
 

 

 

 

 

 

FUNCTIONAL ANALYSES OF VARIANTS OF HUMAN SCO1,  

A MITOCHONDRIAL METALLOCHAPERONE 

 

 

 

 

 

A Thesis Submitted to the  

College of Graduate Studies and Research 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in the Department of Biochemistry 

University of Saskatchewan 

Saskatoon 

 

 

By 

Min Pan 

 

 

 

 

© Copyright Min Pan, October, 2013. All rights reserved 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226161837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 

 

PERMISSION TO USE 

 

 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection.  I further agree that permission for copying of this thesis 

in any manner, in whole or in part, for scholarly purpose may be granted by the professor or 

professors who supervised my thesis work, or in their absence, by the Head of the Department 

or the Dean of the College in which my thesis work was done.  It is understood that any 

copying or publication or use of this thesis or parts thereof for financial gain shall not be 

allowed without my written permission.  It is also understood that due recognition shall be 

given to me and to the University of Saskatchewan in any scholarly use which may be made of 

any materials in my thesis.  

 

Request for permission to copy or to make other use of material in this thesis in whole 

or in part should be addressed to:  

 

Head of the Department of Biochemistry 

University of Saskatchewan 

Saskatoon, Saskatchewan S7N 5E5 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

ABSTRACT 
 

 

 Cytochrome c oxidase (COX) is a multimeric protein complex whose enzymatic activity 

contributes to the generation of an electrochemical potential required to synthesize adenosine 

triphosphate (ATP).  Synthesis of Cytochrome c Oxidase 1 (SCO1) and SCO2 are two of the 

many accessory factors that are required to assemble individual structural subunits of COX into 

a functional holoenzyme complex.  Mutations in either SCO gene cause severe, early onset 

forms of human disease.   

 SCO1 and SCO2 are closely related paralogues localized to the inner mitochondrial 

membrane.  Both proteins bind copper and exhibit a thiol disulphide oxidoreductase activity.   

Copper is bound by a highly conserved Cysteine x x x Cysteine motif and a histidine found 

within a thioredoxin fold, which is contained in the C-terminal half of the protein and projects 

into the mitochondrial intermembrane space.  Mutations in either SCO1 or SCO2 affect their 

ability to deliver copper to COX II and metallate its CuA site, and also result in an increased 

rate of copper efflux from the cell.  However, the relative importance of the ability to bind and 

transfer copper to SCO protein function remains poorly understood.  Therefore, to investigate 

the significance of several cysteine residues and the conserved histidine to the copper-binding 

properties of SCO1, I functionally characterized a series of N- and C-terminal SCO1 mutant 

proteins by transducing them into control and patient fibroblasts, and quantifying their 

phenotypic effect on COX activity.  I found that the two cysteines within the soluble, N-

terminal matrix domain of SCO1 are not required for protein function.  Overexpression of C-

terminal SCO1 mutants only affected COX activity in SCO1-2 patient fibroblasts.  To further 

characterize the copper-binding properties of these C-terminal mutants, soluble forms of each 

SCO1 variant were expressed and purified from bacteria, and the amount of total bound copper 

and the relative abundance of Cu(I) and Cu(II) were quantified.  Although these analyses 

suggested that one mutant, SCO1 C169H, binds significantly more Cu(I) than the wild-type 

protein, none of the SCO1 variants exhibited properties that furthered our understanding of the 

precise role of SCO1 in the biogenesis of the CuA site of COX II.   
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1 INTRODUCTION 

1.1 Mitochondria 
 

Described as “cellular power plants”, mitochondria are organelles that are well known 

for their essential role in aerobic ATP production (McBride et al., 2006).  In fact, in most cell 

types, mitochondria supply the majority of ATP consumed by various energy-dependent 

processes.  In addition, mitochondria also fulfill several other crucial roles in homeostatic 

pathways within the cell, including apoptosis, the regulation of cell division and growth, and the 

metabolism of essential micronutrients like iron and copper (Horn and Barrientos, 2008; 

McBride et al., 2006; Pierrel et al., 2007).   

Mitochondria have several unique characteristics that presumably facilitate their ability 

to fulfill roles in a multitude of pathways.  They are large, rod-shaped organelles consisting of 

two membranes (Henze and Martin, 2003) that divide the organelle into four distinct 

compartments; the outer membrane, the intermembrane space, the inner membrane and the 

matrix.  Mitochondria are also semi-autonomous, in that they contain their own, multi-copy 

genome that encodes ribosomes and transfer RNAs required for the translation of its 13 

messenger RNAs (Anderson et al., 1981).  However, because mitochondria consist of roughly 

1000 proteins (Chacinska et al., 2009; Pagliarini et al., 2008; Perocchi et al., 2006; Sickmann et 

al., 2003), the overwhelming majority of which are encoded by nuclear DNA (Chacinska et al., 

2009), organelle biogenesis depends on the coordinated expression of both the mitochondrial 

and nuclear genomes.  Finally, mitochondria are organized into a dynamic network or reticulum 

that undergoes constant fusion and fission, with movement of individual organelles along 

cytoskeletal tracts being important to maintaining functional organelles and cellular health 

(Liesa et al., 2009). 

 

1.1.1 Mitochondrial structure  

 

Mitochondria are membrane-bound organelles that consist of an outer and inner 

membrane.  These two phospholipid bilayers in turn define two distinct submitochondrial 

compartments; the intermembrane space (IMS) and matrix.  The IMS is localized between the 
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outer and inner membranes, while the matrix is the aqueous phase contained by the inner 

membrane.  

The mitochondrial outer membrane is semi-permeable.  It contains two classes of 

channels that allow molecules to pass through the membrane from the cytosol into the IMS.  

Porin is a transmembrane channel protein that provides a means for the passive diffusion of ions 

and small molecules whose weight is less than 4,000-6,000 Daltons (Colombini, 1979; Freitag 

et al., 1982; Sakaguchi et al., 1992; Zalman et al., 1980).  The other channel is provided by the 

TOM (the translocase of the outer mitochondrial membrane) complex, which is composed of 

many proteins that collectively function as a translocon.  Serving as a general point of entry into 

the organelle, the TOM complex recognizes proteins that carry mitochondrial targeting 

sequences and facilitates their translocation across the outer membrane (Neupert and Herrmann, 

2007).   

Unlike the outer membrane, the mitochondrial inner membrane is impermeable. 

Movement of proteins, molecules and even ions across the inner membrane therefore requires 

dedicated transporters, such as the TIM (translocase of the inner mitochondrial membrane) 

complex (Endo et al., 2011; Neupert and Herrmann, 2007).  The impermeable nature of the 

inner membrane is a necessary feature to establish the electrochemical gradient that is 

ultimately required for aerobic ATP production.  ATP is produced in a process known as 

oxidative phosphorylation, by the concerted efforts of five multimeric enzyme complexes that 

are embedded in the inner membrane.  The first four complexes form the respiratory chain, and 

generate an electrochemical gradient by pumping protons across the inner membrane in a series 

of electron transfer reactions.  This gradient is then used by Complex V, ATP synthase to 

produce ATP (Figure 1.1).  In cells where ATP demand is high, a higher concentration of these 

five complexes is accommodated by increasing the total surface area of the inner membrane 

through the formation of cristae.  

Enclosed by the outer and inner membranes, the IMS of mitochondria is a more 

oxidizing environment than either the matrix or the cytosol (Herrmann and Hell, 2005; Hu et al., 

2008).  It also tends to have a relatively low pH, which is at least in part a result of the proton 

gradient which is generated by the respiratory chain.  Unlike the IMS, the mitochondrial matrix 

contains its own transcriptional and translational apparatus to support the expression of 

mtDNA-encoded proteins.  The matrix also houses many enzymes which participate in the 
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citric acid cycle and the oxidation of fatty acids.  In addition, it contains labile pools of iron, 

copper, zinc and manganese that are used to mature relevant mitochondrial targets, and that are 

important to the regulation of cellular metal ion homeostasis (Horn and Barrientos, 2008; 

Pierrel et al., 2007). 

 

 

Figure 1.1 Schematic of oxidative phosphorylation.  Oxidative phosphorylation is a process in 

which transfer of electrons from NADH (nicotinamide adenine dinucleotide) or succinate to O2 

is coupled to the synthesis of ATP.  Complexes I and II shuttle electron from NADH and 

succinate, respectively, to Coenzyme Q (CoQ).  Complex III subsequently mediates electron 

transfer from CoQ to cytochrome c (CytC).  Finally, Complex IV completes electron transfer by 

utilizing electrons from cytochrome c to reduce molecular oxygen into water.  Electron flow 

through Complexes I, III and IV is coupled with the pumping of protons from the matrix to the 

IMS, which contributes to the formation of proton gradient.  Complex V utilizes this proton 

gradient to synthesize ATP.  Both CoQ and CytC serve as electron shuttles that facilitate 

electron transfer between the complexes (Adapted from Ho et al., 2012). 

 

1.1.2 Mitochondrial biogenesis 

1.1.2.1 Biogenesis of nuclear-encoded proteins  

 

De novo synthesis of mitochondria requires coordinated expression of the nuclear and 

mitochondrial genomes.  The overwhelming majority of mitochondrial proteins, including those 

required for mitochondrial translation, assembly of the respiratory chain and inner membrane 

transporters, are all nuclear-encoded (Becker et al., 2012).  These nuclear-encoded proteins are 

synthesized in the cytosol as precursors, and are targeted to the organelle by amino terminal 

signaling sequences.  For most matrix and inner membrane proteins, the targeting signal is 
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cleaved upon import (Endo and Kohda, 2002; Roise and Schatz, 1988).  However, there are 

many mitochondrial proteins that contain internal targeting signals that are recognized by the 

import machinery but that are not cleaved.  Irrespective of the fate of the targeting signal upon 

import, mitochondrial proteins are recognized by specific subunits of the mitochondrial outer 

membrane translocon, or TOM complex, and transported across the outer membrane (Endo et 

al., 2011).  Proteins are then sorted and imported into their respective mitochondrial 

compartments via different sorting-specific import machineries.  

 

1.1.2.1.1 TOM complex 

 

 The TOM complex is a translocon in the mitochondrial outer membrane (Figure 1.2) 

that facilitates the import of most mitochondrial proteins from the cytosol into the organelle 

(Chacinska et al., 2009).  It consists of 7 subunits, which can be grouped by function into 

receptors (Tom20 and Tom70) (Kiebler et al., 1993; Saitoh et al., 2007) and pore components 

(Tom40, Tom22, Tom5, Tom6 and Tom7) (Endo et al., 2011).  Tom40 is the central component 

of the TOM complex.  It is a membrane-embedded protein with a β-barrel structure.  Although 

Tom40 has been suggested to form two to three pores that serve as protein-conducting channels, 

the detailed mechanism of pore formation is still unclear (Becker et al., 2005; Endo et al., 2011; 

Herrmann et al., 2012; Hill et al., 1998; Kunkele et al., 1998).  Three small Tom proteins, 

Tom5, Tom6 and Tom7, are involved in the assembly, stability and dynamics of the TOM 

complex.  Tom5 facilitates formation of the TOM complex (Dietmeier et al., 1997).  Tom6 and 

Tom7 function antagonistically, with Tom6 stabilizing the TOM complex and Tom7 promoting 

its dissociation (Model et al., 2001; Wiedemann et al., 2003).  Tom22 is anchored in the outer 

membrane, and a cytosolically exposed N-terminal domain and an IMS-localized C-terminal 

domain provide specific binding sites for precursors on both sides of the outer membrane (van 

Wilpe et al., 1999).  The N-terminal domain of Tom22 along with receptors Tom20 and Tom70 

collectively form a cis-binding site on the cytosolic side, and its C-terminal domain forms a 

trans-binding site in cooperation with Tom40 and Tom7 on the IMS side (van Wilpe et al., 

1999).  Tom20 and Tom70 are major initial recognition sites for precursors.  Both proteins are 

tethered to the outer membrane via their transmembrane segments, and expose hydrophilic 

receptor domains to the cytosol.  Tom20 and Tom70 exhibit differences in their substrate 
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specificity.  Tom20 preferentially recognizes precursor proteins with N-terminal cleavable 

presequences (Abe et al., 2000; Neupert and Herrmann, 2007), while Tom70 preferentially 

recognizes precursor proteins containing internal targeting signals (Chan et al., 2006; Neupert 

and Herrmann, 2007; Wu et al., 2006; Wu and Sha, 2006).  After precursor proteins are 

recognized by either Tom20 or Tom70, they are transferred to Tom22, and forwarded to the 

Tom40 channel via Tom5.  Once precursor proteins cross the outer membrane through the 

Tom40 channel, they are recognized by the trans-binding site and directed to distinct 

mitochondrial subcompartments by different sorting machineries.  The TIM23 (the presequence 

translocase of the inner mitochondrial membrane) complex interacts with proteins destined for 

the matrix and inner membrane, the TIM22 (the carrier translocase of the inner mitochondrial 

membrane) complex interacts with proteins targeted to the inner membrane, the TOB/SAM (the 

translocase of outer membrane β-barrel protein/the sorting and assembly machinery) complex 

recognizes proteins of the outer membrane, and the MIA (the mitochondrial intermembrane 

space import and assembly) pathway oxidizes the cysteines of several small soluble proteins to 

promote their retention within the IMS (Becker et al., 2008; Chacinska et al., 2009; Endo et al., 

2011; Koehler and Tienson, 2009; Paschen et al., 2005).  Because SCO1
1

 is an inner 

mitochondrial membrane protein that interacts with several of these small, cysteine-rich IMS 

factors to fulfill its functions (Banci et al., 2008a; Buchwald et al., 1991; Leary et al., 2007; 

Leary et al., 2013b; Leary et al., 2004; Leary et al., 2009), I will focus on introducing the 

TIM23 and MIA sorting machineries (Figure 1.3).  

 

Figure 1.2 The composition of TOM complex.  The TOM complex consists of 7 subunits; the 

receptor subunits Tom70 and Tom20, and the pore component Tom40, Tom22, Tom5, Tom6 

and Tom7 (Adapted from Chacinska et al., 2009). 

                                                 
1
 For the sake of consistency, the human nomenclature is used for SCO genes and proteins throughout this thesis. 
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Figure 1.3 Sorting pathways of mitochondrial proteins. TOM complex is the main entry gate 

for proteins import into mitochondria. Mitochondrial proteins are subsequently directed to 

distinct mitochondrial subcompartments by different sorting machineries; the TOB/SAM 

complex to the outer membrane, the MIA pathway into the IMS, the TIM22 complex to the 

inner membrane, and the TIM23 complex to the matrix and inner membrane. (Adapted from 

Chacinska et al., 2009) 

 

1.1.2.1.2 TIM23 complex 

 

 The TIM23 complex is a translocon located in the inner membrane (Figure 1.4) that  

regulates the translocation or inner membrane insertion of precursor proteins containing 

cleavable N-terminal targeting sequences (Chacinska et al., 2009; Endo et al., 2011).  The 

TIM23 complex can be divided into two major components; a protein-conducting channel 

which transports precursor proteins from the IMS to the matrix, and an import motor, known as 

PAM (presequence translocase-associated motor), that provides the energy source required for 

protein import (Herrmann et al., 2012; Neupert and Herrmann, 2007).  The protein-conducting 

channel of TIM23 consists of three crucial inner membrane subunits (Tim50, Tim17 and 

Tim23), as well as a dispensable subunit (Tim21).  Tim50 functions as a receptor.  It exposes its 

C-terminal domain to the IMS, and uses it to interact with the TOM complex and recognize 

incoming presequence-containing precursors (Chacinska et al., 2005; Geissler et al., 2002; 
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Mokranjac et al., 2009; Tamura et al., 2009; Yamamoto et al., 2002).  Tim23 consists of a 

membrane domain making up the translocation channel, and an IMS domain, which may in 

conjunction with Tim50 provide a recognition site for precursor proteins (Alder et al., 2008; 

Truscott et al., 2001).  Tim17 has also been suggested to be part of the protein-conducting 

channel, and it also plays a key role in lateral sorting of preproteins (Chacinska et al., 2005; 

Martinez-Caballero et al., 2007).  PAM is a multisubunit import motor, which is associated 

with the TIM23 complex at its matrix side.  It consists of a central mtHsp70 (mitochondrial heat 

shock protein 70) subunit, and several subunits that regulate its activity (Mge1, Tim44, 

Pam18/Tim14 and Pam16/Tim16), as well as a non-essential subunit Pam17 (Neupert and 

Herrmann, 2007).  mtHsp70 binds ATP and hydrolyzes it to drive the translocation of precursor 

proteins (Chacinska et al., 2009).  Mge1 (mitochondrial GrpE) is a nucleotide exchange factor 

that assists in the release of ADP from mtHsp70 (Schneider et al., 1996).  Tim44, 

Pam18/Tim14 and Pam16/Tim16 are co-chaperones of mtHsp70, directing and regulating the 

activity of mtHsp70 (D'Silva et al., 2003; Kozany et al., 2004; Mokranjac et al., 2003; Truscott 

et al., 2003).  The protein-conducting channel and import motor of the TIM complex work 

cooperatively to translocate presequence-contain polypeptides through the inner membrane.   

 

 

 

Figure 1.4 The composition of TIM23 complex.  The TIM23 complex can be divided into two 

major components; a protein-conducting channel (blue), and an import motor, known as PAM 

(red).  The protein-conducting channel of TIM23 consists of three crucial subunits (Tim50, 

Tim17 and Tim23), as well as a dispensable subunit (Tim21).  PAM consists of a central 

subunit mtHsp70 (mitochondrial heat shock protein 70), and several regulatory subunits of 

mtHsp70 (Mge1, Tim44, Pam18/Tim14 and Pam16/Tim16), as well as a non-essential subunit 

Pam17 (Adapted from Chacinska et al., 2009). 
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1.1.2.1.3 MIA pathway  

 

The MIA pathway functions as a disulfide relay system, and is involved in the import of 

a specific subclass of mitochondrial proteins into the IMS (Endo et al., 2011) (Figure 1.5).  

MIA recognizes mitochondrial proteins that contain characteristic twin Cx3C or Cx9C motifs, 

and oxidizes the cysteines within these motifs to form intramolecular disulfide bonds (Becker et 

al., 2012; Herrmann et al., 2012).  The formation of intramolecular disulfide bonds changes the 

structure of IMS proteins from a linear, disordered polypeptide to one that has a helical hairpin 

fold, a structural transition that prevents retrotranslocation to the cytosol (Allen et al., 2003; 

Lutz et al., 2003).   

 

 

 

Figure 1.5 Model of the MIA pathway.  The MIA pathway is a disulfide relay system which 

oxidatively traps cysteine-rich proteins imported from the cytosol into the IMS.  It is composed 

of an oxidoreductase Mia40/Tim40 and a FAD-dependent sulfhydryl oxidase Erv1.  

Mia40/Tim40 oxidizes the twin Cx3C or Cx9C motifs of newly imported precursor proteins 

which promotes the formation of intramolecular disulfide bonds and alters their conformation, 

trapping them in the IMS.  During this process, Mia40 becomes reduced and requires the 

activity of Erv1 to prepare it for the next round of disulfide bonding.   Reduced and oxidized 

thiol groups are indicated by SH and S-S, respectively (Adapted from Allen et al., 2008). 
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MIA is made up of two core components; Mia40/Tim40 and Erv1 (essential for 

respiration and vegetative growth protein 1) (Chacinska et al., 2009; Chacinska et al., 2004; 

Mesecke et al., 2005; Naoe et al., 2004).  Mia40/Tim40 is an oxidoreductase (Herrmann et al., 

2012)  that contains six conserved cysteines which form three intramolecular disulfide bonds.  

The first disulfide bond is formed by cysteines within a CPC motif (cysteine-proline-cysteine), 

which is critical for Mia40 function because this motif is redox active (Endo et al., 2011; 

Grumbt et al., 2007; Milenkovic et al., 2007).  Mia40/Tim40 in yeast is tethered to the inner 

membrane via a transmembrane domain, while Mia40/Tim40 in animals lacks the 

transmembrane domain and is therefore a soluble IMS protein (Hofmann et al., 2005; Naoe et 

al., 2004; Terziyska et al., 2005).  Mia40/Tim40 recognizes and oxidizes the twin Cx3C or 

Cx9C motifs of incoming IMS precursors, which results in its reduction (Figure 1.5).  Erv1 is a 

FAD-dependent sulfhydryl oxidase that carries out the oxidation of reduced Mia40/Tim40, 

preparing it for the next round of disulfide bonding (Mesecke et al., 2005; Rissler et al., 2005).  

Hot13 (helper of Tim of 13 kDa) may be an additional component of MIA, as it has been 

suggested to promote the Erv1-dependent reoxidation of Mia40 (Curran et al., 2004; Mesecke 

et al., 2008). 

 

1.1.2.2 Biogenesis of mitochondrially-encoded proteins  

 

 Compared to the number of nuclear-encoded mitochondrial proteins, the number of 

mitochondrial translation products is very small (~1%), and the mitochondrial genome in 

mammals only encodes a total of 13 polypeptides (Anderson et al., 1981).  Although few in 

number, these mitochondrially-encoded proteins are critical to organelle function, because they 

are all core catalytic subunits of a multimeric enzyme required for oxidative phosphorylation; 

ND1-ND6 and ND4L of Complex I, cytochrome b of Complex III, COX I-III of Complex IV 

and, ATP6 and ATP9 of Complex V (Ott and Herrmann, 2010).  The transcription of mRNAs 

encoding these subunits and their subsequent translation relies on protein machinery unique 

from that localized in the cytosol.  The mitochondrial transcriptional apparatus is composed of a 

single RNA polymerase, two transcription factors and a termination factor, while the translation 

machinery consists of mt-ribosomes, mt-tRNA, translational activators and other regulatory 

factors (Bonawitz et al., 2006; Herrmann et al., 2013; Scarpulla, 2008; Scarpulla et al., 2012).   
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Following their translation in the matrix, newly synthesized mitochondrial proteins must be 

inserted into the inner membrane, and Oxa1 (Oxidase assembly mutant 1) plays a prominent 

role in this process (Herrmann et al., 2012).  Embedded in the inner membrane (Bonnefoy et al., 

1994), Oxa1 has a C-terminal tail that contains a long, positively charged domain localized to 

the matrix which is believed to bind the ribosome tightly.  It has been shown that Oxa1 engages 

with newly synthesized polypeptides, mediating their co-translational insertion into the lipid 

bilayer (Hell et al., 2001).  Oxa1 also serves as a general insertion site for nuclear-encoded 

proteins, exporting them from the mitochondrial matrix into the inner membrane following 

cleavage of their presequence (Stuart, 2002).  The function of Oxa1 in the context of protein 

insertion into the lipid bilayer is supported by an additional protein, Mba1 (multi-copy bypass 

of AFG3 (ATPase Family Gene)) (Ott et al., 2006; Preuss et al., 2001).  Mba1 also serves as a 

ribosome receptor to recruit ribosomes to the inner membrane (Ott et al., 2006), and helps Oxa1 

to align the ribosome exit tunnel with the site of protein insertion (Ott et al., 2006).   

 

1.1.3 Mitochondrial dysfunction and quality control 

 

 Environmental changes, nutrient depletion, aging, DNA mutation and even normal 

mitochondrial function may result in irreversible oxidative damage to the organelle that impairs 

its integrity and in turn leads to mitochondrial dysfunction (Kubli and Gustafsson, 2012; 

Schapira, 2012; Youle and van der Bliek, 2012).  Cells have therefore evolved several quality 

control systems to monitor mitochondria, and maintain those that are healthy and clear those 

that are irreversibly damaged.  These quality control systems are contained within the organelle, 

as well as within the cytosol.  Cytosolic quality control systems recruit proteins to damaged 

mitochondria that target the entire organelle for destruction via a specialized form of autophagy 

known as mitophagy (Michel et al., 2012; Youle and Narendra, 2011).  Mitochondrial fusion 

and fission (Chan, 2012) both play an important role in the maintaining a healthy organellar 

population within the cell.  Fusion allows for cross-complementation of defective organelles, 

primarily because the healthy organelle contains a sufficient number of copies of unmutated 

mtDNA (Youle and van der Bliek, 2012).  Mitochondrial fission allows for selective removal of 

irreversibly damaged components of the reticulum and their degradation by mitophagy 

(Klionsky, 2007; Kubli and Gustafsson, 2012; Michel et al., 2012). 
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1.1.4 Mitochondrial disease 

 

Mitochondrial diseases are some of the most common genetic disorders in humans 

(Schon et al., 2012).  More than 150 different mitochondrial diseases have been identified, and 

at least 1 in 5,000 individuals are affected by one of these disorders (Vafai and Mootha, 2012).  

Mitochondrial disorders can result from mutations in either mitochondrial or nuclear DNA.  

Pathogenic mutations in mtDNA include point mutations and rearrangements, such as deletions, 

duplications or inversions, all of which are caused by replication errors and are heritable 

(Schapira, 2012).  Mutations in nuclear-encoded genes that are essential for mtDNA expression 

and the biogenesis of the complexes of oxidative phosphorylation also contribute significantly 

to the number and diversity of mitochondrial diseases.   

The majority of mitochondrial diseases arise from defects in oxidative phosphorylation 

(Vafai and Mootha, 2012).  With the exception of Complex II which is entirely nuclear-encoded, 

all complexes of oxidative phosphorylation have a dual genetic origin; most of the core subunits 

of these complexes are contained within the mitochondrial genome, while the remaining, 

peripheral subunits are encoded in the nuclear genome.  The assembly of individual structural 

subunits into a functional, multimeric protein complex requires numerous nuclear-encoded 

accessory proteins.  These accessory proteins, termed assembly factors, function broadly to 

promote the expression of both mitochondrially- and nuclear-encoded structural subunits, the 

insertion of these subunits into the inner membrane, and the synthesis, delivery and 

incorporation of several prosthetic groups during holoenzyme assembly that are ultimately 

required for catalytic competence (Ghezzi and Zeviani, 2012).  Therefore, mutations in genes 

encoding structural subunits of oxidative phosphorylation complexes, or in those that support 

their assembly or stability, severely impair ATP synthesis.  To date, more than 200 pathogenic 

mutations in mtDNA and over 100 pathogenic mutations in nuclear-encoded mitochondrial 

genes have been described in humans (Vafai and Mootha, 2012).  A long-standing goal of the 

field therefore is to understand the molecular function of genes which, when mutated, cause 

mitochondrial dysfunction associated with both early (e.g. Leigh’s syndrome) and late (e.g. 

Alzheimer’s disease) onset forms of disease (Schapira, 2012) for which effective therapies are 

currently lacking (Pfeffer et al., 2012; Vafai and Mootha, 2012) 
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1.2 Cytochrome c oxidase 
 

 COX
2
, also known as Complex IV, is a multimeric protein complex embedded in the 

inner mitochondrial membrane in eukaryotes.  It catalyzes the last in a series of electron transfer 

reactions within the respiratory chain.  It uses electrons from reduced cytochrome c to convert 

oxygen into water, while simultaneously pumping a proton across the inner membrane to the 

IMS.  As such, it contributes to the establishment of a chemiosmotic potential that is harnessed 

by Complex V for ATP synthesis (Figure 1.6) (DiMauro et al., 2012). 

 

 

 

Figure 1.6 Function of core subunits of COX complex.  The mitochondrially-encoded 

subunits I, II and III are essential to electron flow.  The schematic of COX is shown here, with 

COX I (orange), COX II (blue) and COX III (green).  COX I harbors two heme moieties, 

designated a and a3 (red), and a copper ion, CuB (green sphere).  COX II contains two Cu ions 

(green spheres) in a binuclear center, CuA.  Electron transfer through COX starts with reduced 

cytochrome c delivering electrons to the CuA site.  From the CuA site, electrons are transported 

through heme a to the Fe-Cu center.  There, oxygen is reduced to water by the electrons, with 

consumption of protons from the matrix.   At the same time, protons are pumped across the 

inner membrane from the matrix into the IMS (Adapted from Lehninger, A. et al., 2004). 

 

1.2.1 Structure of COX 

 

                                                 
2
 For the sake of consistency, the human nomenclature for COX genes and proteins is used throughout this thesis 
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COX is a multimeric protein complex composed of 11 or 13 structural subunits in yeast 

and humans, respectively (Fontanesi et al., 2008).  It requires several distinct metal co-factors 

for its catalytic activity; two heme moieties, two copper groups, and a magnesium and zinc ion 

(Tsukihara et al., 1995).  Mitochondrially-encoded COX I, II and III are the three largest 

structural subunits, and form the catalytic core of the holoenzyme (Carr and Winge, 2003; 

Poyton and McEwen, 1996).  COX I contains two heme moieties, designated a and a3, and a 

mononuclear CuB site (Khalimonchuk and Rodel, 2005).  COX II contains a binuclear CuA site 

(Arnold, 2012).  These four metal co-factors play an essential role in electron transfer (Figure 

1.6).  The CuA site receives electrons from cytochrome c, and transfers them to heme a.  The 

heme a3 and CuB constitute a binuclear Fe-Cu center which transport electrons from heme a to 

O2 (Yoshikawa et al., 2012).  The catalytic core is surrounded by the remaining, nuclear-

encoded structural subunits.  They are thought to stabilize the holoenzyme and provide sites for 

the allosteric regulation of its activity (Fontanesi et al., 2006; Stiburek and Zeman, 2010).  A 

subset of these nuclear-encoded subunits (COX VI , COX V, COX VI and COX VII in 

mammals, COX VI and COX VII in yeast) have isoforms (Khalimonchuk and Rodel, 2005) that 

are expressed in a tissue-specific manner or at particular stages of development.   

 

1.2.2 COX assembly  

 

 The biogenesis of COX is a complex, sequential process.  It requires a myriad of steps, 

including the coordinate expression of both the mitochondrially- and nuclear-encoded subunits, 

protein translocation into the organelle, and the synthesis, delivery and incorporation of metal 

co-factors into relevant structural subunits at the appropriate stage of assembly (Cobine et al., 

2006c; Stiburek and Zeman, 2010).  Studies of respiratory-deficient yeast mutants have 

identified more than 30 nuclear-encoded accessory proteins that assist with one or more of these 

aspects of holoenzyme assembly, and most of these proteins are not contained in the mature 

COX complex itself (Fontanesi et al., 2008).  The elegant genetic studies in yeast have been 

invaluable to the identification of human homologues of these accessory proteins (Barrientos et 

al., 2002).   
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1.2.2.1 Synthesis and membrane insertion of mitochondrially-encoded COX subunits 

 

 COX I-III are highly hydrophobic, and are synthesized on matrix-localized ribosomes 

that are associated with the inner membrane to protect newly synthesized proteins from 

aggregating (Green-Willms et al., 2001; Jia et al., 2003; Szyrach et al., 2003).  The expression 

of these core catalytic subunits is tightly regulated.  Several translational activators (such as 

Mss51, Pet111 and Pet122) have been found in yeast (Brown et al., 1994; Manthey and 

McEwen, 1995; Mulero and Fox, 1993), and these factors regulate the translation of COX I-III 

via binding to the 5’ untranslated region of their mRNAs (Naithani et al., 2003; Sanchirico et 

al., 1998).  In mammals, only two mitochondrial translational activators have been identified to 

date.  TACO1 is a translational activator of mitochondrially-encoded COX I and has a yeast 

orthologue, YGR021w, with about 72% of similarity (Weraarpachai et al., 2009).  LRPPRC 

(Leucine-rich PPR motif-containing protein) is also predicted to be the human homolog of the 

yeast translational activator Pet309 (PETite colonies), but its exact role is ill defined.  The 

synthesis of COX I in yeast requires the assistance of two translational activators Mss51 

(mitochondrial splicing suppressor) and Pet309 (Figure 1.7).  In addition to a role in the 

translation of COX I mRNA, Mss51 has been reported to interact with newly synthesized COX 

I, and result in a transient Mss51-COX I complex (Barrientos et al., 2004; Perez-Martinez et al., 

2003).  Such an interaction has been proposed to act as a negative feedback loop, by preventing 

Mss51 from promoting the translation of additional COX I mRNA.  Moreover, it could serve to 

recruit other assembly factors including Cox14, Cox25, Ssc1 and Mdj1 (mitochondrial DnaJ) 

(Barrientos et al., 2004; Fontanesi et al., 2011; Fontanesi et al., 2010; Mick et al., 2010).  These 

assembly factors may work cooperatively to promote the stabilization and proper folding of 

nascent COX I (Soto et al., 2012; Westermann et al., 1996).  The translation of COX II mRNA 

is mediated by the membrane bound translational activator Pet111 (Mulero and Fox, 1993; 

Poutre and Fox, 1987).  Pet111 is specific for COX II mRNA, and its low abundance within the 

inner membrane limits synthesis of the COX II protein (Mulero and Fox, 1993; Poutre and Fox, 

1987).  COX III synthesis requires the translational activators Pet54, Pet122 and Pet494 

(Costanzo et al., 1986; Kloeckener-Gruissem et al., 1988), which form a complex to promote 

translation of COX III mRNA (Brown et al., 1994; Costanzo and Fox, 1988, 1995; Kaspar et al., 

2008).   
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Figure 1.7 The biosynthesis of COX I-III in yeast.  COX subunits are in rectangles, and COX 

assembly factors are in rounded rectangles (Adapted from Zee and Glerum, 2006). 

 

 Following their translation, newly synthesized COX I-III require additional accessory 

proteins for their proper insertion into the inner membrane.  The insertion pathway of COX II in 

particular has been thoroughly investigated.  COX II is an integral membrane protein with two 

transmembrane domains.  Its two termini protrude into the IMS, resulting in an N-out and C-out 

topology (Soto et al., 2012).  Among the three core subunits of COX, COX II is the only one 

that is proteolytically processed during its maturation.  Prior to cleavage, the precursor depends 

on the Oxa1 machinery to insert its first transmembrane domain and export its N-terminal tail 

across the inner membrane (He and Fox, 1997; Hell et al., 1998).  Anchoring of the second, C-
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terminal transmembrane domain within the inner membrane requires the cooperative action of 

Cox18, Mss2 and Pnt1 (PeNTamidine resistance) (Broadley et al., 2001; Fiumera et al., 2007; 

Saracco and Fox, 2002; Souza et al., 2000).  After its insertion into the inner membrane is 

complete, COX II associates with another chaperone, Cox20 (Hell et al., 2000), which presents 

the precursor to the inner membrane peptidase (Imp) complex.  The Imp complex then cleaves a 

portion of the soluble, N-terminal region of COX II, yielding the mature form of protein (Gakh 

et al., 2002; Jan et al., 2000).  The mechanisms responsible for inserting COX I and COX III 

into the inner membrane remain poorly understood (Khalimonchuk and Rodel, 2005).  It has 

been shown that incorporation of COX I and COX III into the inner membrane relies in part on 

the activity of Oxa1 (Hell et al., 2001; Herrmann and Neupert, 2003; Stuart, 2002).  

Mitochondrial import and subsequent membrane integration of the nuclear-encoded COX 

polypeptides occurs after their translation on cytoplasmic ribosomes, and is mediated by the 

TOM and TIM23 machineries (Mokranjac and Neupert, 2010).   

 

1.2.2.2 Incorporation of metal prosthetic groups 

 

 The incorporation of two heme moieties and two copper groups is essential for the 

maturation and correct folding of COX I and COX II.  It appears that metal insertion occurs 

prior to full assembly of the holoenzyme (Cobine et al., 2006c).  However, when and how COX 

I and COX II are metallated is not yet fully understood.   

COX is the only mitochondrial enzyme that requires heme a moieties for its activity.  

Hemylation of COX I requires two steps; biosynthesis of heme a moieties and their subsequent 

delivery and insertion into the COX I protein.  Heme A is synthesized from its ancestral heme B 

form primarily by Cox10 (Glerum and Tzagoloff, 1994) and Cox15 (Barros et al., 2001; Barros 

and Tzagoloff, 2002).  Cox10 is a farnesyl-transferase, and it catalyzes the first reaction of 

heme A biosynthesis, converting heme B to a heme O intermediate (Tzagoloff et al., 1993).  

The subsequent oxidation of heme O to heme A is performed in two separate monooxygenase 

steps, which rely on the activity of Cox15, and in all likelihood the ferredoxin Yah1 (yeast 

adrenodoxin homolog) and the putative ferredoxin reductase Arh1 (Adrenodoxin reductase 

homolog) (Barros et al., 2001; Barros et al., 2002; Brown et al., 2002).  Heme A incorporation 

into COX I relies on the activity of Shy1, the yeast homolog of human SURF1 (Smith et al., 
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2005).  However, little is known about the mechanism of heme a insertion, and whether Shy1 

and SURF1 fulfill the same functions.   

COX and Cu, Zn-superoxide dismutase (SOD1) are the only two copper 

metalloenzymes contained within mitochondria.  It is believed that the copper found in these 

two enzymes comes from a labile copper pool housed in the matrix (Cobine et al., 2006a).  

Metallation of these two enzymes therefore depends on specific copper transport pathways that 

facilitate the movement of copper across the inner membrane.  At present, however, it is unclear 

how copper is delivered to mitochondria, and how it is trafficked within the organelle. 

Cox17 is the first metallochaperone implicated in copper delivery to COX (Glerum et 

al., 1996a).  This small hydrophilic protein exists in both the cytoplasm and the IMS (Beers et 

al., 1997).  It contains a twin Cx9C motif and a cysteine-cysteine motif at its N-terminus that is 

essential for Cu(I) binding (Arnesano et al., 2005; Banci et al., 2008b; Palumaa et al., 2004).  

Cox17 functions as Cu(I) donor for Cox11 (Carr et al., 2002), SCO1 (Glerum et al., 1996b) and 

SCO2  (Banci et al., 2008a; Banci et al., 2007b; Horng et al., 2004; Papadopoulou et al., 1999), 

which in turn deliver copper to COX I or COX II (Horng et al., 2004).  How Cox17 itself is 

metallated remains an open question.  In addition to Cox17, the IMS contains a number of other 

proteins with twin Cx9C motifs, many of which are critical for COX assembly and may regulate 

copper trafficking within the IMS (Horn and Barrientos, 2008; Longen et al., 2009).  These 

twin Cx9C motif-containing proteins include Cox19 (Rigby et al., 2007), Cox23 (Barros et al., 

2004), Pet191 (McEwen et al., 1993), Cmc1 (Cx9C mitochondrial protein necessary for full 

assembly of cytochrome c oxidase) (Horn et al., 2008)  and Cmc2 (Horn et al., 2010).  All of 

these yeast proteins have human orthologues, and their import and retention within the IMS 

relies on the TOM complex and the MIA pathway (Fraga and Ventura, 2012; Herrmann and 

Riemer, 2012; Soto et al., 2012).  Other than Cox17, however, the molecular function of these 

twin Cx9C motif-containing proteins remains poorly understood.   

The CuB site of COX I consists of three histidines for the coordination of the copper ion 

(Yoshikawa et al., 2012).  The copper metallochaperone of COX I, Cox11 is an integral inner 

membrane protein with a single transmembrane helix (Hiser et al., 2000; Tzagoloff et al., 1990).  

Its C-terminal tail contains a copper-binding domain that projects into the IMS (Carr et al., 

2002).  A role for Cox11 in the metallation of COX I was inferred by the observation that the 

CuB site was absent when the COX complex was purified from a strain of Rhodobacter 
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sphaeroides in which the Cox11 gene had been deleted (Hiser et al., 2000).  Additional 

evidence from a study in yeast showed that mutation of the copper-coordinating amino acids in 

Cox11 resulted in an isolated COX deficiency (Carr et al., 2002).  The mechanism by which 

Cox11 delivers copper to the CuB site of COX I will require further investigation.  

The CuA center in COX II is formed by two copper ions present as a [Cu
2+

/Cu
1+

] 

complex (Lappalainen et al., 1993; Malmstrom and Aasa, 1993).  These two copper ions are 

coordinated by two cysteines, two histidines, a methionine and a glutamate (Tsukihara et al., 

1995).  The two copper-binding cysteines are within a CxxxC motif that faces the IMS (Iwata et 

al., 1995; Tsukihara et al., 1995; Yoshikawa et al., 2012).  Further details concerned with COX 

II metallation will be provided in Section 1.3. 

At present, it is not known how the magnesium and zinc ions are delivered and inserted 

into COX, or if their presence has a direct effect on enzyme function (Cobine et al., 2006c; 

Fontanesi et al., 2006). 

 

1.2.2.3 The process of COX assembly  

 

COX assembly is best described as an ordered process in which structural subunits are 

sequentially added to COX I (Figure 1.8) (Fontanesi et al., 2008).  Three distinct assembly 

intermediates (S1-S3) are formed prior to the biogenesis of the mature holoenzyme (S4) 

(Cobine et al., 2006c; Fontanesi et al., 2006), and the basic steps by which COX is assembled 

appear to be conserved between yeast and mammals (Fontanesi et al., 2008).  In mammals, the 

first step of COX assembly is the insertion of COX I into the inner membrane (S1).  The second 

step involves the incorporation of COX IV and COX Va to form S2.  Addition of the bulk of the 

remaining subunits allows for COX assembly to proceed to the S3 stage, with the subsequent 

incorporation of COX VIa and COX VIIa/b producing the mature holoenzyme (S4) (Fontanesi et 

al., 2008; Nijtmans et al., 1998; Williams et al., 2004).   

 

1.2.3 Isolated COX deficiency  

 

An isolated COX deficiency is one of the most common causes of respiratory chain 

defects in humans, and pathogenic mutations have been described in genes encoding both 

structural subunits and accessory proteins critical for holoenzyme assembly (Fernandez-Vizarra 
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et al., 2009; Ghezzi and Zeviani, 2012).  Pathogenic mutations have been reported for all three 

mitochondrially-encoded COX subunits and these are known to affect COX assembly and 

stability (Bruno et al., 1999; Campos et al., 2001; Tiranti et al., 2000).  Patients with mutations 

in COX I, II or III genes exhibit remarkably different, tissue-specific clinical phenotypes, even 

among patients with mutations in the same gene (Shoubridge, 2001).   

 

 

Figure 1.8 Schematic representation of COX assembly.  S1- S3 represent the intermediate 

steps in the assembly process, and S4 refers to the fully assembled holoenzyme complex 

(Adapted from Shoubridge, 2001). 

 

 

Defects in 3 nuclear genes encoding COX structural subunits have been characterized to 

date; COX IV, COX VIb and COX VIIb.  COX IV is located at the matrix-site of the 

holoenzyme (Shteyer et al., 2009).  It is thought to be critical for early steps of COX complex 

biogenesis (Li et al., 2006).  Patients with mutations in COX IV present with exocrine 

pancreatic insufficiency, dyserythropoietic anemia and calvarial hyperostosis (Shteyer et al., 

2009).  COX VIb is a hydrophilic extramembrane protein facing the IMS that is proposed to 



20 

 

facilitate the connection of two monomers of COX to yield the dimeric form of the enzyme that 

is found in vivo (Tsukihara et al., 1996; Yoshikawa et al., 1998).  Moreover, COX VIb may be 

involved in the interaction between the holoenzyme and cytochrome c (Huttemann et al., 2003; 

Sampson and Alleyne, 2001).  Pathogenic mutations in COX VIb cause mitochondrial 

encephalomyopathy associated with an isolated COX defect (Massa et al., 2008).  The 

relevance of COX VIIb to COX function is still poorly understood.  However, it must be 

indispensable for enzyme function, given that mutations in this gene cause microphthalmia with 

linear skin lesions, an X-linked dominant disorder that is lethal in males (Indrieri et al., 2012).  

The most frequent cause of COX deficiency is attributable to mutations in genes 

encoding accessory proteins, which severely impair various steps of holoenzyme biogenesis.  

To date, variable clinical phenotypes associated with pathogenic mutations in TACO1 

(Weraarpachai et al., 2009), SURF1 (Tiranti et al., 1998; Zhu et al., 1998b), SCO1 (Valnot et 

al., 2000a), SCO2 (Papadopoulou et al., 1999), COX10 (Valnot et al., 2000c), COX15 

(Antonicka et al., 2003b), LRPPRC (Mootha et al., 2003), FAM36A/COX20 (Szklarczyk et al., 

2013), C12orf62 (Weraarpachai et al., 2012) and COA5/PET191 (Huigsloot et al., 2011) have 

been described.  COX10 and COX15 are required for the biogenesis of heme A critical for the 

maturation of the heme a and a3 sites contained within COX I.  Mutations in COX10 lead to a 

loss in total heme A content, and cause a range of clinical conditions including hypertrophic 

cardiomyopathy, Leigh syndrome and renal tubulopathy (Antonicka et al., 2003a; Coenen et al., 

2004; Valnot et al., 2000b).  Mutations in COX15 are associated with an isolated COX 

deficiency and an early onset, fatal hypertrophic cardiomyopathy, as well as a reduction in the 

levels of heme A (Antonicka et al., 2003b).  While SURF1 is also proposed to be involved in 

the biogenesis of the heme a3 site of COX I, its precise function is poorly understood 

(Fernandez-Vizarra et al., 2009; Ghezzi and Zeviani, 2012).  Over 40 distinct mutations have 

been described in SURF1, all of which are associated with Leigh syndrome and an isolated 

COX deficiency (Pecina et al., 2004; Pequignot et al., 2001; Tiranti et al., 1998; Zhu et al., 

1998a).  With few exceptions, SURF1 mutations result in a lack of detectable SURF1 protein, 

which leads to the accumulation of the S1 and S2 COX assembly intermediates and a reduction 

in the amount of the fully assembled holoenzyme (Stiburek et al., 2005; Tiranti et al., 1999; 

Williams et al., 2004).   
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1.3 SCO1 and SCO2 
 

SCO1 and SCO2 are involved in the metallation of the CuA site of COX II, which is 

perhaps the most thoroughly characterized aspect of COX assembly.  SCO1 and SCO2 were 

first identified in a suppressor screen that used a yeast Cox17 null mutant (Glerum et al., 1996b).  

While both SCO1 and SCO2 suppressed the respiratory deficient phenotype of a yeast Cox17 

null strain (Glerum et al., 1996b), subsequent deletion of each gene revealed that only SCO1 is 

required for growth on a non-fermentable carbon source.  While SCO2 overexpression was 

unable to rescue a SCO1 null mutant, it was able to functionally complement the glycerol 

growth defect in a yeast strain expressing a SCO1 point mutant (Glerum et al., 1996b).  This led 

to the suggestion that while only SCO1 is essential for COX assembly in yeast, the functions of 

SCO1 and SCO2 partially overlap (Glerum et al., 1996b).  To date, however, a function for 

yeast SCO2 has yet to be identified (Khalimonchuk and Rodel, 2005).  

Unlike yeast, human SCO1 and SCO2 are essential and mutations in either gene result 

in a severe, isolated COX deficiency that is associated with early onset, tissue-specific forms of 

disease with fatal clinical outcomes.  Thus far, three SCO1 pedigrees have been identified.  

Patients with a homozygous G132S mutation presented with a fatal hypertrophic 

cardiomyopathy, while those that carried a P174L missense mutation on one allele and a 

nonsense mutation on the second allele ultimately died from neonatal liver failure (Stiburek et 

al., 2009; Valnot et al., 2000a).  The third SCO1 pedigree was only recently characterized 

(Leary et al., 2013a).  The patient carried a M294V missense mutation on one allele and a 

premature stop codon on the second allele, and presented with a fatal encephalopathy.  

Mutations in SCO2 are relatively more common.  Nearly all of the roughly 30 pedigrees 

identified thus far carry at least one allele with an E140K missense mutation (Mobley et al., 

2009; Sambuughin et al., 2013).  Although patients may be E140K heterozygous or 

homozygous, all of them ultimately succumb from a fatal hypertrophic cardiomyopathy (Jaksch 

et al., 2001a; Leary et al., 2006).  The distinct forms of disease are not caused by tissue-specific 

expression of these two genes, since both SCO1 and SCO2 are ubiquitously expressed and 

display a similar expression pattern across human tissues (Papadopoulou et al., 1999).  

However, a molecular genetic explanation as to how mutations in these two housekeeping 

genes produce such strikingly different clinical phenotypes is not currently understood 

(Khalimonchuk and Winge, 2008; Stiburek and Zeman, 2010).  
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Human SCO1 and SCO2 are closely related paralogues (i.e. divergence from gene 

duplication event).  SCO1 is a 301 aa protein that consists of a mitochondrial targeting 

sequence at its N-terminus, a matrix domain, a single transmembrane helix and a C-terminal 

domain that protrudes into the IMS (Banci et al., 2006; Williams et al., 2005).  SCO2 is 

marginally smaller than SCO1, a difference that is reflected mostly in the size of its soluble, 

matrix-localized N-terminal domain (Williams et al., 2005).  Both SCO1 and SCO2 are 

homodimers in vivo (Leary et al., 2004), and they share a great degree of sequence identity in 

their C-terminal domains, which are globular and contain four α-helices and nine β-strands that 

collectively form a highly conserved thioredoxin fold that contains a copper-binding site 

(Figure 1.9) (Banci et al., 2006; Banci et al., 2007a).  The copper-binding site consists of two 

cysteines present in a CxxxC motif and a histidine, all of which are spatially close to each other 

in the quaternary structure of the proteins (Banci et al., 2006; Banci et al., 2007a).  This site 

binds Cu(I), and the solution structures of the apo- and Cu(I)-loaded conformers of human 

SCO1 are similar, with the exception of loop 8 which shows significant rearrangements 

depending on the metallation state of the protein.  The structural dynamics of loop 8 imply it 

may be a region of the protein critical to interactions between SCO1 and its partners (Banci et 

al., 2006).  SCO1 and SCO2 are also able to bind Cu(II).  The solution structure of the Ni(II) 

derivative of human SCO1 has been solved, and indicates that divalent metal ions like Cu(II) 

can also be coordinated by the same histidine residue and the two cysteine residues of CxxxC 

motif used to bind Cu(I), with the help of a donor ligand from an undetermined Asp residue 

(Banci et al., 2006).  In addition to their ability to bind copper, it appears that human SCO1 and 

SCO2 also have a thiol disulphide oxidoreductase activity (Leary et al., 2009; Williams et al., 

2005).   

While SCO proteins clearly require the ability to bind copper for their function, their 

relative roles in COX assembly are poorly understood.  Several lines of evidence argue that 

human SCO1 and SCO2 function as metallochaperones and are responsible for copper delivery 

to COX II during the biogenesis of the CuA site. The function of SCO1 and SCO2 is abrogated 

by replacing any of the copper-coordinating amino acids (cysteine, cysteine and histidine) with 

alanines, arguing that copper binding is essential to their biological activity (Horng et al., 2005). 

Supplementation of the culture media with exogenous copper fully also rescued the COX 

deficiency of SCO2 patient cells and it partially rescued that of SCO1 patient cells (Jaksch et al., 
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2001b; Leary et al., 2004; Salviati et al., 2002).  However, it is not yet clear whether both SCO 

proteins transfer copper to COX II during the maturation of its CuA site.  Since the CuA site is 

composed of a Cu(I) and a Cu(II) ion, it is possible that SCO1 and SCO2 each transfer one 

atom of copper during the metallation reaction. Alternatively, one or both SCO proteins may 

instead catalyze metallation of the CuA site by fulfilling a critical redox function in the absence 

of copper transfer.  Consistent with this idea, overexpression of wild-type SCO2 in SCO2 

patient fibroblasts enriched for the presence of oxidized cysteines within the CxxxC motif of 

SCO1 (Leary et al., 2009). The observation that fibroblasts derived from both SCO 

backgrounds accumulate the same S2 assembly intermediate implies that SCO1 and SCO2 each 

function at the same stage of COX complex biogenesis.  These functions appear to be unique, 

because overexpression of wild-type SCO1 in SCO2 patient fibroblasts, or vice versa, further 

exacerbates the COX deficiency in the relevant patient background (Leary et al., 2004).  

Accordingly, it has been shown that SCO2 is critical for normal rates of COX II synthesis 

(Leary et al., 2009), while SCO1 is required for the stability of newly synthesized COX II 

(Cobine et al., 2006).  

 

 

 

Figure 1.9 Solution structure of copper-loaded human SCO1.  The average structures of the 

lowest energy ensemble of human SCO1 with bound Cu(I) is shown.  The copper binding 

amino acids cysteine (Cys169, Cys173) and His260 are depicted in red and blue, respectively.  

The Cu(I) ion is shown in yellow (Adapted from Banci et al., 2006). 
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Understanding the relative roles of SCO1 and SCO2 is complicated by the fact that both 

proteins have additional, novel functions in the regulation of cellular copper homeostasis. SCO1 

and SCO2 patient fibroblasts are both COX and copper deficient (Leary et al., 2007).  Even 

though the overexpression of a wild-type SCO1 cDNA in SCO1 patient fibroblasts completely 

suppressed the COX deficiency, it did not rescue the total cellular copper deficiency (Leary et 

al., 2007).  In contrast overexpression of a wild-type SCO2 cDNA in SCO1 patient fibroblasts 

partially rescued the copper deficiency, while exacerbating the COX deficiency (Leary et al., 

2007).  These data argue that the copper deficiency phenotype can be completely dissociated 

from the defects in COX assembly, and further indicate that it can be suppressed by 

overexpressing SCO2, but not SCO1.  Subsequent pulse-chase experiments with 
64

Cu revealed 

that SCO1 and SCO2 patient cells are unable to retain 
64

Cu, and exhibit elevated rates of copper 

efflux rather than defects in high affinity uptake (Leary et al., 2007).  To explain these 

observations, a model was proposed in which SCO2 alters the redox state of the cysteine of the 

CxxxC motif of SCO1, leading to activation of the cellular copper efflux signaling pathway 

(Briere and Tzagoloff, 2007; Leary et al., 2007).  A recent study confirms and further develops 

this model by characterizing a SCO1-dependent mitochondrial redox signal that requires 

COX19 to regulate ATP7A-mediated copper efflux from the cell (Leary et al., 2013b).  

However, the detailed mechanisms describing how the redox and/or metallation state of SCO1 

affects cellular copper homeostasis have yet to be elucidated.  

  

1.4 Hypothesis and objectives 
 

SCO1 and SCO2 function in the biogenesis of the binuclear CuA site of COX II (Lode et 

al., 2000).  Mutations in either SCO1 or SCO2 produce a severe, isolated COX deficiency, and 

result in distinct, tissue-specific clinical phenotypes (Papadopoulou et al., 1999; Valnot et al., 

2000a).  Because SCO patient fibroblasts accumulate the S2 assembly intermediate, and the 

overexpression of either SCO in the reciprocal patient background exacerbates the COX 

deficiency, it is thought that both SCO1 and SCO2 fulfill unique functions at the same stage of 

COX assembly (Leary et al., 2004).  The function of SCO proteins requires that they be able to 

bind copper (Horng et al., 2005; Nittis et al., 2001).  Both SCO1 and SCO2 can bind Cu(I) and 

Cu(II) within a highly conserved thioredoxin fold contained within their C-terminus that 
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protrudes into the IMS (Beers et al., 2002; Horng et al., 2005; Jaksch et al., 2001b; Nittis et al., 

2001).  This copper-binding region consists of two cysteine residues within a CxxxC motif and 

a highly conserved histidine (Balatri et al., 2003; Banci et al., 2007a; Nittis et al., 2001).  

Protein function is abrogated by alanine substitutions of any of these three residues (Horng et 

al., 2005; Nittis et al., 2001).  Although significant progress has been made in characterizing 

the function of SCO proteins in yeast and humans, their precise molecular functions remain 

unclear.  In fact, our current understanding of the respective roles of SCO1 and SCO2 in the 

maturation of the CuA site of COX II is limited.  In particular, it remains unclear which SCO 

protein delivers copper to COX II, and how their redox states affect COX assembly.  

Understanding the relative importance of the metallation state of SCO proteins to their roles as 

COX assembly factors may also provide insight into how copper-loading of SCO1 relates to the 

generation of a mitochondrial redox dependent signal that regulates the rate of copper efflux 

from the cell  (Leary et al., 2007; Leary et al., 2013b).   

 

Hypothesis:  

SCO1 transfers copper to the CuA site of COX II during COX assembly, and the 

metallation state of SCO1 in vivo acts as a rheostat that contributes to the regulation of cellular 

copper homeostasis.  Therefore, overexpression of a SCO1 mutant that binds copper with 

greater affinity than the wild-type protein and that is unable to transfer the metal ion to an 

interacting partner would be predicted to exacerbate the COX and cellular copper deficiencies 

in SCO patient fibroblasts.  

 

Objectives:  

1. Functionally characterize a series of SCO1 point mutants that had been rationally designed 

to potentiate or abolish copper-binding.  Methionine, cysteine and histidine are common 

copper-binding amino acids (Giri et al., 2004), while serine is structurally similar to 

cysteine but is incapable of coordinating copper.  Therefore, the two cysteines of the 

CxxxC motif (Cys169, Cys173) and the conserved histidine (His260) of SCO1 were 

substituted with various combinations of these four amino acids.  These SCO1 mutants 

were then functionally characterized by quantifying the phenotypic effect of their 

overexpression on residual COX activity in control, SCO1 and SCO2 patient fibroblasts. 
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2. Quantify the copper-binding properties of this panel of SCO1 point mutants in vitro, using 

histidine-tagged, soluble truncates expressed in and purified from E. coli (Horng et al., 

2005). 

 

  



27 

 

2 MATERIALS AND METHODS 

2.1 Reagents 
 

 Names of reagents and suppliers are listed in Table 2.1.  Addresses for each supplier are 

subsequently listed in Table 2.2. 

Table 2.1 List of reagents and suppliers 

General Reagent Supplier 

Bathocuproine disulfonic acid (BCS) Sigma-Aldrich 

Bradford reagent  Bio-Rad 

Chloroquine Sigma-Aldrich 

Dithiothreitol (DTT) Bioshop 

Ethylenediaminetetraacetic acid (EDTA) Bioshop 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Bioshop 

K2HPO4 Bioshop 

KH2PO4 Bioshop 

n-Dodecyl-β-D-maltopyranoside (DDM) Bioshop 

Oxaloacetic acid  Sigma-Aldrich 

Phenylmethanesulfonyl fluoride (PMSF) Bioshop 

Phosphate buffered saline (PBS) Bioshop 

Potassium Phosphate Bioshop 

Triton X-100 Bioshop 

Cell Culture Reagent Supplier 

Antibiotic-antimycotic Lonza 

Dulbecco’s modified Eagle’s medium 

(DMEM) 

Corning cellgro 

Fetal bovine serum Sigma-Aldrich 

Hygromycin B Calbiochem-Millipore 

Puromycin Sigma-Aldrich 

Bacteria Culture Reagent Supplier 

Ampicillin Bioshop 

Kanamycin Bioshop 
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Sodium chloride Bioshop 

Tryptone Bioshop 

Yeast Extract Becton Dickinson 

Commercial kit Supplier 

E.Z.N.A. Plasmid Mini Kit Omega Bio-Tek 

Gel Extraction Kit QiaQuick 

jetPRIME
TM 

DNA Transfection Reagent Polyplus Battery 

Kapa HiFi PCR Kit Kapa Biosystems 

Ni-NTA Agarose Qiagen 

PCR Purification Kit Qiagen 

 

Table 2.2 Name and addresses of suppliers 

Becton Dickinson Mississauga, Ontario, Canada  

Bio-Rad Mississauga, Ontario, Canada 

Bioshop Burlington, Ontario, Canada 

Calbiochem-Millipore Billerica, MA, USA 

Corning cellgro Manassa, VA, USA 

Kapa Biosystems Woburn, MA, USA 

Lonza Basel, Switzerland 

Omega Bio-Tek Norcross, GA, USA 

Polyplus Battery Berkeley, CA, USA 

Qiagen Toronto, Ontario, Canada  

Sigma-Aldrich Oakville, Ontario, Canada 

  

 

2.2 Mammalian cells and growth media 
 

Primary skin fibroblasts were derived from controls, and SCO1 (SCO1-1, T146X/P174L 

(Valnot et al., 2000a); SCO1-2, V93X/M294V (Leary et al., 2013a) and SCO2 (R90X/E140K) 

patients (Leary et al., 2013b), and immortalized by stable transduction with the E7 gene of 
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human papillomavirus and the catalytic subunit of human telomerase (Lochmuller et al., 1999).  

Immortalized fibroblasts were stably transduced with individual SCO1 cDNAs using retrovirus 

that was produced by the Phoenix amphotropic packaging cell line (kind gift of Dr. G. Nolan, 

Stanford University).  All cell lines were grown in Dulbecco’s modified Eagle’s medium 

(DMEM) (Corning cellgro) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1x 

antibiotic-antimycotic (Life technologies) at 37
°
C

 
in an atmosphere of 5% CO2.  Cell lines were 

selected and maintained by their co-culture in media supplemented with 100 mUnits/mL of 

hygromycin B (Calbiochem) or 2 g/mL of puromycin (Sigma) to ensure stable overexpression 

of a given construct. 

 

2.3 Plasmids, bacterial strains and growth media 
 

For in vivo experiments, a series of SCO1 point mutants was generated by site-directed 

mutagenesis.  The first generation retroviral expression vector pLXSH (Miller et al., 1993) 

containing a wild-type SCO1 cDNA was used as the PCR template. I generated all of the 

mutants listed below (Figures 2.1 & 2.2), except for the SCO1 N-terminal point (C45A, C61A 

and C45AC61A) and truncation (∆17, ∆37 and ∆57) mutants (generated by Ms. Shelley 

Stewart).  Plasmid DNA for transduction was amplified using the competent E. coli strains 

DH5 or XL-1 Blue.   

For in vitro experiments, soluble SCO1 point mutants lacking the N-terminal 333 bp 

(Figure 2.3) were amplified by PCR using the appropriate pLXSH expression vector as a 

template, and cloned into the pHis parallel vector 2 which contains a hexahistidine tag 5’ of the 

start methionine that allows for subsequent protein purification (Sheffield et al., 1999).  Plasmid 

DNA was transformed into the competent E. coli strain BL21 (DE3) which carries the T7 

polymerase under the control of an IPTG-inducible lacUV5 promoter. 

All SCO1 constructs generated in this study were submitted to the Plant Biotechnology 

Institute (Saskatoon, SK) for Sanger sequencing to confirm the introduction of the desired 

mutation(s) and the fidelity of the remainder of the sequence. 

2 YT media (16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride, pH 7.4) 

containing the appropriate antibiotic (either 100 μg/mL ampicillin or 50 μg/mL of kanamycin) 
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were utilized for bacterial culture.  All bacterial strains were grown at 37
°
C at 225 rpm in a 

shaking incubator.  

 

 

 

 

 

Figure 2.1 Schematic of C-terminal SCO1 point mutants.  Cys169, Cys173 and His260 were 

substituted via site-directed mutagenesis with amino acids expected to abolish (serine) or alter 

(cysteine, histidine, methionine) the copper-binding properties of SCO1.  The substituted amino 

acids are underlined.  MTS, mitochondrial targeting sequence; TM, transmembrane helix.  

 

 

C-terminal mutants 

WT Cys169  x  x  x  Cys173 ………… His260 

 

TM MTS Cys45….Cys61 

 

Cys mutants 

C169HC173H 

C169SC173S 

C169H 

C173H 

C169S 

C173S 

H260C 

His mutants 

Cys169  x  x  x  Cys173 ………… Cys260 

 

TM MTS  

Cys169  x  x  x  Cys173 ………… Met260 

 
TM MTS  H260M 

His169  x  x  x  His173 ………… His260 

 

TM MTS  

Ser169  x  x  x  Ser173 ………… His260 

 

TM MTS  

His169  x  x  x  His173 ………… His260 

 

TM MTS  

Cys169  x  x  x  His173 ………… His260 

 

TM MTS  

Ser169  x  x  x  His173 ………… His260 

 

TM MTS  

Cys169  x  x  x  Ser173 ………… His260 

 

TM MTS  
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Figure 2.2 Schematic of N-terminal SCO1 mutants.  Two sets of SCO1 N-terminal mutants 

were used in the study. One set was comprised of cysteine to alanine mutants, and included 

C45A, C61A and C45AC61A substitutions. The other set was comprised of truncation mutants 

and included ∆17, ∆37 and ∆57.  Substituted amino acids are underlined.  MTS, mitochondrial 

targeting sequence; TM, transmembrane helix.  

 

 

 

 

 

WT Cys169  x  x  x  Cys173 ………… His260 

 

TM MTS Cys45….Cys61 

 

Cys mutants 

 TM MTS Cys45….Ala61 

 TM MTS Ala45….Ala61 

N-terminal mutants 

Truncation mutants 

C61A 

C45A 

C45AC61A 

TM MTS Ala45….Cys61  

 TM MTS ∆17 

 TM MTS ∆37 

 TM MTS ∆57 

∆17 

∆37 

∆57 
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Figure 2.3 Schematic of soluble SCO1 variants. Soluble SCO1 variants lacking the 

mitochondrial targeting sequence (MTS), matrix domain and the transmembrane helix (TM) 

were fused in frame with an N-terminal 6x histidine tag to allow for their purification (Horng et 

al., 2005).  

 

 

2.4 DNA methods 

2.4.1 Site-directed mutagenesis 

 

Site-directed mutagenesis was used to generate all of the SCO1 point mutants (Figure 

2.2).  Primers were designed to adhere to the properties recommended by the manufacturer 

(Stratagene), and synthesized by Sigma-Aldrich (Table 2.3).  All point mutations were 

introduced using the Kapa HiFi PCR Kit (KAPABIOSYSTEMS).  PCR amplifications were 

performed in 25 μL reactions that contained 1x buffer (supplemented with 2.0 mM Mg
2+

), 0.3 

mM dNTPs, 0.3 μM of both the forward and reverse primers, 5-10 ng of template DNA, and 0.5 

Units KAPA HiFi DNA Polymerase.  The cycling conditions were as follows; initial 

denaturation at 95
°
C for 2 minutes, followed by 16 cycles at 98

°
C for 20 seconds, 52-75

°
C for 1 

minute, 72
°
C for 8 minutes, with a final extension step at 72

°
C for 7 minutes.  To remove 

methylated, parental DNA, the resultant PCR products were treated with 10 Units DpnI 

(BioLabs) in 1x buffer 4 (NEB) at 37
°
C for 2 hours, and then used for transformation (refer to 

section 2.4.3). 

Soluble SCO1  

SCO1  

IMS domain TM MTS Matrix domain 

Lack 

333bp 

IMS domain 
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Table 2.3 List of primers  

Mutant name Primer name Primer sequence 
Annealing 

temperature 

H260C H260C-F GAAGACTACATAGTGGATTGCACAATAATAATGTACTTGATTGGACC 75
 °
C 

 H260C-R GGTCCAATCAAGTACATTATTATTGTGCAATCCACTATGTAGTCTTC  

H260M H260M-F GAAGACTACATAGTGGATATGACAATAATAATGTACTTGATTGGACC 55
 °
C 

 H260M-R GGTCCAATCAAGTACATTATTATTGTCATATCCACTATGTAGTCTTC  

C169H C169H-F GGCTTCACTCATCACCCTGATGTCTGTCCAG 52
 °
C 

 C169H-R CTGGACAGACATCAGGGTGATGAGTGAAGCC  

C169S C169S-F GGCTTCACTCATTCCCCTGATGTCTGTCCAG 55
 °
C 

 C169S-R CTGGACAGACATCAGGGGAATGAGTGAAGCC  

C173H C173H-F CACTCATTGCCCTGATGTCCATCCAGAAGAACTAG 55
 °
C 

 C173H-R CTAGTTCTTCTGGATGGACATCAGGGCAATGAGTG  

C173S C173S-F CACTCATTGCCCTGATGTCTCTCCAGAAGAACTAG 55
 °
C 

 C173S-R CTAGTTCTTCTGGAGAGACATCAGGGCAATGAGTG  

C169HC173H C169HC173H-F GGCTTCACTCATCACCCTGATGTCCATCCAGAAGAACTAG 55
 °
C 

 C169HC173H-R CTAGTTCTTCTGGATGGACATCAGGGTGATGAGTGAAGCC  

C169SC173S C169SC173S-F GGCTTCACTCATTCCCCTGATGTCTCTCCAGAAGAACTAG 55
 °
C 

 C169SC173S-R CTAGTTCTTCTGGAGAGACATCAGGGGAATGAGTGAAGCC  

Soluble SCO SCO His-F AGATCTGGATCCATGAAGCACGTCAAGAAAGA 

                 (BamHI) 

72
 °
C 

 SCO His-R AGATCTGTCGACCTAGCTCTTTTTTCTGTATG 

              
          (SalI) 

 

3
3
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2.4.2 Subcloning 

 

Soluble SCO1 variants (lacking the first 333 bp) were amplified by PCR from the 

appropriate pLXSH parental plasmid using pHis forward and reverse primers (Table 2.3) in 40 

μL reactions that contained 1x Phusion HF buffer (supplemented with 1.5 mM MgCl2), 0.2 mM 

dNTPs, 0.5 μM of both the forward and reverse primers, 4 ng template DNA, and 0.8 Unit 

High-Fidelity DNA polymerase (Thermo Scientific).  The cycling conditions were as follows; 

initial denaturation at 98
°
C for 10 seconds, followed by 30 cycles at 54

°
C for 30 seconds, 72

°
C 

for 45 seconds, with a final extension step at 72
°
C for 7 minutes.  Successful amplification of 

each construct was confirmed by electrophoresing 1-3 μL of the PCR product on a 1% agarose 

gel.  The remainder of the PCR product was purified using a spin column, according to the 

manufacturer’s instructions (QiaQuick).   

The pHis-parallel 2 vector was prepared from bacterial culture for subsequent 

subcloning (refer to section 2.4.4).  Digestion of the purified PCR product and of the pHis 

parallel 2 vector with BamHI (Thermo Scientific) and SalI (NEB) then allowed for 

conventional cloning via ligation.  The double digestion was performed in a 50 μL reaction with 

1x buffer 3 (BioLabs) at 37
°
C for 1 hour and 50 minutes.  BamHI was added to the reaction in 

the last 50 minutes to avoid its star activity.  Large amounts of purified insert and linearized 

vector proved to be necessary for successful ligation.  All digestion products were 

electrophoresed and the desired DNA fragments were excised from the agarose gel.  Each gel 

slice was incubated with QG buffer (QIAquick) at 50
°
C for 10 minutes until it was completely 

dissolved, followed by its purification using a spin column (QIAquick) according to the 

manufacturer’s specifications.  To increase ligation efficiency, purified DNA concentration was 

quantified by electrophoresis using a DNA Mass ladder (NEB).  Ligations were performed in 

20 μL reactions with 1x T4 DNA ligase reaction buffer (BioLabs) and 400 Units T4 DNA 

ligase (BioLabs) at 19
°
C overnight, using a 1:4 molar ratio of vector to insert. The ligation 

product was then used for transformation (refer to section 2.4.3).  

 

2.4.3 Transformation 

 

XL1-blue, DH5α and XL10-gold competent cells were used for transformation in the 

study.  1-5 μL of ligation reaction was added to tubes containing competent cells (2 μL for 
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XL10-Gold).  The tubes were gently swirled and placed on ice for 30 minutes.  Next, the tubes 

were heat-pulsed in a 42
°
C water bath for 45 seconds (30 seconds for XL10-Gold), and 

incubated on ice for 2 minutes.  500 μL of 2YT (NZY
+
 for XL10-Gold) was added to the tubes 

and cells were allowed to recover at 37
°
C for 1 hour with shaking at 225 rpm prior to plating.  

After an overnight incubation at 37
°
C on 2YT plates containing the appropriate antibiotic, 

positive clones containing the desired plasmid were screened first by colony PCR. Plasmid 

from potential positives was then isolated, double digested and sent for sequencing.   

 

2.4.4 Plasmid isolation and DNA quantification 

 

Plasmid DNA was isolated from bacterial cultures using the E.Z.N.A. plasmid mini kit 

as described by the manufacturer.  The concentration of plasmid DNA was determined 

spectrophotometrically using a SpectraMAX 190 (Molecular Devices).  Plasmid DNA was 

diluted 1:20 with double-distilled H2O, and its concentration quantified by measuring the 

absorbance at a wavelength of 260 nm.  Relative purity of plasmid DNA was evaluated by 

calculating the A260/A280 ratio.  To confirm its integrity prior to use in transfections or 

transformations, plasmid DNA was subjected to digestion with the appropriate restriction 

enzymes and DNA was visualized by electrophoresis.  

 

2.5 Retroviral transduction 
 

 Retroviral transduction was utilized to overexpress SCO1 variants in human fibroblasts, 

as the low transfection efficiency of this cell type is well established.  Retrovirus was packaged 

with the Phoenix Amphotropic, helper-free production system (Swift et al., 2001), and used to 

stably transduce recipient cells as follows; 

Day 1, Transfection of Phoenix cells:  Phoenix cells were transfected at 60% to 80% 

confluency.  Media was replaced with fresh media containing 25 μM chloroquine, to prevent 

lysosomal degradation of plasmid DNA.  Typically, 100 mm plates were used, with 5 μg of 

plasmid DNA and 5 μg of carrier DNA (Sigma-Aldrich) being added to 500 μL jetPRIME
TM

 

(Polyplus) buffer, followed by the addition of 20 μL of jetPRIME
TM 

reagent.  The transfection 

mix was vortexed for 10 seconds, incubated for 10 minutes at room temperature, and added to 

the plate in a drop wise manner.  Phoenix cells were then placed in the incubator for 24 hours.  
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Day 2, Detoxification of Phoenix cells:  24 hours after transfection, media was replaced 

with fresh media to avoid the toxic side effects of continued exposure to chloroquine, and to 

obtain a high viral titer.  Human fibroblasts were split such that they would be 40-60% 

confluent at the time of transduction.  

Day 3, Transduction of human fibroblasts:  48 hours after transfection, the retroviral-

containing media was harvested and filtered through a 0.45 μm syringe filter into sterile 15 mL 

tubes to remove whole cells and cell debris.  Polybrene was added to a final concentration of 5 

μg/mL, to neutralize the charge repulsion between retrovirus and sialic acid on the cell surface 

and therefore increase the transduction efficiency.  1.5-4 mL of the retroviral filtrate was then 

added to human fibroblasts proliferating in 60 or 100 mm plates.  Recipient cells were returned 

to the incubator for 2 hours, after which fresh media containing 5 μg/mL polybrene was added 

and the fibroblasts were left overnight. 

Days 4 & 5, Removal of retroviral-containing media and selection for stable 

overexpressing lines: The day after transduction, media was replaced. Hygromycin was then 

added the following day to a final concentration of 100 mUnits/mL to select for a stably 

transduced bulk culture.   

 

2.6 Protein analysis 

2.6.1 Sample preparation 

 

Fibroblasts overexpressing SCO1 variants were harvested in 1 mL of ice-cold PBS via 

scraping or by trypsinization and subsequent neutralization.  Cells were centrifuged at 14,000 x 

g for 1 minute at 4
°
C.  The resultant cell pellets were resuspended in 50 to 200 μL of extraction 

buffer (50 mM triethanolamine, 1.0 mM ethylenediaminetetraacetic acid (EDTA), pH 7.4), 

homogenized with a hand held, motorized pestle and used immediately for kinetic and endpoint 

assays. 

 

2.6.2 Citrate Synthase (CS) activity assay 

 

CS is a nuclear-encoded enzyme that localizes to the mitochondrial matrix that is often 

used as a marker of mitochondrial content.  The activity of CS was quantified by monitoring the 
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rate of breakdown of acetyl Coenzyme A to Coenzyme A (CoA-SH), a byproduct that then 

reacts with Ellman’s reagent (DTNB).  Specifically, homogenate was mixed with or without 10 

μL of oxaloacetic acid (OAA) and 150 μL assay buffer (100 mM Tris (pH 7.4), 0.3 mM acetyl 

CoA, 200 mM Ellman’s reagent and 10% triton X-100), and changes in absorbance at 412 nm 

were monitored at 30
°
C using a spectrophotometer (SpectraMAX 190, Molecular Devices).  CS 

activity was calculated using an extinction coefficient 25.9 M
-1

cm
-1

 using the following formula; 

CS activity = (A412 [+OAA] - A412 [-OAA]) × 25.9 M
-1

cm
-1 

/ (volume of sample × protein 

concentration of sample) 

 

2.6.3 COX activity assay 

 

COX activity was measured by quantifying the rate of oxidation of reduced cytochrome 

c.  Specifically, homogenate was mixed with assay buffer (50 mM potassium phosphate (pH 

7.0), 0.2 mM cytochrome c, 2 mM dodecylmaltoside), and changes in absorbance at 550 nm 

were monitored spectrophotometrically at 30
°
C.  COX activity was calculated using an 

extinction coefficient 12.4 M
-1

cm
-1

 using the following formula; COX activity= A550 × 12.4 M
-

1
cm

-1 
/ (volume of sample × protein concentration of sample) 

COX activity was normalized to CS activity, and expressed as a percentage of either 

parental, untransduced cells or matched, control fibroblasts.  A one-way analysis of variance 

(ANOVA) followed by a Tukey’s HSD post-hoc test was then used to determine if SCO1 

variants had a significant effect on COX activity in control and patient cells. 

 

2.6.4 Protein concentration 

 

The Bradford assay (Bradford, 1976) was used to quantify the protein concentration of 

all samples. A standard curve (0-8 ng) was set up using 1 mg/mL BSA (Bioshop) in a 96-well 

plate. Standards and samples were diluted with 250 L of 1x Bradford reagent (Bio-Rad) and 

the absorbance at 595 nm was measured spectrophotometrically.  SOFTmax PRO 4.0 software 

(Life Sciences Edition) was then used to calculate the protein concentration of samples, based 

on the accompanying BSA standard curve. 
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2.7 Recombinant protein expression and purification  

2.7.1 Protein expression trials 

 

Protein expression conditions were optimized for truncated, soluble SCO1 point mutants, 

to obtain large amount of Cu-loaded recombinant proteins for subsequent in vitro 

characterization.  Two experimental variables were examined; the CuSO4 concentration (0.5 

mM or 1 mM) and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration (0.5 mM or 1 

mM).  Since nearly no copper or Cu-bound proteins exist in the cytoplasm of E. coli, and 

inclusion of copper in the culture medium slows down bacterial growth, the CuSO4 was added 

to the culture upon IPTG induction. 

 

2.7.2 Expression of histidine-tagged proteins and harvesting cells 

 

pHis-parallel 2 plasmids containing soluble SCO1 variants were transformed into BL21 

(DE3) expression cells by electroporation, and plated on 2YT agar plates containing 100 μg/mL 

ampicillin.  A single colony was isolated for each soluble SCO1 variant, and grown in 5 mL LB 

starter culture (containing 100 μg/mL ampicillin) at 37
°
C for 8 hours, at 225 rpm.  These starter 

cultures were then used to inoculate 50 mL of fresh media, and grown overnight at 37
°
C while 

shaking at 225 rpm.  The overnight cultures were then inoculated into 1 L media in 2 L flasks to 

ensure proper aeration of the culture.  These cultures were grown to an OD600 of 0.6-0.8 

whereupon 1 mM IPTG and 0.5 mM CuSO4 were added to induce protein expression and 

provide a source of copper for metallation.  Following another 2-3 hours of growth, cells were 

harvested by centrifugation at 2,000 x g for 10 minutes and the cell pellets were stored at -80
°
C 

prior to their analysis. 

   

2.7.3 Lysis of cells and protein purification 

 

 The first step for cell lysis was to resuspend the cell pellet in 40 mL of lysis/wash buffer 

(1x phosphate buffered saline (PBS), 10 mM imidazole, 0.2 mM dithiothreitol (DTT), pH7.4).  

40 mL of lysis buffer containing 62.5 μM CuSO4 was added to the pellet, which was 

resuspended by vortexing.  The purpose of adding exogenous CuSO4 to the lysate was to ensure 

full copper-loading of SCO1 variants.  Cell suspensions were sonicated on ice for three 30 
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second pulses, with roughly an 8 minute delay between pulses.  The resultant lysate was 

clarified at 16,000 x g for 30 minutes at 4
°
C to separate the soluble fraction from unbroken cells 

and cell debris.  

 The clarified lysates were gently loaded onto home-made Ni-NTA (Qiagen and 

Novagen) columns with a 3 mL bed volume.  Soluble SCO1 variants bound to Ni-NTA were 

washed with 50 mL of lysis/wash buffer to remove unbound or non-specifically bound protein.  

Soluble SCO1 mutant proteins were then eluted with 3 x 5 mL of elution buffer (1x PBS, 200 

mM imidazole, 0.2 mM DTT, pH 7.4).  The Ni-NTA columns were then washed with another 

50 mL of lysis/wash buffer to prepare the column for subsequent round of protein purification.  

Elution fractions 1 and 2 contained most of purified soluble SCO1, and were therefore 

pooled and concentrated by centrifugation at 2,000 x g for 40 minutes at 4
°
C.  

 

2.8 Characterization of the copper-binding affinity of SCO1 variants 

2.8.1 Total bound copper and Cu(II)  

 

 To characterize the Cu(II)-binding affinity of soluble SCO1 variants, purified proteins 

were dialyzed overnight at 4
°
C in PBS alone or in PBS containing 1 mM EDTA. All dialyzed 

samples were scanned using an optical emission spectrometer (Perkin Elmer Optima 7300 DV) 

and a UV-Vis spectrophotometer (Shimadzu UV-2450) to quantify their total copper content 

and Cu(II) content, respectively.  The Cu(II) content of the samples was measured by 

monitoring the absorbance at 360 nm using an extinction coefficient of 3100 cm
-1

 M
-1

 (Horng et 

al., 2005).  Total copper content of a sample was quantified by dividing the mM concentration 

of Cu by the mM protein concentration, while the Cu(II) content was calculated using the 

following formula; Cu(II) content (M) = A360 / (3100 cm
-1

 M
-1 

× 1 cm) 

 

2.8.2 Cu(I) 

 

 A bathocuproine disulfonic acid (BCS) assay was used to quantify the Cu(I)-binding 

affinity of soluble SCO1 variants dialyzed overnight in PBS containing 1mM EDTA.  BCS is a 

Cu(I) chelator that forms a Cu-(BCS)2 complex, which has a maximal absorbance at 483 nm.  

100 μL of each purified soluble SCO1 variant was added to a well of a 96-well plate.  100 μL 
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ddH2O was also added to the plate, and served as a blank.  100 mM BCS was added to each 

well, and the A483 was measured spectrophotometrically at 0, 30, and 60 minutes and 12 hours.  

The amount of Cu(I) bound by BCS was calculated using a previously published extinction 

coefficient 12,250 cm
-1

 M
-1

 (Horng et al., 2005) and the following formula; Cu(I) content of 

BCS (M) = A483 / (12,250 cm
-1

 M
-1 

× 1 cm) 

 

2.9 Protein visualization techniques 

2.9.1 Western blotting 

 

For in vivo experiments, Western blotting was used to verify that SCO1 variants were 

overexpressed in transduced human fibroblasts.  Cells were washed with 4 mL ice-cold PBS, 

and harvested by scraping in 1 mL ice-cold 1x PBS.  Cells were centrifuged at 14,000 x g for 1 

minute at 4
°
C.  The cell pellets were kept and resuspended in 1x PBS buffer containing 1x 

protease inhibitor cocktail (PIC) (Roche) and 0.5 mM phenylmethanesulfonyl fluoride (PMSF).  

Total protein content of each sample was quantified by Bradford, and the total volume was 

adjusted to a final protein concentration of roughly 4 μg/uL in PIC/PMSF/PBS containing 1.5% 

of the non-ionic detergent n-Dodecyl-β-D-maltopyranoside (DDM).  Samples were vortexed 

every 5 minutes during a 30 minute incubation on ice.  Samples were then centrifuged at 14,000 

x g for 10 minutes at 4
°
C, the protein concentration of the soluble fraction was quantified by 

Bradford to ensure it was no greater than 4 μg/μL.  More concentrated samples were diluted 

with PIC/PMSF/PBS mix containing 1.5% DDM, and re-extracted as described above. 

A 2x sample loading buffer (Bio-Rad) containing 200 mM dithiothreitol (DTT) was 

added to each sample, which was then incubated at 95°C for 5 minutes.  20 μg of total protein 

was loaded per lane, and fractionated with a 15% SDS-PAGE gel (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) as follows; 90 V for 30 minutes, 110 V for 60 minutes, 130 

V for 30 minutes and 150 V for 30 to 60 minutes.  Once the dye front reached the bottom of the 

gel, electrophoresis was discontinued and the gel was transferred to a nitrocellulose membrane 

under semi-dry conditions.  To assess the efficiency of transfer, nitrocellulose was washed with 

deionized water and stained with ponceau S for 1 minute.  The membrane was then incubated in 

blocking buffer (5% BSA dissolved in Tris buffered saline (TBS) containing 0.1% tween 20) 

for 24 hours at 4°C, and then incubated overnight at 4°C with an unpurified polyclonal SCO1 
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antibody (1:200, (Leary et al., 2004)).  To remove unbound antibody, the membrane was 

washed 6 times for 30 minutes with blocking buffer.  The membrane was then incubated in goat 

anti-rabbit secondary antibody (1:5000, Bio-Rad) for 1 hour at room temperature, followed by 

washing 6 times for 30 minutes with blocking buffer.  The membrane was rinsed with regular 

TBS-T, and then visualized by enhanced chemiluminescence (Cell Signaling).  The membrane 

was subsequently reblocked without stripping and incubated with primary antibodies raised 

against SDH70, a subunit of Complex II of the mitochondrial respiratory chain, and actin, both 

of which served as internal loading controls. 

 

2.9.2 Polyacrylamide gel electrophoresis 

 

 For in vitro experiments, SDS-PAGE was used to track SCO1 during the purification 

process and verify the relative purity of soluble SCO1 variants in the eluate fractions.  Samples 

from purified soluble SCO1 variants or from each step of the purification process were mixed 

with an equal volume of 2x sample loading buffer containing 200 mM dithiothreitol (DTT).  

Samples were then boiled for 5 minutes and loaded onto a 12% SDS-PAGE gel.  The gel was 

run at 90 V for 30 minutes until the samples entered the resolving phase, whereupon the voltage 

was increased to 120 V.  When the dye front reached the bottom of the gel, electrophoresis was 

discontinued and protein was visualized by staining the gel with Coomassie Brilliant Blue R250 

for 1 hour at room temperature.  The gel was then incubated in destaining solution (50% 

methanol and 10% acetic acid) with gentle agitation until the unbound dye was removed from 

the gel and the proteins were clearly visible.  
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3 RESULTS 

3.1 Characterization of the phenotypic effect of overexpressing N-terminal SCO1 

mutants in control and patient fibroblasts on COX activity 
 

To investigate the significance of the N-terminal domain of SCO1 to its function as a 

COX assembly factor, I overexpressed three cysteine to alanine point mutants (Cys45, Cys61 

and Cys45Cys61) and three truncation mutants (∆17, ∆37 and ∆57) lacking the indicated amino 

acids within the N-terminus of the protein in control and SCO patient fibroblasts.  Wild-type 

SCO1 was included in these analyses as a positive control.  If SCO1 interacts with an inner 

membrane Cu(I) transporter that moves the metal ion from the matrix to the IMS, it is 

reasonable to predict that the matrix-localized cysteines of SCO1 may be involved since 

cysteine is a common, copper-binding amino acid (Giri et al., 2004).  Overexpression of all 

three SCO1 cysteine to alanine variants functionally complemented the COX deficiency in 

SCO1-1 patient backgrounds, and acted as a dominant-negative in SCO2 patient backgrounds, 

similar to wild-type SCO1 (Figure 3.1).  These data argue that Cys45 and Cys61 are not 

essential for SCO1 function.  Overexpression of the N-terminal truncation mutants of SCO1 

showed that ∆17 and ∆37 also rescued the COX deficiency in SCO1-1 patient fibroblasts, while 

residual COX activity was unaltered by overexpression of ∆57 (data not shown).  However, 

Western blot analysis of these truncated variants revealed multiple SCO1-specific 

immunoreactive bands (Figure 3.2) whose molecular weight could not be reconciled with the in 

silico prediction of a cleavable mitochondrial targeting sequence of ~40 residues at the N-

terminus of the protein.  These data suggest that our truncation mutants perturb elements within 

the N-terminus of SCO1 that are critical to its mitochondrial targeting and subsequent 

processing of the precursor protein.   

 

3.2 Characterization of the phenotypic effect of overexpressing C-terminal SCO1 

mutants in control and patient fibroblasts on COX activity 
 

To address whether the copper contained within COX II originates from SCO1, a series 

of C-terminal SCO1 variants with point mutations in copper-coordinating amino acids were 

generated.  As Cys169, Cys173, and His260 are all required for the coordination of Cu(I) and 

Cu(II) (Balatri et al., 2003), we substituted these three amino acids with the known copper-
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binding amino acids cysteine, methionine or histidine (Giri et al., 2004) or with serine, which is 

incapable of copper-binding.  Eight C-terminal SCO1 variants were generated, and included 

two histidine mutants (H260C, H260M), and six cysteine mutants (C169HC173H, 

C169SC173S, C169H, C173H, C169S and C173S).  We hypothesized that these point 

mutations would either abolish or enhance the ability of SCO1 to bind copper. Variants with 

cysteine to serine substitutions, along with wild-type SCO1 and SCO1 H260A and SCO1 

C169AC173A (Horng et al., 2005), were included in these analyses as internal controls.   

 

 

 

 

Figure 3.1 COX/CS in SCO1-1 and SCO2 patient fibroblasts alone (-) or overexpressing WT 

and N-terminal cysteine to alanine point mutants of SCO1.  Control, SCO1-1 and SCO2 

patient fibroblasts were transduced with retroviral vectors containing cDNAs encoding the 

following SCO1 mutants: C45A, C61A and C45AC61A SCO1.  Wild-type SCO1 was included 

as a positive control in these analyses.  The activity of COX was measured 

spectrophotometrically, normalized to CS activity (i.e. COX/CS), and reported as a percentage 

of COX/CS in control cells.  The number of replicates for each experimental group is indicated 

above the mean +/- the standard error.  
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Figure 3.2 Western blot analysis of SCO1 expression in control and SCO1-1 patient 

fibroblast alone (-) or overexpressing SCO1 N-terminal deletion mutants.  Protein extracts 

were prepared from control (C) and SCO1-1 patient fibroblasts (S) alone (-) or those stably 

expressing one of 3 N-terminal deletion mutants of SCO1 (∆17, ∆37 and ∆57), and separated 

using a 15% SDS-PAGE gel.  The resultant membrane was then immunoblotted with SCO1 

antiserum.  Arrows indicate the bonafide wild-type (WT) and mutant (P174L) SCO1 proteins.  

The relevant molecular weight markers are shown on the right hand side.  

 

 

 Initial attempts to generate stably transduced cell lines that expressed SCO1 variants 

were severely constrained by very low transduction efficiencies.  To evaluate whether this was 

caused by the fact we were using a first generation retroviral expression vector (pLXSH) 

(Miller et al., 1993), all SCO1 variants were subcloned into a third generation retroviral vector 

(pMys-puromycin) (Kitamura et al., 2003).  Although a significant improvement in the 

transduction efficiency was observed with the pMys-puromycin expression vector, the 

expression levels of SCO1 variants were inconsistent and very low, and the data from 

downstream biochemical analyses were highly variable (data not shown).  Therefore, only data 

generated using the pLXSH retroviral expression vectors is presented herein.   

Control human fibroblasts used in my M.Sc. thesis studies contain two wild-type alleles 

of both SCO1 and SCO2.  As shown in Figure 3.3A, COX activity was expressed as a function 

of citrate synthase (CS) activity for each data point (i.e. COX/CS), and normalized by 

expressing it as a percentage of the median control value in untransduced cells.  Although the 

abundance of all SCO1 variants in stably transduced cells was significantly higher than that of 

endogenous SCO1 in control cells alone (-) (Figure 3.3B), COX activity was unchanged.   
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Figure 3.3 Phenotypic effect of overexpressing SCO1 variants on COX activity in control 

fibroblasts.  A. Control fibroblasts stably expressing a given SCO1 variant were generated via 

their retroviral transduction and subsequent drug selection.  The COX activity in these cell lines 

was measured spectrophotometrically, normalized to CS activity (i.e. COX/CS), and expressed 

as a percentage of the average value in baseline cells (-) which had not been transduced with 

retrovirus.  The number of replicates for each experimental group is indicated above the mean 

+/- the standard error.  B. Western blot analysis of the steady-state levels of SCO1 in control 

fibroblasts alone (-) and in those overexpressing a given SCO1 variant.  SDH70, a subunit of 

Complex II of the mitochondrial respiratory chain, and actin served as internal loading controls. 
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SCO1-1 and SCO1-2 patient fibroblasts utilized in this study are from different 

pedigrees and harbor different point mutations (Leary et al., 2013a; Valnot et al., 2000a).  The 

P174L variant expressed in SCO1-1 patient fibroblasts significantly impairs the ability of SCO1 

to interact with COX17, and produces a very severe COX deficiency because the mutant 

protein cannot be copper loaded (Banci et al., 2007b; Cobine et al., 2006b).  In contrast, 

expression of the M294V variant in SCO1-2 cells is associated with a milder COX deficiency, 

even though the steady-state levels of the mutant protein are negligible (Leary et al., 2013a).  

While the COX deficiency in both SCO1 backgrounds was rescued by overexpressing a wild-

type SCO1 cDNA, expression of C-terminal SCO1 variant cDNAs failed to functionally 

complement the biochemical defect (Figures 3.4, 3.5).  Overexpression of SCO1 C169SC173S 

further reduced residual COX activity in SCO1-1 patient fibroblasts (Figure 3.4), although the 

effect did not reach statistical significance (P=0.0609).  In contrast, COX activity was 

significantly reduced to an equivalent degree in SCO1-2 patient fibroblasts upon overexpression 

of all SCO1 variants (Figure 3.5).  These data collectively suggest that all variants have the 

same effect on SCO1 function.  

SCO2 patient fibroblasts utilized in this study are compound heterozygotes, carrying an 

E140K missense mutation on one allele and a nonsense mutation (R93X) on the other allele 

(Papadopoulou et al., 1999).  SCO2 patient cells also have a severe, isolated COX deficiency 

(Papadopoulou et al., 1999), which is attributable to very low expression levels of the mutant 

protein (Leary et al., 2004).  Similar to control and SCO1-1 cells, overexpression of C-terminal 

SCO1 variants did not have any effect on residual COX activity in SCO2 patient cells (Figure 

3.6).   

To confirm that the effect on COX activity only depends on overexpression of SCO1 

variants, and was not affected by the endogenously expressed mutant SCO protein in patient 

cells, we conducted complementary analyses in control, SCO1-1 and SCO2 patient cells in 

which SCO1 expression had been stably knocked down using an shRNA that targets the 3’UTR 

of the SCO1 mRNA (Leary et al., 2007).  Identical results were obtained (Figure 3.7 – 3.10), 

with COX activity remaining unchanged upon overexpression of SCO1 variants in control 

(Figure 3.7), SCO1-1 (Figure 3.8) and SCO2 cells (Figure 3.10), or being significantly reduced 

in SCO1-2 patient cells (Figure 3.9).   
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Figure 3.4 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO1-1 

patient fibroblasts.  A. SCO1-1 patient fibroblasts stably expressing a given SCO1 variant were 

generated via their retroviral transduction and subsequent drug selection.  COX activity in these 

cell lines was measured spectrophotometrically, normalized to CS activity (i.e. COX/CS), and 

expressed as a percentage of the average value in matched control cells.  The number of 

replicates for each experimental group is indicated above the mean +/- the standard error.  

Statistical analysis identified a significant difference in COX activity between untransduced 

patient fibroblasts and those overexpressing wild-type SCO1 (*, p<0.0001).  B. Western blot 

analysis of the steady-state levels of SCO1 in SCO1-1 patient fibroblasts alone (-) and in those 

overexpressing a given SCO1 variant.  SDH70, a subunit of Complex II of the mitochondrial 

respiratory chain, and actin served as internal loading controls.  
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Figure 3.5 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO1-2 

patient fibroblasts.  A. SCO1-2 patient fibroblasts stably expressing a given SCO1 variant were 

generated via their retroviral transduction and subsequent drug selection.  COX activity in these 

cell lines was measured spectrophotometrically, normalized to CS activity (i.e. COX/CS), and 

expressed as a percentage of the average value in matched control cells.  The number of 

replicates for each experimental group is indicated above the mean +/- the standard error.  

Statistical analysis identified a significant difference in COX activity between untransduced 

patient fibroblasts and those overexpressing each SCO1 variant (*, p<0.001).  COX activity 

was also significantly different in patient fibroblasts overexpressing wild-type SCO1 when 

compared to those overexpressing all other SCO1 variants (+, p<0.001).  B. Western blot 

analysis of the steady-state levels of SCO1 in SCO1-2 patient fibroblasts alone (-) and in those 

overexpressing a given SCO1 variant. SDH70, a subunit of Complex II of the mitochondrial 

respiratory chain, and actin served as internal loading controls. 
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Figure 3.6 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO2 

patient fibroblasts.  A. SCO2 patient fibroblasts stably expressing a given SCO1 variant were 

generated via their retroviral transduction and subsequent drug selection.  COX activity in these 

cell lines was measured spectrophotometrically, normalized to CS activity (i.e. COX/CS), and 

expressed as a percentage of the average value in matched control cells.  The number of 

replicates for each experimental group is indicated above the mean +/- the standard error.  

Statistical analysis identified a significant difference in COX activity between untransduced 

patient fibroblasts and those overexpressing wild-type SCO1 (*, p<0.0001).  B. Western blot 

analysis of the steady-state levels of SCO1 in SCO2 patient fibroblasts alone (-) and in those 

overexpressing a given SCO1 variant.  SDH70, a subunit of Complex II of the mitochondrial 

respiratory chain, and actin served as internal loading controls.  
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Figure 3.7 Phenotypic effect of overexpressing SCO1 variants on COX activity in control 

fibroblasts with SCO1 knockdown.  Control fibroblasts stably expressing a SCO1 shRNA were 

retroviral transduced with a given SCO1 variant followed by dual drug selection.  COX activity 

in these cell lines was measured spectrophotometrically, normalized to CS activity (i.e. 

COX/CS), and expressed as a percentage of the average value in control cells which had not 

been transduced with retrovirus.  The number of replicates for each experimental group is 

indicated above the mean +/- the standard error.  
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Figure 3.8 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO1-1 

patient fibroblasts with SCO1 knockdown.  SCO1-1 patient fibroblasts which stably expressing 

a SCO1 shRNA were retroviral transduced with a given SCO1 variant, followed by dual drug 

selection.  COX activity in these cell lines was measured spectrophotometrically, normalized to 

CS activity (i.e. COX/CS), and expressed as a percentage of the average value in matched 

control cells.  The number of replicates for each experimental group is indicated above the 

mean +/- the standard error.  
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Figure 3.9 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO1-2 

patient fibroblasts with SCO1 knockdown.  SCO1-2 patient fibroblasts stably expressing a 

SCO1 shRNA were retroviral transduced with a given SCO1 variant, followed by dual drug 

selection.  COX activity in these cell lines was measured spectrophotometrically, normalized to 

CS activity (i.e. COX/CS), and expressed as a percentage of average value in matched control 

cells.  The number of replicates for each experimental group is indicated above the mean. 
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Figure 3.10 Phenotypic effect of overexpressing SCO1 variants on COX activity in SCO2 

patient fibroblasts with SCO1 knockdown.  SCO2 patient fibroblasts stably expressing a SCO1 

shRNA were retroviral transduced with a given SCO1 variant, followed by dual drug selection.  

COX activity in these cell lines was measured spectrophotometrically, normalized to CS 

activity (i.e. COX/CS) and expressed as a percentage of average value in matched control cells.  

The number of replicates for each experimental group is indicated above the mean. 
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3.3 Characterization of the copper binding properties of soluble C-terminal SCO1 

mutants 
 

Because a SCO1 point mutant that cannot bind copper would be predicted to have the 

same effect on COX assembly as one that binds copper too tightly to transfer it to COX II, I 

decided to examine the copper-binding properties of these C-terminal SCO1 mutants in vitro.  

Soluble SCO1 variants were generated that lacked the N-terminal mitochondrial targeting 

sequence and the single transmembrane helix (lacking the first 111 amino acids), to avoid the 

inherent difficulty associated with membrane protein purification.  These soluble SCO1 variant 

proteins were fused with a 6x histidine-tag, purified on a Ni-NTA column and dialyzed in PBS 

in the presence or absence of EDTA using an established protocol (Horng et al., 2005).  Wild-

type SCO1 and a H260A mutant served as a positive and negative control, respectively, for 

these analyses, because their copper content following dialysis in the absence or presence of 

EDTA, a Cu(II) chelator, has previously been reported (Horng et al., 2005). Unlike the previous 

study (Horng et al., 2005), the H260A mutant I purified and dialyzed in PBS alone bound much 

less copper (0.4 vs 0.7 mol. Eq.) (Figure 3.11). While I achieved a comparable result when the 

wild-type protein was dialyzed in PBS alone (0.8 vs 1 mol. Eq.), its copper content in two of 

the three purifications was significantly lower than the published value (0.80.6, n=3).  The low 

total amount of bound copper may be explained by several factors.  First, there may not have 

been enough copper ions present during SCO1 synthesis, particularly in the form of Cu(I).  

Second, other divalent metal ions like nickel may be occupying the copper-binding site.  Third, 

the purified SCO1 protein preparation may be contaminated with other proteins.  I therefore 

carried out several experiments to investigate whether any of these factors was adversely 

affecting my results.  

 

3.3.1 The effect of copper supplementation on the copper-binding properties of SCO1 

 

An E. coli system was used to produce a large quantity of each soluble SCO1 variant 

because it offers a method of inducing high levels of protein expression (Brondyk, 2009).  

There are two possible ways in which copper may have been limiting to SCO1 during its 

folding; there was not enough copper in the media at the time of induction, or copper uptake by 

E. coli from the media was impaired.  Copper uptake is tightly regulated in E. coli, and its 
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cytoplasm contains nearly no free copper and lacks copper-binding proteins (Rensing and Grass, 

2003).  Although the addition of copper to a bacterial culture can be used to overcome copper 

limitation in E. coli, it also slows down and can even inhibit bacterial growth (Grey and Steck, 

2001).  To determine the optimal concentration of copper required in the growth media in 

relation to induction of SCO1 expression and its subsequent metallation, I varied the amount of 

IPTG and CuSO4 in cultures expressing wild-type SCO1.  The data showed that the total 

amount of copper bound to the wild-type protein was not improved by changing the 

concentration of either CuSO4 or IPTG (data not shown), suggesting that the amount of copper 

in the bacterial culture was not limiting to the metallation of SCO1.   

 

Figure 3.11 The total amount of copper bound by wild-type SCO1 and the H260A mutant 

purified from E. coli.  Soluble SCO1 variants were overexpressed in E. coli and purified using 

a Ni-NTA column.  Eluates were dialyzed overnight at 4
°
C in PBS with or without 1 mM 

EDTA.  The copper content of wild-type SCO1 and the H260A mutant was measured by UV-

vis spectroscopy.  The number of replicates for each experimental group is indicated above the 

mean, and standard errors are presented for the wild-type isolates. 

 

Next, to circumvent the possibility of restricted copper uptake by the E. coli culture, 

copper was added to the cell pellet at the point of lysis.  However, I observed that even the 

addition of small micromolar concentrations of copper to the cell lysate resulted in non-specific 

copper-binding.  This situation is illustrated by the SCO1 C169AC173A mutant, which has 
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previously been shown to be an apo-protein (Horng et al., 2005), yet here clearly contains 

copper after its purification from a copper supplemented lysis step (Figure 3.12).  One of the 

most likely causes of this non-specific copper-binding is the 6x histidine-tag fused at the N-

terminus of these SCO1 variants.   

 

 

Figure 3.12 Total amounts of Ni and Cu bound by soluble SCO1 C-terminal variants 

dialyzed in PBS lacking EDTA.  Soluble SCO1 variants were overexpressed in E. coli and 

purified using a Ni-NTA column.  Eluates were dialyzed overnight in PBS alone at 4
°
C.  Total 

amounts of bound Ni and Cu bound were measured post-dialysis by ICP-OES. 

 

3.3.2 Determination of metal ion contamination in purified SCO1 

 

SCO1 is able to bind both Cu(I) and Cu(II) (Horng et al., 2005), indicating that SCO1 

might have affinity for other metal ions with the same valencies.  To avoid metal contamination, 

I therefore restricted the metal source at all levels of protein purification.  As shown in Figure 

3.12, SCO1 variants were still contaminated with low levels of Ni(II), which most likely came 

from the Ni-NTA column during protein purification.  No other metal ions were detected in the 

purified protein samples.  

 

SCO1 
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3.3.3 Determination of the relative purity of isolated SCO1 variants 

 

The purity of the recombinant SCO1 preparation might also be contributing to the low 

mol. Eq. of bound copper we calculated for the protein.  To investigate this possibility, fractions 

were collected at each step of the expression and purification process (detail of purification 

process is included in section 2.6.3).  The majority of non-specific proteins were in the flow 

through and little residual protein was detected at the wash step (Figure 3.13).  However, 

elution fraction 1 was significantly contaminated compared to elution fraction 2.  Since both 

elution fractions were pooled for subsequent copper measurements, these non-specific proteins 

contribute to the total protein concentration of a given sample and therefore to a lower mol. Eq. 

of copper bound to each SCO1 molecule.   

 

3.3.4 Quantification of total copper bound to soluble SCO1 C-terminal variants 

 

To minimize the effect of contaminating Ni, the amount of residual bound Ni was 

subtracted from the total amount of bound copper in the pooled eluate, and the corrected copper 

values for each soluble SCO1 variant were expressed as a percentage of that for the wild-type 

protein (Figure 3.14).  After dialysis against EDTA, the SCO1 C169H mutant retained the most 

copper, and bound roughly 2 times more copper than the wild-type protein.  In contrast, the 

other two SCO1 cysteine to histidine variants (C173H and C169HC173H) bound less than 20% 

of the copper detected in the wild-type protein, suggesting that copper coordination by Cys169 

and Cys173 may be different.  The three cysteine to serine mutants (C169SC173S, C169S and 

C173S) abolished copper-binding, and after dialysis each variant retained less than 30% of its 

original copper complement.  None of the histidine point mutants increased the ability of SCO1 

to bind copper when compared to the wild-type protein.   

Consistent with previous data (Horng et al., 2005), purified wild-type SCO1 exhibited a 

chromophore in the visible region of the absorption spectrum with maxima at 360 and 480 nm 

(data not shown).  This absorption spectrum reflects the presence of bound Cu(II) ions in SCO1 

(Basumallick et al., 2005; Horng et al., 2005; Lieberman et al., 2001).  However, there was no 

corresponding chromophore found in the SCO1 C169H mutant, strongly suggesting that this 

mutant protein preferentially binds Cu(I) ions.  
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Figure 3.13 Expression and purification scheme for soluble SCO1 truncates.  After IPTG 

induction, cells were harvested, lysed and loaded onto a Ni-NTA column.  Fractions were 

collected at each step of the expression and purification process, denatured and separated on a 

12% SDS-PAGE gel.  A representative gel was stained with coomassie brilliant blue. The 

arrow denotes the soluble SCO1 truncate (details regarding the purification process are 

included in section 2.6.3). 

 

 

 

 

 

Figure 3.14 The total amount of copper bound by soluble SCO1 variants purified from E. 

coli.  The copper content of soluble SCO1 variants was measured by UV-vis spectroscopy, 

corrected for residual bound Ni, and expressed as a percentage of wild-type SCO1.  The 

number of replicates for each experimental group is indicated above the mean +/- the standard 

deviation.  
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4 DISCUSSION  

4.1 Evaluating the significance of the N terminus to SCO1 function 
 

In this section of my thesis studies, I investigated a possible role for the N-terminus of 

SCO1 in copper transport across the inner membrane for its eventual delivery to COX II.  I 

found that the two cysteine residues (Cys45 and Cys61) within the N-terminus of SCO1 are 

dispensable, because single or double cysteine to alanine point mutants (SCO1 C45A, C61A 

and C45AC61A) behaved like the wild-type protein, rescuing the COX deficiency in SCO1 

patient fibroblasts and exacerbating the COX deficiency in SCO2 patient fibroblasts.  To further 

explore the importance of the N-terminus of SCO1 to protein function, I analyzed three 

truncation mutants of SCO1 in which the N-terminus was progressively shortened (∆17, ∆37 

and ∆57) following the predicted mitochondrial targeting sequence.  Although SCO1∆17 and 

SCO1∆37 functionally complemented the COX deficiency in SCO1 patient fibroblasts, again 

arguing that this region of the protein is dispensable for its function, Western blot analysis 

revealed multiple immunoreactive bands specific to SCO1.  These bands could not be rationally 

explained based on the predicted cleavage site of the targeting sequence, and implied that our 

truncation mutants adversely affected protein import and processing.  Consistent with this idea, 

another M.Sc. student in the lab (Aren Boulet) has since determined empirically by mass 

spectrometry that the targeting sequence is much larger than the one predicted in silico, and is 

found at amino acid position 69.  Thus, my findings do not provide any support for the previous 

proposal that the matrix-localized, N-terminal tail of SCO1 has evolved to provide the protein 

with features unique from SCO2 that are critical to its function (Leary et al., 2004).   

 

4.2 Functional characterization of C-terminal SCO1 mutants 
 

It is not experimentally trivial to establish that one or both SCO proteins physically 

transfers copper to COX II in vivo.  Because SCO1 functions downstream of SCO2 during 

COX assembly (Leary et al., 2007; Leary et al., 2009), which suggests it is most likely to 

catalyze the metallation of COX II, my M.Sc. thesis studies focused on mutating its copper-

binding residues (Cys169, Cys173, His260).  My goal was to generate a protein variant that 

bound copper with greater affinity than the wild-type protein, thus preventing it from 

transferring the copper to COX II, an effect we predicted would impair the ability to assemble 
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COX.  My functional characterization of all SCO1 mutants indicates that their ability to 

function as a COX assembly factor was severely impaired.  In fact, SCO1 variants with 

mutations in any of these three amino acids, alone or in combination, failed to rescue the COX 

defect when overexpressed in SCO1 fibroblasts, and even exacerbated the COX deficiency in 

cells from one of the two SCO1 pedigrees.    

The importance of the three Cu(I)-binding amino acids has been shown in several 

studies (Lode et al., 2000; Nittis et al., 2001).  In yeast, alanine substitutions of any of these 

residues negated the ability of SCO1 to complement the growth of the SCO1∆ strain (Nittis et 

al., 2001).  In SCO1-1 human fibroblasts, overexpressing either SCO1 H260A or C169AC173A 

mutant proteins also failed to rescue the COX deficiency, and the ability of the H260A variant 

to bind copper was severely perturbed (Horng et al., 2005).  Therefore, it is reasonable to 

conclude that alanine substitutions of these three residues abrogate the ability of SCO1 to bind 

copper, and negatively affect its function.  Serine is not able to bind copper, although it is 

structurally similar to cysteine.  As expected, the three SCO1 mutants with serine substitutions 

(C169S, C173S and C169SC173S) generated for our experiments were not able to complement 

the COX defect in SCO1 patient fibroblasts and did not exacerbate the COX deficiency in 

SCO2 patient fibroblasts.  Other mutants (H260C, H260M, C169H, C173H and C169HC173H) 

that we rationalized might have increased binding affinities for copper also failed to rescue the 

COX deficiency in either SCO1 patient background.  The inability of these SCO1 variants to 

functionally complement the COX deficiency was not attributable to a destabilizing effect, as 

Western blot analysis demonstrated that all mutants were robustly expressed in control and 

patient cells.  Because SCO1 functions as a homodimer in vivo (Leary et al., 2004), it is 

possible that the effect of SCO1 variants on COX activity was being titrated by allelic 

complementarity upon their oligomerization with endogenous, wild-type or mutant SCO1 

protein in control and SCO patient fibroblasts.  To address this possibility, I stably knocked 

down endogenously expressed SCO1 by targeting the 3’ UTR of its mRNA and overexpressed 

a cDNA encoding each SCO1 variant of interest.  The fact that I obtained the same results 

argues that the ability of SCO1 point mutants with cysteine or histidine substitutions to affect 

COX assembly was not being counteracted by the presence of endogeous SCO1 protein.  

However, these experiments did not allow me to distinguish between a mutation that adversely 
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affects copper binding by altering the charge or the space of the binding pocket, from one that 

enhanced copper binding affinity and in turn prevented metal transfer to COX II.  

The M294V mutation of SCO1 carried by the SCO1-2 patient fibroblasts has a modest 

effect on the ability of SCO1 to function as a COX assembly factor, when compared to the 

P174L mutant expressed in SCO1-1 patient cells (Leary et al., 2013a).  Fibroblasts from patient 

SCO1-1 exhibit a reduction in fully assembled COX and an increased accumulation of the S2 

assembly intermediate (Leary et al., 2004).  The P174L substitution is adjacent to the CxxxC 

motif of SCO1, and structural and biochemical studies argue that this mutation significantly 

impairs the ability of SCO1 to interact with COX17 (Banci et al., 2007b; Cobine et al., 2006b).  

Patient cells harbouring M294V substitution have higher residual levels of COX activity, and 

do not accumulate the S2 intermediate (Leary et al., 2013a).  Immunoblot analysis of SCO1-1 

and SCO1-2 fibroblasts showed that the abundance of the M294V mutant was much lower than 

that of the P174L mutant (Leary et al., 2007; Leary et al., 2004), implying that the pathology of 

M294V mutation is most likely caused by protein destabilization.  Consistent with the M294V 

mutation being a relatively milder substitution, its overexpression completely rescued the COX 

deficiency in both SCO1 pedigrees (Leary et al., 2013a), while P174L SCO1 partially restored 

COX activity in SCO1-1 patient cells.  Our analysis of copper-binding mutants further supports 

this idea; while residual COX activity was not altered by overexpressing any of the C-terminal 

SCO1 mutants in the SCO1-1 patient background, it was further reduced in SCO1-2 patient 

fibroblasts.  Since SCO1 functions as a homodimer (Leary et al., 2004), overexpressing a non-

functional form of the protein would be predicted to have a greater effect in SCO1-2 patient 

cells which express very little residual SCO1 M294V mutant, compared to SCO1-1 patient cells 

which express reasonable amounts of largely non-functional SCO1 P174L.   

 Control fibroblasts contain wild-type levels of SCO1 and SCO2.  Stable knockdown of 

SCO1 to 15-20% of its levels in parental cells does not affect COX content, indicating that only 

a small fraction of the total protein pool is required to promote COX assembly (Leary et al., 

2007).  Consistent with this idea and previously published data (Leary et al., 2004), 

overexpression of SCO1 variants in control cells failed to alter COX activity.  Since these 

transduced control fibroblasts have a mixed population of endogenous, wild-type SCO1 and 

exogenous mutant protein, we envision that a sufficient number of homodimers of wild-type 

SCO1 remain in these cells to allow for normal rates of COX assembly.  
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 COX activity is severely decreased in SCO2 patient backgrounds upon the 

overexpression of wild-type SCO1 or SCO1 P174L (Cobine et al., 2006b; Leary et al., 2004).  

Although the underlying mechanism(s) remains unknown, there are several possibilities that 

may explain this observation.  First, COX17 is required to load both SCO1 and SCO2 with 

copper (Banci et al., 2008a; Banci et al., 2007b; Horng et al., 2004), and its ability to metallate 

the limiting amounts of mutant SCO2 may be compromised by overexpressing SCO1.  Second, 

while endogenously expressed SCO1 and SCO2 are found as homodimers in vivo (Leary et al., 

2004), overexpression of SCO1 may result in the formation of unproductive SCO1/SCO2 

heterodimers. Such an effect would be particularly deleterious to COX assembly in SCO patient 

backgrounds that express very low levels of mutant SCO protein.  Unexpectedly, none of the 

SCO1 variants generated for my thesis work were capable of producing an equivalent 

phenotype.  Thus as with control fibroblasts, it is likely that SCO2 patient fibroblasts express 

enough wild-type SCO1 to buffer against the expression of non-functional SCO1 variants.   

 

4.3 Determination of the copper-binding properties of C-terminal SCO1 mutants 
 

 Because our in vivo studies could not distinguish between a mutant SCO1 protein with 

impaired copper-binding properties from one that binds copper too tightly to transfer it to COX 

II, we next sought to directly investigate the copper-binding properties of C-terminal SCO1 

variants in vitro.  These analyses showed that the SCO1 C169H mutant binds significantly more 

Cu(I) than the wild-type protein.  The fact that the other two cysteine to histidine mutants, 

SCO1 C173H and C169HC173H, had a compromised ability to coordinate copper suggests that 

these two conserved cysteines might have different roles in copper coordination.  The Cys169 

may serve as a switch to allow the protein to load or release copper.  Therefore, it is 

conceivable that substituting Cys169 to histidine might allow for an enhanced ability to 

coordinate copper while impairing subsequent transfer of the metal ion.  The ability of the 

C169H mutant to bind Cu(I) therefore warrants further investigation.  Cysteines contain a thiol 

group (-SH), which has a high affinity for copper.  This thiol group can form a Cu-S bond 

between cysteine and copper and allow for metal ion coordination.  Previous studies of BsSco, 

the Bacillus subtilis homologue of human SCO1, have found there is a difference between the 

two Cu-S (cysteine) bonds from cysteine residues in the CxxxC motif (Andruzzi et al., 2005).  



61 

 

It has been observed that large couplings assignable to the second cysteine residue of the copper 

binding site lead to a strong Cu-S bond, while the first cysteine has a relatively shorter and 

weaker Cu-S interaction (Andruzzi et al., 2005).  Additional evidence comes from a recent 

study showing that Cys169 is the capture ligand of Cu(II).  Cu(II) ion is initially bound to 

Cys169, with subsequent reorganization resulting in Cys173 binding (Blundell et al., 2013).  

Collectively, these observations suggest that Cys169 has a relatively more critical role than 

Cys173 during the initial steps of copper binding. 

 Several studies have shown that the copper content of wild-type SCO1 when purified as 

a soluble protein is about 1.0 Cu atom/monomer (Beers et al., 2002; Horng et al., 2005; Nittis 

et al., 2001).  A few experimental factors, such as the copper concentration in the culture media, 

the poly-histidine tag used for purification and the nickel derived from Ni-NTA may all have 

had a slight negative effect on the copper content of the SCO1 protein I purified in my thesis 

studies.  Increasing the exogenous levels of copper in medium was able to improve the copper 

metallation of SCO1 protein by 0.3 molar equivalent, especially in the yeast expression system 

(Beers et al., 2002), and the poly-histidine tag was shown to be responsible for 20% of the 

copper bound by SCO1 (Horng et al., 2005; Nittis et al., 2001).  A small amount of Ni(II) ions 

but no other metal atom were detected in the SCO1 protein (Horng et al., 2005).  Although I 

used a previously published method (Horng et al., 2005) to express and purify wild-type SCO1 

and SCO1 variants of interest, the copper content of the wild-type protein reported herein is 

much lower than it is in the literature.  In addition to minor Ni(II) contamination and some non-

specific copper binding by the poly-histidine tag, I had difficulty obtaining adequate amounts of 

highly purified, metallated SCO1 protein.  Although such issues have not been reported in other, 

related studies, I assume that the lower purity of my wild-type SCO1 isolates is a major 

contributing factor to the suboptimal total copper content of these samples.   

 Another possibility is to employ a yeast-based expression system, which has been used 

previously for human SCO1 protein expression, purification and subsequent characterization of 

its copper-binding properties (Horng et al., 2005).  The cytoplasm of yeast contains Cup1 and 

Crs5 (copper resistant suppressor), both of which are abundant metallothioneins that bind Cu(I) 

(Rae et al., 1999).  As a consequence, it is a highly competitive, copper limiting environment.  

When SCO1 protein is purified from the yeast cytoplasm, the presence of bound copper in the 

protein can therefore be used to indicate its affinity for copper.  SCO1 has been shown to be an 
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apo-protein in yeast cytoplasm unless it is co-expressed with COX17, which results in its full 

metallation (Horng et al., 2005).  However, one limitation of this experimental approach, and of 

the prokaryotic expression system (irrespective of the technical difficulties I encountered), is 

that the copper-binding properties of soluble SCO1 variants may not reflect those of the full-

length proteins, especially when expressed in their native milieu.   

 

4.4 Future directions 
 

 Several observations have shown that SCO1 and SCO2 interact with each other to 

promote COX assembly and regulate the rate of copper efflux from the cell (Leary et al., 2004; 

Leary et al., 2009).  While it is known that copper-binding is essential to each of these roles, the 

nature of the relationship between copper-binding and protein function remains unclear.  One 

purpose of my M.Sc. thesis was to investigate the significance of the N-terminus of SCO1 to 

copper mobilization from the matrix to the IMS for its eventual transfer to COX II.  Based on 

my data, there is little evidence to suggest that the N-terminus imparts functional attributes that 

make SCO1 unique from SCO2; however, it is clear that the originally predicted cleavage site 

was wrong, and further investigation of deletion mutants lacking the ~20-30 amino acids that 

follow the cleavage site we have recently mapped but that precede the transmembrane domain 

will be required prior to making any definitive conclusions. 

 While our focus on copper-binding residues could be rationalized at the time, it ignored 

the millions of years of evolution that have resulted in the copper-binding properties of the 

SCO1 protein.  It is clear from my thesis work that there is limited value in continued targeting 

of the cysteine of the CxxxC motif or the conserved histidine.  Therefore, future work on this 

front may consider the value of introducing point mutations in other highly conserved amino 

acids of SCO1 that are close to the CxxxC motif and His260, including Phe166, Tyr163, 

Val172, Leu177, Phe200, Ile257 and Ile262 (Williams et al., 2005).  While laborious, if a 

mutant could be identified that locked SCO1 in a copper-loaded state, it could be exploited to 

understand how copper binding affects SCO1 function both in the context of COX II 

metallation and the regulation of cellular copper homeostasis.   

 Future work also must improve the purification of soluble SCO1 truncates.  The main 

problem in my experiment was contamination with other untagged proteins.  While a poly-
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histidine tag was used to facilitate the purification of SCO1, cellular proteins that contain two 

or more adjacent histidine residues can also bind to the Ni-NTA (Schmitt et al., 1993) and 

therefore introduce significant contamination into the protein isolate.  It has been reported that 

several methods can reduce non-specific binding of untagged proteins and improve the level of 

purity (Bornhorst and Falke, 2000).  First, increasing the concentration of imidazole in the wash 

buffer will effectively remove non-specifically bound proteins from Ni-NTA column 

(Bornhorst and Falke, 2000), because imidazole is a functional group of histidine and has a 

higher affinity for nickel relatively to histidine.  Second, a wash buffer with a pH lower than 

that of the binding buffer may also elute untagged proteins (Bornhorst and Falke, 2000).  

Addition of other agents in the wash buffer may also help to reduce non-specific protein 

binding without substantially affecting the binding of the tagged protein to the column.  These 

agents include low levels (up to 1%) of the non-ionic detergents Triton X-100 or Tween 20 in 

the protein buffers, or salt such as NaCl (up to 500 mM), or low concentration of ethanol (up to 

20%) (Bornhorst and Falke, 2000).  The effects of manipulating these buffer components 

should be evaluated experimentally to achieve optimum purification of SCO1.  

 The Cu(I) binding properties of SCO1 mutant proteins, especially C169H, also need to 

be addressed in the future.  This is worthwhile for a SCO1 mutant protein that preferentially 

binds Cu(I) over Cu(II), or vice versa, would be a powerful tool to explore the mechanisms that 

govern the biogenesis of the binuclear CuA site and the mitochondrial regulation of copper 

efflux from the cell.    
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