Yield of PB50 Inoculated and Phosphorus Fertilized Wheat

G. Androsoff¹, C. van Kessel¹ and R. Karamanos²

¹Department of Soil Science and ²Saskatchewan Soil Testing Laboratory University of Saskatchewan, Saskatoon.

Abstract

Four locations in the Brown (Leader, Sceptre, Kindersley, and Gull Lake), two in the Dark Brown (Regina and Outlook (irrigated)), five in the Black (Blaine Lake, Dubuc, Glenavon, Langbank, and Star City) and two in the Dark Gray soil zones (Nipawin and Porcupine Plain) were selected in the spring of 1990. Selection of the locations was based upon the available P status in the soil. With a few exceptions, all locations required P fertilization. At each location, the experiment was carried out on fields that were either on summerfallow, cereal stubble or oilseed stubble, all in close vicinity to one another. The experiment was laid out as a randomized complete block design with the following treatments 1) Control, 2) PB50 only, 3) 11.2 kg/ha of P2O5, 4) PB50 + 11.2 kg/ha P2O5, 5) 22.4 kg/ha of P2O5 and, 6) PB50 + 22.4 kg/ha P2O5, replicated four times. Nitrogen and in some cases P and S was applied at blanket rates when necessary. At all sites Katepwa spring wheat was used as the test crop.

Crop yields (grain and grain + straw) were determined and fluctuated widely among the 13 locations due to the variable precipitation received in 1990. At one site, a significant (P <0.05) P fertilizer response on grain yield was observed. Whereas significant responses did occur at other sites, it was not directly related to P fertilizer and/or PB50. At most of the sites, however, no P fertilizer and/or PB50 response was observed.

The concentration of P in the tissue, sampled at the Feekes 2 to 3 stage, was found to be not significantly different between the various treatments at most of the sites tested. If a significant difference was observed, the P fertilizer application caused the increase in P concentration.

With the exception of two sites, the average amount of kg P/ha removed from the field through the grain was less than the total amount of the full rate of applied P and at some sites, half or less P was removed.

Introduction

The *Penicillium bilaji*, isolated from Alberta soils, has shown to be an effective agent to solubilize P under controlled conditions (Kucey, 1983; Kucey, 1987; Kucey and Leggett, 1989). Although many soil microorganism are known to be capable to solubilize P, this particular fungi appears to be one of the more effective P-solubilizing organism currently known.

To test the effectiveness of *P. bilaji* under field conditions, a field program was initiated in 1989 to further evaluate the potential use of this fungi as a partially substitute for P fertilization in Saskatchewan. The evaluation occurred simultaneously with the response of P fertilizer on grain yield of wheat and barley. In 1989, no positive yield responses due to inoculation of the seed with PB50 were observed (Bullock et al., 1990). However, the positive P fertilizer response on grain yield only occurred on 13% of the sites selected for field testing (7 out of 46 sites).

As a continuation of a project to evaluate the possible partially substitution of P fertilizer for PB50 and the response of P fertilization, a new set of field trials were conducted in the various soil regions of Saskatchewan.

Materials and Methods

Experimental sites were selected for low available soil P based on soil test analysis of soils sampled in early spring from numerous locations throughout the province. The final selection of the sites and the available P levels are reported in Table 1. Some of the sites showed available P levels which would not require any additional P fertilization (i.e Kindersley) but were included as the location contained all three cropping histories or the site had been tested for PB50 and P fertilizer responses during the previous year.

The sites with three cropping histories; summerfallow, cereal stubble and oilseed stubble, at one location had common borders. During the months of May, spring wheat (Katepwa) was seeded at Langbank, Regina, Star City, Kindersley, Outlook (irrigation), Dubuc, Leader, Glenavon, Gull Lake, Porcupine Plain, Sceptre, and Nipawin. The following six treatments were included in the experimental design: (1) no P added; (2) PB50 inoculated spring wheat; (3) half rate P fertilization (11.2 kg/ha of P₂O₅); (4) half rate of recommended P fertilization plus PB50 inoculated spring wheat; (5) full rate of recommended P fertilization (22.4 kg/ha of P₂O₅); (6) full rate of recommended P fertilization plus PB50 inoculated spring wheat. Experimental plot sizes were 2 x 10 m by m. Seeding rate was 84 kg/ha. All sites received an N application according to recommendations by the Saskatchewan Soil Testing Laboratory.

At selected sites, leaf samples were taken during the Feekes two and three growth stages and analyzed for percent P and N. Similar P and N analyses were performed on grain.

All sites were harvested at physiological maturity which occurred at all sites during the last two weeks in August. Harvest area of each plot was 1 by 5 m. Plants were dried, weighed, threshed and the grain weighed.

Results and Discussion

Although the moisture conditions through most parts of the Province were normal or above normal, the yield at Sceptre and Leader were far below average and were considered as a crop failure. The experiments on cereal stubble at Porcupine Plain and at Blaine Lake on oilseed stubble were abandoned due to spray damage.

Overall, a large range in grain yields were found and whereby the highest yields were recorded in the Black and Gray soil zones, the lowest in the Brown soil zone. Sufficient precipitation in most areas of the province reduced largely the effect of summerfallow on grain yield although significant increases were found at Blaine Lake and Nipawin.

At one of the 27 sites tested (Porcupine Plain, on oilseed stubble) a significant response due to P fertilizer and PB50 was found (Table 2). At this particular site, the highest grain yield was recorded for the treatment corresponding to the half rate of P plus PB50 (1817 kg/ha). The grain yield, however, was not significantly different from all other treatments which received the half or full rate of P fertilizer. Four more sites (Porcupine Plain on summerfallow, Langbank on summerfallow, Langbank on cereal

stubble, and Kindersley on cereal stubble) showed significant differences between treatments but none of the treatments which received P and or either PB50 had significant higher grain yield than the control.

At five sites (out of 20 sites tested) significant differences between treatments in the percent N in the tissue were found (Table 3). At all those sites, the treatments receiving the full rate of P fertilizer plus PB50 showed the highest concentration of N with the half rate of P plus PB50 showing intermediate values. With the exception at Glenavon on cereal stubble, the inoculation of PB50 plus the half or full rate of P resulted in higher N concentrations. As no yield data were recorded in the spring, it is unclear if the higher N concentrations were caused by enhanced growth and N uptake after inoculation of the seed with PB50 or that the non-PB50 seeds showed increased growth thereby diluting the concentration of N in the tissue.

At seven sites, a significant difference was found between treatments for the percent P in the tissue. Generally, the application of P fertilizer increased the concentration of P in the tissue and was often further enhanced through the application of PB50. As with the percent of N in the tissue, it is unclear if the higher P concentrations were due to enhanced P uptake or that the non-PB50 seeds showed increased growth thereby diluting the concentration of P in the tissue.

In order to establish if the concentration in the tissue would be an indication about the available P status of the soil and further to see whether low P concentration in the spring would result in lower grain yield, wheat tissue was analyzed for P concentration in the spring. However, because no significant P responses for grain yield were observed, it remains unclear if this method can be used as an indicator for the available P status in the soil.

At all, except two sites for N and three sites for P, no significant differences in the concentration of N and P in the grain were observed (Table 4). If a difference between treatments did occur, it appeared to be a random event and no distinct pattern could be found. Furthermore, higher concentration of N and P in the tissue did not seem to correlate with higher concentrations of N and P in the grain. For example, a significantly higher N and P concentration in the tissue of wheat grown on oilseed stubble at Star City did not translate in any significant difference in N and P concentration in the grain.

Total N accumulation in the grain varied between a low of 30.7 kg/ha at Star City for cereal stubble to a high of 102.0 kg/ha at Nipawin on summer fallow (Table 4). At only two sites, Porcupine Plain on oilseed stubble and Langbank on summerfallow, significant differences between treatments were found. Of these two sites, only at Porcupine Lake was the increase in total N due to P fertilization. At the other site, the control showed no significant lower total N yield than any of the other treatments.

At three sites (Outlook, Porcupine Lake on oilseed stubble, and Langbank on summerfallow) significant differences in total P accumulation were observed. At Outlook and Porcupine Plain the increase was caused by the application of P whereas at Langbank the total P accumulation appeared to be independent of P and PB50.

With the exception of Outlook (irrigated), Glenavon and a few occasions at some of the other sites, the total amount of kg P/ha removed from the field by means of the grain was less than the total amount of the full rate of P applied (22.4 kg $P_2O_5 = 10.2$ kg P/ha). At some sites, half or even less than half of this amount was removed from the field.

Table 1. Spring levels of available P in upper 0 to 15-cm of soil

Location	Crop History	P (kg/ha of P ₂ O ₅)
Gull Lake	Summerfallow Cereal stubble	19.8 18.7
Sceptre	Summerfallow Cereal stubble	11.0 15.4
Kindersley	Summerfallow Cereal stubble Oilseed stubble	29.7 41.8 45.1
Regina	Summerfallow Cereal stubble Oilseed stubble	16.5 25.3 36.3
Leader	Summerfallow Cereal stubble	14.3 18.7
Star City	Summerfallow Cereal stubble Oilseed stubble	24.2 18.7 18.7
Dubuc	Summerfallow Cereal stubble Oilseed stubble	14.3 16.5 15.4
Glenavon	Summerfallow Cereal stubble Oilseed stubble	24.2 28.6 37.4
Outlook	Cereal stubble	15.4
Langbank	Summerfallow Cereal stubble	24.2 13.2
Nipawin	Summerfallow Cereal stubble Oilseed stubble	20.9 16.5 20.9
Porcupine Plain	Summerfallow Cereal stubble Oilseed stubble	17.6 8.8 22.0
Blaine Lake	Summerfallow Cereal stubble Oilseed stubble	16.8 11.2 21.3

Table 2. Total grain yield at the various sites as affected by P fertilization, PB50 and cropping history.

					Location							
Langbank	Blaine Lake	Porcupine Plain	Outlook		_			Regina	Kindersley	Dubuc	Treatment	Cropping history
,				****	kg ha ⁻¹				***************************************			
2656	2519	1507		2084	3141	2930	2521	2888	1566	1733	Control	Summer-
2199	2554	1119		2236	3189	2983	2204	3049	1539	1779	PB50	fallow
2399	2390	1504		2162	3354	2889	2406	2835	1661	1928	$^{1}/_{2} P$	
2160	2304	1351		2170	3068	3030	2386	2656	1752	1804	$^{1}/_{2} P + PB50$	
2756	2329	1188		2060	3088	2991	2222	3031	1578	1826	Full P	
2177	2545	1410		2298	2801	3250	2198	2645	1947	1721	Full P + PB50	
382	ns	223		ns	ns	ns	ns	ns	ns	ns*		
2108	2110		3002	1358	1965	2523	1370	2145	1019	1447	Control	Cereal
1920	1947		3041	1242	1985	2587	1079	2100	897	1780	PB50	stubble
2153	2168		3573	1405	1633	2708	1283	2429	1173	1702	¹ / ₂ P	
1974	2136		3379	1420	1960	2741	1107	2651	1025	1570	$^{1}/_{2} P + PB50$	
1875	2021		3321	1238	1985	2712	1078	2260	755	1723	Full P	
1869	2095		3294	1445	1885	2443	1299	2433	1160	1553	Full P + PB50	
132	ns		ns	ns	ns	ns	ns	ns	208	ns		
		1465			2719	2790	1926	2353	999	1829	Control	Oilseed
		1448			2814	3151	1924	2586	813	1612	PB50	stubble
		1797			2946	2549	1998	2399	842	1601	$^{1}/_{2}P$	
		1817			2579	2732	1836	2515	875	1926	$^{1}/_{2} P + PB50$	
		1682			2815	2838	2003	2401	764	1824	Full P	
		1703			3149	2484	2027	2428	854	2032	Full $P + PB50$	
		282			ns	ns	ns	ns	ns	ns		
	ns	1448 1797 1817 1682 1703	ns	ns	2719 2814 2946 2579 2815 3149	2790 3151 2549 2732 2838 2484	1926 1924 1998 1836 2003 2027	2353 2586 2399 2515 2401 2428	999 813 842 875 764 854	1829 1612 1601 1926 1824 2032	PB50 1/2 P 1/2 P + PB50 Full P	

^{*} Significance at the P < 0.05 level.

Table 3. Concentration of % N and % P in wheat tissue sampled at Feekes 3-4 stages.

History	Treatment	Du	ibuc	Kindersley		Re	gina	Star City		Glenavon		Nipawin		Gull Lake		Porcupine Plain		Blaine Lake		Langbank	
		% N	% P	% N	% P	% N	% P	% N	% P	% N	% P	% N	% P	% N	% P	% N	% P	% N	% P	% N	% P
Summer- fallow	Control PB50 1/2 P 1/2 P + PB50 Full P Full P + PB50	5.73 5.62 5.79 5.73 5.69 5.73 ns*	0.42 0.41 0.46 0.44 0.45 0.45 ns	5.37 5.51 5.58 5.75 5.61 5.69 ns	0.36 0.43 0.45 0.45 0.48 0.46 ns	4.75 4.75 4.95 4.84 5.01 4.92 ns	0.35 0.37 0.39 0.34 0.43 0.39 ns	5.96 6.00 5.99 5.91 6.05 5.61 ns	0.34 0.34 0.35 0.34 0.36 0.39 ns	5.71 5.69 6.03 5.86 6.04 5.80 ns	0.44 0.43 0.49 0.52 0.49 0.48 ns	5.64 5.53 5.73 5.71 5.81 5.87 ns	0.33 0.34 0.40 0.40 0.41 0.45 ns	5.03 5.09 5.31 5.26 4.85 5.43 ns	0.34 0.31 0.38 0.38 0.34 0.40 0.04	5.18 5.20 5.29 5.36 5.41 5.45 0.17	0.38 0.37 0.43 0.47 0.50 0.45 0.03			5.25 5.41 5.35 5.56 5.45 5.49 ns	0.29 0.33 0.34 0.36 0.40 0.41 0.04
Cereal stubble	Control PB50 1/2 P 1/2 P + PB50 Full P Full P + PB50	5.06 5.02 5.07 5.34 5.11 5.44 0.22	0.30 0.33 0.32 0.33 0.32 0.35 ns			4.57 4.37 4.88 4.84 4.86 4.88 ns	0.27 0.26 0.31 0.32 0.29 0.31 ns	5.56 5.88 6.00 5.87 5.98 5.91 ns	0.40 0.41 0.38 0.41 0.37 0.40 ns	5.42 5.52 5.61 5.54 5.72 5.73 0.16	0.38 0.42 0.43 0.44 0.45 0.45 0.02							4.63 4.76 4.79 4.75 4.84 4.68 ns	0.32 0.34 0.32 0.32 0.33 0.32 ns	5.17 5.35 5.06 5.30 5.50 5.54 ns	0.37 0.40 0.38 0.42 0.42 0.46 0.05
Oilseed stubble	Control PB50 1/2 P 1/2 P + PB50 Full P Full P + PB50	5.13 5.14 5.39 5.31 5.23 5.41 ns	0.29 0.28 0.32 0.32 0.32 0.36 0.01			5.34 5.31 5.26 5.26 5.37 0.46 ns	0.41 0.42 0.43 0.46 0.46 5.97 ns	5.40 5.67 5.53 5.91 5.67 0.37 0.31	0.29 0.30 0.29 0.34 0.32 5.49 0.03	5.56 5.64 5.52 5.49 5.44 0.47 ns	0.42 0.44 0.44 0.45 0.44					5.15 5.12 5.36 5.27 5.36 5.41 0.20	0.34 0.35 0.43 0.40 0.42 0.42 ns				

^{*} Significance at the P < 0.05 level.

Table 4. Concentration of N and P and total N and P in grain of wheat.

		Glenav cereal stu					City stubble				gina stubble				ne Lake I stubble		Gull Lake cereal stubble				
Treatment		% P	Total N	Total P	% N	% P	Total N	Total P	% N	% P	Total N	Total P	% N	% P	Total N	Total P	% N	% P	Total N	Total P	
	grain	grain	kg/ha	kg/ha	grain	grain	kg/ha	kg/ha	grain	grain	kg/ha	kg/ha	grain	grain	kg/ha	kg/ha	grain	grain	kg/ha	kg/ha	
Control	2.78	0.45	77.3	12.5	2.88	0.36	39.6	4.9	2.77	0.39	59.4	8.2	2.54	0.43	52.6	8.9	2.68	0.41	36.2	5.6	
PB50	2.68	0.42	84.1	13.3	2.84	0.35	30.7	3.8	2.72	0.38	57.0	8.1	2.54	0.44	49.4	8.5	2.78	0.42	34.3	5.2	
$^{1}/_{2}$ P	2.66	0.47	67.9	11.8	2.93	0.37	37.6	4.7	2.67	0.41	67.9	10.6	2.58	0.43	55.9	9.2	2.64	0.43	36.8	6.0	
$^{1}/_{2} P + PB50$	2.64	0.43	72.1	11.7	2.92	0.35	32.4	3.9	2.66	0.38	70.3	10.1	2.52	0.41	54.2	8.8	2.74	0.42	38.8	6.0	
Full P	2.71	0.48	77.1	13.4	2.89	0.34	31.1	3.7	2.72	0.42	60.8	9.3	2.41	0.41	48.6	8.3	2.68	0.42	32.6	5.1	
Full P + PB50	2.58	0.45	64.4	11.1	2.92	0.37	37.8	4.8	2.61	0.39	63.7	9.6	2.50	0.42	52.3	8.7	2.68	0.41	38.7	5.9	
	ns*	0.03	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
	Glenavon oilseed stubble						City stubble				ine Plaiı I stubble				ubuc d stubble	;	Outlook cereal stubble				
Control	2.71	0.32	86.2	10.2	2.42	0.37	46.5	7.2	3.07	0.35	44.7	5.2	3.13	0.41	57.1	7.5	2.81	0.38	84.2	11.3	
PB50	2.76	0.33	88.1	10.6	2.58	0.38	49.5	7.2	2.96	0.34	42.9	4.9	3.03	0.38	48.8	6.1	2.76	0.36	83.9	10.8	
¹ / ₂ P	2.77	0.33	77.2	9.2	2.36	0.39	47.0	7.7	2.98	0.35	53.5	6.3	3.13	0.43	49.9	6.9	2.64	0.40	94.5	14.4	
$^{1}/_{2} P + PB50$	2.78	0.31	79.0	8.5	2.45	0.36	44.9	6.5	2.96	0.34	53.7	6.2	3.05	0.39	68.7	7.6	2.63	0.40	88.6	13.5	
Full P	2.82	0.34	102.0	12.2	2.26	0.37	45.2	7.4	3.10	0.37	52.1	6.1	2.81	0.41	51.5	7.5	2.71	0.41	90.2	13.6	
Full P + PB50	2.75	0.32	96.8	11.4	2.29	0.37	46.5	7.5	3.08	0.35	52.5	5.9	3.07	0.42	62.3	8.5	2.70	0.38	89.0	12.8	
	ns	ns	ns	ns	0.1	ns	ns	ns	ns	ns	7.6	0.8	ns	ns	ns	ns	0.12	0.02	ns	1.6	
		Star City summerfallow				Langbank summerfallow						dersley nerfallow	,								
Control PB50	2.68 2.78	0.41 0.42	67.2 71.7	10.3 10.9	2.88 2.84	0.36 0.35	72.6 62.1	9.0 7.7	2.53 2.6	0.40 0.40	67.7 57.2	10.4 8.6	2.82 2.91	0.32 0.36	44.1 44.8	5.0 5.5					
$^{1}/_{2} P$	2.64	0.43	71.5	11.5	2.93	0.37	70.1	8.8	2.54	0.38	61.1	9.1	2.84	0.34	47.1	5.6					
$\frac{1}{2}$ P + PB50	2.74	0.42	75.3	11.6	2.92	0.35	69.7	8.3	2.62	0.39	56.8	8.4	2.92	0.35	51.0	6.2	PACIFICACION AND AND AND AND AND AND AND AND AND AN				
Full P	2.69	0.42	73.2	11.3	2.89	0.34	64.0	7.5	2.55	0.40	70.6	10.9	2.90	0.34	45.6	5.3					
Full P + PB50	2.69	0.41	65.4	10.0	2.92	0.37	64.4	7.9	2.60	0.40	56.7	8.7	2.78	0.32	54.0	6.3					
7 0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	10.2	1.2	ns	0.03	ns	ns					

^{*}Significance at the P<0.05 level

In general, P fertilizer and PB50 responses on grain yield for spring wheat were largely absent. The absence of a PB50 response if no P fertilizer response is observed would be more or less anticipated. The absence of an overall P fertilizer response suggest that with the changes in management techniques and the introduction of new crops, the recommendation for P fertilization will be revised. Steps which will make justified changes toward that direction are already being discussed.

Acknowledgments

Financial support was provided by the Saskatchewan Agriculture Fund. We thank M. Nielsen for technical assistance.

Literature Cited

- Bullock, P, L. Cowell, and C. van Kessel. 1990. *Penicillium bilaji* (PB50) and phosphorus fertilizer responses of yield of wheat and barley grown on stubble and summerfallow. Proc. Soils and Crop Workshop, University of Saskatchewan, Saskatoon. pp. 81-88.
- Kucey, R.M.N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 63:671-678
- Kucey, R.M.N. 1987. Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing *Penicillium bilaji*. Appl. Environ. Microbiol. 53:2699-2703.
- Kucey, R.M.N and M.E. Leggett. 1989. Increased yields and phosphorus uptake by Westar canola (*Brassica napus* L.) inoculated with a phosphate-solubilizing isolate of *Penicillium bilaji*. Can. J Soil Sci. 69:425-432.