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ABSTRACT 

Ergot contamination of cereal crops and grasses has been of increasing concern for both 

grain and animal producers. The overall objective was to examine ergot contamination from an 

analytical, regulatory and biological perspective.  

The objectives of the first study were to determine the correlation between number of 

ergot sclerotia and weight compared to the total ergot alkaloid concentration, to evaluate the 

effect of particle size (PS) on ergot alkaloid analysis and to determine the impact of sample 

volume on analytical variability. This study demonstrated that correlations existed between both 

ergot sclerotia count and weight compared to the total alkaloid concentration (P’s < 0.001) but 

did not exist for either, at ergot alkaloid concentrations below 350 µg/kg (P = 0.956 and 0.769 

respectively). This study also determined that a finer grind (PS = 192 µm) produced a lower 

variability (P = 0.041) than a coarser grind (PS = 516 µm).  The coefficient of variation (CV) was 

also numerically reduced as sample volume increased (97% CV for 75 mL to 64% CV for 1000 mL; 

mean of all concentrations) but increased as sample concentration declined (17% CV for 81678 

µg/kg to 284% for 35 µg/kg; mean of all sample volumes). An analytical approach with fine 

grinding of a minimum sample volume of 1000 mL (if not the entire sample available) should be 

used to assess ergot contamination to reduce variability.  

The objective of the second study was to determine if the percentages of individual ergot 

alkaloids were similar across different cereal grains collected from across Western Canada over 

different years. Ergocristine was the predominant alkaloid accounting for half of the total 

alkaloids in all grain types. Ergocornine (6% ± 1; P = 0.201), ergocristine (48% ± 2; P = 0.939), 

ergocryptine (17% ± 2; P = 0.302) and ergosine (5% ± 0.5; P = 0.239) were of similar proportions 

in barley (n = 39), rye (n = 7), triticale (n = 9) and wheat (n = 94). However, small differences were 

found between grain types for both ergometrine and ergotamine (P = 0.027 and 0.011 

respectively). There were no yearly alkaloid proportion differences between the six alkaloids in 

barley and wheat 2015/2016 samples (P = 0.969, 0.680, 0.572, 0.080, 0.119 and 0.189 for 

ergocornine, ergocristine, ergocryptine, ergometrine, ergosine and ergotamine respectively). 

However, ergocornine was higher in wheat (P = 0.017) and ergometrine was higher in barley (P = 
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0.002) when comparing the 2015/2016 barley and wheat samples. With the overall proportions 

of ergot alkaloids comparable among the four grain types collected across Western Canada a 

maximum total ergot alkaloid concertation, as opposed to individual ergot alkaloid 

concentrations, can be considered acceptable.  

The objective of the third study was to evaluate the impact of ergot consumption in cow-

calf performance. Overall, ergot alkaloid concentrations up to 820 µg/kg for 9 weeks had no 

effect on cow weight, calf weight, prolactin concentration, rectal temperature, progesterone 

concentration or timing of first progesterone rise (P = 0.931, 0.077, 0.298, 0.163, 0.792, 0.376). 

There was also no effect on the size of the first and second follicle to ovulate postpartum (P = 

0.403 and 0.414 respectively) or the number of days until the first and second postpartum corpus 

luteum appearance (P = 0.949 and 0.984 respectively). The maximum size of the corpus luteum 

was 4 mm larger in the 820 µg/kg ergot treatment group compared to the control treatment (P 

= 0.028) for the first ovulation postpartum, however no differences were observed between the 

control and 820 µg/kg groups by the second ovulation (P = 0.113). A revised ergot tolerance 

concentration of 820 µg/kg for beef cows is suggested based on the reproduction/hormone 

endpoints.  
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CHAPTER 1:                                                                                                              

GENERAL INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Ergot is a fungal disease of cereal crops and grasses produced by the fungus Claviceps (C) 

purpurea which infects nearly 600 plant species (Bove, 1970). Ergot contamination is most easily 

identified by purplish/black structures on the grain or grass replacing the seeds known as 

sclerotia or ergot bodies. Secondary metabolites produced by the fungus known as ergot 

alkaloids are toxic to humans and animals. Most countries have strict regulations for human 

consumption (Lorenz & Hoseney, 1979) which redirects the ergot-contaminated grain to livestock 

feed. These ergot alkaloids can cause a range of effects including but not limited to, convulsions, 

gangrene, hyperthermia, agalactia and reduced weight gain and intake (J. L. Klotz, 2015; 

McMullen & Stoltenow, 2002) following consumption of contaminated feed.  

1.2 Ergot (Claviceps purpurea) 

1.2.1 History 

Ergotism epidemics occurred frequently during the middle ages following the 

consumption of rye bread contaminated with C. purpurea. Poor people were more susceptible 

associated with a higher intake of contaminated rye bread, especially during famines (Gaudet, 

Menzies, & Burnett, 2000). An epidemic of gangrenous ergotism on a large-scale was first 

recorded in ‘Annales Xantenses” (Germany) 857 A.D. (Fuchs, 1834) whereas the first convulsive 

ergotism epidemic was described in Paris, France 945 A.D. (Barger, 1931). Ergotism which was 

originally known as ‘ignis sacer’ i.e. Holy Fire in the middle ages (Matossian, 1989) is associated 

with the burning sensations felt in the limbs. Many people suffering from ergotism could identify 

with the lifelong tortured St. Anthony (Van Dongen & de Groot, 1995) which lead to ergotism to 

be known as St. Anthony’s Fire throughout the remainder of the middle ages. Ergotism began to 

decline in many areas particularly for peasants as the potato became a staple (Schumann, 2000). 
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Ergot was originally thought to be sunbaked kernels of grain (Caporael, 1976) however 

ergot bodies were demonstrated to be fungal sclerotia by Louis Tuslane and Kühn in the mid 

1800s (Menzies & Turkington, 2015). Hallucinogens were attributed to several ergot alkaloids 

including lysergic acid which are produced by the ergot bodies. When baked with dough, ergot 

alkaloids which include the lysergic acid structure (Figure 1.1a) may be transformed into lysergic 

acid diethylamide (LSD), a known hallucinogen (Van Dongen & de Groot, 1995). Many of 

symptoms associated with the consumption of ergot were associated with “bewitchment” which 

was likely a factor in the Salem Witchcraft Trials (Caporael, 1976). Midwives used ergot as an aid 

of childbirth and abortion (Haarmann, Rolke, Giesbert, & Tudzynski, 2009) which was believed to 

be a form of witchcraft (Bennett & Bentley, 1999). Ergot alkaloids are still however used for 

medical purposes such as the treatment of migraines (Haarmann et al., 2009) and Parkinson’s 

disease (Crews, 2015). 

In most developed countries, human ergot poisoning has been eliminated due to the strict 

regulatory guidelines and our understanding of the cause of ergotism. However, ergot alkaloid 

contamination related to agriculture represents a major problem and requires attention and 

control measures (Krska & Crews, 2008) particularly for animal consumption.  

1.2.2 Ergot Biology 

Ergot was named, based on its appearance, after an old French word ‘argot’ meaning the 

cock’s spur (Van Dongen & de Groot, 1995). Ergot contamination is most easily identified by 

purplish/black structures on grass or grain replacing the healthy seeds known as sclerotia or ergot 

bodies. Sclerotia are typically cylindrical with round ends, straight to curved and tapered at the 

distal end (Alderman et al., 1999). Size and shape differ depending on the host plant. In some 

grains, sclerotia are up to four times larger than the grain kernels, whereas in other grains, such 

as wheat, the sclerotia are of a similar size (Seaman, 1980). The rinds of the sclerotia are hard, 

therefore halves or thirds may be found in grain but generally the sclerotia remain unbroken. The 

interior of the sclerotia are grayish white giving a distinguishing feature between broken sclerotia 

and other debris (Seaman, 1980).  
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Figure 1. 1 Conversion of lysergic acid to hallucinogen LSD (a); Basic ergot alkaloid structure (b); 

Structure of the predominant alkaloid found in tall fescue (c); Structures of the six ergot alkaloids 

found in Canadian grains (d)   
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All ergot alkaloids contain an ergoline ring structure with a methylated N-6 nitrogen and 

a functional group on the C-8 (Flieger, Wurst, & Shelby, 1997)(Figure 1.1b). Most ergot alkaloids 

also feature a C-8, C-9 or C-9, C-10 double bond (Flieger et al., 1997). The most prominent ergot 

alkaloids found in contaminated grains across Canada are: ergosine, ergocristine, ergocryptine, 

ergocornine, ergometrine and ergotamine (Figure 1.1d) with ergocristine and ergotamine being 

found in the highest concentrations (Grusie, Cowan, Singh, Blakley, & McKinnon, 2015). The 8-α-

isomers, identified by names ending in -inine, are not of toxicologic concern (Berde & Stürmer, 

1978; Pierri, Pitman, Rae, Winkler, & Andrews, 1982), however, the 8-β-isomers are biologically 

active (Burrows & Tyrl, 2012) thus, the focus will be placed on them.   

1.2.3 The Lifecycle 

The ergot lifecycle consists of two stages, a germination stage followed by a honey dew 

stage as seen in Figure 1.2. Ergot bodies can be present in the soil from a previous cereal crop 

(Schumann, 2000), infected grasses along roadside or neighbouring pastures or from planting 

contaminated seed (Seaman, 1980).  

Activation of germination typically begins after 4 to 8 weeks of 0-10˚C temperatures 

(Mitchell & Cooke, 1968). Therefore, germination is seen in spring when the ergot bodies produce 

tiny “drumstick” shaped structures (Bailey, Gossen, Gugel, & Morrall, 2003). When adequate soil 

moisture or rainfall has been achieved ascospores eject into the air from these structures (Kren 

& Cvak, 1999; Menzies & Turkington, 2015). The spores are carried by wind until they attach to 

the stigmatic hairs of the ovary of flowering plants within 24 hours (Mai & Li, 2013), replacing the 

healthy kernel (Kren & Cvak, 1999).  

Production of a yellow-white, sweet, sticky fluid known as honeydew (McMullen & 

Stoltenow, 2002) appears between 7 to 10 days depending on the crop after the infection occurs 

(W. Campbell, 1957). The honeydew contains conidia (Belser-Ehrlich, Harper, Hussey, & Hallock, 

2013) which begin to germinate once diluted by dew or rain (Scbwarting & Hiner, 1945). A 

secondary infection occurs by rain splash or insects, who are attracted to the honeydew, 

spreading the conidia (Bailey et al., 2003). The conidia can continue to spread for as long as 

flowering occurs. Cool, wet and/or cloudy weather delay pollination which increases the duration   
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Figure 1. 2 Life cycle of Claviceps purpurea. Re-drawn from Bailey et al. (2003) Images provided 

by (Armstrong, 2001; Schwartz, 2008; Wong, 2011) 
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of flowering and thus increases the period of susceptibility (Bailey et al., 2003; Seaman, 1980). 

Production of honeydew stops after approximately two weeks (Mai & Li, 2013).  

The infected ovary becomes enlarged and a sclerotium is formed as a resting structure of 

the fungus (Mai & Li, 2013) taking approximately 5 weeks to mature (Belser-Ehrlich et al., 2013). 

The sclerotium protects the fungus during low temperatures in winter (Mai & Li, 2013). They will 

remain inactive until spring (Van Dongen & de Groot, 1995). Sclerotia have been shown to survive 

in or on the soil or in contaminated grain for 1 (Mitchell & Cooke, 1968) to 3 years (Rapilly, 1968). 

1.2.4 The Prevalence of Ergot Alkaloids of Concern in Canada  

Ergot alkaloids found in endophyte-infected (Neotyphodium coenophialum) tall fescue 

(Lolium arundinaceum) have been studied for more than 50 years (Coufal-Majewski et al., 2016). 

It is estimated to cost the beef industry more than $600 million annually in the United States due 

to decreased productivity (Hoveland, 1993). The alkaloids found in fescue, which are commonly 

found in the States, differ from those found in grain infected by C. purpurea (Canty et al., 2014), 

although the clinical signs and effects of ergotism and fescue toxicosis are similar (Yates, Plattner, 

& Garner, 1985). Ergotamine (Figure 1.1d) is predominantly associated with ergotism where as 

ergovaline (Figure 1.1c) is predominantly associated with fescue toxicosis (Canty et al., 2014). It 

has also been noted that lower alkaloid concentrations are found in infected tall fescue compared 

to sclerotia of C. purpurea which may account for any clinical differences (Shelby, 1999).   

Prevalence and severity of ergot contamination depends heavily on the weather (Bailey 

et al., 2003). Ergot prevails in the spring and early summer when moisture is available at the soil 

surface (Seaman, 1980). Therefore, depending on the geographical region and host plant, the 

amount and pattern of ergot alkaloids will vary (Krska & Crews, 2008). Ergot is also more 

prevalent when rain persists during the flowing stage of grasses and grains (Seaman, 1980). 

Concentrations of ergot in Canadian grains are likely to increase as a result of increased 

precipitation predicted by climate change models (Coufal-Majewski et al., 2016). The impact of 

the weather on the presence of ergot, accounts the sporadic nature of ergot from year to year 

as seen in Canadian Western Red Spring wheat samples between 2002 and 2013 (Figure 1.3). This  
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Figure 1. 3 Occurrence of ergot in Canadian Western Red Spring wheat samples submitted to the 

Canadian Grain Commission Harvest Sample Program. Dotted line represents trend line. (Data 

provided by Sheryl Tittlemier (2015) 
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sporadic occurrence has probably influenced why minimal research has been conducted on ergot 

(Menzies & Turkington, 2015), particularly in Canada.  

1.2.5 Management Techniques 

Prevention of ergot contamination is the ideal management strategy however once ergot 

is present other management techniques should be applied. The focus of modern ergot 

management is to limit the presence of ergot sclerotia in cereal grain (Tittlemier et al., 2015). The 

primary concern with the presence of ergot sclerotia is the various toxic alkaloids produced, while 

yield loss is usually minor and of secondary importance (Menzies & Turkington, 2015).  

Unfortunately, there is not much a farmer can do to control ergot in the field, however, the 

following management techniques can be used to help reduce the presence of ergot sclerotia.  

1.2.5.1 Sanitation  

In most years, ergot can be found in grasses of head lands and along roadsides of prairie 

provinces (Seaman, 1980). It has been shown that all indigenous and forage grasses constitute a 

reservoir of ergot inoculum for cereal crops (W. Campbell, 1957). The sclerotia produced by the 

grasses survive over winter and can provide an initial inoculum in the next season (Menzies & 

Turkington, 2015). The timing of flowering of the grain in relation to these nearby grasses is 

important as cereal crops bloom at the time the inoculum is dispersed (Bailey et al., 2003; W. 

Campbell, 1957). The different flowering periods of different grass species also create a larger 

susceptible time frame for the cereal crop infestation (Menzies & Turkington, 2015). To minimize 

the spread of ergot, grasses along headlands, roadsides and fences should be eradicated or 

mowed to prevent flowering (McMullen & Stoltenow, 2002; Schumann, 2000) so they cannot 

serve as a host for the first stage of the disease cycle.  

1.2.5.2 Harvesting Techniques 

Typically, ergot contamination is greater around the edges of a field surrounded by 

grasses ditches or headlands due to the proximity of the crop to host grasses as mentioned 

previously. The field should be scouted prior to harvest and areas where ergot contamination is 

high ought to be harvested independently (Bailey et al., 2003). These heavily contaminated 
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sections should be binned and taken to the elevator separately as mixing the infested seed with 

the remaining crop can result in extra charges for special handling along with potential 

downgrading or rejection of the entire lot (Seaman, 1980). If the contamination is extremely high, 

the shipment of grain may be best destroyed. The amount of ergot in harvested grain can be 

reduced by delaying swathing or harvest as the ergot bodies fall out of the head with wind 

(Menzies & Turkington, 2015), however, the ergot will remain in the field becoming a source of 

infection for the following year.  

1.2.5.3 Tillage 

As farming practices have been evolving, many cereal crops are now grown using a “no-

till” or “low-till” policy to reduce the amount of soil erosion (Schumann, 2000). There has been 

an almost 20% increase between 2002 and 2008 on the percentage of no-tillage area (Nagy & 

Gray, 2012). By not tilling, crops are seeded directly into the stubble of the previous years crop 

which if infected can re-infect the newly planted cereal crop. To prevent this from happening the 

sclerotia should be covered by 5-8 cm of soil which is generally a sufficient depth to prevent the 

discharge of ascospores from reaching the surface (Bretag & Merriman, 1981; Schumann, 2000; 

Seaman, 1980). If the no tillage policy is utilized, burning the stubble will reduce the amount of 

viable sclerotia, however, it can be difficult to achieve a sufficiently elevated temperature to 

destroy an entire field contaminated with ergot (Bretag, 1985; Johnston, Golob, Sitton, & Schultz, 

1996).  

1.2.5.4 Seed Cleaning to Improve Grain Quality 

Reduction of grain grade quality accounts for the majority of economic loss for grain 

farmers (Coufal-Majewski et al., 2016). Increasing ergot reports contamination has been 

accompanied with increased downgrading of wheat across the prairie region (Menzies & 

Turkington, 2015). To reduce the downgrading of large lots of grain, commercial cleaning using 

gravity or color sorters can be used to remove sclerotia (Bailey et al., 2003). These sorting 

methods can be costly. However, if available, it is likely economically beneficial to save a grade 

at the elevator. For smaller lots of grain, the floatation method can be used in which the grain is 

soaked in a 20% salt solution. The sclerotia will rise and can be skimmed off the top, the remaining 
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seed can be rinsed and dried. If the grain is heavily infested and cannot be adequately cleaned, 

the grain should be disposed of insuring there is no access to livestock (Menzies & Turkington, 

2015).  

1.2.5.5 Plant Clean Seed 

In order to reduce the spread of ergot, sclerotia-free seed should be planted, especially if 

the field is considered ergot-free. If, however, clean seed is not available the seed should be 

planted a minimum of 5 cm below the soil surface to prevent emergence of the ergot stromata 

and discharge of ascospores (Schumann, 2000).  Holding the seed for approximately 2-3 years 

before seeding can also reduce the spread of ergot by decreasing the viability of the sclerotia to 

germinate (Seaman, 1980). It is important to note that even though the sclerotia may be non-

viable after 2-3 years, the toxic ergot alkaloids are still present.  

1.2.5.6 Crop Choice 

Resistant varieties and chemical seed treatments to control ergot are currently not 

available (Bailey et al., 2003; Seaman, 1980). Therefore, crop choice is an important consideration 

for ergot management. Rye and triticale, a grain developed from rye and wheat, are considered 

the most susceptible to ergot contamination (Menzies & Turkington, 2015; Seaman, 1980). Rye 

is an open pollinator making it more susceptible to ergot as open, unpollinated flowers easily 

allow the fungus to enter (Bailey et al., 2003; Coufal-Majewski et al., 2016). If rye is the crop of 

choice, winter rye should be used as opposed to spring rye since flowering occurs earlier, 

minimizing the ergot spread from late-flowering grasses (Bailey et al., 2003). Wheat and barley 

are considered less susceptible to ergot infection as they are self-pollinators with a shorter 

flowering period (Coufal-Majewski et al., 2016; Schumann, 2000). Oats are the least susceptible 

and rarely infected (Menzies & Turkington, 2015). In general cereal crops that flower early, self-

fertilize before flowering or have a short flowering period have a lower chance of becoming 

infected (Menzies & Turkington, 2015). Cereal crops with longer flowering periods should be 

avoided if ergot contamination is expected to be high as they are more frequently infected 

(McMullen & Stoltenow, 2002).  
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1.2.5.7 Crop Rotation/Placement 

Ergot sclerotia can survive in the soil over winter, therefore, it is important to partake in 

proper crop rotation practices. Cereal grains or grasses should not be planted after an ergot-

infected crop (Seaman, 1980), instead a non-cereal crop can be planted such as canola or 

legumes. Planting fall sown crops are typically less infected than spring sown crops (Menzies & 

Turkington, 2015). If a grain must be planted after an ergot-contaminated crop a less susceptible 

plant species such as oats should be used (Seaman, 1980). Spring-sown cereals should not be 

planted near winter rye (Bailey et al., 2003) and early-maturing crops should not be planted near 

late-maturing crops to prevent the spread of ergot (Seaman, 1980).  

1.2.5.8 Ensure Uniform Standards 

The goal to ensure uniform standards is to reduce the flowering period since flowers 

produced by late tillers have an increased chance of becoming infected by ergot (Bailey et al., 

2003; Seaman, 1980). Seed with good germination, planted at a consistent depth and balanced 

soil fertilizer will increase the uniformity of the cereal crop and thus decrease its susceptibility to 

ergot. Soil nutrients are heavily involved in ergot susceptibility as infection has been found to be 

more severe on copper- and boron-deficient crops (R. D. Graham, 1983). These deficiencies lead 

to the development of smaller anthers and pollen sterility (R. Graham, 1975) which causes the 

flowers to open and stay open longer remaining susceptible until they are fertilized (Menzies & 

Turkington, 2015; Schumann, 2000). Excessive or untimely use of herbicides on cereal crops can 

result in plant injury (Seaman, 1980) which can also cause the flowers to remain open for longer 

periods of time.  

1.2.5.9 Sprays 

Herbicides when used at the proper time and rate can reduce flower sterility (Bailey et 

al., 2003). It is important to apply the herbicide at the label recommended growth stage and only 

use the minimum rate needed to control problem weeds to prevent plant injury (Seaman, 1980). 

Chemical control with fungicides on the other hand is not practical (Bailey et al., 2003). Sterol-

inhibiting fungicides have been used effectively in grass seed production, however on cereal 

crops these treatments are not usually economical (Schumann, 2000). Fungicide seed treatments 
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can make ergot incidence worse as it can delay decomposition of sclerotia which may allow them 

to persist for longer than a year (Shaw, 1988). It is also noteworthy that fungicides used for this 

purpose are not registered for use in Canada or for use to control ergot in Canada (Menzies & 

Turkington, 2015).  

No single management technique will be successful in controlling ergot individually. 

Control measures used in combination will be more successful therefore, ergot management 

should be approached as an integrated process (Menzies & Turkington, 2015).   

1.3 Detection 

1.3.1 Methods of Quantification 

There are three methods currently being used to quantify ergot contamination levels: 

count, weight and analytical.  

1.3.1.1 Count 

Ergot bodies/sclerotia in a working sample are counted. This value is recorded as number 

of ergot bodies per either mass of grain (#/kg), volume of grain (#/L) or number of grain kernels 

(#/1000 Kernels).  

1.3.1.2 Weight 

Ergot bodies/sclerotia in a working sample are weighed. This measurement is presented 

as the percentage of the net weight of the working sample. This is typically used if kernel count 

is excessive.  

1.3.1.3 Analytical 

There are a variety of techniques available to determine the alkaloid concentration of a 

working sample. The techniques are described below. Some are rapid, but are only able to 

determine total alkaloid concentration while other techniques involve an extraction prior to 

measurement, but can usually determine individual alkaloid concentrations. Results are 

presented as parts per million (ppm – mg/kg) or parts per billion (ppb - µg/kg) (dry weight). An 

overview of the methods available can be found in section 1.3.3.  
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While all three methods are currently being used, the count and weight measurement 

techniques might not be appropriate. A study by Blaney et al. (2009) on ergot in rye noted, ergot 

concentrations were not related to the sclerotia size or source region the grain was obtained. 

The European Food and Safety Authority (EFSA, 2005) has also mentioned that alkaloid 

concentrations are extremely variable and a consistent relationship between the amount of ergot 

bodies and the total ergot alkaloid concentration cannot be established.   

1.3.2 Current Canadian Standards 

In Canada, allowable concentrations of ergot in grain can be found using all three methods 

of measurements.  

The Canadian Seeds Regulations found on the Government of Canada Justice Laws 

Website reports the maximum number of ergot bodies per kilogram of grain. For wheat, durum, 

barley, rye, triticale and oats at various No. 1 and 2 grades the regulation is anywhere from 1-15 

ergot sclerotia depending on grade and grain type (Government of Canada, 2015) (Table 1.1). 

Saskatchewan provincial specialists state toxic concentrations of ergot to livestock are 10 ergot 

bodies per liter or one ergot body per 1000 kernels (Ergot monitoring and management.2011).   

Canadian Grain Commission (CGC) uses the weight of ergot as a percentage of the net 

weight of the sample as a grading factor in the official grain guide. The minimum representative 

sample is 500 g and the optimum is 1000 g. According to this guide toxic concentrations to 

livestock are 0.1% ergot material or lower for higher grades (CGC, 2016) (Table 1.2).  

The Canadian Food Inspection Agency (CFIA) recommended tolerance concentrations of 

ergot for cattle as a maximum alkaloid content in feed requires an analytical measurement 

approach. The CFIA recommends 2-3 mg/kg or 2000 to 3000 parts per billion total maximum 

ergot alkaloid content in feed (dry weight) (CFIA, 2015).  

There are clearly multiple approaches by the Government of Canada to establish 

Canadian ergot standards. There is however no evidence to support a correlation between each 

of the different measurement methods to show these standards are comparable. Tittlemier et 

al. (2015) has suggested there is a relationship between ergot alkaloid concentration and percent   
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Table 1. 1 The maximum number of ergot bodies allowed in different grades of grain from 

different grain types in Canada (Summarized from the Justice of Laws Website – Seeds 

Regulations, February 2015) 

 Maximum Number of Ergot Bodies per kg  

Grade Name Wheat Durum Barley Rye  Triticale Oats 

Canadian Foundation No. 1 1 1 1 2 2 1 

Canadian Foundation No. 2 8 8 8 10 10 8 

Canadian Registered No. 1 1 1 1 2 2 1 

Canadian Registered No. 2 8 8 8 10 10 8 

Canada Certified No. 1 2 2 2 4 4 2 

Canada Certified No. 2 8 8 8 15 15 8 

Common No.1 2 2 2 4 4 2 

Common No.2 8 8 8 15 15 8 
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Table 1. 2 Percent weight of ergot allowed in Canadian grain (summarized from the Canadian 

Grain Commission – Official Grain Guide, August 2015) 

 

1Canada Western Spring, 2Canada Western Hard White, 3Canada Western 
Amber Durum, 4Canada Western Red Winter, 5Canada Western Soft White, 
6Canada Western Extra Spring, 7Canada Prairie Spring White, 8Canada Prairie 
Spring Red, 9Canada Western General Purpose, 10Canada Eastern Red, 
11Canada Eastern Red Spring, 12Canada Eastern Hard Red Winter, 13Canada 
Eastern Soft Red Winter, 14Canada Eastern Amber Durum, 15Canada Eastern 
Hard White Winter, 16Canada Eastern White Winter, 17Canada Eastern Soft 
White Spring, 18Canada Eastern Hard White Spring   

             

Wheat, Rye, Oats, 
Triticale, Barley 

Threshold ergot levels (% net weight) 

Grade 

No.1 No. 2 No.3 No.4 No.5 Feed 

CWRS1 0.04 0.04 0.04   0.1 
CWHWS2 0.04 0.04 0.04   0.1 
CWAD3 0.02 0.02 0.04 0.04 0.1  
CWRW4 0.04 0.04 0.04   0.1 
CWSWS5 0.04 0.04 0.04   0.1 
CWES6 0.04 0.04    0.1 
CPSW7 0.04 0.04    0.1 
CPSR8 0.04 0.04    0.1 
CWGP9 0.1 0.1     
CER10 0.04 0.04 0.04   0.1 
CERS11 0.04 0.04 0.04   0.1 
CEHRW12 0.04 0.04 0.04   0.1 
CESRW13 0.04 0.04 0.04   0.1 
CEAD14 0.02 0.02 0.04   0.1 
CEHWW15 0.04 0.04 0.04   0.1 
CEWW16 0.04 0.04 0.04   0.1 
CESWS17 0.04 0.04 0.04   0.1 
CEHWS18 0.04 0.04 0.04   0.1 
Canadian Western Rye 0.05 0.2 0.33    
Canadian Western Oats Nil 0.025 0.025 0.05   
Canadian Eastern Oats Nil 0.05 0.05 0.1   
Triticale 0.025 0.05 0.1    
General Purpose Barley 0.05 0.1         

Select Malting Barley Covered, Hulless, 2- & 6-row:  0.025 
Select Food Barley Covered, Hulless, 2- & 6-row:  0.02 

Western Mixed Grain 0.1           

Eastern Mixed Grain 0.25           
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of ergot by mass however, this relationship might be more analytically relevant than biologically 

relevant.  

1.3.3 Analytical Techniques 

1.3.3.1 Enzyme Linked Immunosorbent Assay  

An Enzyme Linked Immunosorbent Assay (ELISA) is a plate based assay which uses 

antibodies and a color change to detect and quantify substances. The ELISA is an attractive option 

as it is a rapid technique which does not require expensive equipment (Crews, 2015). This makes 

the ELISA easy to use and adaptable to non-laboratory environments (Flieger et al., 1997). On the 

down side, most ELISA techniques are only able to detect certain ergot alkaloids (Mai & Li, 2013) 

where the specificity for ergot alkaloids varies depending on the antibody used (Scott, 2007). The 

ELISA methods are also not specific for individual ergot alkaloids resulting in cross reactivity and 

a of lack specificity (Crews, 2015; J. Strickland et al., 2011). This is associated with the common 

ring system of all ergot alkaloids (Flieger et al., 1997).    

While the ELISA is rapid and inexpensive it is less specific and less quantitative than other 

analytical methods where knowledge of individual alkaloid toxicity is required. Therefore, 

commercially available ELISA kits would be better suited for the screening of ergot alkaloids in 

agricultural crops, grain flour and feedstuffs (Scott, 2007; J. Strickland et al., 2011). 

1.3.3.2 Near Infrared Spectroscopy 

Near Infrared Spectroscopy (NIR) can be used as a screening tool for ergot bodies in grain 

samples. Ergot sclerotia can be detected and quantified in cereals based on differences in fat, 

starch or crude protein content between the ergot and healthy grain (Crews, 2015). Vermeulen 

et al. (2013) was able to detect and quantify ergot contamination with an ergot net weight 

concentration of 0.02%. A few advantages have been noted by Vermeulen et al. (2013) and Crews 

(2015) with using NIR: 1- A higher volume of samples can be analyzed in a shorter period of time; 

2- NIR can distinguish sclerotia from other visually similar shaped and colored plant structures 

and debris; 3- This method does not require secondary or tertiary sampling before analysis which 

immensely reduces sampling error, a downfall with most analytical methods. On a down side, 
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NIR typically determines a percent weight concentration of ergot rather than an alkaloid 

concentration. However, Roberts et al. (2005) was able to determine total alkaloid content of tall 

fescue by calibrating using immunoassay. Overall NIR could be a useful analytical screening tool 

to detect samples positive for ergot which could be further analyzed by methods to determine 

the alkaloid concentration.  

1.3.3.3 Separation 

Separation of the ergot alkaloids allows one to determine alkaloid concentrations of 

individual alkaloids rather than only a total ergot alkaloid concentration. Different methods have 

been and can be used to separate ergot alkaloids which are described below. 

1.3.3.3.1 Thin Layer Chromatography 

Thin Layer Chromatography (TLC) uses glass plates covered with a layer of silica gel and a 

mobile solvent system to separate compounds in a mixture. Components with varying in 

solubility will migrate and be present at different locations on the plate. The TLC separation 

method was the major technique used in the 1960’s and 1970’s and was able to separate most 

of the ergot alkaloids (EFSA, 2005). While TLC has been used for identification of Claviceps ergot 

alkaloids, it requires relatively high concentrations of alkaloid (mg/kg (ppm)) for detection 

(McLaughlin, Goyan, & Paul, 1964). It also has limited separation ability (Mohamed, Gremaud, 

Tabet, & Guy, 2006). Due to these limitations TLC may be useful as a qualitative identification of 

alkaloids, but not quantitative assessment. In order to quantify ergot alkaloids, TLC must be 

paired with a detection technique which are described in section 1.3.3.4. It has been suggested 

however that TLC could be used as a technique in developing countries (Scott, 2007).  

1.3.3.3.2 Gas Chromatography 

Gas Chromatography (GS) employs a gas as the mobile carrier medium to separate 

compounds. Gas Chromatography alone or in combination with a detection technique is rarely 

used for ergot analysis (Flieger et al., 1997). Several drawbacks are associated with GC including: 

limited molecular weight range, the need for compounds to be volatile or amenable to 

derivatization, a low loading capacity and instability of some compounds towards heat 
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(Mohamed et al., 2006). Therefore, the disadvantages of using GS separation on ergot is that 

ergopeptides have a high molar mass, are non-volatile, have low vapor tension and are 

susceptible to heat causing them to decompose in a hot injector (Crews, 2015; Flieger et al., 1997; 

Scott, 2007).  

1.3.3.3.3 High-Performance Liquid Chromatography 

High-Performance Liquid Chromatography (HPLC) or sometimes referred to as Liquid 

Chromatography (LC) in short uses pumps to move a pressurized liquid solvent containing the 

sample mixture through a column where each solute flows through at a different rate producing 

separation of the components. This method has mostly replaced TLC screening/separation (EFSA, 

2005; Krska & Crews, 2008). While HPLC is slower than the ELISA method, it has the advantage 

of providing selectivity because it separates the compounds before going through a detection 

system (J. Strickland et al., 2011). Reverse phase chromatography is always used for ergot 

alkaloids which allows for the separation of the six major alkaloids found in Canada (Crews, 2015). 

To further enhance LC, ultra-high performance LC can be used which has been shown to have a 

run time as short as 4.5 minutes (Kokkonen & Jestoi, 2010). High performance LC is currently the 

best option to separate ergot alkaloids prior to detection. It has proven to be the most useful 

instrumental analytical method for determination of ergot alkaloids (Mai & Li, 2013).  

1.3.3.4 Detection: 

As stated previously, LC is the preferred method to separate the ergot alkaloids prior to 

detection. The major methods for ergot analysis consist of LC coupled with either fluorescence 

detection or mass spectrometry detection (Crews, 2015). Both detection methods are explained 

below.  

1.3.3.4.1 Fluorescence 

Fluorescence detection (FLD) involves using a light beam to excite electrons in molecules 

causing them to emit light of different intensities which can be measured. Ergot peptides are 

naturally fluorescent, characterized by a bright-blue fluorescence (Komarova & Tolkachev, 2001), 

which allows the use of FLD. All six of the major alkaloids found in Canada can be detected using 
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FLD providing sufficient chromatographic resolution is provided (Crews, 2015). Using HPLC-FLD 

for analysis of ergot alkaloids Craig et al. (2015) was able to achieve a limit of detection of 11-14 

ppb and a limit of quantification of 39-50 ppb depending on the specific alkaloid.  

1.3.3.4.2 Mass Spectrometry 

Mass Spectrometry (MS) measures the masses and specific fragmentation pattern of 

compounds within a sample to identify, quantify and confirm the component(s) of interest. Mass 

spectrometry can be used on its own or in tandem, however, HPLC coupled with tandem mass 

spectrometry (LC-MS/MS) has become a standard approach for trace quantification and 

identification of ergot alkaloids (Crews, 2015). The MS/MS uses an electrospray ionization 

operated in the positive mode ESI (+) for identification of fragments and unknown ergot alkaloids 

(Crews, 2015; Krska & Crews, 2008). Due to its ability to identify product ions present in classes 

of compounds HPLC-MS/MS is a powerful analytical tool to identify unknown natural compounds 

and metabolites generated during biotransformation processes (J. Strickland et al., 2011). Krska 

et al. (2008) obtained limit of quantifications (LOQ) between 0.17 and 2.78 µg/kg for six ergot 

alkaloids depending on the alkaloid. Burk et al. (2006) determined LOQ’s between 0.1 and 1.0 

µg/kg for five ergot alkaloids depending on the alkaloid using HPLC-MS/MS. Coupling tandem MS 

to an ultra HPLC, Kokkonen et al. (2010) obtained low LOQs ranging from 0.01 – 1.0 µg/kg for 

wheat. Strickland et al. (2011) has indicated that limits of detection ≤ 0.005 pmol on the column, 

with chromatographic runs of ten minutes, are possible. Tandem MS can also be used without 

any LC separation utilizing one stage of the MS to isolate the compound of interest from the 

matrix and a second stage of MS for analysis (Plattner, Yates, & Porter, 1983). This technique can 

identify ergot alkaloids directly from extracts of ergot, ergot-contaminated pelleted or ground 

feed, or flour but there is no individual identification of the alkaloids (Scott, 2007). 

1.3.3.5 Prairie Diagnostic Services Equipment 

Prairie Diagnostic services (PDS) uses an HPLC-MS/MS for detection of the six ergot 

alkaloids ergotamine, ergometrine, ergocornine, ergocristine, ergocryptine and ergosine. This 

analytical equipment has provided an unequivocal identification of the ergot alkaloids (Krska et 
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al., 2008). All ergot alkaloids are determined using an electrospray ionization operated in the 

positive mode. The LOQ in PDS is 1.25 ppb (µg/kg) for each of the individual alkaloids.  

1.4 Effect of Ergot in Cattle 

1.4.1 General Mode of Action and Influencing Factors 

The manifestations of ergot alkaloids are related to the structural similarity of the ergoline 

ring structure to serotonin, dopamine, epinephrine and norepinephrine (Figure 1.4). The 

similarity to these biogenic amines allows the ergot alkaloids to bind and interact with a number 

of different receptors (Berde & Stürmer, 1978; Canty et al., 2014). Ergot alkaloids have the ability 

to act as agonists, partial agonists and antagonists to produce their effects (Berde & Stürmer, 

1978).   

Limited studies have investigated the pharmacology and kinetics of ergot alkaloids 

produced by Claviceps purpurea, however, significantly more research has been done on 

endophyte infected tall fescue which produces similar alkaloids to those of Claviceps purpurea. 

Fescue toxicosis and ergotism operate by the same mode of action and are often clinically 

indistinguishable from each other (Canty et al., 2014; T. Evans, Rottinghaus, & Casteel, 2004). 

Any clinical differences seen between the two toxicities are most likely related to higher alkaloid 

concentrations in ergot as compared to endophyte infected tall fescue and the tendency for 

generally a longer duration of exposure to infected fescue (Burrows & Tyrl, 2012; T. J. Evans, 

2011; T. Evans et al., 2004).  

Ergotism has been divided into four disease syndromes known as, convulsive, 

gangrenous, hyperthermic and reproductive (or in general decreased animal productivity) (T. 

Evans et al., 2004). The form and symptoms an animal exhibits will depend on type and location 

of the receptor, amount of alkaloid bound to the receptor along with other environmental factors 

and stressors (J. L. Klotz, 2015). Structural differences between the ergot alkaloids can also 

influence the degree of receptor binding (J. Klotz, Kirch, Aiken, Bush, & Strickland, 2010). Various 

strains of Claviceps purpurea have different capacities for synthesizing various alkaloids (Barger,  

1931), which permits the concentration of each of the ergot alkaloids contained in an ergot body   
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Figure 1. 4 The structural similarities between the ergoline ring and biogenic amines serotonin, 

dopamine and norepinephrine (in blue). Re-drawn from Berde et al. (1978) 
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to fluctuate considerably (Belser-Ehrlich et al., 2013; T. Evans et al., 2004). 

Overall the extent of pharmacological effects and which form of ergotism will depend on 

the type of ergot consumed and the ratio of major toxic alkaloids present in the ergot. Risk factors 

including environmental extremes, animal physiological state and ergot alkaloid dose also play a 

role in the development of clinical signs of ergotism (Mostrom & Jacobsen, 2011).  

1.4.2 Convulsive Form 

The word convulsive in terms of ergotism has been used not to denote an underlying 

epileptic basis, but rather in a descriptive sense (Eadie, 2003). Convulsive ergotism is also 

sometimes referred to as nervous ergotism and includes the symptoms of writhing, tremors, 

twisted neck or head tilt, confusion, hallucinations, tingling sensation underneath the skin, 

sweating, fever lasting for several weeks and death in a variety of mammalian species (Belser-

Ehrlich et al., 2013; Eadie, 2003). Ergot alkaloids have the ability to overstimulate the central 

nervous system as they are serotonin agonists (Eadie, 2003). Vasoconstriction and cerebral 

ischemia have been considered responsible for some neurologic signs (Carson, 1977). Evans et 

al. (2011; 2004) has advocated that convulsive ergotism may actually be confused with a toxicosis 

associated with tremorgens produced by Claviceps paspali rather than then ergot from Claviceps 

purpurea.  

Overall, this acute convulsive form of ergotism is seldom observed in a variety of species 

(Bourke, 2000; Lorgue, Lechenet, & Rivière, 1987) and is more likely to occur in sheep, horses or 

carnivores (Shelby, 1999) rather than in bovine species if this form does prevail. Many of the 

clinical manifestations are dose dependent and vary with species susceptibility.  

1.4.3 Gangrenous Form 

Gangrenous ergotism, also referred to as cutaneous ergotism, is the most common form 

of ergotism in cattle (Burrows & Tyrl, 2012; Shelby, 1999), and is identical to fescue foot (T. Evans 

et al., 2004). This form of ergotism is caused by vasoconstriction of the peripherals and produces 

lameness followed by the loss of ears, several centimeters of the tail and hooves (Burrows & Tyrl, 

2012; J. L. Klotz, 2015; Mantle, 1969; Mostrom & Jacobsen, 2011; Seaman, 1980; Shelby, 1999). 
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Initial symptoms usually appear as a result of diminished blood flow to the extremities and 

manifest as pain and lameness (Carson, 1977; Mostrom & Jacobsen, 2011). Cattle affected may 

be found standing in ponds or mud wallows in an attempt to relieve the intense burning pain (J. 

L. Klotz, 2015). Burrows et al. (2012) describes the progression of the condition: the feet become 

numb, next skin dies and a crack forms over a joint causing the skin to eventually slough finally 

the tendons to rupture. In severe cases an entire limb, particularly in the pelvic region, may be 

lost (Burrows & Tyrl, 2012; Shelby, 1999).  

Gangrenous ergotism is associated with winter months and tends to be more pronounced 

in colder climates, when capillary circulation in the extremities is further restricted (Belser-Ehrlich 

et al., 2013; J. L. Klotz, 2015; Shelby, 1999). Craig et al. (2015) discuss a number of ergot toxicosis 

cases involving cattle and the effects in weather conditions considered cold (≤1˚C) (Table 1.3). In 

particular, one case in Canada, during the month of February where temperature was -20 ˚C, tail 

loss occurred at 473 ppb total ergot alkaloid concentration, dry weight in feed, which is much 

lower than the current Canadian standard for ergot in feed (Craig et al., 2015).  

Early signs of ergotism vascular effects can be reversible if the cattle are removed from 

ergoty feed (T. Evans et al., 2004). However, if cattle are not removed immediately from the 

ergoty feed, the animals are at risk of loosing the affected tissue which can lead to the loss of the 

animal or require euthanasia (J. L. Klotz, 2015; Mostrom & Jacobsen, 2011).  

The underlying mechanism of gangrenous ergotism is the ability of the ergot alkaloids to 

cause general blood vessel vasoconstriction thereby diminishing blood circulation and supply 

(Seaman, 1980; Shelby, 1999; J. R. Strickland, Aiken, & Klotz, 2009). Binding of ergot alkaloids to 

biogenic amine receptors causes a disruption to the regulatory mechanisms that control and 

regulate blood flow causing these vasoconstrictive effects (J. L. Klotz, 2015; J. Strickland et al., 

2011). This vasoconstriction caused by the ergot alkaloids is associated with D1-dopaminergic 

receptor inhibition and partial agonism of α1-adrenergic and serotonin receptors (Canty et al., 

2014; T. Evans et al., 2004; Mostrom & Jacobsen, 2011; J. Strickland et al., 2012). Vascular tissues 

contain these receptors which act as on/off switches to control blood pressure and flow (J. R. 

Strickland et al., 2009).   
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Table 1. 3 Clinical Evaluation of Ergot Toxicosis in Cattle (adapted from Craig et al. (2015)) 

 

 

Total Ergot1 level 
observed2 (ppb)3 Month 

Temperature 
(˚C) 

Location 
Clinical Signs 

observed 

473 February -20 Canada Tail loss 

1,500 December 1 Oregon Moderate lameness 

2,909 January -2 Idaho 
Decreased feed 

intake 

2,555 February -5 Oregon 
Early term 

abortions, low milk 
yield 

5,999 January -5 Idaho 
No feed 

consumption 

11,538 April -4 Canada Sloughing of hooves 

54,916 January 1 Oregon 
Early term 
abortions 

62,245 January -1 Idaho 
Hooves sloughing 

completely off 
1In feed on a dry weight basis 
2Includes ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, and ergocristine 
3ppb = parts per billion (µg/kg)  
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Smooth muscle cells are targeted as they are contractile cells around blood vessels which 

can open or close when activated (J. R. Strickland et al., 2009). There is also in vitro evidence 

found by Strickland et al. (1996) demonstrating that ergot alkaloids may cause excessive smooth 

muscle growth which would result in decreased diameter in blood vessels and a further decrease 

in blood flow. Ergometrine and ergocryptine were the two main alkaloids found to cause this 

growth effect. The decreased blood flow can also result in damage to the blood vessels 

endothelial lining causing swelling, edema, thrombosis and degeneration development in 

affected vascular beds (Carson, 1977; Vuong & Berry, 2002). The combination of the smooth 

muscle and endothelial effects causing changes in blood vessel diameter and subsequent blood 

flow together result in pain, lameness and eventually gangrene in effected animals (Carson, 1977; 

J. R. Strickland et al., 2009).  

A few studies have examined the duration of these vascular effects. Solomons et al. (1989) 

noted a persistent contractile response in the bovine dorsal pedal vein in response to 

ergotamine. Pesqueira et al. (2014) studied the effect of ergopeptine alkaloids, including 

ergotamine, ergocristine, ergocryptine and ergocornine, on the bovine lateral saphenous veins 

and found all the alkaloids had persistent contractile response long after the alkaloid was 

removed from the tissue bath. They noted the ability of these alkaloids to cause vasoconstriction 

and their possibility to accumulate and potentially delay an animal’s recovery. While no studies 

have been conducted looking at the vascular recovery time of C. purpurea alkaloids, Aiken et al. 

(2013) mentions that in tall fescue, alkaloid-induced vasoconstriction may take greater than 30 

days to return to normal.  

The amount of ergot required to cause symptoms is unclear and varies depending on the 

source. The following dietary levels have all been reportedly associated with gangrenous 

ergotism: 0.3% to 1% sclerotia (Carson, 1977),  0.2% total alkaloid (Burfening, 1994), 1.6 ppm 

total alkaloid (T. Evans et al., 2004), 10 g ergot/kg (EFSA, 2005) and 473 ppb total alkaloid (Craig 

et al., 2015) (Table 1.3).  
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1.4.4 Hyperthermic Form 

Hyperthermic ergotism is produced by the same mechanism as gangrenous ergotism with 

the exception that heat is a factor as opposed to cold. This particular form of ergotism is more 

related to climate than other forms (J. L. Klotz, 2015), as hyperthermia is associated with poor 

heat dissipation (Mostrom & Jacobsen, 2011). Hyperthermia in North America is considered a 

‘typical’ form of tall fescue poisoning (Bourke, 2000) and resembles summer slump (T. Evans et 

al., 2004), however, hyperthermic effects have been noted in livestock fed grain containing ergot 

produced by C. purpurea (Burrows & Tyrl, 2012).  

Clinical signs of hyperthermic ergotism include rapid and laboured breathing, elevated 

body temperature (>40˚C), open mouth breathing with protruding tongue, excessive salivation 

and decreased appetite (Burrows & Tyrl, 2012; Carson, 1977; Jessep et al., 1987; Ross, Bryden, 

Bakau, & Burgess, 1989). These signs are a result of reduced blood flow to peripheral tissues 

caused by the ergot alkaloids binding to biogenic amine receptors causing vasoconstriction as 

described in gangrenous ergotism. In cattle, the core body temperature is maintained and 

regulated by constriction or dilation of vasculature to control blood flow to peripheral tissues to 

regulate heat dissipation (Aiken & Strickland, 2012). Therefore, animals exposed to ergot 

alkaloids have a reduced ability to remove body heat in hot climates (Carson, 1977; Rhodes, 

Paterson, Kerley, Garner, & Laughlin, 1991; Spiers et al., 2012; J. R. Strickland et al., 2009). 

While most studies exploring hyperthermic ergotism focus on endophyte-infected tall 

fescue (Aldrich, Paterson, Tate, & Kerley, 1993; Rhodes et al., 1991; J. Strickland et al., 1996), 

Ross et al. (1989) confirmed steers had varying degrees of hyperthermia within three days 

following consumption of ergot from rye infected with C. purpurea added to their diet. The cattle 

were fed a diet of 3.75 g/kg ergot of total diet and exposed to an ambient temperature of 37˚C 

for 8 hours daily. It was reported that the most severely affected animal had extremely high 

temperatures (up to 41.75˚C), consistent panting, protruding tongue and copious drooling. A 

feeding trial in Manitoba demonstrated that cattle receiving as little as 0.1% ergot by weight in 

high-protein rations are also affected by heat stress compared to cattle fed ergot-free grain 

(Seaman, 1980).  
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Despite the fact that hyperthermic ergotism is not an immediate concern in Canada, the 

possibility for it still exists and should be valued as a potential concern during our hot summer 

weather.  

1.4.5 Decreased Animal Productivity & Performance  

Animal productivity and performance is important for livestock farmers in order to 

maximize economic returns. Therefore, any reduction in cattle productivity or performance is of 

great concern. The vasoconstrictive effects of the ergot alkaloids, and reduced blood flow may 

effect hormonal control involving reproduction, digestion and the central nervous system as well 

as nutrient delivery and metabolism (J. Strickland et al., 2012). In addition to the reproductive 

effects, cattle may experience a decrease in both weight gain and milk production due to the 

ergot alkaloids (Burrows & Tyrl, 2012; Carson, 1977). 

1.4.5.1 Decreased Weight Gain and Feed Intake 

Reduced weight gain has been established as a consequence of ergot alkaloid 

consumption from endophyte infected tall fescue (Mahmood et al., 1994; Paterson, Forcherio, 

Larson, Samford, & Kerley, 1995). Cattle have been shown to gain 30% to 100% less when 

consuming endophyte infected tall fescue (Paterson et al., 1995). Reduced weight gain and feed 

intake have also been seen in cattle consuming ergot alkaloids produced by C. purpurea 

(Burfening, 1994; Ross et al., 1989). Burfening et al. (1994) noted that average daily gains 

decreased linearly with ergot consumption from 0 to 12.7 g/day proposing that the ergot 

alkaloids affect both energy metabolism and feed efficiency negatively.  

The loss of normal control of nutrient delivery/metabolism and waste elimination is 

suggested to partially explain the reduced average daily gain in affected animals (J. Strickland et 

al., 2012). Most studies exploring the mechanisms causing decreased weight gain and intake have 

been done using endophyte infected tall fescue, however, the alkaloids produced by C. purpurea 

would be expected to act in a similar fashion. Serotonergic receptors are involved in the 

regulation of gut motility, therefore, mobility and passage rate in the gut may be negatively 

affected by the ergot alkaloids interacting with these receptors (J. L. Klotz, 2015). Studies have 

demonstrated that ergot alkaloids cause a reduction in volatile fatty acid absorption contributing 
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to decreased growth and performance (Foote et al., 2013; Koontz, Kim, McLeod, Klotz, & 

Harmon, 2015). Koontz et al. (2015) also noted animals exposed to ergot alkaloids had a lower 

average ruminal pH, which may be a cause for the reduced absorption, and increased dry matter 

weight in the ruminal contents. This is most likely related to reduced particulate passage from 

the rumen. Overall, it was concluded that cattle consuming ergot alkaloids including ergovaline 

and ergotamine gain less because they eat less.  

1.4.5.2 Reproductive Effects 

The reproductive form of ergotism includes decreased prolactin and milk production, 

decreased progesterone concentrations and other reproductive abnormalities including 

subfertility and birth effects (Burke, Rorie, Piper, & Jackson, 2001; Carson, 1977; Mahmood et al., 

1994). Similar to the weight gain and intake evaluations, most studies have been conducted using 

endophyte infected tall fescue, however, the alkaloids produced by C. purpurea would be 

expected to act in a similar fashion. 

1.4.5.2.1 Decreased Prolactin Production 

The hormone prolactin is regulated by dopamine acting on a D2-dopamine receptor to 

inhibit secretion (Lamberts & Macleod, 1990). Related to structural similarities between the ergot 

alkaloids and dopamine (Figure 1.4), the alkaloids are able to stimulate D2-dopamine receptors 

in the anterior pituitary in an antagonistic manner to reduce prolactin secretion by lactotropes 

(Berde & Stürmer, 1978; Burrows & Tyrl, 2012; Canty et al., 2014; T. Evans et al., 2004; J. L. Klotz, 

2015; Mostrom & Jacobsen, 2011). Prolactin has been functionally linked, together with other 

mechanisms, to the initiation and maintenance of milk secretion and mammogenesis (Fell, 

Chandler, & Goding, 1974; Houdebine et al., 1985). Decline in production has been observed in 

cattle consuming ergot alkaloids (Carson, 1977; Ilha, Loretti, & Barros, 2003; Munkvold, Carson, 

& Thoreson, 1997; Strahan et al., 1987). It has been reported in most classes of livestock (Carson, 

1977).  

Decreased circulating prolactin with increasing ergot alkaloid concentrations suggest a 

subclinical effect (Stamm, DelCurto, Horney, Brandyberry, & Barton, 1994). For this reason, 
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decreased prolactin is considered a sensitive indicator of exposure and is commonly used for this 

purpose (J. L. Klotz, 2015).  

Prolactin recovery in grazing steers ingesting ergot alkaloids produced by endophyte 

infected tall fescue was reported by Aiken et al. (2013) to be between 10 to 15 days once the 

ergot source was removed. Ross et al. (1989) found serum prolactin concentrations rose again 

within 24 hours of removal from ergot produced by C. purpurea. This discrepancy could be 

associated with the different source of the ergot alkaloids or the total concentration of ergot 

alkaloids consumed.  

1.4.5.2.2 Decreased Progesterone Production  

Progesterone is necessary for the establishment and maintenance of pregnancy (J. 

Strickland et al., 2011). There have been conflicting opinions concerning the impact of ergot on 

progesterone involving both beef heifers and cows. Some researchers have demonstrated a 

decrease in progesterone in cattle with the consumption of ergot alkaloids (Jones, King, Griswold, 

Cazac, & Cross, 2003; Mahmood et al., 1994; Poole et al., 2016; J. Strickland et al., 2011), while 

other studies found no effect of ergot alkaloids on progesterone (Burke et al., 2001; 

Schuenemann et al., 2005). Currently the mechanisms thought to cause the observed decrease 

of progesterone are highly speculative. Strickland et al. (2011) has suggested that progesterone 

is a cholesterol based hormone. Therefore, the decrease in progesterone could be due to reduced 

serum cholesterol. This however contradicts the finding of Burke et al. (2001) where 

concentrations of cholesterol were reduced in cattle consuming ergot alkaloids, although there 

was no change in the progesterone concentrations. Another theory explaining the reduction in 

progesterone is related to the vasoconstrictive effects of the ergot alkaloids causing restricted 

blood flow to the ovary or corpus luteum preventing the release of progesterone into systemic 

circulation (Jones et al., 2003). More research needs to be done in this field to determine the 

exact cause.  

1.4.5.2.3 Pregnancy and Birth Effects 

Ergot alkaloids cause uterine contractions which are associated with the stimulation of 

α1-adrenergic receptors (T. Evans et al., 2004). The frequency and amplitude of uterine 



 
 

30 
 

contractions are increased with higher dosages of ergometrine (Burrows & Tyrl, 2012). In 

ruminants, uterine contractions during late pregnancy are associated with stimulation of these 

receptors however, evidence for abortion is vague and rarely reported as an effect of ergot 

consumption (Carson, 1977; Mostrom & Jacobsen, 2011). Mantle (1969) suggests abortions in 

cattle are unlikely however, Appleyard (1986) found almost one third of cows in late pregnancy 

grazing heavily ergot contaminated rye aborted between one to two weeks later.  

Fertility and pregnancy rates of cows exposed to ergot alkaloids have had mixed reviews 

as discussed by Strickland et al. (2011). Some researchers claim that fertility and pregnancy rates 

are negatively affected by exposure to ergot alkaloids, (Burrows & Tyrl, 2012; Carson, 1977; T. J. 

Evans, 2011) while others claim it is not affected (Burke et al., 2001; Mahmood et al., 1994; 

Schuenemann et al., 2005). Mahmood et al. (1994) found that although less estrus activity was 

seen in weanling heifers grazing high endophyte infected tall fescue, the pregnancy rates were 

similar to weanling heifers grazing low endophyte infected tall fescue. Strickland et al. (2011) has 

also observed that follicle size and diameters of the corpus luteua in heifers are not affected by 

the ingestion of ergot alkaloids (Ahmed et al., 1990; Jones et al., 2003; Seals et al., 2005). A more 

recent study by Poole et al. (2016) has also concluded that no differences were observed in 

number of follicles or corpus luteum area of heifers exposed to endophyte infected tall fescue.  

Calf birth weight may be reduced following maternal consumption of ergot alkaloids. 

Watson et al. (2004) found a 15% reduction in the birth weight of calves delivered from cows 

consuming ergot alkaloids. Klotz et al. (2015) has suggested that related to the vasoactivity of the 

ergot alkaloids in bovine uterine and umbilical arteries. Blood supply during gestation would be 

reduced, which would limit nutrient supply to the fetus causing reduced growth during gestation. 

Overall, there have been a number of studies and reviews describing the vast range of 

effects the ergot alkaloids can have on the bovine species, especially in regards to the ergot 

alkaloids produced by endophyte infected tall fescue. Further research however should be 

explored in terms of toxicokinetics and effects caused by specifically C. purpurea ergot on bovine 

species as the effects, while assumed to be similar to those of endophyte infected tall fescue, 

may be different.  
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1.5 Objectives and Hypotheses  

The overall objective of this research was to examine ergot contamination from an 

analytical, regulatory and biological approach. Three studies were conducted with the following 

hypotheses and objectives: 

 

Study 1: 

• Hypothesis 1: The number of ergot sclerotia and weight will be predictive of the ergot 

alkaloid concentrations in a grain sample 

• Hypothesis 2: A grinding method that produces finer particles will decrease the 

measurement variability as compared to a grinding method producing a larger particle 

size 

• Hypothesis 3: A 75 mL grain sample will be sufficient to reliably estimate ergot alkaloid 

concentration  

 

• Objective 1: Determine the correlation between ergot sclerotia count and weight as 

compared to the total ergot alkaloid concentration 

• Objective 2: Evaluate the effect of the grinding process (i.e., particle size) on ergot 

alkaloid analysis 

• Objective 3: Evaluate the impact of sample volume on analytical variability 

 

Study 2: 

• Hypothesis 1: Ergot alkaloid proportions are similar among different cereal grains and 

years 

 

• Objective 1: Determine the percentage of individual ergot alkaloids across different 

cereal grains collected in Western Canada over two years 
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Study 3: 

• Hypothesis 1: Ergot contamination decreases weight gain in beef cows 

• Hypothesis 2: Ergot consumption by cows before and after parturition decreases calf 

weights 

• Hypothesis 3: Ergot contamination decreases prolactin production in pregnant and 

lactating beef cows 

• Hypothesis 4: Ergot contamination increases rectal temperatures in beef cows 

• Hypothesis 5: Ergot delays the return to cyclicity  

 

• Objective 1: Evaluate the impact of ergot consumption in cow-calf performance  
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CHAPTER 2:                                                                                                                                    

CORRELATION AND VARIABILITY BETWEEN WEIGHING, COUNTING AND 

ANALYTICAL METHODS TO DETERMINE ERGOT (CLAVICEPS PURPUREA) 

CONTAMINATION OF GRAIN 

 

This chapter was accepted for publication in the World Mycotoxin Journal and is reproduced 

with permission. 
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2.1 Abstract 

Ergot alkaloid mycotoxins produced by the fungus Claviceps purpurea, are contaminants 

of cereal crops and grasses. The objectives of this study were to determine the correlation 

between number of ergot sclerotia and weight compared to the total ergot alkaloid 

concentration, to evaluate the effect of grinding process (i.e., particle size (PS)) on ergot alkaloid 

analysis using high performance liquid chromatography – tandem mass spectrometry, and to 

determine the impact of sample volume on analytical variability. This study demonstrated that 

correlations exist between both ergot sclerotia count (R2 = 0.7242, P < 0.001) and ergot sclerotia 

weight (R2  = 0.9618, P < 0.001) compared to the total alkaloid concentration of 6 ergot alkaloids. 

However, at ergot alkaloid concentrations below 350 µg/kg grain, ergot sclerotia count (R2 = 

0.0002, P = 0.956) and ergot sclerotia weight (R2 = 0.0064, P = 0.769) were not correlated to the 

total alkaloid concentration. A lower variability (P = 0.041), defined by coefficient of variation 

(CV), was observed using a commercial UDY cyclone sample mill (PS = 192 µm, CV = 9 µg/kg) as 

compared to a household coffee grinder (PS = 516 µm, CV = 66 µg/kg). Total amount and 

concentration of individual ergot alkaloids varied (P < 0.05) among sclerotia of similar weight. For 

the analytical method, CV was numerically reduced as sample volume increased (97% CV for 

75mL to 64% CV for 1000 mL; mean of all concentrations) but increased as sample concentration 

declined (17% CV for 81678 µg/kg to 284% for 35 µg/kg; mean of all sample volumes). This implies 

that analysis of small sample volumes at low ergot alkaloid concentrations may result in highly 

variable and potentially misleading results. In conclusion, number of ergot sclerotia and weight 

are unreliable indicators of alkaloid content at ergot concentrations below 350 µg/kg and particle 

size influences the variability. An analytical approach with fine grinding (mean PS < 200 µm, 85% 

particles <400 µm) of a large sample should be used to assess low-level ergot contamination. 

Keywords: sclerotia, sample volume, particle size 

2.2 Introduction 

Ergot is a disease of cereal crops and grasses produced by the fungus Claviceps purpurea 

which infects nearly 600 plant species (Bove, 1970). Ergot contamination is easily identified by 

purple/black structures (known as sclerotia or ergot bodies) in place of the normal seed head. 



 
 

35 
 

Ergot sclerotia are typically shaped cylindrically with round ends, straight to curved and tapered 

at the distal end (Alderman et al., 1999). Size and shape differ depending on the host plant. In 

some grains such as rye, sclerotia may be four times larger than the grain kernels, whereas in 

other grains such as wheat, the sclerotia are similar in size (Seaman, 1980).  

The prevalence and severity of ergot contamination depends heavily on the weather 

(Bailey et al., 2003). Ergot development occurs in the spring and early summer when moisture is 

available at the soil surface (Seaman, 1980). Secondary metabolites found in the sclerotia 

produced by the fungus, are known as ergot alkaloids and are toxic to humans and animals.  

Depending on the geographical region and host plant, the amount and concentration profile of 

ergot alkaloids will vary (Krska & Crews, 2008; Menzies & Turkington, 2015). The six most 

commonly found ergot alkaloids produced by C. purpurea and tested for in Western Canada are 

the 8-β-isomers, ergosine, ergocornine, ergocristine, ergocryptine, ergotamine and ergometrine 

(Krska & Crews, 2008). The 8-α-isomers, identified by names ending in -inine, are not of 

toxicological concern (Berde & Stürmer, 1978; Pierri et al., 1982) and therefore, are not the major 

interest in most studies. 

There are three methods currently used to assess ergot contamination; count, weight and 

analytical measurements. The count evaluation is recorded as the number of ergot sclerotia per 

mass (number/kg), volume (number/L) or per number of grain kernels (number/1000 kernels). 

The Canadian Seeds Regulations proscribes the maximum number of ergot bodies per kg of 

Canadian grain. This maximum ranges from 1 to 15 ergot sclerotia per kg depending on the grain 

type and grade (Government of Canada, 2015). The weight assessment is recorded as the 

percentage of the net weight of ergot sclerotia as compared to the total sample weight. This 

method is used as a grading criterion in the official grain guide by the Canadian Grain Commission 

(CGC, 2016). There are several analytical techniques to determine the ergot alkaloid 

concentration however, high performance liquid chromatography – tandem mass spectrometry 

(HPLC-MS/MS) has provided an unequivocal identification and quantification of the ergot 

alkaloids (Krska et al., 2008). The Canadian Food Inspection Agency (CFIA, 2015) recommends 

tolerance concentrations in feed, which varies from 2000 to 9000 µg/kg depending on livestock 

species, as a maximum total ergot alkaloid concentration in the sample. All three methods of 
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evaluation have been used to assess ergot concentrations in Canada, although there has been 

limited evidence to define a relationship among the three methods.  

Regions including the European Union, United Kingdom and the United States have set 

allowable ergot concentrations in feed as a percent net weight of ergot or “weight 

concentration”. These concentrations are 0.10%, 0.001% and 0.10-0.30% (depending on grain 

type) respectively (Coufal-Majewski et al., 2016; Thompson, 2016). Other regions including 

Australia, New Zealand, Japan and Switzerland do not have recommendations specifically for 

livestock feed. Most regions do not have regulations relating to the allowable individual ergot 

alkaloid concentrations, since contamination is always associated with multiple alkaloids. 

The objective of this study was to determine the correlation between ergot count and 

weight as compared to the total alkaloid concentration determination. This study also evaluated 

the effect of the grinding process (i.e., particle size) on ergot alkaloid analysis using HPLC-MS/MS 

and the impact of sample volume on analytical variability. The tested hypotheses were 1 – 

number of ergot sclerotia and weight will be predictive of the ergot alkaloid concentrations in 

the sample, 2 – a grinding method that produces finer particles will decrease the measurement 

variability as compared to a grinding method producing a larger particle size and 3 – a 75 mL grain 

sample will be sufficient to reliably estimate ergot alkaloid concentration in samples. Further, the 

study design evaluated if the total alkaloid content and the relative amounts of the six alkaloids 

varied among individual sclerotia.  

2.3 Materials and methods 

Western Canadian grain samples were obtained from submissions to Prairie Diagnostic 

Services (PDS; Saskatoon, SK, Canada) and used for sclerotia count, weight and analytical 

correlation study. Highly ergot-contaminated spring wheat was obtained from a Saskatchewan 

source. This grain was sieved with a metal strainer with approximately 1 mm2 openings to 

separate the grain dust (i.e., fines) from the grain. The ergot-contaminated fines-free spring 

wheat was used in the subsequent studies. Ergot-free “clean” (<15 µg/kg total ergot alkaloid 

contamination) spring wheat was collected from the Canadian Feed Research Center, North 

Battleford, SK, Canada. Ergot analysis utilized the Krska et al. (2008) method. Ergot alkaloid 
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reference standards for ergosine, ergocornine, ergocristine, ergocryptine, ergotamine and 

ergometrine were obtained from Biopure/RomerLabs (Union, USA). All analytical reagents used 

were of HPLC grade.  

2.3.1 Sclerotia count, weight and analytical correlation study 

2.3.1.1 Sample preparation 

Grain samples (n = 25) submitted to PDS for routine analysis from July 2015 to January 

2016 with a minimum of one visible ergot body were retained for further analysis. After visual 

inspection, samples were homogenized by shaking the sample within a sealed bag then hand 

mixed until the sample appeared uniform. In addition to the shaking and hand mixing the grinding 

process in the preceding steps aided in the homogenization of the sample. Samples larger than 

1000 mL (n = 13) were homogenized and subsampled into 1000 mL portions. For samples smaller 

than 1000 mL (n = 12), the entire sample was analysed. The data were divided into two groups.  

The first group included all values from samples collected and the second included only samples 

with total ergot alkaloid concentrations of 350 µg/kg or less. Diagnostic laboratories in both 

Canada and the United States recommend a no effect ergot alkaloid concentration of 100-200 

µg/kg (T. J. Evans, 2011). Therefore, the purpose of grouping samples under 350 µg/kg was to 

determine the correlation in the vicinity of diagnostically relevant concentrations. 

2.3.1.2 Ergot quantification 

Count and weight measurements were performed following separation of the ergot 

sclerotia from each subsample. Sclerotia were identified by their purplish/black color and their 

cylindrical shape with round ends. The whole ergot sclerotia were counted and the broken ergot 

sclerotia (ergot body fractions) were matched with other ergot body fractions to represent a full 

sclerotia and added to the count. The ergot sclerotia were weighed. Once the count and weight 

were recorded, the ergot sclerotia were re-homogenized with the grain in the original 

corresponding subsample. The homogenized subsample was weighed in order to calculate the 

count and weight concentrations. 
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Prior to the analytical testing, each subsample was ground entirely using the UDY cyclone 

sample mill belt drive model 3010-060 (Fort Collins, USA). The ergot alkaloid extraction, clean-up 

and HPLC-MS/MS analysis were completed following the processes as stated below.  

2.3.1.3 Ergot extraction and clean-up procedure 

Ground grain (5.0 g), taken at random, was weighed using a Sartorius BP2100 scale (Elk 

Grove, USA) and a 25 mL volume of 85/15 extraction solvent (85% acetonitrile 15% 10mM 

ammonium acetate, v/v) was added and the mixture was stirred on a magnetic stir plate for 10 

minutes. The supernatant was filtered through a filter paper (Whatman 41 110 µm, ashless). A 1 

mL volume of the filtrate was added to 50 mg Agilent Bondesil-PSA 40 µm (Santa Clara, USA) and 

agitated using a IKA-Vibrax shaker (Oakville, Canada) for 5 minutes to clean the matrix. The 

supernatant was transferred to an Agilent auto-sampler vial with insert (Santa Clara, USA) for 

high performance liquid chromatography – tandem mass spectrometry analysis (HPLC-MS/MS). 

2.3.1.3 High performance liquid chromatography – tandem mass spectrometry analysis 

The HPLC-MS/MS quantified the 8-β-isomers ergosine, ergocornine, ergocristine, 

ergocryptine, ergotamine and ergometrine. The instrument used was an Agilent 1100 HPLC 

system with a Micromass Quattro Ultima Pt mass spectrometer operated in positive mode. The 

column used was an Agilent Zorbax Eclipse XDB-C18 narrow bore 2.1 x 150 mm, 5 µm p/n 993700-

902 (Santa Clara, USA). Multiple reaction monitoring was used where the “parent” mass was 

monitored in the first quadropole and the “daughter” mass in the second quadropole, after the 

collision cell. Accuracy and precision at three concentrations (10, 3 and 0.75 mg/mL) were 

verified by the laboratory falling below 11% CV for all six alkaloids. The recovery rates were 82, 

75, 87, 81, 101 and 51% for ergosine, ergocristine, ergocornine, ergocryptine, ergotamine and 

ergometrine respectively. These recoveries obtained are comparable to previous studies (Krska 

et al., 2008). The limit of quantification was 1.25 µg/kg for each alkaloid.  

Prior to analysis of the samples, three 5 ng/mL standards and a blank consisting of the 

85/15 extraction solvent were analyzed to standardize the system.  A calibration curve was 

produced next (0.25, 0.75, 1.25, 2.5, 7.5 and 12.5 ng/mL) followed by all test samples with a run 

time of 21 minutes per sample. A sample volume of 20 µL was injected into the system for each 
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analysis. The results were acquired after cross-checking the sample concentrations against the 

calibration curve. In the case of highly concentrated samples appearing beyond the calibration 

curve, a 1:100 and/or a 1:1000 dilution were made and the samples were retested. To obtain the 

total ergot alkaloid concentration, the concentrations of the six ergot alkaloids, ergosine, 

ergocornine, ergocristine, ergocryptine, ergotamine and ergometrine, were summed. 

2.3.2 Grinder comparison study 

2.3.2.1 Sample preparation 

Ten ergot sclerotia of the same weight (0.0148 ± 0.0002 g) were randomly selected from 

the highly ergot-contaminated spring wheat. Each ergot sclerotia was combined with 80 g of 

clean grain. Samples were stored at room temperature in plastic bags prior to ergot alkaloid 

extraction and analysis.  

To compare the variation presented by particle size, two grinding methods were used. 

Five samples were individually ground using a household “Black & Decker smart grind” coffee 

grinder (model# CBG100W). Five additional samples were individually ground using a commercial 

“UDY cyclone sample mill”.  

Five subsamples of 5 g each, taken at random, from the ground samples (n = 5 coffee 

grinder, n = 5 UDY sample mill) were analyzed separately. Extraction and clean-up process was 

completed using HPLC-MS/MS as described above. 

Particle size from both grinders was examined using the LA-950 Particle Size Analyzer 

(PSA; Mississauga, Canada) following the standard operating protocol. All five samples for each 

the coffee grinder and UDY cyclone sample mill were analyzed for particle size. The PSA is fully 

automated, and auto dilutes and evaluates the sample. The PSA only requires the user to add 

sample to the reservoir when indicated to do so. Each sample was shook in a sealed bag prior to 

being added to the PSA. Once the ground grain was added, the PSA auto diluted the sample. The 

PSA recorded the particle size and displayed the particle size distribution. When finished, the PSA 

completed a rinse cycle to prepare for the next sample. 
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To determine if the particle size produced by the grinding methods had an effect on the 

analytical assessment, the coefficient of variation (CV) for each set of subsamples (n = 5 per 

sample) was calculated and these values (n = 5 per grinding method) were used to compare the 

two grinders by T-test. 

2.3.3 Sample volume comparison to assess analytical variability 

In order to evaluate the effect of sample volume and sample concentration on the 

variability of the analytical concentration determined, four volume sizes were considered at five 

concentrations. 

2.3.3.1 Sample preparation 

The highly ergot-contaminated spring wheat (very high group) was mixed with clean grain 

to create four additional (20 kg) ergot-contaminated grain concentrations to give a total of five 

ergot alkaloid concentrations (very low, low, mid, high and very high). Each of the ergot-

contaminated spring wheat samples were homogenized using a Hobart mixer model D-300-T 

from the Hobart MFG Company Ltd. (Don Mills, Canada) for 15 minutes. Three subsamples of 

each 1000, 500, 250 and 75 mL were collected from each of the samples using a glass 1 L (1000, 

500, 250 mL volumes) or 100 mL (75 mL volume) graduated cylinder and stored in a labelled 

plastic bag. This process was repeated a total of three times to obtain a total of 9 subsamples of 

each volume at each of the five levels of contamination. There is no real theoretical limitation to 

using volume as a measure for grain. Volume rather than sample weight was employed to provide 

a more practical, industry comparable approach. Grain weight varies with grain type. Ergot 

sclerotia weigh less than the grain itself. Using volume as opposed to weight ensured the sample 

volume remained consistent between the very high and very low ergot contaminated grain 

concentrations. Each subsample was ground entirely using the UDY cyclone sample mill and 

stored at room temperature until (4 volumes x 9 subsamples x 5 concentrations = 180) analytical 

measurements were conducted. The ergot alkaloid extraction, clean-up and HPLC-MS/MS 

analysis were completed following the process stated previously.  
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2.3.4 Statistical analysis 

All statistical analyses were completed using IBM SPSS statistics 23 (Armonk, USA). 

Pearson product-moment correlations were used to determine correlations. Independent t-tests 

were used to determine statistical differences between two groups. To determine differences 

between groups of more than two, one-way ANOVA followed by Tukey’s test for significance was 

used. A P-value < 0.05 was considered a statistical difference. Levene’s test of homogeneous 

variances was used to assess variability among groups. A one-sample Kolmogorov-Smirnov test 

was used to test for normality of the data.  Coefficients of variation (standard deviation divided 

by the mean) were calculated to identify the impact of sample volume and concentration on the 

overall variability. 

2.3 Results 

2.3.1 Sclerotia count, weight and analytical correlation study 

Both the number of ergot sclerotia and weight of ergot sclerotia were plotted against the 

total ergot alkaloid analytical concentration analyzed using HPLC-MS (Figure 2.1).  

The number of ergot sclerotia (R2 = 0.95, P < 0.001) and weight of ergot sclerotia (R2 = 

0.96, P < 0.001) compared to the total ergot alkaloid concentration were highly correlated 

(Pearson) when all grain samples were included (Figure 2.1a, b). In contrast, samples with ergot 

alkaloid concentrations, below 350 µg/kg, demonstrated no correlations related to the number 

(R2 = 0.0002, P = 0.956) and weight (R2 = 0.0064, P = 0.769) of ergot sclerotia and the total ergot 

alkaloid concentration (Figure 2.1c, d).  

2.3.2 Grinder comparison study 

The samples ground with the coffee grinder (n = 5) had a mean particle size (±SD) of 516 

(±79) µm with 85% of the particles smaller than 1020 µm. The samples ground with the UDY 

cyclone sample mill (n = 5) had a mean particle size (±SD) of 192 (±37) µm with 85% of the 

particles smaller than 395 µm. The standard deviations (SD) of the total ergot alkaloid 

concentrations analysed were larger using the coffee grinder than those ground by the sample   
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Figure 2. 1 Correlation of number of sclerotia (a, c) and weight of sclerotia (b, d) to the total 

alkaloid concentration. (a,b) n = 25 (12 wheat, 10 barley, 2 durum, 1 triticale) at all concentrations 

(10 to 22521 µg/kg). (c,d) n = 16 (10 wheat, 5 barley, 1 durum) at concentrations below 350 µg/kg. 

P-value represents Pearson product-moment correlation.  
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mill (Figure 2.2). Ergot sclerotia of the same weight were found to have different (ANOVA) total 

ergot alkaloid concentrations. The variation, evaluated using the CV, was higher using the coffee 

grinder as opposed to the UDY cyclone sample mill (T-test, P = 0.041) (Figure 2.3). Further 

chemical analysis demonstrated that the concentrations of individual ergot alkaloids were also 

variable among ergot sclerotia of the same weight from the same ergot contaminated grain 

sample (Figure 2.4). Individual ergot alkaloid concentrations differed (ANOVA) in at least one 

sample for all alkaloids (P < 0.001) except ergocornine (P = 0.140).  

2.3.3 Sample volume comparison to assess analytical variability 

The total ergot alkaloid and ergot sclerotia net weight concentrations of each of the five 

ergot contamination levels were recorded in Table 2.1.  

In general, visual comparison of the coefficient of variations (CV) of different sample 

volumes at different levels of ergot contamination based on the total ergot alkaloid 

concentration revealed that variation increases with a decreased sample volume and a lower 

degree of ergot contamination (Figure 2.5). The CV declined as sample volume increased (97% 

CV for 75 mL to 64% CV for 1000 mL for the mean of all concentrations) but increased as sample 

concentration declined (17% CV for very high to 284% CV for very low for the mean of all sample 

volumes). 

Equal variance was not achieved in the very low or low degrees of contamination (Table 

2.2). The remaining degrees of contamination, mid, high and very high, were non-significant 

(ANOVA, P > 0.05).  

2.4 Discussion 

The objectives of this study were to determine the correlation between ergot sclerotia 

count and weight compared to the total ergot alkaloid concentration, to evaluate the effect of 

grinding process (i.e., particle size) on ergot alkaloid analysis using HPLC-MS, and to determine 

the impact of sample volume on analytical variability.  
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Figure 2. 2 Mean (n = 5 coffee grinder; 5 UDY cyclone sample mill) total alkaloid concentration 

(±SD) of a single ergot sclerotia of similar weight (0.0148 ± 0.002 g) ground with 80 g of clean 

wheat using either a coffee grinder or a UDY cyclone sample mill. Each sample was subsampled 

5 times. Different letters denote a statistical difference (ANOVA coffee grinder P = 0.876; sample 

mill P < 0.001). 
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Figure 2. 3 Comparison of the percent coefficient of variation of 5 independent estimations of a 

single ergot sclerotia of similar weight (0.0148 ± 0.002 g) ground with 80 g of clean wheat using 

either a coffee grinder or a UDY cyclone sample mill (n = 5 subsamples per sample). Vertical bars 

represent the percent coefficient of variation (CV) of the individual samples. Horizontal lines 

represent the mean CV (±SD) of each grinder. Each replicate was subsampled 5 times. Different 

letters denote a statistical difference (Independent T-test P = 0.041). 
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Figure 2. 4 Concentrations of six alkaloids (mean ± SD) of a single ergot sclerotia (n = 5 samples) 

of similar weight (0.0148 ± 0.002 g), from the same ergot contaminated grain sample, ground 

with 80 g of clean wheat using a UDY cyclone sample mill. Each sample was subsampled 5 times. 
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Table 2. 1 Total ergot alkaloid concentration and percent ergot sclerotia by weight of all ergot 

contaminated wheat samples. (n = 36 per degree of contamination) 

Degree of 

contamination 

Mean total alkaloid 

concentration (±SD) 

(µg/kg) 

Percent ergot 

sclerotia by weight 

(±SD) 

Very low 35 ± 100 0.002 ± 0.003 

Low 419 ± 1090 0.013 ± 0.018 

Mid 2050 ± 903 0.095 ± 0.046 

High 8180 ± 2160 0.432 ± 0.079 

Very high  81700 ± 13700 4.780 ± 0.387 

 

 

 

Figure 2. 5 Percent coefficient of variation of the total alkaloid concentration of varying degrees 

of ergot-contaminated wheat samples at four sampling volumes. n = 9 per volume at each degree 

of contamination. See Table 2.1 for mean contamination concentrations.  
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Table 2. 2 Statistical values comparing the total ergot alkaloid concentrations of five degrees of 

ergot-contaminated wheat at the four volume amounts. n = 36 for each degree of contamination. 

Test statistic 
 Degree of contamination 

 Very low  Low Mid High Very high 

Equal variance1  0.025 < 0.001 0.197 0.653 0.950 

Volumes with 

normal data2 

 
n/a n/a 75, 250, 1000 75, 250, 500, 1000 75, 1000 

P-value3 
 n/a n/a 0.952 0.588 0.418 

1 Levene’s test for equal variance 

2 One-sample Kolmogorov-Smirnov test for normality  

3 One-Way ANOVA 
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The first hypothesis was not supported. The data indicated that ergot count and weight 

were not predictive of diagnostically relevant ergot alkaloid concentrations. The second 

hypothesis was supported, confirming that a grinding method that produces finer particles will 

decrease the measurement variability as compared to a grinding method with a larger particle 

size. The third hypothesis was not supported, as the study determined that both 75 and 250 mL 

sample sizes are inadequate to reliably estimate ergot alkaloid concentrations in samples with 

low ergot contamination. The studies also confirmed that the total alkaloid content and relative 

amounts of the six alkaloids vary among individual sclerotia. 

2.4.1 Sclerotia count, weight and analytical correlation study 

Currently, count and weight ergot assessments have been used to determine ergot 

contamination (CGC, 2016; Government of Canada, 2015). This study was designed to determine 

the correlation between ergot sclerotia count and sclerotia weight and ergot alkaloid 

concentrations across the entire range of contaminations in field samples (10 to 22,521 µg/kg; 

25 samples, Figure 1a,b) and low-level concentrations that are diagnostically relevant and 

frequently encountered (0 to 350 µg/kg; 16 samples, Figure 1c,d). In the context of Canadian 

grain intended for livestock consumption, the recommended tolerance concentrations of ergot 

alkaloids for cattle set by the Canadian Food Inspection Agency (CFIA, 2015) is 2,000 µg/kg. Over 

a wide range of ergot alkaloid concentrations, a correlation existed for both ergot count and 

ergot weight to the total ergot alkaloid concentration. These results were similar to the 

correlation reported by Tittlemier et al. (2015). However, in examination of samples with 

concentrations under 350 µg/kg, there was no correlation for ergot count or ergot weight as 

compared to the total ergot alkaloid concentration. This suggests that using ergot sclerotia count 

or weight assessment may not be an appropriate method to determine the ergot contamination 

of a sample at low diagnostically relevant field conditions frequently encountered by livestock. 

Piecing together the ergot sclerotia fragments to estimate sclerotia numbers was very difficult. 

This difficulty increases unreliability of the counting method. It is recommended that the count, 

weight and analytical evaluations to determine concentrations should not be used 

interchangeably.  
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The concentrations of concern that may produce subclinical symptoms of ergotism, 

including impaired growth, lactation and thermoregulation (J. L. Klotz, 2015; McMullen & 

Stoltenow, 2002) appear to be lower than currently available regulatory guidelines for many 

livestock species (Craig et al., 2015). Ideally it would have been beneficial to extend our lower 

range past 350 µg/kg to the current standard of 2,000 µg/kg for cattle feed, however, due to the 

lack of samples it was not possible for this study. The lack of samples also prevented the 

determination of a correlation for individual grain types rather than a combined overall grain 

group correlation. By combining all grain types the assumption is made that all grain types will 

follow the same correlation. This may not be true for all grain types as previously documented 

(Tittlemier et al., 2015). 

The concentrations of alkaloids in a single ergot sclerotia in a grain sample were 

examined. A single ergot sclerotia of the same weight does not necessarily have the same total 

alkaloid concentration or relative amounts of individual alkaloid. This further supports the 

conclusion that count and weight concentration estimates are not as reliable. Our results are 

supported by the previous studies that have shown significant differences in the total alkaloid 

content of ergot sclerotia (Lorenz & Hoseney, 1979; Schoch & Schlatter, 1985; Wolff & Richter, 

1989) reviewed in Krska et al. (2008). Furthermore, ergot alkaloid concentrations did not appear 

to be related to the size of sclerotia (Blaney et al., 2009). These differences may be due to 

individual fungal strain in a geographical region and the host plant (Krska & Crews, 2008), but 

may also be due to the environmental conditions during the development of the ergot sclerotia.   

There are two variables that must be considered when examining the relationship 

between concentration of ergot alkaloids and the count or mass of sclerotia. The first being the 

alkaloid concentration within the sclerotia. The second is the alkaloid concentration within a 

sample. This discrepancy helps to explain why a meaningful correlation was found over a wide 

range of ergot alkaloid concentrations but not at concentrations <350 µg/kg. At concentrations 

below 350 µg/kg, the varying ergot alkaloid concentrations within individual sclerotia 

compromise the identification of a relationship between count or weight and alkaloid 

concentration. These lower concentrations generally contain fewer ergot sclerotia in the sample. 

When considering a wide range of ergot alkaloid contaminations, the different individual ergot 
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alkaloid concentrations in the sclerotia tend to have less impact, as samples with higher ergot 

alkaloid concentrations contain more sclerotia. This reduces variability and allows for the 

development of a better correlation between count or weight and ergot alkaloid concentration 

at higher concentrations. 

2.4.2 Grinder comparison study 

Prior to ergot alkaloid extraction and analysis, the sample must be ground, therefore, this 

study examined the variability associated with sample preparation prior to ergot extraction and 

analysis by HPLC-MS/MS. The grinder comparison emphasizes the importance of particle size 

prior to the extraction procedure. The objective prior to weighing the 5 g for ergot alkaloid 

extraction is to ensure sample homogeneity in particle size. A smaller particle size obtained with 

the UDY cyclone sample mill preparation, resulted in a much more homogenous sample, and 

therefore, a less variable and more consistent and repeatable measurements of ergot alkaloid 

concentration was observed. In less homogeneous samples, as produced with the coffee grinder, 

there was a greater variation of ergot alkaloid concentration determination. To minimize 

variability, it is recommended that the grinder used for ergot alkaloid analysis produce a particle 

size less than 200 µm and with greater than 85% of the particles smaller than 400 µm. 

The grinding process is also involved in the analysis of other mycotoxins. It was found that 

dry-milling wheat samples with ochratoxin A lead to an inhomogeneous subsample resulting in 

misclassification of acceptable or rejectable wheat lots (Lippolis, Pascale, Valenzano, & Visconti, 

2012). However, when the same wheat samples were slurry mixed, a process that produces a 

smaller particle size (Spanjer et al., 2006), the ochratoxin was homogenous within the subsample. 

Wheat contaminated with deoxynivalenol appears to be less influenced by particle size as both 

dry-milling and slurry mixing have been found suitable for sample preparation (Lippolis et al., 

2012). 

2.4.3 Sample volume comparison to assess analytical variability 

The greatest source of variability associated with the determination of the ergot alkaloid 

concentration under field conditions remains the sampling technique (Crews, 2015), this study 

examined the potential variability after sampling. The Canadian Grain Commission (CGC) has 
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suggested that in order to determine ergot sclerotia as a percentage of the net weight of a grain 

sample, the minimum representative portion is 500 g and the optimal sample size is 1000 g (CGC, 

2016). Researchers (Krska & Crews, 2008; Scott, 2007) have identified the lack of research 

evaluating the sampling procedures for grains or grain products to be analyzed for ergot alkaloids.  

Samples received at Prairie Diagnostic Services for ergot alkaloid analysis come in a wide 

range of volumes, ranging anywhere from less than 50 mL to over 3 L. Since only 5 g is required 

for extraction, typically only about 75 mL of the sample submitted is ground. The present study 

demonstrated that the amount of ground sample utilized prior to extraction can influence the 

estimate of the ergot alkaloid concentration of a submitted sample. The results document that 

generally, variability increased as sample volume used for analysis and sample concentration 

declined. Similar results have been found for other mycotoxins including aflatoxin, fumonisin and 

ochratoxin A (Lippolis et al., 2012; Nowicki & Roscoe, 2010; T. Whitaker, Dickens, Monroe, & 

Wiser, 1972; T. B. Whitaker et al., 1998). 

For ergot alkaloid analysis, the analysis of small sample volumes such as 75 and 250 mL 

at low ergot alkaloid concentrations of less than 400 µg/kg may be unreliable for accurate 

interpretation. In some instances, the largest sample volume did not always have the lowest CV. 

This further demonstrates the high variability and difficulty of obtaining an accurate subsample, 

particularly at lower ergot alkaloid concentrations. When a sample contains few ergot sclerotia, 

grinding a small volume may over- or underestimate the total ergot alkaloid concentration of the 

whole sample. The non-uniform distribution of highly concentrated ergot alkaloids in the 

sclerotia can lead to inaccurate ergot alkaloid concentration estimates. To reduce this variability, 

the entire sample submitted should be ground to asses the ergot alkaloid concentration. This 

recommendation also applies to other mycotoxins such as aflatoxin (A. Campbell, Whitaker, 

Pohland, Dickens, & Park, 1986; Dickens, Whitaker, Monroe, & Weaver, 1979).  

If a 35% CV is considered acceptable any total ergot alkaloid concentration exceeding 

8000 µg/kg can be considered reliable so long as at least 75 mL sample was ground prior to 

extraction. Samples with a total alkaloid concentration between 2000 – 8000 µg/kg must be 

tested using a 1000 mL volume to ensure the CV remains below 35%. If a total alkaloid 
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concentration between 2000 – 8000 µg/kg was determined but a smaller sample volume than 

1000 mL was ground prior to extraction the sample should be reanalyzed using the full 1000 mL 

to ensure the determined concentration is reliable. For total alkaloid concentrations at or below 

2000 µg/kg the study determined that the volume required to obtain a CV of 35% well exceeds 

1000 mL however, an exact volume cannot be determined as the study only examined up to 1000 

mL. It should also be noted that a CV of 35% may be considered too high in which case the 

volumes required for a reliable analysis would also increase. 

It has been recommended that nonhomogeneous distribution of ergot sclerotia in grain, 

requires 1000 – 5000 g of sample for optical assessment (Lampen & Klaffke, 2006). The present 

study demonstrates that an analytical assessment of ergot alkaloid concentration may require a 

larger sample depending on the concentration of that sample. This has also been found true for 

the analysis of other mycotoxins (Lippolis et al., 2012). An optimal volume for analytical analysis 

exceeds the 1 L volume if the concentration is below 2000 µg/kg. This emphasizes the importance 

of proper field sampling. 

At high ergot alkaloid concentrations, greater than 8000 µg/kg, there is limited variation 

regardless of the volume of sample analysed. This however, is often irrelevant with most 

diagnostic cases submitted for ergot alkaloid analysis, since the samples with this degree of 

contamination are distinctly toxic and greatly exceed concentrations of diagnostic concern. The 

need for accurate, reliable contamination estimates is less important in these cases. 

Researchers have developed mathematical models to describe the sample preparation 

for different mycotoxins, commodities and grinding methods (Johansson et al., 2000; T. 

Whitaker, Dickens, & Monroe, 1974; T. B. Whitaker et al., 1998). While an equation has not been 

developed for ergot alkaloids, the generalization for other mycotoxins is that if the average 

particle size decreases then the subsampling variance for a given size subsample decreases (T. 

Whitaker, 2006). 

2.4.4 General discussion and conclusions 

This study demonstrated that correlations exist between both ergot sclerotia count and 

ergot sclerotia weight compared to the total alkaloid concentration of 6 ergot alkaloids. However, 
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at ergot alkaloid concentrations below 350 µg/kg, ergot sclerotia count and ergot sclerotia weight 

were not correlated to the total alkaloid concentration. A lower variability was observed using a 

commercial UDY cyclone sample mill as compared to a household coffee grinder. Total amount 

and concentration of individual ergot alkaloids varied among sclerotia of similar weight. For the 

analytical method, the CV was numerically reduced as sample volume increased but increased as 

sample concentration decreased. This implies that analysis of small sample volumes at low ergot 

alkaloid concentrations will result in highly variable, potentially misleading results.  

This study produced three general conclusions pertaining to ergot measurement and 

analysis: 1 – An analytical measurement should be used as opposed to number of ergot sclerotia 

or weight of ergot sclerotia to determine the ergot alkaloid concentration. 2 – The grinder used 

should produce a subsequent particle size equal to or smaller than 200 µm with more than 85% 

of the particles smaller than 400 µm in order to reduce the risk of unreliable estimates. 3 – In the 

case of commercial labs, the entire submitted sample should be ground to assess the ergot 

alkaloid concentration to minimize variability.  The findings in this study indicate that regulatory 

agencies should standardize the methods of evaluation for ergot contamination. Relative to the 

analytical method the count and weight methods are inferior.  

  



 
 

55 
 

 

 

 

 

 

CHAPTER 3:                                                                                                                    

PROPORTIONS OF ERGOT ALKALOIDS (CLAVICEPS PURPUREA) DETECTED IN 

WESTERN CANADIAN GRAINS 
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3.1 Abstract 

Ergot alkaloid mycotoxins produced by the fungus Claviceps purpurea, are contaminants 

of cereal crops and cause a wide range of vascular, thermoregulatory, endocrine and neurologic 

disorders. Depending on the geographical region, climactic conditions and host plant, the relative 

composition of the individual ergot alkaloids can vary among samples. The objective of this study 

was to determine if the percentage of individual ergot alkaloids were similar across different 

cereal grains (barley n = 39, rye n = 7, triticale n = 9, wheat n = 94) collected in Western Canada 

over two years. Ergocristine was the predominant alkaloid accounting for half of total alkaloids 

in all grain types in Western Canada. This study documented that barley, rye, triticale and wheat 

collected across Western Canada had similar percentages of ergocornine (6% ± 1, P = 0.201), 

ergocristine (48% ± 2, P = 0.939), ergocryptine (17% ± 2, P = 0.302) and ergosine (5% ± 0.5, P = 

0.239). There were differences between grain types for ergometrine (P = 0.027) and ergotamine 

(P = 0.011), which ranged between 6 to 13% and 11 to 24% respectively, of the total alkaloid 

content in different cereals. Both barley and wheat alkaloid percentages were similar between 

2015 and 2016; ergocornine (7% ± 1, P = 0.969), ergocristine (47% ± 2, P =0.680), ergocryptine 

(18% ± 2, P = 0.572), ergometrine (8% ± 1, P = 0.080), ergosine (15% ± 1, P = 0.119) and 

ergotamine (15% ± 1, P = 0.189). The ergocornine percentage was higher in wheat (P = 0.017) as 

compared to barley for 2015/2016 samples. Ergometrine was higher in barley (P = 0.002) as 

compared to wheat for 2015/2016 samples. While two of the alkaloid proportions varied 

statistically, overall the proportions of the six ergot alkaloids were comparable among the four 

grain types collected across Western Canada. The proportions of the six ergot alkaloids were 

found to be similar across Western Canada, which suggests a total ergot alkaloid concentration 

guideline can be considered acceptable so long as the grain was produced in Western Canada 

under typical environmental conditions. 

 

Keywords: ergot alkaloid proportions, alkaloid analysis, Claviceps purpurea  
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3.2 Introduction 

Ergot is a recognised infection caused by the fungus Claviceps purpurea which 

contaminates cereal crops and grasses. Ergot contamination is easily identified by purplish/black 

structures on the grain or grass replacing the seeds known as sclerotia. References to ergot date 

back to 1100 BC but is often associated with the Middle Ages (Haarmann et al., 2009; Schiff Jr, 

2006). Today, increasing ergot contamination in places such as Western Canada (Tittlemier et al., 

2015), presents a problem not for human ingestion but rather for animal consumption. 

Claviceps purpurea produces several toxic ergot alkaloids which can cause hallucinations, 

convulsions, gangrene, hyperthermia and agalactia when ingested (Burrows & Tyrl, 2012; 

Haarmann et al., 2009; J. L. Klotz, 2015). While over 16 ergot alkaloids have been identified (Eadie, 

2003), the most common alkaloids found and tested for in Western Canada are ergocornine, 

ergocristine, ergocryptine, ergometrine, ergosine and ergotamine (Krska & Crews, 2008). These 

six alkaloids are the 8-β-isomers and are considered biologically active (Burrows & Tyrl, 2012). 

The 8-α-isomers of these six alkaloids, identified by names ending in -inine, are of limited 

toxicological concern (Berde & Stürmer, 1978; Pierri et al., 1982) and therefore, have less 

diagnostic relevance. 

Ergot development occurs in the spring and early summer when moisture is available at 

the soil surface (Seaman, 1980). Therefore, the weather is a major factor in the prevalence and 

severity of ergot contamination and the production of ergot alkaloids (Bailey et al., 2003). Krska 

et al. (2008) stated the concentration pattern of the ergot alkaloids produced in the sclerotia will 

vary depending on the geographical region and host plant (Schoch & Schlatter, 1985; Wolff & 

Richter, 1989). 

Most jurisdictions that regulate ergot do so by weight of ergot sclerotia (FAO, 2004) 

however, improved regulations should be based on the ergot alkaloid concentration (Grusie, 

Cowan, Singh, McKinnon, & Blakley, 2017). Both Canada and Uruguay provide a recommendation 

based on ergot alkaloid concentration (CFIA, 2015; FAO, 2004). These recommendations are 

however based on total ergot alkaloid concentration rather than individual ergot alkaloid 

concentrations. Regulations, recommended ideal by the European Food and Safety Authority 
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(EFSA, 2005), would consist of maximum individual ergot alkaloid concentrations rather than a 

total ergot alkaloid concentration. This approach may be challenged by some toxicologists since 

it fails to recognize alkaloid interactions related to absorption, excretion, metabolism or possible 

receptor competition. 

With the potential of jurisdictions revising ergot tolerance regulations to include 

individual ergot alkaloid concentrations, the objective of this study was to determine if the 

proportion of individual ergot alkaloid concentrations are similar across different cereal grains 

over two years in Western Canada. 

3.3 Materials & Methods 

Western Canadian grain samples were obtained from submissions to Prairie Diagnostic 

Services (PDS) for analysis. The majority of the samples submitted were from Saskatchewan with 

some samples received from Alberta and Manitoba. Ergot analysis was conducted using the 

standard operating protocols at PDS following established methods (Krska et al., 2008). Ergot 

alkaloid reference standards for ergosine, ergocornine, ergocristine, ergocryptine, ergotamine 

and ergometrine were obtained from Biopure/RomerLabs (Union, USA). All analytical reagents 

used were of HPLC grade. 

3.3.1 Sample collection and preparation 

Barley (n = 39), rye (n = 7), triticale (n = 9) and wheat (n = 94) samples submitted between 

November 2014 and September 2016 with a minimum total ergot alkaloid (ergosine, 

ergocornine, ergocristine, ergocryptine, ergotamine and ergometrine) concentration of 100 

µg/kg were included in this study. This concentration was selected because it is well above typical 

normal background concentrations that may not reflect true time and plant species differences. 

All samples were ground using a commercial UDY cyclone sample mill grinder which 

generates a mean particle size equal to or smaller than 200 µm with more than 85% of the 

particles smaller than 400 µm. 
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3.3.2 Ergot extraction and HPLC-MS/MS detection 

Ergot extraction and high performance liquid chromatography – tandem mass 

spectrometry (HPLC-MS/MS) analysis was completed at Prairie Diagnostic Services (PDS) at the 

University of Saskatchewan, Canada. Methods followed those as previously specified in Chapter 

2 section 2.3.1 (Grusie et al., 2017). The ergot extraction solvent used was 85% acetonitrile 15% 

10mM ammonium acetate, (v/v). The equipment used consisted of an Agilent 1100 HPLC system 

with a Micromass Quattro Ultima Pt mass spectrometer operated in positive mode with an 

Agilent Zorbax Eclipse XDB-C18 narrow bore 2.1 x 150 mm, 5 µm p/n 993700-902 column (Santa 

Clara, USA). Only the six 8-β-isomers ergosine, ergocornine, ergocristine, ergocryptine, 

ergotamine and ergometrine were quantified. A 1.25 µg/kg limit of detection was achieved for 

each of the six alkaloids.  

3.3.3 Statistical analysis 

All statistical analyses were completed using IBM SPSS statistics 23 (Armonk, USA). Each 

of the six alkaloids were calculated as a proportion of the total ergot alkaloid concentration.  The 

proportion data was transformed using arcsine of the square root. A one-way ANOVA was used 

to find any proportion differences between the grain types for each ergot alkaloid. A Tukey’s 

adjusted least significant difference test was used for post-hoc multiple comparisons. Alkaloids 

failing homoscedasticity were analyzed using a Kruskal-Willis with a Mann-Whitney U test for 

significance using a Tukey’s adjustment. A two-way ANOVA was used to compare grain type and 

year ergot alkaloid proportion differences in grains with an n larger than 20. Alkaloids failing 

homoscedasticity were ranked prior to running the 2-way ANOVA.  

3.4 Results 

3.4.1 Alkaloid ratio comparison between grain types 

Each of the six ergot alkaloids analyzed were plotted as their percentage of the total ergot 

alkaloid concentration for each grain type (Figure 3.1). Proportions of alkaloids ergocornine (6 ± 

1%, P = 0.201), ergocristine (48 ± 2%, P = 0.939), ergocryptine (17 ± 2%, P = 0.302) and ergosine 

(5 ± 0.5%, P = 0.239) were not different between barley, rye, triticale or wheat. The percentage   
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Figure 3. 1 Percentage (±SE) of each of the six ergot alkaloids that make up the total ergot alkaloid 

concentration in different grains sent for analysis to Prairie Diagnostic Services from across 

Western Canada between 2014 and 2016. n = 39 barley; 7 rye; 9 triticale; 94 wheat (ANOVA with 

Tukey post hoc). Ergometrine failed homoscedasticity therefore a Kruskal-Wallis and Mann-

Whitney U post hoc tests using Tukey's adjustment was used.  

P = probability of no differences between the grain types  
letters denote a statistical difference 
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of both ergometrine (P = 0.027) and ergotamine (P = 0.011) differed in at least one grain type. A 

higher percentage of ergometrine was found in barley (13 ± 2%) as compared to wheat (6 ± 1%); 

Rye and triticale values were intermediate. A higher percentage of ergotamine was found in 

triticale (24 ± 5%) compared to barley (11 ± 1%) and rye (14 ± 5%). The percentage of ergotamine 

in wheat (16 ± 1%) was similar to the other three grain types. 

Ergocristine was the predominate alkaloid found consistently near the 50% value for all 

grain types analyzed.  

3.4.2 Barley and wheat alkaloid ratio comparison 

The six ergot alkaloids analyzed were plotted as their percentage of the total ergot 

alkaloid concentration for both barley and wheat which was separated into samples analyzed in 

2015 and 2016 (Figure 3.2). Due to limited sample numbers, rye and triticale were not included 

in this comparison. There was no interaction between grain type and year for any of the ergot 

alkaloid comparisons. The ergot alkaloid percentages were not different between the years 2015 

and 2016. Grain type differed for the alkaloids ergocornine (P = 0.017) and ergometrine (P = 

0.002). Wheat had a greater percentage of ergocornine and barley had a larger percentage of 

ergometrine.  

3.5 Discussion 

This study examined the percentage distribution of the six ergot alkaloids ergocornine, 

ergocristine, ergocryptine, ergometrine, ergosine and ergotamine in the four grain types barley, 

rye, triticale and wheat sent for analysis to PDS between 2014 and 2016. 

This study determined that for the most part the percentage of the six ergot alkaloids 

were similar between barley, rye, triticale and wheat. While differences were found between 

grain types for ergometrine, the percentage difference between the grain with the highest 

(barley) and lowest (wheat) percentage of ergometrine was only about 5%. The difference found 

in ergotamine was approximately 10%. These differences may be due to the low number of rye 

and triticale samples collected. With minimal variation between plant species, the necessity to 

develop plant-specific tolerance standards appears to be unnecessary.   
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Figure 3. 2 Percentage (±SE) of each of the six ergot alkaloids that make up the total ergot alkaloid 

concentration in Barley and Wheat sent for analysis to Prairie Diagnostic Services from across 

Western Canada in 2015 (n = 12 barley;31 wheat) and 2016 (n = 24 barley; 59 wheat) (2-way 

ANOVA). Ergometrine failed homoscedasticity therefore, the data was ranked before running the 

2-way ANOVA. 

grain P = probability of no differences between grain types 
year (yr) P = probability of no differences between years 
grain*yr P = probability of no interaction between grain and year 
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In this study, the percentages of the ergot alkaloids in wheat and barley did not differ 

between 2015 and 2016. This may imply the weather conditions in the 2015 and 2016 growing 

seasons were similar. An extension of this study over at least a 10-year period with varied 

weather conditions would more clearly define the role of moisture and perhaps temperature 

related to alkaloid production. Other confounding factors such as crop rotation and no till 

husbandry practices (Schumann, 2000; Seaman, 1980) could also be evaluated.  

While the current study found ergocristine made up the largest portion of the six ergot 

alkaloids, it is important to consider that the samples were collected in Western Canada. The 

alkaloid content and proportion distribution is heavily influenced on the geographical 

distribution, growing conditions, strain and host plant (Schoch & Schlatter, 1985; Wolff & Richter, 

1989).  The relative contribution of each factor and interactions among factors may also be highly 

variable. The inability to control environmental factors and perhaps husbandry practices makes 

it difficult to fully assess the impact of this multifactorial agricultural problem.  

A previous Canadian study found fairly uniform individual alkaloid compositions in rye, 

wheat, triticale and barley samples with the exception of rye and barley from the maritime region 

(Young, 1981a; Young, 1981b; Young & Chen, 1982). It also determined that in Eastern Canada 

the major alkaloids were ergotamine followed by ergocristine whereas in the West these two 

alkaloids were reversed. The results of the present study agree with the exception that 

ergocryptine and ergometrine in some cases exceeded ergotamine. Both the previous Canadian 

study and a European study (Appelt & Ellner, 2009) determined that within a given field the 

individual alkaloid composition was highly variable but formed similar alkaloid patterns 

throughout a region.  

This information may play a critical role to determine acceptable ergot alkaloid 

concentrations in grain for animal feed. Currently, guidelines recommend a maximum ‘total’ 

ergot alkaloid concentration (2-9 mg/kg depending on species) (CFIA, 2015). These guidelines fail 

to consider that all ergot alkaloids may not be similar in terms of potency and ability to cause 

adverse effects. While no studies to date have determined the effects of each individual ergot 

alkaloid, studies have determined that the affinities of the ergot alkaloids to bind to receptors 
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are different. A study done by Klotz et al. (2010) determined that the tall fescue alkaloid 

ergovaline binds to a receptor in vascular smooth muscle acting in a full agonistic manner, 

whereas alkaloids ergocristine and ergocornine functioned like partial agonists producing about 

40 to 50% stimulation in the same vascular system.  

Many toxicologists view individual alkaloid assessment as a low priority, since ‘real world’ 

exposure is always associated with multi-alkaloid exposure with varied alkaloid profiles. In vivo 

toxicological investigations in livestock species provide a more realistic measure of toxicology 

which reflects excretion differences. The extent of these multi-alkaloid interactions may vary 

considerably between animal species which should be reflected in species specific tolerances. 

Species differences including sheep, equine, rabbits and dogs have been identified to have 

biological and behavioural differences (T. Evans et al., 2004).  

Once further studies have been conducted to demonstrate the potencies of each ergot 

alkaloid, ergot alkaloid guidelines can be adjusted to satisfy individual ergot alkaloid variability. 

This may result in a higher or lower total ergot alkaloid concentration considered safe to use as 

feed. For example, if two feed samples both contain 2000 µg/kg total ergot alkaloid 

concentration but the first sample contains over 50% ergotamine and the second sample 

contains only 10%, the first sample may cause adverse effects if fed to an animal where as the 

second sample may remain harmless clinically. In a sense, each alkaloid could be assessed using 

a Toxicology Equivalence Factor (Safe, 1998). The summation of the Toxicology Equivalence 

Factors would be used to define the tolerance guideline. This approach is frequently used to 

assess overall toxicity of complex mixtures encountered in water or soil samples (Van den Berg 

et al., 2006).  

The proportions of the six ergot alkaloids were found to be similar across Western 

Canada, which suggests a total ergot alkaloid concentration guideline can be considered 

acceptable so long as the grain was produced in Western Canada under typical environmental 

conditions. The creation of guidelines for individual alkaloids would not be necessary for Western 

Canada. A total ergot alkaloid concentration guideline may not however, be appropriate for areas 
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that exhibit extreme or unique variation in the ergot alkaloid profile in which case individual ergot 

alkaloid guidelines would be more appropriate. 

The contribution of each individual ergot alkaloid present in a sample will become more 

evident as the research and knowledge of the effects of the individual alkaloids expands.     
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CHAPTER 4:                                                                                                      

ASSESSMENT OF ERGOT (CLAVICEPS PURPUREA) EXPOSURE IN PREGNANT AND 

POSTPARTUM BEEF COWS 
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4.1 Abstract 

Ergot alkaloids produced by the fungus Claviceps purpurea can cause a range of 

physiological disturbances which may lead to reduced productivity in cattle. The overall objective 

of this study was to evaluate the impact of ergot (C. purpurea) consumption in beef cow-calf 

operations. Cows were assigned randomly to treatment groups and were fed ergot containing 

mixed ration for 9 weeks at 5 µg/kg (control group, n = 10), 48 µg/kg (low group, n = 10), 201 

µg/kg (high group, n = 10), and 822 µg/kg (very high group, n = 6) ergot alkaloid concentrations 

of dry matter intake. The study demonstrated that ergot alkaloid concentrations up to 820 µg/kg 

for 9 weeks did not alter the weight of peripartum and postpartum beef cows (P = 0.931) or 

nursing calves (P = 0.077). Concentrations up to 820 µg/kg also had no effect on rectal 

temperature (P = 0.163) or plasma prolactin concentrations (P = 0.298) during (overall 48 ± 1.2 

ng/mL) or after the ergot treatment (36 ± 1.5 ng/mL) at moderate (5 to 29˚C) ambient 

temperatures. Ergot exposure did not influence the time until first progesterone rise (>1 ng/mL; 

P = 0.792) postpartum or the progesterone concentration at the time of first rise (P = 0.376). The 

size of the first (14 ± 0.6 mm; P = 0.403) or second (13 ± 0.5 mm; P = 0.414) follicle to ovulate 

postpartum was unaffected by ergot exposure. The maximum size of the corpus luteum (CL) was 

4 mm larger in the 820 µg/kg ergot treatment group compared to the control treatment (P = 

0.028) for the first ovulation postpartum, but no differences in the CL size were observed 

between the control and 820 µg/kg groups by the second ovulation (P = 0.113). There was no 

effect of ergot exposure on the number of days until the appearance of the first (43 ± 4 days; P = 

0.949) or second (52 ± 4 days; P = 0.984) CL postpartum. Ergot alkaloid concentrations up to 820 

µg/kg did not affect pregnancy rates (X2 = 0.358; overall pregnancy rate 91%). In conclusion, this 

study demonstrated that ergot alkaloid exposure for 9 weeks to concentrations as high as 820 

µg/kg did not alter performance in pregnant and postpartum beef cattle at moderate ambient 

temperatures.  

 

Key words: Claviceps purpurea, ergot alkaloids, productivity, prolactin, progesterone, ovarian 

function 
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4.2 Introduction 

Animal productivity and performance are important for livestock producers to maximize 

economic return. Animal consumption of ergot alkaloids may cause a range of effects including 

but not limited to, convulsions, gangrene, hyperthermia, agalactia and reduced weight gain and 

feed intake (Burrows & Tyrl, 2012; Carson, 1977; J. L. Klotz, 2015; McMullen & Stoltenow, 2002). 

Animals grazing endophyte-infected tall fescue (Lolium arundinaceum) or consuming grain 

contaminated with Claviceps spp. will likely encounter ergot alkaloids, potentially causing 

adverse effects.   

The alkaloids produced in tall fescue, which are commonly found in the United States, 

differ from those produced in grain infected by C. purpurea (Canty et al., 2014). While the clinical 

manifestations and effects of ergotism and fescue toxicosis are similar (Yates et al., 1985), most 

studies have focused on fescue rather than grain infected by C. purpurea. 

The Canadian Food Inspection Agency (CFIA, 2015) has set 2-3 mg of ergot alkaloids/kg of 

cattle feed as the recommended tolerance concentration. The basis for this recommendation is 

unclear, however, we have speculated it to be based primarily on the clinical effects such as 

gangrene which can be viewed excessive, if subclinical disease such as decreased animal 

productivity and performance are considered. Clinical effects of ergot alkaloids have been 

documented at concentrations as low as 0.473 mg/kg, which is below the Canadian guidelines 

(Craig et al., 2015).  

The main objective of this study was to evaluate the effects of low-concentration ergot 

consumption (C. purpurea) in cow-calf operations and the recovery from exposure. The 

endpoints examined included calf and cow weights, rectal temperature, prolactin and 

progesterone concentrations and ovarian function. Ergot exposure in pre- and postpartum beef 

cows was hypothesized to decrease both cow and calf weights, decrease cow prolactin 

concentrations, increase cow rectal temperatures and increase the time for the cows to return 

to normal cyclicity.  
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4.3 Materials & Methods 

4.3.1 Grain collection and feed preparation 

Contaminated ergot wheat screenings were collected from a seed cleaning plant in 

Weyburn, Saskatchewan using a sampling spear to ensure representative sample collection. 

Treatment pellets were created from the ergot-contaminated wheat screenings by the 

University of Saskatchewan’s Canadian Feed Resource Centre in North Battleford, Saskatchewan. 

Three ergot contaminated pellets at concentrations including 221, 731 and 2981 µg/kg were 

formulated for the study. Control pellets containing normal background ergot concentrations (18 

µg/kg) were purchased from CO-OP Feeds in Saskatoon, Saskatchewan. All pellets were 

comprised of barley, oat hull, canola and wheat screenings which were formulated to meet the 

nutritional requirements of the beef cows when fed in combination with the remainder of the 

total mixed ration. 

4.3.2 Ergot alkaloid extraction and measurement  

Feed samples were evaluated for ergot alkaloid concentration using an extraction 

procedure followed by high performance liquid chromatography – tandem mass spectrometry 

analysis (HPLC-MS/MS) on an Agilent 1100 HPLC system with a Micromass Quattro Ultima Pt 

mass spectrometer operated in positive mode. An Agilent Zorbax Eclipse XDB-C18 narrow bore 

2.1 x 150 mm, 5 µm p/n 993700-902 column was used. Ergot extraction and analysis was 

carried out as described previously in Chapter 2 section 2.3.1 (Grusie et al., 2017). Five gram 

samples of ground feed were extracted for 10 minutes using a 25 mL volume of 85/15 solvent 

(85% acetonitrile 15% 10 mM ammonium acetate, v/v). To clean the matrix, 50 mg Agilent 

Bondesil-PSA 40 µm was mixed with 1 mL of the filtered extraction. The solution (400 µL) was 

transferred to an Agilent auto-sampler vial with insert and placed into the HPLC auto-sampling 

tray. The total ergot alkaloid concentration was determined by summing the six ergot alkaloids, 

ergosine, ergocornine, ergocristine, ergocryptine, ergotamine and ergometrine. 
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4.3.3 Experimental design and animal husbandry 

This study was approved by the University Committee on Animal Care and Supply before 

experimentation. Animals in this experiment were cared for in accordance to the guidelines of 

the Canadian Council on Animal care (Olfert, Cross, & McWilliam, 1993) under the University of 

Saskatchewan Animal Care Protocol 20140044. Animals were monitored using a humane 

intervention scoring system developed for the study. The scoring system monitored food and 

water intake, appearance and behaviour (pain and distress), vital signs and vasoactive and 

neurological signs. 

Thirty-six pregnant Hereford cross beef cows (576 kg ± 109; mean ± SD) were selected 

based on projected calving date (see Appendix Table A) at the University of Saskatchewan 

Research Farm. Cows were randomly assigned to treatment groups including, control (n = 10), 

low (n = 10), high (n = 10), and very high (n = 6) ergot alkaloid concentrations. Each of the groups 

were housed in an outdoor pen for a minimum of 2 weeks before the start of the study. During 

this period, the animals were acclimated to the new surroundings and introduced to the control 

pellet ration. Following birth, the calves remained in the same pen as their mothers.  

Exposure to the contaminated feed began in April 2015 for a 9-week period and the study 

concluded at the end of August 2015. The experiment was designed to include 2 weeks of clean 

pellet consumption (wk -2 and wk -1) to collect baseline measurements on the cows. During the 

following 9 weeks (wk 0 to wk 8), the animals were fed their designated ergot-contaminated 

pellets. For weeks 9 and 10 (wk 9, wk 10) the animals were returned to the control pellets. During 

the final 7 weeks (wk 11 to wk 17) the animals were housed on a grass mix pasture. Pellets were 

not consumed during the final 7-week period. 

Due to the large number of animals and practical considerations, the study was divided into 

2 data collection days. Blood samples and other assessment endpoints from control and low 

groups were collected on Mondays, the high and very high groups were collected on Thursdays. 

On the collection day, the calves were separated from the cows.  
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4.3.4 Diets and feeding procedure 

Animals were targeted to consume feed at 2% of their body weight (dry matter basis) 

during the study. The diets were based on the average weight of the animals in each of the 

groups. The diets consisted of 8.5 kg of dry chopped hay (grass/alfalfa mix), 2 kg of barley for 

energy and 3.5 kg of experimental pellets. The total average daily intake as fed was 14 kg per 

animal representing a total daily intake on a dry matter basis of 12.7 kg.  

The targeted total daily intake of ergot alkaloids for each of the 4 groups based on the 

total mixed ration was 0 (control), 50 (low), 200 (high) and 800 µg/kg (very high) on a dry matter 

basis. To obtain these intake amounts in the animals, the control animals received 3.5 kg of the 

clean pellets, the low exposure animals received 2.7 kg of the 221 µg/kg total ergot alkaloid 

pellets and 0.8 kg of the clean pellets, the high exposure animals received 3.5 kg of the 731 µg/kg 

total ergot alkaloid pellets and the very high exposure animals received 3.5 kg of the 2981 µg/kg 

total ergot alkaloid pellets. 

To minimize animal handling, the animals were group fed. The pellets for all the cows in 

each group were hand mixed and spread along a feed trough to reduce any feed competition 

between the cows in the morning. In addition, 70 g of 1:1 (calcium to phosphorous) mineral per 

animal was sprinkled on top of the distributed pellets. The chopped hay was spread along the 

trough using a tractor with a weigh scale and the barley was spread on top of the hay for each 

group in the afternoon to prevent selective consumption of feed type by the cattle.  

 Animals had ad libitum access to water and a CO-OP 2:1 Beef Cattle Range Mineral – 

Block (Saskatoon SK, Canada). The animals were administered 3 mL of Vétoquinol Vitamins AD-

500, a mix of vitamin A (500,000 IU/mL), D (75, 000 IU/mL) and E (5 IU/mL), during the acclimation 

period before the start of the study.  

4.3.5 Animal weights 

Animals were weighed approximately 1 hour after receiving their designated pellets. Any 

calves older than 4 days of age were run through the chute system and weighed. If a calf was 
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younger than 4 days their weight was obtained on the subsequent week on the appropriate 

collection day.  

Cows were weighed after the calves were moved. Pre-partum cow weights were adjusted 

for fetal and conceptus weight according to the Nutrient Requirements for Beef Cattle (NRC, 

2000).  

A baseline weight was calculated to compare the weight change between the animals. 

This calculation was done by averaging the weights of the first 2 weeks before the study (wk -1 

and wk -2). This weight was considered as the baseline value (100 %). A gain or loss of weight will 

result in a value greater than 100 % or less than 100 %, respectively. 

4.3.6 Rectal temperatures  

Rectal temperatures were recorded as the cows were weighed using a digital rectal 

thermometer. The temperature was taken twice to ensure a correct reading. In the case that the 

two readings were different, a third temperature was taken to determine the average reading. 

To compare rectal temperature between animals a baseline value was calculated for each animal 

in the same manner as the baseline weight values. 

4.3.7 Blood collection 

Blood was collected from the jugular vein of the cows at the same time they were weighed 

and 1 hour after receiving the experimental pellets. Approximately 20 mL of blood was collected. 

The side from which the blood was taken was alternated weekly to minimize vascular damage. 

Collection was done using 18 gauge needles and green-grey collection tubes with heparin 

separators (BD Vacutainer). The blood collection took approximately 2 hours in total. Following 

collection, blood samples were centrifuged for 15 minutes at 750 x g at room temperature. 

Plasma was collected in 5 mL storage vials creating 2 aliquots per animal. The plasma aliquots 

were stored at -20˚C until further analysis.   
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4.3.8 Prolactin measurement 

The prolactin concentration was determined using enzyme linked immunosorbent assay 

(ELISA) at the University of Saskatchewan Endocrine Lab in the Western College of Veterinary 

Medicine following the manufacturer’s procedure. The ELISA kits used were prolactin bovine 96-

well plates (Catalog # CEA846BO) purchased from Cedarlane Labs (Burlington, ON, Canada). The 

detection range for this kit was 2.47-200 ng/mL and the sensitivity was less than 0.98 ng/mL. The 

kits intra- and inter-assay coefficient of variation (CV) were 11% and 26%, respectively. To 

compare prolactin concentrations between animals a baseline value was calculated (in the same 

manner as baseline weights) for each animal.  

4.3.9 Progesterone measurement 

Progesterone concentrations were determined via radioimmunoassay (RIA) at the University 

of Saskatchewan Endocrine Lab at the Western Collage of Veterinary Medicine using ImmuChem 

Coated Tube Progesterone 125I RIA Kits (Catalog # 07-270102; ICN Pharmaceuticals Inc.) following 

previously used techniques (Pfeifer et al., 2009). The detection range for the assay was 0.15-20 

ng/mL with a sensitivity of 0.02 ng/mL. The intra- and inter-assay CV were 9% and 12%, 

respectively.  

4.3.10 Ovarian parameters 

All animals in the very high group (n = 6) along with the first six animals to calve in the 

control group were examined twice weekly (Monday and Thursday) starting approximately 2 

weeks post-calving using Color Doppler and B-mode ultrasonography. Color-mode, which detects 

blood flow, was used to confirm the presence of a corpus luteum (CL). A linear 7.5 MHz trans 

rectal ultrasound probe was used with the MyLabFive® ultrasound system (Esoate North America 

Inc., Indianapolis, IN, USA). Ultrasound examinations took place after blood collection was 

completed for the day. Animals to be examined were gathered and ran through the locking chute 

system where video segments of both the left and right ovaries were recorded for further 

analysis. Immediately after all the examinations were conducted for that day, the recorded video 

segments were analyzed using the MyLabFive system. For each ovary, all follicles >4 mm and the 
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corpus luteum (CL; if present) were drawn onto a recording sheet. The sizes in mm of each of the 

follicles and the CL were measured using the MyLabFive system program and recorded with the 

drawing.  Ultrasound examinations continued bi-weekly for all selected cows until two ovulations 

(i.e. a follicle was replaced by a CL) were detected. Once all ultrasound examinations were 

completed, the drawings were used to backtrack from the appearance of the CL to determine 

which specific follicle ovulated.  

 

4.3.11 Pregnancy rates 

Bulls were placed with the cows on week 9 of the experiment. All cows were checked for 

the presence of a fetus 17 weeks after the bulls were introduced to the cows (wk 26 of the 

experiment). Physical palpation and ultrasound were used to confirm pregnancy.  

4.3.12 Statistical analysis 

Animal variables were compared by calculating their change from baseline (wk -2 and wk 

-1) as described above. The change from baseline data during and following treatment was 

analyzed using IBM SPSS statistics 23 (Armonk, NY). A P-value of < 0.05 was considered a 

statistical difference. One-way ANOVAs were used to determine statistical differences between 

the treatment groups for cow weights, calf weights, rectal temperatures, prolactin and 

progesterone concentrations and time until first progesterone rise. T-tests were used to analyze 

ovarian follicle size, CL size and days to CL appearance. A chi-squared analysis was used to 

determine pregnancy rate differences. Weekly data for cow weights, calf weights, rectal 

temperatures, and prolactin concentrations were analyzed using the proc mixed model repeated 

measures procedure of SAS (version 9.2; SAS Institute Inc., Cary, NC). The model included analysis 

of the ergot treatment effect (Tx; 4 levels), time effect (“During” versus “After” ergot exposure; 

D vs. A) and the interaction between the treatment and time (Tx * D vs. A). Calving month (fixed 

factor), location (pens versus pasture; random categorical variable) and ambient temperature 

(random continuous variable) were included in the analysis as confounding covariates. P-values 

of < 0.05 were considered to be significant. The following  proc mixed model was initially tested 

for 11 time-series covariance structure (replacing ‘??’ with simple, cs, csh, ar(1), arh(1), toep, 
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toep(1), ante(1), hf, un (1), un)and the best model based on the AICC criterion was selected for 

final analysis. A final statement “lsmeans Tx / pdiff=all adjust=tukey;” was included if P-value for 

Tx reached significance level. 

Proc mixed covtest cl plots=all; 
class ID Tx DvsA Week Calving_Month Pasture; 
model Percent_Cow_wt = Tx | DvsA | Calving_Month / DDFM=kr htype=3;  
random Pasture Ambient_Temp; 

repeated Week /subject=ID (Tx) type=??; 

4.4 Results 

For analysis, four animals were excluded from the study. One cow was removed from the 

control group as she was found to be nonpregnant during the study. One cow in the low ergot 

group died in week one. Post-mortem confirmed the death was caused by uterine perforation by 

the fetal feet which was unrelated to ergot treatment. The remaining two cows were removed 

from the high group. One cow from the high ergot group was removed due to nerve injury during 

parturition and the death of the calf. The second cow-calf pair was removed from the high group 

due to calving almost a full month later than the cohorts. With these changes, the number of 

animals in the control group was reduced to 9, the low group was reduced to 9, and the high 

group was reduced to 8. The number remained unchanged in the very high group at 9 cows. 

4.4.1 Feed analysis, animal data and ambient temperatures 

The feed components along with the actual ergot concentrations are shown in Table 4.1.  

The mean raw data for cow weight, calf weight, rectal temperature and prolactin are 

shown in Table 4.2. Data compared to baseline values can be found in Tables 4.3, 4.4, 4.5, and 

4.6 and Figures 4.1b, 4.2b, 4.3b, and 4.4b. Weekly data can be found in Figures 4.1a, 4.2a, 4.3a, 

and 4.4a.  

The ambient temperature during the ergot feeding period (wk 0 to wk 8) was moderate 

ranging from 5 to 29˚C with an average temperature of 21˚C. The temperature after the ergot   
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Table 4. 1 Ration components and ergot concentration in each treatment diet. Animals were 

group fed daily. 

Total mixed ration (As feed) 
Ergot 

concentration in 
the pellet (µg/kg) 

Amount fed per animal daily (kg) 

Control Low High Very High 

Chopped grass hay – 8.5 8.5 8.5 8.5 

Barley – 2.0 2.0 2.0 2.0 

Control pellets 18 3.5 0.8 0 0 

Low pellets 221 0 2.7 0 0 

High pellets 731 0 0 3.5 0 

Very High pellets 2981 0 0 0 3.5 

Total daily intake as fed – 14.0 14.0 14.0 14.0 

Total daily intake dry matter – 12.7 12.7 12.7 12.7 

Ergot alkaloid concentration in 
ration (µg/kg of dry matter intake) 

  5.0 48 201 822 

  

 

 

 

Table 4. 2 Baseline (weeks -1 & -2 average; Mean ± SD) weights, rectal temperatures and 

prolactin concentrations of the animals prior to ergot treatment.  

  
Baseline measurements (weeks -1 & -2 average)                                                                                                                        

Treatment 
Cow weight             

(Kg ± SD) 

Calf weight*             

(Kg ± SD) 

Rectal temperature        

(˚C ± SD) 

Prolactin 

concentration       

(ng/ml ± SD) 

Control (n = 9) 554 ± 123 48 ± 10 39.0 ± 0.34 50.5 ± 15.0 

Low (n = 9) 595 ± 99 48 ± 10 39.2 ± 0.46 55.9 ± 24.6 

High (n = 8) 574 ± 91 48 ± 8 39.1 ± 0.29 65.6 ± 32.9 

Very High (n = 6) 578 ± 131 49 ± 8 38.9 ± 0.17 54.9 ± 18.4 

          * calculated using the first weight after birth 
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feeding period (wk 9 to wk 17) was also moderate ranging from 15 to 30˚C with an average 

temperature of 23˚C.  

4.4.2 Cow weights 

Cow weights were not affected by ergot treatment during (P = 0.931) or after (P = 0.471) 

the exposure period (Table 4.3). Furthermore, weekly cow weights showed no treatment (P = 

0.892) or time (during vs. after ergot treatment; P = 0.171) effect (Figure 4.1a) after accounting 

for calving month (P = 0.017). Percent weekly cow weights (percent of baseline measurements) 

showed a treatment effect (P = 0.002) and an effect for time (during vs. after; P = 0.049) ergot 

treatment periods (Figure 4.1b).  Based on the Tukey’s adjusted post-hoc comparisons, the very 

high ergot group (104.38 ± 0.57%) had greater percent body weight change from baseline 

(averaged over during and after treatment period) compared to control (104.01 ± 0.34%) and  

low ergot (102.94 ± 0.33%)  groups (P < 0.05). The high (103.95 ± 0.43%) ergot group had a greater 

percent body weight than the low ergot group, but had a lower value than the control group (P 

< 0.05). The high and very high groups did not differ; similarly, control and low ergot did not differ 

from each other. 

4.4.3 Calf weights 

Calf weights were not affected by ergot treatment during (P = 0.077) or after (P = 0.613) 

the exposure period (Table 4.4). Weekly and percent calf weights were not affected by ergot 

treatment effect (P = 0.529 and 0.623, respectively), but did produce an effect for time (during 

vs. after ergot treatment periods; P = 0.013 and 0.037; Figure 4.2). Overall, calves were growing 

throughout the study (caving month P = 0.078 and 0.026) but there was no differential effect of 

treatment (treatment * during vs. after interaction P = 0.892 and 0.866).  

4.4.4 Rectal temperatures 

Cow rectal temperatures were found to be similar for all treatment groups both during (P 

= 0.163) and after (P = 0.067) the ergot treatment period (Table 4.5). Weekly rectal temperature 

data exhibited an interaction between treatment and time (during vs. after treatment periods; P 

< 0.001; Figure 4.3a). Weekly rectal temperatures compared to baseline measurements displayed   
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Table 4. 3 The mean cow weight expressed as a percent of baseline during and after ergot 

treatment.  

  During treatment After treatment 

  (weeks 0 to 8) (weeks 9 to 17) 

Treatment1 Percent weight of 
baseline2 

SD P-value3 
Percent weight of 

baseline2 
SD P-value3 

Control (n = 9) 103.7 1.93 

0.931 

105.4 3.17 

0.471 
Low (n = 9) 103.0 2.67 102.9 3.99 

High (n = 8) 102.9 3.85 105.1 4.03 

Very High (n = 6) 102.9 4.17 105.9 5.72 
1Control = 5; Low = 48; High = 201; Very High = 822 µg/kg total daily ergot alkaloid consumption 
2Baseline = the average of w-1 and w-2, represented as 100% 
3One way Analysis of Variance, P=Probability of no treatment effect 
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Figure 4. 1. Cow weights during (9 weeks) and after (9 weeks) ergot treatment feeding. Control 

(n = 9) received 5 µg/kg, low (n = 9) received 48 µg/kg ergot, high (n = 8) received 201 µg/kg ergot 

and very high (n = 6) received 822 µg/kg ergot during ergot feeding. All cows received 2 weeks of 

control diet and 7 weeks of pasture for the duration of the after treatment feeding. Weekly mean 

(±SE) cow weight (a) and percent cow weight change from baseline (b). (Mixed model repeated 

measures, SAS)  
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Table 4. 4 The mean calf weight expressed as a percent of baseline during and after ergot 

treatment of the cows.  

  During treatment After treatment 

  (weeks 0 to 8) (weeks 9 to 17) 

Treatment1 Percent weight of 
baseline2 

SD P-value3 
Percent weight of 

baseline2 
SD P-value3 

Control (n = 9) 136.5 23.9 

0.077 

219.6 46.9 

0.152 
Low (n = 9) 147.5 20.4 239.1 41.6 

High (n = 8) 162.6 19.1 261.2 26.1 

Very High (n = 6) 158.4 20.1 251.0 30.9 
1Control = 5; Low = 48; High = 201; Very High = 822 µg/kg total daily ergot alkaloid consumption 
2Baseline = the average of w-1 and w-2, represented as 100% 
3One way Analysis of Variance, P=Probability of no treatment effect 
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Figure 4. 2 Calf weights during (9 weeks) and after (9 weeks) ergot treatment feeding to the cows. 

Control cows received 5 µg/kg, low cows received 48 µg/kg ergot, high cows received 201 µg/kg 

ergot, and very high cows received 822 µg/kg ergot during ergot feeding. All cows received 2 

weeks of control diet and 7 weeks of pasture for the duration of the after treatment feeding. 

Control n = 9, low n =9, high n = 8 and very high n = 6 once all calves were born. Baseline was 

calculated using the calves weight the first week after calving. Weekly mean (±SE) calf weights (a) 

and percent calf weight change from baseline (b). (Mixed model repeated measures, SAS)  
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Table 4. 5 Mean cow rectal temperature expressed as a percent of baseline during and after ergot 

treatment. 

  During treatment After treatment 

  (weeks 0 to 8) (weeks 9 to 17) 

Treatment1 

Percent rectal 
temperature of 

baseline2 
SD P-value3 

Percent rectal 
temperature of 

baseline2 
SD P-value3 

Control (n = 9) 100.4 0.21 

0.163 

98.9 0.20 

0.067 
Low (n = 9) 99.6 0.19 98.3 0.23 

High (n = 8) 99.9 0.33 99.2 0.21 

Very High (n = 6) 99.6 0.20 99.6 0.28 
1Control = 5; Low = 48; High = 201; Very High = 822 µg/kg total daily ergot alkaloid consumption 
2Baseline = the average of w-1 and w-2, represented as 100% 
3One way Analysis of Variance, P=Probability of no treatment effect 
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Figure 4. 3 Cow rectal temperatures during (9 weeks) and after (9 weeks) ergot treatment feeding. 

Control (n = 9) received 5 µg/kg, low (n = 9) received 48 µg/kg ergot, high (n = 8) received 201 

µg/kg ergot, and very high (n = 6) received 822 µg/kg ergot during ergot feeding. Weekly mean 

(±SE) cow rectal temperatures (a) and percent cow rectal temperature change from baseline (b). 

(Mixed model repeated measures, SAS) 
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no interaction between treatment and during vs. after (P = 0.108) nor a treatment (P = 0.374) or 

during vs. after effect (P = 0.524) (Figure 4.3b).  

4.4.5 Prolactin concentrations 

Cow plasma prolactin concentrations were not affected by ergot treatment during (P = 

0.298) or after (P = 0.870) the exposure period (Table 4.6). Weekly prolactin concentrations 

showed no treatment (P = 0.384) nor time effect (during vs. after P = 0.711; Figure 4.4a). Weekly 

prolactin concentrations compared to baseline measurements also presented no treatment (P = 

0.431) nor time effect (during vs. after P = 0.631; Figure 4.4b).  

4.4.6 Progesterone measurements 

The number of weeks until first progesterone rise postpartum (Figure 4.5a) and the 

progesterone concentration at that first rise (Figure 4.5b) were monitored. A rise in progesterone 

was considered a concentration greater than 1 ng/ml. Both the number of weeks until first 

progesterone rise postpartum (P = 0.792) and the concentration at that first rise (P = 0.376) were 

not effected by the ergot treatment.  

4.4.7 Ovarian measurements 

The largest follicle (Figure 4.6a), largest CL (Figure 4.6b) and days until CL was appearance 

(Figure 4.6c), were recorded by ultrasonography for the first and second ovulations postpartum. 

No differences were found for the largest follicle observed for the first (P = 0.403) or second (P = 

0.414) ovulation postpartum between the control and very high ergot treatment groups. The size 

of the CL was found to be larger in the very high treatment group compared to the control group 

for the first ovulation (P = 0.028), however, this difference was not apparent for the second 

ovulation (P = 0.113). No differences were observed in the number of days until the appearance 

of the CL for the first (P = 0.949) or second (P = 0.984) ovulation comparing the control and very 

high treatment groups.   
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Table 4. 6 The mean cow plasma prolactin concentration expressed as a percent of baseline 

during and after ergot treatment. 

  During treatment                                       After treatment 

  (weeks 0 to 8) (weeks 9 to 12) 

Treatment1 

Percent prolactin 
concentration of 

baseline2 
SD P-value3 

Percent prolactin 
concentration of 

baseline2 
SD P-value3 

Control (n = 9) 92.0 14.2 

0.298 

73.8 26.6 

0.870 
Low (n = 9) 98.0 25.9 73.0 32.1 

High (n = 8) 83.6 14.8 66.5 21.4 

Very High (n = 6) 81.6 16.5 63.7 30.0 
1Control = 5; Low = 48; High = 201; Very High = 822 µg/kg total daily ergot alkaloid consumption 
2Baseline = the average of w-1 and w-2, represented as 100% 
3One way Analysis of Variance, P=Probability of no treatment effect 
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Figure 4. 4 Cow plasma prolactin concentrations during (9 weeks) and after (4 weeks) ergot 

treatment feeding. Control (n = 9) received 5 µg/kg, low (n = 9) received 48 µg/kg ergot, high (n 

= 8) received 201 µg/kg ergot, and very high (n = 6) received 822 µg/kg ergot during ergot feeding. 

Weekly mean (±SE) plasma prolactin concentrations (a) and percent plasma prolactin change 

from baseline (b). (Mixed model repeated measures, SAS) 
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Figure 4. 5 Weeks (± SD) until 1st rise (>1 ng/ml) of progesterone postpartum (a) and progesterone 

concentration (± SD) at 1st rise postpartum (b) of cows receiving 9 weeks of ergot treatment 

feeding (One-way ANOVA, SPSS). Control (n = 9) received 5 µg/kg, low (n = 9) received 48 µg/kg 

ergot, high (n = 8) received 201 µg/kg ergot and very high (n = 6) received 822 µg/kg ergot during 

the exposure period.   
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Figure 4. 6 Three ovarian parameters were compared between cows postpartum in the control 

(n = 6; 5 µg/kg) and the very high (n = 6; 822 µg/kg) ergot treatment groups. The parameters 

were observed for both the first and second ovulation. Largest diameter (± SD) measured of the 

ovulating follicle (A). Largest diameter (± SD) measured of the corpus luteum (B) and Number of 

days (± SD) until the corpus luteum was observed (C). (T-test, SPSS).   
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4.4.8 Pregnancy rates 

Cows were checked for pregnancy 17 weeks (wk 26 of experiment) after bull exposure. 

There were no differences in pregnancy rates (X2 = 0.358) between the ergot treatment groups 

(Table 4.7).  

4.5 Discussion 

This study examined the effects of ergot alkaloid consumption at concentrations up to 

820 µg/kg (Total Mixed Ration) in pregnant and postpartum beef cattle to assess performance 

and reproductive endpoints during the exposure and recovery period.  

The study determined that low-concentration ergot exposure to pregnant and 

postpartum beef cows did not alter weight gain of the cows or the calves. Ergot concentrations 

up to 820 µg/kg of total dry matter intake did not alter cow prolactin concentrations, rectal 

temperature or the return to postpartum cyclicity.  

Calving month was incorporated into the weekly statistical analysis as a covariate in 

treatment effect; therefore, any statistical differences associated with calving month were not 

considered to be relevant in the discussion.  

The findings in this study indicate that feeding up to 820 µg/kg of total dry matter intake 

had no effect on cow weight gain during the early postpartum period. The interaction between 

treatment groups and calving month observed in the weekly weight data (Figure 4.1a) was most 

likely associated to the weight variation between the cows as this interaction disappeared when 

comparing the cows’ weights to their baseline values (Figure 4.1b). It should be noted the control 

group remained amongst the middle of the treatment groups indicating there was no dose-

response relationship or trend related to ergot alkaloid consumption up to 820 µg/kg on weight 

gain. If ergot exposure had reduced weight gains, one would expect at minimum the very high 

ergot exposed treatment group to exhibit a reduced weight gain as the ergot exposure increased.    

This finding is in contrast with Burfening et al. (1994) who found that average daily gain 

deceased linearly with ergot consumption from 0 to 1.6 percent of ergot in the diet. While it is   
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Table 4. 7 Pregnancy rates 17 weeks1 after bull exposure of cows exposed to 9 weeks of ergot 

exposure. 

  
Cows 

pregnant 
Total number of 
cows in group 

Pregnancy 
Rate 

Chi-
square2 

Control 7 9 78% 

0.358 
Low 8 9 89% 

High 8 8 100% 

Very High 6 6 100% 
1Bulls entered the pen on week 9 and cows were check for pregnancy on week 26 
2Probability of a different pregnancy rate between treatment groups 
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difficult to determine the actual ergot alkaloid concentration in the cited study, it was likely much 

higher than the concentration used in the current study. Depending upon the feed type and 

growth conditions, the 1.6 percent ergot content represents approximately 10,000 µg/kg alkaloid 

content. In the present study, if exposure concentrations had been increased by 10-fold, a linear 

decline may have been observed.  

Most studies establishing reduced weight gain and intake as a consequence of ergot 

alkaloid consumption have been done using endophyte infected tall fescue (Foote et al., 2013; 

Koontz et al., 2015; Mahmood et al., 1994; Paterson et al., 1995). Estimated ergot concentrations 

in these studies range from approximately 5500 µg/kg to unknown concentrations of up to 75% 

infectivity of endophyte in pasture. Alkaloids produced by C. purpurea are expected to act in a 

similar fashion by interacting with the serotonergic receptors involved in the regulation of gut 

motility, thereby, negatively affecting the motility and passage rate through the gut (J. L. Klotz, 

2015). The lack of effect found in the present study may be due to the different alkaloid 

composition in the endophyte infected fescue compared to those found in C. purpurea or more 

likely related to the substantially lower ergot alkaloid concentration in the present study. 

An effect of time (i.e., during vs. after treatment) and calving month was found in both 

the weekly and weekly change from baseline calf weight data (Figure 4.2). All of the treatment 

groups exposed to ergot demonstrated increased weight gains in the calves and numerically the 

control calves had the least body weight at the end of the study. It was anticipated that ergot 

exposure in the cows would have resulted in reduced milk production (prolactin inhibition) and 

consequently reduced nutrition (milk) would be available for the calves; however, this effect was 

not observed in the current study.  

Prolactin has been functionally linked, together with other mechanisms, to the initiation 

and maintenance of milk secretion and mammogenesis (Fell et al., 1974; Houdebine et al., 1985). 

Decreased prolactin production in the lactating cow has the potential to negatively effect calf 

weight gain postpartum. Multiple studies have observed a decline in prolactin production in dairy 

cattle as a result of the consumption of ergot alkaloids (Carson, 1977; Ilha et al., 2003; Munkvold 

et al., 1997; Paterson et al., 1995; Strahan et al., 1987). However, this effect was not observed in 
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the current study. The difference related to the current study and past research may be 

attributed to the type of cow (i.e. dairy vs. beef), the source of ergot alkaloids (i.e. endophyte vs. 

C. purpurea) and/or the ergot alkaloid concentration. If the exposure to ergot by the cows had 

included treatment groups approaching 10,000 µg/kg, a negative impact on calf weight gain may 

have been observed. Milk production related to prolactin synthesis may be a more sensitive 

bioindicator of ergot exposure in high producing dairy breeds. Milk production was not evaluated 

in the present study. 

Ergot alkaloids have the ability to cause arterial vasoconstriction thereby diminishing 

blood circulation (Seaman, 1980; Shelby, 1999; J. R. Strickland et al., 2009). Animals exposed to 

ergot alkaloids have been found to have a reduced ability to remove body heat particularly in hot 

climates or retain body heat in cold climates (Carson, 1977; Rhodes et al., 1991; Spiers et al., 

2012; J. R. Strickland et al., 2009). Although an interaction between treatment and time (during 

vs. after) was found in the weekly cow rectal temperature data (Figure 4.3a), the values were 

within the normal body temperature range of 36.7 to 39.1˚C for cows (Erickson, Goff, & Uemura, 

2004). Furthermore, this interaction was not evident in the weekly change from baseline rectal 

temperature data (Figure 4.3b). Therefore, with interpretation based on both recorded rectal 

temperature and percent of baseline values, the anticipated dose-response hyperthermia with 

increasing ergot concentrations was not evident under the current ambient temperature 

conditions at the ergot alkaloid concentrations consumed in this study. 

It is note worthy that, the ambient temperature was approximately 21˚C and no extreme 

environmental temperature conditions were encountered. Thermoregulation was unlikely to be 

altered under the moderate climatic conditions encountered in this study. This conclusion may 

not be valid under extreme cold conditions encountered in Canadian prairies during the winter 

or during the extreme hot weather in the summer in Southern United States. 

The return to normal ovarian cyclicity in postpartum cows in a timely manner is important 

for livestock farmers to maximize economic returns. This study evaluated the time of first 

postpartum progesterone rise and the concentration, timing of first postpartum ovulation and 
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size of the ovulatory follicle at that time to assess the impact of ergot exposure on the return to 

normal cyclicity in cows.  

A progesterone concentration above 1 ng/mL is an accepted indication of the progression 

of the estrus cycle and the onset of ovarian activity (Díaz, Manzo, Trocóniz, Benacchio, & Verde, 

1986; Patterson, Perry, Call, Beal, & Corah, 1989). 

Some researchers have demonstrated decreased progesterone concentrations in cattle 

with ergot alkaloid consumption (Jones et al., 2003; Mahmood et al., 1994; Poole et al., 2016), 

while other studies found no effect of ergot alkaloids on progesterone (Burke et al., 2001; 

Schuenemann et al., 2005). The present study supported the latter conclusion, there were no 

observed effect on either the time of first progesterone rise above 1 ng/mL (all treatment groups) 

or the time of first ovulation, ovulatory follicle size, and the first or second corpus luteum (control 

versus 820 µg/kg ergot alkaloid group).  The present results relating to no effect on the follicle 

size or diameter of the CL are consistent with other studies (Ahmed et al., 1990; Jones et al., 

2003; Seals et al., 2005).   

Mahmood et al. (1994) suggested that animal age can alter the effect of ergot alkaloids 

on progesterone. Grazing endophyte infected tall fescue reduced progesterone in weaned 

heifers (6-8 mo.) however, yearling heifers (11-13 mo.) were not as sensitive to the ergot 

alkaloids. It is plausible that the source of the ergot alkaloids, animal age, dose, duration, and 

time of ergot exposure may all contribute to the varied observations reported in literature 

related to plasma progesterone concentrations. It is interesting to note that pregnancy rates 

observed were not altered in the current study subsequent to ergot exposure. It should be noted 

that the limited number of animals used in this study makes it difficult to detect minor differences 

in pregnancy rates. However, considering all of the measurements together (timing of first 

progesterone rise, ovulatory follicle and corpus luteum size, timing of first ovulation, pregnancy 

rates) it appears that the consumption of ergot alkaloids at concentrations up to 820 µg/kg for 8 

weeks in peri-parturient and early postpartum period in beef cows does not impact reproduction 

and return to cyclicity. This information is important for cattle producers as normal reproductive 

performance is necessary to keep cow-calf operations profitable. Delays in conception related to 
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ergot alkaloids can be a major production loss. Ergot alkaloid concentrations up to 820 µg/kg 

appear to be acceptable in beef cattle feed without adverse reproductive effects.  

Since no clinically relevant alterations were observed during the treatment period, the 

assessment of recovery from ergot exposure in cattle from a reproductive perspective could not 

be evaluated. The lack of alterations in the ‘after’ treatment period for 9 weeks suggests there 

are also no delayed effects associated with the consumption of ergot alkaloid concentrations up 

to 820 µg/kg.  

At the present time, there is considerable controversy related to current tolerance or feed 

guidelines related to the consumption of ergot-contaminated feed by cattle. Since no effects 

were observed at concentrations approaching 820 µg/kg, tolerance guidelines based on 

reproductive performance, prolactin concentration or weight gain could be established near the 

820 µg/kg value. This recommendation may vary under extreme climactic conditions or perhaps 

with dairy cattle, with more sensitive metabolic requirements.   

In conclusion, this study was conducted to assess the potential loss of productivity and 

cow-calf production due to consumption of ergot alkaloids produced by C. purpurea. Three 

concentrations of ergot alkaloids which were evaluated at or below 820 µg/kg of total dry matter 

intake. Endpoints measured which were unaffected by ergot exposure included: cow weight, calf 

weight, rectal temperature, prolactin concentration, progesterone concentration and 

postpartum ovarian function. There was no impact on the overall performance of cow-calf 

production at moderate ambient temperatures.  

Further studies should explore the effects of ergot alkaloids produced by C. purpurea 

above 820 µg/kg but less than the current Canadian guidelines under varying climatic conditions 

and duration of exposure. Modifications of the guidelines may be influenced based on this 

updated species-specific dose-response information.  
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CHAPTER 5:                                                                                                              

GENERAL DISCUSSION 

The overall objective of this thesis was to examine ergot contamination from an 

analytical, regulatory and biological approach by assessing methods used to evaluate ergot 

contamination and evaluating current Canadian ergot feed recommendations for cattle.   

The first study (Ch.2) examined the correlation between number of ergot sclerotia and 

weight compared to the total ergot alkaloid concentration. This was important to identify as 

three different regulatory agencies in Canada: CFIA (2015), CGC (2016) and the Seeds Act 

(Government of Canada, 2015) all recommend maximum ergot concentrations based on different 

measurement criteria. The study found that a correlation did not exist at low diagnostically 

relevant concentrations suggesting that the different ergot measurement criteria (sclerotia 

count, sclerotia weight and total alkaloids concentration) cannot be interchanged. To put this 

into perspective a single ergot sclerotia can range from 18 to 450 µg/kg total ergot alkaloid 

concentration and a 0.1% net ergot weight sample can range from 1000 to 3000 µg/kg. Therefore, 

it was decided that using an analytical method to determine the total ergot alkaloid 

concentration was the most accurate considering the variability found within a single ergot 

sclerotia which has also been suggested by other researchers (Appelt & Ellner, 2009; Blaney et 

al., 2009; Young, 1981a; Young, 1981b; Young & Chen, 1982). This discovery lead to the second 

objective of the first study: to evaluate the grinding process used prior to analytical analysis and 

to determine the impact of sample volume on analytical variability. It is important that analytical 

techniques are accurate at the recommended concentrations. Both particle size prior to the 

extraction process and sample size used was found to heavily influence the accuracy of obtaining 

a representative sample particularly at lower more diagnostically relevant concentrations.  

The effect of particle size and the concentration of a sample on obtaining accurate results 

has also been shown with other mycotoxins (Lippolis et al., 2012; Schatzki & Toyofuku, 2003). In 

the overall process of assessing the contamination of ergot and other mycotoxins the greatest 

source of error remains field sampling. Johansson et al. (2000) found that in corn contaminated 

with aflatoxin, field sampling accounted for 77.8% of the variation whereas, sample preparation 
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and analytical variation only accounted for 20.5% and 1.7% respectively. Whitaker et al. (2015) 

who looked at wheat contaminated with ochratoxin found field sampling to be the highest source 

of variation at an astounding 95.3%. Ergot contamination would be expected to follow similar 

patterns where field sampling is the greatest source of error, sample preparation is a much lower 

source of error and the actual analysis is the least source of error. Therefore, after sampling the 

particle size is the most important factor in reducing the variability given the entire sample has 

been used for assessment.  

The second study (Ch.3) examined the proportions of the individual ergot alkaloids across 

different cereal crops from within Western Canada. It has been demonstrated that not all the 

ergot alkaloids have the same potency (J. Klotz et al., 2010). This may suggest that ergot 

recommendations should be based on individual ergot alkaloid concentrations rather than a total 

concentration. The proportions of the six ergot alkaloids in this study were comparable among 

cereal grains in Western Canada however, the proportions may not be comparable across all of 

Canada (Young, 1981a). Therefore, recommended total ergot alkaloid concentrations may need 

to be set based on region rather than country and regions that exhibit variation among the ergot 

alkaloid proportions should use individual ergot alkaloid concentrations rather than a total 

concentration. 

The third study (Ch.4) evaluated the impact of ergot consumption in cow-calf operations. 

The majority of studies evaluating the effects of ergot consumption have used endophyte 

infected tall fescue as the ergot source (Foote et al., 2013; Koontz et al., 2015; Mahmood et al., 

1994; Paterson et al., 1995) rather than Claviceps purpurea which is more commonly found in 

Canadian grain. The study focused on using ergot produced by C. purpurea and determined 

feeding concentrations up to 820 µg/kg will not alter cow-calf performance in moderate ambient 

temperatures. It is important to keep in mind that all factors including but not limited to 

temperature, plant type, alkaloid proportions, species and breed can influence what 

concentration is most acceptable.  

At the present time, we feel the current Canadian ergot maximum tolerance 

recommendation of 2000 µg/kg for cattle feed has been considered outdated. This 
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recommendation has little to no scientific support and is assumed to be based primarily on 

clinical effects such as gangrene. Once an animal experiences clinical symptoms such as gangrene 

the effects are often irreversible (T. Evans et al., 2004). Due to finding no effects of ergot up to 

820 µg/kg on pregnancy and postpartum beef cows in study 3 (Ch.4), a new maximum total ergot 

alkaloid tolerance recommendation of 820 µg/kg should be considered for beef cows. Further 

experiments should be conducted to reinforce the endpoints examined. While this 

recommendation does not account for extreme temperatures and may not be appropriate for all 

‘cattle’ in general (i.e. bulls and dairy cows) it is likely that if an effect were encountered at this 

concentration it would present itself as a less severe and reversible subclinical effect rather than 

an irreversible clinical effect. Ideally with advancing research, the ergot tolerance 

recommendation would be raised or lowered to the highest concentration possible without the 

appearance of subclinical effects for each beef or dairy cows and bulls. It is also likely that these 

recommendations be based on different subclinical effects depending on what group of animals 

is being referred to. Based off production requirements it would seem fitting to base the ergot 

recommendations for female beef cows on body weight and reproduction, beef bulls on body 

temperature (spermatogenesis/reproduction) and dairy cows on prolactin concentration (milk 

production).   

If the current ergot recommendation of 2000 µg/kg is lowered, accurate analytical 

techniques at lower concentrations will be required. It is also apparent that the inconsistency of 

ergot measurement methods needs to be addressed. Current methods lead to public confusion 

as the methods are not comparable which can also raise issues with importing and exporting 

grain internationally. 

The studies completed for this thesis are only a starting point for future work regarding 

ergot analysis and regulations.  
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CHAPTER 6:                                                                                                                 

MAJOR CONCLUSIONS & FUTURE DIRECTIONS 

6.1 Major Conclusions: 

The objectives of this thesis have lead to the following conclusions: 

• An analytical measurement should be used as opposed to number of ergot sclerotia or 

weight of ergot sclerotia to determine the ergot alkaloid concentration 

 

• The grinding method used prior to ergot extraction and analysis should produce a 

subsequent particle size equal to or smaller than 200 µm with more than 85% of the 

particles smaller than 400 µm in order to reduce the risk of unreliable estimates 

 

• In the case of commercial labs, the entire submitted sample should be ground to assess 

the ergot alkaloid concentration to minimize variability 

 

• Proportions of the six ergot alkaloids ergocornine, ergocristine, ergocryptine, 

ergometrine, ergosine and ergotamine were comparable among cereal grains collected 

from across Western Canada 

 

• Ergot alkaloid exposure up to 820 µg/kg will not alter performance (cow and calf weights, 

rectal temperature, prolactin concentrations and reproduction) in pregnant and 

postpartum beef cattle at modern ambient temperatures 

 

6.2 Future Directions: 

Ergot contamination of cereal crops and grasses has been of increasing concern, 

particularly in Western Canada. This concern puts pressure on the industries for improved 

knowledge, assessment and regulation of the ergot alkaloids.  
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While regulations are in place by different agencies within Canada (CFIA, CGC, Seeds Act), 

the ergot recommendations are somewhat unclear due to the inconsistent methods of 

evaluation. A standardization across all governing agencies should consider a maximum ergot 

alkaloid concentration recommendation.    

Lowering current animal maximum tolerance ergot recommendations may put pressure 

on diagnostic laboratories and regulatory agencies to ensure accurate measurements can be 

obtained at the recommended levels. Future studies should aim to improve sample collection for 

analysis and assess what sample size is required for accurate ergot alkaloid measurement at 

concentrations below the current 2000 µg/kg recommendation.   

The assessment of the effects of ergot alkaloids on cow-calf production as described in 

this thesis was only the first step in determining appropriate maximum tolerated ergot 

concentrations in feed. Future studies are needed to assess the same concentration of ergot 

alkaloids in ‘extreme’ climactic conditions (hot and cold) as this may lead to a lower ergot 

concentration tolerated by the animals. Furthermore, studies should explore bovine species and 

sex differences. Bulls may be more susceptible to the thermoregulatory effects of the ergot 

alkaloids in the process of sperm maturation. The main productive purpose of Dairy cows is 

significantly different than Beef cows (milk vs. meat) which might suggest that each should have 

their own ergot tolerance recommendation.  

Current regulations consider a total ergot alkaloid concentration however it may be 

important to consider the effect of the individual ergot alkaloids. A study completed by Klotz et 

al. (2010) demonstrated receptor affinity differences between some of the ergot alkaloids. This 

suggests that not all ergot alkaloids have the same potency. Future studies should explore the 

effects and kinetics of the individual alkaloids. Once more information has been generated with 

regards to individual ergot alkaloids, regulations can be revised to satisfy individual ergot alkaloid 

variability.  
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In summary, the following directions are proposed: 

• Standardization of the method used to evaluate ergot contamination across all Canadian 

governing agencies to reduce confusion 

 

• Assessment of what sample volume/sample size is required for diagnostic laboratories to 

accurately measure ergot alkaloid concentrations below 2000 µg/kg 

 

• Identify the kinetics and potencies of each individual ergot alkaloid to assess residues and 

withdrawal times 

 

• Assessment of ergot alkaloid effects on cow-calf production at 820 µg/kg in ‘extreme’ 

climates 

 

• Assessment of ergot alkaloids in bulls and dairy cows in order to establish specific 

recommendations 

 

• Multi-mycotoxin exposure 
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APPENDIX 

Table A: Calving dates for all cows in Study 3 (Chapter 4) 

Cow ID 
Treatment 

group 
Calving 

date (2015) 
Experimental 

week 

5 

Control 

16-Apr 0 
10 24-May 5 

38 18-May 4 

51 18-Apr 0 
77 30-Apr 2 

84 14-Apr -1 

115 27-Apr 1 

119 05-Apr -2 
149 15-May 2 

4 

Low 

24-May 4 

12 02-May 2 

14 09-May 3 
28 19-Apr 0 

32 08-Apr -1 

40 21-Apr 1 

56 25-Apr 1 
75 14-Apr -1 

154 08-Apr -1 

47 

High 

20-Apr 0 

79 30-Apr 1 

92 09-Apr -2 

121 09-Apr -2 

126 06-Apr -2 

155 08-Apr -2 
157 11-May 3 

197 08-Apr -2 

57 

Very High 

25-Apr 1 

116 16-Apr -1 

118 09-Apr -2 

147 22-Apr 0 

150 05-Apr -2 

179 04-Apr -2 
 


