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ABSTRACT

The active vibration attenuation of linearly elastic structures modeled by the finite
element method, with a possibly large number of degrees of freedom, is considered. The
approach, formulated in modal space, applies mathematical optimization to obtain exact
solutions to systems that may involve any number of modes to be controlled by an equal or
smaller number of discrete actuators. Such systems are under-actuated and generally involve
second-order non-holonomic constraints that impose limitations on the dynamically admissible
motions that the system can be made to follow. The approach presented in this thesis has value
as a tool for the designing and analyzing active vibration attenuation in structures under idealized
conditions, but does not replace traditional control approaches are necessary for practical
implementation of such systems.

The optimal attenuation of the structure subject to any initial disturbance is obtained by
applying Pontryagin’s principle to solve for the minimum solution to a quadratic performance
index subject to additional under-actuated constraints that are satisfied by the introduction of
time-dependant Lagrange multipliers. The optimality conditions are derived in a compact form
and solved by applying symbolic differential operators. The approach uses commercial finite
element analysis software and symbolic mathematical software to obtain the optimal actuation
forces required by each discrete actuator and the trajectory that the system will undergo.

The approach, which is called the constrained modal space optimal control method
involves three primary stages in the solution process. The first stage —the structural stage —

involves the transformation of any system modeled by finite elements into a sufficient number of



modal variables and selection of the number and positioning of potential actuator locations. In
this stage any problems with poor controllability can be quickly assessed and mitigated prior to
proceeding with the next solution stage — the control stage. In the control stage the optimal
control problem is solved and all unknown system forces and trajectories are obtained. System
gains for the closed loop system can also be obtained in this stage. In the third stage — the
verification stage — the actuation forces obtained in the control stage are tested on a transient
time-integrated finite element model to evaluate if the system will respond as expected. Any
potential spillover effects on higher modes of vibration not considered in the control can be

observed in the verification stage.
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1. INTRODUCTION
1.1 Motivation

This work aims to formulate and demonstrate a method for analyzing and simulating
active control systems for attenuating vibrations in linear elastic structures. These actively
dampened structures are mechanical systems combining sensors, actuators, and a processor to
attenuate the effects of external disturbances as a closed-loop system. Applications for actively
dampened structures include: satellites, telescopes, antennas, and other systems that are
adversely affected by vibrations and, for practical implementation, cannot be built with sufficient
stiffness and/or passive damping properties to keep vibrations to an acceptable level.

Two potential applications for actively dampened structures are shown in Figures 1-1 and
1-2. Figure 1-1 shows an example of a mast type structure that utilizes two piezoelectric
actuators located at its base to attenuate vibrations. This type of structure could be implemented
to support a vibration sensitive component at its tip. In Chapter 6 the dynamics of this actively
controlled structure is considered using the approach presented in this thesis. Figure 1-2 shows a
long span cable stayed bridge located in Normandy, France. Due to its length and flexibility, it is
vulnerable to wind-induced vibrations and flutter. In [2] it was proposed that the situation could
be improved by incorporating active tendons (control cables) in the structure to attenuate the

harmful vibrations.



’ .
-";»_4\ N —

Figure 1-1. Experimental active truss structure at the Free University of Brussels (source: [1]).

Figure 1-2. Normandy Bridge in France, with proposed active control cables to attenuate wind-
induced vibrations (source: [2]).



There are several questions to be considered in the design of actively dampened
structures. Some of these include: how many actuators will be required and where should they
be located to best attenuate undesired vibrations? What actuation forces will be required to
dampen expected disturbances? At what frequencies will the actuators operate and what forces
will they produce? How will the active system respond and how quickly will the disturbance be
eliminated? Will the actuators alter the passive dynamic properties of the structure or will their
actions produce unwanted vibrations in modes not considered in the control? The method
presented in this work will address these questions by combining concepts from computational
mechanics and mathematical optimization.

The approach in this work is distinct from others published in literature because it applies
to general actively dampened systems that are under-actuated. Under-actuated systems have
more degrees of freedom (DOFs) than actuators to control them [3], meaning that some DOFs
are not directly manipulated by an actuator and are referred to as redundant. This property
distinguishes them from fully-actuated systems which have actuators controlling all DOFs. In
under-actuated systems, the motions of redundant DOFs (as well as directly manipulated DOFs)
are governed by non-integrable constraints arising from the governing equations of motion.
These constraints are non-integrable because they generally involve accelerations and velocities
of the DOFs.

In a control analysis, under-actuated systems are more complicated than fully-actuated
systems because of the additional non-integral constraints affecting the dynamics. A control
analysis requires that the actuation forces producing a desired system trajectory be determined
through the inverse dynamics, but only trajectories that satisfy the set of non-integrable

constraints can be physically realized, or in other words, are dynamically admissible [4].



Therefore, a given trajectory may not be dynamically admissible; this limitation complicates the
synthesis of the control forces.

In several literature references ([3] and [5] for example) control of under-actuated
systems is associated with ‘non-minimum phase features’ that lead to unbounded behavior. This
is mostly due to the inverse dynamics becoming unstable (generating unstable zeros) when
attempting to follow desired trajectories that do not satisfy the non-integrable constraints [6]. To
avoid the unstable inverse dynamics, so-called ‘non-causal” methods were proposed and applied
mainly to under-actuated flexible manipulators in [7-9]. These methods appear to have ignored
the physical restrictions that the non-integrable constraints represent, leading to violations in the
general rules of dynamics. Some under-actuated problems, related mostly to tracking problems,
have been analyzed by first eliminating the redundant DOFs and then solving the reduced fully-
actuated problem, with a number of actuators controlling the same number of independent DOFs
[10-16]. This approach is limited to cases where the elimination of redundant DOFs is possible
(exactly or approximately) and typically requires extensive analytical effort.

Theoretically, all actively dampened structures that include continuous elements such as
beams, plates, shells and solids are under-actuated systems because they are defined by an
infinite number of DOFs. In practice, the dynamics of such systems can be adequately
approximated using the modal superposition method where the infinite DOFs are replaced by a
handful of dynamically significant modes of vibration [17]. This property is exploited in the area
of active structures because they typically can be modeled with a small number of modes that
can feasibly be controlled by the same number of actuators; hence the non-integrable constraints
associated with under-actuated systems are avoided. This approach is referred to as independent

modal space control (IMSC) and is widely used in research in the area of actively dampened



structures. Its main advantage is that each modal variable is directly related to a corresponding
modal control that can be subsequently converted into the actions of properly placed actuators
[18]. The methodology presented in this thesis is referred to as constrained modal space optimal
control (CMSQC) to distinguish it from the IMSC. Most importantly, CMSOC allows the
number of modes of vibration included in modeling the system dynamics to be greater than the
number of actuators in the system (under-actuated systems) because it accounts for the resulting
non-integrable constraints. Since the constraints are always satisfied, the problem of unstable
inverse dynamics is eliminated and the stability of the control system is guaranteed.

Using the CMSOC method, solutions for active structures are obtained in the ‘output
space’ with the problem size equal to the number of vibration modes considered. Dummy
actuators, which produce zero force, are added to the system to make the number of actuators
equal to the number of dynamically significant modes instead of attempting to eliminate
redundant modes (or redundant DOFs). The dummy actuators are subsequently eliminated by
applying the under-actuated constraints, which take a convenient algebraic form when written in
terms of modal controls. This algebraic form may be written as a matrix equation from which
one can obtain the matrix of constraints, which is populated with terms reflecting the system’s
controllability and attenuation characteristics. The active controls are solved by mathematically
formulating the attenuation process as a constrained optimization problem involving a set of
time-dependent Lagrange multipliers that ensure all constraints are satisfied. A set of optimality
equations are derived that involve all modal variables and Lagrange multipliers and are solved by
applying symbolic differential operators to obtain the optimal actuation forces (inputs) and
system responses (outputs). Finally, the solution can be verified by directly applying the

actuation forces to a transient model of the system, which may contain additional modes not



considered in the control analysis to detect possible spillover effects of the controls on these
higher modes.

The mathematical foundations for this method were introduced in [19]; however the
contribution of this thesis work, some of which is contained in [20-22], was to generalize and
formalize the methodology and implement it on a variety of geometrically complex structures.
This work studied and formally identified the link between controllability and actuator
positioning as well as a formal method of obtaining gains for implementation of a feedback
control system. Also, an automated solution program was written in MAPLE to effectively deal
with a wide variety of problems that required minimal user input (see Appendix A for example)
and a method of verifying the solution using the ANSY'S program was successfully implemented
on several different examples (see Appendix C).

The CMSOC method is intended to be used as a tool in the design of actively dampened
structures as it provides insight that may enable the designer to select good locations for
positioning actuators in a given structure. For an idealized structure, information can be obtained
on what actuation forces will be required to obtain a target rate of active dampening and how the
system will respond. However, the CMSOC method is limited to idealized structures that
undergo small displacement vibrations or similar linear motions. It is not a replacement for other
control system analysis and design techniques that are essential for practical controls
implementation on ‘real world’ structures, but is rather a complimentary tool for understanding
the physical behavior of actively dampened structures, particularly for systems that may be

considered under-actuated.



1.2 Outline

The information presented in this thesis is organized as follows:

Chapter 2 contains the mathematical background related to controlling under-actuated
systems and optimal active vibration attenuation.

Chapter 3 contains the mathematical formulation for CMSOC, including the derivation and
solution to the optimality conditions, implementation for closed loop feedback, and
discussion on the methodology of the three main stages involved in the procedure.

Chapter 4 contains an example demonstrating the CMSOC approach on a simple problem
involving a gantry crane. The results are compared with those obtained and published in [3]
for the same system. Emphasis is given to the individual steps in the solution process and
how selection of certain optimization parameters can be expected to alter the system response.

Chapter 5 contains an example demonstrating the CMSOC approach on a plane frame
structure. Emphasis is given to how various actuator configurations and various degrees of
under-actuation impact the dynamic response of the system and how controllability problems
can be detected early in the solution process. The three main stages of the procedure are
covered.

Chapter 6 contains an example demonstrating the CMSOC approach on a three-dimensional
mast problem (model based on that shown in Figure 1-1). Controllability issues are
discussed for various configurations and numbers of actuators and their dynamic behavior is
compared.

Chapter 7 contains some general conclusions regarding the CMSOC approach.



2. MATHEMATICAL BACKGROUND
2.1 Control of Under-actuated Systems

Continuous (or discrete) mechanical systems may be represented by a sufficiently large
number of n DOFs using the Finite Element Method (FEM) to obtain a model that is governed
by a set of second-order differential equations. These equations define the system’s dynamics
and require that the sum of all inertial, damping, and restoring forces in a system balance the

external forces applied to it. Mathematically they take the form:
Mg+ Cq+Kq=BF,=F (2.1)

Note that equation (2.1) does not include any external disturbing forces acting on the structure as
attenuation of free vibrations is of interest. There are n independent equations in (2.1) involving
n DOFs that describe the system’s motion. The displacements, velocities, and accelerations (or
rotation, rotational velocity, and rotational acceleration) of these DOFs are represented by the
time varying components contained in the vectors ¢ = [q,(t) ... g,(®)]7,
qg=1[q.() .. ¢g.®O]",and g =[G,(t) .. G,(t)]T respectively (the superscript T
denotes the matrix transpose operation). From a control perspective, systems described in the
form (2.1) contain 2n states corresponding to the positions and velocities of each DOF and are
contained in state vector z = [qT ¢T].

Matrices M, C, and K are of size n X n with respective components M;;, C;;, K

(i=1,..,nandj = 1,...,n) that may generally be state dependent and represent the distribution

of masses, natural damping, and stiffness respectively. The nodal force vector



F=[F,(t) .. E,(t)]" contains individual time varying forces F; that are assigned directly to
corresponding DOFs g; (i = 1, ...,n). The matrix B of size n x n, is called the actuator

configuration matrix because it assigns n, discrete actuation forces contained in vector F, =

[Fa,(®) .. Fa, ()] tothe system of n DOFs as shown on the right hand side of (2.1).

For many practical systems the number of independent actuation forces contained in
vector F, is smaller than the number of DOFs that define the system (n > n,) and so they are
considered under-actuated. If the number of independent actuation forces is equal to the number
of DOFs (n = n,) then the system is considered fully-actuated. The distinction between these
system classifications is of particular importance for control analyses because it affects the steps
involved in their solution [4].

Equations of motion in the form (2.1) may be used in calculating the unknown motions
described by vector q for a given set of applied forces in vector F,. This calculation is referred
to as the direct dynamics and is routinely handled by commercial FEM software. Calculating the
direct dynamics is straightforward for both under-actuated and fully-actuated systems by using a
direct numerical integration method such as the Newmark Procedure [17]. However, a control
analysis requires the inverse dynamics solution because the independent applied forces in vector
F, are unknown and their actions, producing a particular system response (described by vectors
q), are to be determined. As previously mentioned this solution poses a computational challenge
for under-actuated systems due to the presence of non-integrable constraints governing possible
motions [3].

Inverse dynamics solutions for a fully-actuated systems are straightforward because any
desirable trajectories in vector g may be followed provided that it is ‘smooth’ so it can be

differentiated to obtain the corresponding velocities and accelerations in vectors ¢ and g, which



can be substituted into equations (2.1) to yield required nodal force vector F. The vector F can
then be transformed into the actuation force vector F, through the inverse operation on the right
hand side of equations (2.1) which takes the form: F, = B~1F. For any fully-actuated system
the inverse operation is permissible because B is a square n X n matrix (provided that B is non-
singular).

In contrast, the inverse dynamics solution for under-actuated systems is complicated by
n. = n —n, additional constraints present in the system (that must be satisfied). For
demonstration, consider the two DOFs spring-mass system shown in Figure 2-1. For this
particular example, passive damping effects are ignored and the mass and stiffness matrices are
assumed constant (independent of states). The governing equations for the system in the form of

equation (2.1) are included in Figure 2-1.

> > (>
! : Governing Equations:
My Mz M, 071[q K, +K, —K F
— N ¢ 1 q1 1 2 —K| 1911 _ [F1
Kl F]_ KZ FZ 0 M ] qZ] T [ —Kz Kz ] [qz] N [FZ]

Figure 2-1. Two-DOF Spring-Mass System.

First consider the fully-actuated case where both F; and F, are used to perform a
maneuver. To calculate the inverse dynamics, any system trajectory, described by vector
q =[q.(t) q»(t)]7, can be proposed and the corresponding forces in vector
F = [Fi(t) F,(t)]" can be determined through differentiation and direct substitution into the
governing equations (see Figure 2-1). In contrast, if the force F, is removed (F, = 0), then the

second row of the governing equations becomes a constraint that limits the set of dynamically
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admissible motions described by vector g. Only the motions that satisfy this constraint
(dynamically admissible motions) can be used to determine the corresponding time varying force

F;. Written explicitly, this constraint on admissible trajectories takes the form:

M,G, + K>(q2 —q1) =0 (2.2)

Constraint (2.2) mathematically describes what is intuitively known — that one cannot arbitrarily
produce any motion of masses M; and M, by applying only the force F;. The motion of the
uncontrolled mass M, will always be coupled to the motion of the controlled mass M, through
the equation (2.2). In this example, g, is directly controlled by F; and so it is considered to be an
actuated DOF, while g, is indirectly controlled and so it is referred to as a constrained DOF.

For general under-actuated systems the equations in (2.1) may be grouped and written to

distinguish between actuated and constrained DOFs in the form:

oo 5 Pl | B Sl A (23)

The top n, components of the nodal force vector in (2.3) contain the independent actuation
forces in vector F, and the remaining n. zero-valued components are contained in the null
vector 0. The vectors of nodal displacements, velocities, and accelerations are grouped so that
the top n, components (considered actuated) contained in vectors q,, q4,, and g, are separated
from the bottom n,. components (considered constrained) in vectors q., q., and 4. [4].
Referring to the spring-mass system in Figure 2-1, formally g, = q, and g, = q..

Any requested trajectories in vector ¢ = [q%  q*]" and their corresponding derivatives
must satisfy the lower n, equations in (2.3), and the initial and final boundary conditions, for

them to be considered a dynamically admissible. If the solution is dynamically admissible, then
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the corresponding actuation forces in vector F, can be determined. Written explicitly, the

constraints from (2.3) take the form:
h(q: Q,q9) =M Gy + Ceoqa+ KeaQa + Mccqe+ Cecqe + Keeqe =0 (2-4)

The vector of constraints h constitutes a set of n, equations that contain functions of the
positions, velocities, and accelerations of all DOFs; hence they are non-integrable and belong to
an extended class of non-holonomic constraints [3]. This means that, in general, equations (2.4)
cannot be used to provide a set of equations in the form q. = f(q,) to eliminate the constrained
DOFs in vector g, so that the applied forces in vector F, could be obtained from only the top n,
equations in (2.3). Written explicitly, the actuation forces in vector F, from equations (2.3) take

the form:
Fll = Maaéia + Cuaqa + Kaa‘la + MvaC + CvaC + KvaC (25)

The objective in control design is to determine the actuation forces in vector F, that will
produce a system trajectory q that satisfies all constraints in vector h as well as the initial and
final boundary conditions. However, a potentially infinite number of trajectories and the
corresponding actuation forces can be generated to meet this objective. The optimal control aims
at selecting one trajectory that satisfies a more specific objective, which can be found by
applying mathematical optimization techniques. The mathematical objective of the CMSOC
methodology is to obtain a unique solution for all trajectories in vector q and control forces in
vector F, that will minimize a selected quadratic performance index and be dynamically
admissible (i.e. satisfying equation (2.4)). Selecting ‘desirable’ trajectories becomes a matter of

weighting and selection of various performance index parameters (penalty functions) relating to
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the systems energy, control effort, or the error between requested trajectories and the ‘closest’
dynamically admissible ones [4].

A typical performance index incorporates a penalty function f such as:
J = [ f(g.,F))dt - min (26)

The penalty function f (quadratic in terms of q, g, and F) may be chosen to obtain system
trajectories that minimize control input energy, reduce potential energy and/or kinetic energy
levels, minimize control time, and/or minimize deviations from a particular reference trajectory.
The issue of the dynamically admissibility of requested trajectories is mathematically handled in
the optimization procedure. In this thesis, such optimization-based methods of dealing with
under-actuated problems are applied to simulate and analyze active vibration attenuation in
geometrically complex linear elastic structural systems modeled by the FEM.

2.2 Optimal Active Vibration Attenuation

The objective in optimal active vibration control is to actively dampen, or attenuate,
vibrations in structural systems using a finite, and possibly small, number of actuators, or active
members. Typical structures are composed of continuous members, such as beams, columns,
plates, and shells that are comprised of a theoretically infinite number DOFs. Using FEM such
systems are accurately simulated using a finite, but often large number of DOFs that are
governed by equations of motion of the form (2.1). The direct dynamics calculation for systems
with a large number of DOFs is routinely handled by commercial FEM software; however, it
may become increasingly numerically complex with an increasing number of DOFs. Fortunately,
the motion of linear elastic structural models can be simplified by transforming the problem from

a vector-space containing a large number of DOFs to a reduced space containing only a handful
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of modes of vibration. This can be done through a routine modal analysis as presented later in
this section [17].

Graphically, the task of vibration control for systems approximated by n equations (2.1)
is represented in Figure 2-2, which shows the system brought from some disturbed non-zero
initial state to the origin and at rest. Note that the path along which the system is brought to rest
is not prescribed, but it must be dynamically admissible. The disturbed structure is described by
the 2n initial conditions in the form of displacements q, and velocities ¢, at time t = 0. By

time t = t; (where ¢, is the maneuver time) all disturbances are attenuated. Mathematically, the

initial and final boundary conditions shown in Figure 2-2 are written in the form:

q(0) = qo, 4(0) = qo, q(t;) =0, q(t;) =0 (2.7)
d
— =0

Figure 2-2. Vibration attenuation problem shown in terms of state variables.

Actively dampened structures typically use a closed-loop control system to allow the structure to
adapt to sensory feedback in order to continuously eliminate vibrations. If the maneuver interval

approaches infinity (¢ — o) the problem becomes time invariant because the maneuver’s
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feedback (gains) does not depend on time nor on initial conditions. The control task for time
invariant problems is to continuously attenuate the vibrating motion.

Various control schemes can be analyzed by using mathematical optimization. The linear
optimal control for a vibration attenuation problem is based on a quadratic performance index

that takes the form:
J=1/2[ (aq"Kq + bq"Mq + cF'K~'F)dt - min (2.8)

Weighting coefficients a, b, and c are assigned to terms that represent a system’s potential
energy (elastic), kinetic energy, and work of the actuation forces respectively. This type of
quadratic performance index is routinely used in vibration control of flexible structures [23].

The optimization problem defined by a set of linear governing equations in the form (2.1)
and a performance index in the form (2.8) is an example of a linear quadratic regulator (LQR)
problem with 2n states and n, controls. The standard approach to such problems involves the
solution of nonlinear algebraic Riccati equations for the unknown terms of a symmetric matrix of
size 2n containing a total of 2n? + n unknowns [23]. For example, a structure having 100 DOFs,
will require the solution of 20,100 unknowns. The approach presented in this thesis does not
require solving the Riccati equations and so avoids the large number of unknowns and non-linear
equations.

FEM models may be transformed from the DOF-space into the modal-space to simplify
their handling. When the problem defined by equations (2.1) is mapped into modal-space, the
displacement variables in vector g, of size n, are transformed to an equivalent system defined in
terms of an equal or smaller sized vector of modal variablesp = [11 " T, ]T (n,, < n).
Similarly, force vector F is transformed into an equal or smaller sized vector of modal controls
U=[U1 - Un,]". The mapping between the DOF-space and modal-space variables
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represents an exact transformation if their size is equal (n,,, = n), otherwise the transformation is
an approximation (n,,, < n). The transformation mapping between DOF-space and modal-space

takes the form:
q=Pon (2.9a)
U=®"F=®"BF, = BF, (2.9b)
In the transformation (2.9b), matrix B = ®T B of size n,, x n, defines the mapping between
vectors F, and U, and the modal shape matrix ® = [¢p; - ¢y ] defines the mapping

between vectors q and . The modal shape matrix & contains n,, modal shape vectors ¢; that

for computational convenience are made to satisfy the orthogonality conditions:
OTMD =1 (2.10a)
OTKD = O (2.10b)

Matrix I is the unitary matrix (I;; = 1) and matrix Q is the diagonal matrix of ordered modal
frequencies with the terms Q;; = w?, where i = 1, ...,n,,,. Each modal shape vector ¢»; and
frequency w; are solutions to the standard eigenvalues problem for an elastic system in the form

[17]:
(K-—w?)¢; =0 fori=1,..,n, (2.11)

If the damping matrix C in equation (2.1) is assumed to take the form of the Rayleigh damping
matrix, the equations of motion become completely uncoupled by applying the transformations
(2.9a), (2.9b), and the orthogonality conditions (2.10a), and (2.10b). The resulting n,,, equations

of motion are obtained in the modal-space form as [17]:

+A)+Qn=U (2.12)
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Modal damping matrix A contains the diagonal terms A;; = 2{;w;, where {; = ¢pT Cp;/2w;)
are passive modal damping ratios fori = 1, ..., n,.

The two advantages of modal-space modeling is that, the governing equations (2.1)
uncouple when written in the form (2.12), and it is possible to obtain acceptable solutions for
systems with a large number (or infinite) number of DOFs by considering only a small number
of n,,, modal variables that are considered dynamically significant [17]. The number of
dynamically significant modes that might be considered for a system is related to the accuracy
requirements, physical characteristics, and the dynamic characteristics of potential disturbances.

The equations of motion (2.12) in modal-space have an equal number of modal variables
in vector » and modal controls in vector U so it is always possible to compute both the direct
(U - n) and inverse (yn — U) operations. In standard computational mechanics, the direct
operation is required to obtain a system’s response. Hence, modal controls in vector U
correspond to the applied control forces in vector F, directly through transformation (2.9b) and
the modal variable responses in vector n are subsequently obtained through equation (2.12).

Active vibration control requires calculation of the inverse dynamics because the modal
controls vector U must be obtained through the inverse of operation (2.12) and then the real
actuation forces in vector F, must be determined from the inverse operation of equation (2.9b).
This last operation poses a problem when the sizes of vectors F, and U are inconsistent because
the system is formally under-actuated ( n,,, > ny,).

In modal-space, if the number of significant modes of vibration n,, is equal to the
number of actuators n, then problem is considered fully-actuated and theoretically any modal
trajectories defined by vector i are realizable provided that matrix B in equation (2.9b) is non-

singular. This property is exploited in the IMSC method, proposed in [24,25] and used
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extensively in numerous applications [18,26,27]. The advantage of dealing with fully-actuated
modal-space systems using the IMSC approach lies in the fact that modal controls can be
obtained for all controlled modes and subsequently transformed into the actions of an equal
number discrete actuators controlling the system. However, if the number of n,, significant
modes of vibration that are needed to adequately model a system’s dynamics exceeds the number
of n, discrete actuators controlling them, then the problem is formally under-actuated and
similar to under-actuated systems in the DOF-space, performing the inverse dynamics is
complicated by non-holonomic constraints.

A modified approach must be adopted to deal with under-actuated problems. The
CMSOC method presented in this thesis is capable of dealing with some of these problems. The
CMSOC method can be viewed as an extension of the IMSC method for dealing with under-
actuated vibration control problems. The IMSC approach requires that the size of the system to
control must be equal to the number of actuators (inputs) and for this reason the problem is said
to be solved in the input space. On the other hand the CMSOC approach allows the system size
(i.e. number of output variables) to exceed the number of actuators, hence the problem is said to
be solved in the output space. Solutions obtained using the CMSOC method are consistent with

those obtained using the IMSC method when the system is fully-actuated.
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3. CONSTRAINED MODAL SPACE OPTIMAL CONTROL (CMSOC)
3.1 Overview of CMSOC

The CMSOC approach consists of three distinct stages: the structural stage, the control
stage, and a verification stage as shown in Figure 3-1. In this figure, the three distinct stages of
the solution process are enclosed by the heavy lined boxes and the computational steps involved
in each stage are enclosed by the smaller shaded boxes. The software that was used in each step
is denoted in brackets in the small boxes where applicable. The details of the structural stage,
control stage, and verification stage are covered in Section 3.2, Section 3.3, and Section 3.4
respectively.

In the structural stage, a system is modeled by the FEM and a routine modal analysis is
performed to obtain modal frequencies contained in the matrix Q and the corresponding mode
shapes contained in matrix ®. This process is efficiently handled using the ANSYS FEM
software. The next step is to choose a potential actuator configuration for the system and
assemble the corresponding actuator positioning matrix B. Also the sensor configuration matrix
C may also be assembled based on the positions of sensors. These parameters are input into a
worksheet using the MAPLE software to perform a number of matrix manipulations that are
necessary for assessing the controllability of the actuator configuration and for performing
calculations in subsequent stages.

In the control stage the results of the structural stage are required to solve the
optimization problem, obtain the optimal control forces for each actuator, and calculate the

expected dynamic response of the system. The constant gains for a closed-loop system control
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system meeting the observability requirements may also be solved (if applicable). The control
stage is efficiently handled and automated using the MAPLE software, which is capable of the
necessary symbolic computations (see Appendix A for an example MAPLE code).

In the verification stage the solution obtained in the control stage is checked for accuracy
and for any potential spillover effects. This check, which is performed using the ANSY', applies
the actuator forces obtained in the control stage to the FEM model in a transient direct dynamic
analysis to verify how closely the system response matches that obtained in the control stage.
Since the control stage solution may generally involve a smaller number of n,, significant modes
of vibration than the total number of n modes, spillover effects involving higher modes of
vibration (that were not considered in the system modeling) can be detected. Essentially, this
check is performed to ensure that the applied actuator forces do not excite higher modes of
vibration that were not included in the dynamic model considered in the control stage.

Another benefit of the verification stage is that one can check that the physical presence
of actuators in the system will not significantly impact the dynamics of the structure. It was
assumed in the structural stage that the actuator masses and stiffnesses were negligible. These
parameters could have been incorporated into the FEM model in the structural stage to mitigate
errors due to the above mentioned assumptions; however, this would require that the FEM model
be modified every time that a new actuator configuration is to be investigated, making it difficult
to quickly assess a variety of configurations. The procedure presented in this work assumes that

actuators have no mass or stiffness — an assumption that is later checked and updated if necessary.
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Figure 3-1. Flowchart of CMSOC Approach.
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The flow of the solution process shown in Figure 3-1 involves some iteration in the
structural stage to determine an effective configuration of actuators because it will be shown that
any choice of actuator positions can be conveniently related to controllability prior to engaging
in subsequent computational steps. The entire solution process may involve multiple iterations,
as the verification stage may indicate unacceptably large modeling errors or spillover effects that
require model refinement and repeating the solution process. The CMSOC procedure ends when
the control provides a satisfactory response with minimal modeling errors and spillover effects.
In the following sections the calculations and operations involved in each step of the procedure
(see Figure 3-1) are explained in detail.

3.2 Structural Stage

The structural stage is represented in the topmost box of the flowchart in Figure 3-1. It
consists of three main steps: creating the FEM model and performing the modal analysis
(previously discussed in Section 2.2), performing several matrix operations as discussed in
Section 3.2.1, and assessing the controllability indicators as discussed in Section 3.2.2.

3.2.1 Matrix Operations

The analysis of under-actuated systems in modal-space is complicated by the fact that n,,
modal controls contained in vector U must be transformed into a smaller number of n, actuation
forces contained in vector F, (n,, > n,). This operation requires the inverse of transformation
(2.9b) which is permitted only if matrix B is ‘invertible’. This poses a problem if matrix B is of
size n,, X n, (n,, > ng) because matrix B~ will not exist, so vector U cannot be obtained from
(2.9b) directly. To calculate the inverse dynamics in modal-space n. = n,, — n, redundant
modal variables must be determined from n, additional constraints. These constraints can be

explicitly derived by sequentially eliminating the n, components of vector F, from equation
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(2.9Db) to obtain the extra conditions to be satisfied by all n,,, components of vector U. However,
eliminating these variables to obtain the constraints can be challenging and is not easily
automated to obtain the solution using mathematical software.

In this thesis a different approach is used to obtain the under-actuated constraints. Instead
of eliminating redundant modal variables, the vector of applied actuation forces F, is augmented
by n, = n,, — n, dummy (zero-valued) actuators forces contained in vector F; (F =
[FT  F%]7). These dummy actuators are arbitrarily configured in the system to ‘artificially’
convert the under-actuated problem into an equivalent fully-actuated problem for which B~1
does exist. Hence, the inverse of the operation (2.9b) can be performed with the augmented
actuation force vector F replacing vector F, in this transformation. The only restriction on the
dummy actuator configuration is that it produces a non-singular square matrix B. The inverted
augmented system can be partitioned to better distinguish between those elements contributing to
the mapping of real actuation forces and those elements mapping the dummy actuation forces
whose actions are null valued (F; = [0 --- 0]7). The partitioned inverse operation (2.9b)

with augmented force vector takes the form:

LU R il @
The expression on the left and right of the arrow in (3.1) are equivalent, only the expression on
the right is written in the partitioned form. Square sub-matrices B, and A, have the dimensions
n, X ng and n. x n, respectively. The vector of modal controls U is divided into two sub-
vectors U, = [U1  Uny]T and U, = [Ung+1  *°  Un,]T which contain the independent and

redundant modal controls respectively. To be consistent with this naming convention, the modal

variables in vector i are similarly divided into their independent and redundant components in
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sub-vectorsnp, = [ * Mg]T and i, = [Mng+1 *° Tny, |7 respectively. Though all modal
controls are required to solve for the system motion described by vector i, only the components
in vector U, are required to determine the actuation forces in vector F, from equation (3.1).

The lower partition in (3.1), involving the zero-valued dummy actuator forces Fg =
[0 - 0]7, define a set of n, constraints that are linear in terms of modal controls and may

written in the form:
AU, + AU, =AU =0 (3.2)

Matrix A = [A, A, ] of size n, X n,, will be referred to as the matrix of constraints and defines
the constraints arising due to under-actuation in terms of a modal controls in vector U. The
matrix of constraints contains n.n,, nonzero coefficients 4; ;. Since the equations in set (3.2)
are homogeneous, the terms in matrix A can be normalized suchthat 4;; = 1, A,; = 0fork <
(left bottom corner), and Ay 5, +1+x = 0 for 1 < k < n, — 1 (right upper corner). The
normalized matrix of constraints is denoted by A (formally A = A) and it can also be partitioned

such that A = [A, A4,], which takes the form:

1 Ay Az o A, 0 A, | Aingt
1 A23 Az,n AZ,n AZ,n +1 Az,n +2
(4 a a a
A= 1 - Azpn, o Az | Azmgrr Azngez Azngss (3.3)
1 Anc,na Anc,na+1 Anc,na+2 Anc,na+3 Anc,nm

In the normalized form (3.3), the sub-matrix A, appears on the left of the vertical line divider
and sub-matrix A, appears on the right.

The normalized matrix of modal constraints 4 is independent of the location of the
dummy actuators in the system, as the dummy actuators were only added to facilitate the

application of the constraints in determining the actuator forces in vector F, from equation (3.1).
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In the normalized form (3.3), the matrix of constraints serves as a means of comparing the
effectiveness of different configurations of actuators placed in a system. In other words, it is a
means of evaluating the controllability of a given under-actuated system with different actuator
configurations.

The actuation forces in vector F, are functions of both the independent modal controls in
vector U, and the redundant modal controls in vector U,. in accordance with the upper partition
in the equation (3.1). However, by applying the constraint (3.2) the redundant modal controls in
vector U, can be eliminated and the real actuation forces can be obtained in terms of the

components in of the independent modal controls in vector U, through the equations:
F,=B,U,=(B,—B,A;'A,)U, (3.4)

The square matrix B, = B, — B, A;1A, has the dimensions n, x n, and is referred to as the
pseudo-transfer matrix because it has a similar physical interpretation as the transfer matrix B
for fully-actuated systems. Note that a fully-actuated problem (i.e. n,,, = n,) has the property:
B, = B, = B. The matrix B, is independent of the location of dummy actuators in the system
and, similar to matrix 4, is an indicator for comparing the controllability for a system with
different actuator configurations. Equation (3.4) requires that matrix A, is non-singular;
otherwise, the operation is impossible.

3.2.2 Controllability Indicators

Matrices 4, and B, are indicators of an under-actuated system’s controllability for
particular actuator configurations (note that the normalized matrix A, is required to give a
meaningful indicator). These indicators help to effectively position actuators in a system to
dampen the vibrations of all dynamically significant modes. Effective placement of actuators is
critical to the performance of an actively attenuated system. To illustrate this point consider
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Figure 3-2, which shows a standard simply supported beam of length L and its modal shapes in
the first two modes of vibration. The single active force F, (t) acts perpendicular to the beam

axis and can be located at any location x along the beams length.

1* mode (¢; = sin(=>))
2mx

—x— x / " mode (¢, = sin(2=))

HE R —_——2

C——— -

‘<—L/4 —>l<— L/4 —"‘—L/4—”<— L/4 —>|

Figure 3-2. Actuator configuration and controllability for a vibrating beam.

At what location x should the actuator F,_ (t) be located to best attenuate the two
vibration modes? Intuitively, one can see that placing an actuator at the midpoint of the beam at
x = L/2 would leave the second mode uncontrollable because this location essentially does not
‘see’ the second mode of vibration. Also at the terminal points x = 0 and x = L, one would
expect that the both modes would be completely uncontrollable. A better actuator position would
be some location between the middle of the beam and the end points. As it will be demonstrated,
the method presented in this thesis can help to address what is the ‘best’ location for placing the
actuator in the structural stage.

The ‘best’ actuator position is reflected in the transformation (3.4) and more specifically
the matrices A,- and B,. It will be shown that, for under-actuated systems, the magnitude of
components in the matrix A,. and B, reflect the expected rate of attenuation of the slowest
dampened mode of vibration and the peak force amplitudes required by the actuator(s),

respectively. Both qualities are indicators of system controllability given a particular actuator
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configuration. Two scalar measures are adopted as quantitative measures of these qualities — the

rate parameter A and effort parameter x, which are defined as:
A= |det4,| (3.53)
k = |det B,| (3.5b)

As their naming suggests, the rate parameter A indicates the rate at which the slowest damped
mode(s) of vibration will be attenuated and the effort parameter x indicates the magnitude of
required actuation forces. Note that the controllability parameters in (3.5a) and (3.5b) only serve
to compare the effectiveness of different configurations of actuators for a particular under-
actuated mechanical system and not as an objective measure of general control effectiveness for
all systems.

Matrix A, contains the last n, columns of the normalized matrix A and is triangular such

that: det(4,) = Ay n 11 Azng+2 = Angn,,- The most uniform rate of attenuation of all modes

considered is achieved if all non-zero elements of matrix 4, have a value of unity such that:

A = |detA,| = 1. Systems with a rate parameter A close to unity have redundant modal controls
in vector U,. similar in magnitude to the independent modal controls in vector U,. This means
redundant modal variables in vector n,. are attenuated at similar rates as the independent modal
variables in vector 7, in accordance with relation (2.12).

The pseudo-transfer matrix B, transfers the independent modal controls in vector U, to
the real actuation forces in vector F, through equation (3.4). Therefore, for the same system,
smaller values of the effort parameter k = |det B,| correspond to actuator configurations that
will have smaller force amplitude requirements than actuator configurations that produce larger

values of k.

27



Returning the simply supported beam example in Figure 3-2 one can assume that a
second dummy actuator is applied at a distance y along the beam length; therefore by applying
equation (2.9b) with appropriate substitutions of the modal shapes in Figure 3-2 one can obtain

sin (nL—x) sin (”L—y)

the transformation matrix B = omx 21y
sin(T) sin(T)

l. Then by taking the inverse of this matrix and

performing the partitioning in accordance with equation (3.1) the controllability indicators in
(3.5a) and (3.5b) can be solved to obtain: 1 = 1/(2cos("7x)) and k = 1/(sin(”L—x)) (Which are
completely independent of the assumed location of the dummy actuator location y). Using these
indicators the “best” position x of the actuator F,, for attenuating the two dominant modes of
vibration can be evaluated. In Figure 3-3 the values of A and k are plotted as a function of
actuator position x along the length of the beam L. The figure demonstrates that as the location
of the actuator approaches the midpoint of the beam (x = L/2) the value of the rate parameter
approaches infinity (1 — oo) and as it nears the endpoints (x = 0, x = L) the effort parameter
approaches infinity (x — o). These singularity points correspond to actuator locations that
result in an uncontrollable system.

Recall that a value of 4 = 1 and a “small” value of k is most desirable for good
controllability. As shown in Figure 3-3, the rate parameter is equal to unity (A = 1) when the
actuator is positioned at x = L/3 and x = 2L/3 (one third positions), indicating that these
locations will provide similar damping rates for both modes of vibration. Any change in position
from the one third positions towards the beam midpoint will marginally decrease the effort
parameter value, but rapidly increase the rate parameter value because control over the second
mode of vibration rapidly decreases. Conversely, any repositioning towards the endpoints will

increase the effort parameter and reduce the rate parameter. For practical purposes the third
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points of the beam represent the “best” location for positioning the single actuator F,, for

attenuating the first two modes of vibration.

10 v I
[ ]
' )| =de=g !
9 I il
I
| I
B t 1
1 !
7 ) 1
1 ]
\ '
6 1 1
1 [
5 L !
i ]
\ !
4 3 1
A !
3 \ A
) / |\ d
~ P
2 S 7 \ "
h‘-‘- / b, --"-ﬂ'
1 I e —
0
o 0.1 0.2 0.3 0.4 0.5 06 07 0.8 k] 1
x/L

Figure 3-3. Rate parameter A and effort parameter x as functions of actuator position x along
beam length L.

By observing the controllability indicators, potential actuator configurations can be
quickly assessed prior to proceeding with the more computationally intensive control stage
described in Section 3.3. Hence, several iterations of the structural stage may be required, as
shown in Figure 3-1, in search of the “best” actuator configuration for a given system. When a
sufficiently “good” actuator configuration is obtained (determining the “best” configuration may
be difficult or impossible for geometrically complex systems involving several modes of
vibration and multiple actuators) the structural stage is completed. The next stage of the

CMSOC procedure is the control stage which is covered in Section 3.3.
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3.3 Control Stage

The control stage is represented in the lower right-hand box of flowchart in Figure 3-1. It
involves three main steps: selecting initial and final boundary conditions and performance
criteria as discussed in Section 3.3.1, solving the optimality conditions as discussed in Section
3.3.3, and obtaining the closed loop feedback gains as discussed in Section 3.3.4. The derivation
of the optimality conditions is covered in detail in Section 3.3.2.

3.3.1 Boundary Conditions and Performance Criteria

The initial and final boundary conditions defined in the DOF-space in (2.7) may be
transformed to modal-space through transformation (2.9a) along with the appropriate

substitution from orthogonality condition (2.10a), to obtain:
1n(0) = ®"Mq(0) = 1o, 71(0) = ®"Mq(0) = 1jo (3.6a)
n(t) =0, n(t) =0 (3.6b)

Note that operation (3.6a) is formally equivalent to the inverse of operation (2.9a) for a fully-
actuated system only. The time-invariant close-loop control solution (tf — oo) is of primary
interest for actively dampened structures and is typically dealt with in this thesis. Formally the
initial conditions are not required to obtain feedback gains for a closed-loop system; however for
convenience, an arbitrary set of initial conditions (3.6a) can be assumed for obtaining the gains
in a later step (Section 3.3.4).

The modal-space equivalent of the performance index (2.8) is obtained by substituting
(2.9a) and (2.9b) into equation (2.8) and applying the orthogonality conditions (2.10a) and

(2.10b) to obtain:

J=1/2 [ @"Qan + 0" Q.7 + UTRU)dt > min (3.7)
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Formally, the performance indices J in (3.7) and (2.8) are equivalent if the weighting matrices
appearing in (3.7) are diagonal and equal to Q4 = aQ, Q,, = bl, and R = cQ~! where a, b, and
c are constant weighting terms that were previously defined in (2.8). However, the diagonal
weighting terms Q.. @y, and Ry; (i = 1, ..., n,,) in matrices Qq4, @, and R may be chosen
arbitrarily as design parameters to “tune” the resulting system dynamics to produce a desired
system response.

3.3.2 Deriving Optimality Conditions

The optimization problem with n, independent actuators acting upon n,,, modal variables
is defined by equations of motion (2.12), with constraints (3.2), and performance index (3.7).
The optimality conditions for this problem are derived from Pontryagin’s principle [28]. The
modal variables in vector i and their corresponding velocities in vector 1 are treated as system

state variables so the system’s Hamiltonian H takes the form:
H=1/20"Qun +17"Q,n + UTRU) + Py + P (—An — Qn + U) + vT AU (3.8)

The first bracketed term contains the integrand of the performance index (3.7), the second and
third terms contain the system states related through equation (2.12), and the last term contains
the constraint equations (3.2) arising due to under-actuation. Vectors P, and P,, are standard
costate vectors that account for the modal states represented by vectors n and 7 respectively.
Vector vI = [V1 " Vn.] represents a set of n, time-varying Lagrange multipliers introduced
to satisfy the constraints (3.2). Pontryagin’s theorem states that for an optimal system motion the
Hamiltonian H must be stationary with respect the states, costates, and modal controls [28].

Following Pontryagin’s formulation, the costate equations take the form:

Py = aH/an = Q. + QP, (3.9a)
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P, =0H/50 = Quiy— Pa + AP, (3.90)
The Hamiltonian is stationary with respect to the modal controls if:
O/ y=-RU+P,+ATv =0 (3.10)

The costate vector P, is obtained in terms of the modal variables in vector n and the Lagrange
multipliers in vector v by rearranging (3.10) and making the appropriate substitution from (2.12)
to obtain:

P, =R(Iij+ A+ Qn) — ATv (3.11)

By substituting vector P,, from (3.11) into (3.9b) the costate vector P, is obtained in terms of

vectors i and v in the form:
P, = Q,n — R(Iij + Aij + Qn) + AR(Iij + Af + Qn) + ATv — AATv (3.12)

A set of optimality conditions defined in terms of modal variables and Lagrange multipliers is

obtained by substitution of (3.12) into (3.9a) to obtain:
Ri} + (2QR — Q, — RA®)ij + (RQ* + Q)1 — (ATV — AATV + QATv) = 0 (3.13)

The n,,, optimality equations (3.13) contain n,, unknown components in the vector of modal
variables n and an additional n,. unknown components in the vector of Lagrange multipliers v.
To solve for the total number of n; = n,,, + n. unknowns in (3.13) the n, additional constraint
equations in the form (3.2) must be solved simultaneously with the equations (3.13). However,
the constraints must be written as a function of modal variables in vector i by substituting (2.12),

so that the algebraic form in (3.2) is replaced by the differential form written as:

A(lij + A+ Q) = 0 (3.14)
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The modal variables in equations (3.14) are coupled by higher time derivatives. Unlike the
independent and redundant components of controls U that are related via equation (3.2), the
independent components of modal variables in vector i, cannot be separated analytically from
the redundant modal variables in vector n,.. In other words constraints (3.14) are formally non-
holonomic. The total number of n, equations in the form of (3.13) and (3.14) is equal to the
number of unknowns in vectors i and v, and may therefore be solved. Formally only the
independent modal variables are required to determine the actuation forces through equation (3.4)
with the necessary substitution from (2.12). However, all modal variables are needed to
determine the motion of any particular DOF from transformation (2.9a).

In summary, under-actuated systems are governed by the set of equations (3.13) and
(3.14). These equations are handled numerically by the CMSOC procedure and the details of the
solution are discussed in the next section.

3.3.3 Solving Optimality Conditions in the Control Stage

The solution to the optimality equations (3.13) and the system constraints (3.14) is
obtained using standard methods for obtaining exact solutions to dynamic systems involving
higher order differential equations. The symbolic differential operator D/ = d’//dt’ is used to
transform the system equations to a characteristic polynomial equation. The differential operator
is substituted into equations (3.13) and (3.14) and the result is organized into a compact matrix

notation in the form:
_ E —ET|m _
E,Y=0 = [Tz . ][V] =0 (3.15)

The expressions on both sides of the arrow in (3.15) are equivalent, but the expression on the

right is shown in a partitioned form. The vector Y = [T vT]T contains n, (n, = n,, + n.)
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unknown modal variables in vector n and Lagrange multipliers in vector v. The matrix E,, is
partitioned into the upper-left sub-matrix E with diagonal terms E;;, the upper-right sub-matrix E

with terms £;;, and the lower-left sub-matrix E with terms Ej; (i = 1, ...,n, and j = 1, ..., n,).

ijs
The lower right sub-matrix in E,, is of size n. X n. and populated with zero-valued components.

These partitioned sub-matrices are defined as:

E = RD* + (2QR — Q, — RA?>)D? + (RQ? + Q4)D (3.16a)
E = A(ID?> + AD + Q) (3.16b)
E = A(ID? — AD + Q) (3.16¢)

Fully-actuated problems do not contain the sub-matrices E and E defined in (3.16b) and
(3.16c) respectively. Such problems have matrix E,, equal to submatrix E and there are no
Lagrange multipliers required, so equation (3.15) reduces to Enp = 0. Furthermore, the diagonal
operator E provides all the necessary equations E;; = 0 (i = 1, ..., n,,) from which the four
integration constants generated can be obtained directly from the boundary conditions (3.6a) and
(3.6b) for the vibration mode under consideration. This is consistent with the IMSC approach
where the vibration modes of fully-actuated problems can be solved independently of each other,
one by one, directly from the boundary conditions and optimality conditions.

The characteristic equation for the system defined by (3.15) is a polynomial of r to the
power of 4n,,, (with the differential operator D replaced by an auxiliary variable r), which takes

the form:

Det(Ep)| . =0 (3.17)
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The solution to the characteristic equation (3.17) involves roots r; (L = 1, ...,4n,,). The 4n,,

roots of the characteristic equation may generally be complex numbers in the form:
n = tay + ify, k=1,..,n,andl =1, ..,4n,, (3.18)

The positive real numbers «; and £, characterize the dynamics of the k-th mode of vibration. If
all roots r; are unique complex numbers in accordance with (3.18) than a general solution
function for the unknown modal variables and Lagrange multipliers in vector Y is obtained in the

below form:

Y, = Z’,:;”l{e_“kt[c,%jsin(ﬁkt) + cﬁjcos(ﬁkt)] + e“kt[c,ijsin(ﬁkt) + cﬁjcos(ﬁkt)]} (3.19)

Note that solution functions in the form (3.19) only apply to systems that have unique complex
roots r; in the form (3.18). For problems with repeating roots not lying in the complex plane,
alternative solution functions must be used (see Chapter 4 for an example).

The solution function (3.19) is defined for each component Y; and each contains 4n,,
independent elementary functions. There are j = 1, ..., n, solution functions Y; that relate to a
corresponding modal variable n or a Lagrange multiplier v, such that Y; = n; forj =1, ..., n,,
andY; = vj_, forj=nm,.,n (ie¥Y=[Mm " T, Vi = Vn]"). Thereare 4n,n,
unknown integration constants c,ﬁj, Cz%p c,ij, and c;;; contained in the solution functions (3.19).
Their values are obtained by substituting the assumed form into the optimality equations (3.13)
and the constraint equations (3.14) and then applying the method of undetermined coefficients to
generate n; sets of 4n,, linear algebraic equations relating an equal number of unknown
integration constants [29]. However, one differential equation, corresponding to 4n,, algebraic
equations, in (3.13) and (3.14) must be replaced by the set of 4n,, boundary conditions in the

form (3.6a) and (3.6b) to obtain a unique solution to the unknown integration constants.
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In closed loop feedback control the motion of a system is continually driven to the null
state, with zero displacements and velocities, in a time-invariant manner. This scenario is typical
for actively dampened structures, where vibrations are observed by sensors and relayed to
actuators that act to reduce disturbances. Therefore, the final boundary conditions are defined

over an infinite maneuver time (¢ — o) and the solution functions in vector ¥ must decay with
increasing time. This requires that the value of the integration constants c,ﬁj and c,‘c‘j in equation

(3.19) be set to zero. This reduces the number of unknown integration constants defining the
solution functions by half and the resulting solution functions, with 2n,, unknown integration

constants, take the form:
Y, = X e % e sin(Bit) + cijcos(Bit)], ji=1,..,n (3.20)

The parameters S, and a;, can be respectively interpreted as the vibration frequency and active
damping associated with the k-th controlled mode corresponding to modal shape vector ¢.
Any vibrations with the frequency B will be reduced to approximately 3-percent of the initial
value after a time period of t3% = 3.5/, referred to as the 3-percent settling time and
corresponds to the k-th mode of vibration (i.e. e3> = 0.03). The active modal damping ratio
corresponding to the k-th mode is defined as &, = a; /) and reflects how many oscillations
should be expected in the k-th vibration mode before it effectively decays below a certain
threshold. As previously mentioned these steps are handled automatically using the MAPLE
software and form the majority of the calculations involved in the control stage (as shown in the
flowchart of Figure 3-1).

3.3.4 Closed Loop Feedback Gains

In closed loop feedback control, a system is equipped with a number of ng sensors that

relay output information on the system’s states to a processor that signals system actuation forces
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to correct the disturbances in these states. In general, the system’s output vector y can have n,

components related to the positions and velocities of the DOFs in the form:
q :
y=Cz=[Ca G| =Caqa+Co (3:21)

Matrix C is partitioned into matrices C4 and C,, that are each of size ny X n and describe the

placement of sensors related to position and velocity states in vector z = [qT  gT]” respectively.
A simple feedback controller relays the system outputs contained in vector y and

multiplies them by a set of constant valued gains that generate the actuation forces in vector F,

in the form:
F,=—-6Gy =—-GC4q — GC,q = —G,4q — G,q (3.22)

Matrix G, of size n, X ng, contains constant valued gains that when multiplied by positioning
matrices C4 and C,, each of size ny X n, produce matrices G4 and G,, each of size n, X n. The
matrices G4 and G,, contain gains relating to positions and velocities, respectively. As shown in
the flowchart in Figure 3-1, these gains are easily obtained using the MAPLE software. The
process is simple because the actuator forces F, and system response q were already obtained in
the previous step of the control stage enabling the gains to be solved directly by using the
method of undetermined coefficients on equation (3.22). Alternatively, the gains may be solved
by writing out equation (3.22) at a sufficient number of instances in time and solving the
resulting system of equations for the unknown gains.

The feedback relationship (3.22) may be substituted into the governing equations of

motion (2.1) to obtain:

Mg+ (C+BG,)q+ (K+BGy)q=0 (3.23)
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In the form (3.23), the gains matrix G, affects the system stiffness and frequencies and the
matrix G,, affects the attenuation properties.

Appendix B contains further discussion on the methods of obtaining gains with and
without assuming initial conditions. Also, a means of evaluating system observability for a given
configuration of sensors in a system is discussed.

3.4 Verification Stage

The verification stage is represented in the bottom left hand box in the flowchart of
Figure 3-1. It utilizes the FEM model created in the structural stage to verify the system
response that is obtained in the control stage. The transient time-integrated responses of the
DOFs subject to the attenuation forces F, (obtained in the control stage), contained in vector
qin:, are obtained using the ANSYS program. The responses contained in q;,; are then
compared to the response q (obtained in the control stage) to ensure that the model is accurate
and that the attenuating forces do not excite higher modes of vibration not considered in the
control stage (spillover effects).

For example consider the vibrating beam system in Figure 3-2. Two modes were
considered in the dynamics and they were to be controlled by the single actuator F, located at
the position x. In general, the system motion actually contains an infinite number of other modes
of vibration that were neglected in the control stage of the analysis. Therefore the control stage
cannot provide any information on how the third, fouth, and fifth, etc. modes would be affected
by the actuation force F .

In the verification stage any number of these higher modes could be considered to
determine the effect that the control force will have on them. Say for this example that in the

verification stage, the first three modes of vibration were included. One could see that the time-
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integrated response q;,,, # q because the force F,, may excite vibrations related to the third
vibration mode that will not be controlled. If the level of un-attenuated motion exceeds an
acceptable threshold than a new model that contains the additional mode(s) should be considered
in the structural and control stages.

The verification stage requires that the continuous time-varying functions F,(t), obtained
in the control stage, be converted to a discrete time function F,(nAt) that can be applied to the
transient FEM model at corresponding time steps and load steps. This process is facilitated
through an EXCEL spreadsheet that can be written to a text file that can be interpreted by the
ANSYS software. The details of this data manipulation and other issues concerning the selection

of time steps, load steps, and applying initial conditions are covered in more detail in Chapter 5.
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4. OPTIMAL MANUEVERS FOR GANTRY CRANE OPERATIONS
4.1 Gantry Crane Model [22]

The gantry crane problem is a simple under-actuated mechanical system involving two
DOFs (n = 2). Itis used to explain some details of the structural stage and the control stage of
the CMSOC procedure (see Figure 3-1). The DOFs that define the system are the linear
translation of a trolley and the rotation of a suspended load. The translational DOF is actuated
by a trolley driving force and the suspended load is free to rotate in a pendular motion (n, =
1,n. = 1). Any finite cart translations are permitted, but swings of the suspended load are
assumed sufficiently small for a linear model to adequately represent the system dynamics. The
system model, shown in Figure 4-1, is a practical model for analyzing the dynamics of overhead
crane operations [3,10].

The model parameters include: the mass of the trolley M, the mass of the suspended load
m, the swing angle of the load suspending cable 6, and the displacement of the cart x. The cable
of length L is assumed to be massless and rigid and the gravitational acceleration g is assumed to
act in the same plane and perpendicular to the direction of trolley travel. The control task is to
maneuver the system from an initial resting state at a some non-zero horizontal distance at
x(0) = a and 6(0) = 0 to a final resting equilibrium state at the datum x(¢;) = 0 and 6(¢;) =
0. The maneuver is controlled by the time-varying trolley driving force F,. A dummy actuator
force F; is assumed to act in the same direction of F, but applied to the center-of-gravity of the

suspended load to define the augmented gantry crane system.
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Figure 4-1. Gantry crane model.

This same gantry crane model was considered in many papers. In [3] a Lyapunov
function was used to obtain an asymptotically stable (closed-loop) control (linear and non-linear)
for attenuating disturbances (non-zero initial positions) in such a gantry crane system. The
optimal control for this same system was analyzed in [10]. The CMSOC approach will be tested
against the methods applied in these papers and the results will be compared. The gantry crane
system shown Figure 4-1 and the coordinate system are chosen to be consistent with those used
in [3]. The results and discussion presented in this chapter are more fully covered in [22].

The matrices and vectors characterizing the equations of motion (2.1) are:

L N A R A N M ] S

To be consistent with the assumptions made in [3,10], and to concentrate on active damping
characteristics, no dissipative effects are considered (C = 0). The initial and final conditions are

chosen to be consistent with the system considered in [3] and are:

a@ =gl a0 =a()=al) =] (4.2)
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The two system DOFs (n = 2) are related to two modal variables (n,,, = 2) via equation (2.9a)

with frequencies and modal shapes obtained from the eigenvalues problem (2.11) to obtain:

0 o e o]
[ ool e
Lo JEr ]

The first rigid body mode has a zero frequency (w, = 0) and the second pendular mode has the

frequency w, = /(1 + %)i—’ The modal-space equation of motion (2.12) takes the uncoupled

form written as:

T+ o aeme [l =[] 4

The transformation between the actuator forces (one real and one dummy) and modal controls in
accordance with (2.9b) (B = ®TB) may be obtained by making the appropriate substitutions

from (4.1) and (4.3). The inverse transformation can be written in the form (3.1), as:

)50 gy

m M

(4.5)

Modal controls u; and u, are considered independent and redundant respectively. Then, =1

constraint equation is obtained from the bottom row of matrix B~ in (4.5) in accordance with

(3.3) to obtain:

[1 — %] [Zﬂ =u — \/%uz =0 (4.6)
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The constraint equation (4.6) may be applied to eliminate the redundant modal control u, from
the top row of operation (4.5) to obtain the drive force F, as a function of only the independent

modal control u, in accordance (3.4). This mapping, defined by the pseudo-transfer matrix

B, = VM + m, takes the scalar form:
F,=F,=B,U,=VM+mu, 4.7

The performance index for the gantry crane system is assumed to take a form which is
consistent with the general form given in equation (3.7). The weighting matrices Q4, Q,, and R

are assumed to have the diagonal weighting terms Qg,., @y, and R;; (i = 1, ..., ny,) that penalize

non-zero values of the system’s four states (1)1, 2, 11, 12) and two modal controls (u4, u,) in the

functional:

t . . .
J=1/2 fof (ann% + Qa,,n5 + Qy, 15 + Qu,, 15 + Ryqui + Ry,u3)dt — min (4.8)

The Hamiltonian is defined in accordance with equation (3.8) and Pontryagin’s formalism is

applied to obtain the set of n,,, = 2 optimality equations in the form (3.13), written as:

Ryqtiy — Qv,, 1 + Qa1 —V1 =0 (4.9a)

Ryatl, + (ZRzzw% - Qvn)ﬁz + (Rzzwg + dez)nz + \/g(ﬁl +wivy) =0 (4.9b)

There is n, = 1 Lagrange multiplier v, that accounts for the constraint (4.6). This constraint is

written in accordance with (3.14), in the differential form:

iy — \/%(n Fwln) =0 (4.10)

In modal-space the boundary conditions in the form (3.6a) and (3.6b), are:
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n1(0) = avM +m, 12(0) =1,(0) =7,(0) =0
m(tr) =n2(tr) = 11(ts) = m2(tr) = 0 (4.11)

Substituting the differential operator D/ = d’ /dt’/ and adopting the matrix notation (3.15), the

optimality conditions (4.9a) and (4.9b) and constraint equation (4.10) can be written as:

E —ET1m E; 0 —E11 M1
EpYz[E . ][v]= 0 B B nzlzo (4.12)
By, B, 0 J1

The components contained in (4.12), consistent with equations (3.16a), (3.16b), and (3.16c), take

the form:
E; = Ry1D* - Q,, . D* + Qq,., (4.13a)
E, = Ry;D* + (2R503 — Q,,,)D? + (Rpaw% + Qq,,) (4.13b)
Eyy =E1=D? Ey=E= —\/%(DZ + w3) (4.13c)

The characteristic equation (3.17) for the gantry crane system is an eighth order (4n,,)

polynomial equation in the form:

Det(Ep)|D_>T = E B3 ED + E2E121E121|D_)r =0 (4.14)

= U(Ryy1* = Qo1 + Quy, )% + 03)% + 1% (Roar* + (2R003 = Qu, )12 + (Rez 0} + Q) = 0

Eight roots are obtained from the characteristic equation (4.14). The solution functions take the
form of equation (3.19) when the roots are complex in the form (3.18). This only applies to
time-invariant problems where the maneuver time approaches infinity (t — o). For maneuvers

executed over a fixed time interval, zero valued roots are obtained and the solution functions
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require modifications from that shown in (3.19) (see Section 4.2 for further explanation). Note
that maneuvers executed over a finite time cannot be implemented in a closed-loop control
system, as they depend on the initial conditions.

There are three solution functions that are assumed for the unknowns n,, n,, and v;.
They depend on twenty-four unknown integration constants that are to be determined by
substitution into optimality equations (4.9a) and (4.9b), and the constraint equation (4.10). By
relating the coefficients corresponding to each of the eight independent elementary functions (i.e.
in (3.19) these take the form e **x£iBi)t) one obtains eight algebraic equations for each
differential equation in the set (4.9a), (4.9b) and (4.10). This gives a total of twenty-four linear
algebraic equations relating the twenty-four unknown integration constants c; ; to be solved.

However, these twenty-four equations are linearly dependant. To solve for the unknown
constants, one complete set of eight algebraic equations (of the three obtained from (4.9a), (4.9b),
or (4.10)) must be discarded and replaced with the complete set of eight boundary conditions
(4.12).
In this example, the CMSOC method will be used to obtain the optimal actuation forces

needed to drive the gantry crane from the resting position at a non-zero translational position
(x = a, 8 = 0) to a resting position at the origin (x = 0, 8 = 0). Four cases will be examined:

A. An open-loop, fixed time interval maneuver that minimizes actuation forces.

B. Atime-invariant, closed-loop maneuver that reproduces the control presented in [3].

C. Atime-invariant, closed-loop maneuver with improved response.

D. Atime-invariant, closed-loop maneuver of the fully-actuated system.
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For each case, the numerical values for the physical constants defining the gantry crane system
are assumed tobe: M =m = 1kg, L = 1m, g = 9.8 m/s?, and a = —5m. These numerical
assumptions are consistent with [3].

4.2 Case A: Open-loop, fixed time interval maneuver that minimizes actuation forces

Case A considers the optimal maneuver that brings the gantry crane model from rest at a
known initial position (x = a, & = 0) to a resting position at the origin (x = 0, & = 0) in a finite
time interval t;. Controls operating over a finite time-interval must be implemented in an open-
loop control system because the controls cannot be generated through sensor feedback. The
performance index is chosen to be identical with that presented in [10], which is in the form (4.8)
with the weighting parameter selections: Ry; = Ry, = 1, Qq,, = Qq,, = Qu,, = Qy,, = 0. For

this case, the optimal control minimizes:
t 1 pt .
J =, @Wi+ud)dt= Efof F2dt - min (4.15)

The expression on the right of (4.15) is obtained by substitutions from equations (4.6) and (4.7).
In qualitative terms, the performance index (4.15) favors controls that perform the maneuver
using the smallest possible forces in the finite time ;. For this case, the maneuver time is
somewhat arbitrarily chosen as t; = 4s.

For this case, the characteristic polynomial equation from equation (4.14) reduces to:
(1 + %) (r*+ w3)*r*=0 (4.16)

The eight roots of equation (4.16) are: 14, ..., 15 = 0,0,0,0, +iw,, +iw,. These roots correspond
toa; = a, = f; = 0and B, = w, = 4.43 when written in the form (3.18). Due to the zero

valued roots and repeating roots the solution functions in (3.19) must be modified to the form:
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Y = c1j + cojt + 367 + c45t3 + (55 + ¢75t) sin(w,t) + (c6; + cgjt)cos(wyt) (4.17)

Each solution function Y; (j = 1,2,3 and recall that Y; = n,, Y, =n,, Y3 = v;) contains eight
unknown integration constants c; (k = 1, ...,8), which are obtained through the method of
undetermined coefficients. Equation (4.17) is substituted into any two of three differential
equations in the set (4.9a), (4.9b), or (4.10) and simultaneously solved with the eight boundary
conditions (4.11). With the values of the integration constants obtained, the modal variables and
Lagrange multiplier solutions are known functions. This stage of the solution was done

automatically using MAPLE and yields the functions:

n1 = —7.09 — 0.104t + 1.41t% — 0.235¢t% + 0.0235 sin(4.43t) + 0.0151cos(4.43t) (4.18)
N, = 1%.0 [14.4 — 7.19t + (0.451 — 3.33t) sin(4.43t) + (—14.4 + 5.20t)cos(4.43t)] (4.19)
v; = —2.82 + 1.41t — 0.460sin(4.43t) — 0.295co0s(4.43t) (4.20)

The Lagrange multiplier function (4.20) is shown for completeness, but has no physical
significance to the dynamics. The modal control u, is obtained by substitution of (4.18) into (4.4)

to obtain:
u, = 2.82 — 1.41t — 0.460 sin(4.43t) — 0.295 cos(4.43t) (4.21)

The modal variable functions n; and n, in (4.18) and (4.19) are mapped to the DOFs x
and 6 by transformation (2.9a) with substitution of the modal shape matrix from (4.3). The
actuation force F, is obtained by substituting the modal control function u,; from (4.21) into

equation (4.7). These transformations take the form:

x=2+m), 0=v2m), F=V2u (4.22)
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The trajectories of x and 6 are shown in Figure 4-2a and Figure 4-2b respectively and the
actuation force F, is plotted in Figure 4-2c.

The maneuver brings the system from a resting positionat x = —=5mand 8 = 0toa
resting position at x = 0 and & = 0 over a time interval of exactly 4 seconds. The peak force
amplitude required for the maneuver is approximately 3.6N and the maximum load swing angle
is approximately 0.28rad (16°). The optimal drive force essentially accelerates the trolley over
the first half the maneuver and decelerates the cart over the last half with identical, but opposite
and mirrored forces. The oscillating frequency of the applied force corresponds with the

pendular frequency of the suspended load.

x[m] t ¢[rad] F.IN]
1 2 3 4 5]
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Figure 4-2. Graphs of (a) trolley position, (b) load angle, and (c) trolley force for open-loop,
fixed time interval maneuver (case A).

For comparison the same plots of x, 8, and E, that were presented in [3] are shown in
Figure 4-3. This control has an effective maneuver time of tﬁ% = 6s, a maximum load rotation

angle of 0.73rad (42°), and a peak drive force of approximately 15N.
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Figure 4-3. Graphs of (a) trolley position, (b) load angle, and (c) trolley force for closed-loop
control presented in [3].

Comparing Figure 4-2 and Figure 4-3, the open-loop control effectively performs the

3%

maneuver in a shorter period of time (¢ = 4s vs. t; ™ = 6s), with much smaller peak force

requirements (3.6N vs. 15N), and much smaller angles of oscillation (16° vs. 42°). The open-
loop control brings the system to a complete stop after 4s, while the closed-loop control produces
overshoot and the system takes longer to come to effectively come to rest.

If the finite maneuver time for the open-loop control is extended (or shortened), the peak
force requirement and maximum swing angle is reduced (or increased) by approximately tf‘z.
For example, if the open-loop control is modified to settle over the same effective period of time
as the closed-loop control (t; = 6s) the maximum force is reduced to approximately 1.6N with a
maximum swing of about 7°.

An open-loop control performs a faster and more efficient maneuver. However, such a
maneuver is only possible when the initial positions and maneuver times are known in advance.
Closed-loop control is necessary for active systems, where any disturbance is to be automatically

attenuated (the initial position is unknown). Closed-loop systems are of primary interest in this
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thesis and will be considered in the remaining examples. Case B in Section 4.3 demonstrates
how the CMSOC method is applied to analyze and simulate a closed-loop control for the gantry
crane system to reproduce (approximately) the dynamics produced in [3] that were plotted in
Figure 4-3.

4.3 Case B: Time-invariant, closed-loop maneuver that reproduces the dynamics presented
in [3]

A closed-loop control can perform the same task as the open-loop control (case A);
however, it does so automatically, without prior knowledge of initial conditions. Any
disturbance that causes the gantry crane to deviate from its resting configuration at the origin
(x = 0,68 = 0) is automatically observed (i.e. by sensors) and the signal is relayed through a set
of constant gains to generate a cart-driving force F, that attenuates the disturbance.

In general, to simulate a closed-loop system analytically the maneuver time ¢, becomes
theoretically infinite and all disturbances are driven asymptotically to zero. For the gantry crane,
this requires that all roots of the characteristic equation (4.14) be non-zero complex numbers in
the left half of the complex plane (unlike the open-loop system of case A, which contained zero
roots and purely imaginary roots). It can be verified that the weightings Q4. , and Qg,, in the
performance index (4.8) must be non-zero for asymptotically stable roots.

Through trial and error, the control system that was given in [3] may be approximately
reproduced by choosing the weightings in the performance index (4.8) with the values:

Qa,, = 4.5,Q4,, = 42,0Qy,, = Qy,, = 0, Ry; = Ry, = 1. Therefore, the characteristic
polynomial equation (4.14) has eight roots that take the complex form (3.18), with real and

imaginary parts given as:

a, = 0.853, B, = 0.856, a, = 0.513, B, = 4.46 (4.23)
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The parameters a; and S, respectively, are related to the active damping rate and frequency of
the mode related to the rigid body translation of the trolley, whereas the parameters a, and g, are
reflective of the damping and frequency of the higher frequency mode corresponding to the load
swinging. Note that the oscillation frequency of the second mode for the damped system is
approximately equal to that of the undamped system (8, = w,).

Like case A, modal variables n; and n, are determined by substituting the parameters
from (4.23) into an assumed solution form and then solving for the unknown coefficients by
comparing similar terms in two of the three optimality/constraint equations (4.9a), (4.9b), and
(4.10), and by substituting the boundary conditions (4.11). Unlike case A, the closed-loop
problem requires that only half as many integration constants be obtained, because the
coefficients of exponential growth functions (e“<t) are null-valued. The assumed solution
functions take the form given in (3.19). The modal variable functions n; and n, are listed below

along with the modal control u;.
n1 = e~ *1(=7.70sin(B;t) — 7.08cos(B1t)) + e~ (12.6 sin(B,t) — 0.564cos(B,t))/100  (4.24)
N, = e~%1t(—0.565sin(B;t) + 0.534cos(B;t)) + e~%2£(0.149 sin(B,t) — 0.534cos(St)) (4.25)
u, = e~ *t(—10.3sin(B;t) + 11.3cos(B1t)) + e~ %2t (—2.44 sin(B,t) — 0.686c0s(B,t))  (4.26)

Using the appropriate transformations from equations (4.22), the modal-space variables in
equations (4.24-4.26) can be mapped into corresponding DOFs. It can be verified that the
resulting system trajectories and the optimal trolley drive force are practically indistinguishable

from the plots shown in Fig. 4-3, which were presented in [3].
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The gantry crane system’s feedback relationship, in the form of equation (3.22), produces
the active trolley driving force from sensor feedback from the trolley’s states (x, x) and

suspended load’s states (8, 8) in the form:

F, =Gy, ,x—Gg,L0 — G, x—G,,LO (4.27)

V12

The states of the suspended load are multiplied by the constant length of the rope L so that all the
gains share similar units and for consistency with the system presented in [3]. The closed-loop

gains for the gantry crane system discussed in [3] were published as:
Gy =[Ga,, Ga,,]=1[3.00 0.710], G, =[Gy, G»,]=[3.69 —0.870] (4.28)

Substituting the modal-space transformations (4.22) into equation (4.27), along with the
appropriate substitutions of the functions shown in (4.24-4.26), the terms related to the four

independent elementary functions can be grouped to obtain:

e~ sin(B,t) [-14.6 — 5.85G4,, + 8.95G,,, — 0.799G,,, + 0.0352G,,, | +

e~ %t cos(B,t) [16.0 — 4.63G4,, — 1.06G,,, + 0.755G,,, — 1.33G,,, | +

et sin(B,t) [~3.45 + 0.195G,,, + 1.56G, , + 0.211G,, + 3.26G,,,, | +

V12

e~ %2t cos(B,t) [-0.970 — 0.374G,,, + 1.06G,, , — 0.755G, , + 1.33G,,,| = 0 (4.29)

Equation (4.29) requires that each of the square-bracketed terms be equal to zero for the
equation to be satisfied at all times t. Each bracketed term contains an independent linear
algebraic relationship producing four equations to be solved for the four unknown gains. This

system of equations can be solved to obtain:

Gd = [Gdn Gd12] = [300 0732]1 Gv = [Gv11 lez] = [366 —0924] (430)
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Though initial conditions were assumed in determining the trajectories of x and 8 and force F,, it
can be verified that the gains in (4.30) remain invariant with respect to changes in these assumed
conditions.

Comparing the gains in (4.28) and (4.30) demonstrates that the CMSOC method can
closely reproduce the control presented in [3] through careful selection of the weighting
parameters in performance index (4.8). However, the dynamic performance of the gantry crane
maneuver may be “improved” through a different selection of the performance index weighting
parameters. Case C in Section 4.4 demonstrates how the gantry crane maneuver can be modified
to produce faster convergence without an increase in the required peak actuation forces.

4.4 Case C — A time-invariant, closed-loop maneuver with improved response

In case B the CMSOC approach was used to demonstrate how the linear gantry crane
control system presented in [3] could be reproduced by trial and error selection of the
performance index parameters in equation (4.8). It was found that the resulting performance

index had zero valued weighting parameters Q,,, . = @, = 0; these weighting parameters

penalize the velocity states (17, and 1,) in the optimization problem. Therefore, the optimal drive
force was devoted to reducing the non-zero positions of the trolley and load and no penalty was
associated with reducing their non-zero velocities. This is ineffective because the pendulum
action of the suspended load oscillates between states of maximum potential energy (6 —

max, & = 0) and states of maximum kinetic energy (6 = 0, 8 — max). Failure to include the
velocity states in the performance index produced a maneuver, as shown in case Figure 4-3, that
caused the trolley to overshoot its target and result in large persistent load swings. These
problems are mitigated by a more careful choice of the performance index weighting parameters

in (4.8).
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There is a direct relationship between the angle of the load rotation and the second modal
variable n, (8 = +/2n,), such that the load swing angle trajectory is directly affected by varying
the weighting values given to the terms containing modal variable n, (Qq4,,) and its derivative 7,
(Qy,,) inthe performance index (4.8). On the other hand, the speed at which the cart can be
made to approach the final position is affected through variation of the weighting values given to
terms containing modal variable variable n; (Qq4,,) and its derivative 7, (Qy,,)

The effect of various choices of the performance index parameters are studied in detail
for the gantry crane system in [22]. Through a trial and error selection process, the weighting
parameters Qq, ., Qq,,, @v,,, and Q,,,, were varied to study the ‘best’ combination for producing
a quick and effective maneuver with the weighting parameters R;; and R,, held constant at a
value of unity. The ‘best’ combination was found to be: Qaq,, = 6,0Q4,, = 50, Qy,, =4,

Qv,, =50,and Ry; = Ry, = 1.
Similar to case B in Section 4.3, the characteristic polynomial equation (4.14) has eight

roots that take the complex form (3.18), with real and imaginary parts given as:
a, = 1.63, B, = 0.661, a, = 1.31, B, = 1.65 (4.31)

In comparison to case B, the damping coefficients a, and a,, have increased by 91-percent and
156-percent respectively. Also the frequency of the higher mode S, has decreased by 63-percent
to a frequency well below that of the undamped system (S, # w,), meaning that the active
control has significantly affected the pendular frequency.

Figure 4-4a shows the trolley position x, Figure 4-4b displays the suspended load
rotation 8, and Figure 4-4c plots the trolley drive force F, for 8s of the maneuver. The control

results in a maximum swing angle of 0.45rad (25.8°) and the trolley effectively reaches the target
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in tf% = 3.5s. The trolley performs the maneuver in a single load swing cycle without

persistent oscillations and overshoots upon reaching the target position. The peak trolley drive

force is 17.3N, which is relatively close in comparison with case B (15N).
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Figure 4-4. Graphs of (a) trolley position, (b) load angle, and (c) trolley force for closed-loop,
time-invariant maneuver (case C).

In comparison with the control presented in [3] (see Figure 4-3), the dynamics of case C,
shown in Figure 4-4, have several key differences. The trolley reaches the target more quickly,
the load swings are smaller and attenuated faster, and the required peak forces are only

marginally larger. The closed loop gains in the feedback relationship (4.27) are:
G, = [Gdn Gd12] = [3.46 9.10], G, = [Gvn GV12] =[5.43 1.79] (4.32)

The value of the gains G4, and G, , influencing the proportion of the control force that is
related to the trolley position and velocity respectively, are similar in magnitude to case B (see

equation (4.28)). However, the value of gains G,,, and G, _,, influencing the proportion of the

12!
control force that is related to the load swing angle and velocity respectively, differ significantly
(with different orders of magnitude and opposite signs). In case C more effort is applied to

attenuate the load swing angle and velocity producing a more efficient overall maneuver.
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Case D, in Section 4.5, considers the gantry crane system with an additional actuator
located at the center of gravity of the suspended load to illustrate how the CMSOC approach can
be applied to fully-actuated systems. It is shown that such a system can perform the control task
more quickly and effectively.

4.5 Case D — A time-invariant, closed-loop maneuver of the fully-actuated system.

The CMSOC method can always be extended to the analysis and simulation of fully-
actuated systems. This is illustrated by considering the gantry crane system presented in Figure
4-1 with both actuators F, and F, acting as real actuators (no dummy actuator). The problem is
fully-actuated so there are no additional constraints on the system’s motion and hence no
Lagrange multipliers needed to enforce them. The optimal trolley drive force F, and guiding

force F,; can be solved for by calculating the inverse dynamics directly from (2.9b), which is

written as:
[ M Mm ]
F VM+m M+m | ru
F,=B U= [Fa] _| | 1] (4.33)
M+m \’M+m

In the matrix notation (3.15), the optimality equations take the form:

E,Y = [E]M =0 =[5 0] T

0 E 772]:0 (4.34)

The matrix components E; and E, in (4.34) take the form:
E; = R, D* — Q,,HD2 + Qq,, (4.35)
E, = Ry;D* + (2R5,w3 — Q,,,)D? + (Rpaw% + Qq,,) (4.36)
The weighting values in equation (4.35) and (4.36) are selected to be identical to case C (Qq4,, =

6, Q4,, = 50, Qy,, =4, Qy,, = 50, Ry; = Ry, = 1). The characteristic equation for the
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problem in the general form (3.17) is obtained (E, E, |-, = 0) and solved to obtain four roots

taking the general form (3.18) with real and imaginary components written as:
a, = 3.62, B, = 2.78, a, = 1.49, B, = 0.474 (4.37)

Since the system is fully-actuated, each modal variable n; is independently controlled by a

corresponding modal control u;, which produces uncoupled solution function in the form:
n; = e %t (cilsin(ﬁl-t) + cizcos(ﬁit)) (4.38)

The four unknown integration constants cij (i=1,2 and j=1,2) are obtained by directly
substituting the four initial conditions given by (4.11). The modal variables in the form (4.38)
are mapped into DOF-space through equations (4.22) to obtain the system trajectories x and
and the control forces applied at the cart F,and at the suspended load F,;. Figure 4-5a and Figure
4-5b contains graphs of the trolley position and active forces respectively over a time period of
2s. A plot of suspended load rotation is trivial, as the suspension rope remains vertical
throughout the maneuver (6(t) = 0). Practically, this means the actuator acting on the

suspended load must prevent any swinging of the load while the trolley translates.
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Figure 4-5. Graphs of (a) trolley position and (b) driving forces for the fully-actuated gantry
crane system (case D).
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The trolley effectively converges with the target position after t;’% = 0.78s, and the task
requires identical forces to drive the trolley and suspended load with a peak force of 104N. The
trolley and suspended load move with identical velocities as a single rigid body, as it does not
swing as it travels. The peak forces required are considerably larger than in previous cases;
however, these could be reduced by increasing the value assigned to weighting parameters R;,

and R, in the performance index (4.8).
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5. DISTRIBUTED-MASS PLANE FRAME PROBLEM
5.1 Plane Frame Model [21]

In this example, the CMSOC approach is used to analyze and simulate an actively
dampened structure consisting of three levels of beams rigidly connected to columns. All three
stages of the CMSOC method are implemented and discussed in this example (see flowchart in
Figure 3-1). In the structural stage, the effectiveness of certain configurations of actuators are
indicated by the controllability parameters A and «, introduced in equations (3.5a) and (3.5b),
which indicate if excessive attenuation times or prohibitively large force requirements are
expected. In the control stage the system response and active forces are calculated confirming
the validity of the controllability parameters. Lastly, in the verification stage, the controls are
simulated with a transient FEM model to verify that the system response is consistent with the
results of the control stage. Also in the verification stage, spillover effects from higher modes
are detected.

The distributed-mass three level plane frame structure under consideration is shown in
Figure 5-1a. All connections between the beams and columns are assumed to be rigid (angles
between intersecting members remain unchanged when loaded) and all members with the
exception of the topmost member have identical cross sections and material specifications. The
members are modelled based on aluminum material (E = 71.7GPa, p = 2800kg /m3) with a
cross sectional area of 76mm? linear mass of 0.2128kg/m and an area moment of inertia of

4585mm*. The topmost horizontal member is rigid and weighs 1kg. The properties of this
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frame were chosen somewhat arbitrarily to obtain a particular pattern of vibration modes that are
effective at illustrating the CMSOC approach.

An FEM model of the frame was created using the ANSYS software. Two-dimensional
beam elements, each of 200mm length (five elements per member), make up the bottom eight
members of the frame and a rigid mass element was used for the topmost member. The locations
of several key nodes that are relevant in future discussions are indicated in Figure 5-1a. The
initial displaced configuration of the structure was chosen to provide adequate disturbance of all
modes and is represented by the dashed line in this figure. The response of the system will be
described by the horizontal and vertical displacements, d¥ and dyp respectively, where the
superscript p denotes the node number under consideration. A modal analysis was performed in
ANSYS and the resulting modal shapes of the four dominant vibration modes, with natural

frequencies f; = w;/2m (i=1,2,3,4), are shown in Figure 5-1b.
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Figure 5-1. (a) The plane frame and (b) its four dominant mode shapes and frequencies.

The CMSOC method was used to simulate the actively dampened structure for a variety
of actuator configurations employing one or two actuators. The dynamics of the frame system
was considered for three or four significant modes of vibration. Actuators were assumed to exert
equal and opposite axial forces on their points of attachment to the frame. The mass and
stiffness of actuators were not considered and all passive damping effects were ignored in the

model to emphasize the active damping. In Figure 5-2, the actuator configurations that were

examined, as well as the number of modes that were considered, are shown. Each actuator

position is labelled by F; (i = 1, ...,5) and the two nodes where they are connected are denoted
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accordingly. The effect of actuator configuration on system controllability is the primary

motivation for studying each case.

2 A Fl
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Figure 5-2. Seven cases with different actuator configurations and the number of modes n,, to
be considered for each case.

In cases 1, 2, and 3 actuators F;, F,, and F; act to attenuate the first three modes of
vibration, respectively. In cases 4 and 5, actuators F, and F,, respectively, act to attenuate the
first four modes of vibration. In cases 6 and 7, two-actuator combinations, F,-Fs and F,-F;,
respectively, attenuate the first three modes of vibration.

The frame structure is assumed to be initially displaced such that the modal variables take

initial values of:
n.(0) = 0.05, n,(0) = 0.005, n3(0) = 0.0045, n4(0) = 0.004 (5.1a)
771(0) =1 0) = 773(0) = 774(0) =0 (5-1b)

Note that these initial displacements may be chosen arbitrarily, but those chosen in (5.1a) were

chosen to produce somewhat physically reasonable displacements. In DOF-space the initial
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frame position described by (5.1a) and (5.1b) is a stationary deformed shape that is shown by the

dotted line in Figure 5-1a (not to scale) with initial displacements of:
d2” = 38.01mm, d’ = 28.38mm, d3* = —5.740mm (5.2)

The optimization problem is defined by the performance index (2.8) with the weighting
coefficients taken as: a = b = ¢ = 1. In other words, equal weight is given to minimizing the
terms relating to the frame’s potential energy, kinetic energy, and actuator work respectively.
The maneuver time is theoretically infinite (¢, — o) because only the time-invariant system is
considered.

In Sections 5.2, 5.3, and 5.4, the procedure and results of the structural stage, control
stage, and verification stage, respectively, are covered for the cases shown in Figure 5-2. The
structural stage and control stage are covered in detail for case 1 only and the results of the
remaining cases are listed for discussion. More complete results of the structural stage and
control stage for each of the cases are covered in [21]. The verification stage is demonstrated for
the actuator configuration shown in case 2.

5.2 Structural Stage

Some results of the structural stage are presented for the seven cases in Table 5-1, but
only case 1 is covered in detail. In case 1, the first three dominant modes of vibration are
attenuated by a single actuator F; located between nodes 18 and 27. The characteristic
dimensions of the problem are: n, = 1,n,, = 3,n, = 2,n, = 5. Dummy actuators are chosen in
the locations of actuators F, and F5, which are located between nodes 7 and 13 and nodes 2 and

12 respectively (see Figure 5-2). The transformation equations (3.1) are:

______ Y [ U g

—1.87 ! 0.127 0.383
—2.10 ' —0.669 —0.267

F—B-ly= [_F_a_] _ [Eqi-?.r [_U ] _

—1.34 ' 0.690 —0.325] !’h]

F
‘6] (5.3)
0

Uy
Uus
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The dashed lines appearing on the right hand side of equation (5.3) denote partitions between the
sub-matrices and sub-vectors that divide the vectors F and U and matrix B=. The two bottom
rows of the matrix B~1, containing sub-matrices 4, and A, are combined and normalized in

accordance with (3.3) to obtain:

a=|L o017

1 0.859] (6.4)

Manipulating the sub-matrices in (5.3) in accordance with (3.4) gives the pseudo-transfer matrix
B,. It defines the mapping between the single independent modal control U, = u, and the

single actuator force F, = F; which takes the form:
F1 = EaUa = —759u1 (55)

The pseudo-transfer matrix B, = —7.59 takes a scalar value in this case, as it only involves a
single actuator. The rate parameter A and effort parameter x are obtained from operation (3.5a)

and (3.5b) as:
A = |detA,| = 0.147, k = |detB,| = 7.59 (5.6)

Recall that having the rate parameter A ‘close’ to unity indicates that the actuator configuration is
well positioned to attenuate all modes of vibration with similar attenuation rates. Also, having
the effort parameter k at a ‘small’ value minimizes the peak force amplitudes. The subjective
meaning of the terms ‘small’ and ‘close’ will be illustrated in this example. The rate parameter A

and effort parameter x are summarized for each case in Table 5-1.
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Table 5-1. Rate parameter A and effort parameter k for cases 1 to 7.

Case Number Rate Parameter, A Effort Parameter, k
1 0.147 7.59

2 0.171 4.21

3 0.273 5.53

4 393 4.21

5 0.163 5.50

6 0.347 74,500,000

7 0.242 5.20

Cases 1, 2, and 3 are expected to adequately control the first three modes of vibration
based on the rate parameter values obtained in Table 5-1. Of these cases, case 3 is expected to
have the best overall attenuation rate because it has a rate parameter value closest to unity. In
case 4, four modes of vibration are considered and the rate parameter takes an extremely large
value. This indicates that poor attenuation of the fourth mode of vibration should be expected.
Intuitively, this is because actuator F, is poorly positioned with respect to the fourth mode of
vibration because it is attached at points that do not undergo displacements in that modal shape.
The actuator location in Case 5 is expected to have much better control over all four modes of
vibration, as indicated by the rate parameter value similar to those obtained in cases 1, 2, and 3.

Cases 6 and 7 involve two actuators working simultaneously to attenuate the disturbance.
Case 6 offers an example of poor positioning of two actuators for controlling the three dominant
modes of vibration. The reason is somewhat more complicated than in case 4 and will be
discussed later, but note that the problem is indicated by the extremely large effort parameter in
Table 5-1. Case 7 is a better configuration of two actuators for controlling the three dominant
modes, as reflected by the reduction in the effort parameter to a value more consistent with the

first five cases.
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5.3 Control Stage

The results of the control stage are discussed in detail for case 1. For the sake of
discussion only the plots will be presented for the remaining cases. The optimality and

constraint equations for case 1 are written in the form of equations (3.13) and (3.14), respectively,

giving:
Ny + Wi + 20in; = Aywf (i + wfvy) + Ayf (U, + ©fvy), i=123  (5.7)
Aj1 (7 + wing) + Aj, (7, + w3n,) + Ajs (73 + w3nz) = 0, j=12 (5.8)

The optimality equations (5.7) and the constraint equations (5.8) are written with the differential
operator D/ = d/ /dt/ and substituted into the matrix notation (3.15) to obtain a characteristic
equation in the form (3.17). The roots of this characteristic equation are complex numbers in the

form (3.18) with the real and imaginary components:

a, =7.31 a, = 50.4 as = 62.2

pr =277 By =117 Bs =214 (5.9)

The modal frequencies w; = 2rtf; (frequencies f; are shown in Figure 5.1b) are approximately
equal to the parameter S; given in (5.9), indicating that the active controls do not significantly

alter the frame’s passive vibration frequencies. The 3-percent settling times for each mode are:
3% = 0.479s, t3% = 0.0694s, t3% = 0.0563s (5.10)

The effective settling time ¢, is the time required for all controlled modes of vibration to decay
to 3-percent of their initial value; therefore the slowest-damped vibration mode governs. In
Figure 5-3 the plots of the system dynamics for case 1 confirm visually that oscillations with the
second and third frequencies are negligible after approximately 0.07s, while those with the first

frequency persist until approximately 0.5s.
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Figure 5-3. (a,b,c) Plots of modal variables, (d,e,f) modal controls, (g) actuation force, and (h,i)
displacements over 0.6s of the maneuver (case 1).

The dynamic behaviour for case 1 is plotted in Figure 5-3 for the first 0.6s of the
maneuver. Though only the first three modes of vibration are actively attenuated, the effect of
the fourth uncontrolled modal variable is included in the response plots by including the function

N4(t) = n4(0)cos(w,4t) when transferring the dynamics of the frame into DOF-space. However,
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due to its shape (see Figure 5-1b), it does not visibly contribute to the horizontal nodal
displacements d2” and d’. (see Figure 5-3h), but it does however have a significant impact on the
vertical displacement d3* (see Figure 5-3i). The actuation force F, has a peak value of 131N
(see Figure 5-39).

To solve the dynamics of the system, as shown in the plots of Figure 5-3, the following
steps are performed. Step 1: The solution functions (3.20) are substituted into the n,,, = 3
optimality equations (5.7) and n. = 2 constraint equations (5.8) with the numerical values from
(5.9). Step 2: The method of undetermined coefficients is applied to obtain 2n,,n, = 30 linear
equations relating thirty unknown integration constants CI%j and c,ﬁj (k=123andj =1,2):
2(n,,)? = 18 constants define the n,, = 3 modal variables 1, and 2n,,n. = 12 constants
define the n, = 2 Lagrange multipliers v;. Step 3: To render a set of 30 linear equations that can
be solved to determine the unknown integration constants, 2n,, = 6 initial conditions (5.1a) and
(5.1b) (initial conditions pertaining to n, are ignored for this case) must replace one set of
2n,, = 6 equations obtained in the previous step. Step 4: The unknown coefficients are solved
for and substituted into (3.20) to obtain the desired time varying functions describing the
dynamics of modal variables, modal controls, actuation force, and response of any DOF of
interest. All steps in this solution process, including the matter of obtaining all unknown
integration constants, is handled automatically using the symbolic mathematical capabilities of
MAPLE software. A sample of the MAPLE commands used for this example is provided in
Appendix A.

Table 5-2 summarizes some key dynamic characteristics for the seven cases shown in
Figure 5-2. The modal dampening parameters a;, frequencies f;, effective settling times ¢, and

peak actuation force amplitudes are given for each case in Table 5-2.
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Table 5-2. Modal damping parameters «a;, frequencies g;, effective settling time t.;, and peak
force amplitude(s).

Case a; Bi ter (s) | Peak force(s) (N)
# i=1 2 3 4 li=1 2 3 4

1 7.31 504 622 - 277 117 214 - 0.479 F, =131

2 12.9 9.26 88.7 - 275 113 219 - 0.378 F, =121

3 10.7 46.1 456 - 27.7 114 217 - 0.326 F; =131

4 12.9 9.26 88.7 0.0366 | 27.5 113 219 461 |95.6 F, =330

5 12.4 7.48 79.0 87.8 275 113 222 458 |0.468 F, = 240

6 18.2 26.1 133 - 271 115 214 - 0193 | F, = Fs = 2(10%)
7 16.8 453 115 - 273 116 213 - 0209 | F,=70,F;, =76

The key dynamic characteristics from Table 5-2 are in agreement with the controllability
indicators obtained in the structural stage, listed in Table 5-1. The first three cases attenuate the
disturbance with similar damping rates, attenuation times, and force requirements, with case 3
marginally providing the shortest effective settling time of these cases (t.; = 0.326s). Case 4,
which uses the same actuator as case 2 (F,), struggles to attenuate the fourth mode of vibration
(while damping the first three modes identical to case 2) and requires a larger peak force in doing
so. The system oscillates with the fourth mode for ¢, = 95.6s; this is approximately 250 times
longer than it takes to effectively attenuate the other modes. This was expected from the large
value of 4 in Table 5-1. In case 5, the actuator F, is better able to dampen the fourth mode with
only a slight reduction in the damping of the other three modes in comparison to case 4. The
effective settling time is reduced to ¢t = 0.468s and the maximum actuator force amplitude
decreases.

Case 6, employing actuators F, and Fg, is able to attenuate the three dominant modes of
vibration quickly, but the forces required are approximately seven orders of magnitude larger
than in cases 1 to 3. This was expected in the structural stage from the large value of x in Table

5-1. Case 7, employing actuators F, and Fj, is better suited to controlling the three modes of
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vibration, as it achieves similar damping characteristics as case 6, but with much smaller force
requirements. Note that the rate of attenuation is faster and the maximum force requirements are
lower in case 7 in comparison to cases 2 and 3, which employed the same actuators acting
individually. In all cases the dampened system frequencies S; are relatively unchanged and
approximately equal to the passive system frequencies w; (w; = 27rf;).

In Figure 5-4, the actuator forces and displacement dZ (horizontal displacement at node 7)
are plotted for cases 1, 2, and 3 over a period of 0.6s. These plots confirm that cases 1 to 3 are
similarly capable of attenuating the frame’s first three modes of vibration, with similar peak

force requirements.
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Figure 5-4. Optimal control force (left) and DOF response d_. (right) for (a) case 1, (b) case 2,
and (c) case 3.

In Figure 5-5, the displacement responses d’. and df,“ are plotted for case 4 in Figures 5-
5a and 5-5b respectively, over a maneuver time of 0.6s. Figure 5-5¢ and 5-5d show the active

force F, over a time period of 0.6s and 100s respectively. The long time period in Figure 5-5d is
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shown to better demonstrate the decay period required to dampen the fourth mode to 3-percent of
its initial magnitude (¢3% = 95.6s). Note that in a real structure this mode would dissipate due to

passive damping effects, but in these examples such effects were ignored to emphasize active

damping.
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Figure 5-5. (a) DOF responses d;’ and (b) d;* and control force F, for a period of (c) 0.6s and
(d) 100s (case 4).

The vertical displacement d* is very sensitive to the fourth mode of vibration and the
plot in Figure 5.5b demonstrates that this mode is very poorly attenuated. Note that the

horizontal displacement dZ in Figure 5.5a is affected by the fourth mode of vibration, which is
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not the case when the fourth mode is left un-attenuated, producing a plot similar to Figure 5-3h
for case 1. The reason is that, although the location of the DOF d_ is a stationary point in the
fourth mode of vibration (see Figure 5-1b), when the actuator attempts to control the fourth mode
of vibration, its action causes oscillations with the fourth mode frequency at this location of the
structure. Essentially the controlled dynamics are dominated by the fourth mode of vibration
which vibrates at a frequency of 73.4Hz (461 rad/s). After a short initial maneuver time the
first three modes of vibration are effectively dampened and the remaining control effort is
devoted to attenuating the persistent fourth mode.

Plots similar to those of Figure 5-5 are obtained if actuators F; or F5 is substituted in lieu
of actuator F, to control the four dominant modes of vibration. Each configuration produces
poor controllability over the fourth mode of vibration due to its positioning. In case 5, actuator

F, is better located to attenuate the fourth mode. Several plots for case 5 are shown in Figure 5-6.
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Figure 5-6. DOF responses (a) dZ and (b) d3*, and (c) control force F, (case 5).

The responses d’ and df,‘* are shown in Figure 5.6a and Figure 5-6b and the actuation

force F, is shown in Figure 5-6¢ over a period of 0.4s. Comparing these plots with those of
Figure 5-5, the maneuver in case 5 attenuates the fourth mode of vibration in a fraction of the

time required for case 4.
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Case 1 to 5 each uses a single actuator to control the frame vibrations, however in cases 6
and 7 two actuators are employed to control the three dominant modes of vibration. In case 6,
actuators F, and Fs are considered, which produce excessively large forces to attenuate the

vibrations. Several plots of the dynamics for case 6 are shown in Figure 5-7.
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Figure 5-7. DOF responses (a) d;’ and (b) d3*, (c) actuation forces F, and Fs, and (d) their
difference F, — F5 (case 6).

The displacements of DOFs d%” and d3* are shown in Figure 5-7a and Figure 5-7b
respectively, over a maneuver time of 0.5s. The plots of actuation forces F, and F5 are shown in
Figure 5-7c¢, however due to the scale they are indistinguishable so they appear as one single line.
Nonetheless, the time-varying actuation forces are distinct, as demonstrated in Figure 5-7d,

where their difference F, — Fz is plotted.
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Despite their individually large force amplitudes (approximately 2GN), actuators F, and
F¢ produce distinct forces and their difference produces a plot that is somewhat similar to the
action of the lone actuator F, in case 2 (see Figure 5-4b). Also the peak magnitude in plot Figure
5-7d is approximately 92N, which is in the same order of magnitude as the peak force in Case 2
(approximately 121N).

The large forces resulting from the combination of actuators F, and F is due to their
positions relative to the modal shapes of the first and second modes of vibration. Recall that
actuator Fz acts upon nodes 2 and 18 and actuator F, acts upon nodes 7 and 13 (see Figure 5-2).
As the frame vibrates in the first and second modes of vibration the distance between nodes 2
and 18 increases (decreases) in a nearly identical proportion as the decrease (increase) in the
distance between node 7 and 13 (see Figure 5.1b). Hence, the actuators essentially neutralize
each other’s action in their attempt to attenuate these modes of vibration. In case 2 the single
actuator F, performed essentially the same maneuver with forces that were approximately seven
orders of magnitude smaller. The addition of actuator Fs in case 6 is detrimental to the maneuver
and should be eliminated or relocated. As shown in Table 5-1, this poor actuator positioning is
reflected in the large effort parameter .

In the case 7, another two actuator configuration with actuators F, and F; attenuating the
disturbance was considered. It did not generate the counterproductive actuation forces
demonstrated in case 6. The time-varying plot of displacement d27 is shown in Figure 5-8a and
the plot of d32,4 is shown in Figure 5-8b over a maneuver time of 0.5s. The actuation forces F,
and F; are shown in Figure 5-8c and Figure 5-8d respectively.

Unlike in case 6, the peak actuation forces F, and F; required for the maneuver are

smaller than those required in their individual actuator cases (case 2 and case 3). Note that if the
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fourth mode of vibration were considered for either Case 6 or Case 7, then a result similar to
Case 4 would be expected, where a very large value of the rate parameter A would be obtained

signalling very slow attenuation of the fourth mode.
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Figure 5-8. DOF responses (a) dz’, (b) d5*, and actuation forces (c) F, and (d) F; (case 7).

5.4 Verification Stage

The verification stage takes the actuation forces F,(t), obtained in the control stage and
applies them to the FEM model of the frame in a transient dynamic analysis to check that the

resulting time-integrated displacement q;,.(t) are consistent with those displacements obtained
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in the control stage q(t). In this example, ANSYS was used for modelling the transient response

of the frame system. The following steps are involved in the verification stage:

=

Input actuation forces from the control stage to FEM model.

2. Initialize the FEM transient analysis.

3. Choose time-integration steps and load steps for the FEM transient analysis.
4. Compare the DOF responses.

5. Check for spillover effects from higher modes of vibration.

A general overview of each of these steps will be considered, however a more detailed handling
of the verification stage for this problem is covered in Appendix C.

The frame system of Figure 5-1 with actuator F, (case 2 in Figure 5-2) is considered.
However, only two modes of vibration will be actively attenuated and the initial conditions are

different from those in (5.1a) and (5.1b); they are:

1,(0) = 0.05 1,(0) = 0.005 (5.11a)

11(0) =1,(0) =0 (5.11b)

Note that the selection of the initial conditions does not affect the procedure and is arbitrary. The
solution of the system dynamics is obtained using the same procedure discussed in Section 5.3.
The actuator force F, and the response dZ obtained from the control stage is plotted in Figure 5-

9a and Figure 5-9b respectively.
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Figure 5-9. (a) Actuator force F, and (b) response d_ for initial conditions in equation (5.11)
from the control stage.

In the verification stage, the force F, in Figure 5-9a is applied to the transient FEM model and
the resulting response should match the displacement dZ shown in Figure 5-9b. Otherwise, there
may be spillover effects from higher modes of vibration.

Step 1: Input actuation forces from control stage to FEM model. The actuation force
obtained in the control stage is a continuous, time-varying function F,(t). This continuous
function is translated into a discrete form that can be numerically input into the ANSY'S program.
This operation is easily performed by intermediately using a spreadsheet calculation software,
such as the Microsoft EXCEL program, to calculate instantaneous forces F,(nAt) at all n
increments. This data is tabulated over the desired number of increments extending over the
desired time period, and then written to a text file. This text file is properly formatted for input
to the ANSY'S program as an array parameter.

The data from the text file is stored in the ANSY'S program as an array parameter of type
“table”. Parameters of this type are defined by a “primary” variable, which is taken as the time ¢,

and a dependant variable, which is taken as the actuator force at that time. The benefit of
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defining forces in this manner is that a looping logic structure can be implemented where each
time step in the transient analysis is indexed by the “primary” variable, such that the applied
force updates automatically in each load step in the transient solution process. The details of
these data manipulation are included in Appendix C.

Step 2: Initialize the FEM transient analysis. The first initializing load step is the most
critical to properly approximate the initial conditions of the frame structure as described by
equations (5.11). In the first load step, the initial conditions of the problem must be setup;
however there are two separate sets of initializing forces to consider: the initial disturbing force
vector, F 4i5:, and the initial actuation forces, F,(0).

The initial disturbing forces in vector F 4, displace the structure into its initial
configuration. In order to do this exactly, all DOFs must be forced into the assumed initial
configuration. However, the initial position can be accurately approximated by choosing a more
limited number of DOFs to perturb the system into the initial disturbed shape described by (5.11).
In this example fourteen DOFs at the upper intersection points of the beams and columns and
near the midpoints of each member (at DOFs 2x, 5x, 7x, 9%, 13X, 15X, 18X, 21x, 27X, 27y, 30, 32,
35X, 35Yy) were selected to produce an initial disturbed shape that deviated in position less than
0.3-percent from the exact initial configuration. Also, the initial actuation force F,(0) must be
applied to the appropriate nodes of the FEM model in this initializing load step; however, this
will change the initial configuration of the frame introducing error to the initial load step. A
simple method of obtaining the correct initial disturbing forces is to run a static analysis of the
frame with the fourteen DOFs acted upon by the forces in vector F g4;5; With displacement
constraints in the initial deformed configuration while applying the initial actuation force F,(0)

at the appropriate DOFs. The reactions obtained from this static analysis will provide all the
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initial disturbing forces in vector F 45, In this manner, the set of initial disturbing forces in
vector F 4;5; and the initial actuator force F,(0) are applied in the first load step. Then, in the
following load step all forces are deleted and only the updated actuation force F,(nAt) is applied
to the appropriate DOFs in the subsequent load steps n. This initialization method is discussed
more completely, with reference to the ANSYS command code, in Appendix C.

Step 3: Choose Time Steps and Load Steps. The choice of time steps and load steps
impacts the accuracy of the transient dynamic FEM model. The time step influences the number
of time integrations that are used in computing the system’s dynamic response — more steps give
better accuracy but at a greater computational cost. On the other hand, the load step influences
how often the external actuation forces are updated in the time integration equations. Typically
the load steps and time steps are chosen independently (with typically fewer load steps), but for
actively dampened systems both the actuation force and the dynamic response of the structure
are characterized by the same frequencies so load steps and time steps are also chosen to be
similar. This is particularly important early in the attenuation process when the actuation force
undergoes large oscillations as seen in Figure 5-9a.

To effectively capture sinusoidal oscillations, time steps should be small enough to
capture twenty samples per period [30]. Therefore to capture the first two modes of vibration of
the frame structure the time steps should be no larger than: At = 1/20 (17.9Hz)™! = 0.00279s.
This recommended time step was found to produce large errors particularly with increasing time,
as errors introduced early in the transient process tend to be additive and produce larger errors
later in the analysis. Based on some trial and error, described in more detail in Appendix C, the

time steps were chosen at 0.0001s and the load steps were chosen identically for 0.0001s for
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0 <t < 0.01s, but larger load steps of 0.0005s were chosen for 0.01s < t < 0.4s. This
requires a total of 881 load steps to cover the attenuation period of 0.4s.

Step 4: Compare the DOF responses. The response obtained from the transient FEM
model, obtained with ANSYS, is compared with the exact solution obtained in the control stage,
obtained with MAPLE. Recall that in the control stage two dominant modes of vibration were
considered; similarly, using the modal superposition method the FEM transient analysis also
considers the superposition of these same two modes. Figure 5-10 shows the displacement
response d’ obtained from the FEM transient analysis alongside that obtained from the control
stage. The plots are visually indistinguishable, verifying the validity of the dynamic response

obtained in the control stage.
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Figure 5-10. Response d_ from the (a) verification stage and (b) the control stage.

Step 5: Check for spillover effects from higher modes of vibration. The implicit
assumption in modelling the active attenuation of the frame’s first two modes of vibration is that
higher modes play an insignificant role in the dynamics. By considering these higher modes in
the verification stage, the validity of this assumption is evaluated. To perform this check, the

number of additional modes to be considered may be included in a transient analysis based on
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the mode superposition method in ANSYS. Alternatively, a full transient analysis where all
DOFs are directly integrated in time, can be performed, but at an increased computational cost.

A transient modal superposition analysis was performed with four modes of vibration
included in the dynamics. Figure 5-11 shows the displacement response of two selected DOFs
on the frame. The response dy is plotted in Figure 5-11a and the response d;?, chosen for its
sensitivity to the fourth mode of vibration (see Figure 5-1 for location) is plotted in Figure 5-11b.
Also, the passive (uncontrolled) response of the structure with four modes considered in the

dynamics is included in these plots for comparison.
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Figure 5-11. (a) Response d} and (b) d;® with two modes actively controlled and four modes
considered in the dynamics. Based on FEM transient analysis with control applied from actuator
F, (thick line) and with no control (thin line).

In both plots in Figure 5-11 a residual vibration mode persists as time progresses and it
has a frequency is 35.0Hz, which can be verified in the figures. Note that the oscillation
amplitudes in Figure 5-11a are approximately 100 times larger than those in Figure 5-11b
because node 38 undergoes very small displacements (d33,8) in the first three modes of vibration.
Also note that the fourth mode of vibration is not visibly present in the plots, even though node
38 is sensitive to vertical displacements in this mode. This result is somewhat expected because

the initial disturbance did not deflect the structure into a shape effecting the fourth mode. It is
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also evident in Figure 5-11 that the passive (uncontrolled) response of the frame subjected to the
same initial disturbance is dominated by the first two modes of vibration. This result is
interesting because, due to its placement relative to the third mode of vibration, the actuator F,
actually excites the third mode of vibration in attempting to dampen the first two modes of
vibration. In other words, controlling the first two modes with actuator F, resulted in spillover

effects on the third mode of vibration.

82



6. THREE-DIMENSIONAL MAST PROBLEM
6.1 Mast Model [20]

This example demonstrates the CMSOC method for simulating and analyzing active
vibration attenuation in a mast structure. Several different positions and actuator locations will
be investigated, in search of a “good” configuration for eliminating vibrations. Different
configurations will be evaluated in the structural stage by assessing the controllability parameters
A and k and in the control stage by the forces and responses obtained. The verification stage is
not presented for sake of brevity, but can be considered in a similar manner as Chapter 5 to
detect spillover effects and verify the system responses as required.

The mast structure shown in Figure 6-1 is based on the geometry and characteristics of an
experimental active structure that was discussed in [1] and shown in Figure 1-1. The structure
extends into the z-direction 1820mm with twelve 140mm high repeating bays and two irregular
half-bays at the fixed end and free end. A 15mm thick, 162mm diameter steel plate is supported
at the free end of the mast by the adjoining members. When viewed along its length (z-direction)
the centerlines of the three chord members form the points of an isosceles triangle with a base of
140mm and a height of 200mm. All members are 4mm diameter steel members and all their
connections are assumed to be rigid. The steel is assumed have a modulus of elasticity of
E = 200GPa and density of p = 7800kg/m3. The members near the base of the structure that
will be considered as potential actuator locations are shown in Figure 6-1 and labelled with the
uppercase letters A through E. Point p, located at the center of the circular plate supported at the

free end of the mast, will be used as a location for observing and plotting the dynamic response
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of the structure. To emphasize the active damping in the system all passive damping

mechanisms are ignored.

>
;;\S T, =.0942s
1\1 w, =66.779

> Mode 3
<[ T, =.0148s
< o, = 42612y,

(d)

() (b)

Figure 6-1. (a) Mast model and modal shapes of the (b) first mode, (c) second mode, and (d)
third mode.

In the Figure 6-1, the first three dominant mode shapes are shown from an isometric
perspective as well as a top down view. The first vibration modes is a global flexural bending
mode occurring primarily in the xz-plane at a radian frequency of w; = 55.2rad/s (period of
T, = 0.114s). The second vibration mode is a second flexural bending mode, that oscillates
primarily in the yz- plane and at a slightly higher frequency of w, = 66.7rad/s (period of

T, = 0.0942s). The third vibration mode is a global twisting mode where the mast undergoes
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axial rotation at a considerably higher frequency of w; = 426rad/s (period of T; =
0.0.0148s).

In [1] several feedback algorithms were investigated and experimentally tested on the
experimental apparatus from which the current model is based. The experimental structure was
capable of attenuating the motion of the first two modes (n,, = 2) using two actuators (n, = 2)
located in positions A and B shown in Figure 6-1. The apparatus employed piezoelectric linear
actuators with collocated force transducers to attenuate the vibrations using various feedback
control laws. Conveniently, the stiffness and length of the actuators were approximately equal to
those of the steel that they replaced. The studies were limited to fully-actuated control systems
(n,, = ng) considering two modes of vibration, whereas this example explores the possibility of
controlling up to three modes using one, two, or three actuators. The force produced by an
actuator is denoted by F; where i denotes the actuator position (i = A,B,C,D,E).

The task in each case is to bring the mast structure from an initial disturbed state to a
resting state using a time-invariant control system. The structural stage and control stage are
briefly covered for each case; however the verification stage will not be discussed in this
example. The optimization criteria for the process is based on the performance index in the form
shown in equation (2.8) with the weighting coefficients selections taken as: a = 1, b = 1, and
¢ = 0.1. Here the actuator work weighting coefficient (c) is weighted at a lower value to obtain
faster response times more consistent with those obtained in [1]. The seven cases that are
considered in this example are:

1. Two actuators in locations A and B attenuating two dominant modes of vibration.
2. Two actuators in locations D and E attenuating two dominant modes of vibration.

3. One actuator in location A attenuating two dominant modes of vibration.
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4. One actuator in location B attenuating two dominant modes of vibration.

5. One actuator in location C attenuating two dominant modes of vibration.

6. Two actuators in locations A and B attenuating three dominant modes of vibration.
7. One actuator in location A attenuating three dominant modes of vibration.

In each case the system is analyzed for an initial disturbance given by:

17,(0) = 0.004, 1,(0) = 0.004, 15(0) = 0.001 (6.1a)

11(0) = 12(0) =n3(0) =0 (6.1b)

In DOF-space the initial frame position described by (6.1a) and (6.2b) corresponds to a
stationary deformed shape with point p at the top of the mast (see Figure 5-1) deflected 2.28mm
in the x-direction, 2.58mm in the y-direction, and rotated 0.548° about the z-axis (counter-
clockwise when viewed from the top). Note that in cases 1 to 5, only the first two modes are
considered in the dynamic model; hence, initial disturbances causing mast twisting (third mode
of vibration) are left un-attenuated.

6.2 Structural Stage

The controllability parameters (k and 1), obtained in the structural stage of the CMSOC
methodology, are shown in Table 6-1 for the seven cases. Details of the solution procedure can
be found in [20]. Note that the rate parameter A does not apply to fully-actuated systems (case 1
and 2) because the modal controls are uncoupled and their rates of attenuation are not affected by
changes in actuator positions. Recall that it is generally desirable for an under-actuated system
to have a value of the rate parameter A close to unity to ensure all modes are attenuated
adequately. Also the effort parameter k should be as small as possible for small actuation force
amplitudes. Note that these rules are approximate correlations and are only beneficial for

comparing various actuator configurations for the same system with the same number of modes
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and actuators. For example, a meaningful comparison can be made between the controllability
parameters obtained for cases 3 to 5, which all involve single actuator configurations that
attenuate the mast’s two dominant modes of vibration, but a comparison between cases 6 and 7 is

less meaningful because the latter uses two actuators while the former uses only one.

Table 6-1. Dimensions n,,and n,, rate parameter A, and effort parameter x, for cases 1 to 7.

Case Number of Modes, Number of Actuators, Rate Parameter, Effort Parameter,
Number Ny ng A K

1 2 2 - 45.0(10%)

2 2 2 - 783(10%)

3 2 1 0.436 457

4 2 1 11.7 220

5 2 1 0.527 386

6 3 2 0.713 45.4(10%)

7 3 1 0.637 457

In [1] it was shown that good actuator locations are related to the level of strain in the
member to be considered for an actuator position. In other words, if an actuator is substituted for
a member in the structure that contains a large percentage of the total modal strain energy for a
particular mode shape then good attenuation of that mode should be expected. The percentage of
strain energy in the members in positions A through E is shown in Table 6-2 for the three
dominant modes of vibration. The percentage of modal strain energy is obtained from the FEM

program output following the modal analysis.

Table 6-2. Percentage of strain energy in selected members of the mast structure for the first
three modes of vibration.

Percentage of strain energy Percentage of strain energy Percentage of strain energy

Member Mode 1 Mode 2 Mode 3
A 2.83 10.2 0.125
B 12.2 0.0630 0.351
C 3.95 9.75 0.0710
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D 0.0260 0.0120 1.02
E 0.00200 0.102 3.30

In Table 6-2, members containing a relatively larger percentage of strain energy for a particular
mode are in a better position for controlling that mode.

Cases 1 and 2 are fully-actuated systems and produce identical responses (not considering
spillover effects on higher modes), but the forces required to produce the same response differ
significantly. In Table 6-1, case 2 has a larger value x and so is expected to use significantly
larger forces than in case 1 to attenuate the same disturbance. This result should be expected
considering that case 2 uses actuators in positions D and E, which undergo small relative strains
in the first two modes (see Table 6-2). Cases 3 to 5 are single actuator systems controlling two
modes of vibration; Table 6-1 indicates that Case 4 has a large value of A and so poor attenuation
of one of the modes is expected. Table 6-2 indicates that the actuator in position B is poorly
suited for controlling the second mode of vibration, which agrees intuitively with Figure 6-1b, as
position B effectively lies on the neutral axis of the built-up mast cross section and undergoes
considerably smaller strains than the locations A and C. Cases 6 and 7 each consider three
dominant modes of vibration in the dynamics and attenuate them with two and one actuator(s),
respectively. Table 6-1 indicates that all modes will be attenuated in reasonable times, but Table
6-2 suggests that the third twisting mode of vibration will be attenuated most slowly. In the
control stage these observations will be reflected in the dynamics of the structure.

6.3 Control Stage

The control stage of the CMSOC methodology solves the dynamic responses for the

seven cases. The mast response is characterized by the modal dampening parameters «; and
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frequencies f;, the effective settling times, and the peak actuation force amplitudes which are

tabulated in Table 6-3.

Table 6-3. Modal damping parameters a;, frequencies g;, effective settling time ¢, and peak
force amplitude(s) for six cases for the mast example.

Case # a; B; ter (s) | Peak force(s) (kN)
i=1 2 3 |i=l 2 3
1 123 148 - 55.2 66.7 - 0.285 | |F,| = 1.45,|Fg| = 1.25
2 123 148 - 55.2 66.7 - 0.285 | |Fp| = 17.0,|Fs| = 14.5
3 379 132 - 56.0 66.0 - 0.925 |Fyl = 1.15
4 122 0.717 - 55.2 66.7 - 4.88 |Fg| = 1.00
5 451 126 - 56.2 65.7 - 0.775 |F¢| = 1.58
6 12.1 145 25.0|55.2 66.7 426 |0.290 | |F,| = 2.40, |Fz| = 2.80
7 378 131 8.98|56.0 66.0 426 |0.926 |Fy| = 2.40

For cases 1 and 2, the dynamic responses (a;,f;, t.s €tc.) do not change, but the actuation
forces required to produce the response do change. The peak actuation forces required in case 2
significantly exceed that needed in case 1. Comparing cases 3 to 5, case 4 stands out as having
poor attenuation of the second mode of vibration and has a long effective attenuation time
(tef = 4.88s). Case 6 shows that the third mode of vibration can effectively be controlled using
the same two-actuator configuration (F, and Fj) as case 1 and case 7 demonstrates that a single
actuator can control the three dominant modes of vibration although there is some reduction in
the attenuation rate when compared to case 6.

The above observations are visually confirmed in the Figures 6-2 to Figure 6-7 which
show plots of the actuation force and the system responses over a period of 0.4s. The system

responses are plotted in terms of the time-varying displacements d? and d§j and rotations about

the z-axis d?

rotz

at point p. The trajectory that the point p follows in the xy-plane is also plotted.

Figure 6-2 shows the plots for case 1 and Figure 6-3 shows plots for case 2. As expected, the
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responses shown in Figures 6-3 and 6-2 are identical, but the actuation forces are much larger for

case 2 (Figure 6-3).
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Figure 6-2. (a) Attenuation forces F, and Fg, (b) tip deflections d? and d§§ of point p as
functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 1).

[
3 FD

F
- ‘-._._._.-.-
| VAN

\cl/\ui'zf’ﬁ.‘?"u.-t

0.0025

0.0023%

0.0015

0.0014
0.00051

0

-0.00054
-0.0014

b)

[ 0.0025 df[m]
0,002 t=0s
! » 0.0015
\ df e aor] =03s
x/ : -

’f\w _— ; d;[m]

N2 3 0.4 5 G0f-0.0005—]_ D005 0.001 0.0015 0.002
e e

I-

Figure 6-3. (a) Attenuation forces Fj, and Fy, (b) tip deflections d% and d§j of point p as
functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 2).

In Figures 6-4, Figure 6-5, and Figure 6-6 results are shown for cases 3, 4, and 5

respectively. As expected, the plots for case 4 (Figure 6-5) involving force Fz show the effects

of the poorly attenuated second mode of vibration, as the mast undergoes more persistent

vibrations than cases 3 and 5. Interestingly, in Figure 6-6 it is evident that the tip of the mast

begins to deflect around its resting position in a clockwise pattern, consistent with cases 3 and 4;

however, the motion switches to a counter-clockwise orbiting pattern after approximately 0.01s
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of the maneuver. This directional switch requires a larger peak actuation force when compared

with cases3 and 5, but the maneuver eliminates the vibrations in the least amount of time.

- . d*?[m t=0s
13- .[ ]*‘—df y
m- [
600 ]
4007 \ f\ (‘ AT o
2007 ] UJ " \3"4\4 BE YoE
i |
o v oar
a) b) c)

Figure 6-4. (a) Attenuation force F,, (b) tip deflections d¥ and d§ of point p as functions of time,
and (c) the displacement of point p as they appear in the xy-plane (case 3).

(a) () (e)
Figure 6-5. (a) Attenuation force Fg, (b) tip deflections d” and d§ of point p as functions of time,
and (c) the displacement of point p as they appear in the xy-plane (case 4).
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Figure 6-6. (a) Attenuation force F, (b) tip deflections d? and d§ of point p as functions of time,

and (c) the displacement of point p as they appear in the xy-plane (case 5).
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In Figures 6-7 and 6-8 plots are shown for case 6 and case 7. In Figure 6-7, one can see

the similarity in the tip trajectory of point p in comparison to case 1 in Figure 6-2, however in

this case the third twisting mode of vibration is also simultaneously attenuated by the same

actuators F, and Fz. In Figure 6-8, a similar tip trajectory as case 3 in Figure 6-4 is produced;

however, the third mode of vibration is also simultaneously attenuated. The three modes of

vibration are attenuated considerably more quickly with both actuators F, and Fg in Figure 6-7

than with the solitary actuator F, in Figure 6-8.
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Figure 6-7. (a) Attenuation forces F, and Fg, (b) tip deflections d? and d§ of point p as
functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 6).
Also, the rotation of point p in the z-direction d? .. is shown inset in graph (b).
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Figure 6-8. (a) Attenuation force F,, (b) tip deflections d¥ and ds of point p as functions of time,
and (c) the displacement of point p as they appear in the xy-plane (case 6). Also, the rotation of
point p in the z-direction d? . is shown inset in graph (b).
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7. CONCLUSIONS AND FUTURE WORK

The CMSOC methodology was formulated and demonstrated to show how it can be
employed for designing and analyzing the dynamics of actively dampened structures. The
methodology is an extension of computational mechanics into the area of control and its
advantage is that it can be applied to arbitrary linear structures or mechanical systems involving
any number of DOFs that are controlled by any number of actuators. It was implemented on
several example systems ranging from very simple, such as the gantry crane, to the more
complex, such as the mast structure. The examples served to show how the three stages of the
methodology — the structural stage, the control stage, and the verification stage — are well suited
for the study of under-actuated linear systems. Each step of the solution is relatively automated
by integrating the capabilities of the ANSYS FEM program and the MAPLE mathematical
program.

The structural stage involves constructing the FEM model in ANSY'S, performing the
modal analysis to obtain the number of significant modal shapes and frequencies, transferring
this information to MAPLE and then assigning the actuator configurations. This data is
automatically manipulated to obtain the system transfer matrix, constraints due to under-
actuation, and indicators of poor controllability. If poor controllability is expected than
adjustments to the actuator configuration are made to obtain more favourable indicators that
suggest that continuing to the control stage is warranted.

The control stage involves inputting the initial conditions and optimization parameters

into the MAPLE worksheet, with the information from the structural stage, to calculate the
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unknown actuation forces and system response over time. If the actuators are controlled in a
closed-loop, than the sensor configuration is input and the corresponding gains are automatically
calculated. The potentially large numbers of computationally intensive symbolic calculations are
handled automatically in the MAPLE program.

The verification stage involves transferring the actuation forces, obtained in the control
stage to the FEM model to obtain the transient time-integrated response of the system for
comparison to the system response from the control stage. Any spill-over effects are detected by
include higher modes of vibration when performing the transient analysis.

The problem is essentially transformed into a constrained optimization problem, with all
the constraints handled by time-dependant Lagrange multipliers. Since the method includes all
constraints that may arise due to under-actuation, it avoids difficulties with unstable inverse
dynamics often associated with addressing under-actuated problems. Moreover, the method
incorporates ‘built-in’ assessment parameters that can be used to predict controllability issues
and quantitatively compare the performance of different actuator configurations.

The strength of the CMSOC method lies in its ability to address the dynamics of
essentially any actively dampened structure, with any arbitrary shape and passive dynamic
characteristics, and any arbitrary number of actuators. The limitation is that the structure, for the
range of motions under consideration, must generally exhibit linear elastic behavior. The
methodology does not replace other controller design approaches, as it deals only with idealized
systems and has no means to account for inherent ‘real world’ errors. Therefore its usefulness is
primarily in the initial design stages of such systems as it can provide insight into the physical
significance of under-actuation and how actuator positioning affects controllability and system

performance in actively dampened structures.
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Some areas that are of interest to future study are the application of the CMSOC
approach when dealing with systems that exhibit two modes with the same frequency (bimodal
systems). Also an interesting system to consider would be one that exhibits vibrations with
frequencies that are integer multiples of each other, such that actively attenuating the vibrations
of a lower frequency mode could excite vibrations of a higher mode with a frequency that is an
integer multiple of the lower mode. Another interesting study would be to experimentally test an
actively dampened structure to demonstrate how an under-actuated type control system could be
designed and implemented using the CMSOC methodology complemented with other control

strategies.
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APPENDIX A: MAPLE PROGRAM

This appendix presents the maple commands that were used for solving the active
dampening structure presented in Chapter 5 and shown in Figure 5-1a. The commands and
outputs are shown for case 1 in Chapter 5, which uses the single actuator F; to control the frames

first three dominant modes of vibration.
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I 3 Level Frame Structure with Actuator F1

|:} restart;with(linalg) :

V¥ Structural Stage

Input Modal Frequencies and Modal Shapes from ANSYS (modal shape data written
to text file for ease of mnput)

> omegal:=27.565; omegal:=112.306; omega3d:=21%.%68;

mf = 27565
d = 112,306
ad = 2199068 (2.1)
= phi := ImportMatrix
("C:\\Usera\\S8imon' \Desktop\\MSc\\ thesis\ \Appendix
AY'\model23d.txt", source = delimited, delimiter = ",", format
= rectangular, datatype = fleocat([4], transpcse = falae,
skiplines = 0);

{11 x 3 Matrix

Data Type: float,

0 (2.2)

Storage: rectangular

Opder: Fortran_order

> phi_tran:=transpose (phi) :

=Assm:|ble Actuator Configuration Matnx, B. Relate actuator forces to nodes of
| stucture. Actuators F2 and F3 act as dummy actuators

> rt:=1/(2)".5:

> Bmat:=matrix([[0,0,-rtl,[0,-rt,01,00,0,xt],[0,ct,01,[ct,0,01,
[_rtrl:}:{'] r [I:':l:}:rt] r [Grrtxﬂ] r [Gr{':_rt] r [l:}:_rt:ﬂ] r [_rtrl:}:l:}] r
[rt,0,011);
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[3,55],phi tran[3,64111);

i 0 —0.7071067814
0 07071067814 0
0 0 07071067814
0 07071067814 0
07071067814 0 0
Bunat —0L.T7071067814 0 0
0 0 07071067814
0 0071067814 0
0 0 =0.7071067814
i -0.7071067814 o
-0.7071067814 0 0
07071067814 0 0

> phi tran redu:-matrix([[phi tran[l,2],phi tran([l1l,7],phi tran
[1,12]1,phi tran[1,13],phi tran(1,18],phi tram(1,27],phi tran
[1,3%8],phi tran(l,44],phi tran(1,4%],phi tram(1,50]1,phi tran
[1,55],phi tran[1,64]]1, [phi tran[2,2],phi tran[2,7],phi_ tran
[2,12] ,phi_tramn([2,13],phi tran([2,18],phi tran([2,27],phi_ tran
[2,39] ,phi_tran(2,44],phi tran([2,49],phi tran(2,50],phi_tran
[2,55],phi tran([2,64]], [phi_tran([3,2],phi_tran(3,7],phi_tran
[3,12]1,phi_tran(3,13],phi tran(3,18],phi tram(3,27],phi tran
[3,38] ,phi tran([3,44],phi tran[3,49%],phi tran([3,50],phi tran

phi

trian red

02560294993, 0.592750013, 0., 0.256029993, 0,592750013,

O TR4399T73, 0000358000998, 0.00061 1989992, 0,, -0.00035800999H,

- 0000611989992, 0000697050011 ],

[0L93T7929988, 0.664830029, 0., 0937920088, 0.664830029, -0.430579990,
0000821280002, —0.00192970003, 0., 0.000821209978, 0.00192060002,
-0.00255450001 7,

[0.938799977, —1.02020001, 0., 0938799977, -1.02020001, 0.253479987,

0000564449991, 0.00146509998, 0., —0.000564539980, -0.00146525998,

00235550002 1]

> phi redu:=transpose (phi tran redu):

| assess controllability parameters. kappa and lambda.
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> Bhat:=evalm(phili tran redus*Bmat);

-0.1317912124 -0.2373899028 -0.1807661798
Bhar:=| 07714011153 01911656459  -0.6637973877 (2.5)
—0BOTTEA62ES 1386637348 -(0L6634327037

> Bhat inv:=1inverse(Bhat);

| -1.340734809 0.6895179818 -0.3245856352
Bhar inv:=| -1.871339370 01264563160 03833599025 (2.6)
2096995486 -0.66877T478T0 -0.26679RI9TR

> Ba_tilda:=matrix([[Bhat inv([1,1]11]);

Ba_tilda == -1.340734809 | 2.7

> Br_tilda:=matrix([[Bhat inv[1,2],Bhat inv([1,3]1]11);

Br_tilda = | 0.6895179818 -0.3245856352 | 2.8)

> Aa:=matrix([[Bhat imwv([2,1]], [Bhat inv[3,1]]1]1);

- 1871339370 @9
a:=
= 2096995456
> Ar:-matrix([[Bhat inv(z,2],Bhat inv[2,63]], [Bhat inv[3,2],
Bhat inv[3,31]11);
0.1264563160  0.3833599025
- (2.10)
-0.6687747870 -0.2667989978
_} Ba bar:=evalm(Ba tilda-Br tildas*inverse (Ar)&*Aa);
Ba_bar = | ~7.587759319 | (2.11)
_} kappa:=det (Ba bar);
K= -7.587759319 (2.12)

| Matrix manipulations for normalizing the constramnt matric to obtain A_bar
> matrix([[Bhat inv[2,1],Bhat inv[2,2],Bhat inv[2,3]], [Bhat inv
[3,1],Bhat inv[3,2],Bhat inv([3,3]]1]1);
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\ 4

-1 ET1339370  0.1264563160 0.3833599025

(2.13)
-2.096995486 -0.6687747870 -0.2667989978

> addrow(%,1,2,-%[2,1]/%[1,1]):
> addrow(%,1,2,-%[2,1]/%[1,1]):
> addrow(%,2,1,-%[1,3]1/%[2,3]1):

> A bar:=matrix([[%[1,1]1/%[1,11,%(1,2]/%(1,1],.%01,3]/%([1,1]1],[%
[2,1]/%([2,2),%02,2])/%0[2,2]),%[2,3]/%[2,2]]]);

1. 000000000 01708465412 -0,
A bar = 19 (2.14)
- 1. 233836918 10 1.000000000  (L8392273591
(> Ar bar:-matrix([[%[1,2],%[1,3]], [%[2,2],%[2,311]);
0.1708463412 -0,
Ar_bar:= (2.15)
N 100000000 0.8592273591
> lambda:=det (Ar bar);
h= 01467960224 (2.16)
_?.-‘- A bar tran:=transpose(A bar):
Control Stage
Input optimization parameters to obtain performance index weighting parameters
= a:=1 ; b:=1; c:=1 ;zetal:=0;zetaZ:=0;zeta3:=0;
a:=1
bh=1
c=1
=0
£2:=0
£3:=0 G.D)
_} Qdl:=a*omegal”2;
Qdl = 759829225 (3.2)

> Qd2:=a*omega2”Z;
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| 0d2 = 12612.63764 (3.3)

> Qd3:=a*omega3”2;

(3 = 4838592102 (3.4)
_'} Qvl:=b;
Ovl =1 (3.5)
> gv2:=b;
hv2:=1 (3.6)
_} Qvi:=b;
hvi=1 3.7y
_} Rl:=1/(c*omegal™2) ;
RI=0001316085203 (3.8)
_} R2:=1/(c*omegal2”2) ;
A2 =000007928553696 3.9)
_:.‘a- R3:=1/(c*omega3™2);
R3 = 0000020667 16886 (3.10)

|;[|1put mnitial conditions
= eta initial:=matrix(3,1,[0.05,0.005,0.0045]);

0.05
ela initial = | 0,005 (3.11)
0.0045

> X initial:=evalm(phi&*eta initial):

2 X initial[27,1]1;x initial([7,1];x initial([2,1];x initial

[24+37,1];x 1niti1al[25+37,1];
0.03800075864

0.02837075076
0.02171574049
—LODS2ZURGEIRDS
0.0005298304851 (3.12)
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| Writing charactenstic equation and obtaining roots
> Ebar:=matrix([[E1,0,0,-D11,0],[0,6E2,0,-D21,-D22],[0,0,E3,0, -
D32],[D11,D21,0,0,0],([0,D22,D32,0,011);

Ero 0 0 -Dir 0

0 E2 0 -D2I -D22

Ebar=] 0 0 E3 o -pi2 (3.13)

Dy p2r 0 0 0
0 22 pizo 0 0

> D curl:=det (%);

D curl=El D2FF D32 + E2 D327 DI + D22 E3DIF (3.14)
> D1l:=A bar[1,1]*(D"2+omegal”l);

D11 = 1.000000000 [¥ + 759.8292250 (3.15)

> D21:=A bar[1,2]*(D"2+omega2”2);

D21 = 0.1708465412 D* + 2154825516 (3.16)

> D22:=A bar(2,2]*(D"2+omega2”2);

D22 = 1.000000000 D' + 12612.63764 (3.17)
> D32:=A bar[2,3]*(D"2+omega3”2);

D32:=0.8592273591 D7 + 41574.50714 (3.18)

> DELTA:=0;

DELTA =0 (3.19)
> El1:=R1*D"4+(2*omegal”2*R1-Qv1-R1*DELTA"2)*D"2+ (Rl*omegal”4+
Qdi) ;
El = 0.001316085203 D' + 1000000000 D* + 1519.658450 (3.20)
> E2:=R2*D"4+ (2*omega2”“2*R2-Qv2-R2*DELTA"2) *D"2+ (R2*omega2 "4+
Qdz2) ;
E2 = 0.00007928555696 D' + 1.000000000 D + 25225.27527 (3.21)

> E3:=R3*D"“4+ (2*omega3 “2*R3-Qv3-R3*DELTA"2) *D"2+ (R3*omega3 "4+
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nd3) ;

E3 :=0.00002066716886 D + 1.000000000 D° + 96771.84205 (3.22)

> D curl;

(0.001316085203 D* + 1.000000000 D + 1519.658450) (0.1708465412 D (3.23)

2 2
{2154.825516)° (0.8592273591 D" + 41574.50714 )" + {0.00007928555696 D
+ 1.000000000 ¥ + 25225.27527) (0.8592273591 D°

2 2
+41574.50714) " (1.000000000 D* + 759.8292250) " + ( 1.000000000 D’
1 T
+12612.63764) " (0.00002066716886 D' + 1.000000000 D

2
+96771.84205) (1.000000000 D+ 759.8292250 )

> sol:=[solve(D curl,D)];

sof = [-5043651831 — 1166371111 L 50042651831 + 1166371111 1, -62.20241237 (3.24)
— 2137142012 [, 62,20241237 + 2137142012 [, -7 307830489 — 27 63201977 1,
T30TE30489 + 27.68201977 1, -7.307830489 + 27.68201977 1, 7.307830489
— 27.68201977 L -62.20241237 + 213.7142012 1, 62.20241237 — 213.7142012 |,
=3043651831 + 116.6371111 1 50043651831 — 1166371111 1]

> alphaZ:=abs (Re(s0l[12]));alphal:=abs(Re(s0l[8]));alpha3i:=abs
{Re(s0l[4]1));

i = 5043651831
ird = 7307830489
a3 = 62.20241237 (3.25)

> tlef:=3.5/alphal;t2ef:=3.5/alpha2;t3ef:=3.5/alpha3;
tlef = 04789383123

t2ef = 0.06939416354
tief = 0.05626791415 (3.26)

_} beta2:=abs(Im(s0l[12])) ;betal:=abs (Im(501[8]));betal:=abs(Im
(80l [4]1)) ;

B2:=116.6371111
Bl = 27.68201977
B3 = 213.7142012 (3.27)
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| Wniting solution functions. eta and nu

>

ni:

nd =

vi

=

vl

etal:=exp(-alphal*t)*(cll 1*sin(betal*t)+cll 2*cos(betal*t))+
exp(-alpha2*t)*(c21l 1*sin(beta2*t)+c2l 2*cos(betai*t))+exp/(-
alpha3*t)*(c31 1*sin(beta3*t)+c3l 2*cos(beta3*t));

g T/ AVIESEEL 11 1 sin(27.68201977 1) + il 2 cos(27.68201977 1)) (3.28)
40O ) Isin(116.6371111 1) + 21 2 cos(116.6371111 ¢) )
4 @ ORI 37 [ sin(213.7142012 1) +¢3] 2 cos(213.7142012 1))

etal:=exp(-alphal*t) *(cl2 l1*sin(betal*t)+cl2 2*cos(betal*t))+
exp(-alpha2*t)*(c22 1*sin(betal*t)+c22 2*cos(beta2*t))+exp|(-
alpha3*t)*(c32 1*sin(beta3*t)+c32 2*cos(betad*t));

¢ AUTRIII L 12 1 sin(27.68201977 1) + 12 2 cos(27.68201977 £) ) (3.29)

—50.43651831 ¢
+e

e

etald:=exp(-alphal*t) *(cl3 1*sin(betal*t)+cl3 2*cos(betal*t))+
exp(-alpha2*t)*(c23 1*sin(beta2*t)+c23 2*cos(betai2*t))+exp(-
alpha3*t)*(c33 l1*sin(beta3*t)+c33 2*cos(beta3*t));

(c22 Tsim{116.6371111 ¢) +¢c22 2cos( 1166371111 ¢))

~O2.20331237E ¢ 132 1 sin(213.7142012 1) + 32 2 cos(213.7142012 1) )

= nPUTRHEE p 3 1 sin(27.68201977 ) + i3 2 cos(27.68201977 1)) (3.30)

+ E—EU.43|551$3] t

(23 Tsm{ 11663711116 + 23 2cos( 1106371111 4))
4 M RHEETN 033 1sin(213.7142012 1) + ¢33 2 cos(213.7142012¢) )

nul:=exp(-alphal*t)*(cl4 1*sin(betal*t)+cld4 2*cos(betal*t))+
exp(-alpha2*t)*(c24 1*sin(beta2*t)+c24 2*cos(betai*t))+exp(-
alpha3*t) *({c34 1*sin(beta3*t)+c34 Z*cos(beta3*t));

g ISV 1y 1 5in(27.68201977 1) + cl4_2 cos(27.68201977 ) ) (3.31)
4 g 0O oy Tsin(116.6371111 1) + 24 2cos(116.6371111 ¢))
4@ ORZONITE 3y T sin(213.7142012 1) + 34 2 cos(213.7142012 1))

nul:=exp(-alphal*t)*(cl5_1*sin(betal*t)+cl5 2*cos(betal*t))+
exp(-alpha2*t)*(c25 1*sin(beta2*t)+c25 2*cos(betai2*t))+exp(-
alphal*t)*(c3E l1*sin(beta3*t)+c35 2*cos(betald*t));

—TA0TRIMED

=e (el5 1sin(27.68201977 1) + /5 2 cos(27.68201977 1)) (3.32)

—50.43651831 ¢
te

—62.20241237 ¢
e

(€25 1sin(116.6371111¢) + 25 2cos(116.6371111£))
(c35 Isin(213.7142012 1) 4 ¢35 2 cos(213.7142012¢))
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| Differentiating Solution Functions
> etal dl:=diff (etal,t):

> etal d2:=diff(etal d1,t):

> etal d3:=diff(etal _d2,t):

> etal d4:=diff(etal 43,t):

> etal dl:=diff (etaz, t):

> eta2 d2:=diff (eta2 di,t):

> etal d3:=diff (eta2 d2,t):

> eta2 d4:=diff (eta2 d3,t):

> etald dl:=diff (eta3,t):

> eta3d d2:=diff (eta3 di,t):

> eta3d d3:=diff (eta3 d2,t):

> etal d4:=diff (eta3 _d3,t):

> nul dl:=diff(nul,t):

> nul d2:=diff(nul d1,t):

> nu2 dl:=diff(nu2,t):

> nu2 d2:=diff(nu2 di,t):
ith-‘ing Optimality and constraint equations
| optimality eq. 1
_.,":- optiml ::etal_d4+umega1”‘2*etal_d2+2*cmegal*-i*etal— (A bar tran

[1,1]*omegal”2* (nul d2+omegal”2+*nul)):

> alphatermsl:=coeff (optiml,exp(-alphal#*t)):
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> xel:=coeff(alphatermsl,sin(betal*t));

xeih—9575243951IUSEII_E——3566&9226ci#_f——2ﬁ943T5543IDEEII_E
— 3.074200784 1056I¥_2

> Xel:=coeff(alphatermsl,cos(betal*t));

xeld 1= 9575243951 lﬂhﬁff_ﬁ-—-Eﬁﬁﬁi.QEEE cld 2+ 2694375648 ID}cII_f
+ 3.074200784 105c14_f

> alphaterms2:=coeff (optiml,exp(-alpha2*t)):
> xe3d:=coeff(alphaterms2,sin(beta2*t));

xed = -233453779 107 e21 1 + 7826654425 10° c24 1 —2.513227191 10° 21 2
— 8.939800818 10° 24 2

> Xed4:=coeff(alphaterms2,cos(beta2*t));

xed = -2.33453779 10" 21 2 + 7.826654425 10° 24 2+ 2513227191 10%c27 1
9309800818 10% 24 |

> alphaterms3:=coeff (optiml,exp(-alpha3*t)):
> xeb5:=coeff(alphaterms3,sin(beta3*t));

ved = 1010143834 10° 37 1 + 3118703132 107 ¢34 1 —2.202723709 10" 3] 2
— 2020163867 10 ci4 2

> xe6:=coeff(alphaterms3,cos(beta3*t));

xefi == 1.010143834 10° ¢37 2+ 3118703132 107 ¢34 2 + 2.202723709 10" 37 1
| 2.020163867 107 ¢34 1

| optimality eq. 2

> optim2:=eta2 d4+omega2”2*etal d2+2*omegal2”4*eta2- (A bar tran
[2,1] *omega2”2* (nul d2+omega2”2*nul)+A bar tran[2,2]*
omega2”2* (nu2 d2+omega2”2*nu2)):

_}-alphatermsl::cceff{optimz,exp{-alphal*t}}:

> yel:=coeff(alphatermsl,sin(betal*t));
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yel :=3.095103531 10° ¢12 1 —2.564188022 10" ¢14 1 —1.500872072 10% ¢15 1 (3.39)
+4.526102236 10° ¢12 2 — 8718230452 10° ¢4 2 —5.102959879 10° 15 2
> yel:=coeff (alphatermsl,cos(betal*t));

ye2 == 3.095103531 10" c12 2 —2.564188022 10" /4 2 — 1500872072 10% 15 2 (3.40)
—4.526102236 10" 12 1 + 8.718230452 10° /4 1 + 5.102959879 10" ¢15 /

> alphaterms2:=coeff (optim2,exp(-alpha2*t)):
> yel:=coeff (alphaterms2,sin(betal2*t));

yed = 1.625607115 10" 22 1 —3.34485879 10° c24 1 —1.95781475 10’ 25 1 (3.41)
— 1.118680326 10" c22 2 — 2535268488 10’ c2d_2 — 1483944873 10" c25 2
> yed:=coeff (alphaterms2, cos(betaZ*t));

ved = 1625607115 10" 22 2 — 334485879 10° c24_2— 195781475 10’ 23 2 (3.42)
+1.118680326 10 c22 ] —2.535268488 10’ c24 1+ 1483944873 10" c25 1
_} alphaterms3:=coeff (optim2,exp(-alpha3*t)):

> yeb:=coeff (alphaterms3,sin(betai*t));

yes = 8.31644260 10° 032 1 4 6.290362779 10" ¢34 1 + 3.681878916 10° ¢35 J (3.43)
— 1887592170 10° ¢32 2 — 5.729051351 107 ¢34 2 —3.353331775 10° ¢35 2

> yebt:=coeff (alphaterms3, cos(beta3*t));

ye6 = 8.31644260 10° ¢32 2 + 6.290362779 107 ¢34 2 + 3.681878916 10° ¢35 2 (3.49)
4+ 1.887592170 10° c32 1+ 5729051351 10" ¢34 1 +3.353331775 10% ¢35 1

Enptimﬂlity eq. 3
> optim3:=eta3 d4+omega3”2*eta3 d2+2*omega3”4*eta3- (A bar tran
[3,2] *omegal " 2* (nu2 d2+omega3 " 2*nu2)):
= alphatermsl:=coeff (optim3,exp(-alphal*t)):

> zel:=coeff(alphatermsl,sin(betal*t));

zel = 4.648245393 10° c13 1 — 1.981982776 10° ¢15 1 + 1.899965131 10" ¢13 2 (3.45)
— 1682067209 10" ¢15 2
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> ZeZ:=coeff(alphatermsl,cos(betal*t));

ze2 = 4.648245393 10° cf3 2— 1981982776 10° cf5 2—1.899965131 10 ci3 |
+ 1.682067209 10" ¢/ § I
_} alphaterms2:=coeff (optim3,exp(-alphaZ#*t)):

> zeld:=coeff (alphaterms2,sin(beta2*t));

zed = 4131132292 10° c23 1 —1.551791250 10° c23 1+ 3.090239488 10" c23 2
—4.891465091 10" c2i 2

> Zed:=coeff(alphaterms2,cos(beta2*t));

zed = 4,131132292 10° £23_2 —1.551791250 10° c25_2 —3.090239488 10" c23_J
+4.891465091 10° 25 1

= alphaterms3:=coeff (optim3,exp{-alphai*t)):
> zeb:=coeff(alphaterms3,sin(beta3*t));

ze5 = 3.700393204 10° ¢33 1 —2.73614360 10° ¢35 1 — 936485104 10° ¢33 2
— 1.105344653 107 ¢35 2

> zet:=coeff(alphaterms3,cos(beta3*t));

zef = 3.700393204 10° ¢33 2 —2.73614360 10° ¢35 2 4 936485104 10° ¢33 1
b 1.105344653 10" ¢35 1

| constraint eq 1
> Constl:=A bar([1l,1]*(etal d2+omegal”2*etal)+A bar(1,2]*
(eta2 d2+omega2”2*etal):
> alphatermsl:=coeff (Constl,exp(-alphal#*t)):

> tel:=coeff(alphatermsl,sin(betal*t));
> tel:=coeff(alphatermsl,cos(betal*t));

> alphaterms2:=coeff (Constl,exp{-alpha#*t)):
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_'} teld:=coeff (alphaterms2,sin(beta2*t));
ted ;= —-10300.54409 c2]_1 + 11765.53958 ¢2]_2 + 265.198992 22 |
+2010.101742 22 2
_‘} ted4:=coeff (alphaterms2,cos(beta2*t));
fed .= =10300.54409 ¢2] 2 — 1176553958 ¢2] 1 + 265.198992 22 2
—2010.101742 22 1
_} alphaterms3:=coeff (Constl,exp(-alpha3d*t)):

> teS:=coeff(alphaterms3,sin(betai*t));

ted = —-41044 79046 ¢3] 7+ 26587.07774 ¢3] 2 — 4987349164 32 |
+ 4542310272 ¢32 2

> te6:=coeff(alphaterms3,cos(betai*t));

tef = -41044.79046 c3/ 2 — 26587.07774 ¢3] 1 —4987.349164 ¢32 2
— 4542 310272 032 ]

| constramt eq 2
> Const2:=A bar([2,2]*(eta2 d2+omega2”2*eta2)+A bar[2,3]*
(eta3 d2+omega3” 2*etal):

> alphatermsl:=coeff (Constl,exp(-alphal*t)):

> lel:=coeff (alphatermsl,sin(betal*t));

led = 118997478 l2 [ +40459100162 cf2 244096197269 /3 |
+ 347.6356705 13 2
> le2:=coeff(alphatermsl,cos(betal*t));
le2:=1189974T81 cf2 2 —404.5910162 12 | + 4096197269 /3 2
— 347.6356705 13 1

> alphatermsZ:=coeff (Constl,exp(-alpha2*t)):

> leld:=coeff(alphaterms2,sin(beta2*t));
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> led:=coeff (alphaterms2,cos (beta2*t));

led = 155226433 ¢22 2 —11765.53958 ¢22 | +32071.13179 ¢23 2 —10109.27350 c23 1 (3.60)

> alphaterms3:=coeff (Const2,exp(-alphali*t)):

> leb:=coeff (alphaterms3,sin(beta3*t));

led = -29191.98205 ¢32_1 +26587.07774 ¢32_2 + 5654.83417 ¢33 _1 (3.61)
+ 2284434459 ¢33 2

> le6:=coeff (alphaterms3,cos(beta3*t));

leti:= -29191.98205 ¢32 2 —26587.07774 ¢32_1 + 5654.83417 c33_2 (3.62)
— 22844.34459 £33 |

;im'tial condition equations
> becl:=eval (etal,t=0)=eta initiall[l,1];
bel =1 cll 241 2] 24 1. 031 2=005 (3.63)
_} bec2:=eval (eta2,t=0)=eta initial([2,1];

be2 =1.¢i2 2+ 1,22 24+ 1. 32 2=0.005 (3.04)
_} bc3:=eval (etald,t=0)=eta initial[3,1];

bed:=1.cl3 24 1.¢23_241.¢33_2=00045 (3.65)
> bcé:=eval (etal dil, t=0)=0;

bed = -T.307T830489 ¢/l 2+ 27.68201977 cfl_§ — 5043651831 ¢21_2 (3.66)
F 1166371111 20 1 —62.20241237 31 2+ 21371420012 37 1=0

> bcb:=eval(eta2 dl,t=0)=0;

bed = -T7.307830489 c/2 2+ 27.68201977 cl2 T —50.43651831 22 2 (3.67)
+ 1166371111 e22_1 —62.20241237 ¢32_2+ 213.7142012 ¢32_1=0
_‘} bce:r=eval (etad_dl, t=0) =0;
be6 = -T7.3078304R9 ¢13_2 + 27.68201977 cf3_J —50.4365183] ¢23_2 (3.68)
+ 116.6371111 23 1 —62.20241237 ¢33_2+ 213.7142012 £33 _1=0

| Solving for unknown mtegration constants
> solve({tel,te2,te3, ted4, tes, tab, yel,ye2, yel, yes,ye5,yve6,zel,
zel, zel, zed4,zeb,ze6,becl, be2, b3, bed, bek,bee,1lel,le2, 1le3, led,
le5,le6}, {cll_l,cll_z,czl_l,czl_z,031_1,::31_2 ,cl12 1,cl12 2,
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€22 1,022 2,e¢32 1,32 2,c13 1,13 2,e23 1,€23 2,e33 1,e33 2,
cl4 1,cl4 2,c24 1,c24 2,c34 1,c34 2,cl15 1,c15 2,c25 1,c25 2,
e35 1,e35 2});

{edd 1=0.01325584211, cf] 2=0.05015344029, ci2 | =-0.01032541814, ¢ci2 2 (3.69)
=0.001129003559, ¢13 1 =0.00299]1890400, /3 2=-0.00040457868%9], cl4 | =
-0.1659079849, /4 2=0.01657937480, 15 1 =0.007020643382, ci5 2
0009179363132, 27 F=00007400557345, 20 2=-00004916131340, 22 | =
-0.0009163339895, 22 2=0006790770545, ¢23 1= -0.002035085233, cd3 2=
-0.001306410283, c24 [ =-0.01839633081, c24 2= -0.004217661676, c25 I =
-(LOD4ZE3T3T026, ¢25 2= 0004422913612, c37 7= -0.0004235268123, c37 2
=0.0003381728422, 32 1 =0.002629067382, 32 2=-0.002919774104, £33 I
=0.002208725527, ¢33 2 =0.006210988972, ¢34 [ =0.03514007631, c34 2=
-(LOD3RNZ150879, ¢35 7= 002085816333, 35 2=0007295233449}

| > assign(%);
I;Deﬁ_ujng Functions
> etaMat:=matrix(3,1, [etal,eta2,etal]):

> etaMat dl:=matrix (3,1, [diff(etal,t),diff(eta2,t),diff(etal,t)
1):

> uMat:=matrix(2,1, [etal_d2+omegal“2*eta1,etaE_dhomegaE*Z*
etal2,eta3 d2+omegali”2*etal]):

> Fact:=evalm(Bhat inv&*uMat) :

> Fal:=Fact[l,1]:FaZ:=Fact[2,1] :Fal:=Fact[3,1]:

| > xMat:=evalm(phi&s*etaMat):

| Solving modal gains

> Erl:=Fal+Glld*etal+Gllv*etal dl+G2ld*eta2+G21lv*etal dl+G314*
etad+G3ilv*etad dl:

> collect alphal:=coeff(Erl,exp(-alphal*t)):

> 1l:=coeff (collect alphal,sin(betal*t));

(= - 1586892796 + 001325584211 GI1d — 1485219973 G/ Iv—0.01032541814 G21d  (3.70)
+ 0.04420330666 G24v+ 0.002991890409 G3/d —0.01066467268 G31v
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> 12:=coeff(collect alphal,cos(betal*t));

i2:=22.83173914 + 0.05015344029 G11d + 0.0004356433 G1iv+ 0.001129003559 G21d (3.71)
— 0.2940789957 G21v — 0.000404578689] G31d + 0.08577816193 G31v

> collect _alphaZ:=coeff(Erl,exp(-alpha2*t)):

> 13:=coeff(collect alpha2,sin(beta2*t));

i3:=101.7296241 + 0.0007400557345 G114 + 0.02001450113 Gl v (3.72)
— Q0009165539895 G21d — 07458280664 &21v—0,002035085233 G3ld
+ 0.2550185349 G3lv

> 14:=coeff(collect alpha2,cos(beta2*t));

P4 =27.64427310 — 0.0004916131340 GIlG 01111132178 Gl v (3.73)
+ 0.006790770545 G21d — 04494070324 G21v—0.001306410283 G31d
—0.1714756762 G31v

> collect alpha3:=coeff(Erl,exp(-alpha3*t)):

> 15:=coeff (collect alpha3, sin(beta3d*t));

i3:= -200.1240934 —0.0004235268123 G11d —0.0459279494]1 G11v (3.74)
+ 0.002629067382 G21d + 0.4604628569 G21v + 0.002208725527 G31d
— 1464764603 Gilv

> 16:=coeff (collect alpha3,cos(beta3d*t));

i = 1987911880 + 0.0003381728422 GI11d — 01115488610 Gilv (3.75)
— 0.002919774104 G21d + 0.7434860282 G21v + 0.0062 10988972 G31d
+ 00856975144 G3lv

> solve({i1,12,413,14,15,1¢6},{G11d4,611v,G21d,G21v,G31d,G31v}};

{Gl1d=423.8937990, G{lv=-151.1040783, G2/d=1348.218826, G2/v=151.4094039, (3.76)
(737d=-21842.42558, G31lv=-114.9295123}

:} assign (%) ;

V¥ plots

[} plot (etal,t=0..0.6):
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plot (eta2, t=0..0.6, numpolints=800) :
plot (etal, t=0..0.6 numpolints=800):
plot (uMat [1,1],E=0..0.6):

plot (uMat [2,1] ,E=0..0.6):

plot (uMat[3,1],E=0..0.6):

plot (Fal,t=0..0.6):

plot (Faz,t=0..0.6):

plot (Fa3,t=0..0.6):

plot ({xMat [27,1],xMat[7,1]},t=0..0.6,numpoints=1000) :
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APPENDIX B: ON OBTAINING GAINS

This appendix presents a detailed discussion on how gains may be obtained when using
the CMSOC method. The method can be easily carried out using the MAPLE program, for
which the necessary program commands are given in Appendix A for the plane frame problem.

In modal-space, a system’s output vector y must be written in terms of modal variables

by substituting (2.9a) into (3.21) to obtain:
y = Cya®n + C, 00 = [Ca® C,P] [Z] —CN (A1)

The matrix € = [Cq4® C,®], of size ng x 2n,,, will be referred to as the modal observability
matrix because it transfers the modal state vector N = [g” #7]7 into the output vector y. It
indicates how well suited a particular sensor location is for measuring various modes of vibration

in the system.
Actuation forces can be related to the modal state vector by substituting the output vector

in the form (A.1) into the feedback equation (3.22) to yield the equations:
Fo = GCN = —Gy®n — G, P = —gall — o] (A2)
The modal gains matrices g4 and g,, contain 2n,n,, components gdijand Gy where i =

1,..,nyand j=1,..,n,. Inmodal-space the feedback relation (A.2) can be substituted into

equations (3.1) and (2.12) to obtain:

Iii+ (A+Bg,)n+ (Q+Bga)n=0 (A.3)
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To obtain the n, actuation forces F,; contained in vector F, the solution functions (3.20)

are substituted into equations (3.4) with the appropriate substitution from (2.12) to obtain:
Fo; = oy e_akt[@%jsm(ﬁkt) + 51%;'005(.3#)] (A.4)

It can be shown through appropriate mathematical substitutions that the coefficients ¢; ;and ot f

are related to the integration constants c,%j and Cl%j in (3.20) and to the gains in (A.2) by:
61%] = Z:l;r; {'gvij(akcl:ii + lBkC}%i) - gdijcl:ii} (A5a)

G = X5y {gvij(akclgi = Brcki) — gdijclii} (A.5b)
The algebraic equations contained in (A.5a) and (A.5b) contain 2n,,n, equations that can be

solved for an equal number of unknown gains 9ay; and Gy, contained in modal gains matrices

gaq and g,,, respectively. These gains are independent of the initial conditions despite the fact
that these conditions were used in calculating the integration constants cj; and ci;.

It is possible to obtain the gains g4 and g,, without intermediately calculating the
integration constants that are dependent on initial conditions as described above. This is
performed by substituting the solution functions (3.20) into equations (A.3) and then using the
method of undetermined coefficients to obtain 2n,,n, algebraic equations from which all

unknown gains 9ay; and Gv,; May be determined (without consideration for initial conditions).

In order to obtain constant modal gains in matrices g4 and g,, all system states, which
includes the positions and velocities of all n,,, modal variables (2n,,, states in total), must be
observed by sensors. In other words, each state that is to be controlled using a constant gain
feedback relation must be observed, which requires that the number of sensors must be equal in

number to the modes of vibration that are to be controlled (ny, = n,,). If fewer than the required
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2n,, States are observed than the modal gains must vary with time to satisfy the feedback relation
(A.2).
The modal state vector N is determined by manipulating equations (A.1) to obtain:

v=[]]= @) Ty (A6)

The existence of operation (A.6) is required for the system with ng = n,,, position and velocity

sensors to be considered observable (i.e. (?TE)_l must be defined). Formally, the gains matrix

G transferring the sensor output vector y into to the actuation force vector F,, in accordance with

equations (3.22), may then be obtained from:

G=[94 9,)(C7C)¢CT (A7)
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APPENDIX C: PERFORMING THE VERIFICATION STAGE

This appendix presents the complete details for performing the verification stage using
the ANSYS FEM program, the MAPLE program, and the EXCEL program. In this appendix the
results of the verification stage are provided for the three level plane frame problem described in
Section 5.4.

C.1 Overview of the Frame Problem

The frame structure under consideration is consistent with that of Chapter 5, which is
shown in Figure 5-1a. Figure C-1a and C-1b shows the actuator that is employed in this
example along with the first four dominant mode shapes. The solution for the problem with the
single actuator exerting the actuation force, F4.(t), on nodes 7 and 13 to control the first two

modes of vibration is considered. This structural stage and control stage of this solution were

covered in detail in Chapter 5.

Mode 1 Mode 2 Mode 3 Mode 4
| 1Im | _A4Hz 17.9Hz 35.0Hz 73.4Hz
— . .0 i § r z o2
im 9 a :g 24 QD {’/f EZ
YA Im E 2“5 s ] :
X g L1 i ] 4
»- [ f * X 2
\< X Lz = 2 —
(@) (b)

Figure C-1. (a) Frame structure and (b) its four dominant mode shapes.
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The analytical solution of the optimal attenuation problem, subjected to the initial

disturbance described by 7,(0) =0.005and 7,(0) =0.002 From this solution the trajectory of

the actuation force, Fau(t), as well as the response of response of node 7 in the x direction, dZ,

are obtained; these functions are plotted in Fig. 2a and 2b, respectively.

204(N) (m)
0.004

107

; 0.003
[\DJA /02 03 04
\/ i

0.0021
0]
0.0011
20]
o \y.'/x/ 02 N 0.4
30 !
() (b)

Figure C-2. (a) Actuator force histogram, Fact(t), and (b) the displacement response, dZ (t).

These analytical solutions, characterized by the plots of Figure C-2, are checked in the
verification stage, covered in the following discussion. The ANSYS model should produce a
nearly identical response, dZ, when subjected to the force, Fa(t). However, the first step in this
verification process is to transfer the function, Fy(t), obtained analytically from the MAPLE
program, into a discrete form, F4.(nAt), that can be implemented in ANSY'S (where At is a
chosen time step for discretization and n=0,1,2...).

C.2 Transferring Optimal Control Forces from MAPLE to ANSYS

The function Fy«(t) is obtained in MAPLE and input into a two column table of
increasing time steps, At, and the corresponding actuation force, Fac(nNAt), at that particular
increment time increment n. This task is accomplished using the formulaic and automatic cell-

referencing capabilities of EXCEL, as demonstrated in Figure C-3. Additional columns
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representing the respective components of F,(nAt) at nodes 7 and 13 are also included in this
table. Subsequently, the columns of time and nodal forces are copied to text files that can easily

be input into the ANSYS program, which is also shown in Figure C-3.

= Fact (t) SN R S () Convert each nodal
| .
| —~NodaTorces force to .txt file \

t(s) $8Fact (N) Fn7y/and Fn13x | Fn7x and Fn13y
i 0 .888535801 -6.28514394 6.28514394 8 0001 %%g%:%%gig
j+1] 0.0001} -8.514607567 -6.020736749 6.020736749 0‘0002 5 ‘756800322
0.0002] -8.141345091 -5.756800322 5.756800322 0'0003 _5'493371242
0.0003] -7.768800113 -5.493371242 5.493371242 0‘0004 -5I230485903

etc. | _0.0004] -7.397024102 -5.230485903 5.230485903 0'0005 —4l9681805

0.0005] -7.026068243 -4.9681805 4.9681805 00006  -4.706491025

0.0006] -6.655983439 -4.706491025 4.706491025 0.0007 -4.445453266
0.0007] -6.286820299 -4.445453266 4.445453266

Figure C-3. Data manipulations involved in transferring forces from MAPLE to ANSYS.

Only the first eight time steps are shown in Figure C-3, whereas the entire table actually
consists of 581 entries — up to a final time of 0.4s. Also note that the time increment, At, was
chosen as 0.0001s, for 0 <t < 0.01s; 0.0005, for 0.0105 < t < 0.1s; and 0.001, for 0.101 <t < 0.4s.
Time increments are lengthened as time increases because F,.(t) becomes less transient, and so
fewer time steps are needed to accurately describe the trajectory as time progresses. This chosen
number of data points is still computationally economic — the text files created are under 15kB
and can be read very quickly by the ANSYS program into array parameters of type “TABLE” (as
oppose to type ‘ARRAY”, see [30]).

The advantage of storing the time varying discrete nodal actuation forces as ‘TABLE’
parameters lies in the capability of denoting the advancing time increment column as a ‘primary
variable’ so that the accompanying ‘dependant variable’ column automatically adjusts in
correspondence with global changes in the primary variable. In this manner the entire table is
applied as a nodal force boundary condition and its value automatically updates as time advances

in the transient solution process — this permits the use of looping structures to automatically
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perform each load step in the transient analysis without the need for manually changing the
applied actuation forces. Another attribute that makes ‘TABLE’ parameters attractive is that
values are automatically linearly interpolated if the current global value of the primary variable
falls in between tabulated entries.

C.3 Initializing the ANSY'S Transient Analysis

The first initializing load step is the most critical and most difficult step in the ANSYS
dynamic simulation of an active attenuation problem. In the first load step, the initial conditions
of the problem must be written; however in the vibrating frame problem, there are two separate
sets of initializing forces to consider: the initial disturbing forces, Fgist, and the initial actuation
force, F4ct(0). The difficulty lies in choosing the correct order of application of these initial
forces.

The forces, Fyist, displace the structure into the initial deformed configuration that was

assumed in the analytical solution, as described by the initial modal conditions, 7,(0) = 0.005

and 72,(0) =0.002. The following degrees of freedom were constrained to deform the frame into
this assumed initial configuration: 2x, 5x, 7x, 9x, 13x, 15x, 18x, 21x, 27X, 27y, 30X, 32x, 32y,
35x. By assigning the appropriate initializing forces, Fgis, at these DOFs the exact initial
configuration can be accurately approximated (all DOFs must be constrained to obtain this
exactly). The chosen selection of DOFs ensures that deviations in unconstrained DOFs are
generally less than 0.3% from the exact initial configuration. Refer to the ANSYS command
code in Section X for the numerical values of the forces, Fis.

The method requires that the initial actuation force components at nodes 7 and 13 are
applied when running a static analysis of the frame with the selected DOFs constrained in the

deformed configuration. This procedure determines the initializing forces, Fis, that are required
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at each selected DOF to create the assumed disturbed configuration. In this manner, the set of
initial disturbing forces to set the initial conditions, Fg;s;, and the non-zero force, F.(0)
(consisting of four nodal force components), are applied in the first step at time = 0, while still
producing the correct initial disturbed configuration. Then, in the following load step all forces
are deleted, and only the nodal actuation force components are applied in the subsequent load
steps.

Note that this initializing load step method pertains to a modal superposition ANSYS
dynamic analysis; a slight modification must be made when performing a full dynamic analysis.
In a full dynamic analysis both initial conditions are applied in a similar manner, only they are
applied in two static sub-steps over a small time interval and not at time = 0. Consequently,
actuation forces must be correspondingly time shifted by the amount of this first time step. This
modified procedure is also demonstrated in Section X. With the correct initial load steps
determined, the remaining problem is to choose appropriate time steps and load steps to
accurately model the attenuation process.

C.4 Choosing Time Steps and Load Steps

The choice of time steps and load steps has a significant impact on the accuracy of the
dynamic FEM model of the attenuation process. Generally, the time step influences the number
of Newmark time integrations that are used in computing the system’s dynamic response — more
steps give better accuracy but at a greater computational cost. On the other hand, the load step
influences how often the external actuation forces are updated in the time integration equations.
Although typically the load steps and time steps are chosen independently (with typically far
fewer load steps), the active attenuation problem is an exception because both the actuation force,
Fact(t), and the dynamic response of the structure, x(t), involve the same oscillation frequencies.

Therefore the choice of time steps and load steps should be similar, particularly in the early
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stages of attenuation, when F4.(t) is changing most rapidly. In the ANSYS help documentation
it is suggested that to effectively capture sinusoidal oscillations time steps should be small
enough to capture twenty samples per period [30]. According to this suggestion the time step for
the frame structure, modeled dynamically by its first two modes, should be no larger than:

At = (]/17.9)/ 20 =0.00279s. However, this suggested step was too large, which is evident in

Figure C-4, where even smaller time steps (i.e. At=0.001 or 0.0005) failed to accurately
reproduce the response of the exact MAPLE solution.

In Fig. 4, the x-displacement response of node 7, dZ, is plotted for time and load steps of
0.001s, 0.0005s, and 0.0001s alongside the exact MAPLE response that was previously shown in
Figure C-2. The time steps are chosen to be equal to the load steps because choosing smaller
time steps, while leaving load steps unchanged, did not change the overall response, suggesting

that the solution accuracy was primarily limited by the time length of load steps.
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Figure C-4. Plots of dZ (t), obtained from FEM for several different time and load steps
compared to the exact response. The inset graph shows the last half of the attenuation period.

As expected, Figure C-4 demonstrates that choosing smaller time steps and load steps
yields a response closer to the exact response. Also notable in this figure is the fact that errors
tend to accumulate as time progresses — in the first 0.03s all curves are nearly indistinguishable
but as time progresses the differences between the exact and FEM response grows much larger,
especially for the larger time steps. This problem is compounded by the fact that the variation in
time of F(t) is greatest at the beginning of the attenuation period, thus the numerical errors
associated with representing it by discrete straight line segments will be most significant during
this initial phase. Therefore, initially small errors in dZ (t) propagate into large errors at later
times, and consequently result in the FEM response failing to reach an attenuated state. This

suggests that load steps need to be smallest during the first moments of the attenuation period
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and can be increased as time progresses.

In confirmation of this last point, the response, dZ (t), that was obtained with a constant
load step of 0.0001s (requiring 4001 load steps in total) was essentially identical to that obtained
by using a step of 0.0001s only in the first 100 load steps and then switching to load steps of
0.001s for the remainder of the attenuation period (requiring only 491 load steps in total).
Although both produce the same result, the latter solution is computationally much more
economic. In the following sections, a common load step scheme is used to perform the ANSYS
simulations of the frame structure; however, higher modes of vibration are also of interest so a
more computationally expensive load step scheme is chosen as follows: 0.0001s for0 <t <0.01s
and 0.0005s for 0.01<t <0.4s. This requires a total of 881 load steps to cover the attenuation
period of 0.4s, as is shown in the ANSYS command code of Section X.

C.5 Comparing the Response of the ANSYS model to the exact MAPLE Solution

The ANSYS FEM response and the exact MAPLE response of the frame model were
compared in the previous section as a means of investigating the effect of time steps on the
solution; however, this comparison will now be explicitly addressed. To verify the exact
response obtained from MAPLE with the first two modes of vibration considered, the mode
superposition method must be used to perform the FEM analysis, and these same two modes
should be superposed to approximate the dynamic motion. Figure C-5 shows the response, dZ,
obtained from FEM and that obtained analytically in MAPLE. These plots are essentially
identical, verifying that the actuation force, F4(t), does indeed produce the actively dampened

response, d_.
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Figure C-5. Response, dZ, for the (a) FEM model and (b) analytical model.

C.6 Effect of Higher Modes on Frame’ Response

The assumption in solving the active attenuation problem for only the first two modes of
vibration is that all higher modes are insignificant. However, by considering these higher modes
in the FEM model, the validity of this assumption may be evaluated by checking if the
uncontrolled, higher frequency vibration modes are significant in the displacement response.
There are two methods of considering these residual vibration modes in ANSYS. One option is
to simply use the extra higher frequency modes in the mode superposition method, or another
option is to use a full transient analysis, where all DOFs are directly integrated in time, which
essentially picks up all modes of vibration (that may be described by the finite number of DOFs).

First, consider a mode superposition solution, where four modes of vibration are included.
Figure C-6a shows the response, dZ, and Figure C-6b shows the y-displacement response of
node 38, d3?(chosen to capture the motion of the fourth mode). Also, the uncontrolled response
of the structure is included in these plots for comparison. On reviewing Figure C-6, it is
apparent that one residual mode has a significant effect on the frame’s response. These relatively

large amplitude residual vibrations are caused by the third mode of vibration, which can be
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checked by observing that the residual vibration frequency in both Figure C-6a and Figure C-6b
is 35.0Hz. Note that the oscillations in Figure C-6a are roughly 100 times smaller than those in
Figure C-6b because the first three mode shapes involve no significant relative changes in d5°.
Also note that the fourth mode of vibration is not present in the frame’s response, even in the
response of d;®— a DOF that undergoes significant relative deflection in the fourth mode shape.
However, this result is not surprising, as the assumed initial disturbed configuration is unable to
excite the fourth mode of vibration. One last observation from Figure C-6 is that the free

response, as expected, is completely dominated by the first two modes of vibration.

Zzzj X _ 2 modes R uncontrolled poe rolled 2 mod
‘g o005 1\ K/ controlled / \‘/ . 0.0001 /L)T;n o conq;gllzz/ﬂ\
F Y m/\\m REAA AR u
ISR YAV, “\m/ AZVAYATATA A" I SR e Sa\v VAAARA a
PO I AL o \ P \EAGACN
oo v MY, . v\
(a) time (s) (b) time (s)

Figure C-6. (a) Response, d7, and response, d>2, (node 38 in y-direction) obtained by
superposing first four modes of vibration. Uncontrolled responses are also shown.

To confirm that the system dynamics are accurately modeled in FEM by superposing
only the first four vibration modes, a full dynamic analysis is performed to check for any
significant presence of higher modes in the response. In Figure C-7 the responses obtained from
superposing the first four modes are compared to those obtained in the full DOF analysis. In
Figure C-7a, there is no distinguishable difference in the response of dZ, but in Figure C-7b one

can see the slight affect of higher vibration modes in the full DOF response of d;2. Differences

are so slight that for practical purposes the mode superposition method provides an equivalent
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response at a reduced computational cost. In fact three modes would likely be adequate to model

the structures response, as it provides agreement with the full method to an order well below 10

®m.
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Figure C-7: (a) Displacement response Xz (t) and (b) Xasy(t), obtained by superposing first four
modes of vibration compared with those obtained by the full DOF analysis.

C.7 ANSYS Input Codes

The ANSYS input code for performing the modal analysis and performing the modal

superposition transient dynamic analysis with four modes considered is:

fini
/clear

[filnam,m_t1_bc1l

/prep7

/[title,truss

et,1,beam3

lacel,,9.8
r,1,76e-6,4585.33e-12,20e-3

r,

2,0.0357/100,1.01501e-4,0.2132

mp,ex,1,7.17e10
mp,dens,1,2800
mp,gxy,1,7.17e10/2.6
k,1

k,2,1

k,3,,1
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k,4,1,1

k,5,,2

k,6,1,2

k,7,,3

k,8,1,3

real,1

1,1,3

,3,5

,2,4

1,4,6

,3,4

,5,7

1,6,8

,5,6

esize,,5

Imesh,all

real,2

1,7,8

esize,,1

Imesh,all

finish

linitial displacements
Id,2,ux,.00315601
Id,5,ux,.00178415
Id,7,ux,.00429341
Id,9,ux,.00391305
Id,13,ux,.00315601
Id,15,ux,.000941175
Id,18,ux,.00429341
Id,21,ux,.00417508
Id,27,ux,.00304104
Id,27,uy,-.162375e-5
Id,30,ux,.00344938
Id,32,ux,.00304104
Id,32,uy,.162335e-5
Id,35,ux,.00344938

/solu !modal analysis
d,1,all

d,12,all

antype,modal
modopt,lanb,4

solve

save
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finish

/solu

antype,trans
trnopt,msup,4
outpr,nsol
outres,nsol
deltim,.0001
f,2,fx,4.4721
f,5,fx,1.3528
f,7,fx,-1.7978+6.28514394
f,7,fy,-6.28514394
f,9,x,2.8826
f,13,fx,12.096-6.28514394
f,13,fy,6.28514394
f,15,fx,1.1068
f,18,fx,3.6931
f,21,x,2.7329
f,27,fx,-4.3442
f,30,fx,0.24252
f,32,fx,-4.4114
f,35,fx,.42924
f,27,fy,4.2308
f,32,fy,-2.1365
Iswrite

fdele,all

*do,k,1,800
time,.0005*k
IF,7,fx,%F2_neg%
IF,7,fy,%F2%
IF,13,fx,%F2%
IF,13,fy,%F2_neg%
Ikbc,0
Iswrite

*enddo

save
Issolve,1,801
finish

/solu
expass,on
numexp,all
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solve
finish

The ANSYS input code for performing the full transient analysis is:

fini
/clear

[filnam, full

/prep7

/[title,truss
et,1,beam3
r,1,76e-6,4585.33e-12,20e-3
r,2,0.0357/100,1.01501e-4,0.2132
mp,ex,1,7.17e10
mp,dens,1,2800
mp,gxy,1,7.17e10/2.6
k,1

k,2,1

k,3,,1

k,4,1,1

k,5,,2

k,6,1,2

k,7,,3

k,8,1,3

real,1

1,1,3

1,3,5

1,2,4

1,4,6

1,3,4

1,5,7

1,6,8

1,5,6

esize,,5

Imesh,all

real,2

1,7,8

esize,,1

Imesh,all

finish

linitial displacements
Id,2,ux,.00315601
Id,5,ux,.00178415
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Id,7,ux,.00429341
Id,9,ux,.00391305
Id,13,ux,.00315601
Id,15,ux,.000941175
Id,18,ux,.00429341
1d,21,ux,.00417508
Id,27,ux,.00304104
Id,27,uy,-.162375e-5
Id,30,ux,.00344938
Id,32,ux,.00304104
Id,32,uy,.162335e-5
Id,35,ux,.00344938

Iget optimal force from textfile
*dim,F2,table,581,1,1,time
*tread,F2,'F2','txt','E:\ME858\project\'
*dim,F2_neg,table,581,1,1,time
*tread,F2_neg,'F2_neg','txt','"E:\ME858\project\'

/solu

antype,trans

trnopt,full

outpr,nsol

outres,nsol

deltim,.0001

timint,off

d,1,all

d,12,all

f,2,fx,4.4721

f,5,fx,1.3528

f,7,fx,-1.7978+6.28514394 linitial actuation force added
f,7,fy,-6.28514394 linitial actuation force added
f,9,fx,2.8826

f,13,fx,12.096-6.28514394 linitial actuation force added
f,13,fy,6.28514394 linitial actuation force added
f,15,fx,1.1068

f,18,fx,3.6931

f,21,fx,2.7329

f,27,fx,-4.3442

f,30,fx,0.24252

f,32,fx,-4.4114

f,35,fx,.42924

f,27,fy,4.2308

f,32,fy,-2.1365
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time,.0001
nsubst,2
kbc,1
Iswrite

timint,on
fdele,all

*do,k,2,100
time,.0001*k
F,7,fx,%F2_neg%
F,7,fy,%F2%
F13,fx,%F2%
F13,fy,%F2_neg%
kbc,0
Iswrite

*enddo

*do,k,11,400
time,.001*k
F,7,fx,%F2_neg%
F7,fy,%F2%
F13,fx,%F2%
F,13,fy,%F2_neg%
kbc,0
Iswrite

*enddo

save
Issolve,1,491
finish
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