t 0 0 16 0 @resu l t 0 0 16 0
// Re t r i e v a l i n f o : CONNECT: @enab le tr 0 0 0 0 ena b l e t r 0 0 0

0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l

/∗
cam addr mux . v − a mu l t i p l e x e r f o r the cam address l i n e s ,

b u i l t wi th the Al tera mux lpm mux us ing the megafunction
wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM MUX%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: lpm mux

module cam addr mux (
data1x ,
data0x ,
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s e l ,
r e s u l t ) ;

input [ 4 : 0 ] data1x ;
input [ 4 : 0 ] data0x ;
input s e l ;
output [ 4 : 0 ] r e s u l t ;

wire [ 4 : 0 ] sub wire0 ;
wire [ 4 : 0 ] r e s u l t = sub wire0 [ 4 : 0 ] ;
wire sub wire1 = s e l ;
wire sub wire2 = sub wire1 ;
wire [ 4 : 0 ] sub wire3 = data0x [ 4 : 0 ] ;
wire [ 4 : 0 ] sub wire5 = data1x [ 4 : 0 ] ;
wire [ 9 : 0 ] sub wire4 = { sub wire5 , sub wire3 } ;

lpm mux lpm mux component (
. s e l ( sub wire2 ) ,
. data ( sub wire4 ) ,
. r e s u l t ( sub wire0 ) ) ;

defparam
lpm mux component . l pm s i z e = 2 ,
lpm mux component . lpm widths = 1 ,
lpm mux component . lpm width = 5 ,
lpm mux component . lpm type = ”LPMMUX” ;

endmodule

//
============================================================

// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : CONSTANT: LPM SIZE NUMERIC ”2”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTHS NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”5”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM MUX”
// Re t r i e v a l i n f o : USED PORT: r e s u l t 0 0 5 0 OUTPUT NODEFVAL

r e s u l t [ 4 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data1x 0 0 5 0 INPUT NODEFVAL

data1x [ 4 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data0x 0 0 5 0 INPUT NODEFVAL
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data0x [ 4 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: s e l 0 0 0 0 INPUT NODEFVAL s e l
// Re t r i e v a l i n f o : CONNECT: r e s u l t 0 0 5 0 @resu l t 0 0 5 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 5 5 data1x 0 0 5 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 5 0 data0x 0 0 5 0
// Re t r i e v a l i n f o : CONNECT: @sel 0 0 1 0 s e l 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l

/∗
cam pattern mux . v − a mu l t i p l e x e r f o r the cam pa t t e rn l i n e s ,

b u i l t wi th the Al tera mux lpm mux us ing the megafunction
wizard

Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

// megafunction wizard : %LPM MUX%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: lpm mux

module cam pattern mux (
data1x ,
data0x ,
s e l ,
r e s u l t ) ;

input [ 3 1 : 0 ] data1x ;
input [ 3 1 : 0 ] data0x ;
input s e l ;
output [ 3 1 : 0 ] r e s u l t ;

wire [ 3 1 : 0 ] sub wire0 ;
wire [ 3 1 : 0 ] r e s u l t = sub wire0 [ 3 1 : 0 ] ;
wire sub wire1 = s e l ;
wire sub wire2 = sub wire1 ;
wire [ 3 1 : 0 ] sub wire3 = data0x [ 3 1 : 0 ] ;
wire [ 3 1 : 0 ] sub wire5 = data1x [ 3 1 : 0 ] ;
wire [ 6 3 : 0 ] sub wire4 = { sub wire5 , sub wire3 } ;

lpm mux lpm mux component (
. s e l ( sub wire2 ) ,
. data ( sub wire4 ) ,
. r e s u l t ( sub wire0 ) ) ;

defparam
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lpm mux component . l pm s i z e = 2 ,
lpm mux component . lpm widths = 1 ,
lpm mux component . lpm width = 32 ,
lpm mux component . lpm type = ”LPMMUX” ;

endmodule

//
============================================================

// CNX f i l e r e t r i e v a l i n f o
//

============================================================

// Re t r i e v a l i n f o : CONSTANT: LPM SIZE NUMERIC ”2”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTHS NUMERIC ”1”
// Re t r i e v a l i n f o : CONSTANT: LPM WIDTH NUMERIC ”32”
// Re t r i e v a l i n f o : CONSTANT: LPM TYPE STRING ”LPM MUX”
// Re t r i e v a l i n f o : USED PORT: r e s u l t 0 0 32 0 OUTPUT

NODEFVAL r e s u l t [ 3 1 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data1x 0 0 32 0 INPUT NODEFVAL

data1x [ 3 1 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: data0x 0 0 32 0 INPUT NODEFVAL

data0x [ 3 1 . . 0 ]
// Re t r i e v a l i n f o : USED PORT: s e l 0 0 0 0 INPUT NODEFVAL s e l
// Re t r i e v a l i n f o : CONNECT: r e s u l t 0 0 32 0 @resu l t 0 0 32 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 32 32 data1x 0 0 32 0
// Re t r i e v a l i n f o : CONNECT: @data 0 0 32 0 data0x 0 0 32 0
// Re t r i e v a l i n f o : CONNECT: @sel 0 0 1 0 s e l 0 0 0 0
// Re t r i e v a l i n f o : LIBRARY: lpm lpm . lpm components . a l l
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Appendix B

C Code

/∗
S i l i c o n F i r ewa l l
Dar r e l l Laturnas , Un i v e r s i t y o f Saskatchewan
TRLabs , Saskatoon , Saskatchewan , Canada
∗/

//SFW pio manipu la t ions f o r t e s t i n g

#include ” ex ca l i bu r . h”

// parame te r i za t i ons

#define CAMREAD 0xDF // use &=
#define CAM WRITE D 0x20 // use |=
#define CAM WRITE S 0x80 // use |=
#define CAM ENABLE 0x40 // use |=
#define CAM DISABLE 0x00 // use &=

#define RAM WRITE 0x400 // use |=

// pro to t ype s

void s f w i n i t i a l i z e c am (void ) ;
void s f w i n i t i a l i z e r a m (void ) ;
void s fw tx r e qu e s t (void ) ;
int s fw get mode (void ) ;
void s fw set mode ( int mode) ;
void c am f l u s h i s r ( int context ) ;
void s f w i n i t i a l i z e t i m e r (void ) ;

// +−−−−−−−−−−−−−−−−−−−−−−−−
// s f w i n i t i a l i z e c am
//
// put important ip addres se s in CAM
//
// a f t e r t e s t i n g , may s t i l l need to i n i t i a l i z e wi th IPs
// dhcp on boot−up f o r example
void s f w i n i t i a l i z e c am (void )
{

int j ;
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// d i s a b l e f i r e w a l l
na enab len p io−>np piodata = 1 ;

// s e t to so f tware mode and t a l k to cam
na mode out−>np piodata = 0 ;

// s e t to read mode and d i s a b l e CAM
na cam ct l p io−>np piodata = CAM DISABLE;

// s e t CAM pat t e rn to zero
na cam pattern−>np piodata = 0 ;

// loop through and i n i t i a l i z e the CAM with empty e n t r i e s
for ( j = 0 ; j < 32 ; j++)
{

// s e t cam address , wr i t e and enab l e
na cam ct l p io−>np piodata = ( j |CAM WRITE D |

CAM WRITE S |CAM ENABLE) ;

// d i s a b l e c l o c k to f i n i s h each wr i t e
na cam ct l p io−>np piodata = CAM DISABLE;
}

// i n s e r t some IP addres se s in t o CAM for t e s t i n g

// Ron ’ s computer ’ s IP address in HEX
na cam pattern−>np piodata = 0xa8c02381 ;

// CAM address chosen f o r no reason , wr i t e and enab l e
na cam ct l p io−>np piodata = (25 |CAM WRITE D |

CAM ENABLE) ;

// d i s a b l e c l o c k to f i n i s h each wr i t e
na cam ct l p io−>np piodata = CAM DISABLE;

//Mike Mi t z e l ’ s computer
na cam pattern−>np piodata = 0xa8c03d81 ;

// CAM address chosen f o r no reason , wr i t e and enab l e
na cam ct l p io−>np piodata = (26 |CAM WRITE D |

CAM ENABLE) ;

// d i s a b l e c l o c k
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na cam ct l p io−>np piodata = CAM DISABLE;

//my computer ’ s IP
na cam pattern−>np piodata = 0xa8c07981 ;

// CAM address chosen f o r no reason , wr i t e and enab l e
na cam ct l p io−>np piodata = (29 |CAM WRITE S |

CAM ENABLE) ;

// d i s a b l e c l o c k
na cam ct l p io−>np piodata = CAM DISABLE;

//dhcp s e r v e r ’ s IP
na cam pattern−>np piodata = 0xa8c06981 ;

// CAM address chosen f o r no reason , wr i t e and enab l e
na cam ct l p io−>np piodata = (30 |CAM WRITE D |

CAM ENABLE) ;

// d i s a b l e c l o c k
na cam ct l p io−>np piodata = CAM DISABLE;

// broadcas t packe t s
na cam pattern−>np piodata = 0 x f f f f f f f f ;

// CAM address chosen f o r no reason , wr i t e and enab l e
na cam ct l p io−>np piodata = (31 |CAM WRITE D |

CAM ENABLE) ;

// d i s a b l e c l o c k
na cam ct l p io−>np piodata = CAM DISABLE;

// s e t CAM pat t e rn to back to zero
na cam pattern−>np piodata = 0 ;

// s e t hardware mode
na mode out−>np piodata = 1 ;

// enab l e f i r e w a l l
na enab len p io−>np piodata = 0 ;
na tx reque s t−>np piodata = 0 ;
// p r i n t f (” enab l i ng f i r e w a l l \n”) ;

}

// +−−−−−−−−−−−−−−−−−−−−−−−−
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// s f w i n i t i a l i z e r am
//
// i n i t i a l i z e RAM with ze ros
// a f t e r t e s t i n g t h i s can be done in hardware
void s f w i n i t i a l i z e r a m (void )
{

int j ;

// d i s a b l e f i r e w a l l
na enab len p io−>np piodata = 1 ;

// s e t to so f tware mode and t a l k to ram
na mode out−>np piodata = 0 ;

// i n i t i a l i z e the RAM with ze ros in loop
for ( j = 0 ; j < 32 ; j++)
{

// s e t ram data and enab l e
na ram ct l p i o−>np piodata = ( ( j <<5) |RAM WRITE) ;

// f i n i s h ram wr i t e
na ram ct l p i o−>np piodata = 0 ;
}

// s e t hardware mode
na mode out−>np piodata = 1 ;

// enab l e f i r e w a l l
na enab len p io−>np piodata = 0 ;
na tx reque s t−>np piodata = 0 ;

}

// +−−−−−−−−−−−−−−−−−−−−−−−−
// s f w t x r e q u e s t
//
// r e qu e s t s acces s to LAN91C111 f o r Nios
void s fw tx r e qu e s t (void )
{

// i f we ’ re in hardware mode , r e que s t the a b i l i t y
// to t ransmi t and do noth ing u n t i l s fw says we can

i f ( na mode in−>np piodata )
{

while ( na tx a l lowed−>np piodata != 1)
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{
na tx reque s t−>np piodata = 1 ;
}

}

// s top t x r e que s t because i t ’ s been answered
// s e t mode to so f tware mode

na tx reque s t−>np piodata = 0 ;
sfw set SW mode ( ) ;

}

// +−−−−−−−−−−−−−−−−−−−−−−−−
// s fw get mode
//
// read i f system i s in hardware or so f tware mode
int s fw get mode (void )
{

int r e s u l t ;
r e s u l t = na mode in−>np piodata ;
return r e s u l t ;

}

// +−−−−−−−−−−−−−−−−−−−−−−−−
// s fw se t mode
//
// s e t system in to hardware or so f tware mode
void s fw set mode ( int mode)
{

na mode out−>np piodata = mode ;
}

// +−−−−−−−−−−−−−−−−−−−−−−−−
// s f w i n i t i a l i z e t i m e r
//
// s e t up i n t e r r u p t s e r v i c e rou t ine and
// s t a r t t imer
void s f w i n i t i a l i z e t i m e r (void )
{

int context = 0 ;

// connect the c am f l u s h i s r rou t ine to the t imer i n t e r r u p t
n r i n s t a l l u s e r i s r ( na t imer2 i rq , c am f l u sh i s r ,

context ) ;

// s t a r t the t imer
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na timer2−>np t imercont ro l = 0x0007 ;
}

// +−−−−−−−−−−−−−−−−−−−−−−−−
// c am f l u s h i s r
//
// i n t e r r u p t s e r v i c e rou t ine f o r
// dynamic removal o f IPs from CAM
void c am f l u s h i s r ( int context )
{

int j , temp , mode ;

// ge t curren t mode
mode = sfw get mode ( ) ;

// i f HW mode , ask to go to SW mode
i f (mode)

s fw tx r e qu e s t ( ) ;

// s e t CAM de l e t e va lue o f 0
na cam pattern−>np piodata = 0 ;

// s e t CAM to read mode and d i s a b l e c l o c k
na cam ct l p io−>np piodata = CAM DISABLE;

// loop through every RAM address
for ( j = 0 ; j < 32 ; j++)
{

// ge t data va lue at curren t ram address
na ram ct l p i o−>np piodata = j ;
temp = na ram data in−>np piodata ;

// i f curren t RAM data i s 1 ,
// s e t entry to 0 to mark IP address as s t a l e

i f ( temp)
{

// wr i t e 0 to address j
na ram ct l p i o−>np piodata = ( ( j <<5)

|RAM WRITE) ;
na ram ct l p i o−>np piodata = 0 ;

}
else
{

// d e l e t e s t a l e cam entry
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na cam ct l p io−>np piodata = ( j |
CAM WRITE D |CAM ENABLE) ;

na cam ct l p io−>np piodata =
CAM DISABLE;

p r i n t f ( ”Deleted entry %d \n” , j ) ;
}

}

// ensure CAM i s in read mode and d i s a b l e c l o c k
na cam ct l p io−>np piodata = CAM DISABLE;

// r e s t o r e prev ious mode
i f (mode)

s fw set mode (mode) ;

// c l e a r t imer i n t e r r u p t
na timer2−>np t imer s ta tus = 0 ;

}

// end o f f i l e
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