

The effect of soil moisture on nitrous oxide flux and production pathway in different soil types

Trang Phan¹, Rich Farrell², and Kate Congreves¹

¹Dept of Plant Sciences and ²Dept of Soil Science, University of Saskatchewan

INTRODUCTION

Understanding the mechanisms leading to the emission of the potent greenhouse gas nitrous oxide (N_2O) is essential for accurate flux prediction and for developing effective adaptation and mitigation strategies in response to climate change (1). Even though the knowledge of how N_2O is produced and emitted from soils has advanced over the last several decades (2-4), there still remain surprising greyareas in our understanding of the underlying mechanisms. One such grey-area is a more precise understanding of how N_2O production pathways (nitrification and denitrification) relate to soil moisture.

RESEARCH OBJECTIVES

With the use of a novel analytical technique (cavity ring down spectroscopy), our objectives are to:

- Precisely quantify the relationship between soil moisture and N_2O production by measuring $^{15}N_2O$ isotopomers;
- Evaluate the variability in this relationship based on differences in soil nutrient levels, organic matter, and texture.

METHODS

Soil collection and characteristics:

• Soil samples for the 0-10 cm depth were randomly collected at three sites (Dark Brown Chernozems), air-dried and sieved through a 2.00 mm mesh screen

Table 1. Soil characteristics and cropping history for three soil types studied.					
Soil association	Crop type history	Texture	рН	Organic matter (%)	Nitrate-N (ppm)
Sutherland	Vegetable	Silty clay loam	7.6	5.9	112
Asquith	Fodder	Sandy Ioam	7.5	3.9	66
Bradwell	Field	Loam	7.9	2.7	16

Soil water holding capacity:

• The soil water holding capacity data were needed (5) to determine the initial range of soil moisture treatments

Soil incubation study:

- Randomized complete block design with 4 replicates
- 21.87 cm³ petri dishes was completely filled with 22.0, 24.0, 29.0 g of soil with bulk densities of 1.01, 1.10, 1.33 g cm⁻³ for the Sutherland, Asquith and Bradwell soils, respectively
- Treatments established based on gravimetric moisture levels ranged from 20–105% water filled pore space (WFPS)
- Sealed inside 1L mason jars, lids fitted with septa for gas sampling
- Incubated for 24-hrs in dark, at 21 °C
- Gas sampled for N₂O and ¹⁵N₂O; analyzed concentrations via GC (Bruker 450) and CRDS (Picarro G5131-*i* isotopic N₂O analyzer)
- Isotopomers are used to calculate site preference (SP) this indicates nitrification vs denitrification

Fig. 1. Top panels: Nitrous oxide emissions (black points) and site preference values (blue points); Bottom panels: bulk δ^{15} N-N₂O (black points) and δ^{18} O-N₂O (blue points) under the wide range of soil water filled pore spaces (WFPS) for Sutherland, Asquith, and Bradwell soil associations.

- Regardless of the dramatically different magnitudes of N₂O flux across each soil types, there were similarities in how soil moisture influenced the relative amount of N₂O (Fig. 1)
- As N₂O fluxes changed with soil moisture, a mirrored change occurred for SP (Fig. 1)
- The $\delta^{15}N$ and $\delta^{18}O$ values decreased during the same soil moisture region that the SP values decreased (Fig. 1)
- N₂O production was attributed to nitrification when soil was relatively dry (below 58% WFPS)
- N₂O production transitioned from nitrification to denitrification with soil moisture levels from 58 to 83% WFPS
- N₂O production attributed to denitrification when soil was relatively moisture (exceeding 80% WFPS)

Fig. 2. Isotopomer map to determine the source partitioning of N_2O derived from nitrification versus denitrification using ^{15}N site preference (SP) and $\delta^{18}O$ of N_2O .

• The linear mixed model was developed based on a previously published method (6); with end-members and mixing lines derived from our data (Fig. 2)

At soil moisture levels below 53% WFPS:

• Nitrification was the dominated N_2O production pathway: $\mathbf{F_N} = \mathbf{1}$

Soil moisture levels ranging from 53 to 78% WFPS:

- Nitrification-derived N₂O decreased rapidly:
 - $F_N = 3.19 0.041x$
- Denitrification-derived N₂O increased rapidly:
 - $F_D = -2.19 + 0.041x$

At soil moisture levels exceeding 78% WFPS:

• Denitrification was the dominated N_2O production pathway: $F_D = 1$

CONCLUSIONS

- The soil moisture level during 'the transition zone' is a key regulation of which pathway dominantly produces N₂O be it nitrification or denitrification, or a mixture of both.
- ¹⁵N₂O isotopomers are a powerful technique to more precisely quantify the relationship between soil moisture and N₂O-production pathway.
- ¹⁵N₂O isotopomer results support earlier-known relationships between moisture and N₂O production (2), but can help move beyond inferences towards the quantification of relative source partitions.

REFERENCES

Environment Canada. 2015. Canadian National Inventory Report: Part 3 Greenhouse gas sources and sinks in Canada.
 Davidson, E. a., M. Keller, H.E. Erickson, L. V. Verchot, and E. Veldkamp. 2000. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides. Bioscience 50(8): 667. doi: 10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2.
 Davidson, E.A., 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. Pp. 219–235 in Rogers J.E., Whitman, W.B. eds. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, Am. Soc. Microbiol. Washington, DC.
 Linn, D.M., Doran, J.W., 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal 48, 1267–1272. doi:10.2136/sssaj1984.03615995004800060013x
 Reynolds, W.D., Topp, G.C., 2007. Soil Water Desorption and Imbibition: Long Column, in: Carter, M.R., Gregorich, E.G. (Eds.), Soil Sampling and Methods of Analysis. pp. 999–1006
 Deppe, M., Well, R., Giesemann, A., Spott, O., and Flessa, H. 2017. Soil N2O fluxes and related processes in laboratory incubations simulating

ACKNOWLEDGEMENTS

Special thanks to: Frank Krijnen, Darin Richman, Jamie Taylor, Caio Taveira. Funding: University of Saskatchewan, College of Agriculture and Bioresources, Martin Agricultural Trust Fund; Office of the Vice President Research, USRA; Natural Sciences and Engineering Research Council of Canada, Discovery Program; The Prairie Environmental Agronomy Research Lab (PEARL).

Contact info: kate.congreves@usask.ca; thp472@mail.usask.ca; r.farrell@usask.ca

ammonium fertilizer depots. Soil Biol. Biochem. 104: 68–80. Elsevier Ltd. doi:10.1016/j.soilbio.2016.10.005.