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Abstract  

Blackleg of canola, caused by Leptosphaeria maculans (Desmaz.) Ces. & de Not, is a serious 

concern in western Canada. The disease had been managed successfully since 1990s with use 

of resistant cultivars and extended crop rotations until recent years when both blackleg 

incidence and severity increased noticeably. This may be attributed to changes in the 

pathogen population that erodes the resistance of canola cultivars. The resistance associated 

with Canadian canola (Brassica napus L.) cultivars (CCCs) in Canada is not clearly 

understood. The current study was conducted to investigate the race structure of L. maculans 

in commercial canola fields and determine its role in blackleg incidence and severity. In 

addition, resistance (R) genes in representative CCCs were characterized to understand their 

role in blackleg control against the current population of L. maculans.  

A total of 372 L. maculans isolates collected from 16 canola fields with different 

levels of blackleg severity in 2012 and 2013 were analysed for the presence or absence of 

particular avirulence (Avr) alleles by inoculating 12 lines of a host differential set with known 

R genes. The results indicated that the alleles AvrLm1, AvrLm3, AvrLm9 and AvrLep2 were at 

very low or undetectable levels in these fields, while AvrLm2, AvrLm4, AvrLm6 and AvrLm7 

were generally common. Since only the R genes Rlm1 and Rlm3 are found commonly in 

CCCs, this result indicates that most of our cultivars are no longer effective against the 

current pathogen population on the prairies.Variation in Avr gene frequency was observed, 

depending on the cultivar, field or region studied, but these differences alone appeared 

insufficient to explain the variability in blackleg severity in these fields, and the erosion of 

Rlm1 and Rlm3 would unlikely be the primary cause of isolated blackleg outbreaks for most 

of the fields investigated.  

Nonspecific resistance may exist in many CCCs. To characterize it, eight common 

CCCs were selected and assessed using a cotyledon inoculation assay for specific R genes 
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carried using a set of L. maculans isolates carrying known Avr genes. Three of the CCCs 

were assessed further for non-race-specific resistance using both the cotyledon inoculation 

method and a petiole inoculation method with virulent L. maculans isolates carrying neither 

AvrLm1 nor AvrLm3, as well as with droplet digital PCR (ddPCR) and fluorescent 

microscopy. The colonization of leaf tissue and progression of the pathogen into the petiole 

and stem was more limited in CCCs than in Westar, based on the hyphal spread of a GFP 

(green fluorescence protein)-labelled L. maculans isolate and on the amount of L. maculans 

DNA found in the petioles and stems of CCCs relative to those of Westar. Additionally, 

inoculated cotyledons showed substantially lower disease severity on CCCs (scores of 5–6) 

than on Westar (scores 8–9) at 14 dpi. It is therefore possible that many Canadian CCCs carry 

nonspecific blackleg resistance in their genetic background, which hinders the spread of 

pathogen hyphae from the cotyledon to the petiole and stem, as well as pathogen 

development in the stem. 
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Chapter 1. Background 

 

1.1. The importance of Canola to the Canadian economy 

Canola occupies a distinct position in oilseed crops among many countries of the world. A 

study conducted by LMC International for the Canola Council of Canada revealed that canola 

adds $19.3 billion to the Canadian economy every year, and the industry supports more than 

249,000 jobs and $12.5 billion in wages (Canola Council of Canada 2013).  

In Canada, over 90% of canola is produced on the prairies; Saskatchewan is the 

biggest producer, with an output of 8.9 million tonnes of canola seed annually, which is 

almost 50% of the national production. Alberta has slightly higher production than Manitoba; 

together they make up about another 50% of the national production. There has been a 

continuous increase in seeded canola acreage since its development as a crop in western 

Canada (Statistics Canada 2016). More than 75% of canola produced in Canada is exported. 

1.2. Blackleg of canola  

The fungus Leptosphaeria maculans (Desmaz.) Ces. & De Not. (anamorph Phoma lingam 

(Tode:Fr.) Desmaz.), which causes ‘stem canker’ or ‘blackleg’ disease, is a pervasive 

pathogen of oilseed rape and canola (Rouxel and Balesdent 2005). The disease has caused 

significant yield and quality losses of canola in Europe, Australia and Canada (West et al. 

2001; Kutcher et al. 2010), and is an on-going threat to canola production in western Canada 

(Liban et al. 2016; Zhang et al. 2015). Since this pathogen species has not been reported in 

China, it is on the quarantine list of crop pests. Therefore blackleg is a threat to Canadian 

canola exports to China, a market worth $4 billion annually (Canola Council of Canada 

2016). 
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Blackleg of canola can be caused by a complex of two species: L. maculans and L. 

biglobosa (Shoemaker and Brun 2001), with L. maculans being more virulent and reported 

from almost all canola/oilseed rape growing regions of the world except China (West et al. 

2001; Fitt et al. 2006). These species had previously been referred to as highly and weakly 

virulent forms of L. maculans until the latter was designated as L. biglobosa (Cunningham 

1927; Petrie 1978; Mendes-Pereira et al. 2003) 

Severe blackleg symptoms were first reported on canola in western Canada in the 

1970’s, and the disease spread rapidly after the initial report in Saskatchewan (Petrie 1995b). 

The disease was present on oilseed rape crops in the province earlier, but was not considered 

as a significant issue with respect to the canola production (Vanterpool 1961). Blackleg was 

the most damaging disease on canola in Saskatchewan between the early 1980’s and the 

1990’s, with yield losses up to 50% reported in individual fields (Gugel and Petrie 1992). The 

first disease epidemic occurred in 1982, resulting in an estimated 6% yield loss in western 

Canada and in some fields the loss was a much as 56% (Petrie1985b). Control 

recommendations at that time included using clean seed, fungicide seed treatment, burial of 

infested canola residues destruction of volunteers and susceptible weeds, adhering to crop 

rotations of four years, and avoiding seeding canola adjacent to previously diseased fields 

(Martens et al. 1988).  

With the introduction of resistant cultivars and use of extended crop rotations since 

the early 1990s, blackleg was controlled quiet successfully in western Canada for many 

years, although genetic changes were observed in the pathogen population (Chen and 

Fernando 2006; Keri et al. 2001; Kutcher et al. 2007). By 2009, blackleg was reported from 

an increasing number of canola fields. Based on annual provincial disease surveys, blackleg 

is increasingly observed in many areas in western Canada, with substantial damage observed 

on even resistant-rated (R-rated) cultivars. 
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 1.3. Brief background related to proposed research 

The fungus which causes blackleg of canola has a strong ability to evolve and adapt; it 

mutates frequently and consequently rapidly erodes host resistance (Kutcher et al. 2007). 

Although blackleg was managed successfully for many years in western Canada by use of 

resistant cultivars and extended crop rotations, the disease appears to be increasingly 

problematic, especially in southern Manitoba and east-central Alberta. In Saskatchewan, 

higher levels of blackleg have been reported more often from the north-western and south-

eastern regions (Miller et al. 2012; McLaren DL et al. 2012; Miller et al. 2013; McLaren DL 

et al. 2013,). This rising trend may be caused by a shift in the pathogen population that erodes 

the resistance genes carried by current cultivars, due to shortened crop rotations or a 

combination of both. Race-specific resistance targeting certain avirulence (Avr) alleles in the 

pathogen population tends to be highly effective at the seedling stage, as well as adult-plant 

stages, but this type of resistance can often break down in short period of time, with changes 

in the pathogen race structure. It was not clear if the severe blackleg disease observed on 

some of the R-rated cultivars would be due to the loss of certain Avr alleles in the pathogen 

corresponding to the R genes in these cultivars. About 70% of canola cultivars or breeding 

lines in Canada carry the R genes Rlm1 or Rlm3 or both, whereas other R genes are found 

relatively uncommon (Zhang et al. 2015).  

The main purpose of this study was to determine if the variable levels of blackleg 

severity observed on R-rated canola cultivars would be related to the race structure of the 

pathogen. Additionally, non-race-specific resistance was investigated and characterized using 

representative CCCs, and its role in managing blackleg in western Canada assessed.   These 

data, when combined with the crop management and cultivar information from the 

commercial fields studied, may provide insights into the cause of the recent increase in 

blackleg.  
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1.3. Hypotheses 

1. The severe cases of blackleg observed on R-rated canola cultivars might be due an 

adaptation of the pathogen to specific R genes carried by CCCs. 

2. Both qualitative and quantitative resistance may exist in many Canadian CCCs, which 

reduces the risk of widespread failure of CCCs with Avr-gene fluctuation in the 

pathogen population.  

3.  Quantitative resistance may reduce the impact of blackleg on canola by reducing the 

pathogen spread from infected cotyledons to the stem and limiting infection 

development in basal stem tissues. 

1.4. Objectives 

The objectives of this research were to: 1) characterize the Avr-gene profile of L. maculans in 

commercial canola fields with different levels of blackleg damage to decipher if lack of 

certain Avr genes in the pathogen population would be the cause of the severe blackleg 

observed; and 2) assess the interactions of R-rated canola cultivars with L. maculans carrying 

and not carrying corresponding Avr genes, as well as the non-race-specific resistance based 

on pathological, microscopic and molecular characterization of the infection process. This 

information may help producers, as well as industry to better understand the risk of blackleg 

associated with pathogen-cultivar dynamics, as well as other factors for optimal management 

of the disease.  
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Chapter 2. Literature review 
 

2.1. Canola 

Canola has become one of the world's most important oilseed crops in a relatively short 

period of time (Lin et al. 2013) and a moneymaking commodity for producers in Canada. The 

word canola was coined in 1979, representing “Canadian oil” (Statistics Canada 2009). To 

produce canola, the products must meet internationally recognized standards principally, low 

levels of erucic acid and glucosinolate (Mag 1983; Lin et al. 2013). Canola is the third most 

common cooking oil by volume after palm and soybean (Lin et al. 2013). The global 

production of canola in 2010 and 2011 was about 38 million metric tonnes (MMt). Canada 

became the biggest producer that year, with 15.4 MMt, followed by China at 14.0 MMt. of 

the five top producing countries in 2012 (Figure 2.1.), Canadian canola accounted for 

approximately 31% of world production. World production soared to 46.5 MMt in 2012 

(Morrison et al. 2016). 
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Figure 2.1. The global production of canola (million metric tonnes) in 2012. The largest 

producer was Canada, with 15.4 million tonnes (FAOSTAT 2012). 

Canola contributes approximately 19.3 billion dollars to the Canadian economy each 

year and is the second largest crop seeded in Canada next to wheat. The production of canola 

has increased continuously for many years, with a yield increase from 1,330 kg ha
–1

 to 2,025 

kg ha
–1

 between 2000 and 2013 (Morrison et al. 2016). The industry provides work for about 

261,000 people, by creating 194,000 paid jobs. The sector provides approximately $12.5 

billion in wages (Canola Council of Canada 2013). In addition, about 65,000 farm families 

(excluding growers) who are involved in canola production are supported by this sector. 

Saskatchewan accounts for almost 50% of national canola production, contributing $5 billion 

in the provincial economy (Statistics Canada 2016).  

Oilseed rape was grown as early as 2000 BC; mostly in Asia and the Mediterranean 

region during ancient civilisations (Colton and Potter 1999). Europeans started growing this 

crop as a source of lamp oil in the beginning of the 13
th

 century (Colton and Potter 1999). In 

Canada, commercial cultivation of oilseed rape began in 1942 during World War II for use as 

a lubricant on war ships (Statistics Canada 2009).  
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Canola belongs to the plant family Brassicaceae (previously Cruciferae) comprised of 

about 375 genera and 3,200 species. Brassica is one of the genera and B. napus L. subsp. 

oleifera, originating from a cross of B. oleracea and B. rapa (Nagaharu 1935), is a crop 

species commonly known as oilseed rape, rapeseed or canola (Jessop et al. 1986).  

In Canada, edible oil was extracted from oilseed rape for the first time in 1956 

(Colton and Potter 1999). Canola, developed by breeders in Saskatchewan and Manitoba 

from rapeseed plants through conventional breeding during the decade of 1960-70, was the 

first rapeseed crop with low erucic acid. The cultivar LEAR, an abbreviation of Low Erucic 

Acid Rape, was released in 1968 (B. napus cv. oro). This was followed by the release of the 

first double low (low erucic acid and low glucosinolate) variety in 1974 (Potter et al. 1995). 

Since then, Canada has become the world leader in the production of low erucic acid 

rapeseed or canola. Canola is grown primarily for seed, which contains up to 45% pure oil. 

Canola oil is mainly used for cooking, although use as margarine is common. Canola meal, a 

by-product after oil extraction, is a good source of high protein animal feed. 

Based on the study of chloroplast nuclear and mitochondrial DNA, Song and Osborn 

(1992) suggested that B. montana is closely related to a prototype of B. napus that appears to 

share the cytoplasm of both B. oleracea and B. rapa. Most cultivated B. napus, however, 

carry a cytoplasm different from either B. oleracea or B. rapa. It has also been suggested that 

B. napus has multiple origins, but the current species resulted from crosses between B. 

oleracea and B. rapa.  Canola growth and development can be divided into several stages. 

The longevity of each stage is affected by factors including day length, temperature, 

nutrients, moisture (humidity) and cultivar. Temperature is often the most important 

environmental factor that regulates the growth and development of canola in Western Canada 

(Canola Council of Canada 2016a).  
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Canola (B. napus) is a cool-season crop (Johnston et al. 2002) that cannot tolerate 

drought. The crop has acclimatised to many regions of the world, and does well over a wide 

range of soil conditions if fertility and moisture are sufficient (Nielsen 1997, 1998). The ideal 

temperature for maxim growth is above 20ºC (ranging between 12ºC and 30ºC). Diseases, 

insects and weeds are limiting factors for canola production and extended crop rotations are 

generally good practices for alleviating the negative impacts of these pest problems by 

reducing the buildup of the pest population (Canola Council of Canada 2016b; Kutcher et al. 

2011a).  

Except for a few hardy winter type canola cultivars seeded in the fall in southern 

Ontario, most of the canola cultivars grown in Canada are annual spring types. Though B. 

napus is self-pollinated, up to 20-30% outcrossing has been reported (Rakow and Woods 

1987). The transmission of pollen is mostly through insects, but it can also be done by 

physical contact of racemes of flowers. There are no reports of vegetative propagation, and 

consequently seed is the only source for successive generations (Rakow and Woods 1987). 

Reproduction through parthenogenesis has been reported in B. napus (Eenink 1974) when in 

some conditions pollen from different species of plants lands on the stigma (Rieger et al. 

2002). 

2.2. Blackleg of Canola  

Oilseed rape or canola can be affected by many diseases, but stem canker, also known as 

blackleg, caused by Leptosphaeria maculans, can be extremely damaging. The fungal 

pathogen was first identified as Sphaeria lingam on cabbage in 1791 (Henderson 1918), and 

blackleg disease of cruciferous vegetable crops has been known for over 100 years. The 

name, Leptosphaeria maculans (Desm.) Ces. & de Not, was suggested by Tulasne in 1863 

(Balesdent et al. 2005), and its anamorph is Phoma lingam Tode ex Fr. Blackleg can be 

caused by a complex of two species: L. maculans and L. biglobosa (Mendes-Pereira et al. 
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2003), but L. maculans is the most prominent and damaging species in most canola/oilseed 

rape production regions, including Australia, Canada and Europe. The species L. biglobosa 

‘Canadensis’ is abundant on oilseed rape in Canada since it was first reported in 1957, but is 

considered a weak pathogen of canola (Williams and Fitt 1999; Fitt et al. 2006).  It normally 

appears late in a growing season, causing superficial wounds and posing little economic 

damage to the crop (Canola Council of Canada 2016c). Worldwide, this species is considered 

less aggressive than L. maculans (Fitt et al. 2006). In China, canola imports carrying L. 

maculans from Australia and Canada are considered a major risk factor for introduction of 

the pathogen. In Canada, L. maculans was found initially in Saskatchewan in 1975 and the 

pathogen spread subsequently to Alberta by 1983 and Manitoba by 1984 (Gugel and Petrie 

1992).  

The prevalence and severity of blackleg varies among growing seasons (Howlett 

2004), cropping system and canola varieties (Aubertot et al. 2004, 2006). It may also vary in 

different agro-ecological settings (Sosnowski et al. 2004). Leptosphaeria maculans is 

believed to have been present for over 60 years in Europe (Aubertot et al. 2004), 80 years in 

Australia (Sivasithamparam et al. 2005), and 40 years in Canada (Gugel and Petrie 1992; 

McGee and Petrie 1978). Diversity has been reported in this pathogen, and characterized on 

the basis of race structure (Petrie 1988), physiology (McGee and Petrie 1978), biochemical 

properties (Pedras and Biesenthal 2000), genetic variation (Gall et al. 1995), and molecular 

markers (Goodwin and Annis 1991). Evolution in virulence has been observed in western 

Canada (Chen  and Fernando 2006; Kutcher et al. 2007), which was linked to the adaptation 

of the pathogen to canola cultivars with genetic resistance (Kutcher et al. 2007). The same 

happened in France (Rouxel et al. 2003a) and Australia (Li et al. 2003; Sprague et al. 2006), 

where major-gene resistance was overcome when L. maculans adapted to the R genes Rlm1 

in France and LepR3 in Australia (Rouxel et al. 2003; Sprague et al. 2006). 
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2.3. Pathogen biology  

Leptosphaeria maculans is an ascomycete fungus, and has historically been classified as a 

Loculoascomycete, a class comprising of over 6000 species (Silva-Hanlin and Hanlin 1999). 

The fungus affects mostly Brassica crops, especially B. napus and B. rapa oilseed rape or 

canola (Balesdent 2005). It is now in the class Dothideomycetes (syn. Loculoascomycetes). 

Frequent revisions of taxonomic subdivisions, which include the genus Leptosphaeria, have 

been described by Liew et al. (2000). At present, L. maculans belongs to the largest order, 

Pleosporales, which encompasses several important plant pathogens including Phaeosphaeria 

nodorum (formerly L. nodorum) and the genera Alternaria, Cochliobolus, Pleospora, 

Pyrenophora and Venturia (Berbee 2001).  

Several species of Leptosphaeria have described on crucifers, either as saprophytes or 

pathogens (Petrie 1969; Rouxel et al. 2004). Over time, most of these species were believed 

to be a single species, i.e. L. maculans, initially separated into ‘highly virulent’ (A or Tox
+
) 

and ‘weakly virulent’ (B or Tox
0
) groups producing destructive stem canker and less 

damaging stem lesions, respectively (Rouxel et al. 2004; Williams and Fitt 1999). Molecular 

and biochemical differentiation of L. maculans and L. biglobosa isolates resulted in up to 

seven subspecies, of which some were represented by only a few isolates and were 

hypothesized to have a very narrow host range (Mendes-Pereira et al. 2003). The absence of 

L. maculans in Canada until the 1970s and in Poland until the early 1990s suggests that this is 

a ‘younger’ species, which continues to spread and is slowly replacing the less virulent L. 

biglobosa as is observed in western Canada and Poland (Rouxel et al. 2004; West et al. 2002, 

2004). The continued spread of L. maculans is certainly a concern to countries such as China, 

where only L. biglobosa has been reported (Fitt et al. 2008).  

Leptosphaeria maculans is a single-cross hybrid ascomycete with a genome size of 

about 34 Mb (Cozijnsen et al. 2000) carrying about 10,000-12,000 genes on 15 to 16 
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chromosomes, which are easily detected through pulsed field gel electrophoresis (Howlett et 

al. 2001). The genome of L. maculans has a unique structure; it is divided into separate 

irregular portions. These blocks are either gene rich or gene poor; those gene-poor regions 

hold some active genes, which are the main players during host infection as effector-

avirulence genes, when no corresponding R genes exist in canola (Howlett et al. 2001).  

2.4. Disease cycle 

The life cycle of L. maculans can be complex. The existence of this pathogen is based on 

several modes but colonization in seed and crop stubble is the primary mode of survival and 

dispersal (Williams and Fitt 1999). Both pseudothecia and pycnidia contain viable spores for 

many years and under favourable conditions, high RH and temperature, pseudothecia will 

release ascospores and pycnidia will ooze a pink-colored mass of pycnidiospores (Ash 2000). 

Germ tubes of conidia and ascospores find their way into host leaf tissues via stomata or 

wounds, where fungal hyphae grow inter-cellularly after initial infection (Hammond and 

Lewis 1987). This phase of infection is symptomless initially but can lead to a necrotrophic 

phase as the infection progresses. By colonizing canola residues, L. maculans continues its 

saprotrophic mode (Punithalingam and Holliday 1972). Sexual production occurs when the 

two mating types are present under particular temperature, radiation, and suitable organic 

substances (Williams 1992; Petrie and Lewis 1985a). 

2.5. Disease epidemiology and impact  

In a way, the infection by blackleg is similar to that of mono-cyclic diseases; the epidemics 

are commonly initiated by airborne ascospores and/or pycnidiospores on cotyledons or lower 

leaves (Hall 1992; Mahuku et al. 1997). The disease incidence is often affected by the 

amount of initial inoculum, mostly from infested crop residues in the field (Hall 1992; 

Thurwachter et al. 1999) and, to a much less extent, from infected seed (Jacobsen and 

Williams 1971; Wood and Barbetti 1977a). The inoculum of L. maculans may also be blown 
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from other host cruciferous species (Hall 1992). High moisture, in the form of rain (Peres and 

Poisson 1997) or dew (McGee 1977), facilitates release of ascospores from pseudothecia on 

infested woody residues (Hall 1992; Mahuku et al. 1997), and this activity can last for an 

extended period of time but often coincides with the emergence of canola when plants are 

susceptible.  

The release of ascospores often occurs in late fall or early winter in Australia, eastern 

Canada or western Europe (Rempel and Hall 1993; Gladders and Musa 1980), which 

coincides with the infection of “winter canola” seedlings. The situation in western Canada or 

Eastern Europe, however, is different; ascospores often are released in much greater amounts 

in spring when spring-seeded canola is in the seedling stage (McGee and Petrie 1979; 

Jedryczka et al. 1999).  

 

 

Figure 2.2. Lesions on young leaves of canola resulting from L. maculans infection under 

field conditions. 
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Wind is the key factor for inoculum dispersal (Shoemaker and Brun 2001; West et al. 

2001). The L. maculans ascospores (∼50×7 μm), generally come from the stubble of previous 

crops, penetrates cotyledons or young leaves through stomata or wounds, and proceeds 

further to the stem via petioles (West et al. 2001). The infection of cotyledons or young 

leaves and stem tissues may also be inferred as primary and secondary infections. On infected 

cotyledons or leaves, the tissues usually display greyish-green lesions (Figure 2.2) with 

invisible boundaries and quite often pycnidia (Brun et al. 1997; Ansan-Melayah et al. 1997). 

After the pathogen grows inside the stem, external symptoms are rarely observed until the 

plant reaches maturity, when basal stem cankers may be observed. The weakening of the 

lower stem by the disease can cause pre-mature ripening or lodging (Rouxel and Balesdent 

2005).  

Major epidemics were reported on oilseed rape in France in 1950 (Li et al. 2003; 

Rouxel et al. 2003). Australia encountered severe epidemics of blackleg on oilseed rape in the 

early 1970’s, which devastated its thriving oilseed industry (McGee 1977). Similar epidemics 

imperiled the production of canola/oilseed rape in Canada and Europe in the 1970s and 1980s 

(Gugel and Petrie 1992). In contrast, blackleg is quite rare in Scotland or in Asia where large 

areas of oilseed rape are grown annually.  

Yield loss caused by blackleg has been recognized for almost 100 years on many 

horticultural crucifer crops (Henderson 1918) but the information is sporadic on canola. In 

general, total crop destruction due to seedling death is rare and yield loss of approximately 

10% may occur when disease incidence is high. However, 30 - 50% yield loss can happen 

under extreme disease situations (Hall et al. 1993; Zhou et al. 1999; Barbetti and Khangura 

1999). In western Canada, shortly after the identification of L. maculans in 1975, the average 

incidence of blackleg increased tenfold between 1978 and 1981.  By 1982 the disease was 

estimated to cause overall yield loss of 6% in Saskatchewan (Petrie 1985b), but in some 
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fields, the loss was as much as 56%. Field survey results in Saskatchewan indicated that 65% 

of L. maculans isolates were virulent on canola in 1986 (Jesperson 1986). In the 1980s, the 

disease became epidemic in Alberta, Manitoba and Ontario, and by 1988 several regions in 

Alberta reported yield losses of approximately 10% (Juska et al. 1997). By 1987 blackleg had 

been found in 83% of canola fields surveyed in Manitoba (Platford 1988), with 

approximately 8% yield loss. In Ontario, disease incidence increased from 32% in 1986 to 

69% in 1987, resulting in approximately 8% yield loss. Both incidence and severity of 

blackleg continued to increase until the early 1990s (Gugel and Petrie 1992).  

Weather conditions affect the persistence of pseudothecia on crop residues due to 

effects on the rate of decomposition, which is influenced by soil moisture and temperature. 

Under hot and dry conditions in Western Australia, canola residues may remain as an 

inoculum source for up to 4 years (Barbetti and Khangura1997). In western Canada, 

pseudothecia may also last for several years due to cold winters and relatively dry summers 

(Petrie 1986). In contrast, the mild wet climate in the UK encourages rapid decomposition of 

debris often within 2 years (West et al. 1999). 

2.6. Blackleg resistance  

Rouxel  and Balesdent (2005) referred to Muller (1953) and Muller et al. (1957) and reported 

that L. maculans also infects non-cruciferous plants, including Artemisia campestris 

(Asteraceae), Humulus sp. (Moraceae), Phaseolus sp. (Fabaceae), Swertia perennis 

(Gentianaceae) and Teucrium sp. (Labiatae). Later studies have generally indicated that L. 

maculans is strictly a pathogen of crucifers and affects mainly Brassica crops (Petrie 1969). 

Molecular approaches have determined that many isolates from cruciferous weeds belong to 

several subspecies of L. biglobosa (Mendes-Pereira et al. 2003). Recent work by Li et al. 

(2005) showed that L. maculans would be able to infect several non-brassica species in the 

Brassicaceae family under field conditions, including Raphanus sativus (radish), R. 
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raphanistrum (wild radish), Sinapis alba (white mustard) and Eruca vesicaria ssp. sativa 

(rocket salad). The model plant Arabidopsis thaliana has also been suggested to be a 

potential host for L. maculans, at least under laboratory conditions (Bonham et al. 2004). 

Two types of blackleg resistance exist in canola; quantitative and qualitative (Rimmer 

and Van den Berg 1992). Quantitative resistance is non-race specific and may be controlled 

polygenically. Often the resistance is not conspicuous until the plant attains the adult stage. 

Race-specific or qualitative resistance is controlled by specific R genes that interact with the 

pathogen in a “gene-for-gene” fashion (Ansan-Melayah et al. 1998). This type of resistance is 

usually effective at an early growth stage. It is generally believed that all canola cultivars in 

Canada carry a certain level of resistance to L. maculans although the source and nature of 

the resistance is generally unknown (Rimmer 2006). 

2.7. Host-pathogen Interactions 

Like other living organisms, crop plants tend to guard themselves by resisting against attacks 

from pathogens, invertebrates or even parasitic plants (Runyon et al. 2010). Due to lack of a 

circulatory system to activate immunity in response to pathogen attack, each single cell of a 

plant may be equipped with a built-in mechanism of defence inducible upon infection. This 

singularity separates the defence mechanism of plants from the immune system of vertebrates 

(Walbot 1985). Plant breeders generally acknowledge that most of the time disease resistance 

is inherited as a single dominant or semi dominant gene (Keen 1990). With genomic studies 

on both host plants and pathogens, and the knowledge of avirulence alleles in the pathogen 

population, our understanding of interactions between L. maculans and Brassica spp. has 

increased greatly in recent years (Balesdent et al. 2005; Stachowiak et al. 2006).  

To understand these interactions, it is important to differentiate between two types of 

resistance carried by the host: 1) qualitative resistance expressed at seedling and adult-plant 

stages, and 2) quantitative resistance which is more pronounced at the adult stage with 
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reduced incidence and severity of basal stem canker or blackleg. Adult plant resistance (APR) 

in the field may be conferred by race-specific major genes or race non-specific polygenes 

(Delourme et al. 2006). The presence or absence of specific R genes in B. napus or Avr genes 

in L. maculans can only be determined by genotyping the host or pathogen population. The R 

genes that confer resistance at cotyledon and adult plant stages are expected to differ from 

each other (Ballinger and Salisbury 1996), and in most cases they may be linked (Li and 

Cowling 2003; Zhu and Rimmer 2003). The mechanism of quantitative resistance may 

change with the host/infection stage or resistance source used (Delourme et al. 2006). Hence, 

further characterization of the interaction in relation to APR and race-specific resistance at 

different plant/infection stages may help better decipher the modes of action involved in 

blackleg resistance. Often host resistance responses include the hypersensitive reaction 

surrounding the infection site that may quickly arrest pathogen hyphae. Additionally, the 

production of callose, phytoalexin and lignin, accumulation of pectin in the lumen of xylem 

vessels, and induction of pathogenesis-related (PR) proteins may all contribute to the 

resistance responses of plant hosts (Hammond et al. 1985; Chen et al. 1996).  

2.8. Strategies of host-plant resistance to disease 

Many plants are bestowed with a well-developed and well-organized defence mechanism, 

through which they can resist attacks by microbial pathogens (Dangl and Jones 2001). Upon 

infection, the plant discerns the pathogen through pathogen associated molecular patterns 

(PAMPs), which involves the recognition of common features of microbes (Zipfel and 

Rathjen 2008). Pathogens may also have well-developed mechanisms to escape recognition 

through the production of “pathogenicity effectors” (Chisholm et al. 2006). The battle does 

not stop here and the process of guard and decoy between the pathogen and host is dynamic 

(Chisholm et al. 2006; Jones and Dangl 2006). In plants, Dangl and Jones (2001) proposed 

the guard theory, which suggests the indirect recognition of a virulence factor or pathogen. It 
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suggests that R proteins act by watching (guarding) for the effectors, targeting proteins 

encoded by resistance genes are sometimes called (r proteins) in plants and any change in 

them results in the activation of R proteins which triggers disease resistance in the host 

(Dangl and Jones 2001; Jones and Dangl 2006; Van Der Biezen and Jones 1998). This 

recognition is triggered by avirulence (Avr) genes in the pathogen that correspond to R genes 

in the host following the gene-for-gene theory (Flor 1942). This facilitates the defense 

mechanism of a plant to respond to a particular tactic of pathogenesis at a faster rate than that 

of the plant can adapt to. Where, one NBS-LRR protein is able to recognize the effects of 

more than one virulence factor or effector (Dodds and Rathjen 2010)  

Effectors secreted by the pathogens during early infection are small molecules that 

facilitate the infection by the pathogen (de Jonge et al. 2011). Effectors, which are Avr 

proteins co-evolved with host R proteins encoded by major R genes. This relationship abides 

the gene-for-gene principle between an Avr gene and its corresponding R gene that enables 

the plant to neutralize the effects of Avr proteins. This phenomenon is called effector-

triggered immunity (ETI) by Plissonneau et al. (2016). 

2.9. Additional host resistance strategies 

The interaction between Brassica spp. and L. maculans can be complicated and may not 

always follow the gene-for-gene model, as shown in recent studies when AvrLm3 and 

AvrLm4-7 alleles were involved (Plissonneau et al. 2016). The highly expressed allele of 

AvrLm3 seems not to have identifiable homologues in other fungal species, not even those 

closely related to L. maculans, including L. biglobosa and L. maculans f. sp. lepidii 

(Grandaubert et al. 2014). Although AvrLm3 possesses all the features commonly found in 

Avr proteins of L. maculans, the presence of AvrLm4-7 would deter its recognition by the 

corresponding R gene, Rlm3. Conversely, if AvrLm4-7 is absent, AvrLm3 functions as 

expected. This may be due to interactions between AvrLm3 and AvrLm4-7, where Rlm3-
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trigered resistance is ‘concealed’ by the functional alleles of AvrLm4-7 (Houterman et al. 

2008). It appears that co-existence of AvrLm3 and AvrLm4-7 in L. maculans would subdue 

pathogen recognition by Rlm3 (Plissonneau et al. 2016).  

A similar situation occurred in the interactions between the Avr genes AvrLm1 and 

AvrLepR3 with the R genes Rlm1 and LepR3; cloning of LepR3 confirmed that Rlm1 and 

LepR3 are separate R genes that both interact with the corresponding avirulence genes 

AvrLm1 and AvrLep3 (Larkan et al. 2013). Therefore, when the cv. “Surpass 400”, which was 

initially believed to carry only LepR3, was used to identify Avr genes in the pathogen, the 

reactions were complicated because the cultivar would also react to the isolates that carried 

AvrLm1 (Van de Wouw et al. 2009). As LepR3 interacts with AvrLm1, and Rlm1 with 

AvrLepR3, additional tests were required to identify AvrLm1 and AvrLep3 in the pathogen 

population.  

2.10. Mechanisms of blackleg resistance 

Both quantitative or APR, and qualitative, or race-specific resistance have been reported in 

canola against L. maculans (Delourme et al. 2006). In some cultivars both types of resistance 

may exist. For example, Zhang et al. (2015) reported that more than 50% of CCCs smight 

carry a level of APR against blackleg. Race-specific resistance is conferred by a known R 

gene and expressed strongly at seedling stages. It is generally believed that the recognition 

between a specific R gene and it’s corresponding Avr gene in the pathogen results in a 

cascade of host-defense responses (Ansan-Melayah et al. 1998).  

To date, at least 18 specific R genes have been reported in Brassica species against L. 

maculans (Zhang et al. 2015); Rlm1, Rlm2, Rlm3, Rlm4, Rlm7 and Rlm9 were originally from 

B. rapa or B. oleracea, but have been identified in B. napus. These R genes have been 

mapped to the linkage groups N7 and N10 in B. napus (Ferreira et al. 1995; Mayerhofer et al. 

1997; Ansan-Melayah et al. 1998; Zhu and Rimmer 2003; Rimmer 2006; Delourme et al. 
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2006). Rlm8 and Rlm11 were identified also in B. rapa (Balesdent et al. 2002, 2013), Rlm5 

and Rlm6 were in B. juncea (Chevre et al. 1997; Balesdent et al. 2002), and Rlm10 in B. nigra 

(Chevre et al. 1996; Eber et al. 2011). The genes LepR1, LepR2, LepR3, LepR4 and RlmS 

were identified from B. rapa subsp. sylvestris (Yu et al. 2005, 2007; Van de Wouw et al. 

2009), and BLMR1 and BLMR2 from B. napus cv. Surpass 400 (Long et al. 2011). Of these 

only the R genes LepR3 (also interacts with AvrLm1) and Rlm2 have been cloned so far 

(Larkan et al. 2013, Larkan and Borhan 2015). At least seven of the Avr genes in L. maculans 

have been cloned, which include AvrLm1 (Gout et al. 2006), AvrLm2 (Ghanbarnia et al. 

2015), AvrLm3 (Plissonneau et al. 2016), AvrLm5/AvrLmJ1 (Van de Wouw et al. 2014), 

AvrLm4-7 (Parlange et al. 2009), AvrLm6 (Fudal et al. 2007) and AvrLm11 (Balesdent et al. 

2013).  

Plants, with quantitative resistance deters infection and colonization by pathogen, 

hence the disease development on the host (Poland et al. 2009; Young 1996). It is often 

characterized as partial, polygenic, horizontal, non-race specific or field resistance. Against 

blackleg, this type of resistance is more manifested in the adult-plant stage than in seedling 

stage. 

2.11. Avr genes in the L. maculans population  

With sexual recombination, L. maculans has a great ability to adapt to, and overcome a 

specific R gene, especially when the pathogen population is large the host plants are abundant 

(Rouxel and Balesdent 2005; West and Fitt 2005). Race-specific R genes exert strong 

selection pressure on the pathogen population, allowing virulent mutants to adapt to the host 

rapidly (McDonald and Linde 2002). There have been examples of L. maculans adapting 

rapidly to new R sources in oilseed rape on which artificial inoculum was applied (Brun et al. 

2000) or in commercial fields where canola/rapeseed cultivars carrying new R genes were 

introduced (Li et al. 2003; Rouxel et al. 2003; Sprague et al. 2006). In each case, the 
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pathogen population likely changed and became virulent only three to four years after the 

introduction of the new cultivars. To deploy effective R genes and restore cultivar resistance 

to blackleg, it is useful to understand the Avr gene structure in the pathogen population 

(Dilmaghani et al. 2009). 

A total of 16 Avr genes have been identified in L. maculans, and a differential set of 

hosts with known specific R genes can be used to study the Avr gene structure in a pathogen 

population (Kutcher et al. 2007). Differences among L. maculans populations in terms of race 

structure, diversity and complexity have been shown globally; 18 races have been found in 

Australia carrying an average of 5.11 virulence alleles per isolate but only 8 races identified 

in Europe carrying 4.33 virulence alleles per race (Balesdent et al. 2005).  

Studies of the L. maculans Avr-allele structure were conducted in France (Balesdent 

et al. 2006) and northern Europe (Stachowiak et al. 2006), with variations noticed in 

pathogen populations in different regions. Balesdent et al. (2006) suggested that even with 

the high frequency of certain Avr alleles, the virulence alleles already present in the pathogen 

population would eventually be capable of overcoming each of the nine R genes (Rlm1 - 

Rlm9) identified. For example, AvrLm6 and AvrLm7 were detected in greater than 99% of the 

1,787 isolates characterized, but AvrLm2 and AvrLm9 were absent (Balesdent et al. 2006). 

Using Rlm6 or Rlm7 may rapidly select for the corresponding virulent alleles in the pathogen 

population. Similarly, in a pan-European study involving isolates from the UK, Germany, 

Sweden and Poland, Stachowiak et al. (2006) did not detect the alleles AvrLm2, AvrLm3 or 

AvrLm9 among the 603 isolates examined. The alleles AvrLm1 and AvrLm4 were only at low 

levels (< 10%), while the frequency of alleles AvrLm5 (86%), AvrLm6 (100%) and AvrLm7 

(> 99%) was high.   

Balesdent et al. (2005) characterized race structure of 63 isolates from a global 

collection by classifying them into pathogenicity groups (PGs). The analysis of those isolates 
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revealed geographical differences in the proportion of PGs. Of 26 races, 18 were identified 

from Australia, which was higher than Europe with eight races. The average number of 

virulence alleles in isolates collected from Australian was also higher (5.11) than in Europe 

(4.33) or Canada (3.46).  

In Germany, 644 isolates of Leptosphaeria maculans were collected from four areas 

in northern Germany in autumn 2011 and 2012. A total of 13 races were determined by 

inoculating the canola cultivars carrying six specific resistance genes: Rlm1, Rlm2, Rlm3, 

Rlm4, Rlm7, and Rlm9, where race Av5-6-7-(8), virulent to (Rlm1-4 and Rlm9) was detected 

in 85% of the isolates, race Av1-5-6-7-(8) (virulent to Rlm2–4 and Rlm9) detected in 10% of 

the isolates, and only six of the 644 isolates exhibited (0.9 %) virulence to Rlm7 (Winter and 

Koopmann 2016). 

In western Canada, signs of virulence evolution in the pathogen population were 

observed in late 1990s (Chen and Fernando 2005; 2006; Keri et al. 2001). A pathogenesis-

grouping (PG) system was used initially to detect changes in the pathogen population 

(Kutcher et al. 2007).  Further genetic studies identified a large number of R-genes in 

Brassica spp.; therefore the PG classification system, which was based on three resistance 

genes, explained limited variability of the pathogen population on the prairies.  Thus, races of 

L. maculans were described on the basis of avirulence genes carried by each isolate (Kutcher 

2010). More recently, following the same approach, the analysis of L. maculans isolates 

collected from the prairies showed that about 98% of the isolates carried 3 to 6 Avr genes 

(Kutcher et al. 2010). In general the frequency of AvrLm1, AvrLm3, AvrLm9 and AvrLep2 

were very low in many regions of the prairies, indicating that canola cultivars carrying the 

corresponding R genes Rlm1, Rlm3, Rlm9 or LepR2 would no longer be effective. 
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2.12. Management of blackleg in canola  

Blackleg of canola was managed successfully in western Canada for almost 20 years with a 

combination of resistant cultivars and diverse crop rotations (Kutcher et al. 2011a). In the 

early 1990’s resistant cultivars of canola were introduced and extended crop rotation adopted 

by many growers. Both race-specific (monogenic) and non-race-specific (quantitative) 

resistance may have been present in these cultivars (Rimmer 2006), and some of the race-

specific R genes may have similar molecular mechanisms against the races of the pathogen 

(Larkan et al. 2013).  

These measures reduced the impact of blackleg in canola, but did not eliminate the 

pathogen, which changed in virulence since late 1990’s (Keri et al. 2001; Chen and Fernando 

2005; 2006). Only a limited number of known R genes have been found in CCCs, namely 

Rlm1 (10%) and Rlm3 (70%) (Zhang et al. 2015). Non-race-specific (quantitative) resistance 

or APR is not well understood in Canadian cultivars.  

There are examples of the defeat of race-specific resistance due to changes in the 

pathogen Avr gene profile in response to the R gene used (Balesdent et al. 2006). Therefore, 

understanding the genetic basis for blackleg resistance is important to deploying or rotating R 

genes for effective control of blackleg (Kutcher et al. 2010). For sustainable management of 

blackleg, knowledge of the dynamics between R genes and the pathogen population is 

important; the durability of race-specific resistance depends on the amount of pathogen 

inoculum and the L. maculans race composition, which is often correlated with infested 

stubble from preceding crops (Kutcher et al. 2010).  

Combining race-specific with race non-specific (horizontal) resistance could be the 

best technique for managing blackleg of canola. Kutcher et al. (2010) further suggested that 

for effective use of specific R genes, the pathogen population should be monitored at regular 

intervals to track the changes in race structure. A management plan involving selection of 
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resistant varieties based on the pathogen population or rotation of R genes over time, in 

combination with quantitative resistance and diverse crop rotation should safeguard canola 

production. This strategy was adopted in France and Australia where growers and the 

industry are provided with the timely information on the regional pathogen race composition 

and cultivars carrying R genes effective on a regional basis (Peres and Poisson 1997; 

Marcroft et al. 2004). 

The epidemics of blackleg in canola are closely related to the abundance of infested 

stubble of the prior crop in which the pathogen survives as long as the residue persists in the 

field. This period may range from one to four years depending on climatic conditions (West 

et al. 2001). Because infested crop residue is the most important source of L. maculans 

inoculum, canola should not be seeded into canola stubble or close to fields that have had 

diseased crops within the past three years (Kutcher et al. 2011a). A diverse crop rotation can 

complement resistant cultivars by alleviating the pressure of pathogen inoculum, hence 

reduction the risk and speed of resistance breakdown. An early season fungicide treatment 

can reduce disease severity, but the yield benefit is often insignificant if the cultivar is even 

moderately resistant (Peng et al. 2014).  

2.13. New techniques potentially useful to studying plant-pathogen interactions 

2.13.1. Droplet-digital PCR 

Many molecular tools have been developed in recent years that are useful to study host-

pathogen interactions, including droplet-digital PCR (ddPCR) and green florescent protein 

(GFP) labelling. 

The quantification of pathogen DNA in diseased plants using the latest molecular 

methods is becoming increasingly popular due to the sensitivity and accuracy of these 

technologies. These methods include real-time and end-point PCR, which yields delicate and 

highly specific DNA detection from fungi, viruses, bacteria and other microbial organisms in 
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a very short time. Conventionally, the detection and quantification of plant pathogens are 

performed by isolation using selective media or by conducting biochemical, chemical or 

immunological analyses (Mihail et al. 1992). These methods often can identify and confirm 

the presence of a target pathogen, but are generally labour intensive and require skilled 

taxonomical expertise (Lievens et al. 2005). By contrast, molecular-based techniques such as 

polymerase chain reaction (PCR) assays have proved to be rapid, highly specific and 

sensitive, overcoming some of the shortcomings with conventional bioassays (Sankaran et al. 

2010; Schena et al. 2004). PCR identification may also be applied to non-culturable 

microorganisms (Lievens et al. 2005).  

To assess host resistance, it is often relevant to measure pathogen movement or 

proliferation in plant tissues (Bonants et al. 2004), and PCR techniques, such as real-time 

PCR (RT-PCR), can provide quite reliable estimates. Many plant pathogens can be detected 

or quantified using PCR-based methods (Schaad et al. 2003), and new technologies have 

been adopted continuously. For example, the ddPCR system is a platform that allows a 

substantial gain in dynamic range while bringing the cost of analysis down relative to other 

PCR procedures. Therefore, it has been popular for many applications (Baker 2012; Pinheiro 

et al. 2012). Unlike regular quantitative PCR (qPCR), which uses a standard curve, ddPCR 

offers an accurate and absolute measurement allowing precise calculation of copy numbers of 

target DNA without the need for a standard (Bhat et al. 2009; Corbisier et al. 2010; Hindson 

et al. 2011). The detection and quantification of viral and bacterial pathogens have also been 

carried out using ddPCR (Roberts et al. 2013). One of the advantages of ddPCR is its low 

sensitivity to inhibitors (Maunula et al. 2009). Therefore, it is a desired platform for detection 

and quantification of pathogens in plant tissues.  
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2.13.2. Fluorescence microscopy 

Microscopic studies in the field of plant pathology have continued to be important since the 

invention of the microscope in late 17
th

 century (Puglia and Vannacci 2012). In the 

interaction between a fungus and a plant, it is important to investigate disease progression 

based on the amount of pathogen bio-mass in infected plant tissues. Therefore, markers that 

can be easily measured and visualized are required to determine pathogen growth and 

development. Fluorescence microscopy can be used for observing biological samples in vivo 

and this need has prompted rapid development of many highly specific techniques and 

applications (Ishikawa-Ankerhold et al. 2012; Shaw and Ehrhardt 2013). 

The Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria Victoria 

(Cody et al. 1993) can be used as a universal reporter for a broad range of heterologous living 

cells and organisms (Chiu et al. 1996). Improvements have been made to render GFP a 

versatile and sensitive reporter in a variety of living plant cells and in transgenic plants (Maor 

et al. 1998). One of the greatest advantages of using GFP as a marker is that fluorescence 

intensity is directly proportional to the amount of protein (Maor et al. 1998). As such, 

measuring the amount of GFP will provide a means of quantifying the organism if the GFP 

gene is controlled by a constitutive promoter (Littlejohn et al. 2015). Additionally, as GFP is 

species-independent it can be studied in living tissue without the disintegration of cells or 

demolition of tissue (Chiu et al. 1996). The fluorescence of GFP is very stable under a range 

of conditions, including temperatures up to 65ºC and a pH range of 3-12. (Yang et al. 1996). 

GFP has been used in a large variety of organisms, including animals, plants, fungi and 

bacteria (Chalfie 1994; Casper and Holt 1996; Spellig et al. 1996). A modified version of the 

original GFP gene, sgfp, has been expressed at high levels in a number of filamentous fungi 

(Maor et al. 1998; Sexton and Howlett 2001).  
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The original GFP displayed a unique spectrum; it was excited by peak wavelengths of 

395 or 475 nm, emitting a green fluorescence with a peak at 509 nm that can be directly 

visualized or captured in organisms by imaging detection instruments (Chalfie 1994; Heim et 

al. 1994). Recently, through codon mutagenesis within the chromophore region by dozens of 

laboratories, numerous GFP variants displaying distinct excitation and emission maxima have 

been developed (Cormack et al. 1996; Cubitt et al. 1995), allowing multiple GFP variants to 

be simultaneously expressed and tracked in the same cells or tissues. GFP markers have 

inherent fluorescence that allows for non-invasive detection without the introduction of 

cofactors or destruction of the biological sample (Chalfie 1994).  

GFP has been gaining the popularity as a potent bioluminescent marker in the study of 

physiological, molecular, genetic and biochemical events in plants and other organisms 

(Baulcombe et al. 1995; Haseloff et al. 1997; 1998; Sheen et al. 1995). This approach has 

enabled the investigation of the location of subcellular proteins (Schneider 2000), 

compartments in mitochondria, plastids or the cytosol (Englert et al. 2007; Galvez et al. 1998; 

Hedtke et al. 1999; Noji et al. 1998; Zhu et al. 1997), in groups of cell motors (Hasezawa et 

al. 2000), and repetitious domains in chromosomes of a genome (Lindhout et al. 2007). GFP 

has also been utilized to trace intracellular or intercellular protein movement and trafficking 

in response to changes in environmental signals (Kircher et al. 1999; Yamaguchi et al. 1999) 

and in developmental stages (Imlau et al. 1999; Itaya et al. 1998), as well as during pathogen 

infection (Carette et al. 2000; Peleg et al. 2007). Furthermore, adopting GFP as a visible 

marker also facilitated the study of fundamental biological processes such as microbe-plant 

symbiosis (Gage et al. 1996), insect pest and plant host interactions (Urwin et al. 1997), plant 

development (Ottenschlager et al. 1999), host stress responses (Manak et al. 2002) and anti-

virus or gene-silencing mechanisms (Baulcombe et al. 1995; Dalmay et al. 2000; Voinnet et 

al. 1998). The GFP marker also offers several advantages over other reporters such as b-
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glucuronidase (GUS) or luciferase (LUC), whose detection would require either destructive, 

X-glcA, {The most commonly used chemical compound, with the molecular formula 

C14H13BrClNO7, in experiments of molecular biology as a marker for GUS histochemical 

analysis (Nguyen 2002)}, staining followed by ethanol (Jefferson 1987) or luciferin 

treatment, which would kill the tissue or affect tissue permeability of mature plants (Millar et 

al. 1992).  

2.14. Proposed research 

The literature highlighted above testifies to the fact that L. maculans has a great ability to 

evolve and adapt. Although blackleg of canola was managed successfully for many years in 

western Canada between the early 1990s and 2009 by the use of resistant cultivars and 

extended crop rotations, the disease has increased noticeably in the past few years. This may 

be caused by a shift in the pathogen race structure, which makes some of the current resistant 

cultivars, susceptible.  

Race-specific resistance targeting certain Avr genes in the pathogen population can be 

highly effective but this type of resistance can often be defeated rapidly with changes in the 

pathogen. It was not clear if losses of certain Avr alleles in the pathogen population are the 

primary cause of severe blackleg damage on certain R-rated canola cultivars. Race-

nonspecific resistance may exist in many widely distributed canola cultivars, but there is little 

information on how it works. This type of resistance will not stop foliar infection at the 

seedling stage, but may limit the spread of pathogen into the stem, as well as disease 

development in the stem. The mechanism of this type disease resistance is still not clear, but 

it may be useful to blackleg management in western Canada where the growing season is 

much shorter for blackleg development than in other parts of the world.   

The overall goal of this proposed research was to understand the potential uniqueness 

of the pathogen race structure in commercial canola fields with high levels of blackleg, 
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relative to those observed in regional monitoring. Knowledge of the pathogen race structure, 

together with management and cultivar information, may provide a clue to the cause of 

relatively isolated cases of severe blackleg damage in some fields. Additionally, R genes in 

common CCCs were determined and the main resistance mechanisms of the cultivars 

determined to understand how the current cultivars resist blackleg disease. This information 

will help to identify the primary mechanisms of blackleg resistance associated with current 

canola cultivars and develop optimal host resistance strategies for blackleg management.  
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Chapter 3. Analysis of the Avr-gene profile of Leptosphaeria 

maculans in Canadian canola fields 
 

3.1. Abstract 

Blackleg of canola, caused by the fungal pathogen Leptosphaeria maculans, had been 

managed successfully in western Canada for many years with use of resistant cultivars and 

extended crop rotations until recent years when both disease incidence and severity increased 

noticeably. This may be attributed to changes in the pathogen population that erodes the 

resistance of canola cultivars. Additionally, the resistance associated with Canadian canola 

cultivars (CCCs) in Canada was not well understood. The current study was conducted to 

investigate the race structure of L. maculans in selected commercial canola fields and its 

impact on blackleg incidence and severity observed in these fields. A total of 372 L. 

maculans isolates collected from 17 canola fields with different levels of blackleg severity in 

2012 and 2013 were analysed for the presence or absence of certain avirulence (Avr) alleles 

using a set of 12 host differentials carrying known R genes. The results showed great 

diversity in the pathogen population, with a total of 90 races identified in these fields. The 

races AvrLm2-4-6-7 and AvrLm2-4-6-7-S are most prevalent, accounting for 11.6% and 

10.8% of the population, respectively. The alleles AvrLm1, AvrLm3, AvrLm9 and AvrLep2 

were at very low or undetectable levels in these fields, while AvrLm2, AvrLm4, AvrLm6 and 

AvrLm7 were generally common. Some variations in Avr profile were observed between 

fields or cultivars, but since only the R genes Rlm1 and Rlm3 may be present commonly in 

CCCs, these results indicate that most of our cultivars do not carry the specific R genes 

corresponding to the prevalent Avr genes in the current pathogen population on the prairies. 
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3.2. Introduction 

The fungus L maculans, causing blackleg disease in canola, has a strong ability to evolve and 

adapt. Although the disease was managed successfully in western Canada between the 1990s 

and 2000s by use of resistant cultivars and extended crop rotation, recent field surveys since 

2010 have shown noticeable increases in blackleg incidence as well as severity, especially in 

southern Manitoba and east-central Alberta. This trend might be a result of a shift in pathogen 

race structure that had made some of the current cultivars susceptible or more intensive 

canola production. Race-specific resistance targeting corresponding avirulence (Avr) genes in 

the pathogen population has been a key strategy against blackleg (Ansan-Melayah et al. 1997; 

Rouxel et al. 2003). This type of resistance can be expressed at both seedling and adult-plant 

stages, but may also be ineffective rapidly with changes in the pathogen race structure. It was 

not clear if the severe blackleg disease observed on some of the resistant cultivars was due to 

the loss of certain Avr alleles in the pathogen population or to other reasons. Approximately 

60% of current canola cultivars or breeding lines carry the resistance (R) gene Rlm3 and 10% 

carry Rlm1, but other specific R genes seem to be relatively uncommon (Zhang et al. 2015).  

 Blackleg pathogen races on the Canadian prairies have been studied since the early 

1990s, first using a pathogenesis-group (PG) system which identified the evolution of the 

pathogen population from predominantly PG2 to a mixture of PG2, PG3, PGT and PG4 

(Chen and Fernando 2006, Kutcher et al. 2007). More recently, the pathogen population was 

characterized on the frequency of Avr genes using a set of Brassica hosts carrying specific R 

genes (Kutcher et al. 2007). Using this approach and L. maculans isolates from “Westar” 

(susceptible) trap plots across the prairies in 2007, Kutcher et al. (2011) was able to present a 

regional picture on the Avr gene profile and showed that AvrLm1 and AvrLep2 were generally 

at very low levels in the pathogen population. This means that the R genes Rlm1 and LepR2 

are no longer effective in many areas of the prairies. Regional differences were also revealed 
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by this study; AvrLm2 and AvrLm3 were scarce in southern Manitoba but relatively common 

in Saskatchewan and parts of Alberta. This regional Avr profile, when taken together with the 

information on R genes in commercial cultivars, can provide a basis for selecting canola 

cultivars for blackleg management on a regional basis.  

The development of new pathogen races, coupled with increasingly more intensive 

canola production on the prairies, poses a risk to the genetic resistance carried by many 

canola cultivars (Fleury 2013). Provincial canola disease surveys in recent years have found 

fields of R-rated cultivars with high levels of blackleg both incidence and severity, especially 

in southern Manitoba and east-central Alberta (Fleury 2013). In Saskatchewan, blackleg has 

been found more frequently in the northwestern and southeastern regions (Cross et al. 2012; 

Liban et al. 2013). There were an increased number of reports on blackleg in 2012, compared 

with previous years, and some of the fields in southern Manitoba were severely damaged 

(Fleury 2013). It was possible that the increase in disease damage was caused by a shift in 

pathogen races in these fields. If this is the case, changing the canola cultivar to one carrying 

R genes effective against the current pathogen population would lower the risk of blackleg 

damage.   

The objectives of this study were to: 1) conduct annual field surveys in a number of 

regions on the prairies to identify canola fields with different level of blackleg incidence and 

severity, 2) characterize the pathogen Avr-gene profile to understand the pathogen race 

composition in each individual field, and 3) analyze the role of Avr change in causing 

blackleg disease based on the information from Avr structure, canola cultivar, crop rotation, 

fungicide application as well as other management practices.  

This research was aimed to assess whether the “resistance breakdown” observed in 

isolated commercial fields was caused by a shift in the pathogen Avr-gene structure. The 

information will be useful for assessing the resistance mechanisms and effectiveness of 
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current canola cultivars against the current pathogen population in western Canada, allowing 

producers and the industry to fine tune cultivar resistance strategies by rotating cultivars or 

crops based on the knowledge of pathogen Avr profile and host resistance characteristics. 

3.3. Materials and Methods 

 

3.3.1. Field surveys and pathogen isolation 

To collect diseased canola stubble, field surveys were conducted between 2012 and 2014 in 

consultation with regional crop specialists/agronomists. Most of the fields reported with 

blackleg were in central Alberta, northwestern Saskatchewan, and southern Manitoba. In a 

region, multiple fields within about a 10-km radius and 10 km from another canola crop were 

selected, wherever possible, to represent the region. In a region, wherever possible, multiple 

cultivars and break intervals from canola were also selected, for additional comparisons. A 

questionnaire (Appendix 1) was used to collect the information. In each of these fields, >100 

plants at growth stage 5.2 (Harper and Berkenhamp 1975) or within a week after swathing 

were pulled at five random locations along a “W” path across the field. These were examined 

for incidence of basal stem canker and then cut at the crown area to assess blackleg 

symptoms on the cross section using a 0-5 scale (Appendix 2) for disease severity. Diseased 

stem pieces from each field were kept for isolation of L. maculans. 

3.3.2. Production of L. maculans inoculum for host inoculation 

Diseased stubble collected during the 2012 and 2013 cropping seasons were surface sterilized 

in 70% ethanol for 5 sec, then in 10% Clorox
®
 Bleach (0.6% sodium hypochlorite) for 60 sec, 

and rinsed in tap water twice before plating on V8-juice (Campbell Soup Ltd, Toronto, ON) 

agar amended with 100-ppm streptomycin sulphate. The plates were placed at 20ºC with 12 h 

cool white fluorescent lighting for 5-10 d to allow L. maculans to produce pycnidia. A small 

amount of ooze was transferred from a single pycnidium to fresh V8-juice agar plates as to 
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get a genetically uniform isolate, and incubated for about 7 d under the same conditions as 

above. Only one L. maculans isolate from a diseased stubble piece was kept.  

Each plate was then flooded with 7 mL of sterile distilled water and gently scrapped with a 

bent stain-less steel rod to dislodge conidia from pycnidia. A Falcon™ cell strainer (70 μm 

pore size, Fisher Scientific Canada, Edmonton, AB), designed to fit in a 50-ml Falcon™ 

centrifuge tube, was used to filter mycelia or other debris from the conidial suspension. The 

concentration of spore suspension was estimated using a haemocytometer and adjusted to 

about 1 × 10
7
 spore mL

-1
 with sterile water for plant inoculation (Kutcher et al. 2011b). 

3.3.3. Host differentials for detection of Avr genes in the pathogen population 

A set of 12 Brassica cultivars/lines (Table 3.1) carrying at least 11 specific R genes (Rlm1-4, 

Rlm6-7, Rlm9, LepR1-3 and RlmS) against blackleg were used to determine the presence or 

absence of Avr genes in the pathogen population. The canola cultivar Westar, which carries 

no R gene, was used as a susceptible control throughout the study.    
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Table 3.1. Differential set of Brassica cultivars/lines carrying specific R genes for detection 

of Avr genes in L. maculans.  

Cultivar/lines R gene carried Avr to be detected  
Source of R 

genes 

Westar none none N/A 

Quinta Rlm1, Rlm3 AvrLm1,3; AvrLep3 B. napus 

Cooper Rlm1, Rlm4 AvrLm1,4 B. napus 

MT29 Rlm1, Rlm9 AvrLm1,9 B. napus 

Topas-Rlm2 Rlm2 AvrLm2 B. napus 

Falcon Rlm4 AvrLm4 B. napus 

Forge Rlm6(8) AvrLm6(8) B. juncea 

01-23-02 Rlm7 AvrLm7 B. napus,  

Darmor Rlm9 AvrLm9 B. napus 

1065 LepR1 AvrLep1 B. rapa 

1135 LepR2 AvrLep2 B. rapa 

Surpass 400 LepR3, RlmS AvrLm1,S; AvrLep3 B. rapa 

 

The differential lines were randomly seeded in the Sunshine #3 soil-less planting mix 

(Sun Gro Horticulture Canada Ltd., Vancouver, BC) amended with 12.5 g L
-1

 Osmocote Plus 

16-9-12 (N-P-K; Scotts Miracle-Gro Canada, Mississauga, ON) in flats (65×40×5 cm) with 

each cultivar/line in two blocks. A plastic panel was used as a seeding guide to maintain the 

distance between cultivars/lines. Plants were watered from the bottom of the flats (trays) as 

described by Kutcher et al. (2011). Seeded trays were placed in a growth cabinet at 22/16°C 

(day/night) with a 16 h photoperiod provided with cool florescent tubes (512 mol m
-2

 s
-1

). 

After emergence, the plants were thinned to three per row, thus there were six plants of each 

genotype in two blocks (Appendix 3). 

 3.3.4. Inoculation of host differentials and assessment of disease severity 

Cotyledons of each differential line were inoculated with the spore suspension of a L. 

maculans isolate at 7 d after seeding. Before inoculation both lobes of a cotyledon were 

wounded (0.5-mm hole) with a pair of modified tweezers, and a 10-μl droplet of spore 

suspension was placed over the wound. Inoculated plants were kept in the growth cabinet, 
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with emerging true leaves removed regularly to delay the senescence of cotyledons. At 12-14 

d after inoculation, these plants were assessed for blackleg severity using a 0-9 scale 

(Delwiche 1980), which takes into the consideration both lesion size and pycnidium 

formation on cotyledons (Appendix 4). The highest score on the four inoculated lobes of two 

cotyledons of each differential line (cultivar) was recorded, whereas the average score over 

the 6 plants in two separate blocks was used to determine the nature of each isolate-host 

interaction following Kutcher et al. (2011), where the average score ≤ 4.9, that is below 5 

where the lesion size is small and pycnidia is absent (Appendix 3), was considered a resistant 

reaction and ≥5.0 as susceptible. 

3.3.5. Data analysis 

Up to 25 L. maculans isolates might be used to represent the pathogen population in each 

field, but in most cases, only 17-25 isolates were tested for Avr profile. Infection scores on 

cotyledons were averaged over the six plants (three in each block) of each differential line in 

two blocks randomly positioned; a resistant reaction (≤ 4.9), where the lesion size is small 

and pycnidia absent (Appendix 3), was interpreted as the presence of an Avr gene(s) 

corresponding to at least one of the R genes in the host. Sometimes, several Avr genes could 

be identified in a single pathogen isolate based on deduction using multiple differentials. The 

Avr profile was expressed as a frequency (%) for each Avr gene identified in a pathogen 

population. 
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3.4. Results  

 

3.4.1. Avr allele profile in targeted commercial canola fields in 2012 

A total of 179 L. maculans isolates were collected from eight (CCCs) carrying Rlm1 or Rlm2 

(Zhang et al. 2015) in two Alberta fields, three Saskatchewan fields and three Manitoba fields 

in 2012 (Table 2).  These were tested on the host differentials for the frequency of Avr alleles 

in the pathogen population.  

Table 3.2. Isolates of L. maculans collected from eight commercial fields in western Canada 

in 2012 and tested for the frequency of Avr alleles. 
Province Location (Nearest town) Number of L. 

maculans  

isolates tested 

Alberta Olds 17 

 Trochu 17 

Saskatchewan Speers 30 

 Bigger 22 

 Watrous 25 

Manitoba Cartwright 22 

 Holland 23 

 Winkler (blackleg nursery) 23 

 Total 179 

3.4.2. Avr allele frequencies in Alberta (2012) 

In Alberta, samples were obtained from two sites near Olds and Trochu. The Trochu site had 

two adjacent fields seeded with cv. Invigor-5440 (Bayer CropScience) and 45S52 (Pioneer-

DuPont). The former was listed as blackleg resistant in the 2012 Alberta Seed Guide 

(http://seed.ab.ca/-Spring2012AlbertaSeedGuide), while 45S52 was moderately resistant. The 

prior crops were canola (2010) and cereal (2011).  Disease incidence was approximately 80% 

on Invigor-5440 with a yield of 1.84 t ha-1 and 10% on 45S52 with a yield between 2.25 and 

2.37 t ha-1. The isolates of L. maculans were mostly obtained from the Invigor-5440 stubble. 

The field near Olds was seeded with cv. VT500 RR, which was also listed as resistant in the 

Seed Guide.  The disease incidence was 50% and the yield was 1.66 t ha-1.  

http://seed.ab.ca/-Spring2012AlbertaSeedGuide
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Profiling of AvrLm genes in the L. maculans population indicated variation among locations; 

AvrLm6 and AvrLm7 were generally common in all fields and were detected in >90% of 

pathogen isolates (Figure 3.1). The AvrLm1and AvrLm9 alleles were detected in few L. 

maculans isolates (<15%) in the Trochu fields, and were absent in the Olds field. The 

frequencies of AvrLm2 and AvrLmS (Van de Wouw et al. 2009) were significantly higher 

(70-80%) in the Trochu fields, relative to those found in the Olds field (<30%). The most 

striking difference was with AvrLm4; it was present in nearly 60% of L. maculans isolates 

from Trochu but absent in the Olds population (Figure 3.1). 

 

 
Figure 3.1. The frequency of Avr allele in L. maculans population detected in isolates 

collected from two severely diseased fields near Olds and Trochu, at Alberta. 

3.4.3. Avr allele frequencies in Saskatchewan (2012) 

Stubble samples were collected from three sites in the province where the blackleg incidence 

ranged from 70% to 80% at early crop maturity stage (GS 5.2). The cultivar in the field near 

Speers was 45S52, which was rated resistant in the 2012 Saskatchewan Seed Guide. The 

disease incidence in this field was 80%, but the cultivars in other two fields were unknown 
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nor was information on crop rotations and yields. The Avr-gene profile was similar among 

these fields (Figure 3.2) with the frequencies for AvrLm2, AvrLm6 and AvrLm7 generally 

>80%. The genes AvrLm6 and AvrLm7 were often found surpassing 90% in these fields, 

whereas the AvrLm4 fluctuated between 60 and 80%. Similar to the picture in Alberta fields, 

the AvrLm3, AvrLm9 and AvrLep2 genes were low or absent in the pathogen population, 

while AvrLm1, AvrLmS (Van de Wouw et al. 2009) and AvrLep1 were at moderate or very 

low frequencies (10-70%). AvrLm1 was more common in the Saskatchewan fields than in the 

Alberta fields, especially in the field near Watrous where it was detected in approximately 

70% of the L. maculans isolates.  
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Figure 3.2. The frequency of Avr allele in L. maculans population detected in isolates 

collected from three severely diseased fields near Speers, Watrous and Bigger, at 

Saskatchewan. 

3.4.4. Avr allele frequencies in Manitoba (2012) 

Manitoba experienced dry and hot weather during July and August, 2012, and the average 

canola yield ranged between 1.48 to 1.59 t ha-1 (Honey 2013). Stubble samples were 

collected from three sites near Holland, Cartwright and Winkler (canola disease nursery). The 

cv. VT500 RR was seeded in the field near Holland, while cv. Nexera RR 1012 was grown in 

the field near Cartwright. Both cultivars were registered as resistant in the Saskatchewan 

Seed Guide 2012. The cultivar sampled from the field near Winkler was Canterra 1950 RR 

(>90% disease incidence), which was listed as moderately resistant. The disease incidence 

was >70% and >90%, respectively, in the fields near Holland and Cartwright. The crop 

rotation was back to back canola in the Holland field with reported yield at about 1.13 t ha-1, 

but rotation information was not available for the other two fields.  
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Figure 3.3. The frequency of Avr allele in L. maculans population detected in isolates 

collected from three severely diseased fields near Holland, Cartwright and Winkler, at 

Manitoba. 

The Avr-gene profile was similar among the fields in Manitoba with only minor 

variation; the frequencies of AvrLm4, AvrLm6 and AvrLm7 were generally high (>70%), 

except in the Holland field where AvrLm6 was only 50% (Figure 3.3). Genes AvrLm1, 

AvrLm3 and AvrLm9 were found at low (<30%) to undetectable levels, and this pattern was 

similar to those in Alberta and Saskatchewan. The gene AvrLep2 was present in almost 40% 

of L. maculans isolates in the Holland field but was absent in the other two fields. 

3.4.5. Race identification in the 2012 L. maculans population 

A total of Sixty three (63) races, with different combinations of Avr genes, were identified 

from the 2012 population of L. maculans collected from eight diseased fields in western 

Canada (Table 3.3.). Of these races, 16 (with 2 to 6 Avr genes) were identified in >2% of the 

L. maculans isolates, but only five were detected in all three provinces (Figure 3.4). The race 

present at the highest frequency (11.2%) carried Av2-4-6-7-(8), and was the most common 

race in all three provinces. The races Av2-6-7-(8)- Av6-7-(8) and Av4-6-7-S -(8) were also 
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common and accounted for approximately 8%, 6% and 5%, respectively, of the races in the 

pathogen population (Figure 3.4). The races Av2-6-7-(8) and Av6-7-(8), though common in 

each province, varied in frequency depending on the location. In contrast, the race Av4-6-7-S-

(8) was uncommon in Alberta.   
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Table 3.3. The races of L. maculans identified among 179 isolates collected from eight 

severely diseased canola fields in western Canada in 2012. 

Avr alleles  
No. of Avr 

alleles 

Frequency 

(%)  

No. of 

isolates for 

the race 

Av2-4-6-7-(8) 4 11.2 20 

Av2-6-7-(8) 3 7.3 13 

Av6-7-(8) 2 5.6 10 

Av4-6-7-S-(8) 4 5.0 9 

Av2-4-6-7-S-(8) 5 4.5 8 

Av1-2-4-6-S-(8), AvLep1 5 4.5 8 

Av2-6-7-S-(8) 4 3.9 7 

Av1-2-4-6-(8) 4 3.4 6 

Av1-2-4-6-S-(8) 5 2.8 5 

Av1-4-6-7-S-(8) 4 2.8 5 

Av2-4-6-7-S-(8)-AvLep1 6 2.8 5 

Av6-7-(8)-AvrLep1 3 2.8 5 

Av1-2-4-6-7-(8) 5 2.2 4 

Av2-4-6-(8) 3 2.2 4 

Av4-6-7-(8) 3 2.2 4 

Av4-6-7-(8)-AvrLep1 4 2.2 4 

Av4 1 1.7 3 

Av2-4-6-7-(8)-AvrLep1 5 1.7 3 

Av2-4-7-AvrLep2 4 1.7 3 

Av6-7-S-(8)-AvrLep1 5 1.7 3 

Av1-2-3-4-6-7-(8) 6 1.1 2 

Av1-2-3-4-6-7-S-(8) 7 1.1 2 

Av1-2-6-7-(8) 4 1.1 2 

Av1-2-6-7-S-(8)-AvrLep1 6 1.1 2 

Av1-4-6-7-(8) 5 1.1 2 

Av2-6-7-S-(8)-AvrLep1 5 1.1 2 

Av4-6-(8) 2 1.1 2 

Av4-6-7-S(8)-AvrLep1 5 1.1 2 

Av7 1 0.6 1 

Av1-2-3-4-6-7-9-(8) 7 0.6 1 

Av1-2-4 3 0.6 1 

Av1-2-4-6-7-(8)-AvrLep1 6 0.6 1 

Av1-2-4-7 4 0.6 1 

Av1-2-6-7-S-(8) 5 0.6 1 

Av1-3-4 3 0.6 1 

Av1-3-9-S-AvrLep2 4 0.6 1 

Av1-4-6-7-S-(8)-AvrLep1 6 0.6 1 

Av1-6-7-(8) 3 0.6 1 

Av1-6-7-S-(8)-AvrLep1 5 0.6 1 

Av1-2-4-6-7-9-S-(8)-,AvrLep1-AvrLep2 10 0.6 1 

Av1-2-4-6-7-S-(8)-AvrLep1 8 0.6 1 

Av2-3-4-6-7-S-(8)-AvrLep1, AvrLp2 9 0.6 1 

Av2-3-6-(8) 3 0.6 1 

Av2-3-6-7-(8) 5 0.6 1 

Av2-4-6-(8)-AvrLep1 4 0.6 1 

Av2-4-6-7-9-S-(8)-AvrLep1-AvrLep2 9 0.6 1 

Av2-4-6-7-S-(8)-AvrLpe1-AvrLep2 8 0.6 1 
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Av2-4-7 3 0.6 1 

Av2-4-7-S 4 0.6 1 

Av2-4-7-S-AvrLep1-AvrLep2 6 0.6 1 

Av2-4-7-S-AvrLep2 5 0.6 1 

Av2-4-AvrLep2 3 0.6 1 

Av2-6-S-(8) 3 0.6 1 

Av2-6-7-9-(8)  4 0.6 1 

Av2-6-7-9-(8)-AvrLep1 6 0.6 1 

Av2-6-7-(8)-AvrLep1 5 0.6 1 

Av2-7-AvrLep1 3 0.6 1 

Av2-7-S 3 0.6 1 

Av2-AvrLep2 2 0.6 1 

Av4-6-7-9-S-(8) 5 0.6 1 

Av4-6-7-9-S-(8)-AvrLep1 6 0.6 1 

Av6-(8)-AvrLep1 3 0.6 1 

Av7-AvrLep2 2 0.6 1 
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Figure 3.4. The most common races of L. maculans identified in canola fields in western 

Canada (2012). 

3.4.6. Avr allele profile in targeted commercial canola fields in 2013 

In 2013, blackleg of canola was less severe in many regions of western Canada relative to 

2012, especially in Alberta. Therefore, diseased stubble was collected only from 

Saskatchewan and Manitoba. A total of 193 L. maculans isolates from eight commercial 

fields were tested for Avr alleles. The disease incidence varied substantially among these 

fields; most fields in Saskatchewan had <10% blackleg incidence.  
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Table 3.4. Isolates of L. maculans collected from eight commercial fields in western Canada 

in 2013 and tested for the frequency of Avr alleles. 

Province Location (nearest town) # L. maculans tested 

Saskatchewan Meota 25 

 Goodeve (1) 23 

 Goodeve (2) 23 

 Langenburg 31 

Manitoba Killarney 25 

 Lowe Farm (1) 23 

 Lowe Farm (2) 24 

 Winkler (blackleg nursery) 19 

 Total 193 

3.4.7. Avr allele frequencies in Saskatchewan (2013)  

Diseased stubble from four sites, namely Meota, Goodeve 1, Goodeve 2 and Langenburg 

(Table 3.4). Samples from two adjacent fields near the Meota and Langenburg sites were 

combined and considered as a single site at each location. Samples collected from two 

adjacent fields near Meota, was seeded with Invigor 5440 and canola had been grown there 

continuously from 2009 to 2012 with a cultivar rotation of 5440, 71-45, L150 and 73-45 in 

the previous years. All cultivars were rated resistant to blackleg in the Saskatchewan Seed 

Guide (2012), except 71-45, which was rated moderately resistant. Blackleg incidence was 

50-78% in these two fields. For both fields in Goodeve, the cultivar was L150 (resistant); 

canola had been grown continuously in one of the fields for three years and in the other field 

a canola-lentil-canola rotation was grown the prior three years. In Langenburg, cv. Nexera 

1012 and L150 were grown in the two fields where the crop rotation was wheat-canola-

canola-wheat prior to the current canola crop. The disease incidence was generally <10% in 

these fields. Yield data for all the fields was not known.  

 The Avr profiling showed a similar pattern among fields in Saskatchewan, regardless 

of the disease level, cultivar or crop rotation practice. Genes AvrLm2, AvrLm4, AvrLm6 and 

AvrLm7 were detected in >90% of the isolates (Figure 3.5), whereas AvrLm1, AvrLm3, 

AvrLm9 and AvrLep2 were very low or undetectable in all the fields. The frequency of 
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AvrLm3 and AvrLep1 were approximately 30% and 80% respectively, in the fields near 

Meota; these two Avr genes were rarely found in other fields in western Canada during the 

study.  

 

Figure 3.5. The frequency of Avr allele in L. maculans population detected in isolates 

collected from four commercial fields with variable disease severity, near Meota, Goodeve 1, 

Goodeve 2 and Langenburg, at Saskatchewan. 

3.4.8. Avr allele frequencies in Manitoba (2013) 

Stubble samples collected from four diseased sites in southern Manitoba near Killarney, 

Lowe Farm 1, Lowe Farm 2 and Winker had disease incidences of >75%, 10%, 20% and 

~50%, respectively. Near Winkler samples were taken from blackleg nursery with continuous 

canola for three years, prior (cv. Canterra 1950 RR). The fields near Killarney and Lowe 

Farm (2) were seeded with cultivars: L130 LL, L156H and 9560 CL, respectively, and the 

crop rotation were canola-wheat in each of these fields. Unfortunately, the yield data was not 

available from these fields. Incidence of blackleg was high at Killarney between 2009 and 

2011 (Gerald Martin, BASF, personal communication).  
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 Only slight variation in Avr profile was observed among fields; AvrLm4, AvrLm6 and 

AvrLm7 were detected in >90% of pathogen isolates, while AvrLm2 and AvrLmS (Van de 

Wouw et al. 2009) were generally >60% (Figure 3.6). Isolates carrying AvrLm3, AvrLm9 or 

AvrLep2 were rarely detected in these fields, or were at very low levels. In Lowe Farm Field 

1, the frequency of AvrLm2 was lower than those in other fields surveyed in 2013. AvrLm1 

was often >20% in Manitoba fields, but was not detected in the Saskatchewan fields (Figure 

3.6).  

 

 

Figure 3.6. The frequency of Avr allele in L. maculans population detected in isolates 

collected from four commercial fields with variable disease severity, near Killarney, Lowe 

Farm 1, Lowe Farm 2 and Winkler, at Manitoba. 

3.2.9. Race identification in the 2013 L. maculans population 

A total of 46 races were identified from the 2013 population of L. maculans collected from 

eight targeted canola fields in Saskatchewan and Manitoba in 2013 (Table 3.5), and 15 were 

present in both provinces (Figure 3.7). Race AvrLm2-4-6-7-S-(8) had the highest frequency 

(20%), and was common in both provinces. Other common races included: Av2-4-6-7-(8) 
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(11.9%), Av2-4-6-7-S-(8)-AvrLep1 (9.8%) and Av2-3-4-6-7-S-(8) (5.7%) (Figure 3.7). 

Similar to the 2012 picture, avirulence genes: AvrLm2, AvrLm6,(8) and AvrLm7 were 

common in most of the fields. A total of 26 and 35 races were identified in Saskatchewan and 

Manitoba, respectively in 2013, but only 9 and 11 of them were >2% in respective fields.   
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Table 3.5. Races of L. maculans identified among 193 isolates from eight canola fields in 

Saskatchewan and Manitoba during 2013. 

Avr allele carried 

No. of 

avirulence 

alleles 

Frequency 

(%) at the 

site 

No. of 

isolates in 

each race 
Av2-4-6-7-S-(8) 5 20.7 40 

Av2-4-6-7-(8) 4 11.9 23 

Av2-4-6-7-S-(8)-AvrLep1 6 9.8 19 

Av2-3-4-6-7-S-(8) 6 5.7 11 

Av2-3-4-6-7-S-(8)-AvrLep1 7 5.7 11 

Av1-4-6-7-S-(8)-AvrLep1 6 3.6 7 

Av2-4-6-7-(8)-AvrLep1 5 3.1 6 

Av4-6-7-S-(8) 4 3.1 6 

Av1-2-3-4-6-7-S-(8)-AvrLem1 8 2.6 5 

Av1-2-4-6-7-S-(8)-AvrLep1 7 2.6 5 

Av1-2-4-6-7-S-(8)-AvrLep1 7 2.6 5 

Av2-3-4-6-7-(8) 5 2.6 5 

Av4-6-7-S-(8)-AvrLep1 5 2.6 5 

Av4-6-7-(8) 3 2.1 4 

Av2-3-4-6-7-(8)-AvrLep1 6 1.6 3 

Av2-4-7 3 1.6 3 

Av1-2-3-4-6-7-S-(8) 7 1.0 2 

Av1-2-4-6-7-S-(8) 6 1.0 2 

Av1-3-4-6-7-S-(8) 6 1.0 2 

Av2-4-6-7-S-(8)-AvrLep1-AvrLep2 7 1.0 2 

Av2-6-7-S-(8) 4 1.0 2 

Av4 1 0.5 1 

Av1-2-3-4-6-7-9-S(8)AvrLem1 9 0.5 1 

Av1-2-3-4-6-7-(8)-AvrLep2 7 0.5 1 

Av1-2-4-6-7-9-S(8) 7 0.5 1 

Av1-2-4-6-7-9-S-(8)-AvrLep1 8 0.5 1 

Av1-2-6-7-S-(8) 5 0.5 1 

Av1-3-4-6-7-9-S-(8)-AvrLep1-AvrLep2 9 0.5 1 

Av1-4-6-7-(8) 4 0.5 1 

Av1-4-6-7-S-(8) 5 0.5 1 

Av1-4-6-7-S-(8)-AvrLep1-AvrLep2 7 0.5 1 

Av1-4-7-S 4 0.5 1 

Av1-6-7-S-(8) 4 0.5 1 

Av2-3-4-6-7-(8)-AvrLep1-AvrLep2 7 0.5 1 

Av2-3-6-7-S-(8) 5 0.5 1 

Av2-4-6-7-(8)-AvrLp2 5 0.5 1 

Av2-4-7-S 4 0.5 1 

Av2-7-S 3 0.5 1 

Av3-4-6-7-S-(8)-AvrLep1-AvrLep2 7 0.5 1 

Av3-6-9-S-(8)-AvrLep1 5 0.5 1 

Av4-6-7-(8)-AvrLep1 4 0.5 1 

Av4-6-7-9-S-(8) 5 0.5 1 

Av4-6-7-(8)-AvrLep1 4 0.5 1 

Av4-7 2 0.5 1 

Av4-7-AvrLep1 3 0.5 1 

Av6-7-(8) 2 0.5 1 
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Figure 3.7. The most common races of L. maculans identified in canola fields in 

Saskatchewan and Manitoba (2013). 

3.2.10. Race composition of L. maculans isolates collected in 2012 and 2013 

A total of 90 races of L. maculans were identified when the data from 2012 and 2013 (372 

isolates) were combined (Table 3.6), with 19 races common between provinces and years 

(Figure 3.8). Race Av2-4-6-7-(8) had the highest overall frequency in the pathogen 

population (11.6%), and was detected in both years in almost all fields. Other races that were 

observed frequently included Av2-4-6-7-S-(8) at 10.8% and Av2-4-6-7-S-(8)-AvrLep1 at 6.5% 

(Table 3.6). However, for these races there were slight variations in prevalence between 

years; Av2-4-6-7-(8) was (11.2%) the most prevalent race in 2012 (Table 3.3), however, it 

was Av2-4-6-7-S-(8) (20.7%) in 2013 (Table 3.5).   
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Table 3.6. Races of L. maculans identified among 372 isolates from sixteen canola fields in 

western Canada in 2012 and 2013. 

Avr alleles carried 

No. of 

avirulence 

alleles 

Frequency 

(%) 

No. of 

isolates of 

each race 
Av2-4-6-7-(8) 4 11.6 43 

Av2-4-6-7-S-(8) 5 10.8 40 

Av2-4-6-7-S-(8)-AvrLep1 6 6.5 24 

Av4-6-7-S-(8) 4 4.0 15 

Av1-2-4-6-S-(8)-AvrLep1 6 3.8 14 

Av2-6-7-(8) 3 3.5 13 

Av6-7-(8) 2 3.0 11 

Av2-3-4-6-7-S-(8)-AvrLep1 7 3.0 11 

Av2-3-4-6-7-S-(8) 6 3.0 11 

Av1-2-4-6-7-S-(8)-AvrLep1 7 2.7 10 

Av2-6-7-S-(8) 4 2.4 9 

Av4-6-7-(8) 3 2.2 8 

Av2-4-6-7-S-(8) 5 2.2 8 

Av4-6-7-S-(8)-AvrLep1 5 1.9 7 

Av2-4-6-7-(8)-AvrLep1 5 1.6 6 

Av1-4-6-7-S-(8) 4 1.6 6 

Av1-2-4-6-(8) 4 1.6 6 

Av6-7-(8)-AvrLp1 3 1.3 5 

Av2-3-4-6-7-(8) 5 1.3 5 

Av1-2-4-6-S-(8) 5 1.3 5 

Av1-2-3-4-6-7-S-(8)-AvrLem1 8 1.3 5 

Av4-6-7-S-(8)-AvrLep1 4 1.1 4 

Av2-4-7 5 1.1 4 

Av2-4-6-(8) 3 1.1 4 

Av1-2-4-6-7-(8) 5 1.1 4 

Av1-2-3-4-6-7-S-(8) 7 1.1 4 

Av4 1 1.1 4 

Av6-7-S-(8)-AvrLep1 5 0.8 3 

Av2-4-7-AvrLep2 4 0.8 3 

Av2-4-6-7-S-(8)-AvrLep1-AvrLep2 7 0.8 3 

Av2-4-6-7-(8)-AvrLep1 5 0.8 3 

Av2-3-4-6-7-(8)-AvrLep1 6 0.8 3 

Av1-4-6-7-(8) 5 0.8 3 

Av4-6-7-9-S-(8) 5 0.5 2 

Av4-6-(8) 2 0.5 2 

Av2-6-7-S-(8)-AvrLep1 5 0.5 2 

Av2-4-7-S 4 0.5 2 

Av1-3-4-6-7-S-(8) 6 0.5 2 

Av1-2-6-7-S-(8)-AvrLep1 6 0.5 2 

Av1-2-6-7-S-(8) 5 0.5 2 

Av1-2-6-7-(8) 4 0.5 2 

Av1-2-4-6-7-S-(8) 6 0.5 2 

Av1-2-3-4-6-7-(8) 6 0.5 2 

Av7-AvrLep2 2 0.3 1 

Av6-(8)-AvrLep1 3 0.3 1 

Av4-7 2 0.3 1 

Av4-7-AvrLep1 3 0.3 1 
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Av4-6-7-9-S-(8)-AvrLep1 6 0.3 1 

Av4-6-7-(8)-AvrLep1 4 0.3 1 

Av3-6-9-S-(8)-AvrLep1 5 0.3 1 

Av3-4-6-7-S-(8)-AvrLep1-AvrLep2 7 0.3 1 

Av2-AvrLep2 2 0.3 1 

Av2-7-S 3 0.3 1 

Av2-7-S 3 0.3 1 

Av2-7-AvrLep1 3 0.3 1 

Av2-6-7-(8)-AvrLep1 5 0.3 1 

Av2-6-7-9-(8)-AvrLep1 6 0.3 1 

Av2-6-7-9-(8)  4 0.3 1 

Av2-6-S-(8) 3 0.3 1 

Av2-4-AvrLep2 3 0.3 1 

Av2-4-7-S-AvrLep2 5 0.3 1 

Av2-4-7-S-AvrLep1-AvrLep2 6 0.3 1 

Av2-4-6-7-(8)-AvrLep2 5 0.3 1 

Av2-4-6-7-9-S-(8)-AvrLep1-AvrLep2 9 0.3 1 

Av2-4-6-(8)-AvrLep1 4 0.3 1 

Av2-3-6-7-S-(8) 5 0.3 1 

Av2-3-6-7-(8) 5 0.3 1 

Av2-3-6-(8) 3 0.3 1 

Av2-3-4-6-7-S-(8)-AvrLep1-AvrLep2 9 0.3 1 

Av2-3-4-6-7-(8)-AvrLep1-AvrLep2 7 0.3 1 

Av1-6-7-S-(8)-AvrLep1 5 0.3 1 

Av1-6-7-S-(8) 4 0.3 1 

Av1-6-7-(8) 3 0.3 1 

Av1-4-7-S 4 0.3 1 

Av1-4-6-7-S-(8)-AvrLep1-AvrLep2 7 0.3 1 

Av1-4-6-7-S-(8)-AvrLep1 6 0.3 1 

Av1-3-9-S-AvrLep2 4 0.3 1 

Av1-3-4-6-7-9-S-(8)-AvrLep1-AvrLep2 9 0.3 1 

Av1-3-4 3 0.3 1 

Av1-2-4-7 4 0.3 1 

Av1-2-4-6-7-S-(8)-AvrLep1 8 0.3 1 

Av1-2-4-6-7-(8)-AvrLp1 6 0.3 1 
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Figure 3.8. The most common races of L. maculans found in canola fields in Saskatchewan 

and Manitoba (2012 and 2013). 

3.5. Discussion 

The relationship between the Avr gene profile in specific canola fields and blackleg incidence 

or severity was more complex than originally hypothesized, due partially to the lack of 

information on R genes carried by CCCs, and to the possibility there is more than one type of 

resistance present in many of the current cultivars. The initial hypothesis stated that the 

increased level of blackleg on some of the R-rated canola cultivars might be the result of 

selection pressure exerted by specific R genes that compelled the pathogen to adapt once a 

mutation or recombination occurs. Thus, the virulence frequency increased on these alleles in 

the pathogen population, consequently rendering the corresponding R gene(s) in the cultivar 

ineffective. For example, a cultivar carrying Rlm3 as the sole source of resistance may be 

defeated once a massive shift occurs in the pathogen population from AvrLm3 (avirulent) to 

avrLm3 (virulent). This change will allow the pathogen to adapt to the cultivar and the 

virulent population to rapidly increase. To understand this dynamic, information on the 

presence/absence of Avr genes in the pathogen population and R genes in canola cultivars is 
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required. In realty however, knowledge of R genes carried by specific canola cultivars is, for 

the most part, still unclear in Canada. A recent study found that Rlm1 and Rlm3 accounted for 

about 10% and 60% of CCCs/breeding lines, respectively (Zhang et al. 2015). This 

information is not specific to any canola cultivar. Furthermore, the nature and mechanisms of 

blackleg resistance are also unknown for most canola cultivars. The current study analyzed 

the Avr profile in selected canola fields with the blackleg incidence ranging between <10% 

and >75%, and generally detected low to undetectable levels of AvrLm1 and AvrLm3. If Rlm1 

and Rlm3 are the only R genes carried in CCCs (Zhang et al. 2015), then the variable blackleg 

incidence among these fields may be due to factors beyond the mere lack of certain Avr genes 

in the pathogen population since the corresponding AvrLm1 and AvrLm3 were low in all these 

fields.   

The study provides insight into the pathogen race structure in response to R genes in 

cultivars by analyzing field-specific data in connection with blackleg disease levels. The 

genes AvrLm2, AvrLm4, AvrLm6 and AvrLm7 were common in most fields, regardless of 

blackleg incidence. This is possibly because none of the corresponding R genes had been 

used widely in CCCs (Zhang et al. 2015). By the same token, the general lack of AvrLm1 and 

AvrLm3 in these fields is likely related to the long-term use of Rlm1 and Rlm3 in CCCs. 

When compared with an earlier report (Kutcher et al. 2011b), there was a decrease in AvrLm3 

accompanied by a sharp increase in AvrLm7. This opposite trend (or correlation?) between 

these two Avr genes in the pathogen population was suggested in a field survey in France; 

AvrLm7 was at >99%, whereas AvrLm3 was <1%. Only one of 1,797 L. maculans isolates 

was virulent to Rlm7 and this isolate was avirulent to Rlm3 (Balesdent et al. 2006). 

Plissonneau et al. (2016) observed an interaction between AvrLm3 and AvrLm4-7; the co-

existence of these two Avr genes subdues recognition of AvrLm3 by Rlm3, consequently 
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failing to activate host defense responses. Therefore, it is possible that AvrLm3 might have 

been underestimated in western Canada due to the presence of AvrLm7. 

The results of this study were similar to studies of broader-range collections in western 

Canada during 2010 and 2011 (Cross et al. 2014; Liban et al. 2016). This may indicate that 

the pathogen population in these fields reflected that which occurs over large regions of 

western Canada and varies little over short distances. Greater changes were observed when 

the Avr profile was compared with those identified between 2005 and 2007 (Dilmaghani et al. 

2009; Kutcher et al. 2011b); AvrLm3 and AvrLm9 had declined from 60% to very low 

levels, while AvrLm7 increased from 50% to >95%.  

The population of L. maculans in western Canada was considered genetically diverse 

(Dilmaghani et al. 2009) and maintained certain Avr alleles that are not always present in 

other parts of the world (Balesdent et al. 2006). The diversity is reflected by the number of 

pathogen races identified; Kutcher et al. (2010) reported 16 races based on 96 isolates of L. 

maculans from western Canada, but Liban et al.  (2016) identified 55 races based on 674 

isolates studied, with the races AvrLm2-4-6-7 (22.7%) and AvrLm2-4-6-7-S (22.5%) being 

most prevalent. In contrast, Balesdent et al. (2006) identified only 11 races in France based 

on a population of 1,797 L. maculans isolates. The current study of 372 isolates characterized 

to 90 races indicated greater diversity of the pathogen population than that in the previous 

reports by Kutcher et al. (2010) and Liban et al. (2016) (Table 3.6). Interestingly, the most 

prevalent races were exactly the same as those identified earlier by Liban et al. (2016) though 

with noticeably lower frequencies (11.6% and 10.8%, respectively). More than 85% of the 

isolates carried 3 to 6 Avr genes, but >10% of the isolates carried 7-10 Avr genes. The 

dominance of races AvrLm2-4-6-7 and AvrLm2-4-6-7-S reflected an uneven pathogen 

population in western Canada, but also provided important clues for selecting effective R 
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genes, including Rlm2, Rlm4, Rlm6 and Rlm7, for blackleg management. The high pathogen 

race diversity also indicated that caution is required in deploying these R genes because each 

can be defeated by at least one of the races in the pathogen population in western Canada. An 

integrated approach combining race-specific R genes with race-nonspecific resistance 

(Delourme et al. 2006; Brun et al. 2010) and extended crop rotation (Kutcher et al. 2011a) 

may be more sustainable for blackleg management.  

In this study, variations in Avr gene frequencies were observed among fields, 

especially in Alberta. For example, AvrLm4 was found in 60% of the isolates in the Trochu 

field in 2012, but this Avr gene was absent among isolates in the Olds field. The absence of 

AvrLm4 appears unusual because the corresponding R gene was not found in any of the CCCs 

or even breeding lines (Zhang et al.  2015); therefore, absence of AvrLm4 could not have 

been caused by selection pressure from the R gene. After cloning AvrLm7, Parlange et al. 

(2009) suggested that AvrLm4 and AvrLm7 are two distinct alleles of a single gene. In the 

current study, pathogen isolates from most fields AvrLm4 and AvrLm7 had similar gene 

frequencies, with only a few cases where AvrLm4 was slightly lower than AvrLm7. Although 

the absence of AvrLm4 from the Olds field was in contrast with results in other fields, its 

implication is not yet clear since it appears not to be related to the disease levels observed in 

this field.  None of the cultivars in western Canada carries the corresponding Rlm4 (Zhang et 

al. 2015). The field-dependent variation was less noticeable in Saskatchewan and Manitoba, 

with only a slight exception for AvrLm3 in Saskatchewan, which was undetectable at most 

locations but 20% in Watrous (2012) and 30% in Meota (2013) fields. This may be due to 

specific cultivars (carrying no Rlm3) used in the two latter fields, but this can only be verified 

when the specific R genes of these cultivars are known. 

Between the years, the most noticeable change in the Avr gene profile was the dramatic 

decrease of AvrLm1 in Saskatchewan; >20% of the isolates collected in 2012 carried this Avr 
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gene, with frequency of approximately 70% in the Watrous field, but it was completely 

absent in all Saskatchewan fields sampled in 2013. This change could be due to the cultivars 

grown, but may also indicate that Rlm1 is used in many new hybrids. Another detectable 

change between years was the increase of AvrLm4 in Saskatchewan and AvrLm6 and AvrLm7 

in Manitoba, although the causes are not understood (Figures; 3.5; 3.6). With the increased 

frequency of AvrLm7 in Manitoba, AvrLm3 declined (Figure 3.6) and this follows the pattern 

of interaction between these two Avr genes reported previously (Plissonneau et al. 2016). The 

largest between province differences in Avr gene profile were the lower presence of AvrLm1 

and AvrLm4 in the Alberta fields in 2012, relative to those in Saskatchewan and Manitoba. In 

2013, AvrLm1 and AvrLm9 were not found in Saskatchewan (Figure 3.5), but were detectable 

in most Manitoba fields (Figure 3.6).  In contrast, AvrLm2 was found in >90% of L. maculans 

isolates in Saskatchewan, but was <60% in two of the four Manitoba fields. Due to the lack 

of information on specific R genes in most of these cultivars, the real cause of these 

variations was unclear (Figures: 3.5; 3.6).   

The AvrLm1 and AvrLm3 genes were very low or absent in almost all the commercial 

fields examined; this would indicate that the R genes Rlm1 and Rlm3 carried by many canola 

cultivars are no longer effective against blackleg in these fields. Though the initial hypothesis 

was largely correct that the pathogen population had shifted and was capable of overcoming 

the R genes in canola cultivars, there was insufficient evidence to attribute the high blackleg 

incidence in any of these fields to the low frequencies of AvrLm1 or AvrLm3 because these 

Avr gene frequencies were not much higher in low incidence fields, especially in 2013. It is 

unlikely that the low frequency or absence of AvrLm1 and AvrLm3 genes in the pathogen 

population was the primary cause of high blackleg incidence in some of these fields.  It is 

more likely that the intensive production of canola in almost all these fields, either a 1-year 

break from canola or even continuous canola for several years contributed to the buildup of 
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pathogen inoculum (Guo and Fernando  2005; Guo et al. 2008, Kutcher et al 2011). Blackleg 

incidence and severity can also be affected by weather conditions (Guo and Fernando  2005), 

and a combination of high pathogen inoculum coupled with conducive local weather events, 

including localized rain showers during early infection or hail damage during the growing 

season might have influenced blackleg development on the same cultivar at different 

locations. Field-specific pathogen inoculum and weather data would be useful to assess these 

factors. 

Prior studies have documented the race structure of L. maculans in western Canada to 

provide an overall picture of the evolution of the pathogen and the effectiveness of specific R 

genes in canola cultivars (Kutcher et al. 2010; 2011; Liban et al. 2016). The current study 

focused on individual fields that varied in blackleg incidence and severity to determine 

whether the severe-disease cases were caused by unique and virulent pathogen races. The 

results indicated that isolates making up the pathogen population in each of these fields were 

virulent on multiple R genes; however, for some specific R gene in the host, the expected 

correlation with the corresponding Avr genes in the L. maculans population was not detected. 

In reality, however, severe blackleg disease was observed in only a few of the fields, and 

even resistant cultivars from the same seed company (L130 LL, L156H) varied substantially 

in blackleg incidence between two fields, despite the similarity of the Avr gene profile 

(Figure 3.6). It is possible that additional factors also played a role. Zhang et al. (2015) 

reported adult plant resistance (APR) in many CCCs (CCCs), which is not believed to be 

controlled by major R genes (Lindhout 2002; Stuthman et al. 2007). Therefore, it is possible 

that many CCCs in western Canada carry a level of background blackleg resistance that may 

be deemed insufficient at the seedling stage. However, there is very little characterization of 

this type of resistance in CCCs, especially of the resistance mechanism. This information will 
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be useful to assess the value of APR to be used in blackleg management in western Canada, 

the research subject presented in the following chapter. 

3.6. Conclusion 

Increased prevalence and incidence of blackleg disease was reported in recent years. This 

study was initiated to determine whether the fields with high disease incidence were the result 

of changes in Avr profiles resulting from pathogen adaptation to the canola cultivars used. A 

total of 17 fields were investigated in 2012 and 2013, with disease incidence ranging from 

<10% to >75%. Great diversity was detected in the pathogen population, with 90 races 

identified. The races Av2-4-6-7 and Av2-4-6-7-S were most prevalent, accounting for 11.6% 

and 10.8% of the population, respectively. More than 85% of the isolates carried 3 to 6 Avr 

genes. AvrLm2, AvrLm4, AvrLm6 and AvrLm7 were common, but AvrLm1, AvrLm3, AvrLm9 

and AvrLep2 were rarely detected in these fields. Since the majority of CCCs carry only the R 

genes Rlm1 and/or Rlm3, the pathogen is considered virulent to all of the current cultivars. 

Therefore, the variation in blackleg incidence among these fields was unlikely to have 

resulted from only the breakdown of Rlm1 and Rlm3.  Additional factors may play a role, 

including resistance not controlled by a specific Avr-R gene interaction. This type of 

resistance, however, has not been characterized for CCC used in western Canada. The genetic 

diversity of the pathogen population observed in this study also highlights the need for 

caution when we consider new R genes for blackleg management.  Each gene currently 

available can be defeated by at least one of the races identified in the current pathogen 

population. Race-specific and non-specific resistance, in combination with extended crop 

rotations, may be warranted for sustainable blackleg management in western Canada.  
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Chapter 4. Characterization of blackleg resistance associated with 

common canola cultivars used in western Canada  
 

4.1. Abstract 

Many of the canola (Brassica napus L.) cultivars grown in western Canada claimed to be 

resistant (R), to blackleg disease [Leptosphaeria maculans (Desmaz.) Ces. & de Not.] carry 

Rlm1 and Rlm3. The absence of the corresponding avirulence (AVR) genes (AvrLm1 and 

AvrLm3) in the pathogen population prevailing in western Canada, indicates that these R 

genes are no longer effective. However, the relatively few cases of blackleg damaged crops 

that are produced from cultivars that carry Rlm 1 and Rlm3, suggest that  additional resistance 

may be present in these CCCs. Three CCCs carrying Rlm1, Rlm3 or both were assessed 

against virulent L. maculans isolates. The infection of cotyledons and spread of the pathogen 

into the stem via the petiole were evaluated using a visual scale and fluorescence microscopy. 

The DNA of the pathogen in the petiole and stem tissues was quantified using droplet digital 

PCR (ddPCR).  At 14 days post-inoculation (dpi), all inoculated cotyledons exhibited 

infection symptoms, but the mean severity was lower for CCCs then on the susceptible check. 

Limited hyphal spread of the pathogen was observed in CCC cotyledons compared with the 

susceptible check ten days after inoculation with a virulent isolate of L. maculans, with green 

fluorescent protein (GFP).  The amount of L. maculans DNA detected by ddPCR was 

substantially lower in petioles and stems of inoculated CCCs relative to the susceptible check. 

The results indicate that race non-specific resistance associated with the CCCs plays a role in 

resistance to blackleg by delaying or reducing the spread of fungal hyphae from infected 

cotyledons into stems, which is where the most severe symptoms occur on the plant. 
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4.2. Introduction 

An understanding of the host-pathogen interaction is essential to use cultivar resistance for 

effective management of blackleg in canola.  To date a total of 18 race-specific major R 

genes have been identified (Zhang et al. 2015), often unintentionally, when high levels of 

blackleg resistance under field conditions were recognized (Ansan-Melayah et al. 1997; 

Rouxel et al. 2003).  These R genes are identified in the A, B and C genomes of Brassica spp. 

(Fredua-Agyeman et al. 2014).  The genetic resistance conferred by major R genes, however, 

can no longer be effective once the L. maculans population shifts and the frequency of the 

corresponding Avr genes diminish in the pathogen population. The high frequency of sexual 

recombination in L. maculans and mass distribution of airborne ascospores each year 

provides the pathogen with great potential to bring about changes in their genetic makeup 

(West  et al. 2001) and adapt to canola cultivars carrying specific R genes (McDonald and 

Linde 2002). Experiences in western Canada have indicated that the pathogen can change 

rapidly after the introduction of resistant canola cultivars (Kutcher et al. 2011b).  

Two types of resistance to blackleg, namely race-specific (major R-gene) and non-

specific (quantitative) resistance, have been reported in B. napus (Delourme et al. 2006). The 

former can be highly effective when the corresponding Avr genes are present in the pathogen 

population. This type of resistance may not be durable because it exerts strong selection 

pressure for virulence genes in the pathogen population, especially when the same R genes 

are used continuously in short crop rotations (Rouxel et al. 2003; Li et al. 2003; Gladders et 

al. 2006; Sprague et al. 2006). The data presented in the Chapter 3 of this thesis showed that 

the current pathogen population in western Canada generally lacks AvrLm1 and AvrLm3.  The 

frequency these Avr genes in the western Canadian pathogen population has declined over 

time (Liban et al. 2016, Dilmaghani et al. 2009; Kutcher et al. 2010; 2011). This is likely due 

to the long-term use of the R genes Rlm1 and Rlm3 in CCCs (Zhang et al. 2015).  
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Quantitative resistance (QR) to blackleg is not well characterized but generally 

believed to be polygenic (Pilet et al. 1998). Often resistance expression is on a continuous 

scale (Geiger and Heun  1989). It may not be recognized at the seedling stage, but becomes 

noticeable in adult plants by lower disease incidence and severity under field conditions 

(Ansan-Melayah et al. 1998). Prior to the early 1980s, well before the introduction of first 

resistant cultivar “Quantum” carried Rlm3, quantitative resistance might have been the most 

common type of blackleg resistance in B. napus because most cultivars seemed to respond 

similarly to different isolates of L. maculans (Thurling and Venn 1977; Cargeeg and Thurling 

1980; Newman 1984).  

 Blackleg disease was successfully controlled in western Canada between the late 

1980s and 2009 through the use of resistant canola cultivars and 4-year crop rotations 

(Kutcher et al. 2013). The source of resistance in these cultivars was unknown, so was the 

role of different types of resistance played in blackleg management (Rimmer 2006). In 

Australia, cultivars carrying different complements of R genes are recommended to reduce 

disease severity and plant mortality (Marcroft et al. 2012). This strategy is believed to reduce 

selection pressure towards particular R genes, minimizing the frequency of virulent isolates in 

the pathogen population. This approach has not yet been adopted in western Canada. There is 

evidence that using both types of resistance is of benefit for blackleg management (Brun et al. 

2010), but little information is available for assessing QR. Despite the ineffectiveness of 

Rlm1and Rlm3 against the current pathogen population, most Canadian cultivar was rated 

blackleg resistant at the time of cultivar registration (Saskatchewan Seed Growers 

Association 2012 ) 

 It is possible that the resistance in most of these cultivars is conferred by genetics 

beyond Rlm1 or Rlm3; likely QR also plays a role. In 2012 and 2013, some of the R-rated 

canola cultivars had high levels of blackleg (Peng et al. 2014) that could not be attributed 
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solely to the presence or absence of any Avr genes in the pathogen population (refer to the 

Chapter 3).  This was because most of the cultivars in western Canada carry similar major R 

genes and the pathogen race composition is often similar in fields showing different levels of 

blackleg (Zhang et al. 2015).  

The mechanism of QR against blackleg of canola is not well understood; it does not 

result in a hypersensitive reaction in the host and cannot completely prevent host colonization 

(Huang et al. 2014), rather show more severe symptoms, but development of the disease is 

often slower relative to that on susceptible cultivars. As, the initiation of blackleg disease 

mostly coincide with the emergence of young canola plants, as such cotyledons and young 

leaves are the main avenue for the pathogen to infect the stem (West et al. 2001), QR may 

limit the spread of the pathogen from cotyledons to stems before cotyledon senescence, 

consequently reducing the incidence and severity of blackleg. This information will help to 

understand the key modes of action associated with CCC for blackleg resistance against the 

current pathogen population, facilitating disease management. It was hypothesized that most 

CCCs carry a level of QR that limits the spread of the pathogen from cotyledons into stems, 

thus reducing the severity of stem infection. It may also reduce disease development in the 

stem, alleviating the severity of blackleg at crop maturity. The main purpose of this research 

was to assess QR or non-race-specific resistance in common CCCs and understand it in 

relation to the typical infection avenue leading to stem canker. The objectives were to: 1) 

characterize the development of blackleg on CCCs originating from cotyledon infection to 

identify clues for resistant host responses, and 2) verify the observed resistance responses 

based on the spread of pathogen within the host in critical stages of infection using sensitive 

and accurate molecular and fluorescence microscopic approaches.  



 

64 

 

4.3. Materials and Methods 

Three experiments were conducted under controlled-environment conditions (growth cabinet 

and greenhouse) to characterize the resistance response of canola cultivars representative of 

those used in western Canada.  Eight CCCs were provided by Bayer CropScience, Monsanto 

Canada, Pioneer Hybrid Canada, Crop Production Services, and Agrium Inc. Although most 

of the CCCs were not identified, these seed companies supply hybrid seeds for the majority 

of the canola grown in western Canada. The cv. Westar was used as a susceptible control 

throughout this study.  

4.3.1. Identification of R genes carried in CCCs  

A differential set of ten L. maculans isolates carrying known Avr genes (Table 4.1.) was used 

to inoculate cotyledons of CCC to determine the presence of specific R genes in each cultivar. 

Seven of the CCCs were rated resistant (R-rated) and one moderately resistant (MR) to 

blackleg based on public and private multi-site coop trials across the prairies. The cotyledon-

inoculation method described in Chapter 3 was used to perform this test. The purpose was to 

determine R genes, if any, carried by the CCCs and to assess potential differences in the 

infection severity on cotyledons. The test was carried out twice.  
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Table 4.1. The Avr gene composition of Leptosphaeria maculans isolates used to determine the presence of specific resistance genes in CCCs.
 

Isolate Avr genes 

involved 

   Expected reaction on canola varieties or lines carrying  the Rgenes 

Rlm1 Rlm2 Rlm3 Rlm4 Rlm5 Rlm6 Rlm7 Rlm8 Rlm9 Rlm10 LepR1 LepR3 

S7
‡
 1, 5, 6, 7, (8)*   Avr 

1
   avr 

1
 avr avr Avr Avr Avr - avr avr avr avr 

P27D 
1, 5, 6, 7, (8)*, 

10 
Avr avr avr avr Avr Avr Avr - avr Avr avr avr 

V45-30 2, 7, (10)* avr Avr avr avr avr avr Avr avr avr - avr avr 

19.4.24 3, 5, 6, 8, (10)* avr avr Avr avr Avr Avr avr Avr avr - avr avr 

V23-2.1 
4, 5, 6, 7, 8, 

(10)* 
avr avr avr Avr Avr Avr Avr Avr avr - avr avr 

IBCN 14 5, 6 avr avr avr avr Avr Avr avr avr avr Avr avr avr 

290 Cdn 
5, 6, 7, 8, 10, 

Lep3 
avr avr avr avr Avr Avr Avr Avr avr Avr avr Avr 

NZ-T4 5, 6, 8, (10)* avr avr avr avr Avr Avr avr Avr avr - avr avr 

PHW1223 5, 6, 8, 9 avr avr avr avr Avr Avr avr Avr Avr avr avr avr 

R2
†
 5, 7, (8)*, 10 avr avr avr avr Avr avr Avr - avr Avr avr avr 

CR07-96 (5)*,6,7, Lep1 avr avr avr avr Avr Avr Avr avr avr avr Avr avr 

 
1
 Avr and avr: Representing incompatible and compatible host reactions, respectively.  

* Avr genes may be carried by these isolates
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4.3.2. Pathogen isolates and inoculum  

Virulent isolates of L. maculans were selected for this study; based on the R genes carried by 

the CCCs, none of the pathogen isolates carried any corresponding Avr genes, and thus a 

resistant response was not the result of a specific R-Avr gene interaction. Three L. maculans 

isolates: 12CC09 [Av6,(8)], 13CCMB02-19 [Av4-6-7-(8)] and 13CCMB04-06 [Av2-4-6-7-S-

(8)], were selected. These isolates did not carry AvrLm1 or AvrLm3 alleles, corresponding to 

the Rlm1 and Rlm3, carried by CCCs. Only isolate 12CC09 was used throughout the study; 

the other two isolates were used only in limited cotyledon-inoculation experiments for 

validation the results obtained in experiment 1. The production of L. maculans followed the 

same protocol described in Chapter 3. Briefly, the fungal culture was transferred to V8-juice 

agar and incubated at room temperature for about 10 d before harvest by flooding with sterile 

distilled water. The concentration of pycnidiospore suspension was adjusted to about 1 × 10
7
 

spore mL
-1

 for inoculation (Kutcher et al. 2011b). 

4.3.3. Plants 

Each CCC was seeded in 10-cm square pots using Sunshine #3 soil-less planting mix 

amended with 16-9-12 (N-P-K) at 12.5 g L
-1

 as described earlier. Fertilization was sufficient 

to support canola plants to maturity in the greenhouse. Canola plants were grown in small 

pots (3-3/8" x 4") that were placed in flats and kept initially in a growth chamber at 22/16°C 

(day/night) with a 16 h photoperiod (512 mol m
-2

 s
-1

). Plants were watered from the bottom 

of the tray with about 2.3 L of tap water per tray (Kutcher et al. 2011b). After germination, 

plants were thinned to 2 per pot and each CCC had about 15 pots per run. Each experiment 

had three runs. Cotyledons of each plant were inoculated at 7 after seeding (DAS), or on 

petioles at 14 DAS, depending on the experiment. Seven days post inoculation (dpi) the 

plants were transplanted to 13-cm plastic pots (one plant per pot) and placed randomly on a 

greenhouse bench until early maturity stage of 5.2 (Harper and Berkenhamp, 1975) to assess 
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blackleg severity originating from cotyledon or petiole inoculation. The temperature in the 

greenhouse was 22/16°C with 16 h natural daylight supplemented by 430 watt high-pressure 

sodium lamps (230 mol m
-2

 s
-1

). All plants were checked daily and watered as needed.  

4.3.4. Plant inoculation and infection/disease assessment 

To simulate infection development from infected cotyledons or petioles into the stem, 

wounds were made on cotyledons with tweezers as described above or on petioles with a 

needle. A 10-μl droplet of L. maculans spore suspension was applied to each wound. The 

inoculation was carried out at 7 or 14 DAS depending on the experiment, and unlike the 

earlier study, true leaves were not removed. Inoculated plants were placed in a dew chamber 

(Percival Scientific, Perry, IA) at 20°C in the dark for 24 h to facilitate infection, and then 

transferred back to the growth chamber until the assessment of disease severity on the 

cotyledons. Additionally, some of these plants were assessed for pathogen spread from the 

inoculation site (IS) into the stem using droplet digital PCR (ddPCR) and fluorescence 

microscopy (with green fluorescent protein -GFP) as described in the following sections. 

Additional inoculated plants were kept in the greenhouse until maturity and monitored 

weekly for plant mortality commencing at 14 dpi. At each assessment point, dead plants were 

recorded and removed. A plant showing permanent wilting for longer than a week was 

considered “dead” and assessed at severity level 5 at the final disease severity rating. At early 

maturity, growth stage (GS) 5.2 (Harper and Berkenhamp, 1975), all plants were cut at the 

cotyledon abscission point on the stem, and the internal blackening of stem was assessed 

using the 0-5 scale based on the percentage of diseased area of the stem cross section 

(Appendix 3).  

4.3.5. Fluorescent microscopy for observation of L. maculans in cotyledon/petiole tissues 

The spread of L. maculans in inoculated canola cotyledons was assessed using a pathogen 

isolate carrying only AvrLm6,(8) that had been transformed with a green-florescent-protein 
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(GFP) gene which expressed strongly in the cell-wall membrane, as well as in the cytoplasm 

of the fungal hyphae. The untransformed wild type was the L. maculans isolate 12CC09, and 

therefore the GFP-transformed isolate was given the name 12CC09-GFP.  Fluorescent 

microscopy was performed on inoculated cotyledons at 10 dpi using a Zeiss Stereo-Lumar 

fluorescent microscope outfitted with 0.8× NeoLumar S lens. Leaf samples were placed on a 

microscope slide, submerged in a drop of water, and covered with a glass slip. The GFP 

imaging was done with a microscope with an HBO100 mercury lamp and GFP filter. A bright 

field image was obtained using a KL-2500 LCD white-light source, no filter, and a 1.5 s 

exposure time. The brightness and gamma were adjusted to optimize the visibility of the 

green-fluorescent fungal hyphae in overlaid images 

4.3.6. Quantifying L. maculans in petiole and stem tissues using ddPCR 

At 14 dpi, the petioles of inoculated cotyledons and stem pieces cut between 1 cm above and 

1 cm below the petiole were sampled separately, and freeze dried for DNA extraction using 

the BioSprint robot and kit (Qiagen, Toronto, ON). The quality of DNA was confirmed on a 

Nanodrop (Agilent Technol. Mississauga, ON), and all DNA samples were kept at 4°C until 

use. Primers were designed using the L. maculans sequence provided by Dr. H. Borhan, 

AAFC Saskatoon Research and Development Centre, and validated using genomic DNA of 

L. maculans. The actin genes of B. napus were used as housekeeping genes (required for the 

upkeep of basic cellular activities of an organism) and the primers validated using the DNA 

extracted from the double haploid B. napus line DH12075 (AAFC). The primer and probe 

information is provided in Table 4.2. For validation, the mixture of forward and reverse 

primers, DNA samples, water, dNTP’s, 10× PCR buffer with Mg and Taq for each primer 

pair along with markers were loaded on the standard 1% agarose gel (100 ml TAE buffer, 1 g 

Agarose and 2 µl Enviro Safe dye), and electrophoresed at 90V for 30 min. The effectiveness 

of the primers/probes was confirmed.  
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Table 4.2. Primer and probe DNA sequences used in the quantification of L. maculans and 

Brassica napus DNA in the ddPCR assay. 

Primer & probe for L. maculans 

Lm HyPro F1 GCGCGAATCACCAGATACA 

Lm HyPro Probe ACGAAGTGTGAGGTCGTCTGTGAGA 

Lm HyPro R1 CTCCTCTAGGGAAGGACATACA 

Primer & probe for B. napus 

Bn. Actin F CAGTGGTCGTACTACTGGTATTG 

Bn. Probe TGCTGGATTCTGGTGATGGTGTGT 

Bn. Actin R GATGGCGTGTGAAAGAGAGA 

 

 

Before testing, DNA samples extracted from petiole or stem tissues were digested 

with the enzyme HindIII (a restriction endonuclease that recognizes the sequence and cuts 

best) by adding 1µl of DNA to 9 µl of the enzyme cocktail in each well. After mixing, 

samples were placed in an oven at 37°C for 1 h. The PCR cocktail was prepared in bulk by 

vortexing 12.5 µl Super mix for Probes (Bio-Rad Canada, Mississauga, ON), 1 µl Lm HyPro 

F1 and R1 primers (22.5 µM), 1 µl Lm HyPro probe (6.2 µM, FAM dye), 1 µl Bn. actin F 

and R primers (22.5 µM), 1 µl Bn. Probe (6.25 µM, HEX dye) and 2.5 µl sterile deionized 

water. Four µl of digested template DNA were mixed with the PCR cocktail to make a 25 µl 

reaction. 

A disposable cartridge was placed in the cartridge holder cassette to generate droplets. 

A multi-channel pipet was used to add 20 µl of PCR reaction solution to the centre row of the 

droplet generator cartridge. Care was taken during this step to avoid bubbles as they would 

disturb droplet formation. Droplet generation oil was added (70 µl) to the bottom-row wells 

of the cartridge using the multi-channel pipet. The gasket was fitted over the top of the 

cassette before it was placed in the droplet generator. After analysis, the cassette was 
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removed from the generator and 40 µl of droplet suspension was pipetted from the top row 

very slowly, and the droplet suspension was then pipetted into a sealable PCR plate, very 

slowly to avoid bubbles.  

After transferring the droplet suspension to a Twin-tech sealable PCR plate, a single 

foil seal was placed on the top of the PCR plate to secure the content in the wells and the 

plate was placed in a sealer programed at 180ºC for 10 s. The PCR plate was then removed 

and placed in the BIO-RAD C1000 thermocycler programmed as follows: at 95ºC for 10 s, 

94ºC for 30 s, 58.3ºC for 1 min with a ramp of 2ºC/s (annealing temperature), 50 cycles of 30 

s at 94ºC, 98ºC for 10 s  and 12ºC hold. The program QuantaSoft™ was used to read and 

analyze the PCR reaction in a large number of droplets. Before reading, a sample template 

was entered and when the PCR was finished the plate was taken to the BIO-RAD Q100 

reader. Each well took approximately 1.5 minutes to read. The quantity of L. maculans DNA 

was expressed as a proportion of the total B. napus DNA from the petiole or stem sample.  

4.3.7. Experiment 1: Resistance to blackleg and/or plant mortality resulting  from the 

cotyledons inoculated with L. maculans  

Three CCCs that varied slightly in terms of cotyledon resistance in pre-trials were 

selected for this experiment. All carried the R genes Rlm1 and/or Rlm3, but none was 

considered highly resistant to L. maculans Isolate 12CC09, carrying AvrLm6,(8) (Appendix 

2). The cv. Westar was used as the susceptible control. As described earlier, test cultivars 

were seeded initially in small 10-cm pots and at 7 DAS, both lobes of each cotyledon were 

wounded and inoculated with Isolate 12CC09 carrying no corresponding Avr genes to Rlm1 

or Rlm3 found in the CCCs. At 14 dpi, the disease severity on cotyledons was assessed. 

Fifteen to 32 inoculated plants, depending on the cultivar or trial repetition, were then 

transplanted individually into 13-cm pots and kept in the greenhouse until the end of the 

experiment. These plants were examined weekly for basal canker or mortality. Up to 10 non-
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inoculated Westar plants were included as an additional check for disease symptoms and 

plant mortality. All plants were cut at the cotyledon abscission point on the stem and assessed 

for blackleg severity using a 0-5 scale (Appendix 3). The experiment was carried out three 

times; each time the pathogen inoculum and plant materials were prepared independently. A 

disease severity index (DSI) was calculated for each CCC and for Westar for each repetition 

using the following formula (Grau et al. 1982): 

 

DSI (%) = 
∑ [(rating class) (# plants in the class)] 

× 100 
(Total # of plants) (5) 

 

For fluorescent microscopy to trace the pathogen hyphal movement after inoculation, 

cotyledon samples were taken from 5 to 10 random plants from each repetition of each trial at 

10 dpi. The GFP transformed L. maculans isolate (12CC09-GFP) was used for inoculation. 

Samples were examined immediately under a fluorescent microscope for the spread of 

pathogen from inoculation sites. The assessment of CCCs for hyphal spread was compared to 

that in Westar.  

For the ddPCR assay, petiole and stem samples were taken from three to eight random 

plants at 14 dai of cotyledon inoculation experiments in each trial. The petiole and stem 

samples were separated for each CCC and the control. The quantity of L. maculans DNA 

based on ddPCR represented the relative amount of pathogen hypha that had reached the 

petiole or stem tissue. Three tests were conducted for both GFP and ddPCR assays. 

4.3.8. Experiment 2: Resistance to blackleg and/or plant mortality resulting in the 

inoculation of petioles with L. maculans 

To assess the potential resistance of CCCs after pathogen establishment in the stem, same 

three CCCs were selected, and the petioles of the cotyledons were inoculated at 14 DAS with 
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L. maculans Isolate 12CC09 at a location adjacent to the stem axil. This method of 

inoculation increased the probability of successful stem infection due to the short distance 

from the site of inoculation, and generally 100% stem infection was achieved in preliminary 

trials. About 15 plants were inoculated for each CCC in each trial. These plants were then 

transplanted individually into 13-cm pots at approximately 7 dpi, kept in the greenhouse, and 

examined weekly for basal canker or mortality. All plants were cut at the cotyledon 

abscission point on the stem at early maturity and assessed for blackleg severity using the 0-5 

scale. The experiment was conducted three times, with plant materials and pathogen 

inoculum prepared independently. 

4.3.9. Experiment 3: Test of CCC resistance with additional L. maculans isolates 

 To validate the results of experiment 1, same CCCs were also inoculated with two additional 

L. maculans isolates (Isolates13CCMB02-19 [Av4-6-7-(8)] and 13CCMB04-06 [Av-2-4-6-7-

S-(8)]) These isolates carry different Avr genes from those of Isolate 12CC09, but none 

correspond to any of the R genes (Rlm1 and/or Rlm3) in the CCCs. The experimental protocol 

and inoculation and assessment methods were similar to Experiment 1 (4.3.7) and the same 

three CCCs were used. The experiment was carried out twice at different times, with ten 

plants for each CCC as well as the Westar control.  

4.3.10. Data analysis 

The determination of R genes carried by CCC was similar to that described for Avr gene 

detection in Chapter 3. Six plants were arranged in two blocks for each repetition, and disease 

severity scores on cotyledons were averaged over a total 6 plants (2 blocks) of each CCC or 

Westar. A resistant reaction (≤ 4.9), where the lesion size is small and pycnidia absent 

(Appendix 3), was interpreted as the potential presence of R genes corresponding to at least 

one of the Avr genes in the L. maculans isolate. All other experiments used a completely 

randomized design, with experiments carried out three times, unless otherwise indicated.  
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The same disease rating scale as in Experiment 1 was used to evaluate disease 

severity on cotyledons. Resistance was accepted if disease severity scores were ≤ 5 Plant 

mortality and disease severity index (DSI) values from different repetitions were used in 

statistical analysis using the R Statistical Software (V3.1.2, R Foundation for Statistical 

Computing, Vienna, Austria). The DSI (%) data was log transformed and confirmed for 

normality based on the Shapiro-Wilk Test (P > 0.05) prior to the analysis of variance 

(ANOVA) using R Software. Treatments were separated with Tukey's Test (P = 0.05). The 

same statistical analysis was applied to the ddPCR data. 

4.4. Results 

 

4.4.1. R genes carried by CCCs 

Most of the CCCs were resistant to infection by L. maculans isolates carrying AvrLm1 or 

AvrLm3, based on the disease severity of inoculated cotyledons. One of the CCCs (CCC7) 

appeared moderately resistant to infection by Isolate 290 Cdn, which carries neither AvrLm1, 

nor AvrLm3. It was therefore deduced that all of the CCCs carried the specific R genes Rlm1, 

Rlm3 or both and CCC7 might also carry additional R genes. 

Table 4.3. Reaction of CCCs on cotyledons to inoculation using L. maculans isolates carrying 

various Avr genes
1
. 

 
1
 Averaged over 6 plants. 
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4.4.2. Experiment 1: Resistance of CCCs to blackleg and/or plant mortality base on 

cotyledon assessment 

The average disease severity on inoculated cotyledons was 5.3 to 6.7 for the CCCs, compared 

to 7.7 on Westar at 14 dpi.  The infection generally continued to spread into the stem, causing 

variable levels of blackleg and plant mortality on CCCs. Often dark lesions were visible on 

the stem by the juncture of the stem and petiole of the inoculated cotyledon at about 28 dpi 

and plant wilting and death sometimes occurred. Non-inoculated Westar plants showed no 

such symptoms. There were noticeable differences in the trend of plant mortality on different 

cultivars; CCC1 had the lowest mortality and none of the plants died until 49 dpi (Figure 

4.1).  Plant mortality of CCC2 and CCC3 began slightly earlier (42 dpi), and had 

substantially higher final mortalities relative to CCC1. Plant mortality of CCC2 and CCC3 

was delayed compared with CCC1 and the final mortality was lower than the susceptible 

control Westar.   Cumulative  

 

Figure 4.1. Plant mortality of selected CCCs originating from the inoculation of cotyledons 

with the L. maculans isolate 12CC09. Westar was a susceptible control. 
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At early maturity, the mean DSI was approximately 80% on Westar, with plant 

mortality of >90% (Figure 4.2). Both DSI and plant mortality varied substantially among 

CCCs; CCC1 had the lowest DSI and final plant mortality of all the cultivars tested, with 

about 50% reduction in both categories when compared with Westar. The CCC2 and CCC3 

appeared less resistant than CCC1, but still had substantially less plant mortality compared 

with Westar (Tukey’s Test, Appendix 5). Although the DSIs of CCC2 and CCC3 were not   

different from each other (Tukey’s Test, P >0.05), but were significantly different from that 

of the control (Westar).  

 

Figure 4.2. Disease severity index (DSI) and final plant mortality at the early maturity stage 

of canola after cotyledon inoculation using L. maculans isolate 12CC09 in greenhouse trials. 

The amount of L. maculans DNA was calculated against the amount of B. napus DNA 

in the sample; this quantified the pathogen relative to the host tissue. The amount of pathogen 

DNA detected in petioles of inoculated cotyledons was substantially less in the CCCs than for 

Westar at 14 dpi (Figure 4.3). In stem tissues, adjacent to the petiole, the amount was also 

significantly less (<90%) in the CCCs than in Westar (Figure 4.3). In general, the amount of 

pathogen DNA was lower in stems than petioles at 14 dpi, regardless of cultivar.   



 

76 

 

 

Figure 4.3. The amount of L. maculans DNA in the petiole of Westar (control) was 

approximately 0.05% and in stem tissues adjacent to the petiole was nearly 0.02%, which was 

higher relative to the CCCs at 14 dpi. 

Florescent microscopy clearly illustrated the movement of GFP-labelled L. maculans 

hyphae from the inoculation site (IS) on the Westar cotyledon into the petiole at 10 dpi 

(Figure 4.4).  Movement was limited on CCCs, especially CCC1 and CCC2 (Figure 4.5 and 

4.6). At this stage, there was limited necrosis around the IS on all cultivars, but lesions could 

be clearly defined. The colonization of the cotyledon by L. maculans appeared to occur 

earlier than visible disease symptoms.  



 

77 

 

 

Figure 4.4. The colonization of cotyledon tissue by L. maculans isolate 12CC09-GFP from 

the inoculation site (IS) on Westar; Lm indicates pathogen hyphae (arrow pointed) under the 

florescent microscope. 

 

Figure 4.5. The spread of GFP-labelled L. maculans hyphae (white arrows) in cotyledon and 

petiole tissues from the inoculation site (IS) on Westar and CCC1 at 10 dpi. 
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Figure 4.6. The spread of GFP-labelled L. maculans hyphae (white arrows) in the cotyledon 

tissue from the inoculation site (IS) on CCC2 and CCC3 at 10 dpi. 

4.3.3. Experiment 2: Resistance of CCCs to blackleg and/or plant mortality after petiole 

inoculation 

It took less time for stem infection and plant mortality with petiole inoculation as opposed to 

cotyledon inoculation; plant mortality was observed on Westar and each of the CCCs by 21 

dpi (Figure 4.5), as opposed to 35 dpi on CCCs after cotyledon inoculation. Mortality 

increased only marginally on CCC1 after the initial observation and was <20% at the end of 

the experiment (56 dpi). The CCC2 and CCC3 had more rapid increase in mortality and close 

to 80% of these plants died by 56 dpi, although the mortality was still slightly lower than that 

of Westar at each time point of assessment after 21 dpi (Figure 4.6).  
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Figure 4.7. Plant mortality of selected CCCs originating from the inoculation of petioles with 

the L. maculans isolate 12CC09. Westar was a susceptible control. 

The disease severity at early maturity after petiole inoculation was also higher than 

that after cotyledon inoculation; the average DSI on Westar was almost 100% and none of the 

plants survived to that stage (Figure 4.8). The plant mortality of CCC2 and CCC3 was 

reduced slightly compared with Westar, but it was CCC1 that had the most substantially 

reduced DSI (<40%) and plant mortality.  More than 80% of CCC1 plants survived to early 

maturity, as opposed to 20% for CCC2 or CCC3. The latter two cultivars had approximately 

80% DSI, which was not significantly different from that of Westar.  
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Figure 4.8. Disease severity index (DSI) and final plant mortality at the early maturity stage 

of canola after petiole inoculation using L. maculans isolate 12CC09 in greenhouse trials. 

4.3.4. Experiment 3: Resistance of CCC to infection caused by additional L. maculans 

isolates 

Two additional L. maculans isolates with different Avr composition from that of Isolate 

12CC09 were used to compare the CCCs for blackleg resistance after cotyledon inoculation. 

These two isolates, 13CCMB02-19 and 13CCMB04-06, appeared less aggressive than Isolate 

12CC09 and resulted in lower DSI (<50%) and plant mortality (<30%) on Westar at early 

maturity (Figure 4.9). In contrast, cotyledon inoculation with Isolate 12CC09 generally 

resulted in both a DSI and plant mortality of >80%, at a similar growth stage. Nevertheless, 

these CCCs reduced DSI and plant mortality significantly when compared with Westar; 

CCC1 was the most resistant, whereas the other two CCCs did not differ from each other.  
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Figure 4.9. Disease severity index (DSI) and final plant mortality at the early maturity stage 

of canola after cotyledon inoculation using two L. maculans isolates: 13CCMB02-19 [Avr4-

6-7-(8)] (A) and 13CCMB04-06 [Avr2-4-6-7-S-(8)] (B). 
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4.3. Discussion 

Most CCCs are believed to carry some level of resistance to blackleg, although the source or 

sources of that resistance is largely unknown (Rimmer 2006). The eight CCCs provided by 

several seed companies that supply the majority of the canola seed in western Canada all 

carry the R genes Rlm1 and/or Rlm3. CCC4 may also carry LepR3, but this was not validated 

by testing with a L. maculans isolate carrying AvrLep3 without AvrLm1. Additionally, severe 

symptoms on cotyledons were not observed; average disease severity was 4.7. The result is 

generally consistent with that reported by Zhang et al. (2015) who investigated a broad range 

of canola cultivars and breeding lines in Canada. Most of the canola cultivars tested in our 

study carried R genes that are not effective against the current pathogen population, in which 

AvrLm1, AvrLm3 and even AvrLep3 are at extremely low levels (Liban et al. 2016; Chapter 

3). This is likely the response of the pathogen to the cvs. Quantum (Rlm3) and Q2 (Rlm1, 

Rlm3) introduced in the early 1990s’ (Kutcher et al. 2009), as well as to many later cultivars 

carrying Rlm1 and/or Rlm3 as revealed in this study. Rlm1 also conditions resistance to L. 

maculans carrying AvrLep3 (Larkan et al. 2013), resulting in the low frequency of this Avr 

gene in the pathogen population. Despite the fact that only Rlm1 and/or Rlm3 were found in 

these CCCs, all are rated blackleg resistant in western Canada based on their field 

performance. This suggests that for many canola cultivars additional factors beyond Rlm1 or 

Rlm3 are involved in blackleg resistance; race-nonspecific or QR, which is more evident 

when assessed in adult-plant stages (Zhang et al. 2015), may play an important role. 

The genetics of, and modes of action for QR are not well understood; it is usually not 

expressed strongly at seedling stages but often results in reduced disease damage under field 

conditions (Brun et al. 2010). Its identification, however, can be complicated because the 

process depends heavily on field experimentation (Pilet et al. 1998; Fitt et al. 2006) and the 

results can be influenced by many environmental and management factors. Huang et al. 
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(2009) observed QR in the cv. Darmor (B. napus) in field trials, and in controlled 

environment they observed that the pathogen colonized the stem more slowly in Darmor than 

on a susceptible cultivar, although the pathogen spread from leaves to stems rapidly in both 

cultivars. Later they also observed slower spread of L. maculans in leaves and petioles of 

another QR line. Delourme et al. (2006) suggested that the modes of action for QR may vary 

with the host, infection stage or resistant genotype involved. In the current study, selected 

CCCs were verified not to be carrying R genes corresponding to any of the Avr genes in the 

L. maculans isolates used. Therefore, any resistant response of the CCCs would likely have 

resulted from QR mechanisms. ddPCR and GFP-fluorescent microscopy (Figure 4.3-4.6) 

provided strong evidence of restricted pathogen spread from inoculated cotyledons via the 

petioles into the stems of CCCs, and this mechanism is likely important because infected 

cotyledons and petioles often separated from the stem shortly after 14 dpi (data not shown).  

This prevented the pathogen from entering the stem if it had not already done so by this time. 

The reduced DSI and plant mortality of CCCs, especially CCC1 (Figure 4.1 and 4.2) relative 

to Wester after cotyledon infection, also indicated restricted pathogen spread, and therefore 

blackleg resistance. In petiole inoculation, differences in DSI and plant mortality between the 

CCCs and Westar highlighted the stem resistance within the CCCs; this inoculation method 

caused almost 100% stem infection of all cultivars (data not shown), however DSI was much 

lower on the CCCs, especially on CCC1 (Figure 4.7 and 4.8).  

Increased lignification of pith cells may strengthen stem resistance to blackleg 

(Hammond and Lewis 1987), but experimental data are generally lacking for molecular 

mechanisms of QR. In the current study, the QR identified in connection with infection of 

cotyledon, petiole and stem tissue of CCCs, suggested their relevance to blackleg resistance 

and that they may also play an important role in current disease management strategies in 

western Canada. The characterization of cotyledon and stem infection confirmed differences 



 

84 

 

between CCCs and the susceptible control, which may pave the way for further studies on 

molecular mechanisms of QR resistance by selecting stages of infection to identify the 

specific genes or pathways involved. Monitoring plant mortality after inoculation provided an 

additional measurement on stem resistance to blackleg; CCCs delayed the onset of plant 

mortality by one and three weeks, respectively, in petiole and cotyledon inoculations relative 

to that of Westar. This was possibly due to slower infection of CCC stem tissues. CCC1 

stood out in this aspect, not only did it have the latest onset of mortality after inoculation, but 

also infection progressed more slowly than in other CCCs.  This resulted in much reduced 

final plant mortality at early maturity relative to other cultivars, which would likely reduce 

the impact of blackleg. 

This study was not intended to compare or rank the CCCs for blackleg resistance due 

to the limited environmental conditions used for testing, but rather to determine QR of these 

common CCCs in western Canada. Nevertheless, variation was observed among the CCCs 

evaluated; CCC1 appeared to be more resistant than other CCCs in almost each aspect of 

assessment, including DSI and plant mortality after cotyledon or petiole inoculation.  

Pathogen spread was determined by ddPCR, GFP-labelled fluorescent microscopy, 

and to multiple isolates of L. maculans. The highly repeatable results indicated the potential 

for screening and preliminary selection of more robust QR under controlled-environment 

conditions.  Conventional strategies for QR identification against blackleg rely heavily on 

field trials (Ansan-Melayah et al. 1997; Rouxel et al. 2003; Fitt et al. 2006); this approach is 

laborious, inefficient and sometimes produces unreliable results due to environmental 

variability (Fitt et al. 2011; McDonald 2010). Large-scale, multi-year field experiments are 

often carried out for QR assessment, which makes the process costly and time-consuming.  

Huang et al. (2014) explored qPCR plus GFP fluorescent microscopy to assess QR 

under controlled conditions and identified relative resistance to stem colonization by L. 
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maculans in a B. napus line. The current study provides further evidence that supports initial 

QR assessment based on pathogen spread from cotyledons to stems and the progress of 

disease development in stem tissues under a controlled environment. As shown with the three 

CCCs, the assessment using ddPCR plus GFP-labelled fluorescent microscopy produced 

highly repeatable results and the process can be streamlined to efficiently screen a large 

amount of germplasm. Promising candidates can be evaluated further under field conditions 

for validation. In western Canada, it is of great benefit to include strong QR to blackleg in 

CCCs because it may complement the specific R genes that target the avirulent fractions of 

pathogen population, which alleviates selection pressure on virulent isolates, thus enhancing 

the durability of specific R genes (Brun et al. 2010). It also helps maintain a high level of 

blackleg protection when major R genes are overcome by the pathogen.  Studies of Zhang et 

al. (2015) and Liban et al. (2016) reported that Rlm1 and Rlm3 are no longer effective; 

however, blackleg is still relatively well managed in western Canada.   

The generally higher DSI and plant mortality after petiole inoculation relative to 

cotyledon inoculation are likely due to the  shorter distance that the pathogen has to progress 

to reach the stem. With almost 100% success in reaching and establishing in stem tissues, the 

petiole inoculation method appears to be a reasonable protocol for the assessment of stem 

resistance to blackleg.  It can also differentiate canola genotypes by the extent of pathogen 

spread in cotyledon and petiole tissues. So far, these two aspects of blackleg resistance appear 

to be the key mechanisms associated with most of canola cultivars in western Canada, where 

specific R genes corresponding to the prevalent Avr genes in the current pathogen population 

(Liban et al. 2016) are generally not found (Zhang et al. 2015). This two-stage assessment 

may be used for screening QR against blackleg in controlled conditions, with the aid of 

proper enabling techniques such as ddPCR and GFP-labelled fluorescent microscopy. The 

results of the current study also highlight the potential value of these resistance mechanisms 
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of QR in blackleg management in western Canada; restricting pathogen spread from 

cotyledon to stem and limiting disease development in stem tissues reduces blackleg 

incidence and disease severity of canola. These resistance mechanisms of QR may be of 

greater benefit in western Canada where the growing season for canola (90-105 days) is much 

shorter than in many other parts of the world, including >180 days in Australia (Walton et al. 

1999) and >300 days for winter rapeseed in Europe (Walton et al. 1999). Both the resistance 

mechanisms: hypersensitive response by qualitative resistance and restricting pathogen 

spread from cotyledon to stem and limiting disease development in stem tissues by 

quantitative resistance may likely reduce the incidence and severity of blackleg more 

substantially on shorter-season canola crops.  

   Use of ddPCR appears to be of great benefit to assess the spread of L. maculans inside 

leaf and petiole tissues before blackleg symptoms became visible. It provides sensitive 

quantification (Bhat et al. 2009) of blackleg, based on the absolute amount of DNA 

(Corbisier et al. 2010), which is calibrated against the amount of host DNA. Therefore, it is a 

robust method for quantitative analysis during QR identification. Usually L. maculans 

progresses into the canola stem via the petiole of infected cotyledons (West et al. 2001); 

therefore it is critical for the pathogen to grow into the petiole rapidly to maximum the 

chance to reach stem tissues before the cotyledon abscises. The ddPCR data showed that the 

amount of pathogen DNA was consistently higher in the petioles of Westar cotyledons than 

in the CCCs; this likely means that the pathogen had moved into the petiole and colonized it 

more extensively in the susceptible control, than in the CCCs. Consequently, this resulted in 

higher incidence of stem infection and blackleg severity. On the CCCs, the pathogen took 

longer to move through the cotyledon and petiole, increasing the risk of failure to reach the 

stem before cotyledon abscission. The ddPCR technology also indicated substantially smaller 

amounts of L. maculans DNA in stem tissues of CCCs adjacently to the petiole of inoculated 
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cotyledons at 14 dpi than in the susceptible cultivar.  This further suggests a lower rate of 

successful establishment and/or colonization of the pathogen in stem tissues. Therefore 

ddPCR should be further explored to its efficiency to screening canola germplasm for QR.  

4.4. Conclusion 

This study characterized QR associated with CCCs in two distinct stages of infection process: 

1) the spread of the pathogen from an infected cotyledon via the petiole into the stem, and 2) 

disease development in stem tissues. The ddPCR and GFP-fluorescent microscopy techniques 

proved to be useful to assess pathogen spread and identify QR. The study suggests that canola 

germplasm can be screened for QR under controlled-environment conditions by evaluating 

the efficiency of the process and consistency of resistance responses. Many CCCs do not 

carry R genes corresponding to the prevalent Avr alleles in the pathogen population in 

western Canada, but most of these cultivars remain resistant to blackleg due to race-

nonspecific resistance. This resistance appears to restrict pathogen spread in cotyledons and 

petioles, consequently limiting the opportunity for the pathogen to reach the stem before 

abscission. As a result, the incidence of stem infection may be reduced. Additionally, the 

CCCs seem to resist infection and colonization of stem tissues by the pathogen, further 

alleviating the severity of blackleg.  
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Chapter 5. General discussion and conclusion 
  

5.1. General discussion 

The recent increase in the incidence and severity of blackleg of canola in many regions on the 

Canadian prairies was suggested to be due to shifts in pathogen race structure, as well as 

shortened crop rotations (Kutcher et al. 2013). In a recent study, Liban et al. (2016) reported a 

generally low frequency of Avr genes AvrLm1and AvrLm3 in the pathogen population on the 

prairies, and another study, Zhang et al. (2015) reported that most CCCs in Canada carry only 

the R genes Rlm1 and/or Rlm3. It is therefore evident that most CCCs grown in western 

Canada do not carry specific R genes corresponding to the prevalent Avr genes in the 

pathogen population. The current study of the Avr profile of L. maculans in commercial 

canola fields also detected low frequency of AvrLm1 and AvrLm3 (Soomro et al. 2015), and 

together these results indicate that the R genes Rlm1 and Rlm3 are no longer effective against 

the current pathogen population on the prairies. Despite these finding, disease surveys in all 

provinces detected only a small percentage of canola fields with serious blackleg damage 

(Miller et al 2014, Canadian Plant Disease Survey 2012; 2013.  Additionally, the 

characterization of the L. maculans race structure in this study did not explain the substantial 

differences in blackleg incidence among commercial canola fields because the majority of 

CCCs in Canada carry similar R genes, i.e. Rlm1 and/or Rlm3 (Zhang et al. 2015).  Therefore, 

the relationship between cultivar resistance and pathogen Avr-gene profile appears more 

complex, and factors beyond the major genes Rlm1 and Rlm3 may play a role in the variation 

in disease incidence and severity observed.  

The current study also provides further insights into the pathogen race structure in 

these targeted commercial fields. Although the overall Avr-gene picture is similar to that 
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described in an earlier study (Liban et al. 2016), with low frequencies of AvrLm1, AvrLm3, 

AvrLm9, AvrLep2 and AvrLep3, and high frequencies of AvrLm2, AvrLm4, AvrLm6 and 

AvrLm7. Some interesting phenomena were observed in these fields; for example, AvrLm2 

and AvrLm4 were noticeably lower in Alberta fields than in Saskatchewan or Manitoba fields. 

These results also indicate that several R genes might be used to improve blackleg control on 

the prairies, including Rlm2, Rlm4, Rlm6 and Rlm7. When compared with the earlier data 

(Kutcher et al. 2011b), there was a clear decrease in AvrLm3 in almost all the fields, 

accompanied by a high frequency of AvrLm7, similar to what was observed in France 

previously (Balesdent et al. 2006), likely due to a masking effect of AvrLm4-7 over AvrLm3 

(Plissonneau et al. 2016). AvrLm3 may be recognized more readily by Rlm3 once AvrLm7 

begins to decrease in the pathogen population were Rlm7 to be used in Canadian CCCs. 

Therefore, it is important to continue Avr monitoring to deploy effective R genes in canola 

cultivars and provide early warning that a specific R gene may be under selection pressure 

from the pathogen population. If the data can be generated over all regions, it may help guide 

the regional deployment or rotation of R genes corresponding to the prevalent Avr genes, as 

practiced in Australia (Marcroft et al. 2012).  

The population of L. maculans in western Canada is considered genetically diverse 

(Dilmaghani et al. 2009) and includes certain Avr alleles rarely found in other parts of the 

world. The diversity is also reflected by the number of pathogen races identified by Liban et 

al. (2016) who reported 55 races, with races AvrLm2-4-6-7 (22.7%) and AvrLm2-4-6-7-S 

(22.5%) the most prevalent on the prairies. In contrast, Balesdent et al. (2006), identified only 

11 races in France based on characterization of 1,797 L. maculans isolates. The current study 

demonstrated even greater diversity in the pathogen population, with a total of 90 races. 

Interestingly, the most prevalent races were exactly the same as those identified earlier by 

Liban et al. (2016), although the frequencies were lower (11.6% and 10.8%, respectively). 



 

90 

 

The dominance of certain races reflects an uneven pathogen population in western Canada, 

but also provides important information for the selection of effective R genes for blackleg 

resistance breeding. The high pathogen race diversity also indicates the need for caution 

when deploying new R genes because all known R genes can be defeated by at least one of 

the races identified in the current study. To improve resistance durability, race-specific and 

race-nonspecific resistance may be combined for optimal blackleg management (Delourme et 

al. 2006; Brun et al. 2010). 

In Canada, most CCCs may carry a level of resistance to blackleg, although the source 

and nature of resistance is largely unknown (Rimmer 2006). This was consistent with the 

assessment of eight CCCs from major seed companies; each of the CCCCs carries Rlm1 

and/or Rlm3. This result is also generally consistent with that reported by Zhang et al (2015). 

These results highlight that most Canadian CCCs carry no R genes effective against the 

current pathogen population in which the corresponding AvrLm1 and AvrLm3 are at 

extremely low levels (Liban et al. 2016; Chapter 3). All CCCs used in this study were 

considered resistant to blackleg based on their field performances, despite the fact they do not 

carry effective R genes to the pathogen population in western Canada. This is likely due to 

factors beyond Rlm1 or Rlm3, including race-nonspecific or QR. The genetics of QR are not 

well understood (Brun et al. 2010) and its identification has traditionally depended on 

extensive field experimentation (Pilet et al. 1998; Rouxel et al. 2003; Fitt et al. 2006). The 

current study used L. maculans isolates carrying no Avr genes corresponding to any of the R 

genes in the CCCs to characterize race-nonspecific resistance. Droplet digital PCR and GFP-

fluorescent microscopy provided strong evidence that pathogen spread from infected 

cotyledons into the stem was restricted in CCCs, and this mechanism appears highly relevant 

to blackleg resistance because it can potentially reduce stem infection if the cotyledon 

abscises before the pathogen passes through the petiole and reaches the stem. Droplet digital 
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PCR may be developed further for robust assessment of L. maculans spread inside the canola 

leaf, petiole and stem for sensitive quantification of infection (Bhat et al. 2009; Corbisier et 

al. 2010). It may be used to screen for and identify QR related to the mechanism of reduced 

stem infection via infected cotyledons.  

Since the modes of action of QR may vary depending on the host or infection stage 

(Delourme et al. 2006), resistance to stem infection should also be assessed to complement 

screening for pathogen spread in cotyledon and petiole tissues, as described above. The 

greater blackleg incidence and severity associated with petiole inoculation, relative to that 

with cotyledon inoculation, demonstrated that petiole inoculation results in high incidence of 

stem infection and this protocol may be adopted for screening resistance against stem 

infection and colonization by the pathogen. Petiole inoculation can be easily accomplished in 

controlled environments and used with quantitative pathogen measurements in stem tissues 

(Huang et al. 2014) for QR identification. Monitoring of plant mortality after petiole 

inoculation provides an additional measurement for stem resistance based on the onset of 

plant mortality and final plant survival relatively to the susceptible control. Each CCC 

delayed the onset of plant mortality and improved plant survival at maturity. These effects 

will likely reduce the impact of blackleg. Screening for QR based on cotyledon and stem 

infection differentiates the growth stages related to blackleg resistance; resistance may be 

expressed at one or both stages of infection (Huang et al 2009).  Quantitative resistance limits 

pathogen spread from infected cotyledons into the stem, as well as reduces the infection in 

stem tissues, which would certainly be ideal since the resistance mechanism is activate 

throughout the whole infection process. Promising candidates can be evaluated further under 

field conditions for validation. In western Canada, it is useful to include a strong QR 

background for blackleg resistance because it complements specific R gene resistance, which 

targets avirulent fractions of the pathogen population by alleviating the selection pressure on 
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virulent isolates, enhancing the durability of specific R genes (Brun et al. 2010). It also helps 

maintain a level of protection when major R genes are overcome by the pathogen,  

For most of the Canadian CCCs, it appears that the key mechanism of blackleg 

resistance is through limiting pathogen spread in cotyledon and petiole tissues before the leaf 

abscises. This mechanism can reduce the incidence of stem infection. Another mechanism is 

to reduce disease development in stem tissues. These two aspects of resistance may alleviate 

the impact of blackleg in western Canada where specific R genes corresponding to the 

prevalent Avr genes in the current pathogen population (Liban et al. 2016) are generally not 

carried by current CCCCs (Zhang et al. 2015). The results of the current study highlight the 

value of these resistance mechanisms for blackleg management in western Canada where the 

growing season is substantially shorter than in most other parts of the world (Walton et al. 

1999).   

5.2. General conclusions 

This study was initiated to assess whether the high levels of blackleg may be caused by 

unique Avr gene profiles in the pathogen population due to adaptation to resistant canola 

cultivars. A total of 17 fields were investigated, with disease incidence ranging from <10% to 

>75% and a total of 90 races were identified. The races AvrLm2-4-6-7 and AvrLm2-4-6-7-S 

were the most prevalent, accounting for 11.6% and 10.8% of the population. Since most 

CCCs in western Canada carry only Rlm1 and/or Rlm3, the pathogen is considered virulent 

because the corresponding AvrLm1 and AvrLm3 were at low levels in most of these fields. 

Variation in blackleg incidence may be caused by factors beyond the breakdown of Rlm1 or 

Rlm3 in these commercial fields. Many CCCs carry a level of blackleg resistance not 

controlled by a specific R gene. The genetic diversity of the pathogen population found in this 

study highlights the need for caution when new R genes are considered because each known 

R gene can be defeated by at least one of the races identified in the study. Race-specific and 
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race-nonspecific resistance, in combination with extended crop rotations, may be warranted 

for sustainable blackleg management in western Canada.  

This study characterized the QR associated with CCCs in two distinct stages of the 

infection process: the spread of the pathogen from infected cotyledons into the stem, and 

disease development in stem tissues. Droplet digital PCR and GFP-fluorescent microscopy 

proved to be effective in aiding the assessment of pathogen spread and these technologies 

may be adopted for efficient QR screening under controlled-environment conditions. Many 

Canadian CCCs, although they carry no R genes corresponding to the prevalent Avr alleles in 

the pathogen population in western Canada, remain resistant to blackleg in the field due to 

race-nonspecific resistance mechanisms.  This is due to the restriction of pathogen spread in 

infected cotyledons and petioles, reducing the chance for pathogen to reach the stem before 

the leaf abscises. The CCCs also suppress disease development of stem tissues after infection, 

alleviating the severity of blackleg.  

5.3. Suggested Future Research 

As the pathogen L. maculans has great ability to evolve and the current pathogen population 

has adapted to the R genes Rlm1 and Rlm3, the success of controlling blackleg disease in 

commercial fields of canola lies in continuing regional monitoring of Avr alleles in the 

pathogen population for optimal deployment or rotation of specific R genes in CCCs. Since 

the nonspecific resistance seems to play an important role in many current CCCs, as shown in 

the current study and severe blackleg sometimes also occurs on these CCCs, it is important to 

assess environmental impact such as, high temperature, drought and plant injury caused by 

mechanical or insect damage, on the performance of QR in CCCs. This information will help 

determine additional management practices, including well-timed fungicide or insecticide 

application to alleviate the additional pressure favoring infection or disease development. . 

The current study has highlighted the effectiveness of ddPCR in quantifying the spread of L. 
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maculans infection in canola cotyledons, petioles and stems, which appears correlated with 

QR expression of the CCCs. It may be feasible to develop a ddPCR-based protocol for 

efficient screening of QR in commercial breeding lines to continue improving nonspecific 

blackleg resistance in CCCs. Since QR plays a major role in blackleg resistance under 

western Canadian conditions, it will be useful to also investigate molecular mechanisms 

associated with QR during cotyledon and stem infection to understand and utilize different 

modes of action for sustainable blackleg management.  
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APPENDICES 

 

Appendix 1. 2014 Blackleg Infected Canola Reporting Form 

 

Date:   

Evaluator(s) :   

Field Location (GPS coordinates and nearest town name):   

Field Size: 

Variety (s):   

Crop Stage (before or days after swathing): 

Hail damage (Y/N) 

Evidence of blackleg in 2013 

Description of disease (symptoms, field patterns, etc.):   

Estimated incidence (%):   

Estimated severity (0-5):   

Evidence of blackleg included (Y/N)? – i.e. photos of canker or inside blackening 

of basal stems: 

Field history : 

Year Crop Variety (s) 
Blackleg 

(Y/N) 

Tillage 

type 

Residue 

Management 

2012      

2011      

2010      

2009      

 

Please forward completed forms and stubble samples to Gary Peng 

(gary.peng@agr.gc.ca) at: 

AAFC Saskatoon  Research Centre 

107 Science Place 

Saskatoon, SK S7N 0X2. 

mailto:gary.peng@agr.gc.ca
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Appendix 1. Blackleg rating scale 5.1 and 5.5 (WCC/RRC 2009) 

 

 

Blackleg lesions that occurred on the upper portions of the stem were assessed separately 

from basal stem cankers. Stem lesions were recorded as present or absent. Basal stem cankers 

were scored using a disease severity scale based on area of diseased tissue in the cross-

section of the stem where 0 = no diseased tissue visible in the cross section and 5 = diseased 

tissue occupied 100% of cross section with plant dead (WCC/RRC, 2009). 

 

 

 

 

 

http://www.country-guide.ca/wp-content/uploads/sites/7/2015/12/blackleg-field-rating-scale.jpg
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Appendix 2. The layout of the differential set during planting for Avr identification in isolates 

of Leptosphaeria maculans
1
 

 

 
1
 Twelve differential hosts were arranged randomly in a block, with 3 plants per cultivar/line 

in a tray, and replicated similarly in the Block 2. 
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 Appendix 3. Blackleg Rating Scale (Dolweche 1981) 

 

Disease 

rating 

Disease description  

0 

No darkening of tissue around the wound. Typical 

response of non-inoculated cotyledon. 

 

1 

Limited blackening around wound; lesion diameter 0.5-1.5 

mm. Faint chlorotic halo may be present. 

 

3 

Dark necrotic lesion, 1.5-3.0 mm. Chlorotic halos may be 

present. Sporulation absent. 
 

5 

3.0-6.0 mm lesion may be delimited by darkened necrotic 

tissue or may show greyish-green tissue collapse. 

Sporulation absent.  

7 

Greyish-green tissue collapse. Lesion 3.0-6.0 mm, with 

sharply delimited, non-darkened margins, limited number 

of pycnidia may be present.  

9 

Rapid tissue collapse at about 10 days accompanied by 

presence of many pycnidia in large lesions (>than 5 mm) 

with diffuse, non-darkened margins.  
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Appendix 4. Tukey HSD post hoc test 

 

 

 

Tukey's HSD (post hoc) test for multiple comparisons following an ANOVA was performed 

to determine the significance of variation showed consistency by cultivars in the results of the 

experiments conducted in greenhouse, by ddPCR and by microscopy. The above chart clearly 

shows that Westar showed high level of susceptibility when inoculated with the isolate of 

Leptosphaeria maculans that carried AvrLm6,(8), whereas CCC1 suffered little blackleg 

disease despite lacking the corresponding resistance gene. The other two CCCs also lacking 

corresponding resistance genes and did not show high levels of resistance but performed well 

in comparison to the Westar.  Cultivars CCC2 and CCC3 carried same level of resistance and 

were different from CCC1, but not from each other.      

This test validated the results and indicated that the difference among CCCs was 

statistically significant.  It also indicated that all CCCs were less severely diseased than 

Westar. This further supported our findings that the growth of the pathogen inside the 

cotyledon and petiole of these cultivars was slower than in Westar.   
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