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ABSTRACT

This thesis is about multiple hypothesis testing and its relation to the P -value. In Chapter 1,

the methodologies of hypothesis testing among the three inference schools are reviewed. Jeffreys,

Fisher, and Neyman advocated three different approaches for testing by using the posterior prob-

abilities, P -value, and Type I error and Type II error probabilities respectively. In Berger’s words

“Each was quite critical of the other approaches.” Berger [8] proposed a potential methodological

unified conditional frequentist approach for testing. His idea is to follow Fisher in using the P -

value to define the strength of evidence in data and to follow Fisher’s method of conditioning on

strength of evidence; then follow Neyman by computing Type I and Type II error probabilities

conditioning on strength of evidence in the data, which equal the objective posterior probabilities

of the hypothesis advocated by Jeffreys [26].

Bickis [3] proposed another estimate on calibrating the null and alternative components of

the distribution by modeling the set of P -values as a sample from a mixed population composed

of a uniform distribution for the null cases and an unknown distribution for the alternatives. For

tackling multiplicity, exploiting the empirical distribution of P -values is applied. A variety of

density estimators for calibrating posterior probabilities of the null hypothesis given P -values are

implemented. Finally, a noninterpolatory and shape-preserving estimator based on B-splines as

smoothing functions is proposed and implemented.
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INTRODUCTION

In this thesis, we will be examining and implementing hypothesis testing approaches. By modeling

the set of P -values as a sample from a mixed population, we will calibrate posterior probabilities

of the null hypothesis, and hence will consider how posterior probabilities of the null hypothesis

and P -values from the significance tests are related.

As an overview, the thesis comprises three chapters. In Chapter 1, we introduce the Bayesian

and frequentist procedures, where the procedures reviewed can be found in [30] and [25]; then

move on to describe a unified conditional frequentist testing methodology proposed by Berger [8].

In Chapter 2, various ideas for handling the multiplicity of tests such as false discovery rate,

developed by Benjamini and Hochberg, and Bonferroni method are discussed. Then we consider

calibrating the null and alternative components of the distribution by modeling the set of P -values

as a sample from a mixed population proposed by Bickis [3]. The posterior probabilities of the null

hypothesis given P -values from the empirical P -value distribution are computed based on kernel

probability density estimation. This methodology is aimed to distinguish the sub-population of

nulls, to calibrate P -value by computing the posterior probability of the null hypothesis in the light

of deviations from uniformity of the empirical distribution of P -values, and to make inferences

about estimates of the probability of the null hypothesis being true.

In the final chapter, we are concerned with the probability density estimation for P -values

resulting from the significance tests. After defining B-splines based on centred differences as

smoothing functions, we develop a noninterpolatory and shape-preserving density estimator. The

results related to the properties of our noninterpolatory and shape-preserving density estimator

are proved. In general, B-spline is defined with the aid of divided differences or recurrence relation

(cf. DeBoor [15] Page.131). However, our reformulation of B-splines based on centred differences

results in more accurate and stable density estimates compared with the kernel probability density

estimators and other interpolatory spline density estimators. Although spline smoothing approach

to non-parametric regression curve fitting is widely applicable (cf. Silverman [42]), our noninter-

polatory and shape-preserving density estimator resulting from B-splines as smoothing functions

based on centred differences has not yet been found in the literature in the desired form. Finally,

these techniques are illustrated using simulated data. MATLAB coding with some further details
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and comments for carrying out these simulations is presented in the Appendix.

Chapter 1 is basically a literature review of hypothesis testing procedures. The contents in

Chapter 2 are original work of Dr. Mikelis G. Bickis, my supervisor. In Chapter 3, we establish the

relation between B-splines smoothing functions and centred differences, and explicitly express and

convert the B-splines smoothing function from the centred difference to truncated polynomials

instead of the recurrence relation. Most of the results and proofs, the definition of smoothing

B-splines resulting from centred differences, and the practical description and implementation of

the probability density estimation based on the smoothing B-splines are our own.
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Chapter 1

THE TESTING PROCEDURES

FROM THREE INFERENCE

SCHOOLS

1.1 Hypothesis testing

Generally hypothesis testing is a decision making problem with a number of possible outcomes. In

particular, hypothesis testing provides an objective framework for making decisions using prob-

abilistic methods, rather than relying on subjective impressions whose conformity with the data

are needed to be tested. As well, hypothesis testing provides a decision making criterion that

is consistent for all people even though people can form different opinions by looking at data.

The hypothesis testing considered can be formulated in terms of the null hypotheses, denoted by

H0 and the alternative hypotheses, denoted by H1. Quite often the inferential process can be

summarized in the verification of some statements about an unknown quantity θ, belonging to a

parameter space Θ.

Consider the two disjoint subsets Θ0 and Θ1 of Θ. The hypotheses constituted can be pa-

rameterized as follows:

Under H0 : θ ∈ Θ0

Under H1 : θ ∈ Θ1

If the subset of the parameter space defining a hypothesis contains a single element, the hypothesis

is said to be simple. In another words, let X be a random variable with a probability density

function f(x|θ), that is, X ∼ f(x, θ). If a statistical hypothesis is a statement about the distribu-
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tion of X , the hypothesis completely specifies f(x, θ). Otherwise, it is said to be composite, and

under a composite hypothesis it is only specified that the observational distribution belongs to a

family. When a hypothesis is simple, Θ0 = {θ0} and/or Θ1 = {θ1}.

In general, any decision about the truth or falsity of the hypothesis based on experimental

evidence is subject to error, which is not only random error that results from experimental mea-

surements but also occasional decision errors such as Type I and Type II errors. We will discuss

Type I and Type II errors later. Suppose that the only possible decisions are whether H0 is true

or H1 is true. All outcomes in hypothesis testing typically refer to the null hypothesis. Hence if

one decides H0 is true, then H0 is accepted; if one decides H1 is true, then H0 is rejected.

There are three different approaches for testing, advocated by Jeffreys [26], Fisher [18], and

Neyman [30] by using the posterior probabilities, P -value, and Type I error and Type II error

probabilities respectively, but, as quoted from Berger [8], “Each was quite critical of the other

approaches.” If one makes the wrong decision, one suffers a loss. From a Bayesian perspective,

one would try to minimize the expected loss. Also one may have many alternative hypotheses

H1, . . . , Hk that can be compared through P(Hi|x), i = 1, . . . , k. Under the frequentist perspec-

tive, however, it is important to have the only two hypotheses H0 and H1.

1.1.1 Bayesian methodology for hypothesis testing

A Bayesian’s approach for testing is to find an optimal procedure that minimizes some risk func-

tion, which is especially useful for such decision making. Bayesians view probability as degree of

belief about unknown parameters and combine the prior belief with the information provided by

the data in a study to produce a posterior distribution. Similar to a classical sampling distribu-

tion that is centred around a parameter estimate and used to calculate confidence intervals from

the frequentist perspective, the posterior distribution can be employed to construct a credibility

region for the unknown parameters from the Bayesian perspective.

For example, consider a random variable X , the number of success, having a binomial distri-

bution,

X ∼ Bin(n, θ)

where n is the number of trials and θ is the success probability.

Consider a situation where the prior belief is Beta(α, β) distributed:

p(θ) =
1

B(α, β)
· θ(α−1) · (1 − θ)(β−1),

where α and β are called hyperparameters.

4



Using Bayes’ Theorem, the posterior density is:

p(θ|x) ∝ p(x|θ) · p(θ) =
1

B(α + x, β + n − x)
· θ(α+x−1) · (1 − θ)(β+n−x−1),

θ|x ∼ Beta(α + x, β + n − x).

The posterior is Beta(α+x, β+n−x) distributed with hyperparameters (α+x, β+n−x) updated

given that the prior belief is Beta(α, β) distributed with hyperparameters (α, β). The posterior
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Figure 1.1: Posterior density distribution(used with permission of Dr. Mikelis G. Bickis)

probability density function with the data X ∼ Bin(n, 0.5) is shown as Figure (1.1), where the

prior hyperparameters α = 1 and β = 1, the number of trials n is increased from 1 to 100, and

the number of success X = 53 when n = 100. After 100 trials, with 53 successes (i.e., correct

decisions) and 47 failures, we wish to choose between two hypotheses: H0 (i.e., θ = θ0) and H1

(i.e., θ 6= θ0), where θ and θ0 are two-dimensional and the two components of θ are α and β.

A Bayesian hypothesis test (Jeffreys [26]) proceeds by contrasting two quantities: the prob-

ability of the observed data x given H0 (i.e., θ = θ0) and the probability of the observed data x

given H1 (i.e., θ 6= θ0). Also as quoted from Migon [31], “it suffices to examine the posterior prob-
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abilities p(H0|x) and p(H1|x). If the posterior probability p(H0|x) > p(H1|x), then H0 should be

accepted as the most plausible hypothesis for θ. In this case, it can be said that H0 is preferable

to H1. Otherwise, H1 is preferable to H0.”

Once again using Bayes’ Theorem:

p(θ|x) =
p(x|θ) · p(θ)

p(x)
∝ p(x|θ) · p(θ)

p(H0|x) ∝ p(x|H0) · p(H0)

p(H1|x) ∝ p(x|H1) · p(H1)

p(H0|x)

p(H1|x)
=

p(H0)

p(H1)
· p(x|H0)

p(x|H1)

The ratio
p(x|H0)
p(x|H1)

is the Bayes factor, denoted by B(x), and it quantifies the evidence that the

data provide for H0 against H1. In accordance with Berger [8], assuming equal prior plausibility

for the testing (prior indifference of θ), the posterior probability for H0 is given as follows.

p(H0|x) =
B(x)

1 + B(x)
. (1.1)

Under unequal prior plausibility for the testing, let us assign a lump prior probability π0 to

a simple hypothesis H0, that is, p(H0) = π0 even though one will have that p(Hj) = p(Hj |x) = 0

when Hj is a simple hypothesis, j = 0, 1, and the prior distribution of θ is continuous. So, if

H1 is the complement of a simple hypothesis, then p(H1) = π1 = 1 − π0 and this probability is

distributed over the different values of θ under H1.

Let the prior density of θ under H1 be θ|H1 ∼ f(θ). As H0 is a simple hypothesis, it follows

that p(x|H0) = p(x|θ0).

The marginal likelihood of H1 based on X is found by integrating over all possible values

of θ:

p(x|H1) =

∫

θ−{θ0}
p(x|θ, H1) · p(θ|H1)dθ =

∫

θ

p(x|θ) · f(θ)dθ.

Also, the marginal prior for θ has continuous and discrete parts of which the cumulative distribu-

tion function of θ under H1 is F (θ) and therefore the marginal density of X is:

p(x) =

∫
p(x|θ)dF (θ) = π0 · p(x|θ0) + π1 ·

∫
p(x|θ) · f(θ)dθ = π0 · p(x|θ0) + π1 · p(x|H1).

The Bayes factor corresponding to H0 : θ = θ0 vs. H1 : θ 6= θ0 is:

B(x) =
p(x|θ0)∫

θ

p(x|θ) · f(θ)dθ
.
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As noted above, the relative odds between H0 and H1, B(x), does not take into account the prior

odds π0/(1− π0), which is a Bayesian measure of the goodness of fit of a given model to the data

set. Thus B(x) > 1 indicates that H0 fits the data better than H1.

Based on assigning equal prior probabilities of 1/2 to the two hypotheses and applying the

Bayes theorem, Jeffreys [26] approach for testing proceeded by:

• Compute the Bayes factor B(x) =
p(x|H0)
p(x|H1)

.

• Reject H0 as B(x) ≤ 1; otherwise, accept H0.

• Report the posterior probability of the hypothesis as in equation (1.1) or equation (1.2).

p(H1|x) =
1

1 + B(x)
(1.2)

Note that Bayesian hypothesis testing depends on prior distributions.

1.1.2 Fisher’s P -value for hypothesis testing

Fisher [18] believed that there must exist a logic of inductive inference that would yield a correct

answer to any statistical problem. By using such an inductive logic, the statistician would be

freed from prior assumptions of the Bayesian school. Fisher’s significance testing is based on the

P -value. The concept of P -value is defined as follows.

Definition 1.1 (Definition of P -value) The P -value is the probability of getting something at

least extreme as the observed result assuming the null hypothesis is true, that is,

P -value = Pr(t(X) ≥ t(x)|H0).

So the P -value is referred to as the maximum probability of the most extreme event that actually

happened. More generally, consider a family of extreme events and let {At : t ∈ T } be a nested

collection of extreme events and T is totally ordered set. We need that At ⊂ As if t > s, and have

a null hypothesis which is a statistic assigning a family of probabilities Pθ(At) to the extreme

events. Let t∗ = sup{t : X ∈ At}. Henceforth, the P -value is formally defined as:

P -value = sup
θ∈Θ0

Pθ(At∗).

As defined above, the P -value is computed assuming the null hypothesis is true. The P -value is,

however, not the probability of the null hypothesis H0. A large P -value (close to 1) is not an

evidence in favor of H0.

Let us proceed with a simple hypothesis H0 : θ = θ0 by Fisher’s significance testing.

Suppose one observes data X = x, where X ∼ f(x|θ), and the test is as follows.

7



• Choose a test statistic T = t(X), where large values of T reflect evidence against H0.

• Compute the probability p = Pr(t(X) ≥ t(x)|H0), the P -value, where x is the specific

observed value and X is the random variable.

• Reject H0 if p is small enough since small p indicates an unlikely event and, hence, an

unlikely hypothesis H0.

1.1.3 Neyman-Pearson frequentist methodology for hypothesis testing

In a frequentist hypothesis testing procedure, first one needs to specify a null hypothesis, say

H0 : θ = θ0 and a alternative hypothesis, say H1 : θ = θ1. The testing then can be proceeded by:

• Construct a test statistic T = t(X), where large values of T reflect evidence against H0.

• Reject H0 if T ≥ c, where c is a critical value resulting from the pre-chosen significance

level α; or specify a rejection region Γα (critical region), and then reject or accept the null

hypothesis H0 depending on whether or not the observed value of the test statistic is within

the critical region.

• Compute Type I and Type II error probabilities, α = Pr(Reject H0|H0 true) and β =

Pr(Accept H0|H1 true)

Definition 1.2 (Definition of the power function of a test) The power function, π(θ), of

a test of H0 is the probability of rejecting H0 when the true value of the parameter is θ

For simple hypotheses H0 : θ = θ0 vs. H1 : θ = θ1, we have π(θ0) = α, and π(θ1) = 1 − β, where

α and β are Type I and Type II error probabilities.

The distribution of T under the null hypothesis is known, but it is not necessarily known under

the alternative hypothesis. The distribution of T under the alternative is, however, needed to

compute the power as defined in Definition (1.2). As noted above when proceeding by using

Neyman-Pearson hypothesis testing, one might reject H0 when H0 is true; or might fail to reject

H0 when H0 is false. Neyman-Pearson frequentist approach for testing just report unconditional

Type I and Type II error probabilities, based on the predetermined significance level regardless

of the actual scales of evidence in the data.

As discussed previously, Neyman-Pearson hypothesis testing is to reject H0 if T ∈ Γα with

taking risk to Type I error, and fail to reject otherwise with commitment to Type II error. It is

desirable to minimize α and β simultaneously, but the two probabilities can not be controlled at

the same time. A traditional way for a simple null hypothesis H0 for a given T = t(X) is to assign

an upper bound, which is referred to as the significance level or the size of test for a composite

hypothesis H0, to the Type I error rate Pr(T ∈ Γ|H0), and to attempt to minimize Type II error

8



rate Pr(T /∈ Γ|H1), or equivalently to maximize power Pr(T ∈ Γ|H1) . This is so-called controlling

the Type I error rate.

1.1.4 Connecting P -value and Neyman-Pearson testing and randomiz-

ing a test

More generally, suppose we have a test where H0 is rejected when test statistic T ∈ Γα, the

rejection region. The rejection region corresponding to the level α is denoted by Γα, satisfying

Pr(T ∈ Γα|H0) ≤ α.

Let t be the observed value of T . Then evaluation of Pr(T > t|H0) gives an idea of how extreme

the observed value is under H0. The notion of the P -value is useful for us to determine the size

α at which we would reject H0 based on the information actually obtained.

H0 is rejected ⇐⇒ P -value < α

On the other hand, for a composite null hypothesis H0, the size η of a test (or size of critical

region) is the maximum probability of rejecting H0 when H0 is true (maximized over the values

of the parameter under H0), that is,

η = sup
θ∈Θ0

Pr(Rejection of H0|θ ∈ Θ0) (1.3)

However, it is not always possible to obtain tests of any pre-specified level exactly, that is, η ≤ α

because of the discreteness of the random variable.

Definition 1.3 (Definition of a conservative test) A test is said to be conservative if η < α.

The conservative test may result in a loss of the power as defined in Definition (1.2). In order to

get the most powerful test, we should increase the rejection region as large as possible to increase

the power as discussed in Section (1.1.3).

There is an alternative approach that allows us to obtain tests of an exact level even for discrete

distribution. The alternative is known as randomized tests where any pre-determined level is ob-

tained after realization of an additional independent Bernoulli experiment with success probability

conveniently chosen to complete the difference between α and η in equation (1.3).

Definition 1.4 (Definition of a randomized test)

A randomized test says that if
Pθ1

Pθ0

=
p(x|θ1)

p(x|θ0)
> k

then reject H0

if
Pθ1

Pθ0

=
p(x|θ1)

p(x|θ0)
< k
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then accept H0

If
Pθ1

Pθ0

= k, then observe a binary random variable U , which is independent of the data, and reject

if u = 1, where P (U = 1) is defined by

Pθ0

(
Pθ1

Pθ0

> k

)
+ P (U = 1) · Pθ0

(
Pθ1

Pθ0

= k

)
= α.

1.2 Example

Berger [8] puts in this way: “Jeffreys, Fisher, and Neyman not only disagreed as to statistical

foundations, but also reported considerably different practical conclusions.”

Let’s consider Example (1.1) to see how they reported the results.

Example 1.1 (Taken from Berger [8])

Suppose that the data, X1, . . . , Xn, are i.i.d. from the normal distribution with the unknown

mean θ and σ2 known, that is,

X1, . . . , Xn ∼ N(θ, σ2),

and n = 10.

Berger [8] considered two different possible observed data, z =

√
n·x
σ = 2.3, or z = 2.9, where x

is the sample mean.

Jeffreys’ methodology

H0 : θ = 0 vs. H1 : θ 6= 0

We have the equal prior probabilities, that is, p(H0) = p(H1) = 1/2, and the prior of θ under H1

is Cauchy distributed with parameters equal to 0 and σ, denoted by θ|H1 ∼ Cauchy(0, σ). So, the

prior density of θ under H1 is

f(θ|H1) =
σ

π · (θ2 + σ2)

where σ = 1 in accordance with Berger [8].

Therefore, the marginal likelihood of H1 based on X1, . . . , Xn or z = 2.3 respectively, (z = 2.9)

is:

p(z|H1) =

∫

θ

p(z|θ) · f(θ|H1)dθ =

∫ ∞

−∞

1√
2π

· e− 1
2
·(z−θ)2 · σ

π · (θ2 + σ2)
dθ

As discussed in Section (1.1.1), the posterior probabilities of H0, corresponding to z = 2.3( or z =

2.9), are as follows.

Pr(H0|x1, . . . , xn) = Pr(θ = 0|z) =
B(z)

1 + B(z)
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where the Bayes factor is:

B(z) =
p(z|H0)

p(z|H1)
=

1√
2π

· e− 1
2
·z2

∫ ∞

−∞

1√
2π

· e− 1
2
·(z−θ)2 · σ

π · (θ2 + σ2)
dθ

,

so B(2.3) = 0.3891316812 and B(2.9) = 0.1276643975. Henceforth,

Pr(θ = 0|z = 2.3) = 0.28,

Pr(θ = 0|z = 2.9) = 0.11.

Since B(z) < 1, H0 is then rejected.

Fisher’s methodology:

H0 : θ = 0

If z = 2.3,

then P -value = Pr (z ≥ 2.3) + Pr (z ≤ −2.3) = 0.021

If z = 2.9,

then P -value = Pr (z ≥ 2.9) + Pr (z ≤ −2.9) = 0.0037

Therefore, Fisher would report the P -values: p = 0.021 or p = 0.0037. Since P -value< 0.05, H0

is then rejected.

Neyman-Pearson frequentist methodology:

H0 : θ = 0 vs. H1 : θ 6= 0

The test statistic is T (X) =

√
n·X
σ . Hence, T (x) = 2.3 or 2.9.

Given the pre-chosen significance level α = 0.05, the rejection region would be:

Γα = {T : T > 1.96} ∪ {T : T < −1.96}

Neyman-Pearson frequentist approach for testing would also reject H0 since T ∈ Γα, and one

would then just report α = 0.05 in either case, unconditional Type I error probability based on

the predetermined significance level.

From this example, one can see they reported differently. The three approaches to testing

can lead to quite different practical conclusions both in statistics and science. In particular, as

more complex statistical analysis is increasingly used in science areas, the perceived disagreement

between Bayesian and frequentist approaches seems to loom larger than it does in the statistical
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community. Berger [8] proposed a potential unified conditional frequentist approach to testing.

1.3 The unified conditional frequentist testing

Methods to reconcile the different approaches to testing that are proposed by Fisher, Jeffreys

and Neyman using P -values, posterior probability, and Type I and Type II error probabilities,

respectively, are needed. From both frequentist and Bayesian perspectives as discussed previously,

the most promising route to a compromise is to derive Bayesian inference procedures that can also

be justified by their behavior in repeated sampling from the model. Sellke et al. [40] outline such

a route in the context of testing a null hypothesis. Berger [8] proposed a potential methodological

unified conditional frequentist approach to testing. The idea is to follow Fisher in using the P -

value to define the strength of evidence in data and to follow Fisher’s method of conditioning on

strength of evidence; then follow Neyman by computing Type I and Type II error probabilities

conditioning on strength of evidence in the data, which equal the objective posterior probabilities

of the hypothesis advocated by Jeffreys, assuming the hypotheses have equal prior probabilities

of 0.5.

1.3.1 Statistic and an unknown parameter

Definition 1.5 (Definition of sufficient statistic) Let X be a random variable with a proba-

bility density function p(x|θ). Then the statistic T = T (x) is sufficient for the unknown param-

eter θ if the conditional probability density function of X given T = T (x) does not depend on θ,

that is,

p(x|t, θ) = p(x|t).

Definition 1.6 (Definition of ancillary statistic) Let X be a random variable with a prob-

ability density function p(x|θ). Then the S = S(x) is an ancillary statistic for the unknown

parameter θ if

p(s|θ) = p(s),

that is, a statistic that has a distribution that does not depend on θ.

1.3.2 Introduction to conditioning statistic and test

Conditional inference is one of the most important concepts in both statistical theory and statis-

tical methodology. In the Bayesian paradigm, conditioning is automatic, for instance,

p(θ|x) =
p(x|θ) · p(θ)

p(x)
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while in the frequentist paradigm, there is no general theory as to how to condition even though

frequentists do condition in various circumstances. However, the use of conditioning in the pure

frequentist school was comparatively sporadic since according to Berger [8] Neyman rarely ad-

dressed the issue. Fisher would use conditional variables to eliminate nuisance parameters, as in

the Fisher exact test where he chose S to be the marginal totals in a contingency table and then

computed p-values conditioning on these marginal totals ( [17] and [18]), which is also described

in Example (1.2). In addition, Fisher recommended that statisticians routinely condition on an

ancillary statistic. It is actually possible to eliminate unknown nuisance parameters and obtain

exact size α tests (the maximum probability of rejecting null hypothesis H0 over the values of

the parameters under H0) by conditional tests based on conditional arguments. For instance, if a

sufficient statistic S exists for an unknown nuisance parameter θ, then the distribution of X |S will

not depend on θ. This technique will be illustrated for the two-sample binomial test as follows.

Example 1.2 (Conditional test)

Let X and Y be independent distributed as X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2). We wish a size

α test as follows.

H0 : p1 = p2 ≡ p vs. H1 : p1 < p2

where p is unknown. Let q = 1 − p.

Since X and Y are independent, under H0

the joint density of X and Y is:

f(x, y) =

(
n1

x

)(
n2

y

)
px+y · qn1+n2−(x+y). (1.4)

Let the conditioning statistic be S = X + Y . We now prove S is a sufficient statistic for the

common unknown p, assuming H0 is true.

Since the moment generating functions of X and Y are

Mx(t) = (pet + q)n1 and My(t) = (pet + q)n2 ,

and X and Y are independent, the moment generating function of X + Y is

Mx+y(t) = Mx(t) · My(t) = (pet + q)n1+n2 (1.5)

Therefore, S = X + Y ∼ Bin(n1 + n2, p), and

fS(s|p) =

(
n1 + n2

s

)
ps · qn1+n2−s (1.6)
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Consider the statistic T (s) = S = X + Y . Equation (1.6) can be reformulated as follows.

fS(s|p) =

(
n1 + n2

s

)
pt · qn1+n2−t

= g(s) · f(t, p)

where f(t, p) = pt ·qn1+n2−t and g(s) =
(n1 + n2

s
)
, and both are non-negative functions. Based on

Neyman’s factorization criterion, that is, the statistic T is sufficient for the unknown parameter

θ if and only if

p(x|θ) = f(t, θ) · g(x)

where f and g are non-negative functions, hence S = X + Y is sufficient for the unknown p if H0

is true.

This suggests considering a test based on the conditional distribution of (X, Y ) given S = s.

Because Y = S − X , it suffices to base the test on the conditional distribution of Y given S = s.

Under H0, from equation (1.6) S ∼ Bin(n1 + n2, p) and thus

fY |s(y) =
fS,Y (s, y)

fS(s)

=
fX,Y (s − y, y)

fS(s)

=

(
n2

y

)(
n1

s − y

)
ps · qn1+n2−s

(
n1 + n2

s

)
ps · qn1+n2−s

=

(
n2

y

)(
n1

s − y

)

(
n1 + n2

s

)

y = 0, . . . , s; s = 0, . . . , n1 + n2.

So Y |s ∼ Hypergeometric(s, n2, n1 + n2), namely Y |s has a hypergeometric distribution. This

distribution does not involve p, and an exact size α critical region (or by randomizing the test for

the discrete distribution as discussed in Section (1.1.4) can be determined under H0 for any given

observed value of s. For H1 : p1 < p2, the best critical region would be for large y. Thus, reject

H0 for a size α test if

s∑

i=y

(
n2

i

)(
n1

s − i

)

(
n1 + n2

s

) ≤ α, (1.7)

or equivalently reject H0 if y ≥ k(s) where k(s) is the critical value and depends on the ob-

served value of s, i.e. k(s) is the smallest integer such that equation (1.7) holds. Tests for other
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alternatives can be obtained in a similar manner.

Lemma 1.1 (Lemma on the size of conditional test) A conditional size α test also is a size

α test unconditionally.

Proof: Let T be test statistic, S be conditional statistic, and f(s) be the probability density

function of S.

For a conditional size α test, Pr(T ≥ k(s)|s) = α, then we have

Pr (T ≥ k(S)) =

∫

s

Pr (T ≥ k(s)|s) f(s)ds

= ES{Pr (T ≥ k(S)|S)}

= ES(α)

= α,

where Pr (T ≥ k(S)|S) is the conditional probability of the event T ≥ k(S), given the event S = s,

if Pr (S = s) 6= 0.

1.3.3 The unified conditional statistic and test recommended by Berger

To be precise as to the type of conditioning statistic and conditional test recommended by

Berger, first we discuss the definitions of conditional frequentist error probabilities, as quoted

from Berger [8], and then Berger’s unified conditional frequentist test. Further we consider an

example of conditional frequentist testing to illustrate how to find a conditioning statistic that

measures the amount of evidence in the data for or against the null hypothesis and then to report

the frequentist error probabilities conditioning on this statistic.

In the case of testing simple hypothesis

H0 : θ = θ0 vs. H1 : θ = θ1,

one determines a conditioning statistic S(x).

Definition 1.7 (Definitions of conditional frequentist error probabilities (CEP))

α(s) = Pr (reject H0|S(x) = s) = Pr (Type I error|S(x) = s)

β(s) = Pr (accept H0|S(x) = s) = Pr (Type II error|S(x) = s)

Consider simple hypothesis H0 and H1 with absolutely continuous densities. In Fisherian

statistics, the most commonly used measure of evidence is the P -value, so it is natural to con-
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sider choosing P -value as the conditioning statistic for the conditional testing. Based on Def-

initions (1.1) of P -value, P -values under H0 and H1 for a conditioning statistic are defined as

follows.

Definition 1.8 (Definitions of P -values for a conditioning statistic) For simple hypothe-

ses H0 : θ = θ0 vs. H1 : θ = θ1, let p0 be the P -value under H0, and p1 be the P -value under H1,

that is,

p0 = Pr(t(X) ≥ t(x)|H0);

p1 = Pr(t(X) ≤ t(x)|H1).

So a conditioning statistic based on the P -values above is defined as follows.

Definition 1.9 (Definition of a conditioning statistic S based on the P -values)

S = max{p0, p1}

Conditioning on P -values from Definition (1.8), Berger’s conditional frequentist test proceeds by

rejecting H0 when p0 ≤ p1 and accepting otherwise, and then computing the Type I and Type

II conditional error probabilities (CEP) as defined in Definition (1.7). The resulting test, T C, is

defined by:

T C =






if p0 ≤ p1

reject H0 and report Type I CEP, α(x) =
B(x)

1 + B(x)

if p0 > p1

accept H0 and report Type II CEP, β(x) = 1
1 + B(x)

(1.8)

where B(x) is the Bayes factor.

A direct application of Bayes’ Theorem as in Section (1.1.1) shows that α(x) and β(x) are

precisely the Bayesian posterior probabilities, as defined in equation (1.1) and equation (1.2),

assuming the hypotheses have equal prior probabilities of 0.5. Berger [9] shows that this equiva-

lence holds generally when testing simple hypotheses. Let us work out the following example to

demonstrate how to set up the conditional frequentist testing.

Example 1.3 (Testing of simple hypotheses taken from Sellke et al. [40])

It is desired to test:

H0 : X ∼ Uniform(0, 1) vs. H1 : X ∼ Beta(1/2, 1).

The probability density functions under H0 and H1 are illustrated in Figure (1.2)
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Figure 1.2: Probability density function of P -values under H0 and H1.

f0(x|H0) =





1 0 < x < 1

0 otherwise
(1.9)

f1(x|H1) =





(2
√

x)−1 0 < x < 1

0 otherwise
(1.10)

The Bayes factor is then

B(x) =
f0(x)

f1(x)
= 2

√
x

Now we compute the P -values p0 and p1 under H0 and H1.

p0 = Pr (X ≤ x|H0) = x

p1 = Pr (X ≥ x|H1) = 1 −
√

x

Thus the conditioning statistic as defined in Definition (1.9) is

S = max{x, 1 −
√

x}.
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Therefore the resulting conditional frequentist test is

T C =






if x ≤ 0.382

reject H0 and report Type I CEP, α(x) =
B(x)

1 + B(x)
= (1 + 1/2x−1/2)−1

if x > 0.382

accept H0 and report Type II CEP, β(x) = 1
1 + B(x)

= (1 + 2
√

x)−1

(1.11)

where the Bayes factor is B(x) = 2
√

x. Note that Type I CEP and Type II CEP α(x) and β(x)

in equation (1.11) vary with the strength of evidence in the data and do not exhibit unnatural

behavior for either small or large values of the observation X . However, there is a possible oddity

for middle values of X . For example, when x = 0.36 < 0.382, then the conclusion of testing based

on equation (1.11) is to reject H0 and report Type I CEP α(0.36) = 0.55, which means one might

make a decision with an error probability larger than 0.5. While H0 has formally been rejected,

the fact that the reported conditional error probability is so high conveys the clear message that

this is a very uncertain conclusion. For those uncomfortable with this mode of operation, we have

this quote from Berger [8]: “note that it is possible to, instead, specify an ordinary rejection region

(say, at the unconditional α = 0.05 level), find the ‘matching’ acceptance region (which would

essentially be the 0.05 level rejection region if H1 were the null hypothesis), and name the region

in the middle the no-decision region. The conditional test would be the same as before, except

that one would now state ‘no decision’ when the data are in the middle region. The CEPs would

not be affected by this change, so that it is primarily a matter of preferred style of presentation

(whether to give a decision with a high CEP or simply state no decision in that case).” (See

Berger [8] for more details on no decision region.)

1.3.4 The properties of conditional frequentist test and potential agree-

ments

As noted above, the rejection region of the conditional frequentist test need not be specified in

advance; it is determined as {x : p0(x) ≤ p1(x)}. Classically, one is used to controlling Type

I error probability through choice of the rejection region. For the conditional frequentist test,

however, the unconditional Type I and Type II error probabilities α and β are not used as the

reported error probabilities. The conditional Type I and Type II error probabilities α(x) and β(x)

computed as in equation (1.8) are used instead, which more closely aligns P -values with posterior

probabilities.

Berger’s conditional frequentist test should have been attractive to Neyman because it is fully

compatible with Neyman-Pearson theory, which relies on comparing null and alternative densities.

For example, the conditioning statistic as defined in Definition (1.9) is computed using null and
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alternative densities. Moreover, the frequentist test results in error probabilities fully varying with

the data that eliminates the major criticism of Neyman-Pearson frequentist approach. However,

Neyman rarely addressed conditioning in spite of the criticisms from Fisher, so Berger [8] puts in

this way: “it is difficult to speculate as to his reaction to the conditional frequentist test and to use

of the conditioning statistic as defined in Definition (1.9). Another feature of T C in equation (1.8)

that Neyman might have taken issue with is that conditioning does affect optimality properties

such as power if being used to alter the decision rule. As well, Neyman could well have been

critical of the specification of rejection region of the conditional frequentist test as defined in

equation (1.8).”

Several properties of the conditional frequentist test T C in equation (1.8) would have certainly

appealed to Fisher. First, the conditional frequentist test T C is employing P -values to measure

strength of evidence in data as Fisher recommended, and then conditioning upon strength of

evidence is utilized. Second, the resulting test yields Type I and Type II error probabilities

α(x) and β(x), computed as in equation (1.8), which fully vary with the strength of evidence

in the data, an essential property that caused Fisher to be critical of Neyman-Pearson testing.

Regarding the conditional statistic as noted above, however, Fisher would have questioned the

use of S = max{p0, p1} that is obviously neither an ancillary statistic nor a sufficient statistic

as in Example (1.2) and also the use of the bigger one between p0 and p1 instead of the smaller

one as a conditioning statistic. Another feature of T C in equation (1.8) that Fisher might have

been critical of is that an alternative hypothesis is necessarily needed to define the conditional

frequentist test T C .

As discussed previously, one can think of T C as converting P -values into the conditional

frequentist error probabilities while retaining the features of Type I and Type II error probabilities.

Moreover, the conditional frequentist error probabilities, resulting from the conditional frequentist

test defined in equation (1.8) and fully varying with the data, is precisely equal the objective

posterior probability defined in equation (1.1) and equation (1.2). Therefore, the conditional

frequentist and objective Bayesian end up reporting the same error probabilities.

Since an objective Bayesian would typically use, as the rejection region, the set of potential

data for which Pr (H0|x) ≤ 1/2, Jeffreys might have disagreed with the specified rejection region

predetermined as in equation (1.8).

In the regard of the rejection region based on the conditioning statistic S = max{p0, p1}, as

noted above, Berger [8] recommends no decision region as an alternative rejection region if the

reported conditional frequentist error probabilities is high when the null hypothesis is rejected.

Let us reconsider Example (1.3). When x = 0.25, one rejects H0 and reports Type I conditional
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frequentist error, as computed based on equation (1.8),

α(0.25) = 0.5.

For these inconclusive data that provides no real evidence for or against the null hypothesis

H0, one can specify an ordinary rejection region by using the unconditional significance level,

find the corresponding acceptance region, and refer the region in the middle as the no-decision

region. As advocated by Berger [8], the conditional test would be the same as before and the

conditional frequentist error probabilities, resulting from the conditional frequentist test defined

in equation (1.8) would not be changed although one could simply state “no decision” in that case

rather than giving a decision with a high conditional frequentist error probability.

In addition to the conditioning statistic S = max{p0, p1}, Sellke et al. [40] consider other con-

ditioning statistic such as an ancillary conditioning statistic, a conditioning statistic resulting from

“intrinsic significance” based on a type of conditioning defined through likelihood concepts, “equal

probability continuum” conditioning statistic, and the conditioning variable S = min{p0, p1}, in

the context of Example (1.3). The resulting conditional frequentist tests from the above con-

ditioning statistics based on the same calculations as those in Example (1.3) are listed in the

following using Example (1.3), which has the Bayes factor, B(x) = 2
√

x.

Ancillary conditioning statistic:

Definition 1.10 (Definition of an ancillary conditioning statistic S)

S = max{B(x), 2 − B(x)}

A basic calculation shows that the statistic as defined in Definition (1.10) is an ancillary statistic,

having the same distribution under H0 as under H1. Computing the resulting Type I and Type

II conditional error probabilities (CEP) as defined in Definition (1.7) yields the following test for

Example (1.3).

T A =





if x ≤ 1/4, reject H0 and report Type I CEP α(x) =

√
x;

if x > 1/4, accept H0 and report Type II CEP β(x) = 1/2.

The Type II conditional error probability in T A is not satisfactory because β(x) remains constant

although B(x) = 2
√

x varies as x varies from 1/4 to 1. In particular, this constant is 1/2, which

suggests that one is doing no better than random choice of a hypothesis from the perspective of

Type II error. This also violates the desire for error probabilities that vary with the strength of

evidence in the data.
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Intrinsic significance:

Definition 1.11 (Definition of S resulting from intrinsic significance level)

S = max{B(x), 1/B(x)}

The conditional Type I error resulting from the test conditioning on S as defined in Defini-

tion (1.11) is referred to as the intrinsic significance level. Computing the Type I and Type II

conditional error probabilities (CEP) as defined in Definition (1.7) yields the following test.

T I =






if x ≤ 1/4, reject H0 and report Type I CEP

α(x) =





1 if 0 < x < 1/16

(1 + (16x2)−1)−1 if 1/16 < x < 1/4

if x > 1/4, accept H0 and report Type II CEP

β(x) = (1 + 4x)−1.

However, the Type I conditional error probability in T I , α(x), exhibits unnatural behavior. It is

obviously unable to report α(x) = 1 when x < 1/16.

Equal probability continuum conditioning statistic:

Definition 1.12 (Definition of equal probability continuum conditioning statistic S) S(x)

is chosen so that

α(x) = β(x), for some x.

The resulting test is:

T E =






if x ≤ 0.397, reject H0 and report Type I CEP

α(x) = (1 + (x−3/4 − 1)1/3)−1;

if x > 0.397, accept H0 and report Type II CEP

β(x) = (1 + (x−3/4 − 1)−1/3)−1.

Regarding the Type II conditional error probability in T E, as noted above, the equal probability

continuum conditioning statistic S results in the test that has the undesirable property that the

Type II conditional error probability β(x) → 0 as x → 1. This is unnatural because B(x) = 2,

which hardly suggests that the decision to accept H0 would be “error-free.”

Conditioning on a statistic against H0 and H1:
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Definition 1.13 (Definition of statistic based on the P -values against H0 and H1)

S = min{p0, p1}

This conditioning statistic S = min{p0, p1} yields quite different answers with those S = max{p0, p1}
does. Indeed, the resulting conditional error probabilities from the test conditioning on S as de-

fined in Definition (1.13) are such that α(x) → 1/3 as B(x) → 0, while β(x) → 0 as B(x) → 2,

neither of which is sensible. Hence, this conditioning statistic should not be acceptable.

Regarding Type I or Type II conditional error probability of the above conditional frequentist

tests, however, these conditioning arguments do not lead to fruitful conditional frequentist testing

in general (See Sellke et al. [40] for more details on α(x) or β(x) unnatural behavior with small

or large values of the observation X).

As noted above, an alternative hypothesis is necessary to define conditional frequentist testing

T C in equation (1.8). Berger [8] proposed a general method on how a conditional frequentist test

can be done when there is no specified alternative by creating a generic nonparametric alternative.

However, developing specific alternatives for important null hypotheses can be very difficult as

shown in Berger [8], so he proposed calibrating P -values to test a null hypothesis when there is

no alternative hypothesis.

1.3.5 Calibration of P -values for testing simple hypothesis

It is well known that P -values under the null hypothesis are uniformed distributed if the test

statistic is continuous and is of exact size. This can be shown as follows.

Lemma 1.2 (Lemma on P -values distribution under the null hypothesis) Suppose that

n independent tests about the same hypothesis H0 : θ = θ0 have been performed using different

data sets and were based on independent statistics T1, · · · , Tn with continuous distributions under

H0. Let P (T1), · · · , P (Tn) be their respective P -values, then P (T1), · · · , P (Tn) form a random

sample from the uniform distribution on (0,1).

Proof: The P -value is the statistic P (T ) = Pr(T ≥ t|H0) = 1 − Pr(T ≤ t|H0) = 1 − FT (T ),

where FT (t) is the distribution function of the test statistic T .

By Probability Integral Transformation (cf. Bain [7], Page 201), it follows that FT (T ) ∼ Uniform(0, 1),

and also obviously P (T ) = 1 − FT (T ) ∼ Uniform(0, 1). Since P (Ti), i = 1 · · ·n, are functions of

independent statistics and all with the same distribution, P (Ti), i = 1 · · ·n, constitute a random

sample from the uniform distribution on (0,1).

Therefore, one can reduce the original hypothesis to the generic null hypothesis as follows.

H0 : P ∼ Uniform(0, 1)
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where P denotes the P -value.

The Bayes factor corresponding to H0 : P ∼ Uniform(0, 1) vs. H1 : P ∼ f(p|θ), where θ is

unknown with the prior density π(θ), is:

B(p) =
1∫

θ

f(p|θ) · π(θ)dθ

For these P -values, Sellke et al. [40] developed a lower bound on the Bayes factor B(p).

B(p) ≥ −e · p · log(p) if p < 1/e, (1.12)

where p denotes the P -value. Sellke et al. [40] also justify the lower bound on the Bayes factor

of H0 to H1 in equation (1.12), assuming the density f1(y) of Y = − log(p) under H1 has a

decreasing failure rate.

Following from equation (1.12), we have the lower bound on the Type I conditional error

probability of T C as defined in equation (1.8), αθ(p), for p < 1/e

inf
θ

αθ(p) =



1 +
1

inf
θ

B(p)




−1

=

(
1 +

1

−e · p · log(p)

)−1

The lower bound on the Type I conditional error probability (or the posterior probability of

H0) is as follows.

α(p) ≥ (1 + (−e · p · log(p))−1)−1 if p < 1/e, (1.13)

Various P -values and their Bayesian calibrations as shown in equation (1.12) are presented

in Table (1.1). In terms of the frequentist Type I conditional error probability in rejecting H0,

the calibrations as shown in equation (1.13) are also presented in Table (1.1).

Calibrations of P -values as Bayes Factor and Conditional Error Probability

P -values 0.2 0.1 0.05 0.01 0.005 0.001
B(p) ≥ −ep log(p) 0.870 0.625 0.407 0.125 0.072 0.0188

α(p) ≥ (1 + (−ep log(p))−1)−1 0.465 0.385 0.289 0.111 0.067 0.0184

Table 1.1: Calibrating P -values

As noted from Table (1.1), p = 0.05 translates into odds B(0.05) = 0.407 of H0 to H1, and

frequentist error probability α(0.05) = 0.289 in rejecting H0. It is pretty clear that p = 0.05 does

not indicate particularly strong evidence against H0 (roughly 1 to 2.5). Even p = 0.01 corresponds

to only 8 to 1 odds against H0.

We simulate the calibration on Bayes factors provided by P -values for H0 to H1 from a variety

of different distributions as follows. Here, it is noted that we have nonparametric alternatives
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and will simply collect all the P -values from a number of tests, composed of null hypotheses and

alternative hypothesis, and will record how often the null hypothesis is true for P -values at various

levels. Throughout the simulations, the proportion of these tests having true null hypotheses given

the initial proportion of true nulls is to be illustrated.

Suppose that each test j is based on normal data (known variance σj) with mean θj , so that

our hypothesis testing is as follows.

H0 : θj = 0 vs. H1 : θj 6= 0

We must choose π0, the initial proportion of true null hypotheses, and also the values of θj under

the alternative hypotheses. For each hypothesis, one then generates normal data with mean θj ,

and computes the corresponding P -value, defined for the usual test statistic,

T (X) =

√
nj · Xj

σj
,

p = 2 [1 − Φ(T (X))] (1.14)

where nj , σj , and Xj are the sample size, standard deviation, and sample mean corresponding to

the jth hypothesis test; Φ is the standard normal cumulative distribution function.

After generating a large series of tests, one looks at the subset of p-values which are near

a specified value, such as 0.05 and 0.01. For instance, we can look at those tests for which

0.0455 ≤ p ≤ 0.05 and 0.009 ≤ p ≤ 0.01. One then simply notes the proportion of such tests for

which H0 is true. A MATLAB code for carrying out this simulation is given in the Appendix,

which also discusses some further details, such as choice of the alternatives θj from different

distributions.

We create a histogram that indicates where the p-values, defined in equation (1.14), fall

that are generated from the null hypotheses, and also a histogram of the p-values generated

under the alternative hypotheses. We illustrate the histograms corresponding to 0.0455 ≤ p ≤
0.05 and 0.009 ≤ p ≤ 0.01; the histograms that would result from such p-values under the

null hypotheses are represented in Figure (1.3) and (1.4) by the white columns and under the

alternative hypotheses by the black columns.

Under the alternative hypotheses, we must choose nj , σj , and θj . A variety of possible

specifications of θj , the means of the alternatives, are implemented. In our simulation, the number

l of the usual normal test statistic, T (X) =

√
nj · Xj
σj

, are generated with the known standard

deviation, σ, and sample size, n. We choose σj = 1 and n = 20 below. Based on Sellke et al. [40],

“ The specific choices of nj , σj , and θj are irrelevant and could vary from test to test; all that really

matters is the choice of the ηj =

√
nj · θj
σj

.” As follows, ηj is featured by the value of a. Actually

24



the value of a measures the separation of the means under the nulls and the alternatives, which

is demonstrated in Figure (1.3) and (1.4). As quoted from Sellke et al. [40], “ Finding the value

of a that minimizes the proportion of true nulls is an interesting exercise.” In Figure (1.3), we

choose a equals 2 sample standard deviations from the null mean, that is, a =
√

5
5 ; and half of the

sample standard deviation from the null mean, that is, a =
√

5
20 in Figure (1.4). Another feature

that must be specified are π0, the initial proportion of true nulls, and θ1, the means under the

alternatives. The simulation could be conducted with any desired sequence of alternative means,

but the simulation below accommodates six cases. In our simulation, however, we consider θ1 not

only under symmetric distributions but also under nonsymmetric distributions as in (e) and (f)

of Figure (1.3) and (1.4).

The distribution for null hypotheses is X0 ∼ N(0, σ2

n ).

The distribution for alternative hypotheses is X1 ∼ N(θj ,
σ2

n ).

We consider the six cases for alternatives means θj . The black columns in Figure (1.3) and (1.4)

give the corresponding numbers of true alternatives of p-values over the ranges 0.0455 ≤ p ≤ 0.05

and 0.009 ≤ p ≤ 0.01 with the means under alternative hypotheses as follows.

• all alternative means θ1 are fixed at the value a.

• all alternative means θ1 are randomly generated from a normal distribution with mean 0

and standard deviation a, that is, θ1 ∼ N(0, a).

• all alternative means θ1 are randomly generated from the corresponding positive half normal

distribution above, that is, θ1 ∼ N(0, a) and X1 ∼ N(|θ1|, σ2

n ).

• all alternative means θ1 are randomly generated from a uniform distribution on the interval

(−a, a), that is, θ1 ∼ Uniform(−a, a).

• 50% alternative means θ1 and 50% negative alternative means −θ1 are randomly generated

from a exponential distribution with mean a, that is, |θ1| ∼ Exp(a).

• all alternative means θ1 are randomly generated from a shifted exponential distribution with

mean a, that is, PDF of θ ∼ Exp(a) is shifted to the left with a units.

We calibrate the proportion of T -values in (1.96, 2] (that is, with 0.0455 ≤ p ≤ 0.05), and

in (2.576, 2.616] (that is, with 0.009 ≤ p ≤ 0.01) for which the null hypothesis is true (See the

Appendix for the implementation).

When p ≈ 0.05 in Figure (1.3) and (1.4), for the six cases considered in our simulation and if

the initial percentage of true nulls is 50%, the corresponding minimum percentages is 23%. This

corresponding minimum percentages is the same as Sellke et al. [40].

As demonstrated in Figure (1.3) and (1.4), smaller values of p are more likely under the

alternatives than under the nulls, but the degree to which this is so is rather modest for p-values
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in common regions. For instance, a p-value in the interval (0.04, 0.05) is essentially equally likely

to occur under the nulls as under the alternatives when a =
√

5
20 in Figure (1.4); and is more likely

to occur under the alternatives when a =
√

5
5 in Figure (1.3). Thus observing, say, p = 0.046

provides no evidence in favor of the null or the alternative.

The natural question to ask is whether the qualitative nature of the phenomenon observed in

Figure (1.3) and (1.4) is due to the particular choice we made for the alternatives. Sellke et al. [40]

put in this way: “ It can be shown that, no matter how one chooses the sample size, standard

deviation, and sample mean corresponding to each test under the alternatives, at most 3.7% of

the p-values will fall in the interval (0.04, 0.05), so that a p-value near 0.05 provides at most 3.7

to 1 odds in favor of the alternative hypothesis test.” This is actually just a restatement of the

earlier observation that, if 50% of the nulls are initially true, then at least 23% of those with a

p-value near 0.05 will be true. The clear message is that knowing that the data are rare under the

nulls is of little use unless one determines whether or not they are also rare under the alternatives.
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(b) θ1 generated from normal distribution
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(c) θ1 from the positive half normal distribution
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(d) θ1 generated from uniform distribution
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(e) 50%θ1 and 50% − θ1 from exponential
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(f) θ1 from exponential with mean a shifted a units to left

Figure 1.3: True H0 (White) and true H1 (Black) over the ranges 0.0455 ≤ p ≤ 0.05 and 0.009 ≤
p ≤ 0.01 with a =

√
5

5 equal to 2 sample standard deviations from the null mean.
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(b) θ1 generated from normal distribution
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(c) θ1 from the positive half normal distribution
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(d) θ1 generated from uniform distribution
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(e) 50%θ1 and 50% − θ1 from exponential
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(f) θ1 from exponential with mean a shifted a units to left

Figure 1.4: True H0 (White) and true H1 (Black) over the ranges 0.0455 ≤ p ≤ 0.05 and 0.009 ≤
p ≤ 0.01 with a =

√
5

20 equal to half of the sample standard deviation from the null mean.
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Chapter 2

DETERMINING POSTERIOR

P -VALUES FROM EMPIRICAL

DISTRIBUTIONS

2.1 Multiplicity of hypothesis testing and the false discov-

ery rate

Multiple hypothesis testing refers to the testing of more than one hypothesis simultaneously. A

number of approaches for multiple hypothesis testing are reviewed by Shaffer [35]. As discussed

in Chapter 1, in testing any simple hypothesis, generally conclusions based on some test statistic

are uncertain. We typically choose an acceptable maximum probability of rejecting the true

null hypothesis (significance level), thus committing Type I error, and base the conclusion on

the value of this test statistic meeting the specification. However, when many hypotheses are

tested and each test has a specified Type I error probability, the probability that some Type I

errors are committed potentially increases with the number of hypotheses. In another words, if n

independent hypothesis tests are performed, the experiment-wide significance level α is given by

α = 1 − (1 − αper test)
number of tests.

Numerous methods have been proposed for dealing with this multiple testing problem. For in-

stance, Bonferroni method is aimed to retain the same overall Type I error rate (rather than a

higher rate) in multiple testing by reducing the size of the allowable error αper test by the num-

ber of tests. The resulting overall α does not exceed the desired limit without requiring any
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independence assumption.

However, it can be demonstrated that simple techniques such as the Bonferroni method are

conservative as defined in Section (1.1.4), so there has been a great deal of attention paid to

developing better techniques such that the overall rate of false positives (Type I error) can be

maintained without inflating the rate of false negatives (Type II error) unnecessarily as discussed

in Section (1.1.3). Henceforth, when performing multiple hypothesis testing simultaneously in the

analysis of large data sets, one should pay attention not only to false discovery rate, developed

by Benjamini and Hochberg [10], but also to the false negative rate since traditional concepts of

size and power are unable to handle the multiplicity of tests. The definition of the false discovery

rate is presented shortly.

Regarding the compound error measure of multiple hypothesis testing, as noted above, it

is necessary to measure the overall error rate when we handle a number of tests simultaneously.

Benjamini and Hochberg [10] proposed a compound error measure based on the false rejections

for multiple testing.

Consider n null hypotheses H1, . . . , Hn simultaneously, of which n0 are true nulls. Let Hi = 0

when the ith null hypothesis is true and Hi = 1 otherwise. The outcome of the n tests above are

categorized in Table (2.1) Based on Table (2.1), a false discovery rate FDR is defined as follows.

Accept null Reject null Total
Null true U V n0

Null false T S n1 = n − n0

W R n

Table 2.1: Outcomes of n hypotheses

Definition 2.1 (Definition of false discovery rate)

FDR = E

[
V

max(R, 1)

]
= E

[
V

R

∣∣∣∣R > 0

]
· Pr(R > 0) (2.1)

Estimates of false negative rates based on the empirical distribution of P -values from many

significance tests were proposed by Bickis, Bleuer, and Krewski [4]. Bickis [3] proposed another

estimate on calibrating the null and alternative components of the distribution by modeling the set

of P -values as a sample from a mixed population composed of a uniform distribution for the null

cases and an unknown distribution for the alternatives. The mixture distribution will be discussed

further from a Bayesian perspective. Conditioning on the actual mixture of nulls and alternatives

in the data set instead of an arbitrarily prespecified false discovery rate, such methodology will

allow one to set a threshold of significance, to measure the separation between the nulls and

positives, and to filter out the null distribution by evaluating the posterior probabilities of the
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null hypothesis given P -values. As well, in his paper, the techniques are illustrated using both

real and simulated data.

P -value is defined as Definition (1.1). In order to simplify the following mathematical dis-

cussion, Q-value is introduced.

Definition 2.2 (Definition of Q-value)

Q-value = 1 − P -value, 0 ≤ Q-value ≤ 1, (2.2)

which means that large Q-values, close to one, represent strong evidence against the null hypoth-

esis. Note that the Q-value, as defined in equation (2.2), has no relationship with Q-value of

Storey [44].

2.2 Exploiting the empirical distribution of P -values

As discussed previously, the distribution of P -values are exploited to measure evidence against

the null hypothesis rather than a binary decision-making on the basis of some arbitrarily prede-

terminated significance level, which ignores the variation with the strength of evidence in the data

sets.

Definition 2.3 (Definition of empirical cumulative distribution function (ECDF)) Let

x1, . . . , xn be a set of data and let y1 < y2 < y3, . . . , < yn be the ordered values of the data set.

Then the empirical cumulative distribution function based on this data set can be represented as

follows:

Fn(x) =






0 x < y1

i
n yi ≤ x < yi+1

1 yn ≤ x

(2.3)

Provided that the global null hypothesis is true, the cumulative distribution function (CDF) and

empirical cumulative distribution function (ECDF) of Q-values are illustrated in Figure (2.1).
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Figure 2.1: Cumulative distribution function and empirical cumulative distribution function of
Q-values with size 1000 sample from 100%N(0, 1) null cases.

In Figure (2.2) and Figure (2.3), cumulative distribution functions and the empirical cumu-

lative distribution functions of a collection of observed P -values from a normal mixed population

composed of a uniform distribution for the null cases and the other distribution for the alter-

natives are shown as follows. From both the cumulative distribution functions in Figure (2.2)

and the empirical cumulative distribution functions in Figure (2.3), a deviation from uniformity

is indicated. In the following discussions, the deviation from uniformity is calibrated and then

the posterior P -value from empirical distributions is determined. In order to clarify what follows

and simplify mathematical discussions, one-tailed P -values are used and only cases in which the

alternative is truly one-sided are considered since we are investigating any deviations from the

null. In Figure (2.2), the normal mixed populations consist of the proportion of π0 of N(0, 1) for

the null cases and the proportion of 1 − π0 of N(1, 1) or N(2, 1) for the alternative cases. Here,

the proportion of π0 for the null cases is fixed. Figure (2.3) shows the empirical distributions

from 1000 Q-values. As well, Figure (2.3) does show that there are more Q-values close to one in

the left two panels than those in the right two panels, indicating mixing of different components

and giving evidence that there exist indeed positive cases and some relationship between P -values

and the posterior probability of the null hypothesis. Moreover, such a conclusion can be reached

without having to commit to any particular prespecified significance level in order to set an arbi-

trary cut-off value for a binary conclusion. Figure (2.4) is set up using conventional hypothesis

testing approach. This cut-off value totally ignores the variation with the strength of evidence in

the data sets and the shape of the empirical distribution. For handling the multiplicity of tests

whenever the number of tests increases, the cutoff is shifted to the right. However, the shifted

cutoff using the Bonferroni method makes it very difficult to achieve significance with thousands
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Figure 2.2: S(q), cumulative distribution functions of Q-values of the four different normal mixed
populations compared with 100%N(0, 1) null cases corresponding to the diagonal lines.
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Figure 2.3: Empirical cumulative distribution functions of Q-values with size 1000 sample from
the four different mixed populations compared with 100%N(0, 1) null cases corresponding to the
diagonal lines.

of tests typically arising in bioinformatics. One popular multiple hypothesis testing approach is

based on the false discovery rate of Benjamini and Hochberg [10]. As illustrated in Figure (2.4),
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this method is equivalent to drawing a line with reciprocal slope equal to the prespecified false

discovery rate from the upper right-hand corner. Hence, the rejection region is composed of points

to the right of the first intersection point at which the empirical distribution crosses that line with

the desired slope. If the corresponding Q-value is within the rejection region, the null hypothesis

test is rejected.
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Figure 2.4: Cutoff set up by conventional approach such as Bonferroni method in the left panel;
and in the right panel cutoff based on the false discovery rate proposed by Benjamini and
Hochberg, with size 1000 sample from 50%N(2, 1) null cases.

2.3 Modeling P -values as a sample from a mixed population

As noted above, the hypothesis testing approach is aimed to control the false discovery rate.

From a Bayesian perspective, however, the following approach, proposed by Bickis [3], is to

view this as inference problem in which one recognizes the existence of a sub-population of nulls

and a sub-population of alternatives instead of a problem of binary decision. In particular, the

approach is aimed to distinguish the sub-population of nulls as well as possible, to calibrate P -

value by computing the posterior probability of the null hypothesis, given a P -value in the light of

deviations from uniformity of the empirical distribution of P -values, and to make inferences about

estimates of the probability of the null hypothesis being true. Q-value (or P -value, equivalently

a test statistics T -value) is therefore employed to calibrate the posterior probabilities of the null

hypothesis given P -values, which are also referred to as the posterior probabilities of being in

error by accepting the directional conclusion (one-tailed) suggested by the data sets.

Suppose that our null hypothesis is denoted by H0 , the alternative hypotheses is denoted

by H1 which could be composite alternatives, a mixture of the various alternatives, and our test
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statistics T is continuous, where the null hypothesis is to be rejected for large values of T i.e.

one-tailed.

Let

Under H0 : F0(t) = Pr (T ≤ t|H0 true)

Under H1 : F1(t) = Pr (T ≤ t|H1 true)

and let their probability density functions, corresponding to F0(t) and F1(t), be f0(t) and f1(t)

respectively.

Therefore, the P -value is :

P = Pr (T ≥ t|H0) = 1 − Pr (T ≤ t|H0) = 1 − F0(t) (2.4)

and for any 0 < v < 1,

Pr (P ≥ v|H1) = Pr
(
T ≤ F−1

0 (1 − v)|H1

)
= F1(F

−1
0 (1 − v)) (2.5)

From equation (2.2) Q = 1 − P and from equation (2.4), equation (2.5) can be simplified as

follows.

If F0(t) and F1(t) are continuous,

Under H0 : S(q|H0) ≡ Pr (Q ≤ q) = q, and

Under H1 : S(q|H1) ≡ Pr (Q ≤ q) = F1(F
−1
0 (q))

Let a proportion π0 of the cases be null and S(q) be the cumulative distribution function of

Q-values from the mixed population:

S(q) = Pr(Q ≤ q) (2.6)

= Pr ((Q ≤ q) ∩ (H0 ∪ H1)) (2.7)

= Pr ((Q ≤ q) ∩ H0) + Pr ((Q ≤ q) ∩ H1) (2.8)

= Pr ((Q ≤ q)|H0) · Pr(H0) + Pr ((Q ≤ q)|H1) · Pr(H1) (2.9)

=
∑

i

S(q|Hi) · Pr(Hi) (2.10)

= S(q|H0) · Pr(H0) + S(q|H1) · Pr(H1) (2.11)

= π0 · q + (1 − π0) · F1(F
−1
0 (q)) (2.12)

Hence,

S′(q) = π0 + (1 − π0) · λ(t) (2.13)
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where

λ(t) =
d

dq
F1(F

−1
0 (q))

= F ′
1(F

−1
0 (q)) · d

dq
F−1

0 (q)

= F ′
1(F

−1
0 )/F ′

0(F
−1
0 )

= F ′
1(t)/F ′

0(t)

= f1(t)/f0(t)

Note that in order to simplify the mathematical discussion, here, λ(t) = f1(t)/f0(t) is the recip-

rocal of the Bayes factor, B(x) =
p(x|H0)
p(x|H1)

, as discussed in Chapter 1.

Since we are handling one-tailed P -values, the tidiest situation is one in which

lim
t→−∞

λ(t) = 0 and lim
t→∞

λ(t) = ∞. (2.14)

equation (2.14) means that extreme values will give overwhelming evidence in favor of either the

null or alternative hypotheses. Assuming equation (2.14) and plugging in equation (2.13), we can

see that

S′(0) = π0. (2.15)

Recall that the goal of the approach discussed above is to separate out the uniform component

by viewing the Q-values as a sample from a mixed distribution containing a uniform component.

In order to distinguish the uniform component from the mixture of components, it is appealing

to seek a density estimate of Q-values that indicates mixing of components. We describe the

Q-value sample by estimating its density in a nonparametric way. A kernel density estimator on

the Q-values, for example, could be employed to produce a family of density estimators based on

a number of smoothing parameters, which is discussed as follows.

2.4 Density estimation based on kernel methods

Silverman [43] provides a practical description of density estimation based on kernel methods.

Definition 2.4 Let X1, . . . , Xn denote a sample of size n from a random variable with density f

unknown and observed values x1, . . . , xn. The kernel density estimate of f at the point x is given

by

f̂h(x) =
1

nh

n∑

i=1

K((x − xi)/h),

where the function K(t) is said to be the kernel of the estimator. In general, the kernel K(t)
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satisfies the conditions ∫ ∞

−∞
K(t)dt = 1.

It is well known that the performance of kernel density estimators depends crucially on

the value of the smoothing parameter, which is commonly referred to as the bandwidth of the

estimator, which controls the degree of smoothness that the resulting function exhibits.

In SAS, PROC KDE produces kernel density estimates based on the usual Gaussian kernel

(i.e., the Gaussian density with mean 0 and standard deviation 1), whereas S-PLUS has a function

density which produces kernel density estimates with a default kernel, the Gaussian density with

mean 0 and standard deviation 1/4. The program R also has a function density which produces

kernel density estimates with a default kernel, the Gaussian density with mean 0 and standard

deviation 1.

The MATLAB ksdensity function (Reference: Bowman et al. [12]) does this by using a kernel

smoothing function and an associated bandwidth to estimate the density as follows.

[F, XI] = KSDENSITY(X) computes a probability density estimate of the sample in the

vector X . KSDENSITY evaluates the density estimate at 100 points covering the range of the

data. F is the vector of density values and XI is the set of 100 points. The estimate is based on

a normal kernel function, using a bandwidth that is a function of the number of points in X .

Since the probability density estimation, KSDENSITY, does not handle the compact sup-

port [L, U ] well, KSDENSITY transforms X using a logit function, estimates the density of the

transformed values, and transforms back to the original scale. For instance, the support of our

Q-values is [0, 1], so KSDENSITY uses the transformation log
q

1 − q , and then transforms back

to produce the Q-value density estimator.

Figure (2.5) is produced with (default) normal kernel functions with default bandwidth chosen

automatically according to data sets.
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Figure 2.5: Using kernel density estimation, estimated PDF plots of Q-values sampled from the
mixed population with the sample size n = 1000, of which in the left panel 500 are simulated
from N(0, 1) and 500 are simulated from N(1, 1); in the right panel 750 are from N(0, 1) and
250 are from N(2, 1). The two graphs in the upper panel show complete estimated PDF (solid
lines) compared with the true PDF (dotted lines) of Q-values. The two graphs in the lower panel
magnify respectively lower ends of the estimated PDF plots above to show that estimated PDF
using the kernel density estimation do not fit to the data at the left end of the distribution.
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The density estimators by the kernel approximation at the two endpoints Q-value = 0 and

Q-value = 1 are so wiggly as shown in Figure (2.5).

2.5 Posterior probabilities of the null hypothesis given the

P -value and implementation

Here from a Bayesian paradigm, the interpretation of the posterior probability of null hypothesis

given P -values is proposed. Suppose that π0 is known and let ω = 1 − π0
π0

be the prior odds

against the null hypothesis. Then, given a Q-value (or equivalently a test statistic T -value), the

posterior probability of the null hypothesis is

Pr (H0|T = t) =
π0 · F ′

0(t)

π0 · F ′
0(t) + (1 − π0) · F ′

1(t)

=
1

1 + 1 − π0
π0

· F ′

1
(t)

F ′

0
(t)

=
1

1 + ω · λ(t)

Since

S′(q) = π0 + (1 − π0) · λ(t)

= π0(1 + ω · λ(t))

From equation (2.15), we have that

Pr (H0|Q = q) =
S′(0)

S′(q)
(2.16)

Equation (2.16) is interpreted geometrically as the following Figure (2.6). From equation (2.16)

and Figure (2.6), we thus see that the posterior probability of the null hypothesis given a P -value

(or equivalently a Q-value ) is given by a ratio of slopes.

Based on numerical differentiation, one can estimate this ratio of slopes by a ratio of slopes

of secants from the empirical cumulative distribution (ECDF) as shown in Figure (2.7).

However, the secant estimator is somehow unstable since the empirical distribution (ECDF)

is rather wiggly.

Since S′(q) can be estimated by numerical differentiation, we estimate 1/S′(Q(i)) by

1

S′(Q(i))
=

Q(i + k) − Q(i − k)

S(Q(i + k)) − S(Q(i − k))
=

Q(i + k) − Q(i − k)

2k/n
, (2.17)

where we can choose k to be any integer and Q-values’ frequencies are evenly spaced.

However, these procedures discussed above give rather rough estimates of the posterior prob-
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Figure 2.6: Posterior probability of the null hypothesis given Q-value equals odds ratio of the
slopes.
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Figure 2.7: Posterior probability of the null hypothesis given Q-value equals odds ratio of the
slopes

ability given the Q-value even though these estimates could be smoothed, for example, using

the S-PLUS function loess·smooth. The function loess·smooth returns a list of values at which

the loess curve is evaluated by running loess·smooth (x, y, span, degree, family), where (x, y)

like ((xi, yi), i = 1, 2, . . . , n) are data points; the smoothing parameter, span, is related to the

bandwidth of approximation; the smoothing parameter, degree, is overall degree of locally fitted
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polynomial; the smoothing parameter, family, is about the smoothing function which is gaussian

or symmetric.

Hence it is appealing to seek a smoothing density estimate of Q-values that approximates

mixing of components.

To take advantage of the particular nature of the density, more appropriate density estimators

such as smoothing B-spline estimates are presented in Chapter 3.

Based on B-splines as smoothing functions and taking into account properties of the density,

such as support on [0, 1], known uniform component, and convex empirical cumulative distribution

function, our smoothing density estimate is developed and properties of various estimates of S′(q)

are investigated in Chapter 3.
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Chapter 3

THE EMPIRICAL P -VALUE

CALIBRATION

3.1 Smoothing and density estimation

Density estimation is closely linked computationally to smoothing. If one has a random sample

from some distribution with observed values x1, . . . , xn, the natural estimate of the distribution

function is the empirical CDF (ECDF), which is an average of n point masses at the observations.

While the true CDF is often continuous and differentiable, the ECDF is neither, so it is natural

to seek methods for approximating, smoothing, and even discovering patterns in data.

Density estimation methods can be thought of as applying smoothing techniques to a basic

estimator, such as a histogram, where there is a tradeoff between fidelity to the data and smooth-

ness. A curve forced to pass through all of the data points is rarely smooth. At the other extreme,

the curve like f(x) = X (X =
∑n

i=1 xi/n, the sample mean from some distribution with observed

values x1, . . . , xn), while very smooth, rarely captures all of the important features of the data.

For instance, compared with the 2nd order B-spline in Figure (3.1), the smoothness of the 0th

order (the histogram) and the 1st order B-splines is tradeoff against fidelity to the data. The

degree of smoothness and fidelity to data points ((xi, yi), i = 1, 2, . . . , n) can be measured by the

penalized residual sum of squares [43]:

SS(λ) =
n∑

i=1

wi(yi − f(xi))
2 + λ

∫ b

a

(f ′′(x))2dx (3.1)

where λ ≥ 0 is the smoothing parameter, and wi(i = 1, 2, . . . , n) is the weighting parameter

to adjust the residual of sum of squares. The first term on the right side of equation (3.1),
∑n

i=1 wi(yi − f(xi))
2, is the weighted residual of sum of squares; the second term on the right
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side of equation (3.1),
∫ b

a (f ′′(x))2dx, is the roughness penalty. One then fits a curve f(x) to the

data minimizing (3.1) over all twice continuously differentiable functions. If f(x) is linear, then it

contributes nothing to the second term, the roughness penalty, so the roughness penalty approach

is an extension of the ordinary least square estimation method. The smoothing parameter λ is

the tradeoff between goodness of fit and smoothness. The larger the smoothing parameter λ, the

more weight on the smoothness. If λ = 0, that is, a fitted function is allowed that is arbitrarily

wiggly, then f(x) simply interpolates every data point with flexible slopes that might produce

extreme roughness, provided that there are no duplicates among the x′
is. On the other hand, if

λ → ∞, then f(x) should be chosen so that f ′′(x) = 0 everywhere, which is a least square linear

regression line. However, there has been considerable theoretical work on the problem of choosing

the smoothing parameter λ less subjectively, which controls the degree of tradeoff between low

variability (smoothness) and low bias (closeness to the data) [43]. De Boor [15] constructs his

cubic smoothing splines by specifying the maximum allowable residual sum of squares, the first

term on the right side of equation (3.1), instead of λ. As well, one can employ cross-validation
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(CV) to choose λ . The idea is to hold out one observation at a time, say the ith observation, then

to construct a curve fit function f−i,λ(x) under which the missing data point is best predicted by

the remaining n − 1 observations. The cross-validation function is defined as follows [46]:

CV (λ) =

n∑

i=1

n−1(yi − f−i,λ(xi))
2. (3.2)

The smoothing parameter λ is chosen to minimize CV (λ) in equation (3.2). Actually this ordinary

cross validation leaving out one point at a time is designed to obtain an unbiased estimate of the

predictive mean squared error (PMSE). At a single point x, the PMSE is simply

PMSE(x, λ) = E [fλ(x) − E(Y |x)]2 ,

where fλ(x) is a curve fit function predicted by all the observed data points. For a given value of

λ, the cross-validation function CV(λ) simply measures the average square error when each point

is predicted using only the remaining points in the sample, so simple cross-validation chooses the

value of λ which minimizes CV(λ). However, the method of generalized cross-validation (GCV)

finds λ so as to minimize an estimate of

GCV (λ) =

n∑

i=1

n−1 · PMSE(xi, λ). (3.3)

More details on the difference between the two criteria can be found in Green, P.J. and Silverman,

B.W. [20].

As quoted from Wegman et al. [46], “Interpolating splines are predicated on nonnoisy data.

As such they have limited use in a statistical setting, although in several circumstances they do

make an appearance. More to the point, it is desirable in a statistical framework to create a type

of smoothing spline that could pass near, in some sense, to the data but not be constrained to

interpolate exactly.”

3.2 B-splines as smoothing and estimating functions

If we let δ(x) denote the Dirac delta function at x, which is a generalized function that is zero

everywhere except at x, where it has an infinite point mass integrating to unity, then we can

represent the “natural” density estimate as
∑n

i=1 δ(xi)/n. Although this formulation is not very

good for such purposes as estimating the value of the density at a point, what we generally

do believe is that regions in which we have observations are likely to have greater density than

ones in which no observations are seen. Then it is natural to “ smear out” the observed point

masses over larger regions which include them, and to base estimates of the density on local
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averaging probability mass. Therefore, an approach to density estimation by applying B-splines

and smoothing techniques to a basic estimator such as the histogram is developed. Silverman [42]

gives an overview of spline smoothing approach to non-parametric regression curve fitting.

In this section, we define the kth order B-splines as appropriately scaled Order (k+1) centred

differences of the truncated power function. Since B-spline provides bases for certain spline spaces

whose spline functions can be obtained by forming linear combinations, this gives rise to the B-

spline representation(s) for a smoothing function characterized with shape-preserving or variation

diminishing.

3.2.1 B-splines

Let X = {x1, . . . , xn} be an ordered set of real numbers, hereafter called “knots” equally spaced.

Thereby,

x1 < x2 < x3, . . . , < xn and h = xi − xi−1(i = 1, 2, . . . , n).

Definition 3.1 The kth order truncated power function xk
+ is denoted by xk

+ = max{0, x}k ≡
(0 ∨ x)k, where 00 is interpreted as 0.

Definition 3.2 We say δhf is the centred difference of a function f at the point x ∈ [xi−1, xi) if

δhf(x) = f(x + h/2)− f(x − h/2).

Let h = 1. The 1st degree centred difference of the 0th order truncated power function is referred

to as the 0th order B-spline, which is modified at the point x = 1/2, though.

Definition 3.3 (Definition of the 0th order B-spline)

B0(x) =






δx0
+ = (x + 1/2)0+ − (x − 1/2)0+ =





0 |x| > 1/2

1 |x| < 1/2

1/2 |x| = 1/2

If h 6= 1, generally, linear transformation is performed.

B0(x) =






δh(x − t
h

)0+ = (x − t
h

+ 1/2)0+ − (x − t
h

− 1/2)0+ =





0 |x − t| > h/2

1 |x − t| < h/2

1/2 |x − t| = h/2

(3.4)

Definition 3.4 (Definition of the kth order centred difference) The kth order centred dif-

ference of a function f is denoted by δk
hf(x) = δh(δk−1

h f(x)).

Definition 3.5 (Definition of the 1st order smoothing function) f1(x) is referred to as the

1st order smoothing function of f(x) if f1(x) = δh
h

∫ x

0
f(t)dt = 1

h

∫ x+h/2

x−h/2
f(t)dt
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As noted above, f1(x) is the integral of f(x), so the 1st order smoothing function of f(x), f1(x),

is smoother than f(x), that is, more differentiable.

Actually as Taylor expansion, if f(x) is third-order differentiable,

δhf(x)

h
=

f(x + h/2)− f(x − h/2)

h
= f ′(x) + f ′′′(ξ)h2/24

x − h/2 ≤ ξ ≤ x + h/2,

and henceforth,

f1(x) =

∫ x

0

δh

h
f(t)dt =

∫ x

0

(
f ′(t) + f ′′′(ξ)h2/24

)
= f(x) + O(h2),

Therefore, the 1st order smoothing function of f(x) is also approximate to f(x).

Definition 3.6 (Definition of Order k smoothing function) fk(x) is said to be the kth or-

der smoothing function of f(x) if

fk(x) =
δh

h

∫ x

0

fk−1(t)dt =
1

h

∫ x+h/2

x−h/2

fk−1(t)dt.

Without the loss of the generalization because of the linear transformation x − t
h

, let h = 1. We

will investigate properties of B-splines based on Definition (3.6) of smoothing function and develop

estimates of S′(q) based on smoothing B-splines characterized with shape-preserving or variation

diminishing, which is considered in Section (3.3).

3.2.2 Smoothing function and B-spline resulting from the kth order cen-

tred difference of a truncated power function

Definition 3.7 (Definition of Order k smoothing B-spline) For any non-negative integer

k, the kth order smoothing function of B0(x) is referred to as the kth order smoothing B-spline,

denoted by Bk(x).

Lemma 3.1 (Lemma on order K smoothing function) For the kth order smoothing B-spline,

Bk(x) = δk+1
{
xk

+/k!
}

.

Proof: We proceed by induction on k to establish this.

For k = 0, B0(x) = δ1
{
x0

+

}
follows from Definition (3.3). Consider then the case k = 1. Based

on Definition (3.5) of Order 1 smoothing function,

B1(x) =

∫ x+1/2

x−1/2

B0(t)dt
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=

∫ x+1/2

x−1/2

{(t + 1/2)0+ − (t − 1/2)0+}dt

= {(t + 1/2)+ − (t − 1/2)+}
∣∣∣
x+1/2

x−1/2

= (x + 1)+ − 2x+ + (x − 1)+

= δ2x+

For k = 1, the lemma has been proved. Assume that the lemma has been proved for the (k− 1)th

order smoothing function Bk−1(x):

Bk−1(x) = δk
{
xk−1

+ /(k − 1)!
}

On that hypothesis, we shall prove the lemma for the index k.

Bk(x) =

∫ x+1/2

x−1/2

Bk−1(t)dt

=

∫ x+1/2

x−1/2

δk
{
tk−1
+ /(k − 1)!

}
dt

= δk

{∫ x+1/2

x−1/2

tk−1
+ /(k − 1)!dt

}

= δk

{
tk+/k!

∣∣∣
x+1/2

x−1/2

}

= δk
{
δxk

+/k!
}

= δk+1
{
xk

+/k!
}

Although Lemma (3.1), based on centred differences, allows us to compute Bk(x), the following

lemma simplify the computation of Bk(x). Moreover, most salient properties of our noninterpo-

latory estimation approach are based on Lemma (3.3).

In order to prove Lemma (3.3), we need to introduce the concepts of forward difference and

shift operator.

The definition of forward difference is due to Abramowitz et al. [1].

Definition 3.8 We say ∆hf is the forward difference of a function f at the point x ∈ [xi−1, xi)

if ∆hf(x) = f(x + h) − f(x).

Definition 3.9 We say Ξhf is the shift operator of a function f at the point x ∈ [xi−1, xi) if

Ξhf(x) = f(x + h), that is,

f(x)
Ξh

−→ f(x + h).

Henceforth, our centred difference based on Definition (3.2) can be reformulated in terms of the
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forward difference and the shift operator as follows.

δ = ∆Ξ−1/2 (3.5)

Likewise, we have the same result Lemma (3.2) as equation (3.5) for the kth order centred difference

based on Definition (3.4).

Lemma 3.2 (Relation between centred and forward difference)

δk+1 = ∆k+1Ξ−(k+1)/2

Proof: We proceed by induction on k to establish this.

For k = 0, the lemma follows from equation (3.5).

Consider then the case k = 1. Based on Definition (3.4),

δ2f(x) = δ(δf(x))

= δf(x + 1/2) − δf(x − 1/2)

= ∆Ξ−1/2f(x + 1/2)− ∆Ξ−1/2f(x − 1/2)

= ∆f(x) − ∆f(x − 1)

= f(x + 1) − 2 · f(x) + f(x − 1)

= ∆f(x) − ∆f(x − 1)

= ∆2f(x − 1)

= ∆2Ξ−1f(x)

For k = 1, the lemma has been proved. Assume that the lemma has been proved for the kth order

centred difference δk:

δk = ∆kΞ−k/2.

On that hypothesis, we shall prove the lemma for the index k + 1.

δk+1f(x) = δ(δkf(x))

= δkf(x + 1/2) − δkf(x − 1/2)

= ∆kΞ−k/2f(x + 1/2)− ∆kΞ−k/2f(x − 1/2)

= ∆kf(x + 1/2 − k/2)− ∆kf(x − 1/2 − k/2)

= ∆k+1f(x − (k + 1)/2)

= ∆k+1Ξ−(k+1)/2f(x)
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The following result for the kth order forward difference is referred to Abramowitz et al. [1]

(Page 877).

∆k+1f(x) =

k+1∑

j=0

(−1)j

(
k + 1

j

)
f(x + k + 1 − j) (3.6)

Lemma 3.3 (Lemma on computing Bk(x))

Bk(x) =

k+1∑

j=0

(−1)j

(
k + 1

j

) (
x +

k + 1

2
− j

)k

+

/k!.

Proof: Based on Lemma (3.1) and equation (3.6), we have

Bk(x) = δk+1
{
xk

+/k!
}

= ∆k+1Ξ−(k+1)/2
{
xk

+/k!
}

= ∆k+1
{
[x − (k + 1)/2]

k
+ /k!

}

=

k+1∑

j=0

(−1)j

(
k + 1

j

) (
x +

k + 1

2
− j

)k

+

/k!

We know from Lemma (3.3), Bk(x) is a piecewise degree k polynomial that belongs to

continuity class Ck−1(ℜ), the set of functions f for which the (k − 1)th order derivative of f ,

fk−1(x), exists and is continuous throughout the real line. The discontinuities of the kth order

derivative of Bk(x) are xj = j − k + 1
2 , j = 0, 1, . . . , k + 1, which are knots of Order k B-spline,

Bk(x).

We also infer from Lemma (3.3) that Bk(x) = 0 if x /∈
[
−k + 1

2 , k + 1
2

]
; and Bk(x) > 0 if

x ∈ (−k + 1
2 , k + 1

2 ).

The following lemmas are obvious (cf. Lemma (3.3) and Definition (3.7)).

Lemma 3.4 (Lemma on support of B-spline Bk(x)) For any non-negative integer k, if x /∈
[
−k + 1

2 , k + 1
2

]
, then Bk(x) = 0.

Lemma 3.5 (Lemma on positivity of B-spline Bk(x)) For any non-negative integer k, if

x ∈ (−k + 1
2 , k + 1

2 ), then Bk(x) > 0.

3.2.3 Computing and evaluating B-splines

To illustrate our noninterpolatory probability density estimation methodology, we turn to evalu-

ating B-splines introduced in Section (3.2.1) and (3.2.2).

Likewise, as discussed in DeBoor [15], a basis for the linear space of piecewise polynomial functions

of degree k that are globally of class Ck−1(ℜ) consists of such basis splines or B-splines. This

gives rise to our B-splines representation for functions from some class. The graphs of Bj(x), for
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j = 0, 1, 2, 3, are shown in Figure (3.2).
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Figure 3.2: Base of different orders of B-splines

B0(x) = δx0
+ = (x + 1/2)0+ − (x − 1/2)0+ =






0 |x| > 1/2

1 |x| < 1/2

1/2 |x| = 1/2

B1(x) = δ2x+ =





0 |x| ≥ 1

1 − |x| |x| < 1

B2(x) = δ3{x2
+/2!} =






0 |x| ≥ 3/2

−x2 + 3
4 |x| < 1/2

1
2x2 − 3

2 |x| +
9
8 1/2 ≤ |x| ≤ 3/2

B3(x) = δ4{x3
+/3!} =






0 |x| ≥ 2

1
2 |x|

3 − x2 + 3
2 |x| ≤ 1

1
6 |x|

3 + x2 − 2|x| + 4
3 1 ≤ |x| ≤ 2

Now, in a sequence of lemmas, we shall develop the important properties of the B-spline family
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{Bk}.

Lemma 3.6 (Lemma on derivative of B-splines) The derivatives of B-spline functions are

calculated as follows, for k ≥ 1: (Bk(x))′ = Bk−1(x + 1/2)− Bk−1(x − 1/2).

Based on Definition (3.6) of Order k smoothing function and Definition of Order k B-spline, that

is,

Bk(x) =

∫ x+1/2

x−1/2

Bk−1(t)dt

the lemma is obviously correct.

Lemma 3.7 (Lemma on B-splines as smoothing functions) Let fk(x) be Order k smooth-

ing function of f(x). Therefore,

fk(x) = (1/h) ·
∫ ∞

−∞
Bk−1((x − t)/h)f(t)dt

Proof: We proceed by induction on k to establish this.

Consider the case k = 1. From equation (3.4):

B0(
x − t

h
) =






0 |x − t| > h/2

1 |x − t| < h/2

1/2 |x − t| = h/2

Based on Definition (3.5) of order 1 smoothing function,

f1(x) = (1/h) ·
∫ x+h/2

x−h/2

f(t)dt

= (1/h) ·
∫ x+h/2

x−h/2

B0(
x − t

h
)f(t)dt

= (1/h) ·
∫ −∞

−∞
B0(

x − t

h
)f(t)dt

The lemma is obviously correct for k = 1. Assume that the lemma has been proved for the

(k − 1)th order smoothing function fk−1(x), that is,

fk−1(x) = (1/h) ·
∫ ∞

−∞
Bk−2(

x − t

h
)f(t)dt

On the basis of this assumption, we shall prove the lemma for the index k.

fk(x) = (1/h) ·
∫ ∞

−∞
B0(

x − τ

h
)fk−1(τ)dτ
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= (1/h2) ·
∫ ∞

−∞

∫ ∞

−∞
B0(

x − τ

h
)Bk−2(

τ − t

h
)f(t)dtdτ

= (1/h2) ·
∫ ∞

−∞

{∫ ∞

−∞
B0(

x − τ

h
)Bk−2(

τ − t

h
)dτ

}
f(t)dt

Let x − τ
h

= ξ.

(1/h) ·
∫ ∞

−∞
B0(

x − τ

h
)Bk−2(

τ − t

h
)dτ

=

∫ ∞

−∞
B0(ξ)Bk−2(

x − t

h
− ξ)dξ

=

∫ 1/2

−1/2

Bk−2(
x − t

h
− ξ)dξ

=

∫ x − t
h

+1/2

x − t
h

−1/2

Bk−2(t)dt

= Bk−1(
x − t

h
)

Hence,

fk(x) = (1/h) ·
∫ ∞

−∞
Bk−1(

x − t

h
)f(t)dt.

Because Order k smoothing function of f(x) ≡ 1(−∞ < x < ∞) is always 1, Lemma (3.8) on

integral of B-splines follows based on Lemma (3.7).

Lemma 3.8 (Lemma on integral of B-spline)

(1/h) ·
∫ ∞

−∞
Bk((x − t)/h)dt = 1

If h = 1, equivalently,
∫ ∞

−∞
Bk(x)dx =

∫ k+1

2

− k+1

2

Bk(x)dx = 1

k = 0, 1, 2, . . . .

Lemma (3.8) means that the area between the curve Bk(x) and Axis X is 1.

Moreover, Bk(x) is a probability density function.

Lemma 3.9 (Lemma on partition of unity for B-splines) For all k, we have

k+1

2∑

i=− k+1

2

Bk((x − xi)/h) = 1

This proof is referred to DeBoor [15] (Page 110).

From a probabilistic points of view, Bk((x− xi)/h) is a conditional probability density func-
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tion given x.

3.3 The estimates of S ′(q) based on the smoothing B-splines

Based on B-spline elegant properties previously discussed, we introduce a noninterpolatory esti-

mation methodology. Given a function f(x) and a set of sampling data points (xi, yi = f(xi)),

hi = xi+1 − xi, i = 1, 2, . . . , n, we define a spline function by the equation:

Sf (x) =

n∑

i=1

wiB
k
i ((x − xi)/hi) (3.7)

where a sequence of parameters {wi}(i = 1, 2, . . . , n) are weighting parameters which are consid-

ered shortly, and each Bk
i (x) is a kth-order B-spline (k = 0, 1, 2, . . .). The set {Bk

i } depends only

on the ordered set of knots X = {x1, . . . , xn} equally spaced and the order k. Each Bk
i has limited

support from Lemma (3.3); in particular, Bk
i (x) 6= 0 only if x ∈ (−k + 1

2 , k + 1
2 ), corresponding

the interval (xi, xi+k) by linear transformation x − xi
hi

. As a consequence, the value of Sf (x) at

a point depends on at most k + 1 nonzero Bk
i , which are also nonnegative and sum to one at

each x. Therefore, we can consider Sf (x) as an expectation. Silverman [42] chooses parame-

ters {wi}(i = 1, 2, . . . , n) from a finite-dimensional Bayesian formulation of the curve estimation

problem.

If the errors {yi−f(xi)}(i = 1, 2, . . . , n) are normally distributed and the data are identically

independently normally distributed with mean f(xi) and equal variance, then the first term on

the right side of equation (3.1),
∑n

i=1 wi(yi − f(xi))
2, is the negative log-likelihood function for

the parameter f , that is,

l(f) = − 1

2σ2

n∑

i=1

wi(yi − f(xi))
2.

The second term on the right side of equation (3.1),
∫ b

a (f ′′(x))2dx, then can be viewed as the

negative logarithm of a prior density for f . Therefore the penalized likelihood is equal to

lpost(f) = − 1

2σ2

n∑

i=1

wi(yi − f(xi))
2 − 1

2
λ

∫ b

a

(f ′′(x))2dx,

so that the minimizer of equation (3.1) can be thought of as a posterior mean value for the

regression function. We interpret this prior entirely on the space of spline curves with knots on

the data points. Hence, each possible Sf (x) can be written as a linear combination of B-splines,

Sf(x) =

n∑

i=1

wiB
k
i ((x − xi)/hi).

Silverman [42] shows that how this prior distribution can be thought of as a prior multivariate
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normal distribution on the coefficients wi. Any interested user should examine Silverman [42],

which distills a great amount of theoretical knowledge and practical advice.

However, our methodology concentrates these parameters entirely on the space of spline

curves with knots on the data points. Suppose we are estimating a probability density function

f(x) on a finite interval (a, b), given independent observations x1, . . . , xn from f(x) and then

we choose f(xi) i = 1, 2, . . . , n, the frequencies of the independent observations x1, . . . , xn as a

sequence of weighted parameters.

Sf(x) =
n∑

i=1

f(xi)B
k
i ((x − xi)/hi) =

n∑

i=1

yiB
k
i ((x − xi)/hi) (3.8)

The 0th-order smoothing function of f(x) is a step function as follows, which passes through all

of the data points:

f0(x) =

n∑

i=1

yiB
0((x − xi)/hi)

Based on Definition (3.5) of Order 1 smoothing function and Lemma (3.1) on Order k smoothing

function,

B1((x − xi)/hi) = (1/hi) ·
∫ x+hi/2

x−hi/2

B0((t − xi)/hi)dt

we can infer that the 1st-order smoothing function of f(x) is

f1(x) =

n∑

i=1

yiB
1((x − xi)/hi)

which is also the interpolation scheme, that is, this piecewise linear function f1(x) passes through

all of the data points. Therefore, the kth-order smoothing function of f(x) is just equation (3.8)

as follows:

fk(x) =

n∑

i=1

yiB
k((x − xi)/hi) (3.9)

As well, we can conclude that the kth-order smoothing function of f(x) is the same as the (k−1)th-

order smoothing function of f1(x)

Moreover, the salient properties of our noninterpolatory estimation approach are as follows.

When k = 0 or k = 1, equation (3.8) is the interpolation scheme. For k > 1, however, the

spline function Sf(x) defined by equation (3.8) does not interpolate any prescribed set of nodes.

The properties of this estimation scheme are these:

• If f(x) is a linear function, then Sf (x) = f(x).

• For any linear function l(x), Sf − l has no more variations in sign than f − l. In another

words, the spline estimation Sf crosses any particular straight line at most as many times

as does f itself. This proof would take us far afield.
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• If f ≥ 0 , then Sf ≥ 0.

• If |f | ≤ M , then |Sf | ≤ M .

• Sf is a linear operator, that is, S(αf + βg) = αS(f) + βS(g).

It is easy to proof that the histogram is the linear combination of the 0th-order B-splines with the

knots that are the bins’ edge points of the histogram, provided that there are no duplicates among

the edge points. The coefficients of the linear combination are the frequencies among the bins of

the histogram. This is also shown in Figure (3.3). From Figure (3.3), we can see that the 0th-
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Figure 3.3: Histogram and smoothing B-splines of Order 0th and 1st

order smoothing B-spline, the estimated histogram, is just the histogram, which is a step-function

and discontinuous at the spline knots i · h (i = 0, 1, 2, . . . , n − 1; h = xn − x1
n − 1 , bandwidth);

the 1st-order smoothing B-spline belongs to continuity class C(ℜ) that means the smoothing

function itself is continuous but not everywhere differentiable. The first degree derivative of the

1st-order smoothing B-spline, step-function, is discontinuous at the spline knots (i + 1/2) · h

( i = 0, 1, 2, . . . , n − 1; h = xn − x1
n − 1 , bandwidth). However, both the 0th-order and the 1st-order

smoothing B-splines are not smooth enough for us to estimate the P -value probability density

function S′(1 − p), so we will introduce higher order B-splines as estimates. In particular, the

properties of the 2nd-order and 3rd-order smoothing B-splines are investigated.

Theorem 3.1 (Approximation, shape-preserving, and slope of Order 2 B-splines)
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Consider an unknown function f(x) and data points (xi, yi) i = 1, 2, . . . , n from f(x) with equally

spaced nodes {xi} i = 1, 2, . . . , n. Let xi+1/2 = (xi + xi+1)/2. For the 2nd-order smoothing

function f2(x),

f2(xi) − yi = (1/8) · (yi+1 − 2yi + yi−1) (approximation accuracy), (3.10)

f ′′
2 (xi) = (yi+1 − 2yi + yi−1)/h2 (shape-preserving), (3.11)

f ′
2(xi+1/2) = (yi+1 − yi)/h (slope), (3.12)

f2(xi+1/2) = (1/2) · (yi + yi+1), for i = 1, 2, . . . , n. (3.13)

Proof: Recall that f2(x) =
∑n

i=1 yiB
2((x − xi)/hi) from equation (3.9), where hi = xi+1 − xi.

Then compute f2(x) at the points xi and xi+1/2:

f2(xi) =

n∑

j=1

yjB
2((xi − xj)/h)

=

n∑

j=1

yjB
2(i − j), by Lemma (3.4)

= yi−1B
2(1) + yiB

2(0) + yi+1B
2(−1)

= yi + (1/8) · (yi+1 − 2yi + yi−1)

f2(xi+1/2) =

n∑

j=1

yjB
2(i − j + 1/2), by Lemma (3.4)

= yiB
2(1/2) + yi+1B

2(−1/2)

= 1/2(yi + yi+1)

f ′
2(xi+1/2) = (yiB

′2(1/2) + yi+1B
′2(−1/2))/h

= (yi+1 − yi)/h

f ′′
2 (xi) = yi−1B

′′2(1) + yiB
′′2(0) + yi+1B

′′2(−1)

= (yi+1 − 2yi + yi−1)/h2

In term of the geometric interpretation of Theorem (3.1), the shape of the estimated probability

density function is dominated by a set of frequencies of sampling data points (xi, yi = f(xi)) i =

1, 2, . . . , n. An estimated function f2(x) is convex if f ′′
2 (xi) = (yi+1 − 2yi + yi−1)/h2 > 0, concave

if f ′′
2 (xi) = (yi+1 − 2yi + yi−1)/h2 < 0, and f2(x) is linear if f ′′

2 (xi) = (yi+1 − 2yi + yi−1)/h2 = 0

when x ∈ (xi−1, xi+1). This is also shown in Figure (3.4).
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Figure 3.4: Noninterpolatory, shape-preserving, and slope of Order 2 B-spline estimation
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Reducing the approximation error by sharpening data points: Actually if f(x) ∈ C2(ℜ),

then using the Taylor expansion

f2(xi) = yi + (1/8) · (yi+1 − 2yi + yi−1) = yi + h2/8f ′′(ξ),

xi−1 < ξ < xi+1.

Hence, the useful estimate for the error in the approximation is established. The error can be

reduced in density estimation by sharpening the data points as the following equation:

ŷi = yi − (1/8) · (yi+1 − 2yi + yi−1), i = 1, 2, . . . , n. (3.14)

When the data points (xi, yi = f(xi)) i = 1, 2, . . . , n are sharpened from equation (3.14), we prob-

ably use additional knots such as (x0, y0) and (xn+1, yn+1) for sharpening (x1, y1) and (xn, yn).

Based on Theorem 3.1 (3.10), if we need our density estimator to pass through the two end-

points (x1, y1) and (xn, yn), the additional knots can be extrapolated by the following equation,

equation (3.15).

y0 = 2y1 − y2, and yn+1 = 2yn − yn−1. (3.15)

Applying the sharpened data points to the new 2nd-order smoothing function f̂2(x), we have from

Theorem (3.1)

f̂2(xi) = ŷi + (1/8) · (ŷi+1 − 2ŷi + ŷi−1).

By plugging in equation (3.14), we have

f̂2(xi) = yi − (h4/64) · f (4)(ξ) = yi + O(h4),

xi−2 < ξ < xi+2, i = 1, 2, . . . , n

Therefore, the error in the approximation with the sharpened data points is reduced from O(h2)

to O(h4).

Similarly, the properties of the 3rd-order smoothing B-splines can be inferred. For the 3rd-order

smoothing function, f3(x) =
∑n

i=1 yiB
3((x − xi)/hi) from equation (3.9).

Theorem 3.2 (Approximation, shape-preserving, and slope of Order 3 B-splines)

Consider an unknown function f(x) and data points (xi, yi) i = 1, 2, . . . , n from f(x) with equally

spaced nodes {xi} i = 1, 2, . . . , n. Let xi+1/2 = (xi + xi+1)/2. For the 3rd-order smoothing
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function f3(x),

f3(xi) − yi = (1/6) · (yi+1 − 2yi + yi−1) (approximation accuracy), (3.16)

f ′′
3 (xi) = (yi+1 − 2yi + yi−1)/h2 (shape-preserving), (3.17)

f ′
3(xi+1/2) = (yi+1 − yi)/h + (1/(8h)) · (yi+2 − 3yi+1 + 3yi − yi−1) (slope), (3.18)

f3(xi+1/2) = (1/2) · (yi + yi+1) + (1/48) · (yi−1 + yi+2 − yi − yi+1), for i = 1, 2, . . . , n. (3.19)

In order to fit the new 3rd-order smoothing function, we sharpen the data points by equa-

tion (3.20):

ŷi = yi − (1/6) · (yi+1 − 2yi + yi−1), i = 1, 2, . . . , n. (3.20)

As well, applying the sharpened data points to the new 3rd-order smoothing function f̂3(x), we

have from Theorem (3.2)

f̂3(x) = ŷi + (1/6) · (ŷi+1 − 2ŷi + ŷi−1).

By plugging in equation (3.20), we have

f̂3(x) = yi + O(h4), i = 1, 2, . . . , n.

Therefore, the error in the approximation with the sharpened data points is also reduced from

O(h2) to O(h4). There are many other ways to sharpen data (cf. Sheather [36])

From Theorem (3.1), Theorem (3.2), and the Weierstrass Approximation Theorem, we inves-

tigate whether continuous functions can be approximated to any desired precision by increasing

the number of knots while the order k is being fixed.

From equation (3.9), fk(x), the kth-order smoothing function of f(x), reproduces constant

C, that is, fk(x) = f(x) in case the function f(x) = C for all x in [x1, xn]. This is so because, by

Lemma (3.9), B-splines sum up to one. This property of B-splines, together with the fact that B-

splines are non-negative and have small support, by Lemma (3.5) and Lemma (3.4), makes it easy

to establish an estimate for the error in the noninterpolatory approximation scheme equation (3.9)

as follows.

The following definition is due to DeBoor [15], which is about the rate at which

max
x1≤x≤xn

|f(x) − fk(x)| → 0+ as h → 0+.

As usual, a set of knots is prescribed:

a = x1 < x2 < x3 < · · · < xn = b

59



Definition 3.10 (Definition of modulus of continuity of function f) Whether f is contin-

uous or not on [a, b], the modulus of continuity of f at h is denoted by ω(f ; h) and is defined by

ω(f ; h) ≡ max
|s−t|≤h

|f(s) − f(t)|

It is obvious that ω(f ; h) is monotone in h and subadditive in h, that is,

ω(f ; h1) ≤ ω(f ; h1 + h2) ≤ ω(f ; h1) + ω(f ; h2)

for nonnegative h1 and h2. As well, conclude that ω(f ; ch) ≤ cω(f ; h) for nonnegative c ≤ n − 1.

The following theorem is based on Kincaid’s theorem on spline function approximation [28].

The constant covered by the approximation error bound (kω(f ; h)) on Kincaid’s spline function

is k, the order of B-spline, with the estimating function

fk(x) =
n∑

i=1

f(xi+2) · Bk
i ((x − xi)/hi).

However, the constant covered by the approximation error bound (k + 1
2 ω(f ; h)) on our theorem

as follows is k + 1
2 with the estimating function as equation (3.9), that is,

fk(x) =

n∑

i=1

f(xi) · Bk
i ((x − xi)/hi).

Theorem 3.3 (Theorem on spline function approximation) If f(x) is a function on [a, b],

then fk(x) satisfies

max
a≤x≤b

|f(x) − fk(x)| ≤ k + 1

2
ω(f ; h),

where h = max−[ k+1

2
]+1≤i≤n+[ k+1

2
] |xi − xi−1| = max−[ k+1

2
]+1≤i≤n+[ k+1

2
] hi, and [k+1

2 ] gives the

integer part of k+1
2 .

Proof: Take a point x̂ in some interval [xj , xj+1] ⊆ [a, b]. Then from equation (3.9),

fk(x̂) =

j+[ k+1

2
]∑

i=j−[ k+1

2
]+1

f(xi) · Bk((x̂ − xi)/h),

while based on Lemma (3.9),

f(x̂) = f(x̂) ·
j+[ k+1

2
]∑

i=j−[ k+1

2
]+1

Bk((x̂ − xi)/h) =

j+[ k+1

2
]∑

i=j−[ k+1

2
]+1

f(x̂) · Bk((x̂ − xi)/h).
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Therefore,

f(x̂) − fk(x̂) =

j+[ k+1

2
]∑

i=j−[ k+1

2
]+1

{f(x̂) − f(xi)} · Bk((x̂ − xi)/h).

Taking absolute values on both sides, and using Lemma (3.5) on positivity and Lemma (3.9) on

partition of unity of B-spline, we have

|f(x̂) − fk(x̂)| ≤
j+[ k+1

2
]∑

i=j−[ k+1

2
]+1

|f(x̂) − f(xi)| · Bk((x̂ − xi)/h)

≤ max
j−[ k+1

2
]+1≤i≤j+[ k+1

2
]+1

|f(x̂) − f(xi)|.

For i in the range j − [
k + 1

2
] + 1 ≤ i ≤ j + [

k + 1

2
] , we have

|x̂ − xi| ≤
k + 1

2
h.

By the definition of modulus of continuity ω(f ; h) and the monotonicity and subadditivity of

ω(f ; h), we conclude that

max
a≤x≤b

|f(x) − fk(x)| ≤ k + 1

2
ω(f ; h).

If f(x) is continuous, then

lim
δ↓0

max
|s−t|≤δ

|f(s) − f(t)| = 0.

Therefore,

lim
δ↓0

max
x1≤x≤xn

|f(x) − fk(x)| = 0

Hence, as the density of the knots is increased, continuous functions can be approximated to

arbitrary precision by the kth-order smoothing function fk(x).

In summary, our noninterpolatory estimation Sf , that is, fk from equation (3.9) maps proba-

bility density functions to probability density functions and convex or concave functions to convex

or concave functions. Also, fk provides a local estimation to a probability density function f .

The function fk(x) on the interval [xi, xi+1] depends only on the values of a set of frequencies of

sampling data points (xi, yi =
∫ xi+1/2

xi−1/2
f(t)dt = S(xi+1/2) − S(xi−1/2)), i = 1, 2, . . . , n, from an

unknown population with a probability density function f(x) at the k + 1 “nearby” data points

xi−k, · · · , xi, where S(x) is an empirical cumulative distribution function, xi−1/2 = xi − h/2 and

xi+1/2 = xi + h/2. In particular, if these data points (xi−k+j , yi−k+j), j = 0, 1, · · · , k, lies on a

straight line, then fk on the interval [xi, xi+1] coincides with the same straight line.

The various estimations of P -value cumulative distribution function S(1−P ) and probability

density function S′(1−P ), and then the posterior probability density function of null hypothesis,

S′(0)/S′(Q), Q = 1 − P , based on our noninterpolatory approximation are illustrated in the

following figures from Figure (3.5) to Figure (3.10).
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Figure 3.5: Estimated cumulative distribution (CDF) fit to the ECDF for Q = 1−P sampled from
the mixed population with the sample size n = 1000, of which in the left panel 500 are simulated
from N(0, 1) and 500 are simulated from N(1, 1); in the right panel 750 are from N(0, 1) and
250 are from N(2, 1). The two graphs in the upper panel show the estimated CDF (solid lines)
compared with the true CDF (dotted lines) of Q-values using Order 2 Bsplines; and the two
graphs in the lower panel show the estimated CDF (solid lines) compared with the true CDF
(dotted lines) of Q-values using Order 3 Bsplines with scatterplots as Bspline knots, respectively.
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Figure 3.6: Order 2 Bspline estimators for the posterior probability of null hypothesis given
Q = 1 − P sampled from the mixed population with the sample size n = 1000, of which in the
left panel 500 are simulated from N(0, 1) and 500 are simulated from N(1, 1); in the right panel
750 are from N(0, 1) and 250 are from N(2, 1). The two graphs in the upper panel show the
estimated posterior probability of null hypothesis with the number of Bspline knots, 81 (solid
lines) compared with the true values (dotted lines); and the two graphs in the lower panel show
the estimated posterior probability of null hypothesis with the number of Bspline knots, 11,
respectively. Compared with the true values, the estimators with more knots in the upper panel
are more accurate than those in the lower panel. Hence, the precision of the estimators can be
improved by increasing the number of knots as described in Theorem (3.3).
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Figure 3.7: Histosplines, the estimated histograms of Q = 1 − P sampled from the mixed pop-
ulation with the sample size n = 1000, of which 500 are simulated from N(0, 1) and 500 are
simulated from N(1, 1), using Order k=0,1,2,3 smoothing Bsplines based on equation (3.8). As
demonstrated, the histogram is the linear combination of the 0th-order B-splines with the knots
that are the bins’ edge points of the histogram, and the coefficients of the linear combination are a
sequence of frequencies among the bins of the histogram. The dotted line is the 1st-order B-spline
estimator, which is continuous but not everywhere differentiable as illustrated. The solid line and
the dashed line are the 2nd-order and 3rd-order B-splines estimators whose properties are shown
in Theorem (3.1) and (3.2).
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Figure 3.8: Estimated PDF of Q-value, S′(q) = derivative of estimated CDF Order 3, is the
2nd-order B-splines as shown in Lemma (3.6).
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Figure 3.9: Estimated probability density S′(q) by Order 3 smoothing Bsplines. Q-values are
sampled from the mixed population with the sample size n = 1000, of which in the left panel 500
are simulated from N(0, 1) and 500 are simulated from N(1, 1); in the right panel 750 are from
N(0, 1) and 250 are from N(2, 1). The two graphs in the upper panel show the estimated PDF
(solid lines) compared with the true PDF (dotted lines) of Q-values before the transformation
with the two additional knots as described in equation (3.15); and the two graphs in the lower
panel show the estimated PDF respectively using the transformation log

q
1 − q to the whole real

line, and then transforming back.
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(b) 25%N(2, 1) Bspline knots N = 21
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(c) 50%N(1, 1) Bspline knots N = 11
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(d) 25%N(2, 1) Bspline knots N = 11

Figure 3.10: Estimated probability density S′(q) by using Order 3 smoothing Bsplines with dif-
ferent numbers of knots and by using the transformation log

q
1 − q , and then transforming back.

Q-values are sampled from the mixed population with the sample size n = 1000, of which in the
left panel 500 are simulated from N(0, 1) and 500 are simulated from N(1, 1); in the right panel
750 are from N(0, 1) and 250 are from N(2, 1). The two graphs in the upper panel show the
estimated PDF with the number of Bspline knots, 21 (solid lines) compared with the true PDF
(dotted lines) of Q-values; and the two graphs in the lower panel show the estimated PDF with
the number of Bspline knots, 11. The Bspline estimators with more knots in the upper panel
are more approximate to the true PDF than those in the lower panel, respectively. Hence, the
precision of the estimators can be improved by increasing the number of knots as described in
Theorem (3.3).
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CONCLUSION & FUTURE

WORK

In this thesis a survey of methodologies to tackle multiplicity have been discussed. Despite the

disagreement among the three inference schools, this thesis focuses on calibrating P -values from

the empirical distribution of P -values from both frequentist and Bayesian perspectives.

A noninterpolatory and shape-preserving estimator based on B-splines as smoothing func-

tions has been developed. According to Theorem (3.1) and (3.2), this shape-preserving B-spline

approximator maps a convex or concave function to a convex or concave function. Therefore,

the probability density estimator is increasing or decreasing based on the monotonicity of the

estimated probability density function. Although any continuous function can be approximated

to any desired precision by increasing the number of knots of B-splines based on Theorem (3.3),

the accuracy of spline approximation can be achieved with an optimal variable knots placement

unequally spaced such as Chebyshev points as knots, which will be an interesting topic for future

research.
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APPENDIX

function C(pi0,l,a,dis)

%

% Figure (1.3) and (1.4) simulate the proportion of tests having true nulls

% when p = 0.05 or p = 0.01.

% pi0 is the initial percentage of true nulls,

% a is relevant to the theta1, the means under the alternatives.

% l is the total number of tests,

% l0 is the number of tests under the nulls;

% l1 is the number of tests under the alternatives.

% The six options for alternatives means are accessed by setting dis

% equal to 1, 2, 3, 4, 5, and 6 respectively.

%

sigma=1

n=20

l0=round(l*pi0)

l1=l-l0

x0=sigma/sqrt(n)*randn(l0,1)

if dis==1

x1=a+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));

t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;

nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;
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nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(\theta_{1},1/20),

\theta_{1}=a’;

xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

if dis==2

theta1=a*randn(l1,1);

x1=theta1+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));

t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;

nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;

nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(\theta_{1},1/20),

\theta_{1}~N(0,a)’;

xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

if dis==3

theta1=a*randn(l1,1);

x1=abs(theta1)+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));
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t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;

nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;

nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(|\theta_{1}|,1/20),

\theta_{1}~N(0,a)’;

xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

if dis==4

theta1=-a + 2*a*rand(l1,1);

x1=theta1+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));

t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;

nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;

nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(\theta_{1},1/20),

\theta_{1}~UNIF(-a,a)’;
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xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

if dis==5

theta11=exprnd(a,l1,1);

theta12=(-1).^(rand(l1,1)<0.5);

theta1=theta11.*theta12;

%hist(theta1);

x1=theta1+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));

t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;

nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;

nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(\theta_{1},1/20),

|\theta_{1}|~EXP(a)’;

xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

if dis==6

theta1=exprnd(a,l1,1)-a;

x1=theta1+sigma/sqrt(n)*randn(l1,1);

t0=abs(x0)/(sigma/sqrt(n));

t1=abs(x1)/(sigma/sqrt(n));

xx1=t1>1.96 & t1<=2;

xx0=t0>1.96 & t0<=2;
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nu(1,1)=sum(xx0);

nu(1,2)=sum(xx1);

pr(1)=1/(1+sum(xx1)/sum(xx0));

xx1=t1>2.576 & t1<=2.616;

xx0=t0>2.576 & t0<=2.616;

nu(2,1)=sum(xx0);

nu(2,2)=sum(xx1);

pr(2)=1/(1+sum(xx1)/sum(xx0));

bar(nu);

title ’Size 100,000 with 50% X_{0}~N(0,1/20) and 50% X_{1}~N(\theta_{1},1/20),

\theta_{1}~EXP(a)-a’;

xlabel([’Proportion of Tests Having True Nulls: ’, num2str(pr(1)),’& ’,

num2str(pr(2)),’, a=’, num2str(a)]);

ylabel(’Numbers of True Nulls and True Alternatives p=0.05 & 0.01’);

end

%

% Figure (2.5) is implemented using kernel density estimation.

% The ksdensity function, ksdensity, does this by using a kernel smoothing function

% and an associated bandwidth to estimate the density.

% call to ksdensity returns the default bandwidth, u, of the kernel

% smoothing function.

%savefile = ’kernel75.mat’;

%save(savefile, ’knots’, ’qcdf’)

clear;

sigma=1;

n=1;

l=1000;

pi0=0.5;

l0=round(l*pi0);

kappa=l-l0;

mu0=0.;

mu1=1.;

x0=mu0+sigma/sqrt(n)*randn(l0,1)

x1=mu1+sigma/sqrt(n)*randn(kappa,1);

t0=x0/(sigma/sqrt(n));

t1=x1/(sigma/sqrt(n));

76



lambda=mu1-mu0;

if lambda>0

q0=normcdf(t0);

q1=normcdf(t1);

else

q0=1-normcdf(t0);

q1=1-normcdf(t1);

end

qq=[q0’,q1’];

q1=reshape(qq,1000,1);

q_value=sort(q1);

for i=1:1000

y(i)=log(q_value(i)/(1-q_value(i)));

end

[f,x,u] = ksdensity(y);

for i=1:length(x)

q(i)=1-(1/(exp(x(i))+1));

end

for i=1:length(x)

ff(i)=f(i)*1/(q(i)*(1-q(i)));

end

savefile = ’kernel50_2.mat’;

save(savefile, ’q_value’,’q’,’ff’);

plot(q,ff,’k’);

hold on;

x=0.001:0.001:0.999;

for i=1:999

sq1(i+1)=s_prime(x(i),pi0,mu1,sigma);

end;

sq1(1)=pi0;sq1(1001)=2*sq1(1000)-sq1(999);

x=0:0.001:1;

plot(x,sq1,’:’);

set(gca,’ylim’,[-0.01 5]);

set(gca,’xlim’,[-0.01 1.01]);

title([’Size 1000 Sample, ’,num2str((1-pi0)*100),’% N(’,num2str(mu1),’,1),

Kernel Probability Density Estimation’]);
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xlabel(’Q\_Value’);

ylabel(’Kernel Density Estimate of Q\_Values, S‘(q)’);

h = legend(’Kernel Density Estimate’,’True Density’,2);

set(h,’Interpreter’,’none’);

%

% Figure (3.5) is implemented using Order~k Bsplines.

% pi0 is the initial percentage of true nulls,

% l is the total number of tests,

% l0 is the number of tests under the nulls;

% l1 is the number of tests under the alternatives.

% n: # of spline knots or bins=n-1

% k: the degree of Bspline

clear;

sigma=1;

n=1;

l=1000;

pi0=0.5;

l0=round(l*pi0);

kappa=l-l0;

mu0=0.;

mu1=1;

x0=mu0+sigma/sqrt(n)*randn(l0,1);

x1=mu1+sigma/sqrt(n)*randn(kappa,1);

t0=x0/(sigma/sqrt(n));

t1=x1/(sigma/sqrt(n));

lambda=mu1-mu0;

if lambda>0

q0=normcdf(t0);

q1=normcdf(t1);

else

q0=1-normcdf(t0);

q1=1-normcdf(t1);

end

q=[q0’,q1’];

q1=reshape(q,1000,1);
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q_value=sort(q1);

% n: # of spline knots or bins=n-1

n=21;

edges(1)=0.;

edges(n)=1.;

h=(edges(n)-edges(1))/(n-1);

for i=2:n-1

edges(i)=edges(1)+(i-1)*h

end;

qfreq=hist(q_value,edges+h/2.);

knots=edges+h/2;

%cdfplot(q_value);

hold on;

qcdf(1)=qfreq(1);

for i=2:n-1

qcdf(i)=qcdf(i-1)+qfreq(i);

end;

qcdf(n)=1.;

qcdf=qcdf./1000;

qcdf(n)=1.;

knots(n+1)=knots(n)+h;

qcdf(n+1)=2*qcdf(n)-qcdf(n-1);

%k: Bspline Order

k=2;

x=0:0.0001:1;

for i=1:10001

y(i)=sum_base(x(i)-h/2.,k,knots’,qcdf’);

end;

plot(x,y,’k’);

x=0:0.0001:1;

for i=1:10001

sq(i)=s(x(i),pi0,mu1,sigma);

end;

plot(x,sq,’:’);

%scatter(knots,qcdf,’p’);

title([’Size 1000 Sample, ’,num2str(pi0*100),’% N(’,num2str(mu1),’,1),
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Order ’,num2str(k), ’ Smoothing Bspline Estimate and True CDF’]);

xlabel([’Q\_Value Number of Bspline knots: N= ’,

num2str(n),’and h=’, num2str(h)]);

ylabel(’S(q)’);

h = legend(’Order 2 Smoothing Bspline Estimate’,’TrueCDF’,2);

set(h,’Interpreter’,’none’);

savefile = ’test324_June16.mat’;

save(savefile, ’knots’, ’qcdf’);

function f=sum_base(x,dis,xxx,yyy)

%

% This is based on equation (3.8) as an expectation.

%

f=0.;

n=length(xxx);

bins=n-1;

h=(xxx(n)-xxx(1))/bins;

x=(x-xxx(1))/h;

for i=1:n

f=f+yyy(i)*pdf_Bspline(x-i+1,dis);

end;

function f=s(x,pi0,mu,sigma)

%

% This is based on equation (2.10).

%

f=pi0*x+(1-pi0)*normcdf(norminv(x),mu,sigma);

function f=pdf_Bspline(x,dis)

%

% This function is the base of Order k=0,1,2,3 Bsplines.

%

if dis==0

if x>.5 |x<-.5

f=0;

end
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if x>-.5 & x<.5

f=1;

end

if x==.5 | x==-.5

f=0.5;

end

end

if dis==1

if x>=1 |x<=-1

f=0;

else

f=1-abs(x);

end

end

if dis==2

if x>=1.5 |x<=-1.5

f=0;

end

if x>-.5 & x<.5

f=-x^2+.75;

end

if abs(x)>=.5 & abs(x)<=1.5

f=0.5*x^2-1.5*abs(x)+9./8.;

end

end

if dis==3

if x>=2|x<=-2

f=0;

end

if x>=-1 & x<=1

f=.5*abs(x*x*x)-x*x+2./3.;

end

if abs(x)>1 & abs(x)<2

f=-1./6.*abs(x*x*x)+x*x-2*abs(x)+4./3.;

end

end
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