

Analysis of nutritional composition and *in-vitro* enzymatic digestibility of selected rice landraces of Tamil Nadu, India

R.Bharathi Raja Department of Plant Science University of Saskatchewan

Rice (*Oryza sativa* L.) - an important cereal grain

- Cereal grains provide almost half of the calories in human diet
- 'Rice is life' in Asia, where 90 per cent of world's rice is grown and consumed by 60 per cent of population
- Rice provides 20% of the world's dietary energy supply, while wheat supplies 19% and maize (corn) 5%.

Rice Quality Improvement - Challenges

• Consumption influenced by:

socio-economic developmental cultural environmental dietary factor

- Limited efforts to improve the nutritional quality of rice
- Introduction of high yielding fertilizer responsive varieties led to narrow genetic base

Consumption pattern

- In the past whole coarse grains loaded with sufficient dietary fibre
- At present, they are replaced with refined carbohydrates devoid of any dietary fibre which is resulted in obesity

R.S.		Diet				Diet		
	Fat	Refined Sugar	Starch	Protein	<u>(grams</u> Salt	Fiber		
Hunter-gatherers								
(pre-agricultural revolution)	15-20	0	50-70	15-20	1	40		
Peasant farmers								
(post-agricultural revolution)	10-15	5	60-75	10-15	5-15	60-120		
Modern affluent societies								
(post-industrial revolution)	40+	20	25-30	12	10	20		

Obesity affects multiple targets in human metabolism

Resistant Starches – source of dietary fibre in rice

- Resistant starch escapes from digestion in the small intestine but are fermented in the large intestine by bacterial microflora
- It has potential health benefits and functional properties similar to dietary fibre
- Very less in modern day varieties of rice

Landraces – Source of genetic variation

- Contributions to breeding programs not fully appreciated
- Lack of genetic information for biochemical components and its digestibility
- 21 rice landraces from Cauvery-delta region of Tamilnadu, India
- Thanjavur/Tanjore
 the rice bowl of Tamil Nadu

Fig 1. Cauvery Delta Zone Highlighted from Tamil Nadu

List of landraces used in this study

S.No	Land races						
1.	Poongar						
2.	Varappu Kudaichan						
3.	Manavari						
4.	Vellai Kattai						
5.	Kaliyam Samba						
6.	Nootripattu						
7.	Godavari Samba						
8.	Karthigai Samba						
9.	Ganthasala						
10.	Ponmani Samba						
11.	Mattaikar						
12.	Thattaravella						
13.	Pavizham						
14.	Chinthamani						
15.	Mangam Samba						
16.	Thulandam						
17.	Kallundaikar						
18.	Chinna nellu						
19.	Vellai Samba						
20.	Kavuni						
21.	Katta Samba						

Materials and methods

Collection of land races

Variation in grain constituents

Variation in grain constituents

Variation in *in-vitro* enzymatic digestibility – meal sample

Variation in *in-vitro* enzymatic digestibility – pure starch sample (%)

Variation in starch granule size distribution

Diameter in µm

Association studies

	Total Starch	Amylose	Protein	Crude fat	TDF	Total phenol	Ash	RSM	RDSM	SDSM	HIM	RSPS	RDSPS	SDSPS
Amylose	0.03													
Protein	-0.71**	-0.15												
Crude fat	-0.23	-0.42	0.50*											
TDF	-0.27	-0.11	0.59**	0.79**										
Total phenol	-0.06	-0.12	0.20	0.47	0.68**		1							
Ash	-0.31	-0.02	0.51	0.68**	0.89**	0.53*								
RSM	-0.29	0.19	-0.22	-0.23	-0.10	0.17	-0.15							
RDSM	0.04	0.01	-0.14	-0.08	-0.05	-0.25	0.04	0.08						
SDSM	0.13	-0.11	0.22	0.17	0.07	0.07	0.03	-0.63*	-0.81**					
НІМ	-0.26	-0.13	0.41*	0.14	0.34	0.14	0.18	0.04	0.41	-0.35				
RSPS	-0.14	0.47*	-0.19	-0.35	-0.20	0.02	-0.18	0.60*	0.01	-0.36	-0.18			
RDSPS	0.06	-0.62**	0.21	0.55**	0.12	-0.10	0.00	-0.55	0.07	0.25	0.16	-0.66**		
SDSPS	0.09	0.17	-0.02	-0.23	0.10	0.09	0.21	-0.07	-0.10	0.13	0.03	-0.42*	-0.39	
HIPS	0.06	-0.51	0.22	0.38	0.07	-0.29	-0.01	-0.59	0.06	0.29	0.28	-0.72**	0.89 **	-0.19

- Kallurundaikar recorded highest total starch (88.72%)
- Amylose content ranged from 4.26 to 27.26%
- Protein content was ranged from 6.28 to 12.39%
- Mattaikar recorded the highest resistant starch (RS) content (22.19%)
- The highest total dietary fibre (TDF) was detected in Katta Samba (8.72 %)
- Land races kaliyam samba and manavari recorded lowest and highest digestibility with the hydrolysis index value of 37.93 and 50.57 respectively.

Conclusion

- Large amount of variation were detected for all the quality traits taken for this study.
- Variation utilized for the development of rice varieties with better end use quality
- The identified landraces with unique biochemical constituents especially the ones with high starch, amylose, protein, RS and TDF will be valuable in breeding specialty rice for improved digestibility by reducing its hydrolysis index.
- These landraces were conserved in Ramiah Gene Bank for future use.

Acknowledgement

My advisors

1.Dr.Ravindra chibbar

2.Dr. S.Ganesh Ram