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ABSTRACT 
 
Using the error correction model, we link the long-run behavior of the Canada-US real 

exchange rate to its short-run dynamics. The equilibrium real exchange rate is determined by 

the energy and non-energy commodity prices over the period 1973Q1-1992Q1. However such a 

single long-run relationship does not hold when the sample period is extended to 2004Q4. This 

breakdown can be explained by the break point which we find at 1993Q3. At the break point, 

the effect of the energy price shocks on Canada’s real exchange rate turns from negative to 

positive while the effect of the non-energy commodity price shocks is constantly positive. We 

find that after one year 40.03% of the gap between the actual and equilibrium real exchange 

rate is closed. The Canada-US interest rate differential affects the real exchange rate temporarily. 

The Canada’s real exchange rate depreciates immediately after a decrease in Canada’s interest 

rate and appreciates next quarter but not by as much as it has depreciated.   
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Chapter 1  Model Specification 

1.1 Introduction 

Over the past thirty years of Canada’s experience with free exchange rates, we have 

witnessed a significant variation in the Canada-US exchange rate from a low of 62 cents in 

November of 2001 to a high of 1.09 in November of 2007. Since the ratio of the US price 

level to the Canadian price level is very stable over the same interval, the high variability of 

nominal exchange rates has been directly correlated with high variability of real exchange 

rates. 

 

The nature of this relationship between nominal and real exchange rates has played an 

important role in the Canadian debate regarding the optimal exchange rate regime. Courchene 

and Harris (1999) have argued that there is no compelling evidence to suggest that 

macroeconomic fundamentals are driving the real exchange rate, but rather that speculative 

behavior unrelated to fundamentals is the cause of the volatility of nominal exchange rates. 

That is, the correlation between nominal and real exchange rates is evidence of causality 

running from nominal to real exchange rates. As a consequence, Canada has suffered 

significant periods of misalignment of real exchange rates with their attendant real adjustment 

costs. In their view, fixing the Canada-US exchange rate would eliminate volatility of 

nominal and real exchange rates and by extension eliminate real adjustment costs.  

 

In contrast, proponents of free rates such as Laidler (1999) employ the argument of Friedman 

(1953) that the underlying cause of nominal exchange rate volatility is shifts in real 

macroeconomic fundamentals that require real exchange rate adjustments. That is, causality 

runs from real exchange rate volatility to nominal exchange rate volatility. In this case, fixing 

the nominal exchange rate would force the adjustment required by real shocks to domestic 
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prices and wages that are much less flexible than nominal exchange rates in the short run. 

Therefore, fixing the exchange rate would impose greater real adjustment costs on the 

economy in the face of real fundamental disturbances.  

 

In order to shed some light on this controversy, in this thesis I extend and estimate a 

fundamental model of real exchange rate determination first proposed by Amano and van 

Norden (1995). Amano and van Norden, hereafter, AN find that commodity terms of trade, 

the price of Canada’s exported commodities divided by the price of its imported 

manufactured goods, play a key role in explaining the Canada-US real exchange rate 

movements. In their study, they split the terms of trade into two components, energy and 

non-energy terms of trade. Their results of cointegration tests, the single-equation method 

proposed by Hanson (1990) and the Johansen-Juselius system approach proposed by 

Johansen and Juselius (1990), show that the real exchange rate is cointegrated with energy 

and non-energy terms of trade. This cointegrating relationship indicates that the non-energy 

commodities and energy terms of trade have a long-run effect on the variations in the 

Canada-US real exchange rate, or the long-run equilibrium values of the real exchange rate 

are determined by these terms of trade.1 Then they estimate the error correction model using 

the nonlinear least-squares approach proposed by Phillips and Loretan (1991) which 

estimates both the cointegrating relationships and error correction model simultaneously.  

 

After successively omitting variables with insignificant t-statistics, AN construct a simple 

equation, called the Bank of Canada’s exchange rate equation. This equation expresses the 

changes in the real exchange rate as a function of energy and non-energy terms-of-trade and 

an interest rate differential which is defined as the difference between Canada’s and the US 

gaps between short- and long-term interest rates. One of the findings from the estimated 

equation is that an increase in the non-energy terms of trade causes Canada’s real exchange 

rate to appreciate while an increase in the energy terms of trade causes it to depreciate. The 

                                                        
1 Chen and Rogoff (2003) also find that for Canada there is a long-run cointegrating relationship between the real exchange 
rate and commodity prices, but relatively weak co-movement in the short run. However they do not include energy prices in 
their analysis. 
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other finding is that the interest rate differential has a transitory effect and an increase in it 

causes Canada’s real exchange rate to appreciate immediately.  

 

AN’s equation fits the data so well that it can forecast the most important turning points over 

the sample period 1973M1 to 1992M2. Its out-of-sample forecast performance is better than a 

random walk. The results of their research also uncover several facts. First, energy price 

shocks can account for the greatest portion of real exchange rate variance among all the 

explanatory variables. Secondly, energy price and commodity price shocks could reinforce or 

cancel one another. The net movement of the real exchange rate depends on the net effect of 

different shocks. Thirdly, large persistent price shocks have more significant effects than 

large short-lived shocks. Finally, the interest rate differential appears to play a smaller role 

than do the terms of trade.  

 

The Bank of Canada’s exchange rate equation obtained by AN, however, raises two questions. 

First, contrary to their expectation, AN find that higher energy prices lead to a real 

depreciation of the Canadian dollar even though the United States is more dependent on 

energy imports than Canada. This result is counter to the view of the Canadian dollar as a 

petro-currency. In their study, they failed to explain the mystery. Secondly, is the model 

durable? With the passage of time, can it still track the movements in real exchange rates 

reasonably well? Laidler and Aba (2001) estimated the Bank of Canada equation for the 

period 1973-2000 with three separate coefficients on each of the energy and non-energy 

commodity prices for the 1970s, 1980s and 1990s. Their main finding is that the positive 

effect of non-energy commodity prices seems to decline from decade to decade while the 

effect of energy prices changes from negative for the first two decades to insignificant for the 

1990s. Using cointegration tests with a structural break, Issa, Lafrance and Murray (2006) 

find that 1993Q3 is a break point at which the sign of the effect of energy prices on the 

Canadian dollar turned from negative to positive. The break, they suggest, can be attributed to 

the growing importance of energy exports caused by the deregulation of Canadian energy 

sector and the North American Free Trade Agreement.   
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In my study, using quarterly data from 1973 to 2004, I investigate whether it is still the 

energy and non-energy commodity prices that determine the Canada-US real exchange rate in 

the long run, whether the interest differential is still powerful in explaining the short-run 

dynamics of the Canada-US real exchange rate, and whether a structural change occurs 

during the sample period.  

 

The thesis is organized as follows: In Sections 1.2 and 1.3 we review the economic theories 

on how commodity price shocks affect the real exchange rate in the long run and how the real 

exchange rate deviates from its equilibrium value due to sticky price level in the short run. 

Section 2.1 introduces the set of variables investigated and describes the data used. Section 

2.2 demonstrates the time series econometric methods applied to examine the models 

described in Sections 1.2 and 1.3. In Section 2.3 we check the effectiveness of the methods 

by comparing the results of AN with ours using the sample period 1973Q1 to 1992Q1. 

Chapter 3 presents the results of the sample period 1973Q1 to 2004Q4 with and without a 

structural break. Chapter 4 summarizes.    

 

1.2 Relationship of the Real Exchange Rate, Terms of Trade and Productivity Changes 

The model reviewed in this section is based on Obstfeld and Rogoff (1996) and Chen and 

Rogoff (2003). It can explain how terms of trade affect the long run behavior of the Canada 

real exchange rate. Assume Canada is a small open economy relative to the world market. 

Thus Canada has no power to determine the prices of its exported and imported products. All 

price shocks in our study are exogenous. 

 

Assume Canada produces nontradables (N) and commodities (C) and it exports C to the US. 

The US produces nontradables (N*) and manufactured goods (M). Canada imports M from 

the US. Then C, M and N are consumed in Canada while C, M and N* are consumed in the 

US. Let PN, PN*, PC and PM denote the nominal prices of N, N*, C and M. Their relative prices 

in terms of M are pN, p N* and pC, respectively. Assume there are two inputs for each sector of 

N, C, M and N*: capital (K) and labor (L). Capital can migrate between countries and 

industries while labor is free to migrate only between industries. As a result, the real interest 
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rate (r), the cost of capital, is equalized all over the world while the real wage rate (w), the 

cost of labor, is equalized across industries within a country. Both r and w, like the real prices, 

are in terms of M.  

 

Canada’s constant return production functions for N and C can be written as   

                                                       (1.1a) N N N NY =A F(K ,L )

                                                        (1.1b) C C C CY =A G(K ,L )

where Y denotes real output, subscripts N and C denote the nontradable sector and 

commodity sector respectively, and A denotes an exogenously varying productivity 

coefficient, which measures changes in technology. The exogeneity of A implies that A does 

not change with K or L. F and G describe how N and C are produced from K and L. We 

define the capital-labor ratio (k) as  

  i
i

i

Kk =
L

 

where subscript i refers to sector. Then the per labor outputs can be expressed as  

                                                         (1.2a) N Nf(k )=F(k , 1),

                                                         (1.2b) C Cg(k )=G(k , 1)

YN and YC can be rewritten as  

                                                         (1.1c) N N N NY =A L f(k )

                                                         (1.1d) C C C CY =A L g(k )

 

Discounted by the constant world interest rate r, the present value of real profit (Π) in the 

nontradable sector in period t is  

  s-t
N N,s N,s N,s N,s s N,s N,s+1

s=t

1Π = ( ) [p A L f(k )-w L -ΔK
1+r

∞

∑ ]                             (1.3a) 

and in the commodity sector is 

  s-t
C C,s C,s C,s C,s s C,s C,s+1

s=t

1Π = ( ) [p A L g(k )-w L -ΔK
1+r

∞

∑ ]                             (1.3b) 
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i,s+1 i,s+1 i,swhere K =K -KΔ . We assume that there is no depreciation of the capital stock. We 

also assume that the capital which is used this period must have been accumulated by the end 

of last period while labor can be adjusted in each period.  

 

By first-order condition for the profit-maximization problem, in the nontradable sector we 

have  

 

s-t
N N N,s N,s s N,s N,s+1 N,s

N s=t

N, s+1 N, s+1

N,s+1 N, s+1
N N N,s+1

N,s+1 N,s+1

1( ) [p A L f(k )-w L -(K -K )]
Π 1+r 0

K K
f k1        1 [p A L +1]=0

1+r k K

∞

∂
= =

∂ ∂

∂ ∂
⇒ − +

∂ ∂

∑
 

 
N N N,s+1 N,s+1)

N,s+1

N N N,s+1

1 1         -1+ [p A L f '(k ) +1]=0
1+r L

         p A f '(k )-r=0

⇒

⇒
   

N N N,s+1       p A f '(k )=r⇒                                                 (1.4a) 

and 

  

s-t
N N N,s N,s s N,s N,s+1 N,s

N s=t

N,s N, s

N N N,s N,s s N,s

N,s

N,s N,s
N N N,s N,s s

N,s N,s

N,s
N N N,s N,s

N

1( ) [p A L f(k )-w L -(K -K )]
Π 1+r 0
L

[p A L f(k )-w L ]
        0

L
L f(k )

        p A ( f(k )+L )-w =0
L L

f
         p A (f(k )+L

k

L

∞

∂
= =

∂ ∂

∂
⇒ =

∂

∂ ∂
⇒

∂ ∂

∂
⇒

∂

∑

N,s
s

,s N,s

N,s
N N N,s N,s N,s s2

N,s

N,s
N N N,s N,s s

N,s

k
)-w =0

L

         p A (f(k )+L f '(k )(- ))-w =0
(L )

         p A (f(k )-f '(k ) )-w =0
L

K

K

∂
∂

⇒

⇒

     

N N N,s N,s N,s s         p A (f(k )-f '(k )k )=w⇒                                     (1.4b) 

where equals N N Np A f '(k ) N N

N

p Y
K

∂
∂

 which is the marginal productivity of capital (MPKN) 
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and  equals N N N N Np A (f(k )-f '(k )k ) N N

N

p Y
L

∂
∂

is the marginal productivity of labor (MPLN). 

Equations (1.4a) and (1.4b) show that the profit maximization conditions are that MPK 

equals the world interest rate and MPL equals the prevailing real wage rate.  

 

Similarly, in the commodity sector, we have  

                                                        (1.4c) C C C,s+1p A g '(k )=r

                                              (1.4d) C C C,s C,s C,s sp A (g(k )-g '(k )k )=w

 

We assume all the productivity coefficients Ai are constant. According to (1.4c), an increase 

in the relative price of commodities in Canada leads to an increase in the MPK in the 

commodity sector. In order to keep MPK equal to the exogenous and constant world interest 

rate, the effect of the rise in pC must be neutralized by a higher capital-labor ratio if MPK is 

decreasing in the level of capital utilized. These increases in the commodity price and 

capital-labor ratio drive up MPL in the commodity sector. The real wage rate must rise as 

well to satisfy Equation (1.4d). In Canada’s nontradable sector, at least one of the nontradable 

price and capital-labor ratio must rise to satisfy Equation (1.4b) in response to the increased 

real wage rate. Similar to Equation (1.4c), Equation (1.4a) shows that the nontradable price 

and capital-labor ratio must move in the same direction to keep MPK equal to the constant 

world interest rate. As a result, both the nontradable price and capital-labor ratio increase. In 

other words, to survive in the market the nontradable producers can reduce the burden of the 

higher wage cost by increasing the nontradable price and the proportion of capital used. 

Therefore, the effect of the commodity price shocks is transmitted to Canada’s nontradable 

prices through changes in the real wage level in Canada.   

 

We assume that the US has the same production functions as Canada. Repeating the 

procedure for Equations (1.4a), (1.4b), (1.4c) and (1.4d), we have 

* * *
N N N,s+1p A f '(k )=r                                                       (1.5a) 
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                                              (1.5b) * * * * *
N N N,s N,s N,sp A (f(k )-f '(k )k )=w

                                                         (1.5c) * *
M M,s+1A g '(k )=r

                                              (1.5d) * * * *
M M,s M,s M,sA (g(k )-g '(k )k )=w*

s

where the superscript * refers to the US. As we can see from Equations (1.5a) to (1.5d), any 

change in pC cannot affect either w* or by virtue of the assumption that commodities are 

not produced in the US. 

*
Np

  

From Equations (1.1a) and (1.1b), the nontradable and commodity outputs in terms of 

manufactured goods are  

                                                   (1.1e) N N N N N Np Y =p A F(K ,L )

                                                    (1.1f) C C C C C Cp Y =p A G(K ,L )

Total differentiating Equations (1.1c) and (1.1d) and substituting i i

i

p Y
K

∂
∂

=MPKi and 

i i

i

p Y
L

∂
∂

=MPLi give  

                                               (1.1g) N N N N N Np Y =MPK K +MPL L

C C C C C Cp Y =MPK K +MPL L                                               (1.1h) 

To satisfy the profit-maximization conditions which are Equations (1.4a), (1.4b), (1.4c) and 

(1.4d), Equations (1.1g) and (1.1h) can be rewritten as 

   N N N Np Y =rK +wL

   C C C Cp Y =rK +wL

Substituting for YN and YC from Equations (1.1c) and (1.1d) and dividing both sides by LN 

and LC respectively gives the zero-profit conditions as follows 

                                                      (1.6a) N N N Np A f(k )=rk +w

                                                      (1.6b) C C C Cp A f(k )=rk +w
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Log-differentiating (1.6a) yields 

                                              (1.6c) N N N Ndlogp A f(k )=dlog(w+rk )

N N N

N N

N N N

N N N

the left-hand side=d(logp +logA +logf(k ))
                           =dlogp +dlogA +dlogf(k )

dp dA df(k )                           = +
p A f(k )

+

N  

Substituting N
N

N

df(k )f' '(k )=
dk

 from Equation (1.4a) and solving for df(kN) gives  

  N
N

N N

rdkdf(k )=
p A

 

  Substituting for df(kN) on the left-hand side yields 

  

N N N

N N N N N

N N N

N N N N N

dp dA rdkleft-hand side= + +
p A p A f(k )

dp dA rk dk                                       = + +
p A p A f(k ) k

N

N

 

  

N

N

N

N

N N N N N

N

N N N

d(w+rk )right-hand side=
w+rk

dw+rdk                       =
w+rk

By eq.(1.6a) p A f(k )=rk +w, substituting  for w+rk  on the right-hand side yields
  

dw+rdkright-hand side=  
p A f(k )

                 N N

N N N N N N N

w dw rk rdk        = + 
p A f(k ) w p A f(k ) rk

 

Therefore equation (1.6c) can be rewritten as  

  N N N N N

N N N N N N N N N N N N

dp dA rk dk w dw rk rdk+ + = + 
p A p A f(k ) k p A f(k ) w p A f(k ) rk

N

N

 

  N N

N N N N N

dp dA w dw+ = 
p A p A f(k ) w

⇒                                           (1.6d) 

Let us define percentage changes in AN, w, pN and labor’s share as follows 

N
N

N

dAA = 
A

∧

                                                           (1.7a) 
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dww = 
w

∧

                                                             (1.7b) 

N
N

N

dpp
p

∧

=                                                             (1.7c) 

LN
N N N

wμ =
p A f(k )

                                                      (1.7d) 

Equation (1.6d) can be rewritten as  

                                                      (1.8a) NN LNp + A = w     μ
∧ ∧ ∧

Similarly, in the commodity sector, we have 

                                                      (1.8b) CC LCp + A = w     μ
∧ ∧ ∧

Solving for  from Equation (1.8b) gives w
∧

  CC

LC

p + Aw  
μ

∧ ∧
∧

=  

Substituting for  into Equation (1.8a) gives  w
∧

CC
NN LN

LC

LN
C NN C

LC

p + Ap A μ
μ

μp (p + A )
μ

∧ ∧
∧ ∧

∧ ∧ ∧

+ =

⇒ = −A
∧

                                           (1.9a) 

Since we have assumed that AC and AN are constant, equation (1.9a) can be reduced to  

  LN
N

LC

μp
μ

∧ ∧

= Cp                                                         (1.9b) 

From Equation (1.9b), we can see that the relative nontradable price moves by the same 

percentage as the relative commodity price if labor’s share in the nontradable sector equals 

that in the commodity sector. Generally the commodity sector is more capital intensive than 

the nontradable sector, that is, LN

LC

μ
μ

>1. As a result, the effect of commodity price shocks on 

pN should be reinforced.   
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Repeating the procedure for the US, we have 

                                                       (1.10a) 
* *

*
NN LNp + A = wμ

∧ ∧ ∧ *

                                                        (1.10b) 
* *

*
M LMA = w    μ

∧ ∧

Then we have 

  
* * * * **

LN
M N M NN *

LM

p = A + A =0 if A = A 0μ
μ

∧ ∧ ∧ ∧ ∧

=                                      (1.11) 

Equation (1.11) shows that changes in the price of the US nontradables are not related to the 

commodity prices. 

 

Basic economic theory tells us that any price is determined by both the supply-side and 

demand-side factors. We have discussed the supply side above. Now we move to the demand 

side. We assume that the aggregate utility function for Canada is in Cobb-Douglas form 

                                                          (1.12) α β 1-α-β
N M CU=C C C

where U is aggregate utility, Ci is aggregate consumption of N, M or C, and α, β as well as 

1-α-β are non-negative constants. Then the price index P consistent with the Cobb-Douglas 

utility function is also a geometric average of PN, PM and PC, with weights α, β and 1-α-β 

respectively. 

   α β 1-α-β
N M CP=P P P

Dividing P by PM, we have 

                                                              (1.13) α 1-α-β
N Cp=p p

where p is the Canadian price index in terms of M. 

 

Log-differentiating Equation (1.13), we have 

  

α 1-α-β
N C

N C

N C

N C

dlogp=dlog(p p )
dp dp dp=α +(1-α-β)
p p p

p α p (1-α-β) p    
∧ ∧ ∧

⇒

⇒ = +

  

Substituting for Np
∧

 from Equation (1.9b) into the above equation yields  
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  LN
C

LC

μp=α p (1-α-β) p
μ

∧ ∧

+ C

∧

                                        

  LN
C

LC

μ  =α( 1) p (1-β) p
μ

∧ ∧

− + C

C

∧

                                               (1.14) 

We assume that Canada and the US have the same consumption pattern. This implies that the 

weights of prices of nontrables, manufactured goods and commodities in the price index are 

identical for these two countries. Repeating the procedure above for the US, we obtain 
* *

N p =α p +(1-α-β) p
∧ ∧

, which, using Equation (1.11), yields 
*

C p =(1-α-β) p
∧ ∧

                                                       (1.15) 

 

Equation (1.14) shows that if the relative commodity price rises by one percent, Canada’s 

price index will rise by 1-β percent if LN

LC

μ
μ

=1 or greater than 1-β percent if LN

LC

μ
μ

>1. On the 

other hand, the US price index will rise by 1-α-β which is smaller than Canada’s because 

changes in the relative commodity price do not affect the relative US nontradable prices. The 

decrease in the Canada-US price level ratio (p*/p ) implies that one Canadian consumption 

bundle can exchange for more US consumption bundles and thus the Canadian dollar 

experiences a real appreciation against the US dollar. Therefore the relative commodity prices 

have a negative effect on the real exchange rate defined as p*/p.   

 

1.3 Deviation of Relative Exchange Rate from Its Long-run Value 

The theories reviewed in this section are based on the model described by Krugman and 

Obstfeld (2000). The nominal and real exchange rates are related by the condition (1.16) 

  *

PE=q
P

                                                             (1.16) 

where E is nominal exchange rate, q is real exchange rate, P is the home price level, or the 

Canadian price level in our study, and P* is the foreign price level, or the US price level. E is 

expressed as the home currency price of foreign currency, or CAD/USD.  

 

The condition for equilibrium in the money market is: 
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sM =Md

s d s

*

                                                            (1.17a)          

where M  is money supply and M  is money demand. Assume that M  is controlled by the 

central bank. The money demand is determined by  
d

+ - +
M = P L( R , Y)×                                                     (1.17b) 

where L is real money demand and R is nominal interest rate. Other things equal, a decrease 

in R or an increase in Y causes an increase in Md.  

 

The uncovered interest parity condition shows that assets denominated in all currencies must 

offer an identical expected rate of return measured in comparable terms when the foreign 

exchange market is in equilibrium. For given domestic interest rate R, foreign interest rate R  

and expected nominal exchange rate Ee, the interest parity condition can be used to determine 

the current equilibrium nominal exchange rate. 

* eR - R  = (E -E)/E                                                      (1.18) 

 

We assume that both Canadian and US price levels cannot change in the short run. Suppose 

there is an increase in the money supply in Canada while the US money supply remains 

unchanged. Then the interest rate in Canada declines to clear its money market. Equation 

(1.18), the uncovered interest parity condition, shows that the Canadian dollar depreciates 

immediately (E rises) and goes up higher than its long-run expected value. As a result, 

Canada’s real exchange rate depreciates as well (q rises) due to the sticky domestic price 

level so that the real exchange rate moves away from its constant long-run value.   

 

However as the domestic price level starts to rise in response to the money supply increase, 

the domestic interest rate must rise with a given output level to keep the domestic money 

market in equilibrium. Canada’s nominal exchange rate thus appreciates to clear the foreign 

exchange market. Canada’s real exchange rate starts to appreciate as well to approach its 

constant long-run value due to the price adjustment and the appreciation of the Canadian 

dollar. Once the domestic price level rises proportionally to the increase in the stock of 

money, and the nominal exchange rate depreciates proportionally to the increase in stock of 
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money, the interest rate differential and real exchange rate return to their long-run values. 

Therefore, a domestic money supply increase makes Canada’s real exchange rate deviate 

from its long-run value shortly after the change of monetary policy, but in the long run, this 

change has no effect on the Canada-US real exchange rate.  

 

1.4 Error Correction Model 

The theories discussed in Sections 1.2 and 1.3 tell us that real commodity price shocks have a 

long-run effect on the movement in the real exchange rate while monetary shocks have a 

transitory effect. In order to investigate the behavior of the Canada-US real exchange rate, we 

need a model to combine these two effects. The error correction model (ECM) put forward by 

Granger and Weiss (1983) is a model that relates the variation in a time series integrated of 

order one (I(1)) to its long-run determinants which are cointegrated with the time series,  

and its short-run factors which are stationary. In Chapter 2 we investigate the time series 

properties of the relevant variables and estimate the ECM. 
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Chapter 2  Diagnostic Testing and Re-estimation of the AN Model 

2.1 Data Definition and Sources 

The variables under consideration include the real exchange rate (RFX), the real price of 

non-energy commodities (COM), the real price of energy (ENE) and interest rate differential 

(RDIFF). All the price variables are measured in the real terms and in logarithms. The 

definitions of all the variables are as follows:  

US GDP deflatorRFX=log Canada-US exchange rate(CAD/USD)
Canadian GDP deflator

⎡ ⎤
⎢ ⎥⎣ ⎦

       (2.1a) 

non-energy commodity price index COM=log
US GDP deflator

⎡
⎢
⎣ ⎦

⎤
⎥                             (2.1b) 

energy commodity price index ENE=log
US GDP deflator

⎡
⎢⎣ ⎦

⎤
⎥                                 (2.1c) 

RDIFF=3-month yield on prime corporate paper in Canada-3-month 
             yield on commercial paper in US

            (2.1d) 

As shown in Equation (2.1a), RFX is the measure of the Canadian goods price of the US 

goods. We take logarithms for RFX, COM and ENE so that any difference between two 

consecutive periods measures the percentage change in those variables. The reason we choose 

3-month interest rates is that they best match quarterly RFX which we investigate.  

 

As we can see from above equations, the data collected include the Canada-US nominal 

exchange rate, the US GDP deflator, the Canadian GDP deflator, the non-energy commodity 

price index, the energy commodity price index, 3-month yield on prime corporate paper in 

Canada, and 3-month yield on commercial paper in the US. The nominal exchange rate is the 

monthly average of the noon daily spot rate in CAD/USD, the price of the US dollar in terms 

of the Canadian dollar. The US GDP deflator is the seasonally adjusted implicit price deflator 
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with the base year 2000. The Canadian GDP deflator is the implicit price deflator at market 

prices with the base year 1997. The non-energy and energy commodity price indexes 

developed by the Bank of Canada are fixed-weight indexes of the spot or transaction prices of 

commodities produced in Canada and sold in world markets in US dollar terms with the base 

years 1982-1990. The weight is based on the average value of Canadian production of the 

commodity over the 1988-1999 period.2 Non-energy commodities consist of food (grains and 

oilseeds, livestock, and fish) and industrial materials (metals, minerals, and forest products). 

Energy commodities consist of crude oil, natural gas and coal. All these data except the US 

GDP deflator come from CANSIM II while the US GDP deflator comes from the US Bureau 

of Economic Analysis.3 In this Chapter, the sample period is from 1973Q1 to 1992Q1 and in 

Chapter 3 from 1973Q1 to 2004Q4.  

 

There are three major differences in the definition of some variables compared to AN. First of 

all, the US and Canadian GDP deflators are used to convert nominal values to real values. 

Since in Section 1.2 we assumed that as a small open economy, Canada has no power to 

determine the prices of its exported and imported products and we defined the real 

commodity price in terms of the manufactured goods produced in the US, the real commodity 

price shocks are exogenous to Canada. To measure real exogenous price shocks, we use the 

US GDP deflator, the price index of goods and services produced in the US instead of its CPI, 

the price index of those consumed in the US, to calculate ENE and COM due to the fact that 

some goods and services consumed in the US are produced in Canada. The advantage of the 

US GDP deflator is that it can exclude the effect of any production change in Canada on real 

price shocks. That is also the reason that Laidler and Aba (2001) suggest that GDP deflator is 

more appropriate than the CPI in this situation. Accordingly, we use the US and Canadian 

GDP deflators to obtain real exchange rates. All the data collected are monthly except the US 

and Canadian GDP deflators which are quarterly. We thus take the average of those monthly 

observations to get quarterly ones and then calculate those quarterly variables. Secondly, we 

                                                        
2 2The description of the variables is from the website of the Bank of Canada: 
http://www.bank-banque-canada.ca/en/rates/commod.htm. 
3 “CANSIM is Statistics Canada's database providing access to current and historical time series data collected on a wide 
variety of subjects. In 2001, Statistics Canada released CANSIM II, an updated version of CANSIM.” The quotation about 
CANSIM is from the website of the library of the University of Saskatchewan: https://library.usask.ca/data/business/cansim. 
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use the price index of non-energy and energy commodities deflated by the US GDP deflator, 

instead of terms of trade, to capture the economic shocks to the Canada-US real exchange 

rate. Chen and Rogoff (2003) point out that sluggish price adjustment and incomplete 

pass-through make standard terms-of-trade variables inappropriate to measure exogenous 

shocks to which the real exchange rate would respond. Thirdly, our RDIFF is defined as the 

gap between 3-month yields on commercial paper in Canada and in the US. AN measure the 

interest rate differential with the difference between Canada’s and the US’s gaps between 

short- and long-term nominal interest rates. But they find that the effect of RDIFF changes 

slightly when short, long or both of them are chosen to construct RDIFF.  

 

It is instructive to present data on Canada’s energy and non-energy commodity exports to 

motivate their roles in real exchange rate determination. As Figure 2.1a shows, the share of 

energy to Canada’s total exports varies from 8% to 17% over the period 1973-2004. The 

share of non-energy commodities has been decreasing from more than 50% in the 70s to 

around 35% after 2000. The importance of energy and non-energy commodity exports can be 

better understood by decomposing Canada’s net exports. Figure 2.1b shows that net exports 

of commodities decide Canada’s net trade position. In most years, net exports of commodities 

exceed net imports of other merchandise, so Canada always has positive net exports. What’s 

more, Canada’s net exports of energy and non-energy commodities appear to increase over 

time.    

 

2.2 Econometric Analysis of Time Series 

The error correction model explains how a nonstationary series, which is supposed to be the 

RFX variable in our study, tends to approach its long-run equilibrium determined by other 

nonstationary series which are cointegrated with RFX, and how its short-run dynamics are 

affected by stationary series. In Section 2.2.1, we test the stationarity of the series involved in 

our study using the Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) tests. At 

the same time, we try to discover the data-generating process (DGP) of each series as 

knowledge of the DGP helps us determine the specification of the cointegration test and the 
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Figure 2.1a Canada’s shares of energy and non-energy commodities to total exports 
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Figure 2.1b Canada’s decompositions of net exports 
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ECM. If RFX is nonstationary and it is not the only nonstationary variable, we conduct the 

augmented Engle-Granger (AEG) test and Johansen procedure to find out whether RFX is 

cointegrated with other nonstationary series in Section 2.2.2. If there exist one or more 

cointegrating relationships, we use a two-step procedure to estimate the cointegrating 

regression in Section 2.2.2 and then estimate the ECM in Section 2.2.3. 

 

2.2.1 Unit Root Tests 

Our first step is to test for a unit root in RFX, the dependent variable. If it does have a unit 

root, it is nonstationary and we can decompose it into two components: one is its trend 

component that includes a stochastic trend and perhaps a deterministic trend; the other is its 

stationary component. Then we need to find two groups of factors to explain the behavior of 

RFX. One group shares the common stochastic trend with RFX. The other captures its 

short-run dynamics. The next step is to test COM, ENE, and RDIFF for evidence of a unit 

root. Those nonstationary variables are candidates for the first group which determines the 

long-run equilibrium of RFX. The stationary variables might be in the second group which 

explains the short-run deviations of RFX from its equilibrium value. RFX is stationary if it 

does not contain a unit root. In this case, any shock to RFX is temporary because RFX tends 

to revert to its long-run mean level and the effect of any shock will die out over time.  

 

Actually, to detect the true DGP is still a challenging topic in time series econometrics. We 

start with plotting the time series under study. A plot usually gives us some clues about the 

pattern of the series such as the presence of a trend, the existence of a constant mean, and 

how much it moves and down, but this graphical analysis can not distinguish a unit root 

process from a trend stationary or from a near unit root process. We need a more precise 

econometric method which is known as unit root test to determine how a time series yt is 

generated and whether this series has a unit root. A framework of three widely used models 

developed by Bhargava (1986) will be introduced to test for a unit root.  

 

In case I, yt can be represented as  
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t 0 1y =γ +γ t+μ t

t

t

t

t

t

t

t

t

t

                                                         (2.2a) 

t t-1μ =ρμ +e                                                           (2.2b) 

where t is time, μt is an error term which is an autoregressive process of order 1 (AR(1)), et is 

a stationary error term, γ0 is a constant, γ1 is the coefficient of time, and ρ is the coefficient of 

autocovariance. Substituting for μt from Equation (2.2b) into Equation (2.2a) gives 

   t 0 1 t-1y =γ +γ t+ρμ +e

Substituting for μt-1 from Equation (2.2a) into the above equation gives 

t 0 1 t-1 0 1 t

0 1 1 t-1

0 1 t-1 t

y =γ +γ t+ρ(y -γ -γ (t-1))+e
   =γ (1-ρ)+γ ρ+γ (1-ρ)t+ρy +e
   =δ +δ t+ρy +e

 

or 

t 0 1 2 t-1Δy =δ +δ t+δ y +e                                                    (2.2c) 

where δ0 = γ0(1-ρ) +γ1ρ, δ1 = γ1(1-ρ), and δ2 = 1-ρ. 

 

In case II, yt can be represented as  

t 0y =γ +μ                                                             (2.3a) 

t t-1μ =ρμ +e                                                           (2.3b) 

Repeating the procedure for Equation (2.2c), we have  

t 0 t-1 0 t

0 t-1

0 t-1 t

y =γ +ρ(y -γ )+e
   =γ (1-ρ)+ρy +e
   =δ +ρy +e

 

or 

t 0 2 t-1Δy =δ +δ y +e                                                       (2.3c) 

Where δ0 = γ0(1-ρ) and δ2 = 1-ρ. 

 

In case III, yt can be represented as  

ty =μ                                                                (2.4a) 
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t t-1μ =ρμ +et

t

t

t

t

                                                          (2.4b) 

Repeating the procedure for Equation (2.2c), we have  

t t-1

t-1 t

y =ρy +e
   =ρy +e

 

or 

t 2 t-1Δy =δ y +e                                                          (2.4c) 

Where δ2 = 1-ρ. 

 

The null hypothesis of unit root test is δ2 = 0 or ρ = 1. If the null cannot be rejected, yt has a 

unit root or it is nonstationary. If the null can be rejected, yt does not have a unit root or it is 

stationary. In case I, the failure of rejection of the null implies that δ1 is also equal to zero 

because δ1 =γ1δ2. Then the DGP under the null is a random walk with a drift: 

   t 0 t-1y =δ +y +e

                                                   (2.2d) 
0 0 t-2 t-1

t

0 0 i
i=1

   =δ +(δ +y +e )+e

   =y +δ t+ e∑

As we can see in Equation (2.2d), yt is I(1), that is, its first difference is stationary but the 

mean of its first difference cannot be zero as δ0 is not supposed to be zero in this case. The 

economic meaning of et is a random shock on yt. 
t

i
i=1

e∑ is called the stochastic trend which 

indicates that any random shock has a persisting effect on the current and future values of y. 

The rejection of the null in case I means that yt is a trend-stationary process, or that yt moves 

around its time trend. In case II, the failure of rejection of the null implies that δ0 is also equal 

to zero because δ0 =γ0δ2. Then the DGP under the null is a random walk: 

   t t-1y =y +et

                                                          (2.3d) 
t-2 t-1 t

t

0 i
i=1

   =y +e +e

   =y + e∑

As we can see in Equation (2.3d), yt is I(1) and its first difference is a stationary process with 
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zero mean. The rejection of the null in case II means that yt is a stationary process around a 

constant. In case III, the DGP under the null is the same as Equation (2.3d). The rejection of 

the null means that yt is a stationary process with zero mean. 

 

Since the t-ratio for the unit root null does not follow conventional normal distribution, 

Dickey and Fuller (1979) first calculated the critical values depending on the form of 

regression and sample size. In most empirical studies however, the error terms in Equations 

(2.2c), (2.3c) and (2.4c) are found to be serially correlated. Based on the assumption that Δyt 

is an AR process, the ADF test suggests adding lagged values of the dependent variable Δyt to 

equations (2.2c), (2.3c) and (2.4c): 

                                             (2.2) 
n

t 0 1 2 t-1 i t-i t
i=1

Δy =δ +δ t+δ y + Δy +eλ∑

                                                (2.3) 
n

t 0 2 t-1 i t-i
i=1

Δy =δ +δ y + Δy +eλ∑ t

                                                   (2.4) 
n

t 2 t-1 i t-i t t
i=1

Δy =δ y + Δy +eλ∑

where λ is the coefficient of the lagged Δyt and n is the lag length. The tests based on 

equations (2.2), (2.3) and (2.4) are called the ADF test for case I, case II, and case III, 

respectively. The critical values of the ADF test are the same as those provided by Dickey 

and Fuller (1979). We use the Akaike information criterion 2 (AIC2) to select the optimal n. 

Pantula, Gonzalez-Farias and Fuller (1994) pointed out that AIC2 can avoid the problem of 

size distortion caused by AIC.  

 

To solve the problem of autocorrelation of the error terms in Equations (2.2c), (2.3c) and 

(2.4c), Phillips and Perron (1988) proposed a nonparametric approach of modifying the 

statistics. This adjusted test statistic has the same asymptotic distribution as the ADF test 

statistic. MacKinnon (1994) calculates the critical values for these two well-known unit root 

tests. The results of the Monte Carlo study by DeJong, Nankervis, Savin and Whiteman 

(1992) show: as error terms in Equations (2.2c), (2.3c) and (2.4c) appear to be negatively 

autocorrelated, the PP test tends to reject the null hypothesis of a unit root while the power of 
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the ADF test slightly drops; on the other side, as the errors appear to be positively 

autocorrelated, the power of the PP test drops a little while the rejection frequency of the 

ADF test slightly increases. Therefore the ADF test is more reliable in the presence of 

negative autocorrelation of the errors while the PP test is more reliable in the presence of 

positive autocorrelation. Therefore, their findings help to decide which test is preferred in 

such situations that the ADF test and PP test give conflicting results. 

 

In case I or II, testing for the joint hypothesis can also be used to find the presence of a unit 

root in yt and its DGP. The null hypothesis for Equation (2.2) is δ1 = δ2 = 0 and the null for 

Equation (2.3) is δ0 = δ2 = 0. Dickey and Fuller (1981) provide the critical values of Φ1 

statistic for Equation (2.3)and Φ3 for Equation (2.2). These Φ statistics, formed in exactly the 

same way as ordinary F-test, are: 

  R,i UR,i

UR,i

(RSS -RSS )/r
Φi=

RSS /(T-k)
 

where RSSR,i = the residual sum of squares from the restricted model 

     RSSUR,i = the residual sum of squares from the unrestricted model 

     i =type of Φ 

r = number of restrictions 

     T = number of usable observations 

     k= number of parameters estimated in the unrestricted model 

 

To use the Bank of Canada equation, here are the necessary conditions: RFX, COM and ENE 

are nonstationary and RDIFF is stationary. 

 

2.2.2 Cointegration Tests and Cointegrating Regression 

Since we are interested in the Canada-US real exchange rate movements, in this section we 

will explain how the long-run equilibrium value of RFX can be determined by other 

nonstationary variables if RFX is nonstationary itself. Engle and Granger (1987) state that the 

linear combination of two or more nonstationary variables that is stationary can be interpreted 

as a long-run equilibrium relationship among these variables. The sense of their statement is 
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that the stochastic trend in RFX, which cannot be predicted directly, can be eliminated by the 

stochastic trends in those nonstationary variables that are cointegrated with RFX so that RFX 

is affected by those variables permanently.  

 

Before conducting cointegration tests and estimating cointegrating vectors, we need to 

determine the appropriate form of the cointegrating regression which should be consistent 

with the DGPs of variables involved. A general cointegrating regression for I (1) variables 

can be written as  

                                                       (2.5) t 0 1 t 2Y =β +β X +β t+e′ t

⎞
⎟

where Yt is RFX in our study, Xt is an n-dimensional vector of nonstationary variables which 

are cointegrated with Yt, β1 is an n-dimensional coefficient vector,  is the 

n+1-dimensional cointegrating vector and e

1

1
-β
⎛
⎜
⎝ ⎠

t is a stationary error term. As we can see in 

Equation (2.2d), the value of a nonstationary variable is a function of time t. So if any of 

those nonstationary variables tested for cointegration is generated by Equation (2.2d), or a 

random walk with a drift, a time t should be included in the cointegrating regression. 

Otherwise et cannot be stationary in this case and we have a problem of model specification 

error because the omitted variable t would be in et. If all those nonstationary variables are 

generated by Equation (2.3d), or a random walk, t should be excluded from the cointegrating 

regression because none of the variables is related to t.              

 

We use the AEG test, a single equation method, and the Johansen procedure, a system 

method to do the cointegration test. The AEG test is a residual-based test which conducts a 

unit root test, usually the ADF test, for the estimated error term et in Equation (2.5). The 

failure to reject the unit root null hypothesis indicates that the linear combination of the 

variables is not stationary, and the null hypothesis of no cointegration cannot be rejected 

either. We then conclude that there does not exist a cointegrating relationship. If et appears to 

be stationary, we conclude that Yt and the variables in Xt are cointegrated. There are some 

disadvantages of the AEG test we need to mention here. First, the AEG test is a two-step 
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procedure. Any bias from the first step of estimation can be carried to the second step of the 

ADF test. Secondly, for a system of n nonstationary variables in which n is greater than 2, 

there can be as many as n-1 linearly independent cointegrating relationships. But the AEG 

test, which is based on one equation, cannot help us to determine the number of cointegrating 

relationships.  

 

If we look at n nonstationary series as a system, the Johansen procedure starts with the vector 

autoregression (VAR) model:   

t 0 1 t-1 2 t-2 p t-p tY =A +A Y +A Y + +A Y +e⋅ ⋅ ⋅  

where Yt-k is an n-dimensional vector of I(1) variables for k =0,1,…,p, A0 is an n-dimensional 

constant vector, Aj is a matrix of parameters for j = 1,2,…,p, p is the lag length, and en n× t 

is an n-dimensional vector of stationary error terms. Subtracting Yt-1 from each side gives 

t 0 1 t-1 2 t-2 p t-p tΔY =A +(A -I)Y +A Y + +A Y +e⋅ ⋅ ⋅  

Adding and subtracting ApYt-p-1 on the right-hand side gives  

t 0 1 t-1 2 t-2 p-1 p t-p-1 p t-p-1 tΔY =A +(A -I)Y +A Y + +(A +A )Y -A Y +e⋅ ⋅ ⋅ Δ  

Then adding and subtracting (Ap-1+Ap)Yt-p-2 on the right-hand side gives 

t 0 1 t-1 2 t-2 p-2 p-1 p t-p-2 p-1 p t-p-2 p t-p-1 tΔY =A +(A -I)Y +A Y + +(A +A +A )Y -(A +A )ΔY -A ΔY +e⋅ ⋅ ⋅  

Continuing adding and subtracting  gives 
p

i t-
i=j

( A )Y∑ i

iA

p p

t 0 i t-1 i t-1 p t-p-1 t
i=1 i=2

0 t-1 2 t-1 p t-p-1 t

ΔY =A +(-I+ A )Y -( A )ΔY - -A ΔY +e

      =A +ΠY -B ΔY - -B ΔY +e

⋅ ⋅ ⋅

⋅ ⋅ ⋅

∑ ∑                             (2.6) 

where ,  for j = 2,…,p, and I is an 
p

i
i=1

Π=-I+ A∑
p

j
i=j

B = ∑ n n× identity matrix. The 

number of different cointegrating relationships is determined by the rank of Π (rank(Π)) 

which equals the number of Π’s characteristic roots that differ from zero. In practice, two 

statistics λtrace and λmax are widely used to check the significance of the number of 

independent cointegrating relationships: 
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                                                   (2.7a) 
n

itrace
i=r+1

λ (r)=-T ln(1-λ )
∧

∑

                                                  (2.7b) r+1maxλ (r,r+1)=-Tln(1-λ )
∧

where  is the descending estimated values of the characteristic roots (also called 

eigenvalue) obtained from the estimated Π, T is the number of usable observations, and r is 

the number of cointegrating relationships. The statistic λ

iλ
∧

trace is to test the null hypothesis that 

the number of distinct cointegrating vectors is less than or equal to r against the alternative 

that the number is more than r. If the estimated λtrace is greater than the critical value at a 

specific significance level, we conclude that there are more than r cointegrating relationships 

in the system. Otherwise we conclude that there are at most r cointegrating relationships. The 

null hypothesis of the maximum eigenvalue test is that the number of distinct cointegrating 

vectors is r and its alternative is that there are r+1 cointegrating relationships. If we cannot 

reject the null, we conclude that there are r cointegrating relationships. The rejection of the 

null indicates that there are r+1 cointegrating relationship. For both these statistics, we start 

with r=0 and then continue with r=1, r=2… until r=n-1. Usually the value of the first r which 

cannot be rejected is the number of cointegrating relationships. MacKinnon, Haug and 

Michelis (1999) calculate the critical values of λtrace and λmax statistics for several 

specifications of regression models based on Equation (2.6) taking account of different forms 

of deterministic trend.  

 

If there are more than one cointegrating relationships in the system, the Johansen procedure 

can be used to estimate the cointegrating regressions. If only one cointegrating relationship 

exists, we use Saikkonen’s (1991) dynamic ordinary least squares (DOLS) with Newey-West 

heteroscedasticity and autocorrelation consistent (HAC) standard error and covariance to 

estimate those long-run parameters. Using DOLS we will estimate Equation (2.5) with et = 

2

1

k

j t-j
j=-k

b ΔX + tν∑  (j≠0) where ΔXt-j is an n-dimensional vector of leads or lags of first 

differences of Xt, vt is an independent and identically distributed (i.i.d.) process with zero 

mean and constant variance, or white noise error term, k1 is the number of leads, k2 is the 
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number of lags and bj is an n-dimensional coefficient vector. Since all those elements of Xt 

are I(1), their first differences must be stationary. This implies that they cannot have a 

long-run effect on Yt. As a result, we cannot include them in our cointegrating relationship. 

Maddala and Kim (1998) summarize many Monte Carlo studies on the estimates of 

cointegrating parameters and conclude that for a system with only one cointegrating 

relationship, a linear model with leads and lags like DOLS, is better than any other method. 

DOLS performs better than the AEG because DOLS can correct the bias in the estimates 

from static regressions caused by superconsistency. Empirical studies suggest that the 

Johansen estimates exhibit high variances. If the error variance is not constant or the error 

terms are serial correlated, the OLS estimates are no longer efficient. The Newey-West 

procedure, which is designed to handle both heteroscedasticity and autocorrelation, is able to 

obtain efficient standard errors of OLS estimates. Therefore, the Newey-West HAC estimates 

do not change the value of OLS estimates, but the t ratios which affect the significance of 

estimated parameters.  

 

The economic theory discussed in Section 1.2 suggests that in the long run, the real 

commodity price shocks have a positive effect on the Canadian real exchange rate due to the 

fact Canada is a commodity exporter to the US. So we expect that RFX is cointegrated with 

COM and ENE and that the estimated coefficients of COM and ENE are both negative, as 

RFX is the reciprocal of the Canadian real exchange rate. 

 

2.2.3 Error Correction Model 

In this section we introduce the model which explains the fluctuations of an I(1) variable by 

combining its long-run behavior with its short-run dynamics. If RFX is cointegrated with the 

prices of energy and non-energy commodities, as we have expected, there is a long-term 

equilibrium relationship among them. In the short run however, RFX may deviate from its 

equilibrium value. This deviation, which is called the equilibrium error, can be used to tie the 

long-run value of RFX to its short-run variation. An important theorem known as the Granger 

representation theorem (Granger and Weiss 1983) states that if a set of I (1) variables are 

cointegrated, they can be expressed as ECM which can be written as 
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                                    (2.8) 
m

t 1 t-1 1 t-1 0 2 i t-i 0 t
i=1

ΔY =α (Y -β 'X -β -β t)+ γ 'Z +α +ε∑

where ΔY is ΔRFX in our study, the change in the real exchange rate from one quarter to the 

next, Xt-1 is an n-dimensional vector of other I(1) variables which are cointegrated with RFX, 

Zt is an l-dimensional vector of the first differences of all the nonstationary variables in the 

system and other stationary variables which can explain the short-run movement in RFX, α0 

is a constant, α1 is the coefficient of the speed of adjustment, m is the number of lags of Z and 

εt is a white noise error term. The component in the parentheses, , is the 

one-period lagged value of deviation of Y from its long-run equilibrium. The specification of 

ECM, or the presence of a constant α

t-1 1 t-1 0 2Y - β 'X  - β  - β t

0 depends on the DGP and the means of the series in the 

model. If all nonstationary variables are generated by Equation (2.3d) and the mean of any 

stationary variable is equal to zero, there is no reason to put a constant in the model. 

Otherwise, a constant should be included when we estimate the model by OLS. A plot of its 

residuals can help us check its performance. 

 

In Equation (2.8) the coefficient of the speed of adjustment measures how quickly 

equilibrium is restored. If Yt-1 is above its equilibrium value of , Y starts 

falling in the next period to correct this equilibrium error. Similarly, if Y

1 t-1 0 2β 'X  + β  + β t

t-1 is below the 

equilibrium, Y starts rising in the next period. As a result, α1 is expected to be negative. The 

following formula makes α1 more straightforward to understand 

                                                             (2.9) t
1(1+α ) =1-P

where t is the number of quarters and P is the percentage of the gap between the actual and 

equilibrium real exchange rate to be closed. If t=4, the P obtained is the proportion of 

adjustment completed within one year. On the other hand, if P=0.50, the calculated t is the 

half-life of the adjustment.  

 

Besides the expected negative coefficient of the speed of adjustment, we also expect that the 

estimated coefficients of the one-period lagged RDIFF, which measures the transitory effect 

of the monetary factor, is negative. Other positive coefficients of lagged RDIFF, which 
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reflect the subsequent reversion of the real exchange rate, might be found.  
 

2.3 Results for the Sample Period 1973Q1 to 1992Q1 

In AN’s study, they employ the non-linear least-squares approach of Phillips and Loretan 

(1991) to simultaneously estimate the cointegrating vector and ECM. Instead, a two-step 

procedure is used in our study. We estimate the cointegrating vector by DOLS and then 

estimate ECM by OLS. In order to examine whether our method can work as well as AN’s, in 

this section we try to replicate the results they obtained using the same time period as they 

did—1973Q1 to 1992Q1.  

 

2.3.1 Unit Root Tests 

Before conducting formal tests for a unit root, we plot the time series under study to get an 

intuitive feel about the likely nature of these time series. As we can see in Figures 2.2a and 

2.2c, neither RFX nor ENE exhibits a clear trend or moves up and down around a constant 

mean. The most likely possibility is that they are both a random walk process. The initial 

impression from Figure 2.2b is that COM seems to be decreasing over the sample period. Its 

downward trend perhaps suggests that the mean of COM is changing over time and thus 

COM might not be stationary. Another guess from the downward trend in COM is that COM 

could be a stationary process around a time trend. Figure 2.2d shows that RDIFF seems to 

have a constant mean and its variance does not change much, so it is the most likely 

candidate to be stationary.   

 

Figure 2.2a  RFX                     Figure 2.2b  COM 
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  Figure 2.2c  ENE                    Figure 2.2d  RDIFF 
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Table 2.1 presents the results of the ADF and PP tests and the joint hypothesis test. Table 2.2 

reports the results of the t test for zero means and it helps find the appropriate DGP of each 

series. First let us look at the results for RFX since the movement of RFX is the key concern 

of our research and its stationarity property is crucial in deciding the specification of the 

regression model used to explain its behavior. As seen in Table 2.1, all the results of the three 

tests for a unit root point to the conclusion that RFX contains a unit root. In each of the three 

cases, the p values of the ADF and PP tests are both greater than 0.10 and thus the null of a 

unit root cannot be rejected at the 10 percent significance level. Both the estimated Φ3 and Φ1 

statistics are below the 10 percent critical values and they support the results of the ADF and 

PP test that RFX is nonstationary. 

 

But the results shown in Table 2.1 are not enough for us to choose the appropriate DGP of 

RFX because the failures of the rejections of the null of case I suggest that RFX is a random 

walk with a drift while the failures of the rejections of the null of cases II and III suggest that 

RFX is a random walk without a drift. As mentioned in Section 2.2.1, the mean of the first 

difference of a random walk process without a drift must be zero, but this is not the case for a 

random walk process with a drift. Therefore we can distinguish these two processes by 

examining the mean of the first difference of the series. Table 2.2 shows that the mean of the 

first difference of RFX (DRFX) is a very small negative number. The absolute value of the 

computed t statistic is much lower than the critical values at conventional significance levels. 

The null of zero mean then cannot be rejected. As a result, we conclude that RFX is a random 

walk process.  
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Table 2.1 Tests for a unit root and DGP 

Specification RFX COM ENE RDIFF RFX COM ENE RDIFF 

 ADF test PP test 

Case I -2.32 -2.68 -1.90 -3.03 -5.43 -14.16 -4.33 **-24.01

Case II -2.29 -1.35 -1.25 *-2.64 -5.45 -2.88 -5.97 **-19.42

Case III -0.78 -1.38 -1.11 -0.96 -1.27 -1.17 -3.44 -5.45

 p value2

Case I 0.42 0.25 0.65 0.13 0.79 0.21 0.87 **0.03

Case II 0.17 0.61 0.65 *0.084 0.39 0.67 0.35 **0.01

Case III 0.39 0.16 0.24 0.31 0.42 0.44 0.20 0.11

 Number of lags3

Case I 8 6 5 8 8 6 5 8

Case II 8 7 8 8 8 7 8 8

Case III 3 7 8 4 3 7 8 4

 Φ3 (δ1=δ2=0) 5% 10% 

Case I 2.79 3.61 3.23 4.59 6.49 5.47

 Φ1 (δ0=δ2=0) 5% 10% 

Case II 2.64 1.38 0.85 *3.86 4.71 3.86
1. * and ** represent significance at the 10 and 5 percent levels respectively.  
2. p values of estimated δ2 in Equations (2.2), (2.3) and (2.4) are computed using the critical values provided 

by Mackinnon (1994). 
3. The maximum number of lags is 8 which is twice the frequency of 4. The optimal lag length from the ADF 

test is also used for the PP test. 

 

Table 2.2 Test for zero mean 

Variables Mean SE t value1

RDIFF 0.018 0.015 1.20

DRFX -0.00068 0.018 -0.038

DCOM -0.0053 0.043 -0.12

DENE 0.0053 0.091 0.058

1. The 5 percent critical value of t statistic for a sample size of 60 is 2.00, and the 10 percent value is 1.67.  
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The presence of a unit root in RFX implies that RFX consists of a stochastic trend and a 

stationary component. Its stochastic trend can be purged by the combination of other 

stochastic trends. Those variables with such a stochastic trend in this combination can affect 

RFX permanently. The short-run dynamics of RFX can be explained by some stationary 

variables. So the next step is to find those potential long-run and short-run factors of RFX by 

examining the stationarity property of COM, ENE and RDIFF.  

 

As we can see in Table 2.1, for both COM and ENE, in each case the unit root null of the 

ADF and PP tests and the joint hypothesis test cannot be rejected at the 10 percent 

significance level. These failures of rejection of the null indicate that both COM and ENE 

have a unit root. Now we turn to Table 2.2 to decide their appropriate DGP. The first 

differences of both COM and ENE, denoted as DCOM and DENE respectively, are very 

close to zero. For both DCOM and DENE, we cannot reject the null of zero mean because the 

absolute values of the computed t statistics are both lower than the critical values. Therefore 

we conclude that both COM and ENE are a random walk processes.  

 

For RDIFF, unlike other variables, the results shown in Table 2.1 do not reach a consensus 

whether RDIFF contains a unit root. In case I, conflicting results are reported. The ADF test 

and the joint hypothesis test show that the null of a unit root cannot be rejected at the 10 

percent significance level while the PP test shows that the null can be rejected. In case II, all 

three tests agree that RDIFF is a stationary process. The p values of the ADF and PP tests are 

both below 0.10 and the computed Φ3 is equal to the 10 percent critical value so we can reject 

the null of a unit root at the 10 percent significance level. In case III, the ADF and PP tests 

suggest that RDIFF appears to be nonstationary for the p values of both the tests are higher 

than 0.10. Thus there is some evidence to support that RDIFF is a random walk process either 

with a drift or without a drift. At the same time there is other evidence to suggest that RDIFF 

could be a stationary process around either a time trend or a constant. Then we try to test for a 

unit root on a series which can shed some light on this confusing situation. The Canada-US 

inflation differential (DINF) is such a series in that the real interest rate differential equals the 

difference between the nominal interest rate differential and the inflation differential. Under 
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the assumption that the real interest rate differential is stationary, RDIFF must be stationary if 

DINF does not contain a unit root. Otherwise RDIFF cannot be stationary. As we can see in 

Figure 2.2e, apparently DINF does not change with time and it appears to move around a 

constant mean.  

 

Figure 2.2e DINF 
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The results shown in Table 2.3 confirm our first impression from Figure 2.1e that DINF does 

not contain a unit root. For the ADF and PP test, DINF always appears to be stationary no 

matter which specification is chosen for it. The highest p value of the ADF test is lower than 

10 percent and the p values of the PP test are very close to zero. Both the estimated Φ3 and Φ1 

statistics are higher than the 5 percent critical values. Thus there is strong evidence to support 

that DINF is a stationary process. Accordingly, we conclude that RDIFF is stationary. As 

Figure 2.2d shows, RDIFF does not seem to have a trend. What’s more, it does not make 

economic sense that the interest rate differential changes with time. For these two reasons we 

argue that RDIFF is a stationary process around a drift rather than a trend-stationary process. 

Table 2.2 reports that the mean of RDIFF is slightly above zero and the computed t value is 

even lower than the 10 percent critical value. Thus the null of zero mean cannot be rejected. 

As a result, the mean of RDIFF is not significantly different from zero. That may explain why 

the null of a unit root can be rejected in case II, but cannot in case III. Therefore we conclude 

that RDIFF is a stationary process around zero.  
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Table 2.3 Tests for a unit root on DINF 

 Case I Case II Case III

 Statistic 

ADF test **-3.831 **-4.08 *-1.77

PP test **-59.45 **-51.50 **-47.81

 p value2

ADF test **0.015 **0.0011 *0.073

PP test **0.0000 **0.0000 **0.0000

 Number of lags3

ADF test 2 4 8

PP test 2 4 8

 Joint hypothesis test 

Φ3 (δ1=δ2=0) **7.35 

Φ1 (δ0=δ2=0)  **8.87
1. * and ** represent significance at the 10 and 5 percent levels respectively.  
2. p values of estimated δ2 in Equations (2.2), (2.3) and (2.4) are computed using the critical values provided 

by Mackinnon (1994). 
3. The maximum number of lags is 8 which is twice the frequency of 4. The optimal lag length from the ADF 

test is also used for the PP test. 

 

2.3.2 Cointegration Tests 

Since COM and ENE each has a unit root, they are able to determine the long-run equilibrium 

of RFX if the combination of their stochastic trends can remove the stochastic trend in RFX. 

Cointegration tests can help us find out whether COM and ENE are those and only those 

factors to have a long-run effect on RFX. As we mentioned in Section 2.2.2, the specification 

of the cointegrating equation is determined by the DGP of the variables involved. RFX, COM 

and ENE are all a random walk without a drift. Their values are not related to time. Therefore, 

a time trend should not be included in the cointegrating regression.  

 

Table 2.4 presents the results of cointegration tests. The p value of the AEG test is 0.14 so the 

null hypothesis of no cointegration cannot be rejected at the 10 percent significance level. 
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However, the Johansen test provides strong evidence that COM and ENE are cointegrated 

with RFX. The p values of both the trace test and the maximum eigenvalue test on the null 

hypothesis that there is no cointegrating relation in the system are less than 0.10. So the 

absolute value of both the estimated statistics are greater than the absolute value of the 10 

percent critical values. We can thus reject the null of no cointegration at the 10 percent 

significance level. Neither of the p values of the trace and the maximum eigenvalue tests on 

the null that there exists one cointegrating relationship is lower than 0.10. Therefore we 

cannot reject the null hypothesis of one cointegrating relation at the 10 percent significance 

level. The Johansen test provides some supporting evidence that there is one and only one 

cointegrating relationship among the series RFX, COM and ENE. It also implies that there 

cannot exist any other factors that have a long-run effect on RFX because if we did omit one 

of them, we could not find the cointegrating relationship as above.  

 

Table 2.4 Tests for cointegration 

 AEG test 

 Test statistic p value1   

 -3.28 0.14456   

 Johansen test 

 Trace statistics p value2 λmax statistics p value 

Less than 1 **36.62 **0.035 **24.56 **0.024

Less than 2 12.062 0.44 10.084 0.33

Less than 3 1.98 0.78 7.56 0.78
1. The AEG test uses the ADF test to test on residuals from the cointegrating regression. p value for the AEG 

test is computed using the coefficients in Mackinnon (1994).  
2. p values for the Johansen test is computed using the coefficients in Mackinnon, Haug and Michelis (1999). 

 

For the purpose of avoiding the AEG test’s problem of superconsistency and the Johansen 

procedure’s problem of high variance, we use DOLS with Newey-West HAC standard error 

and covariance to obtain efficient OLS estimates of cointegrating equation. According to our 

assumption of a small open economy, COM and ENE cannot be determined by Canada and 
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they are exogenous variables. As mentioned above, a time trend should not be included in the 

cointegrating relationship as all the series RFX, COM and ENE are a pure random walk 

process. Then the cointegrating equation based on Equation (2.5) can be written as 

                                           (2.5a) t 0 C t E tRFX =β +β COM +β ENE +et

twhere  (j≠0, k
2

1

k

t j t-j
j=-k

e = b ΔX +v∑ 1=k2=2), . Stock and Watson (1993) 

suggest that the length of the lags and leads of first differences of X depends on sample size. 

In their Monte Carlo experiment, they set k

X=(COM, ENE)'

1 and k2 to 2 for a sample size of 100 and to 3 for a 

sample size of 300. Therefore we set k1 and k2 to 2 as our sample size is 77.  

 

Table 2.5 reports the estimates of the cointegrating equation. The p values of all the estimated 

parameters are much lower than 0.05 and this means that the estimates of β0, βC and βE are all 

statistically significant. The adjusted R2 of 0.50 indicates that approximately 50% of the 

variation in the quarterly equilibrium Canada-US real exchange rate is explained by the prices 

of energy and non-energy commodities. These estimated long-run effects suggest that a 1% 

increase in the non-energy commodity price results in a 0.21% appreciation of Canada’s real 

exchange rate against the US while a 1% increase in the energy price results in a 0.11% 

depreciation of the real exchange rate. Figure 2.3a shows that the predicted real exchange rate 

by equation (2.5a) fits the data quite well in that the actual exchange rates are close to the 

regression line during most of the sample time period. Figure 2.3b plots the residuals of the 

regression which seem to be an i.i.d. process with zero mean. 

 

Table 2.5 Cointegrating equation estimates 

 Coefficient Std. Error t-Statistic p value 

β0 0.21 0.039 **5.42 **0.00

βC -0.21 0.077 **-2.77 **0.0075

βE 0.11 0.030 **3.53 **0.0008

Adjusted R2 0.50 

 

 36



Figure 2.3a Actual and predicted RFX 
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Figure 2.3b Residuals of the cointegrating regression 
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2.3.3 Error Correction Model 

We find that over the sample period 1973Q1-1992Q1, COM and ENE have a long-run effect 

on RFX and we have estimated this equilibrium relationship. But in the short run, RFX might 

depart from its equilibrium. We can use ECM to link this equilibrium error to the long-run 

value of RFX. As mentioned in Section 2.2, the DGPs of the RFX, COM and ENE help 

determine the specification of ECM. The results in Section 2.3.1 show that RFX, COM, and 
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ENE are pure random walk processes and that the stationary variable, RDIFF, has a zero 

mean as well. Therefore a constant should not be included in the regression model 

represented by Equation (2.8). The ECM to be estimated is 

                    (2.8a) 

m

t 1 t-1 0 C t-1 E t-1 RDi t-i
i=1

m m m

RFi t-i Ci t-i Ei t-i t
i=1 i=1 i=1

ΔRFX =α (RFX -β -β COM -β ENE )+ γ RDIFF +

              γ DRFX + γ DCOM + γ DENE +ε

∑

∑ ∑ ∑

 

The numbers of the lags of stationary variables are selected by using a testing-down 

procedure. First we estimate equation (2.8a) with 4 lags. As shown in Table 2.6, none of the 

estimated γRD4, γRF4, γC4 and γE4 is statistically significant at the conventional levels. Then we 

estimate Equation (2.8a) with 3 lags. Still none of the estimated γRD3, γRF3, γC3 and γE3 is 

statistically significant. We continue to estimate Equation (2.8a) with two lags. The estimated 

γRD2 and γC2 are significant but the other two are not. Meanwhile, the estimated γC1 and γE1 

are not significant. The estimates of Equation (2.8a) with one lag show that γC1 and γE1 are 

still not significant. At the same time, the adjusted R2 drops from 0.46 to 0.37 relative to the 

regression with 2 lags. Then we conclude that RDIFFt-2 and DCOMt-2 must play an important 

role in explaining the dynamics of the Canada-US real exchange rate. The estimated α1, γRD1 

and γRF1 are statistically significant in all cases at the 5 and 10 percent levels. Therefore 

Equation (2.8a) can be reduced to 

             (2.8b) t 1 t-1 0 C t-1 E t-1 RD1 t-1 RF1 t-1

RD2 t-2 C2 t-2 t

ΔRFX =α (RFX -β -β COM -β ENE )+γ RDIFF +γ DRFX
              +γ RDIFF +γ DCOM +ε

 

Table 2.7 reports the estimates of Equation (2.8b). Except for the estimated γC2 which is 

significant at the 10 percent level, the other coefficient estimates are statistically significant at 

the 5 percent level. The results indicate that the estimated Equation (2.8b) can approximately 

account for 47% of the quarter-to-quarter changes in the Canada-US real exchange rate. 

Based on Equation (2.9), the speed of adjustment -0.088 implies that after one year 30.82% of 

the gap between the actual and equilibrium real exchange rate is closed or alternatively the 

half-life is 7.52 quarters. The different signs of estimated γRD1 and γRD2 reflect the deviation 
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Table 2.6 Estimates of ECM with 4, 3, 2 and 1 lag(s) 

Variable 4 lags 3 lags 2 lags 1 lag 

 estimate p value estimate p value estimate p value estimate p value

α1
**-0.95 0.034 **-0.091 0.022 **-0.073 0.046 **-0.13 0.000

γRD1
**-0.4801 0.013 **-0.49 0.006 **-0.54 0.001 **-0.18 0.035

γRF1
**0.50 0.001 **0.50 0.000 **0.42 0.000 **0.43 0.000

γC1 -0.043 0.46 -0.028 0.60 -0.040 0.42 0.010 0.84

γE1 0.0075 0.72 0.0094 0.64 0.018 0.34 0.0063 0.74

γRD2 0.37 0.12 *0.40 0.077 **0.39 0.025  

γRF2 -0.14 0.39 -0.15 0.26 -0.61 0.58  

γC2 -0.082 0.15 -0.85 0.10 **-0.096 0.045  

γE2 -0.25 0.27 -0.22 0.29 -0.21 0.26  

γRD3 -0.11 0.66 -0.0393 0.83   

γRF3 0.20 0.16 0.17 0.16   

γC3 0.048 0.39 0.057 0.26   

γE3 -0.0002 0.99 0.0046 0.81   

γRD4 0.11 0.58   

γRF4 -0.023 0.85   

γC4 0.053 0.34   

γE4 0.0007 0.97   

Adjusted R2 0.36 0.44 0.46 0.37 

 

of the real exchange rate from its equilibrium caused by changes in monetary factors and the 

reversion afterwards: the Canadian dollar depreciates by 0.54% just after a 100bp decrease in 

Canada’s interest rate if the US interest rate stays constant and then will appreciate by 0.40% 

in one quarter. So the immediate depreciation caused by the decrease in Canada’s interest rate 

overshoots the equilibrium rate and the Canadian dollar will appreciate to approach its long 

run value in the next quarter. The estimated γRF1 of 0.41 implies that approximately 40% of 

the previous change in the real exchange rate persists in the current time period. The 
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estimated γC2 of -0.083 implies that a change in the non-energy price causes Canada’s real 

exchange rate to appreciate in two quarters. Figure 2.4a shows that the predicted value of 

ΔRFX fits the data quite well. The regression line captures most of the turning points 

occurring over the sample period. The residuals plotted in Figure 2.4b appear to move up and 

down quite evenly around the mean. 

 

Table 2.7 ECM estimates 

 Coefficient Std. Error t-Statistic p value 

α1 -0.088 0.031 **-2.86 0.006

γRD1 -0.54 0.15 **-3.71 0.000

γRF1 0.41 0.094 **4.31 0.000

γRD2 0.40 0.16 **2.56 0.012

γC2 -0.083 0.044 *-1.91 0.061

Adjusted R2 0.47 

 

 

Figure 2.4a Actual and predicted DRFX 
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Figure 2.4b Residuals of the estimated ECM 
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2.3.4 Comparison with Amano and van Norden’s (1995) Results 

We use different methods to test for a unit root, cointegration and to estimate cointegrating 

regression and ECM than AN, but those results are still quite close to theirs. They conduct 

ADF, PP and KPSS to test for a unit root and conclude that the series RFX, COM and ENE 

are a unit root process without a drift and RDIFF is stationary. We follow the procedure 

suggested by Bhargara (1986) and the joint hypothesis test to discover DSP and to test for a 

unit root. We find that RFX, COM and ENE are all  pure random walk processes and the 

RDIFF is a stationary process around zero. They conclude that ENE and COM are 

cointegrated with RFX after conducting Hansen ADF and PP tests and the JJ test. The 

Johansen test we conduct gives the same result. Table 2.8 presents the ECM estimates using 

the non-linear least squares methodology by AN. After successively omitting variables with 

insignificant t-statistics, they found that the one-period lagged RDIFF was the only factor that 

has a transitory effect on RFX. We find that one-period lagged and two-period lagged 

RDIFFs, one-period lagged DRFX and two-period lagged DCOM can significantly affect the 

short-run deviations of RFX from its equilibrium. Their speed of adjustment α1 obtained is a 

little faster than ours. Their estimate of -0.038 implies that 37.1% of adjustment is completed 

within one year, or a half-life of about one year and a half. Our estimate of -0.088 implies that 

30.82% of adjustment is completed within one year, or a half-life of almost two years. The 

estimated long-run effects on the RFX they obtain have the same signs as ours, but are greater 

than ours. Their estimated coefficients of constant, COM and ENE are 0.552, -0.811 and 
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0.223 respectively, higher in absolute value than our estimates of 0.21, -0.21 and 0.11.  
 

Table 2.8 Estimates of ECM by AN 

Variable Coefficient Std. error t-statistic p value 

α1 -0.038 0.011 -3.446 _

β0 0.552 0.097 5.681 0.000

β1 -0.811 0.296 -2.736 0.006

β2 0.223 0.060 3.700 0.000

γRD1 -0.187 0.043 4.390 0.000

 

To sum up, our methodology yields similar results to AN’s in that all the estimated 

coefficients we obtain have the same sign as they do and we both find: The prices of energy 

and non-energy commodities determine the long-run equilibrium of the Canada-US real 

exchange rate; the Canadian real exchange rate is positively related to non-energy commodity 

prices and negatively to energy prices; one-period lagged interest rate differentials can 

account for the short-run dynamics of the real exchange rate. Among these findings only the 

negative effect of the energy prices is contrary to our expectation. We also find that beside 

the one-period lagged interest rate differentials, two-period lagged interest rate differentials, 

one-period lagged changes in real exchange rate and two-period lagged non-energy 

commodity prices have a transitory effect on the real exchange rate. Our next step is to 

attempt to investigate whether the model remains valid with an extension of the sample 

period and figure out the puzzle of the negative effect of the energy prices. So we turn to 

these questions in Chapter 3.  
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Chapter 3  Sample Extension and Structural Break Test 

In this chapter we try to find out whether COM and ENE still have a long-run effect on RFX 

and whether ECM model can still link the short-run behavor of RFX to its long-run value 

when our sample period is extended to the end of 2004. As shown in Chapter 2, higher 

energy prices weaken the Canadian dollar. This result does not support the theory we 

discussed in section 1.2 which suggests that higher energy prices strengthen the Canadian 

dollar when Canada is a main oil exporter to the US. We thus try to solve the puzzle by 

considering a structural break in the long-run relationship.  

 

3.1 Unit Root Tests and Cointegration Tests Without a Structural Break 

3.1.1 Unit Root Tests 

As we can see in Figures 3.1a-3.1d which plot the series RFX, COM ENE and RDIFF, 

RDIFF is still the most likely candidate to be stationary among them. The variance of RFX 

appears to increase with time as does the variance of ENE. COM seems to continue to trend 

downward. 

 

Figure 3.1a  RFX                    Figure 3.1b  COM 
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Figure 3.1c  ENE                    Figure 3.1d  RDIFF 
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Table 3.1 above presents the results of the tests for a unit root. Table 3.2 below reports the 

results of the t test for zero means. We first check the stationarity property of RFX. All the 

results suggest that RFX is nonstationary and it is a pure random walk process. None of the p 

values of the ADF and PP tests is lower than 0.10 and the computed Φ1 statistic is below the 

10 percent critical value. Thus the null of a unit root cannot be rejected at the 10 percent 

significance level and RFX is a random walk without a drift. As shown in Table 3.2, the 

mean of RFX is not significantly different from zero. This confirms the conclusion from 

Table 3.1.  

 

Our next step is to examine the stationarity property of the other variables in the study. Like 

RFX, the null of any such test for ENE cannot be rejected at the 10 percent significance level. 

We conclude that ENE contains a unit root and it is a pure random walk process.  

 

For COM and RDIFF, conflicting results are reported. The results of most tests indicate that 

COM does contain a unit root while the ADF test for case III shows that the null hypothesis 

of a unit root can be rejected at the 10 percent significance level. RDIFF is found to be 

stationary by the PP test while the null of a unit root cannot be rejected at the 10 percent level 

by the ADF test and the joint hypothesis test. 
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Table 3.1 Tests for a unit root1

Specification RFX COM ENE RDIFF RFX COM ENE RDIFF 

 ADF test PP test 

Case II -2.35 -1.63 -1.58 -2.17 -5.48 -3.85 -7.43 **-21.22

Case III -0.88 *-1.692 -1.13 -1.35 -1.26 -2.22 -5.36 **-6.55

 p value3

Case II 0.16 0.47 0.49 0.22 0.39 0.56 0.25 **0.0086

Case III 0.34 *0.086 0.23 0.16 0.42 0.30 0.11 **0.019

 Number of lags4

Case II 5 8 5 8 5 8 5 8

Case III 5 8 5 8 5 8 5 8

 Φ1 (δ0=δ2=0) 5% 10% 

Case II 2.72 2.52 1.48 2.37 4.71 3.86
1. The results for case I are not reported because in Chapter 2 we find that Case I is not an appropriate 

specification for any of the variables.  
2. * and ** represent significance at the 10 and 5 percent levels respectively.  
3. p values of estimated δ2 in Equations (2.3) and (2.4) are computed using the critical values provided by 

Mackinnon (1994). 
4. The maximum number of lags is 8 which is twice the frequency of 4. The optimal lag length from the ADF 

test is also used for the PP test. 

 

Table 3.2 Test for zero mean 

Variables Mean SE t value1

RDIFF 0.013 0.016 0.79

DRFX 0.000036 0.022 0.0016

DCOM -0.0035 0.043 -0.082

DENE 0.0091 0.097 0.094

1. The 5 percent critical value of t statistic for a sample size of 120 is 1.98, and the 10 percent value is 1.66.  

 

As we discussed in Section 2.2, the ADF test is preferable in situations where the residuals of 

Equations (2.2c), (2.3c) and (2.4c) are negatively autocorrelated while the PP test is preferred 

in the situations of positively autocorrelated residuals. DeJong, Nankervis, Savin and 
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Whiteman (1992) suggest that AR(1) process might capture the critical feature of the error 

terms and their Monte Carlo experiments are thus based on the AR(1) process. We collect the 

residuals μt after estimating Equation (2.4c) for COM and RDIFF and Equation (2.3c) for 

RDIFF. Then the AR(1) parameters are estimated by regressing μt on μt-1. As seen in Table 

3.3 the estimated AR(1) parameter for COM is significantly positive. In such a situation, the 

PP test is more reliable. Therefore, we can conclude that the COM is nonstationary and it is a 

random walk without a drift. For RDIFF, the estimated AR(1) parameters are both negative, 

but they are statistically insignificant at the 10 percent level. These insignificant negative 

AR(1) parameters suggest that the residuals are not negatively autocorrelated. We still cannot 

tell which one is better, the ADF test or the PP test for RDIFF.  

 

Table 3.3 AR(1) parameters of the error terms  

 AR(1) parameter P value 

COM based on Equation (2.4c) 0.25 **0.005

RDIFF based on Equation (2.3c) -0.076 0.40

RDIFF based on Equation (2.4c) -0.11 0.23

 

 

As we did in Section 2.3, we need to test for a unit root on DINF. Under the assumption that 

the real interest differential is stationary, if DINF is stationary, we conclude that RDIFF is 

stationary. As show in Figure 3.1e, DINF does not display a clear trend. It seems that DINF 

has a constant mean and it moves around the mean. The results shown in Table 3.4 provide 

strong evidence that DINF does not have a unit root. The p values of both ADF and PP tests 

are very close to zero. The computed Φ1 statistic is much higher than the 10 percent critical 

value. Therefore RDIFF is a stationary process as well. As we can see in Table 3.2, the mean 

of RDIFF is slightly above zero, but the computed t statistic is lower than the critical values 

at conventional levels. The null of zero mean then cannot be rejected. As a result, we 

conclude that RDIFF is a stationary process with zero mean.  

 

 

 46



Figure 3.1e 
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Table 3.4 Tests for a unit root on DINF 

 Case II Case III 

 Statistic 

ADF test **-4.741 **-4.58

PP test -75.01 **-69.87

 p value2

ADF test **0.000069 **0.000006

PP test **0.000000 **0.000000

 Number of lags3

ADF test 2 2

PP test 2 2

 Joint hypothesis test 

Φ1 (δ0=δ2=0) **11.31 
1. * and ** represent significance at the 10 and 5 percent levels respectively.  
2. p values of estimated δ2 in Equations (2.3) and (2.4) are computed using the critical values provided by 

Mackinnon (1994). 
3. The maximum number of lags is 8 which is twice the frequency of 4. The optimal lag length from the ADF 

test is also used for the PP test. 

 

3.1.2 Cointegration Tests 

As shown in previous sections, the property and DGP of each time series under study does 

not change when the sample period is extended to 2004Q4. RFX, ENE and COM are still a 

pure random walk process and RDIFF is still a stationary process around zero. In this section, 
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we test for the existence of the long-run relationship among the series with a unit root using 

the AEG and Johansen cointegration tests. 

 

Table 3.5 reports the results of the cointegration tests. The 0.55 p value of the AEG test 

indicates that the estimated statistic is much lower than the 10 percent critical values. The 

null hypotheses of no cointegration cannot be rejected at the 10 percent significance level. 

The Johansen test reconfirms the results of the AEG test. The p values of both the trace test 

and the maximum eigenvalue test on the null hypothesis that there is no cointegrating 

relationship in the system are more than 0.70 and thus the estimated statistics are less than the 

10 percent critical values. We cannot reject the null hypothesis of no cointegration at the 10 

percent significance level. We conclude that RFX is not cointegrated with COM and ENE. 

Therefore it seems the equilibrium Canada-US real exchange rate cannot be determined by 

only COM and ENE when the sample period is extended4.  

 

Table 3.5 Tests for cointegration 

 AEG test 

 Test statistic p value1   

 -2.38 0.55   

 Johansen test 

 Trace statistics p value2 λmax statistics p value2

Less than 1 19.45 0.76 11.19 0.73

Less than 2 8.26 0.80 5.34 0.86

Less than 3 2.92 0.60 2.92 0.60
1. p value for the AEG test is computed using the coefficients in Mackinnon (1994).  
2. p values for the Johansen test are computed using the coefficients in Mackinnon, Haug and Michelis (1999). 

 

3.2 Error Correction Model with a Structural Change in the Long-Run Relationship 

3.2.1 Cointegration Tests and Cointegrating Regression with a Structural Change 

The conventional cointegration tests assume that the long-run relationship among the I(1) 
                                                        
4 We cannot reject the null hypothesis that there is no cointegrating relationship between RFX and COM or RFX and ENE 
either using the AEG and Johansen tests.  
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variables is constant over time. However the failure of the rejection of the null hypotheses of 

no cointegration could result from the presence of a structural shift over the sample period. 

The Monte Carlo experiments by Gregory, Nason and Watt (1996) show that the in-sample 

power of the cointegration tests based on the conventional ADF test drops considerably when 

there is a structural break in the long-run relationship. Then it is necessary to test for a 

structural break once we find that COM, ENE and RFX are not cointegrated with the 

extension of the sample period to 2004. Issa, Lafrance and Murray (2006) find a break point 

in 1993Q3 at which the sign of the relationship between energy prices and the Canadian 

dollar changes from negative to positive. They suggest that this sign change is associated 

with the growing importance of energy exports by Canada, due to the deregulation of the 

Canadian energy sector and the implementation of North American Free Trade Agreement. 

We follow their procedure proposed by Quintos (1995) to find a break point except we use a 

standard Wald test on the coefficients of the dummy variables instead of a modified Wald test. 

Our results confirm that there is a break point in 1993Q3. Also at this point, the effect of the 

energy prices on the Canadian dollar shifted from negative to positive.  

 

In her study, Quintos (1995) estimates the regression with dummy variables to split the 

sample period into two sub-periods and tests the significance of the coefficients of the 

dummy variable for each point from 15% to 85% of the sample period. She suggests that the 

break point is among those with peak and significant modified Wald statistics which are χ2 

distributed if the nonstationary variables are all I(1). Following this procedure, we estimate 

the equation as follows for each point from 1978Q1 to 1999Q4 

               (2.5b) t 0 C t E t 0 t C t t E t tRFX =β +β COM +β ENE +θ D +θ (D COM )+θ (D ENE )+μ t

where μt is an error term and Dt = 1 for t > the tested point  

                          = 0 otherwise 

 

As seen in Figure 3.2, the two peak values are at 1993Q3 and 1993Q4. The dotted line 

indicates the critical value at 5 percent significant level. The p values of these two points are 

very close to zero. Since two adjacent points cannot both be break points, we choose 1993Q3 
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as this break point is also found by Issa, Lafrance and Murray (2006).  

 

Figure 3.2 WALD statistics for a structural break  
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After finding a break point, Quintos carries out the residual based test and the Johansen test 

for cointegration for each sub-period. We then conduct the AEG and Johansen tests 

separately for two sub-periods 1973Q1-1993Q3 and 1993Q4-2004Q4. Tables 3.6a and 3.6b 

present the results of the cointegration tests. As we can see in table 3.4a, the p value of the 

AEG test is slightly higher than 0.05 and we can reject the null hypothesis of no cointegration 

at the 10 percent significance level. The Johansen test supports the results of the AEG test 

that RFX is cointegrated with COM and ENE. The p values of both the trace and the 

maximum eigenvalue tests on the null hypothesis that there is no cointegrating relation in the 

system are less than 0.05. This indicates that both the estimated statistics are greater than the 

10 percent critical values. We can reject the null hypotheses of no cointegration at the 10 

percent significance level. Neither the p values of the trace and the maximum eigenvalue tests 

on the null that there exists one cointegrating relation is lower than 0.10 and we cannot reject 

the null hypothesis of one cointegrating relationship at the 10 percent significance level. 

Therefore we conclude that there is one and only one cointegrating relationship among the 
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series RFX, COM and ENE for the period 1973Q1-1993Q3. This also explains our finding in 

Chapter 2 that the equilibrium RFX is determined by COM and ENE for the period 

1973Q1-1992Q1 which is part of our first sub-period.  

 

Table 3.6a Tests for cointegration: 1973Q1-1993Q3 

 AEG test 

 Test statistic p value1   

 *-3.74 *0.050   

 Johansen test 

 Trace statistics p value2 λmax statistics p value 

Less than 1 **36.84 **0.033 **24.31 **0.026

Less than 2 12.53 0.40 10.79 0.27

Less than 3 1.74 0.83 1.74 0.83

 

Table 3.6b Tests for cointegration: 1993Q4-2004Q4 

 AEG test 

 Test statistic p value1   

 -2.34 0.57   

 Johansen test 

 Trace statistics p value2 λmax statistics p value 

Less than 1 24.99 0.40 16.06 0.29

Less than 2 8.94 0.74 5.14 0.88

Less than 3 3.79 0.44 3.79 0.44
1. p value for the AEG test is computed using the coefficients in Mackinnon (1994).  
2. p values for the Johansen test are computed using the coefficients in Mackinnon, Haug and Michelis (1999). 

 

However, for the later sample period all the p values in Table 3.6b are more than 0.10. It 

seems that RFX, COM and ENE are not cointegrated for the period 1993Q4-2004Q4. But the 

short period of the second sub sample could cause lower power of the AEG test. Andrade, 

Bruneau and Gregoir (2005) argue that for a sample period with a structural break, if we 
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conduct Johansen tests separately for the two sub-periods, the test power for the second 

period is so low that we sometimes fail to reject the null of no cointegration when a 

cointegrating relationship does exist. They explain that the effect of the first period data 

generating process on the initial value of the second period causes the low test power for the 

second period. In addition, Issa, Lafrance and Murray (2006) find some evidence of 

cointegration after 1993Q3 using Johansen maximum eigenvalue test. So our next step is to 

estimate the cointegrating vector with a structural break at 1993Q3. 

 

Using DOLS, we estimate the equation as follows for the period 1973Q1-2004Q4 

t 0 C t E t 0 t C t t E t tRFX =β +β COM +β ENE +θ D +θ (D COM )+θ (D ENE )+et               (2.5c) 

where Dt = 1 for t > 1993Q3 

       = 0 otherwise 

Table 3.7 reports the estimates of the cointegrating equation. The p values of all the estimated 

parameters are much lower than 0.05. These low p values indicate that all the estimated 

parameters are statistically significant. The adjusted R2 of 0.79 indicates that approximately 

79% of variation in the quarterly equilibrium Canada-US real exchange rate is explained by 

the energy and non-energy commodity prices. The estimated long-run effects suggest: (1) For 

the period 1973Q1-1993Q3, a 1% increase in the non-energy commodity price results in a 

0.20% appreciation of Canada’s real exchange rate while a 1% increase in the energy price 

results in a 0.094% depreciation. (2) For the period 1993Q4-2004Q4, the intercept increases 

by 0.18 relative to the earlier sub-period. A 1% increase in the non-energy commodity price 

results in 0.33% additional appreciation of Canada’s real exchange rate relative to the first 

sub-period. It is very interesting to find that a 1% increase in the energy price results in a 

0.21% appreciation relative to the first sub-period. This positive effect of the energy prices on 

the Canadian real exchange rate makes the effect of the estimated ENE change from negative 

over the first sub-period to positive over the second sub-period. In total, a 1% increase in the 

energy price results in a 0.116% appreciation of the Canadian real exchange rate after 

1993Q3. At the same time, a 1% increase in the non-energy commodity price results in a total 

0.52% appreciation of the real exchange rate. Figure 3.3a shows that the predicted real 
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exchange rate in equation (2.5c) fits the data very well in that the regression line is very close 

to the actual exchange rate during most of the sample time period. Figure 3.3b plots the 

residuals of the regression which seems to be an i.i.d. process with zero mean. 

 

Table 3.7 Cointegrating equation estimates 

 Coefficient Std. Error t-Statistic P value 

β0 0.20 0.036 5.46 0.0000

βC -0.20 0.064 -3.06 0.0028

βE 0.094 0.025 3.69 0.0004

θ0 0.18 0.040 4.37 0.0000

θC -0.33 0.086 -3.76 0.0003

θE -0.21 0.061 -3.43 0.0008

Adjusted R2 0.79 

 

Figure 3.3a 
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Figure 3.3b 
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3.2.2 Error Correction Model 

In previous section we find that with a break point at 1993Q3, the equilibrium Canada-US 

real exchange rate is determined by COM and ENE for the period 1973Q1-2004Q4. In this 

section we try to find out whether ECM is still valid for the extended period. We assume that 

there is no structural change in ECM, that is, the speed of adjustment stays constant over the 

whole period. In order to select the appropriate numbers of lags and specification of ECM, we 

start with the most general ECM which can be written as  

t 1 t-1 0 C t-1 E t-1 0 t-1 C t-1 t-1
m m

E t-1 t-1 RDi t-i RFi t-i
i=1 i=1

m m

Ci t-i Ei t-i t
i=1 i=1

ΔRFX =α (RFX -β -β COM -β ENE -θ D -θ (D COM )

              -θ (D ENE ))+ γ RDIFF + γ DRFX

              + γ DCOM + γ DENE +ε

∑ ∑

∑ ∑

                 (2.8c) 

 

Table 3.8 reports the estimates of Equation (2.8c) with 1, 2, 3 and 4 lags. As shown in the 

table, none of the estimated parameters of the four-period lagged variables γRD4, γRF4, γC4 and 

γE4 is statistically significant at the conventional levels. Then we remove all these variables 

and estimate Equation (2.8c) with 3 lags. The 0.005 p value of the estimated γRF3 indicates 

that this coefficient is significant at the conventional levels. We continue to estimate Equation 

(2.8c) with 2 lags. The decreased adjusted R2 from 0.29 to 0.26 suggests that DRFXt-3 cannot 

be omitted from the model. The results also show that the estimated γRD2 is significant but the 

other three are not. The adjusted R2 of the estimated equation with one lag drops from 0.26 to  
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Table 3.8 Estimates of ECM with 4, 3, 2 and 1 lag(s) 

Variable 4 lags 3 lags 2 lags 1 lag 

 estimate P value estimate P value estimate P value estimate P value

α1
**-0.91 0.030 **-0.10 0.012 **-0.089 0.021 **-0.12 0.002

γRD1
**-0.59 0.007 **-0.56 0.006 **-0.61 0.003 **-0.20 0.031

γRF1
**0.41 0.00 **0.40 0.000 **0.39 0.000 **0.38 0.000

γC1 -0.040 0.43 -0.041 0.38 -0.054 0.24 -0.029 0.51

γE1 -0.16 0.41 -0.012 0.54 -0.011 0.56 -0.016 0.40

γRD2 0.42 0.12 0.42 0.12 **0.46 0.026  

γRF2
*-0.19 0.07 *-0.17 0.093 -0.070 0.46  

γC2 -0.032 0.52 -0.030 0.53 -0.042 0.36  

γE2 -0.0034 0.87 -0.0081 0.68 -0.013 0.50  

γRD3 -0.14 0.60 -0.0021 0.99   

γRF3
**0.31 0.004 **0.27 0.005   

γC3 0.0027 0.96 0.0016 0.97   

γE3 0.0097 0.64 -0.0032 0.87   

γRD4 0.187 0.41   

γRF4 -0.047 0.65   

γC4 -0.0068 0.89   

γE4 0.020 0.32   

Adjusted R2 0.25 0.29 0.26 0.24 

 

 

0.24 relative to the estimated equation with 2 lags. Similarly, RDIFFt-2 must play an 

important role in explaining the dynamics of the Canada-US real exchange rate. It is worth 

mentioning here that the estimated α1, the speed of adjustment, is negative and statistically 

significant in each case we have estimated. It is a good sign that ECM works. Like α1, both 

γRD1 and γRF1 are statistically significant in all cases at the 10 percent level. Therefore 

equation (2.8c) can be reduced to  
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                 (2.8d) 
t 1 t-1 0 C t-1 E t-1 0 t-1 C t-1 t-1

E t-1 t-1 RD1 t-1 RF1 t-1

RD2 t-2 RF3 t-3 t

ΔRFX =α (RFX -β -β COM -β ENE -θ D -θ (D COM )
              -θ (D ENE ))+γ RDIFF +γ DRFX
              +γ RDIFF +γ DRFX +ε

 

Table 3.9 reports the estimates of Equation (2.8d). All the estimated parameters are 

statistically significant at the 5 percent significance level. The adjusted R2 implies that the 

estimated equation can approximately account for 31% of the quarter-to-quarter changes in 

the real exchange rate. Based on Equation (2.9), the speed of adjustment -0.12 implies that 

after one year, 40.03% of the gap between the actual and equilibrium real exchange rate is 

closed or a half-life of 5.42 quarters. The different signs of estimated γRD1 and γRD2 show that 

the Canadian dollar depreciates by 0.55% just after a 100bp decrease in Canada’s interest rate 

if the US interest rate stays unchanged and then will appreciate by 0.43% in one quarter, so 

finally the Canadian dollar still depreciate slightly. The estimated γRF1 of 0.55 implies that 

approximate 55% of the previous change in real exchange rate stays in the current time period. 

The estimated γRF3 indicates that a change in real exchange rate three quarters before affects 

the current real exchange rate. Figure 3.4a shows that the fluctuation of the estimated ΔRFX 

is very close to the actual one and the estimated ΔRFX moves within a smaller range. It is 

impressive that our model can capture most of the actual turning points. The residuals plotted 

in Figure 3.4b appear to be a stationary process with a zero mean. 

 

Table 3.9 ECM estimates 

 Coefficient Std. Error t-Statistic P value 

α1 -0.12 0.035 -3.314 0.001

γRD1 -0.55 0.19 -2.98 0.004

γRF1 0.40 0.079 5.06 0.000

γRD2 0.43 0.19 2.24 0.027

γRF3 0.24 0.081 3.00 0.003

Adjusted R2 0.31 
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Figure 3.4a 
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Figure 3.4b 
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3.2.3 Comparison with the Results for 1973Q1 to 1992Q1 

The structural break of 1993Q3 we have obtained for the extended period implies that one 

stable cointegrating relationship exists for the period 1973Q1 to 1992Q1. A comparison of 

Tables 2.5 and 3.7 indicates the estimated cointegrating vector for the period 1973Q1 to 

1992Q1 is very similar to that for the first sub-period 1973Q1 to 1993Q3. For the second 

sub-period, we find that the positive effect of real non-energy commodity prices on the 
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equilibrium Canada-US real exchange rate is greater than its previous effect. The effect of 

energy prices on the Canadian dollar changes from negative to positive after 1993Q3.  

 

The speed of adjustment α1 for the period 1973Q1 to 2004Q4 is faster than that for the period 

1973Q1 to 1992Q1. The adjustment percentage within one year has increased from 30.82% to 

40.03%, or the half-life is reduced from 7.52 quarters to 5.42 quarters. The short-run effects 

of one-period and two-period lagged RDIFF and one-period lagged DRFX on the short-term 

dynamics of the Canada-US real exchange rate are relatively stable in that for both the 

periods, their estimated coefficients are statistically significant and very close to each other. 

We also find that the short-run effects of the two-period lagged DCOM and the three-period 

lagged DRFX are not stable. The estimated coefficient of the two-period lagged DCOM is 

statistically significant over the period 1973Q1 to 1992Q1 but it is not significant for the 

extended period. The estimated coefficient of the three-period lagged DRFX is significant for 

the period 1973Q1 to 2004Q4 but it is insignificant for the period 1973Q1 to 1992Q1.  

 

For both the periods 1973Q1-1992Q1 and 1973Q1-2004Q4, the positive effect of the 

non-energy commodity prices on the Canadian real exchange rate and the deviation of the 

real exchange rate when the interest rate differential changes are consistent with our 

expectations which come from the theories discussed in Chapter 1. As Issa, Lafrance and 

Murray (2006) point out, the negative effect of energy prices before 1993Q3 can be 

accounted for by Canada’s energy policies during that time and its positive effect is a result 

of deregulation of those policies and the implementation of North American Free Trade 

Agreement. We analyze the impact of deregulation in Chapter 4. 
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Chapter 4  Interpretation of Results and Summary 

4.1 Analysis of Deregulation 

According to Canadian Energy Chronology, from 1973-84 the focus of Canadian policy was 

to ensure energy security through government intervention to manage self-sufficiency. From 

1984-94, Canada’s energy policies turned to pursue market-led development through 

deregulation. 5  Replacing government administrative prices of oil and natural gas with 

market-driven prices helped create a competitive environment that benefits both producers 

and consumers. Decontrol on energy exports encouraged trade by Canada, and relaxation of 

rules for foreign investment in the oil and gas industry promoted the growth of the industry.       

 

In April 1984, the Canada/B.C. Agreement covering petroleum pricing was amended. The 

price of oil from infill wells and production was to be determined by the New Oil Reference 

Price, which is basically the world price, replacing the Special Old Oil Price. Since 

November 1984, negotiated prices, instead of government-set prices, were applied to 

Canadian natural gas exporters. In January 1985, oil price deregulation and flexible natural 

gas pricing were approved in Quebec. In March 1985, the federal/provincial governments 

signed the Western Accord which deregulated Canadian crude oil prices. Besides, the 

federal-provincial agreement removed import subsidies, export taxes on crude and oil 

products, the petroleum compensation charge, and controls on oil exports. In October, 

another federal-provincial agreement on Natural Gas Prices Markets and Prices introduced a 

more flexible system of natural gas pricing which became effective at the beginning of 

November 1986. Since then, natural gas prices were allowed to be negotiated between sellers 

and buyers in both domestic and export markets. The agreement also loosened export license 

                                                        
5 All information in this section are from the Natural Resources Canada website at 
http://www2.nrcan.gc.ca/es/es/EnergyChronology/index_e.cfm and the Office of the Auditor General of Canada website at 
http://www.oag-bvg.gc.ca/DOMINO/REPORTS.NSF/html/coo3aa_e.html 
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condition. In November 1990, the Petro-Canada Privatization Act was passed and in June 

1991, Petro-Canada offered its first round of shares. In March 1992, new rules for foreign 

investment in the oil and gas industry removed the minimum 50% Canadian ownership of the 

upstream oil and gas industry. In June 1993, the Canadian Ownership Requirement Repeal 

Act removed the minimum 50% Canadian ownership for the issuance of frontier oil and gas 

production licenses and eliminated the process of review and approval for transfers of 

ownership in a frontier oil and gas production license or shares. In October 1993, two orders 

which had restricted natural gas exports to northern California were revoked in response to an 

agreement to resolve Canada-California dispute.  

 

These initiatives were designed to create more market oriented response of energy exports to 

world oil prices. The 1993 structural break in the relationship between world oil prices and 

the real exchange rate uncovered in this study suggests that deregulation was successful. That 

is, prior to 1993, a rise in world oil prices lowered Canada’s real exchange rate whereas, past 

1993, this relationship turned positive as one would expect in a market environment.  

 

4.2 Summary 

The economic theories reviewed in Chapter 1 suggest that the long-run equilibrium of the real 

exchange rate can be determined by the real price of exportables. As a main commodity 

exporter to the US, Canada experiences an appreciation of its real exchange rate against the 

US as real commodity prices increase. In the short-run, monetary factors can account for the 

deviation of the real exchange rate from its equilibrium value. Canada’s real exchange rate 

depreciates shortly after the Bank of Canada increases monetary supply when the price level 

in Canada has not changed. The real exchange rate starts to appreciate to approach its 

long-run value when the price level in Canada starts to rise in response to the money supply 

increase. An error correction model has been applied in examining these long-run and 

short-run effects on the Canada-US real exchange rate. The findings of our empirical study, 

which support several previous studies, help to explain the movement of the Canada-US real 

exchange rate.  

.  
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To check whether the econometric method for estimating the ECM model and the variables 

we use to measure the real shocks and the monetary policies of Canada and the US work well, 

we replicate the AN model using the data for the period 1973Q1 to 1992Q1 and find that the 

estimated coefficients they obtain have the same sign as we do. We discover that RFX, COM 

and ENE follow a pure random walk process and RDIFF is a stationary process with zero 

mean. Considering that none of the DGPs of RFX, COM and ENE has a time trend or a drift, 

it is appropriate to exclude a time trend from the cointegrating relationship when it is tested 

and estimated. The cointegration tests show that RFX are cointegrated with COM and ENE. 

This implies that the long-run equilibrium of RFX is determined by COM and ENE with the 

assumption of exogeneity of COM and ENE. Then we find that an increase in COM results in 

an appreciation of the real value of the Canadian dollar relative to the US dollar while an 

increase in ENE results in a depreciation of the real Canada-US exchange rate. The findings 

we obtain from the estimated ECM are as follows: first of all, after one year 30.82% of the 

gap between the actual and equilibrium Canada-US real exchange rate is closed, or it takes 

7.52 quarters to close 50% of the gap; second, the Canadian dollar overdepreciates 

immediately after a decrease in the interest rate in Canada and then appreciates to move 

toward its equilibrium in one quarter; finally, the one-period lagged changes in RFX and the 

two-period lagged changes in COM can explain the short-run dynamics of RFX.  

 

When we extend the sample period to the end of 2004, the cointegration tests fail to reject the 

null hypothesis of non-cointegration. It seems that there is no cointegrating relationship 

among RFX, COM and ENE for the period 1973Q1 to 2004Q4. However, we find a 

structural break in 1993Q3 which can explain the failure of the conventional cointegration 

test. Our estimated long-run relationship shows that an increase in COM strengthens the 

Canadian dollar and its positive long-run effect has been greater since 1993Q3. The effect of 

ENE on the Canadian dollar has changed from negative to positive at the break point 1993Q3. 

After one year 40.03% of the gap between the actual and equilibrium Canada-US real 

exchange rate is closed, or it takes 5.42 quarters to close 50% of the gap. The interest rate 

differential still has an short-run effect on the Canada-US real exchange rate. Canada’s real 

exchange rate depreciates immediately after a decrease in Canada’s interest rate and 
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appreciates next quarter but not by as much as it has depreciated. The one-period lagged and 

the three-period lagged changes in RFX can explain the short-run dynamics of RFX. 

 

In summary, our results generally support most of the theoretical predictions such as the 

positive effect of real non-energy commodity prices on the Canadian real exchange rate and 

the deviation of the real exchange rate from its long-run value caused by sticky price level in 

the short-run when the interest rate differential changes. Before 1993Q3 real energy price 

shocks have a negative effect which is inconsistent with the theory, but after that time they 

have a positive effect, reflecting the cumulative effect of the deregulation of the energy sector 

past 1984.  

   

Our results suggest that the Canada-US real exchange rate fluctuations are driven by 

fundamentals, energy and non-energy commodity prices. So it is relative price volatility, 

rather than a flexible exchange rate system, that is driving the volatility of Canada’s nominal 

exchange rate. In other words, the volatility of Canada’s nominal exchange rate cannot be 

eliminated by fixing the exchange rate. Thus, the results of this study weaken the core for 

fixing the Canada-US exchange rate. 

 

This study also suggests the possibility that Canada might be presently experiencing the 

symptoms of Dutch Disease (Corden and Neary 1982). The phenomenon of Dutch Disease 

refers to the possibility of a contraction of the manufacturing sector in a country with a 

booming natural resource sector caused by an increase in the resource price. Evidence of 

Dutch Disease is a sharp appreciation of the real exchange rate which places the 

manufacturing sector at a competitive disadvantage. The recent increase in the world price of 

oil to almost $100 per barrel can be expected to generate an increase in Canada’s real 

exchange rate and a subsequent contraction of the manufacturing sector.  
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Appendix A 

Data Sources 
 

Canada-US exchange rate  
Source: CANSIM II, Table Number-1760064, Series Level-V37426 
 
US GDP deflator 
Source: Bureau of Economic Analysis, Table 1.1.9. 
 
Canadian GDP deflator 
Source: CANSIM II, Table Number-3800003, Series Level-V1997756 
 
Non-energy commodity price index  
Source: CANSIM II, Table Number-1760001, Series Level-V36383 
 
Energy commodity price index   
Source: CANSIM II, Table Number-1760001, Series Level-V36384 
 
3-month yield on prime corporate paper in Canada 
Source: CANSIM II, Table Number-1760043, Series Level-V122491 
 
3-month yield on commercial paper in the US 
Source: CANSIM II, Table Number-1760044, Series Level- V122141  
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