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ABSTRACT 

The active vibration attenuation of linearly elastic structures modeled by the finite 

element method, with a possibly large number of degrees of freedom, is considered.  The 

approach, formulated in modal space, applies mathematical optimization to obtain exact 

solutions to systems that may involve any number of modes to be controlled by an equal or 

smaller number of discrete actuators.  Such systems are under-actuated and generally involve 

second-order non-holonomic constraints that impose limitations on the dynamically admissible 

motions that the system can be made to follow.  The approach presented in this thesis has value 

as a tool for the designing and analyzing active vibration attenuation in structures under idealized 

conditions, but does not replace traditional control approaches are necessary for practical 

implementation of such systems.   

The optimal attenuation of the structure subject to any initial disturbance is obtained by 

applying Pontryagin’s principle to solve for the minimum solution to a quadratic performance 

index subject to additional under-actuated constraints that are satisfied by the introduction of 

time-dependant Lagrange multipliers.  The optimality conditions are derived in a compact form 

and solved by applying symbolic differential operators.  The approach uses commercial finite 

element analysis software and symbolic mathematical software to obtain the optimal actuation 

forces required by each discrete actuator and the trajectory that the system will undergo.   

The approach, which is called the constrained modal space optimal control method 

involves three primary stages in the solution process.  The first stage –the structural stage – 

involves the transformation of any system modeled by finite elements into a sufficient number of 
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modal variables and selection of the number and positioning of potential actuator locations.  In 

this stage any problems with poor controllability can be quickly assessed and mitigated prior to 

proceeding with the next solution stage – the control stage.  In the control stage the optimal 

control problem is solved and all unknown system forces and trajectories are obtained.  System 

gains for the closed loop system can also be obtained in this stage.  In the third stage – the 

verification stage – the actuation forces obtained in the control stage are tested on a transient 

time-integrated finite element model to evaluate if the system will respond as expected.  Any 

potential spillover effects on higher modes of vibration not considered in the control can be 

observed in the verification stage. 
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1. INTRODUCTION 

1.1 Motivation 

This work aims to formulate and demonstrate a method for analyzing and simulating 

active control systems for attenuating vibrations in linear elastic structures.  These actively 

dampened structures are mechanical systems combining sensors, actuators, and a processor to 

attenuate the effects of external disturbances as a closed-loop system.  Applications for actively 

dampened structures include: satellites, telescopes, antennas, and other systems that are 

adversely affected by vibrations and, for practical implementation, cannot be built with sufficient 

stiffness and/or passive damping properties to keep vibrations to an acceptable level. 

Two potential applications for actively dampened structures are shown in Figures 1-1 and 

1-2.  Figure 1-1 shows an example of a mast type structure that utilizes two piezoelectric 

actuators located at its base to attenuate vibrations.  This type of structure could be implemented 

to support a vibration sensitive component at its tip.  In Chapter 6 the dynamics of this actively 

controlled structure is considered using the approach presented in this thesis.  Figure 1-2 shows a 

long span cable stayed bridge located in Normandy, France.  Due to its length and flexibility, it is 

vulnerable to wind-induced vibrations and flutter.  In [2] it was proposed that the situation could 

be improved by incorporating active tendons (control cables) in the structure to attenuate the 

harmful vibrations. 
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Figure 1-1.  Experimental active truss structure at the Free University of Brussels (source: [1]). 

        
Figure 1-2.  Normandy Bridge in France, with proposed active control cables to attenuate wind-

induced vibrations (source: [2]). 
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There are several questions to be considered in the design of actively dampened 

structures.  Some of these include: how many actuators will be required and where should they 

be located to best attenuate undesired vibrations?  What actuation forces will be required to 

dampen expected disturbances?  At what frequencies will the actuators operate and what forces 

will they produce?  How will the active system respond and how quickly will the disturbance be 

eliminated?  Will the actuators alter the passive dynamic properties of the structure or will their 

actions produce unwanted vibrations in modes not considered in the control?  The method 

presented in this work will address these questions by combining concepts from computational 

mechanics and mathematical optimization. 

The approach in this work is distinct from others published in literature because it applies 

to general actively dampened systems that are under-actuated.  Under-actuated systems have 

more degrees of freedom (DOFs) than actuators to control them [3], meaning that some DOFs 

are not directly manipulated by an actuator and are referred to as redundant.  This property 

distinguishes them from fully-actuated systems which have actuators controlling all DOFs.  In 

under-actuated systems, the motions of redundant DOFs (as well as directly manipulated DOFs) 

are governed by non-integrable constraints arising from the governing equations of motion.  

These constraints are non-integrable because they generally involve accelerations and velocities 

of the DOFs. 

In a control analysis, under-actuated systems are more complicated than fully-actuated 

systems because of the additional non-integral constraints affecting the dynamics.  A control 

analysis requires that the actuation forces producing a desired system trajectory be determined 

through the inverse dynamics, but only trajectories that satisfy the set of non-integrable 

constraints can be physically realized, or in other words, are dynamically admissible [4].  
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Therefore, a given trajectory may not be dynamically admissible; this limitation complicates the 

synthesis of the control forces. 

In several literature references ([3] and [5] for example) control of under-actuated 

systems is associated with ‘non-minimum phase features’ that lead to unbounded behavior.  This 

is mostly due to the inverse dynamics becoming unstable (generating unstable zeros) when 

attempting to follow desired trajectories that do not satisfy the non-integrable constraints [6].  To 

avoid the unstable inverse dynamics, so-called ‘non-causal’ methods were proposed and applied 

mainly to under-actuated flexible manipulators in [7-9].  These methods appear to have ignored 

the physical restrictions that the non-integrable constraints represent, leading to violations in the 

general rules of dynamics.  Some under-actuated problems, related mostly to tracking problems, 

have been analyzed by first eliminating the redundant DOFs and then solving the reduced fully-

actuated problem, with a number of actuators controlling the same number of independent DOFs 

[10-16].  This approach is limited to cases where the elimination of redundant DOFs is possible 

(exactly or approximately) and typically requires extensive analytical effort. 

Theoretically, all actively dampened structures that include continuous elements such as 

beams, plates, shells and solids are under-actuated systems because they are defined by an 

infinite number of DOFs.  In practice, the dynamics of such systems can be adequately 

approximated using the modal superposition method where the infinite DOFs are replaced by a 

handful of dynamically significant modes of vibration [17].  This property is exploited in the area 

of active structures because they typically can be modeled with a small number of modes that 

can feasibly be controlled by the same number of actuators; hence the non-integrable constraints 

associated with under-actuated systems are avoided.  This approach is referred to as independent 

modal space control (IMSC) and is widely used in research in the area of actively dampened 
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structures.  Its main advantage is that each modal variable is directly related to a corresponding 

modal control that can be subsequently converted into the actions of properly placed actuators 

[18].  The methodology presented in this thesis is referred to as constrained modal space optimal 

control (CMSOC) to distinguish it from the IMSC.  Most importantly, CMSOC allows the 

number of modes of vibration included in modeling the system dynamics to be greater than the 

number of actuators in the system (under-actuated systems) because it accounts for the resulting 

non-integrable constraints.  Since the constraints are always satisfied, the problem of unstable 

inverse dynamics is eliminated and the stability of the control system is guaranteed.   

Using the CMSOC method, solutions for active structures are obtained in the ‘output 

space’ with the problem size equal to the number of vibration modes considered.  Dummy 

actuators, which produce zero force, are added to the system to make the number of actuators 

equal to the number of dynamically significant modes instead of attempting to eliminate 

redundant modes (or redundant DOFs).  The dummy actuators are subsequently eliminated by 

applying the under-actuated constraints, which take a convenient algebraic form when written in 

terms of modal controls.  This algebraic form may be written as a matrix equation from which 

one can obtain the matrix of constraints, which is populated with terms reflecting the system’s 

controllability and attenuation characteristics.  The active controls are solved by mathematically 

formulating the attenuation process as a constrained optimization problem involving a set of 

time-dependent Lagrange multipliers that ensure all constraints are satisfied.  A set of optimality 

equations are derived that involve all modal variables and Lagrange multipliers and are solved by 

applying symbolic differential operators to obtain the optimal actuation forces (inputs) and 

system responses (outputs).  Finally, the solution can be verified by directly applying the 

actuation forces to a transient model of the system, which may contain additional modes not 
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considered in the control analysis to detect possible spillover effects of the controls on these 

higher modes.  

The mathematical foundations for this method were introduced in [19]; however the 

contribution of this thesis work, some of which is contained in [20-22], was to generalize and 

formalize the methodology and implement it on a variety of geometrically complex structures.  

This work studied and formally identified the link between controllability and actuator 

positioning as well as a formal method of obtaining gains for implementation of a feedback 

control system.  Also, an automated solution program was written in MAPLE to effectively deal 

with a wide variety of problems that required minimal user input (see Appendix A for example) 

and a method of verifying the solution using the ANSYS program was successfully implemented 

on several different examples (see Appendix C). 

The CMSOC method is intended to be used as a tool in the design of actively dampened 

structures as it provides insight that may enable the designer to select good locations for 

positioning actuators in a given structure.  For an idealized structure, information can be obtained 

on what actuation forces will be required to obtain a target rate of active dampening and how the 

system will respond.  However, the CMSOC method is limited to idealized structures that 

undergo small displacement vibrations or similar linear motions.  It is not a replacement for other 

control system analysis and design techniques that are essential for practical controls 

implementation on ‘real world’ structures, but is rather a complimentary tool for understanding 

the physical behavior of actively dampened structures, particularly for systems that may be 

considered under-actuated.   
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1.2 Outline 

The information presented in this thesis is organized as follows: 

 Chapter 2 contains the mathematical background related to controlling under-actuated 

systems and optimal active vibration attenuation.  

 Chapter 3 contains the mathematical formulation for CMSOC, including the derivation and 

solution to the optimality conditions, implementation for closed loop feedback, and 

discussion on the methodology of the three main stages involved in the procedure. 

 Chapter 4 contains an example demonstrating the CMSOC approach on a simple problem 

involving a gantry crane.  The results are compared with those obtained and published in [3] 

for the same system.  Emphasis is given to the individual steps in the solution process and 

how selection of certain optimization parameters can be expected to alter the system response.  

 Chapter 5 contains an example demonstrating the CMSOC approach on a plane frame 

structure.  Emphasis is given to how various actuator configurations and various degrees of 

under-actuation impact the dynamic response of the system and how controllability problems 

can be detected early in the solution process.  The three main stages of the procedure are 

covered. 

 Chapter 6 contains an example demonstrating the CMSOC approach on a three-dimensional 

mast problem (model based on that shown in Figure 1-1).  Controllability issues are 

discussed for various configurations and numbers of actuators and their dynamic behavior is 

compared. 

 Chapter 7 contains some general conclusions regarding the CMSOC approach. 
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2. MATHEMATICAL BACKGROUND  

2.1 Control of Under-actuated Systems 

Continuous (or discrete) mechanical systems may be represented by a sufficiently large 

number of   DOFs using the Finite Element Method (FEM) to obtain a model that is governed 

by a set of second-order differential equations.  These equations define the system’s dynamics 

and require that the sum of all inertial, damping, and restoring forces in a system balance the 

external forces applied to it. Mathematically they take the form: 

  ̈ +   ̇ +                 (2.1) 

Note that equation (2.1) does not include any external disturbing forces acting on the structure as 

attenuation of free vibrations is of interest.  There are   independent equations in (2.1) involving 

  DOFs that describe the system’s motion.  The displacements, velocities, and accelerations (or 

rotation, rotational velocity, and rotational acceleration) of these DOFs are represented by the 

time varying components contained in the vectors   [ 1( ) …  𝑛( )]
𝑇, 

 ̇  [ ̇1( ) …  ̇𝑛( )]
𝑇, and    ̈  [ ̈1( ) …  ̈𝑛( )]

𝑇 respectively (the superscript   

denotes the matrix transpose operation).  From a control perspective, systems described in the 

form (2.1) contain 2  states corresponding to the positions and velocities of each DOF and are 

contained in state vector   [ 𝑇  ̇𝑇]𝑇. 

Matrices  ,  , and   are of size  ×   with respective components    ,    ,     

(𝑖  1,… ,   and 𝑗  1,… ,  ) that may generally be state dependent and represent the distribution 

of masses, natural damping, and stiffness respectively.  The nodal force vector 
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  [ 1( ) …  𝑛( )]
𝑇 contains individual time varying forces    that are assigned directly to 

corresponding DOFs    (𝑖  1,… ,  ).  The matrix   of size  ×    is called the actuator 

configuration matrix because it assigns    discrete actuation forces contained in vector    

[  1( ) …   𝑛𝑎( )]
𝑇
 to the system of   DOFs as shown on the right hand side of (2.1).   

For many practical systems the number of independent actuation forces contained in 

vector    is smaller than the number of DOFs that define the system ( >   ) and so they are 

considered under-actuated.  If the number of independent actuation forces is equal to the number 

of DOFs (    ) then the system is considered fully-actuated.  The distinction between these 

system classifications is of particular importance for control analyses because it affects the steps 

involved in their solution [4].  

 Equations of motion in the form (2.1) may be used in calculating the unknown motions 

described by vector   for a given set of applied forces in vector   .  This calculation is referred 

to as the direct dynamics and is routinely handled by commercial FEM software.  Calculating the 

direct dynamics is straightforward for both under-actuated and fully-actuated systems by using a 

direct numerical integration method such as the Newmark Procedure [17].  However, a control 

analysis requires the inverse dynamics solution because the independent applied forces in vector 

   are unknown and their actions, producing a particular system response (described by vectors 

 ), are to be determined.  As previously mentioned this solution poses a computational challenge 

for under-actuated systems due to the presence of non-integrable constraints governing possible 

motions [3]. 

Inverse dynamics solutions for a fully-actuated systems are straightforward because any 

desirable trajectories in vector   may be followed provided that it is ‘smooth’ so it can be 

differentiated to obtain the corresponding velocities and accelerations in vectors  ̇ and  ̈, which 
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can be substituted into equations (2.1) to yield required nodal force vector  .  The vector   can 

then be transformed into the actuation force vector    through the inverse operation on the right 

hand side of equations (2.1) which takes the form:     
 1 .  For any fully-actuated system 

the inverse operation is permissible because   is a square  ×   matrix (provided that   is non-

singular).   

In contrast, the inverse dynamics solution for under-actuated systems is complicated by 

     −     additional constraints present in the system (that must be satisfied).  For 

demonstration, consider the two DOFs spring-mass system shown in Figure 2-1.  For this 

particular example, passive damping effects are ignored and the mass and stiffness matrices are 

assumed constant (independent of states).  The governing equations for the system in the form of 

equation (2.1) are included in Figure 2-1. 

 

 
Figure 2-1.  Two-DOF Spring-Mass System. 

First consider the fully-actuated case where both  1 and  2 are used to perform a 

maneuver.  To calculate the inverse dynamics, any system trajectory, described by vector 

  [ 1( )  2( )]
𝑇, can be proposed and the corresponding forces in vector 

  [ 1( )  2( )]
𝑇 can be determined through differentiation and direct substitution into the 

governing equations (see Figure 2-1).  In contrast, if the force  2 is removed ( 2   ), then the 

second row of the governing equations becomes a constraint that limits the set of dynamically 

 1  2 

 1  2  1  2 

 1  2 
Governing Equations: 

[
 1  
  2

] [
 ̈1
 ̈2
] + [

 1 +  2 − 2
− 2  2

] [
 1
 2
]  [

 1
 2
] 
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admissible motions described by vector  .  Only the motions that satisfy this constraint 

(dynamically admissible motions) can be used to determine the corresponding time varying force 

 1.  Written explicitly, this constraint on admissible trajectories takes the form: 

 2 ̈2 +  2( 2 −  1)            (2.2) 

Constraint (2.2) mathematically describes what is intuitively known – that one cannot arbitrarily 

produce any motion of masses  1 and  2 by applying only the force  1.  The motion of the 

uncontrolled mass  2 will always be coupled to the motion of the controlled mass  1 through 

the equation (2.2).  In this example,  1 is directly controlled by  1 and so it is considered to be an 

actuated DOF, while  2 is indirectly controlled and so it is referred to as a constrained DOF. 

For general under-actuated systems the equations in (2.1) may be grouped and written to 

distinguish between actuated and constrained DOFs in the form: 

[
      

      
] [
 ̈ 
 ̈ 
] + [

      
      

] [
 ̇ 
 ̇ 
] + [

      
      

] [
  
  
]  [

  
 
]   (2.3) 

The top    components of the nodal force vector in (2.3) contain the independent actuation 

forces in vector    and the remaining    zero-valued components are contained in the null 

vector  .  The vectors of nodal displacements, velocities, and accelerations are grouped so that 

the top    components (considered actuated) contained in vectors   ,  ̇ , and  ̈  are separated 

from the bottom    components (considered constrained) in vectors   ,  ̇ , and  ̈  [4].  

Referring to the spring-mass system in Figure 2-1, formally  1     and  2    .     

 Any requested trajectories in vector   [  
𝑇   

𝑇]𝑇 and their corresponding derivatives 

must satisfy the lower    equations in (2.3), and the initial and final boundary conditions, for 

them to be considered a dynamically admissible.  If the solution is dynamically admissible, then 
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the corresponding actuation forces in vector    can be determined.  Written explicitly, the 

constraints from (2.3) take the form: 

 ( ,  ̇,  ̈)      ̈ +     ̇ +     +    ̈ +     ̇ +             (2.4) 

The vector of constraints   constitutes a set of    equations that contain functions of the 

positions, velocities, and accelerations of all DOFs; hence they are non-integrable and belong to 

an extended class of non-holonomic constraints [3].  This means that, in general, equations (2.4) 

cannot be used to provide a set of equations in the form    𝒇(  ) to eliminate the constrained 

DOFs in vector    so that the applied forces in vector    could be obtained from only the top    

equations in (2.3).  Written explicitly, the actuation forces in vector    from equations (2.3) take 

the form: 

       ̈ +     ̇ +     +    ̈ +     ̇ +         (2.5) 

The objective in control design is to determine the actuation forces in vector     that will 

produce a system trajectory   that satisfies all constraints in vector   as well as the initial and 

final boundary conditions.  However, a potentially infinite number of trajectories and the 

corresponding actuation forces can be generated to meet this objective.  The optimal control aims 

at selecting one trajectory that satisfies a more specific objective, which can be found by 

applying mathematical optimization techniques.  The mathematical objective of the CMSOC 

methodology is to obtain a unique solution for all trajectories in vector   and control forces in 

vector    that will minimize a selected quadratic performance index and be dynamically 

admissible (i.e. satisfying equation (2.4)).  Selecting ‘desirable’ trajectories becomes a matter of 

weighting and selection of various performance index parameters (penalty functions) relating to 
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the systems energy, control effort, or the error between requested trajectories and the ‘closest’ 

dynamically admissible ones [4]. 

A typical performance index incorporates a penalty function   such as: 

  ∫  ( ,  ̇,  ))  → 𝑚𝑖 
 2

 1
        (2.6) 

The penalty function   (quadratic in terms of  ,  ̇, and  ) may be chosen to obtain system 

trajectories that minimize control input energy, reduce potential energy and/or kinetic energy 

levels, minimize control time, and/or minimize deviations from a particular reference trajectory.  

The issue of the dynamically admissibility of requested trajectories is mathematically handled in 

the optimization procedure.  In this thesis, such optimization-based methods of dealing with 

under-actuated problems are applied to simulate and analyze active vibration attenuation in 

geometrically complex linear elastic structural systems modeled by the FEM. 

2.2 Optimal Active Vibration Attenuation 

The objective in optimal active vibration control is to actively dampen, or attenuate, 

vibrations in structural systems using a finite, and possibly small, number of actuators, or active 

members.  Typical structures are composed of continuous members, such as beams, columns, 

plates, and shells that are comprised of a theoretically infinite number DOFs.  Using FEM such 

systems are accurately simulated using a finite, but often large number of DOFs that are 

governed by equations of motion of the form (2.1).  The direct dynamics calculation for systems 

with a large number of DOFs is routinely handled by commercial FEM software; however, it 

may become increasingly numerically complex with an increasing number of DOFs.  Fortunately, 

the motion of linear elastic structural models can be simplified by transforming the problem from 

a vector-space containing a large number of DOFs to a reduced space containing only a handful 
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of modes of vibration.  This can be done through a routine modal analysis as presented later in 

this section [17]. 

Graphically, the task of vibration control for systems approximated by   equations (2.1) 

is represented in Figure 2-2, which shows the system brought from some disturbed non-zero 

initial state to the origin and at rest.  Note that the path along which the system is brought to rest 

is not prescribed, but it must be dynamically admissible.  The disturbed structure is described by 

the 2  initial conditions in the form of displacements    and velocities  ̇  at time    .  By 

time      (where    is the maneuver time) all disturbances are attenuated.  Mathematically, the 

initial and final boundary conditions shown in Figure 2-2 are written in the form: 

 ( )    ,   ̇( )    ̇ ,   (  )   ,   ̇(  )         (2.7) 

 

 
Figure 2-2.  Vibration attenuation problem shown in terms of state variables. 

Actively dampened structures typically use a closed-loop control system to allow the structure to 

adapt to sensory feedback in order to continuously eliminate vibrations.  If the maneuver interval 

approaches infinity (  → ∞) the problem becomes time invariant because the maneuver’s 

  

 ̇ 
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feedback (gains) does not depend on time nor on initial conditions.  The control task for time 

invariant problems is to continuously attenuate the vibrating motion.   

Various control schemes can be analyzed by using mathematical optimization.  The linear 

optimal control for a vibration attenuation problem is based on a quadratic performance index 

that takes the form: 

  1 2⁄ ∫  (  𝑇  +   ̇𝑇  ̇ +   𝑇    )  → 𝑚𝑖  
 𝑓
0

    (2.8) 

Weighting coefficients  ,  , and   are assigned to terms that represent a system’s potential 

energy (elastic), kinetic energy, and work of the actuation forces respectively.  This type of 

quadratic performance index is routinely used in vibration control of flexible structures [23]. 

The optimization problem defined by a set of linear governing equations in the form (2.1) 

and a performance index in the form (2.8) is an example of a linear quadratic regulator (LQR) 

problem with 2  states and    controls.  The standard approach to such problems involves the 

solution of nonlinear algebraic Riccati equations for the unknown terms of a symmetric matrix of 

size 2  containing a total of 2 2 +   unknowns [23].  For example, a structure having 100 DOFs, 

will require the solution of 20,100 unknowns.  The approach presented in this thesis does not 

require solving the Riccati equations and so avoids the large number of unknowns and non-linear 

equations. 

FEM models may be transformed from the DOF-space into the modal-space to simplify 

their handling.  When the problem defined by equations (2.1) is mapped into modal-space, the 

displacement variables in vector  , of size  , are transformed to an equivalent system defined in 

terms of an equal or smaller sized vector of modal variables   [ 1 ⋯  𝑛𝑚]𝑇 (  ≤  ).  

Similarly, force vector   is transformed into an equal or smaller sized vector of modal controls 

  [ 1 ⋯  𝑛𝑚]𝑇.  The mapping between the DOF-space and modal-space variables 
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represents an exact transformation if their size is equal (    ), otherwise the transformation is 

an approximation (  <  ).  The transformation mapping between DOF-space and modal-space 

takes the form: 

               (2.9a) 

   𝑇   𝑇     ̂          (2.9b) 

In the transformation (2.9b), matrix  ̂   𝑻  of size   ×    defines the mapping between 

vectors    and  , and the modal shape matrix   [ 1 ⋯  𝑛𝑚] defines the mapping 

between vectors   and  .  The modal shape matrix   contains    modal shape vectors    that 

for computational convenience are made to satisfy the orthogonality conditions: 

 𝑇               (2.10a) 

 𝑇              (2.10b) 

Matrix   is the unitary matrix (𝐼   1) and matrix   is the diagonal matrix of ordered modal 

frequencies with the terms Ω     
2, where 𝑖  1,… ,   .  Each modal shape vector    and 

frequency    are solutions to the standard eigenvalues problem for an elastic system in the form 

[17]: 

( −   
2)     for 𝑖  1,… ,          (2.11) 

If the damping matrix   in equation (2.1) is assumed to take the form of the Rayleigh damping 

matrix, the equations of motion become completely uncoupled by applying the transformations 

(2.9a), (2.9b), and the orthogonality conditions (2.10a), and (2.10b).  The resulting    equations 

of motion are obtained in the modal-space form as [17]: 

  ̈ +   ̇ +              (2.12) 



 

17 

 

Modal damping matrix   contains the diagonal terms     2    , where      
𝑇   (2  )⁄  

are passive modal damping ratios for 𝑖  1,… ,   . 

The two advantages of modal-space modeling is that, the governing equations (2.1) 

uncouple when written in the form (2.12), and it is possible to obtain acceptable solutions for 

systems with a large number (or infinite) number of DOFs by considering only a small number 

of    modal variables that are considered dynamically significant [17].  The number of 

dynamically significant modes that might be considered for a system is related to the accuracy 

requirements, physical characteristics, and the dynamic characteristics of potential disturbances. 

The equations of motion (2.12) in modal-space have an equal number of modal variables 

in vector   and modal controls in vector   so it is always possible to compute both the direct 

( →  ) and inverse ( →  ) operations.  In standard computational mechanics, the direct 

operation is required to obtain a system’s response.  Hence, modal controls in vector   

correspond to the applied control forces in vector    directly through transformation (2.9b) and 

the modal variable responses in vector   are subsequently obtained through equation (2.12).   

Active vibration control requires calculation of the inverse dynamics because the modal 

controls vector   must be obtained through the inverse of operation (2.12) and then the real 

actuation forces in vector    must be determined from the inverse operation of equation (2.9b).  

This last operation poses a problem when the sizes of vectors    and   are inconsistent because 

the system is formally under-actuated (   >   ). 

In modal-space, if the number of significant modes of vibration    is equal to the 

number of actuators    then problem is considered fully-actuated and theoretically any modal 

trajectories defined by vector   are realizable provided that matrix  ̂ in equation (2.9b) is non-

singular.  This property is exploited in the IMSC method, proposed in [24,25] and used 
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extensively in numerous applications [18,26,27].  The advantage of dealing with fully-actuated 

modal-space systems using the IMSC approach lies in the fact that modal controls can be 

obtained for all controlled modes and subsequently transformed into the actions of an equal 

number discrete actuators controlling the system.  However, if the number of    significant 

modes of vibration that are needed to adequately model a system’s dynamics exceeds the number 

of    discrete actuators controlling them, then the problem is formally under-actuated and 

similar to under-actuated systems in the DOF-space, performing the inverse dynamics is 

complicated by non-holonomic constraints. 

A modified approach must be adopted to deal with under-actuated problems.  The 

CMSOC method presented in this thesis is capable of dealing with some of these problems.  The 

CMSOC method can be viewed as an extension of the IMSC method for dealing with under-

actuated vibration control problems.  The IMSC approach requires that the size of the system to 

control must be equal to the number of actuators (inputs) and for this reason the problem is said 

to be solved in the input space.  On the other hand the CMSOC approach allows the system size 

(i.e. number of output variables) to exceed the number of actuators, hence the problem is said to 

be solved in the output space.  Solutions obtained using the CMSOC method are consistent with 

those obtained using the IMSC method when the system is fully-actuated. 
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3. CONSTRAINED MODAL SPACE OPTIMAL CONTROL (CMSOC) 

3.1 Overview of CMSOC 

The CMSOC approach consists of three distinct stages: the structural stage, the control 

stage, and a verification stage as shown in Figure 3-1.  In this figure, the three distinct stages of 

the solution process are enclosed by the heavy lined boxes and the computational steps involved 

in each stage are enclosed by the smaller shaded boxes.  The software that was used in each step 

is denoted in brackets in the small boxes where applicable.  The details of the structural stage, 

control stage, and verification stage are covered in Section 3.2, Section 3.3, and Section 3.4 

respectively. 

In the structural stage, a system is modeled by the FEM and a routine modal analysis is 

performed to obtain modal frequencies contained in the matrix   and the corresponding mode 

shapes contained in matrix  .  This process is efficiently handled using the ANSYS FEM 

software.  The next step is to choose a potential actuator configuration for the system and 

assemble the corresponding actuator positioning matrix  .  Also the sensor configuration matrix 

  may also be assembled based on the positions of sensors.  These parameters are input into a 

worksheet using the MAPLE software to perform a number of matrix manipulations that are 

necessary for assessing the controllability of the actuator configuration and for performing 

calculations in subsequent stages. 

In the control stage the results of the structural stage are required to solve the 

optimization problem, obtain the optimal control forces for each actuator, and calculate the 

expected dynamic response of the system.  The constant gains for a closed-loop system control 
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system meeting the observability requirements may also be solved (if applicable).  The control 

stage is efficiently handled and automated using the MAPLE software, which is capable of the 

necessary symbolic computations (see Appendix A for an example MAPLE code). 

In the verification stage the solution obtained in the control stage is checked for accuracy 

and for any potential spillover effects.  This check, which is performed using the ANSYS, applies 

the actuator forces obtained in the control stage to the FEM model in a transient direct dynamic 

analysis to verify how closely the system response matches that obtained in the control stage.  

Since the control stage solution may generally involve a smaller number of    significant modes 

of vibration than the total number of   modes, spillover effects involving higher modes of 

vibration (that were not considered in the system modeling) can be detected.  Essentially, this 

check is performed to ensure that the applied actuator forces do not excite higher modes of 

vibration that were not included in the dynamic model considered in the control stage. 

Another benefit of the verification stage is that one can check that the physical presence 

of actuators in the system will not significantly impact the dynamics of the structure.   It was 

assumed in the structural stage that the actuator masses and stiffnesses were negligible.  These 

parameters could have been incorporated into the FEM model in the structural stage to mitigate 

errors due to the above mentioned assumptions; however, this would require that the FEM model 

be modified every time that a new actuator configuration is to be investigated, making it difficult 

to quickly assess a variety of configurations.  The procedure presented in this work assumes that 

actuators have no mass or stiffness – an assumption that is later checked and updated if necessary.   
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Figure 3-1.  Flowchart of CMSOC Approach. 
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 The flow of the solution process shown in Figure 3-1 involves some iteration in the 

structural stage to determine an effective configuration of actuators because it will be shown that 

any choice of actuator positions can be conveniently related to controllability prior to engaging 

in subsequent computational steps.  The entire solution process may involve multiple iterations, 

as the verification stage may indicate unacceptably large modeling errors or spillover effects that 

require model refinement and repeating the solution process.  The CMSOC procedure ends when 

the control provides a satisfactory response with minimal modeling errors and spillover effects.  

In the following sections the calculations and operations involved in each step of the procedure 

(see Figure 3-1) are explained in detail. 

3.2 Structural Stage 

The structural stage is represented in the topmost box of the flowchart in Figure 3-1.  It 

consists of three main steps: creating the FEM model and performing the modal analysis 

(previously discussed in Section 2.2), performing several matrix operations as discussed in 

Section 3.2.1, and assessing the controllability indicators as discussed in Section 3.2.2. 

3.2.1 Matrix Operations 

The analysis of under-actuated systems in modal-space is complicated by the fact that    

modal controls contained in vector   must be transformed into a smaller number of    actuation 

forces contained in vector    (  >   ).  This operation requires the inverse of transformation 

(2.9b) which is permitted only if matrix  ̂ is ‘invertible’.  This poses a problem if matrix  ̂ is of 

size   ×    (  >   ) because matrix  ̂ 1 will not exist, so vector   cannot be obtained from 

(2.9b) directly.  To calculate the inverse dynamics in modal-space      −    redundant 

modal variables must be determined from    additional constraints.  These constraints can be 

explicitly derived by sequentially eliminating the    components of vector    from equation 
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(2.9b) to obtain the extra conditions to be satisfied by all    components of vector  .  However, 

eliminating these variables to obtain the constraints can be challenging and is not easily 

automated to obtain the solution using mathematical software. 

In this thesis a different approach is used to obtain the under-actuated constraints.  Instead 

of eliminating redundant modal variables, the vector of applied actuation forces    is augmented 

by      −    dummy (zero-valued) actuators forces contained in vector    ( ̂  

[  
𝑇   

𝑇]𝑇).  These dummy actuators are arbitrarily configured in the system to ‘artificially’ 

convert the under-actuated problem into an equivalent fully-actuated problem for which  ̂ 1 

does exist.  Hence, the inverse of the operation (2.9b) can be performed with the augmented 

actuation force vector  ̂ replacing vector    in this transformation.  The only restriction on the 

dummy actuator configuration is that it produces a non-singular square matrix  ̂.  The inverted 

augmented system can be partitioned to better distinguish between those elements contributing to 

the mapping of real actuation forces and those elements mapping the dummy actuation forces 

whose actions are null valued (   [ ⋯  ]𝑇).  The partitioned inverse operation (2.9b) 

with augmented force vector takes the form: 

 ̂   ̂ 1    ⇒     [
  
  
]  [

 ̃  ̃ 
    

] [
  
  
]        (3.1)  

The expression on the left and right of the arrow in (3.1) are equivalent, only the expression on 

the right is written in the partitioned form.  Square sub-matrices  ̃  and    have the dimensions 

  ×    and    ×    respectively.  The vector of modal controls   is divided into two sub-

vectors    [ 1 ⋯  𝑛𝑎]𝑇 and    [ 𝑛𝑎+1 ⋯  𝑛𝑚]𝑇 which contain the independent and 

redundant modal controls respectively.  To be consistent with this naming convention, the modal 

variables in vector   are similarly divided into their independent and redundant components in 
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sub-vectors    [ 1 ⋯  𝑛𝑎]𝑇 and    [ 𝑛𝑎+1 ⋯  𝑛𝑚]𝑇 respectively.  Though all modal 

controls are required to solve for the system motion described by vector  , only the components 

in vector    are required to determine the actuation forces in vector    from equation (3.1). 

 The lower partition in (3.1), involving the zero-valued dummy actuator forces    

[ ⋯  ]𝑇, define a set of    constraints that are linear in terms of modal controls and may 

written in the form: 

    +                   (3.2) 

Matrix   [    ] of size   ×    will be referred to as the matrix of constraints and defines 

the constraints arising due to under-actuation in terms of a modal controls in vector  .  The 

matrix of constraints contains      nonzero coefficients 𝐴 , .  Since the equations in set (3.2) 

are homogeneous, the terms in matrix   can be normalized such that 𝐴 ,  1, 𝐴 ,    for  < 𝑖 

(left bottom corner), and 𝐴 ,𝑛𝑎+1+    for 1 ≤  ≤   − 1 (right upper corner).  The 

normalized matrix of constraints is denoted by  ̅ (formally  ̅   ) and it can also be partitioned 

such that  ̅  [ ̅  ̅ ], which takes the form:  

 ̅  

[
 
 
 
 
 
1 𝐴̅12 𝐴̅1 ⋯ 𝐴̅1,𝑛𝑐 ⋯ 𝐴̅1,𝑛𝑎

1 𝐴̅2 ⋯ 𝐴̅2,𝑛𝑐 ⋯ 𝐴̅2,𝑛𝑎
1 ⋯ 𝐴̅ ,𝑛𝑐 ⋯ 𝐴̅ ,𝑛𝑎

⋱ ⋮ ⋯ ⋮
1 ⋯ 𝐴̅𝑛𝑐,𝑛𝑎

|

|

𝐴̅1,𝑛𝑎+1

𝐴̅2,𝑛𝑎+1 𝐴̅2,𝑛𝑎+2

𝐴̅ ,𝑛𝑎+1 𝐴̅ ,𝑛𝑎+2 𝐴̅ ,𝑛𝑎+ 
⋮ ⋮ ⋮ ⋱

𝐴̅𝑛𝑐,𝑛𝑎+1 𝐴̅𝑛𝑐,𝑛𝑎+2 𝐴̅𝑛𝑐,𝑛𝑎+ ⋯ 𝐴̅𝑛𝑐,𝑛𝑚]
 
 
 
 
 

  (3.3) 

In the normalized form (3.3), the sub-matrix  ̅  appears on the left of the vertical line divider 

and sub-matrix  ̅  appears on the right.  

The normalized matrix of modal constraints  ̅ is independent of the location of the 

dummy actuators in the system, as the dummy actuators were only added to facilitate the 

application of the constraints in determining the actuator forces in vector    from equation (3.1).  
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In the normalized form (3.3), the matrix of constraints serves as a means of comparing the 

effectiveness of different configurations of actuators placed in a system.  In other words, it is a 

means of evaluating the controllability of a given under-actuated system with different actuator 

configurations. 

 The actuation forces in vector    are functions of both the independent modal controls in 

vector    and the redundant modal controls in vector    in accordance with the upper partition 

in the equation (3.1).  However, by applying the constraint (3.2) the redundant modal controls in 

vector    can be eliminated and the real actuation forces can be obtained in terms of the 

components in of the independent modal controls in vector    through the equations: 

    ̅    ( ̃ −  ̃   
    )         (3.4) 

The square matrix  ̅   ̃ −  ̃   
     has the dimensions   ×    and is referred to as the 

pseudo-transfer matrix because it has a similar physical interpretation as the transfer matrix  ̂ 

for fully-actuated systems.  Note that a fully-actuated problem (i.e.      ) has the property: 

 ̅   ̃   ̂.  The matrix  ̅  is independent of the location of dummy actuators in the system 

and, similar to matrix  ̅,  is an indicator for comparing the controllability for a system with 

different actuator configurations.  Equation (3.4) requires that matrix    is non-singular; 

otherwise, the operation is impossible. 

3.2.2 Controllability Indicators  

 Matrices  ̅  and  ̅  are indicators of an under-actuated system’s controllability for 

particular actuator configurations (note that the normalized matrix  ̅  is required to give a 

meaningful indicator).  These indicators help to effectively position actuators in a system to 

dampen the vibrations of all dynamically significant modes.  Effective placement of actuators is 

critical to the performance of an actively attenuated system.  To illustrate this point consider 
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Figure 3-2, which shows a standard simply supported beam of length L and its modal shapes in 

the first two modes of vibration.  The single active force   1( ) acts perpendicular to the beam 

axis and can be located at any location x along the beams length.  

  

 
Figure 3-2.  Actuator configuration and controllability for a vibrating beam. 

At what location x should the actuator   1( ) be located to best attenuate the two 

vibration modes?  Intuitively, one can see that placing an actuator at the midpoint of the beam at 

𝑥  𝐿 2⁄  would leave the second mode uncontrollable because this location essentially does not 

‘see’ the second mode of vibration.  Also at the terminal points 𝑥    and 𝑥  𝐿, one would 

expect that the both modes would be completely uncontrollable.  A better actuator position would 

be some location between the middle of the beam and the end points.  As it will be demonstrated, 

the method presented in this thesis can help to address what is the ‘best’ location for placing the 

actuator in the structural stage. 

The ‘best’ actuator position is reflected in the transformation (3.4) and more specifically 

the matrices  ̅  and  ̅ .  It will be shown that, for under-actuated systems, the magnitude of 

components in the matrix  ̅  and  ̅  reflect the expected rate of attenuation of the slowest 

dampened mode of vibration and the peak force amplitudes required by the actuator(s), 

respectively.  Both qualities are indicators of system controllability given a particular actuator 

L/4 L/4 L/4 L/4 

x 

  1( ) 

1
st
 mode (𝜙1  sin (

𝜋𝑥

𝐿
)) 

2
nd

 mode (𝜙2  sin (
2𝜋𝑥

𝐿
)) 
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configuration.  Two scalar measures are adopted as quantitative measures of these qualities – the 

rate parameter   and effort parameter  , which are defined as: 

  |det  ̅ |          (3.5a) 

  |det  ̅ |          (3.5b) 

As their naming suggests, the rate parameter   indicates the rate at which the slowest damped 

mode(s) of vibration will be attenuated and the effort parameter   indicates the magnitude of 

required actuation forces.  Note that the controllability parameters in (3.5a) and (3.5b) only serve 

to compare the effectiveness of different configurations of actuators for a particular under-

actuated mechanical system and not as an objective measure of general control effectiveness for 

all systems. 

 Matrix  ̅  contains the last    columns of the normalized matrix  ̅ and is triangular such 

that: det( ̅ )  𝐴̅1,𝑛𝑎+1 𝐴̅2,𝑛𝑎+2 ⋯𝐴̅𝑛𝑐,𝑛𝑚 .  The most uniform rate of attenuation of all modes 

considered is achieved if all non-zero elements of matrix  ̅  have a value of unity such that: 

  |det   |  1.  Systems with a rate parameter   close to unity have redundant modal controls 

in vector    similar in magnitude to the independent modal controls in vector   .  This means 

redundant modal variables in vector    are attenuated at similar rates as the independent modal 

variables in vector    in accordance with relation (2.12).   

The pseudo-transfer matrix  ̅  transfers the independent modal controls in vector    to 

the real actuation forces in vector    through equation (3.4).  Therefore, for the same system, 

smaller values of the effort parameter   |det  ̅ | correspond to actuator configurations that 

will have smaller force amplitude requirements than actuator configurations that produce larger 

values of  . 
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Returning the simply supported beam example in Figure 3-2 one can assume that a 

second dummy actuator is applied at a distance 𝑦 along the beam length; therefore by applying 

equation (2.9b) with appropriate substitutions of the modal shapes in Figure 3-2 one can obtain 

the transformation matrix  ̂  [
𝑠𝑖 (

𝜋𝑥

𝐿
) 𝑠𝑖 (

𝜋𝑦

𝐿
)

𝑠𝑖 (
2𝜋𝑥

𝐿
) 𝑠𝑖 (

2𝜋𝑦

𝐿
)
].  Then by taking the inverse of this matrix and 

performing the partitioning in accordance with equation (3.1) the controllability indicators in 

(3.5a) and (3.5b) can be solved to obtain:   1 (2cos (
𝜋𝑥

𝐿
))⁄   and   1 (𝑠𝑖 (

𝜋𝑥

𝐿
))⁄  (which are 

completely independent of the assumed location of the dummy actuator location 𝑦).  Using these 

indicators the “best” position 𝑥 of the actuator   1 for attenuating the two dominant modes of 

vibration can be evaluated.  In Figure 3-3 the values of   and   are plotted as a function of 

actuator position 𝑥 along the length of the beam 𝐿.  The figure demonstrates that as the location 

of the actuator approaches the midpoint of the beam (𝑥  𝐿/2) the value of the rate parameter 

approaches infinity ( → ∞) and as it nears the endpoints (𝑥   , 𝑥  𝐿) the effort parameter 

approaches infinity ( → ∞).  These singularity points correspond to actuator locations that 

result in an uncontrollable system.   

Recall that a value of  ≈ 1 and a “small” value of   is most desirable for good 

controllability.  As shown in Figure 3-3, the rate parameter is equal to unity (  1) when the 

actuator is positioned at 𝑥  𝐿/3 and 𝑥  2𝐿/3 (one third positions), indicating that these 

locations will provide similar damping rates for both modes of vibration.  Any change in position 

from the one third positions towards the beam midpoint will marginally decrease the effort 

parameter value, but rapidly increase the rate parameter value because control over the second 

mode of vibration rapidly decreases.  Conversely, any repositioning towards the endpoints will 

increase the effort parameter and reduce the rate parameter.  For practical purposes the third 
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points of the beam represent the “best” location for positioning the single actuator   1  for 

attenuating the first two modes of vibration. 

 
Figure 3-3.  Rate parameter   and effort parameter   as functions of actuator position 𝑥 along 

beam length 𝐿.    

By observing the controllability indicators, potential actuator configurations can be 

quickly assessed prior to proceeding with the more computationally intensive control stage 

described in Section 3.3.  Hence, several iterations of the structural stage may be required, as 

shown in Figure 3-1, in search of the “best” actuator configuration for a given system.  When a 

sufficiently “good” actuator configuration is obtained (determining the “best” configuration may 

be difficult or impossible for geometrically complex systems involving several modes of 

vibration and multiple actuators) the structural stage is completed.  The next stage of the 

CMSOC procedure is the control stage which is covered in Section 3.3.   
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3.3 Control Stage 

The control stage is represented in the lower right-hand box of flowchart in Figure 3-1. It 

involves three main steps: selecting initial and final boundary conditions and performance 

criteria as discussed in Section 3.3.1, solving the optimality conditions as discussed in Section 

3.3.3, and obtaining the closed loop feedback gains as discussed in Section 3.3.4.  The derivation 

of the optimality conditions is covered in detail in Section 3.3.2.  

3.3.1 Boundary Conditions and Performance Criteria 

The initial and final boundary conditions defined in the DOF-space in (2.7) may be 

transformed to modal-space through transformation (2.9a) along with the appropriate 

substitution from orthogonality condition (2.10a), to obtain: 

 ( )   𝑇  ( )    ,   ̇( )   𝑇  ̇( )    ̇     (3.6a) 

 ( 𝒇)   ,     ̇( 𝒇)         (3.6b) 

Note that operation (3.6a) is formally equivalent to the inverse of operation (2.9a) for a fully-

actuated system only.  The time-invariant close-loop control solution (  → ∞) is of primary 

interest for actively dampened structures and is typically dealt with in this thesis.  Formally the 

initial conditions are not required to obtain feedback gains for a closed-loop system; however for 

convenience, an arbitrary set of initial conditions (3.6a) can be assumed for obtaining the gains 

in a later step (Section 3.3.4).   

The modal-space equivalent of the performance index (2.8) is obtained by substituting 

(2.9a) and (2.9b) into equation (2.8) and applying the orthogonality conditions (2.10a) and 

(2.10b) to obtain: 

  1 2⁄ ∫  ( 𝑇   +  ̇
𝑇   ̇ +  

𝑇  )  → 𝑚𝑖  
∞

0
     (3.7) 
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Formally, the performance indices   in (3.7) and (2.8) are equivalent if the weighting matrices 

appearing in (3.7) are diagonal and equal to      ,      , and      1 where  ,  , and 

  are constant weighting terms that were previously defined in (2.8).  However, the diagonal 

weighting terms     ,     , and     (𝑖  1,… ,   ) in matrices   ,   , and   may be chosen 

arbitrarily as design parameters to “tune” the resulting system dynamics to produce a desired 

system response.   

3.3.2 Deriving Optimality Conditions 

The optimization problem with    independent actuators acting upon    modal variables 

is defined by equations of motion (2.12), with constraints (3.2), and performance index (3.7).  

The optimality conditions for this problem are derived from Pontryagin’s principle [28].  The 

modal variables in vector   and their corresponding velocities in vector  ̇ are treated as system 

state variables so the system’s Hamiltonian    takes the form: 

  1 2( 𝑇   +  ̇
𝑇   ̇ +  

𝑇  ) +   
𝑇⁄  ̇ +   

𝑇(−  ̇ −   +  ) +  𝑇    (3.8) 

The first bracketed term contains the integrand of the performance index (3.7), the second and 

third terms contain the system states related through equation (2.12), and the last term contains 

the constraint equations (3.2) arising due to under-actuation.  Vectors    and    are standard 

costate vectors that account for the modal states represented by vectors   and  ̇ respectively.  

Vector  𝑇  [ 1 ⋯  𝑛𝑐] represents a set of    time-varying Lagrange multipliers introduced 

to satisfy the constraints (3.2).  Pontryagin’s theorem states that for an optimal system motion the 

Hamiltonian   must be stationary with respect the states, costates, and modal controls [28].  

Following Pontryagin’s formulation, the costate equations take the form: 

 ̇  
𝜕 

𝜕 ⁄     +            (3.9a) 
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 ̇  
𝜕 

𝜕 ̇⁄     ̇ −   +            (3.9b) 

The Hamiltonian is stationary with respect to the modal controls if: 

𝜕 
𝜕 ⁄  −  +   +  

𝑇           (3.10) 

The costate vector    is obtained in terms of the modal variables in vector   and the Lagrange 

multipliers in vector   by rearranging (3.10) and making the appropriate substitution from (2.12) 

to obtain: 

    (  ̈ +   ̇ +   ) −  
𝑇          (3.11) 

By substituting vector    from (3.11) into (3.9b) the costate vector    is obtained in terms of 

vectors   and 𝝊 in the form: 

      ̇ −  (  ⃛ +   ̈ +   ̇) +   (  ̈ +   ̇ +   ) +  
𝑇 ̇ −   𝑇   (3.12) 

A set of optimality conditions defined in terms of modal variables and Lagrange multipliers is 

obtained by substitution of (3.12) into (3.9a) to obtain: 

  ̈̈ + (𝟐  −   −   
2) ̈ + (  2 +   ) − ( 

𝑇 ̈ −   𝑇 ̇ +   𝑇 )     (3.13) 

The    optimality equations (3.13) contain    unknown components in the vector of modal 

variables   and an additional    unknown components in the vector of Lagrange multipliers  .  

To solve for the total number of      +    unknowns in (3.13) the    additional constraint 

equations in the form (3.2) must be solved simultaneously with the equations (3.13).  However, 

the constraints must be written as a function of modal variables in vector   by substituting (2.12), 

so that the algebraic form in (3.2) is replaced by the differential form written as: 

 (  ̈ +   ̇ +   )            (3.14) 
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The modal variables in equations (3.14) are coupled by higher time derivatives.  Unlike the 

independent and redundant components of controls   that are related via equation (3.2), the 

independent components of modal variables in vector    cannot be separated analytically from 

the redundant modal variables in vector   .  In other words constraints (3.14) are formally non-

holonomic.  The total number of    equations in the form of (3.13) and (3.14) is equal to the 

number of unknowns in vectors   and  , and may therefore be solved.  Formally only the 

independent modal variables are required to determine the actuation forces through equation (3.4) 

with the necessary substitution from (2.12).  However, all modal variables are needed to 

determine the motion of any particular DOF from transformation (2.9a). 

 In summary, under-actuated systems are governed by the set of equations (3.13) and 

(3.14).  These equations are handled numerically by the CMSOC procedure and the details of the 

solution are discussed in the next section.   

3.3.3 Solving Optimality Conditions in the Control Stage 

The solution to the optimality equations (3.13) and the system constraints (3.14) is 

obtained using standard methods for obtaining exact solutions to dynamic systems involving 

higher order differential equations.  The symbolic differential operator         ⁄  is used to 

transform the system equations to a characteristic polynomial equation.  The differential operator 

is substituted into equations (3.13) and (3.14) and the result is organized into a compact matrix 

notation in the form: 

      ⇒  [
 − ̂𝑇

 ̌  
] [
 
 
]            (3.15) 

The expressions on both sides of the arrow in (3.15) are equivalent, but the expression on the 

right is shown in a partitioned form.  The vector   [ 𝑇  𝑇]𝑇 contains    (     +   ) 
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unknown modal variables in vector   and Lagrange multipliers in vector  .  The matrix    is 

partitioned into the upper-left sub-matrix   with diagonal terms    , the upper-right sub-matrix  ̂ 

with terms  ̂  , and the lower-left sub-matrix  ̌ with terms  ̌   (𝑖  1,… ,    and 𝑗  1,… ,   ).  

The lower right sub-matrix in    is of size   ×    and populated with zero-valued components.  

These partitioned sub-matrices are defined as: 

    4 + (𝟐  −   −   
2) 2 + (  2 +   )      (3.16a) 

 ̂   (  2 +   +  )         (3.16b) 

 ̌   (  2 −   +  )          (3.16c) 

Fully-actuated problems do not contain the sub-matrices  ̂ and  ̌ defined in (3.16b) and 

(3.16c) respectively.  Such problems have matrix    equal to submatrix   and there are no 

Lagrange multipliers required, so equation (3.15) reduces to     .  Furthermore, the diagonal 

operator   provides all the necessary equations       (𝑖  1,… ,   ) from which the four 

integration constants generated can be obtained directly from the boundary conditions (3.6a) and 

(3.6b) for the vibration mode under consideration.  This is consistent with the IMSC approach 

where the vibration modes of fully-actuated problems can be solved independently of each other, 

one by one, directly from the boundary conditions and optimality conditions. 

The characteristic equation for the system defined by (3.15) is a polynomial of   to the 

power of 4   (with the differential operator   replaced by an auxiliary variable  ), which takes 

the form:  

 𝑒 (  )|𝐷→𝑟
             (3.17) 
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The solution to the characteristic equation (3.17) involves roots    (𝑙  1,… ,4  ).  The 4   

roots of the characteristic equation may generally be complex numbers in the form: 

   ±  ± 𝑖  ,    1,… ,        𝑙  1,… ,4       (3.18) 

The positive real numbers    and    characterize the dynamics of the  -th mode of vibration.  If 

all roots    are unique complex numbers in accordance with (3.18) than a general solution 

function for the unknown modal variables and Lagrange multipliers in vector   is obtained in the 

below form: 

   ∑ {𝑒 𝛼𝑘 [   
1 𝑠𝑖 (   ) +    

2  𝑜𝑠(   )] + 𝑒
𝛼𝑘 [   

 𝑠𝑖 (   ) +    
4  𝑜𝑠(   )]}

𝑛𝑚
 =1  (3.19) 

Note that solution functions in the form (3.19) only apply to systems that have unique complex 

roots    in the form (3.18).  For problems with repeating roots not lying in the complex plane, 

alternative solution functions must be used (see Chapter 4 for an example). 

The solution function (3.19) is defined for each component    and each contains 4   

independent elementary functions.  There are 𝑗  1,… ,    solution functions    that relate to a 

corresponding modal variable   or a Lagrange multiplier  , such that       for 𝑗  1, … ,    

and       𝑛𝑚 for 𝑗    , … ,    (i.e.   [ 1 ⋯  𝑛𝑚  1 ⋯  𝑛𝑐]𝑇).  There are 4     

unknown integration constants    
1 ,    

2 ,    
 , and    

4  contained in the solution functions (3.19). 

Their values are obtained by substituting the assumed form into the optimality equations (3.13) 

and the constraint equations (3.14) and then applying the method of undetermined coefficients to 

generate    sets of 4   linear algebraic equations relating an equal number of unknown 

integration constants [29].  However, one differential equation, corresponding to 4   algebraic 

equations, in (3.13) and (3.14) must be replaced by the set of 4   boundary conditions in the 

form (3.6a) and (3.6b) to obtain a unique solution to the unknown integration constants.   
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In closed loop feedback control the motion of a system is continually driven to the null 

state, with zero displacements and velocities, in a time-invariant manner.  This scenario is typical 

for actively dampened structures, where vibrations are observed by sensors and relayed to 

actuators that act to reduce disturbances.  Therefore, the final boundary conditions are defined 

over an infinite maneuver time (  → ∞) and the solution functions in vector   must decay with 

increasing time.  This requires that the value of the integration constants    
  and    

4  in equation 

(3.19) be set to zero.  This reduces the number of unknown integration constants defining the 

solution functions by half and the resulting solution functions, with 2   unknown integration 

constants, take the form: 

   ∑ 𝑒 𝛼𝑘 [   
1 𝑠𝑖 (   ) +    

2  𝑜𝑠(   )]
𝑛𝑚
 =1 ,  𝑗  1,… ,      (3.20) 

The parameters    and    can be respectively interpreted as the vibration frequency and active 

damping associated with the  -th controlled mode corresponding to modal shape vector   .  

Any vibrations with the frequency    will be reduced to approximately 3-percent of the initial 

value after a time period of   
   3.5   ⁄ , referred to as the 3-percent settling time and 

corresponds to the  -th mode of vibration (i.e. 𝑒  .5 ≅  . 3).  The active modal damping ratio 

corresponding to the  -th mode is defined as        ⁄  and reflects how many oscillations 

should be expected in the  -th vibration mode before it effectively decays below a certain 

threshold.  As previously mentioned these steps are handled automatically using the MAPLE 

software and form the majority of the calculations involved in the control stage (as shown in the 

flowchart of Figure 3-1).   

3.3.4 Closed Loop Feedback Gains 

In closed loop feedback control, a system is equipped with a number of    sensors that 

relay output information on the system’s states to a processor that signals system actuation forces 



 

37 

 

to correct the disturbances in these states.  In general, the system’s output vector   can have    

components related to the positions and velocities of the DOFs in the form: 

     [    ] [
 
 ̇]     +    ̇       (3.21) 

Matrix   is partitioned into matrices    and    that are each of size   ×   and describe the 

placement of sensors related to position and velocity states in vector   [ 𝑇  ̇𝑇]𝑇 respectively. 

A simple feedback controller relays the system outputs contained in vector   and 

multiplies them by a set of constant valued gains that generate the actuation forces in vector    

in the form: 

   −   −    −     ̇  −   −    ̇      (3.22) 

Matrix  , of size   ×   , contains constant valued gains that when multiplied by positioning 

matrices    and   , each of size   ×  , produce matrices    and   , each of size   ×  .  The 

matrices    and    contain gains relating to positions and velocities, respectively.  As shown in 

the flowchart in Figure 3-1, these gains are easily obtained using the MAPLE software.  The 

process is simple because the actuator forces    and system response   were already obtained in 

the previous step of the control stage enabling the gains to be solved directly by using the 

method of undetermined coefficients on equation (3.22).  Alternatively, the gains may be solved 

by writing out equation (3.22) at a sufficient number of instances in time and solving the 

resulting system of equations for the unknown gains.   

The feedback relationship (3.22) may be substituted into the governing equations of 

motion (2.1) to obtain: 

  ̈ + ( +    ) ̇ + ( +    )          (3.23) 
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In the form (3.23), the gains matrix    affects the system stiffness and frequencies and the 

matrix    affects the attenuation properties.   

 Appendix B contains further discussion on the methods of obtaining gains with and 

without assuming initial conditions.  Also, a means of evaluating system observability for a given 

configuration of sensors in a system is discussed. 

3.4 Verification Stage 

The verification stage is represented in the bottom left hand box in the flowchart of 

Figure 3-1.  It utilizes the FEM model created in the structural stage to verify the system 

response that is obtained in the control stage.  The transient time-integrated responses of the 

DOFs subject to the attenuation forces    (obtained in the control stage), contained in vector 

    , are obtained using the ANSYS program.  The responses contained in      are then 

compared to the response   (obtained in the control stage) to ensure that the model is accurate 

and that the attenuating forces do not excite higher modes of vibration not considered in the 

control stage (spillover effects). 

For example consider the vibrating beam system in Figure 3-2.  Two modes were 

considered in the dynamics and they were to be controlled by the single actuator   1  located at 

the position 𝑥.  In general, the system motion actually contains an infinite number of other modes 

of vibration that were neglected in the control stage of the analysis.  Therefore the control stage 

cannot provide any information on how the third, fouth, and fifth, etc. modes would be affected 

by the actuation force   1.   

In the verification stage any number of these higher modes could be considered to 

determine the effect that the control force will have on them.  Say for this example that in the 

verification stage, the first three modes of vibration were included.  One could see that the time-
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integrated response     ≠   because the force   1  may excite vibrations related to the third 

vibration mode that will not be controlled.  If the level of un-attenuated motion exceeds an 

acceptable threshold than a new model that contains the additional mode(s) should be considered 

in the structural and control stages. 

The verification stage requires that the continuous time-varying functions   ( ), obtained 

in the control stage, be converted to a discrete time function   (   ) that can be applied to the 

transient FEM model at corresponding time steps and load steps.  This process is facilitated 

through an EXCEL spreadsheet that can be written to a text file that can be interpreted by the 

ANSYS software.  The details of this data manipulation and other issues concerning the selection 

of time steps, load steps, and applying initial conditions are covered in more detail in Chapter 5. 
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4. OPTIMAL MANUEVERS FOR GANTRY CRANE OPERATIONS  

4.1 Gantry Crane Model [22] 

The gantry crane problem is a simple under-actuated mechanical system involving two 

DOFs (  2).  It is used to explain some details of the structural stage and the control stage of 

the CMSOC procedure (see Figure 3-1).  The DOFs that define the system are the linear 

translation of a trolley and the rotation of a suspended load.  The translational DOF is actuated 

by a trolley driving force and the suspended load is free to rotate in a pendular motion (   

1,    1).  Any finite cart translations are permitted, but swings of the suspended load are 

assumed sufficiently small for a linear model to adequately represent the system dynamics.  The 

system model, shown in Figure 4-1, is a practical model for analyzing the dynamics of overhead 

crane operations [3,10]. 

The model parameters include: the mass of the trolley  , the mass of the suspended load 

𝑚, the swing angle of the load suspending cable  , and the displacement of the cart 𝑥.  The cable 

of length 𝐿 is assumed to be massless and rigid and the gravitational acceleration   is assumed to 

act in the same plane and perpendicular to the direction of trolley travel.  The control task is to 

maneuver the system from an initial resting state at a some non-zero horizontal distance at 

𝑥( )    and  ( )    to a final resting equilibrium state at the datum 𝑥(  )    and  (  )  

 .  The maneuver is controlled by the time-varying trolley driving force   .  A dummy actuator 

force    is assumed to act in the same direction of    but applied to the center-of-gravity of the 

suspended load to define the augmented gantry crane system. 
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Figure 4-1.  Gantry crane model. 

This same gantry crane model was considered in many papers.  In [3] a Lyapunov 

function was used to obtain an asymptotically stable (closed-loop) control (linear and non-linear) 

for attenuating disturbances (non-zero initial positions) in such a gantry crane system.  The 

optimal control for this same system was analyzed in [10].  The CMSOC approach will be tested 

against the methods applied in these papers and the results will be compared.  The gantry crane 

system shown Figure 4-1 and the coordinate system are chosen to be consistent with those used 

in [3].  The results and discussion presented in this chapter are more fully covered in [22]. 

The matrices and vectors characterizing the equations of motion (2.1) are: 

  [
 +𝑚 −𝑚
−𝑚 𝑚

] ,      [
  
 𝑚𝑔

𝐿

] ,      [
1 1
 −1

] ,      [
𝑥
𝐿 
] ,      [

  
  
] (4.1) 

To be consistent with the assumptions made in [3,10], and to concentrate on active damping 

characteristics, no dissipative effects are considered (  𝑶).  The initial and final conditions are 

chosen to be consistent with the system considered in [3] and are: 

 ( )  [
 
 
],   ̇( )   ̇(  )   (  )  [

 
 
]     (4.2) 

  

𝑚 

 ( ) 

𝑥    

𝑥( ) 

  

  

  ( ) 

   

𝑥    



 

42 

 

The two system DOFs (  2) are related to two modal variables (   2) via equation (2.9a) 

with frequencies and modal shapes obtained from the eigenvalues problem (2.11) to obtain: 

  [
  
 (1 + 𝑚

𝑀
)𝑔
𝐿

],    

[
 
 
 1

√𝑀+𝑚
√

𝑚

𝑀(𝑀+𝑚)

 √𝑀+𝑚

𝑀𝑚 ]
 
 
 

     (4.3) 

The first rigid body mode has a zero frequency ( 1   ) and the second pendular mode has the 

frequency  2  √(1 +
𝑚

𝑀
)𝑔
𝐿
.  The modal-space equation of motion (2.12) takes the uncoupled 

form written as: 

[
1  
 1

] [
 ̈1
 ̈2
] + [

  
 (1 + 𝑚

𝑀
)𝑔
𝐿

] [
 1
 2
]  [

 1
 2
]      (4.4) 

The transformation between the actuator forces (one real and one dummy) and modal controls in 

accordance with (2.9b) ( ̂   𝑻 ) may be obtained by making the appropriate substitutions 

from (4.1) and (4.3).  The inverse transformation can be written in the form (3.1), as: 

[
  
  
]   ̂ 1  

[
 
 
 𝑀

√𝑀+𝑚
√ 𝑀𝑚

𝑀+𝑚

 

√𝑀+ 
−√ 𝑀𝑚

𝑀+𝑚]
 
 
 

[
 1
 2
]  [

  
 
]      (4.5) 

Modal controls  1 and  2 are considered independent and redundant respectively.  The    1 

constraint equation is obtained from the bottom row of matrix  ̂ 1 in (4.5) in accordance with 

(3.3) to obtain: 

[1 −√𝑀

𝑚
] [
 1
 2
]   1 − √

𝑀

𝑚
 2          (4.6) 
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The constraint equation (4.6) may be applied to eliminate the redundant modal control  2 from 

the top row of operation (4.5) to obtain the drive force    as a function of only the independent 

modal control  1 in accordance (3.4).  This mapping, defined by the pseudo-transfer matrix 

 ̅  √ +𝑚, takes the scalar form: 

       ̅    √ +𝑚  1        (4.7) 

The performance index for the gantry crane system is assumed to take a form which is 

consistent with the general form given in equation (3.7).  The weighting matrices   ,   , and   

are assumed to have the diagonal weighting terms     ,  𝜈  , and     (𝑖  1,… ,   ) that penalize 

non-zero values of the system’s four states ( 1,  2,  ̇1,  ̇2) and two modal controls ( 1,  2) in the 

functional: 

  1 2⁄ ∫  (  11 1
2 +   22 2

2 +  𝜈11 ̇1
2 +  𝜈22 ̇2

2 +  11 1
2 +  22 2

2)  → 𝑚𝑖  
 𝑓
0

 (4.8) 

The Hamiltonian is defined in accordance with equation (3.8) and Pontryagin’s formalism is 

applied to obtain the set of    2 optimality equations in the form (3.13), written as: 

 11 ̈̈1 −  𝜈11 ̈1 +   11 1 −  ̈1          (4.9a) 

 22 ̈̈2 + (2 22 2
2 −  𝜈11) ̈2 + ( 22 2

4 +   22) 2 +√
𝑀

𝑚
( ̈1 +  2

2 1)     (4.9b) 

There is    1 Lagrange multiplier  1 that accounts for the constraint (4.6).  This constraint is 

written in accordance with (3.14), in the differential form: 

 ̈1 −√
𝑀

𝑚
( ̈2 + 2

2 2)            (4.10) 

In modal-space the boundary conditions in the form (3.6a) and (3.6b), are: 
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 1( )   √ +𝑚,  2( )   ̇2( )   ̇1( )    

 1(  )   2(  )   ̇1(  )   ̇2(  )          (4.11) 

Substituting the differential operator         ⁄  and adopting the matrix notation (3.15), the 

optimality conditions (4.9a) and (4.9b) and constraint equation (4.10) can be written as: 

    [
 − ̂𝑇

 ̌  
] [
 
𝝊
]  [

 1  − ̂11
  2 − ̂21
 ̌11  ̌12  

] [

 1
 2
 1
]         (4.12) 

The components contained in (4.12), consistent with equations (3.16a), (3.16b), and (3.16c), take 

the form: 

 1   11 
4 −   11 

2 +   11,        (4.13a) 

 2   22 
4 + (2 22 2

2 −   11) 
2 + ( 22 2

4 +   22)     (4.13b) 

 ̂11   ̌11   
2,   ̂21   ̌12  −√

𝑀

𝑚
( 2 +  2

2)     (4.13c) 

The characteristic equation (3.17) for the gantry crane system is an eighth order (4  ) 

polynomial equation in the form: 

 𝑒 (  )|𝐷→𝑟
  1 ̂21

2  ̌12
2 +  2 ̂11

2  ̌11
2 |

𝐷→𝑟
        (4.14) 

 
𝑀

 
( 11 

4 −   11 
2 +   11)( 

2 +  2
2)2 +  4 ( 22 

4 + (2 22 2
2 −   22) 

2 + ( 22 2
4 +   22))    

Eight roots are obtained from the characteristic equation (4.14).  The solution functions take the 

form of equation (3.19) when the roots are complex in the form (3.18).  This only applies to 

time-invariant problems where the maneuver time approaches infinity (  → ∞).  For maneuvers 

executed over a fixed time interval, zero valued roots are obtained and the solution functions 
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require modifications from that shown in (3.19) (see Section 4.2 for further explanation).  Note 

that maneuvers executed over a finite time cannot be implemented in a closed-loop control 

system, as they depend on the initial conditions. 

There are three solution functions that are assumed for the unknowns  1,  2, and  1.  

They depend on twenty-four unknown integration constants that are to be determined by 

substitution into optimality equations (4.9a) and (4.9b), and the constraint equation (4.10).  By 

relating the coefficients corresponding to each of the eight independent elementary functions (i.e. 

in (3.19) these take the form 𝑒(±𝛼𝑘± 𝛽𝑘) ) one obtains eight algebraic equations for each 

differential equation in the set (4.9a), (4.9b) and (4.10).  This gives a total of twenty-four linear 

algebraic equations relating the twenty-four unknown integration constants    
  to be solved.  

However, these twenty-four equations are linearly dependant.  To solve for the unknown 

constants, one complete set of eight algebraic equations (of the three obtained from (4.9a), (4.9b), 

or (4.10)) must be discarded and replaced with the complete set of eight boundary conditions 

(4.11). 

In this example, the CMSOC method will be used to obtain the optimal actuation forces 

needed to drive the gantry crane from the resting position at a non-zero translational position 

(𝑥   ,    ) to a resting position at the origin (𝑥   ,    ).  Four cases will be examined: 

A. An open-loop, fixed time interval maneuver that minimizes actuation forces. 

B. A time-invariant, closed-loop maneuver that reproduces the control presented in [3]. 

C. A time-invariant, closed-loop maneuver with improved response. 

D. A time-invariant, closed-loop maneuver of the fully-actuated system. 
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For each case, the numerical values for the physical constants defining the gantry crane system 

are assumed to be:   𝑚  1  , 𝐿  1𝑚,   9.8𝑚 𝑠2⁄ , and   −5𝑚.  These numerical 

assumptions are consistent with [3]. 

4.2 Case A: Open-loop, fixed time interval maneuver that minimizes actuation forces 

Case A considers the optimal maneuver that brings the gantry crane model from rest at a 

known initial position (𝑥   ,    ) to a resting position at the origin (𝑥   ,    ) in a finite 

time interval   .  Controls operating over a finite time-interval must be implemented in an open-

loop control system because the controls cannot be generated through sensor feedback.  The 

performance index is chosen to be identical with that presented in [10], which is in the form (4.8) 

with the weighting parameter selections:  11   22  1,   11    22    11    22   .  For 

this case, the optimal control minimizes: 

  ∫  ( 1
2 +  2

2)   
1

𝑀
∫    

2  → 𝑚𝑖  
 𝑓
0

 𝑓
0

      (4.15) 

The expression on the right of (4.15) is obtained by substitutions from equations (4.6) and (4.7).  

In qualitative terms, the performance index (4.15) favors controls that perform the maneuver 

using the smallest possible forces in the finite time   .  For this case, the maneuver time is 

somewhat arbitrarily chosen as    4𝑠. 

For this case, the characteristic polynomial equation from equation (4.14) reduces to: 

(1 +
𝑀

 
) ( 2 +  2

2)2 4           (4.16) 

The eight roots of equation (4.16) are:  1, … ,  8   , , , ,±𝑖 2, ±𝑖 2.  These roots correspond 

to  1   2   1    and  2   2  4.43 when written in the form (3.18).  Due to the zero 

valued roots and repeating roots the solution functions in (3.19) must be modified to the form: 
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    1 +  2  +     
2 +  4  

 + ( 5 +  7  ) sin( 2 ) + ( 6 +  8  )cos ( 2 ) (4.17) 

Each solution function    (𝑗  1,2,3 and recall that  1   1,  2   2,     1) contains eight 

unknown integration constants     (  1,… ,8), which are obtained through the method of 

undetermined coefficients.  Equation (4.17) is substituted into any two of three differential 

equations in the set (4.9a), (4.9b), or (4.10) and simultaneously solved with the eight boundary 

conditions (4.11).  With the values of the integration constants obtained, the modal variables and 

Lagrange multiplier solutions are known functions.  This stage of the solution was done 

automatically using MAPLE and yields the functions:  

 1  −7. 9 −  .1 4 + 1.41 
2 −  .235  +  . 235 sin(4.43 ) +  . 151cos (4.43 ) (4.18) 

 2  
1

100
[14.4 − 7.19 + ( .451 − 3.33 ) sin(4.43 ) + (−14.4 + 5.2  )cos (4.43 )] (4.19) 

 1  −2.82 + 1.41 −  .46 sin(4.43 ) −  .295cos (4.43 )    (4.20) 

The Lagrange multiplier function (4.20) is shown for completeness, but has no physical 

significance to the dynamics.  The modal control  1 is obtained by substitution of (4.18) into (4.4) 

to obtain: 

 1  2.82 − 1.41 −  .46 sin(4.43 ) −  .295 cos(4.43 )    (4.21) 

 The modal variable functions  1 and  2 in (4.18) and (4.19) are mapped to the DOFs 𝑥 

and   by transformation (2.9a) with substitution of the modal shape matrix from (4.3).  The 

actuation force    is obtained by substituting the modal control function  1 from (4.21) into 

equation (4.7).  These transformations take the form: 

𝑥  
1

√2
( 1 +  2),       √2( 2),         √2 1        (4.22) 
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The trajectories of 𝑥 and   are shown in Figure 4-2a and Figure 4-2b respectively and the 

actuation force    is plotted in Figure 4-2c. 

The maneuver brings the system from a resting position at 𝑥  −5𝑚 and     to a 

resting position at 𝑥    and     over a time interval of exactly 4 seconds.  The peak force 

amplitude required for the maneuver is approximately 3.6N and the maximum load swing angle 

is approximately 0.28rad (16°).  The optimal drive force essentially accelerates the trolley over 

the first half the maneuver and decelerates the cart over the last half with identical, but opposite 

and mirrored forces.  The oscillating frequency of the applied force corresponds with the 

pendular frequency of the suspended load. 

 
Figure 4-2.  Graphs of (a) trolley position, (b) load angle, and (c) trolley force for open-loop, 

fixed time interval maneuver (case A). 

For comparison the same plots of 𝑥,  , and    that were presented in [3] are shown in 

Figure 4-3.  This control has an effective maneuver time of   
   6𝑠, a maximum load rotation 

angle of 0.73rad (42°), and a peak drive force of approximately 15N. 

 

 

x[m]   [rad] aF [N] 

(a)  (b)  (c)  
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Figure 4-3.  Graphs of (a) trolley position, (b) load angle, and (c) trolley force for closed-loop  

control presented in [3]. 

Comparing Figure 4-2 and Figure 4-3, the open-loop control effectively performs the 

maneuver in a shorter period of time (   4𝑠 vs.   
   6𝑠), with much smaller peak force 

requirements (3.6N vs. 15N), and much smaller angles of oscillation (16° vs. 42°).  The open-

loop control brings the system to a complete stop after 4s, while the closed-loop control produces 

overshoot and the system takes longer to come to effectively come to rest.   

If the finite maneuver time for the open-loop control is extended (or shortened), the peak 

force requirement and maximum swing angle is reduced (or increased) by approximately   
 2.  

For example, if the open-loop control is modified to settle over the same effective period of time 

as the closed-loop control (   6𝑠) the maximum force is reduced to approximately 1.6N with a 

maximum swing of about 7°. 

An open-loop control performs a faster and more efficient maneuver.  However, such a 

maneuver is only possible when the initial positions and maneuver times are known in advance.  

Closed-loop control is necessary for active systems, where any disturbance is to be automatically 

attenuated (the initial position is unknown).  Closed-loop systems are of primary interest in this 

 

 

        

 

 

 

 

x [m]  [rad] aF [N] 

(a) (b) (c) 
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thesis and will be considered in the remaining examples.  Case B in Section 4.3 demonstrates 

how the CMSOC method is applied to analyze and simulate a closed-loop control for the gantry 

crane system to reproduce (approximately) the dynamics produced in [3] that were plotted in 

Figure 4-3. 

4.3 Case B: Time-invariant, closed-loop maneuver that reproduces the dynamics presented 

in [3] 

A closed-loop control can perform the same task as the open-loop control (case A); 

however, it does so automatically, without prior knowledge of initial conditions.  Any 

disturbance that causes the gantry crane to deviate from its resting configuration at the origin 

(𝑥   ,    ) is automatically observed (i.e. by sensors) and the signal is relayed through a set 

of constant gains to generate a cart-driving force    that attenuates the disturbance.   

In general, to simulate a closed-loop system analytically the maneuver time    becomes 

theoretically infinite and all disturbances are driven asymptotically to zero.  For the gantry crane, 

this requires that all roots of the characteristic equation (4.14) be non-zero complex numbers in 

the left half of the complex plane (unlike the open-loop system of case A, which contained zero 

roots and purely imaginary roots).  It can be verified that the weightings   11 and   22 in the 

performance index (4.8) must be non-zero for asymptotically stable roots. 

Through trial and error, the control system that was given in [3] may be approximately 

reproduced by choosing the weightings in the performance index (4.8) with the values:        

  11  4.5,   22  42,   11    22   ,  11   22  1.  Therefore, the characteristic 

polynomial equation (4.14) has eight roots that take the complex form (3.18), with real and 

imaginary parts given as: 

 1   .853 ,   1   .856,    2   .513,   2  4.46  (4.23) 
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The parameters  1 and  1 respectively, are related to the active damping rate and frequency of 

the mode related to the rigid body translation of the trolley, whereas the parameters  2 and  2 are 

reflective of the damping and frequency of the higher frequency mode corresponding to the load 

swinging.  Note that the oscillation frequency of the second mode for the damped system is 

approximately equal to that of the undamped system ( 2 ≅  2). 

Like case A, modal variables  1 and  2 are determined by substituting the parameters 

from (4.23) into an assumed solution form and then solving for the unknown coefficients by 

comparing similar terms in two of the three optimality/constraint equations (4.9a), (4.9b), and 

(4.10), and by substituting the boundary conditions (4.11).  Unlike case A, the closed-loop 

problem requires that only half as many integration constants be obtained, because the 

coefficients of exponential growth functions (𝑒𝛼𝑘 ) are null-valued.  The assumed solution 

functions take the form given in (3.19).  The modal variable functions  1 and  2 are listed below 

along with the modal control  1. 

 1  𝑒
 𝛼1 (−7.7 sin( 1 ) − 7. 8cos ( 1 )) + 𝑒

 𝛼2 (12.6 sin( 2 ) −  .564cos ( 2 )) 1  ⁄  (4.24) 

 2  𝑒
 𝛼1 (− .565 sin( 1 ) +  .534cos ( 1 )) + 𝑒

 𝛼2 ( .149 sin( 2 ) −  .534cos ( 2 )) (4.25) 

 1  𝑒
 𝛼1 (−1 .3 sin( 1 ) + 11.3cos ( 1 )) + 𝑒

 𝛼2 (−2.44 sin( 2 ) −  .686cos ( 2 )) (4.26) 

Using the appropriate transformations from equations (4.22), the modal-space variables in 

equations (4.24-4.26) can be mapped into corresponding DOFs.  It can be verified that the 

resulting system trajectories and the optimal trolley drive force are practically indistinguishable 

from the plots shown in Fig. 4-3, which were presented in [3]. 
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The gantry crane system’s feedback relationship, in the form of equation (3.22), produces 

the active trolley driving force from sensor feedback from the trolley’s states (𝑥, 𝑥̇) and 

suspended load’s states ( ,  ̇) in the form: 

   −𝐺 11𝑥 − 𝐺 12𝐿 − 𝐺 11𝑥̇ − 𝐺 12𝐿 ̇      (4.27) 

The states of the suspended load are multiplied by the constant length of the rope 𝐿 so that all the 

gains share similar units and for consistency with the system presented in [3].  The closed-loop 

gains for the gantry crane system discussed in [3] were published as: 

   [𝐺 11 𝐺 12]  [3.   .71 ],    [𝐺 11 𝐺 12]  [3.69 − .87 ] (4.28) 

Substituting the modal-space transformations (4.22) into equation (4.27), along with the 

appropriate substitutions of the functions shown in (4.24-4.26), the terms related to the four 

independent elementary functions can be grouped to obtain: 

𝑒 𝛼1 sin( 1 ) [−14.6 − 5.85𝐺 11 + 8.95𝐺 11 −  .799𝐺 12 +  . 352𝐺 12] +

𝑒 𝛼1 cos( 1 ) [16. − 4.63𝐺 11 − 1. 6𝐺 11 +  .755𝐺 12 − 1.33𝐺 12] +

𝑒 𝛼2 sin( 2 ) [−3.45 +  .195𝐺 11 + 1.56𝐺 11 +  .211𝐺 12 + 3.26𝐺 12] +

𝑒 𝛼2 cos( 2 ) [− .97 −  .374𝐺 11 + 1. 6𝐺 11 −  .755𝐺 12 + 1.33𝐺 12]    (4.29) 

Equation (4.29) requires that each of the square-bracketed terms be equal to zero for the 

equation to be satisfied at all times  .  Each bracketed term contains an independent linear 

algebraic relationship producing four equations to be solved for the four unknown gains.  This 

system of equations can be solved to obtain: 

   [𝐺 11 𝐺 12]  [3.   .732],    [𝐺 11 𝐺 12]  [3.66 − .924] (4.30) 
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Though initial conditions were assumed in determining the trajectories of 𝑥 and   and force   , it 

can be verified that the gains in (4.30) remain invariant with respect to changes in these assumed 

conditions. 

Comparing the gains in (4.28) and (4.30) demonstrates that the CMSOC method can 

closely reproduce the control presented in [3] through careful selection of the weighting 

parameters in performance index (4.8).  However, the dynamic performance of the gantry crane 

maneuver may be “improved” through a different selection of the performance index weighting 

parameters.  Case C in Section 4.4 demonstrates how the gantry crane maneuver can be modified 

to produce faster convergence without an increase in the required peak actuation forces.  

4.4 Case C – A time-invariant, closed-loop maneuver with improved response 

In case B the CMSOC approach was used to demonstrate how the linear gantry crane 

control system presented in [3] could be reproduced by trial and error selection of the 

performance index parameters in equation (4.8).  It was found that the resulting performance 

index had zero valued weighting parameters   11    22   ; these weighting parameters 

penalize the velocity states ( ̇1 and  ̇2) in the optimization problem.  Therefore, the optimal drive 

force was devoted to reducing the non-zero positions of the trolley and load and no penalty was 

associated with  reducing their non-zero velocities.  This is ineffective because the pendulum 

action of the suspended load oscillates between states of maximum potential energy ( →

𝑚 𝑥,  ̇   ) and states of maximum kinetic energy (   ,  ̇ → 𝑚 𝑥).  Failure to include the 

velocity states in the performance index produced a maneuver, as shown in case Figure 4-3, that 

caused the trolley to overshoot its target and result in large persistent load swings.  These 

problems are mitigated by a more careful choice of the performance index weighting parameters 

in (4.8). 
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There is a direct relationship between the angle of the load rotation and the second modal 

variable  2 (  √2 2), such that the load swing angle trajectory is directly affected by varying 

the weighting values given to the terms containing modal variable  2 (  22) and its derivative  ̇2 

(  22) in the performance index (4.8).  On the other hand, the speed at which the cart can be 

made to approach the final position is affected through variation of the weighting values given to 

terms containing modal variable variable  1 (  11) and its derivative  ̇1 (  11). 

The effect of various choices of the performance index parameters are studied in detail 

for the gantry crane system in [22].  Through a trial and error selection process, the weighting 

parameters   11,   22,   11, and   22 were varied to study the ‘best’ combination for producing 

a quick and effective maneuver with the weighting parameters  11 and  22 held constant at a 

value of unity.  The ‘best’ combination was found to be:   11  6,   22  5 ,   11  4, 

  22  5 , and  11   22  1. 

Similar to case B in Section 4.3, the characteristic polynomial equation (4.14) has eight 

roots that take the complex form (3.18), with real and imaginary parts given as: 

 1  1.63,   1   .661,   2  1.31,   2  1.65  (4.31) 

In comparison to case B, the damping coefficients  1 and  2, have increased by 91-percent and 

156-percent respectively.  Also the frequency of the higher mode  2 has decreased by 63-percent 

to a frequency well below that of the undamped system ( 2 ≠  2), meaning that the active 

control has significantly affected the pendular frequency. 

 Figure 4-4a shows the trolley position 𝑥, Figure 4-4b displays the suspended load 

rotation  , and Figure 4-4c plots the trolley drive force    for 8s of the maneuver.  The control 

results in a maximum swing angle of 0.45rad (25.8°) and the trolley effectively reaches the target 
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in   
   3.5𝑠.   The trolley performs the maneuver in a single load swing cycle without 

persistent oscillations and overshoots upon reaching the target position.  The peak trolley drive 

force is 17.3N, which is relatively close in comparison with case B (15N).   

 
Figure 4-4.  Graphs of (a) trolley position, (b) load angle, and (c) trolley force for closed-loop, 

time-invariant maneuver (case C). 

In comparison with the control presented in [3] (see Figure 4-3), the dynamics of case C, 

shown in Figure 4-4, have several key differences.  The trolley reaches the target more quickly, 

the load swings are smaller and attenuated faster, and the required peak forces are only 

marginally larger.  The closed loop gains  in the feedback relationship (4.27) are: 

   [𝐺 11 𝐺 12]  [3.46 9.1 ],    [𝐺 11 𝐺 12]  [5.43 1.79]  (4.32) 

The value of the gains 𝐺 11  and 𝐺 11, influencing the proportion of the control force that is 

related to the trolley position and velocity respectively, are similar in magnitude to case B (see 

equation (4.28)).  However, the value of gains 𝐺 12 and 𝐺 12, influencing the proportion of the 

control force that is related to the load swing angle and velocity respectively, differ significantly 

(with different orders of magnitude and opposite signs).  In case C more effort is applied to 

attenuate the load swing angle and velocity producing a more efficient overall maneuver. 
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 Case D, in Section 4.5, considers the gantry crane system with an additional actuator 

located at the center of gravity of the suspended load to illustrate how the CMSOC approach can 

be applied to fully-actuated systems.  It is shown that such a system can perform the control task 

more quickly and effectively.  

4.5 Case D – A time-invariant, closed-loop maneuver of the fully-actuated system. 

The CMSOC method can always be extended to the analysis and simulation of fully-

actuated systems.  This is illustrated by considering the gantry crane system presented in Figure 

4-1 with both actuators    and    acting as real actuators (no dummy actuator).  The problem is 

fully-actuated so there are no additional constraints on the system’s motion and hence no 

Lagrange multipliers needed to enforce them.  The optimal trolley drive force    and guiding 

force    can be solved for by calculating the inverse dynamics directly from (2.9b), which is 

written as: 

    ̂
 1 ⇒ [

  
  
]  

[
 
 
 𝑀

√𝑀+𝑚
√ 𝑀𝑚

𝑀+𝑚

 

√𝑀+ 
−√ 𝑀𝑚

𝑀+𝑚]
 
 
 

[
 1
 2
]      (4.33) 

In the matrix notation (3.15), the optimality equations take the form: 

    [ ][ ]   ⇒ [
 1  
  2

] [
 1
 2
]          (4.34) 

The matrix components  1 and  2 in (4.34) take the form: 

 1   11 
4 −   11 

2 +   11        (4.35) 

 2   22 
4 + (2 22 2

2 −   22) 
2 + ( 22 2

4 +   22)     (4.36) 

The weighting values in equation (4.35) and (4.36) are selected to be identical to case C (  11  

6,   22  5 ,   11  4,   22  5 ,  11   22  1).  The characteristic equation for the 
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problem in the general form (3.17) is obtained ( 1 2|𝐷→𝑟   ) and solved to obtain four roots 

taking the general form (3.18) with real and imaginary components written as: 

 1  3.62,   1  2.78,   2  1.49,   2   .474  (4.37) 

Since the system is fully-actuated, each modal variable    is independently controlled by a 

corresponding modal control   , which produces uncoupled solution function in the form: 

   𝑒
 𝛼  (  

1𝑠𝑖 (   ) +   
2 𝑜𝑠(   ))        (4.38) 

The four unknown integration constants   
 
 (i = 1,2 and j=1,2) are obtained by directly 

substituting the four initial conditions given by (4.11).  The modal variables in the form (4.38) 

are mapped into DOF-space through equations (4.22) to obtain the system trajectories 𝑥 and   

and the control forces applied at the cart   and at the suspended load   .  Figure 4-5a and Figure 

4-5b contains graphs of the trolley position and active forces respectively over a time period of 

2s.  A plot of suspended load rotation is trivial, as the suspension rope remains vertical 

throughout the maneuver ( ( )   ).  Practically, this means the actuator acting on the 

suspended load must prevent any swinging of the load while the trolley translates.   

 

Figure 4-5.  Graphs of (a) trolley position and (b) driving forces for the fully-actuated gantry 

crane system (case D). 

 

   

  

x [m] 

(a) (b) 

  ,    [m] 
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The trolley effectively converges with the target position after   
    .78𝑠, and the task 

requires identical forces to drive the trolley and suspended load with a peak force of 104N.  The 

trolley and suspended load move with identical velocities as a single rigid body, as it does not 

swing as it travels.  The peak forces required are considerably larger than in previous cases; 

however, these could be reduced by increasing the value assigned to weighting parameters  11 

and  22 in the performance index (4.8). 
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5. DISTRIBUTED-MASS PLANE FRAME PROBLEM 

5.1 Plane Frame Model [21] 

In this example, the CMSOC approach is used to analyze and simulate an actively 

dampened structure consisting of three levels of beams rigidly connected to columns.  All three 

stages of the CMSOC method are implemented and discussed in this example (see flowchart in 

Figure 3-1).  In the structural stage, the effectiveness of certain configurations of actuators are 

indicated by the controllability parameters   and  , introduced in equations (3.5a) and (3.5b), 

which indicate if excessive attenuation times or prohibitively large force requirements are 

expected.  In the control stage the system response and active forces are calculated confirming 

the validity of the controllability parameters.  Lastly, in the verification stage, the controls are 

simulated with a transient FEM model to verify that the system response is consistent with the 

results of the control stage.  Also in the verification stage, spillover effects from higher modes 

are detected.   

The distributed-mass three level plane frame structure under consideration is shown in 

Figure 5-1a.  All connections between the beams and columns are assumed to be rigid (angles 

between intersecting members remain unchanged when loaded) and all members with the 

exception of the topmost member have identical cross sections and material specifications.  The 

members are modelled based on aluminum material (  71.7𝐺𝑃 ,   28    /𝑚 ) with a 

cross sectional area of 76𝑚𝑚2 linear mass of  .2128  /𝑚 and an area moment of inertia of 

4585𝑚𝑚4.  The topmost horizontal member is rigid and weighs 1  .  The properties of this 
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frame were chosen somewhat arbitrarily to obtain a particular pattern of vibration modes that are 

effective at illustrating the CMSOC approach. 

An FEM model of the frame was created using the ANSYS software.  Two-dimensional 

beam elements, each of 2  𝑚𝑚 length (five elements per member), make up the bottom eight 

members of the frame and a rigid mass element was used for the topmost member.  The locations 

of several key nodes that are relevant in future discussions are indicated in Figure 5-1a.  The 

initial displaced configuration of the structure was chosen to provide adequate disturbance of all 

modes and is represented by the dashed line in this figure.  The response of the system will be 

described by the horizontal and vertical displacements,  𝑥
 
 and  𝑦

  
 respectively, where the 

superscript 𝑝 denotes the node number under consideration.  A modal analysis was performed in 

ANSYS and the resulting modal shapes of the four dominant vibration modes, with natural 

frequencies      2𝜋⁄  (i=1,2,3,4), are shown in Figure 5-1b.   
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Figure 5-1.  (a) The plane frame and (b) its four dominant mode shapes and frequencies. 

The CMSOC method was used to simulate the actively dampened structure for a variety 

of actuator configurations employing one or two actuators.  The dynamics of the frame system 

was considered for three or four significant modes of vibration.  Actuators were assumed to exert 

equal and opposite axial forces on their points of attachment to the frame.  The mass and 

stiffness of actuators were not considered and all passive damping effects were ignored in the 

model to emphasize the active damping.  In Figure 5-2, the actuator configurations that were 

examined, as well as the number of modes that were considered, are shown.  Each actuator 

position is labelled by    (𝑖  1,… ,5) and the two nodes where they are connected are denoted 
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accordingly.  The effect of actuator configuration on system controllability is the primary 

motivation for studying each case. 

Figure 5-2.  Seven cases with different actuator configurations and the number of modes    to 

be considered for each case. 

In cases 1, 2, and 3 actuators  1,  2, and    act to attenuate the first three modes of 

vibration, respectively.  In cases 4 and 5, actuators  2 and  4, respectively, act to attenuate the 

first four modes of vibration.  In cases 6 and 7, two-actuator combinations,  2- 5 and  2-  , 

respectively, attenuate the first three modes of vibration. 

The frame structure is assumed to be initially displaced such that the modal variables take 

initial values of: 

 1( )   . 5,   2( )   .  5,    ( )   .  45,   4( )   .  4 (5.1a) 

 ̇1( )   ̇2( )   ̇ ( )   ̇4( )          (5.1b) 

Note that these initial displacements may be chosen arbitrarily, but those chosen in (5.1a) were 

chosen to produce somewhat physically reasonable displacements.  In DOF-space the initial 
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frame position described by (5.1a) and (5.1b) is a stationary deformed shape that is shown by the 

dotted line in Figure 5-1a (not to scale) with initial displacements of: 

 𝑥
27  38. 1𝑚𝑚,          𝑥

7  28.38𝑚𝑚,             𝑦
24  −5.74 𝑚𝑚    (5.2) 

The optimization problem is defined by the performance index (2.8) with the weighting 

coefficients taken as:       1.  In other words, equal weight is given to minimizing the 

terms relating to the frame’s potential energy, kinetic energy, and actuator work respectively.  

The maneuver time is theoretically infinite (  → ∞) because only the time-invariant system is 

considered.  

In Sections 5.2, 5.3, and 5.4, the procedure and results of the structural stage, control 

stage, and verification stage, respectively, are covered for the cases shown in Figure 5-2.  The 

structural stage and control stage are covered in detail for case 1 only and the results of the 

remaining cases are listed for discussion.  More complete results of the structural stage and 

control stage for each of the cases are covered in [21].  The verification stage is demonstrated for 

the actuator configuration shown in case 2. 

5.2 Structural Stage 

Some results of the structural stage are presented for the seven cases in Table 5-1, but 

only case 1 is covered in detail.  In case 1, the first three dominant modes of vibration are 

attenuated by a single actuator  1 located between nodes 18 and 27.  The characteristic 

dimensions of the problem are:    1,    3,    2,    5.  Dummy actuators are chosen in 

the locations of actuators  2 and   , which are located between nodes 7 and 13 and nodes 2 and 

12 respectively (see Figure 5-2).  The transformation equations (3.1) are: 

 ̂   ̂ 1  [
  
  
]  [

 ̃  ̃ 
    

] [
  
  
]  [

−1.34  .69 − .325
−1.87  .127  .383
−2.1 − .669 − .267

] [

 1
 2
  
]  [

 1
 
 
]     (5.3) 
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The dashed lines appearing on the right hand side of equation (5.3) denote partitions between the 

sub-matrices and sub-vectors that divide the vectors  ̂ and   and matrix  ̂ 1.  The two bottom 

rows of the matrix  ̂ 1, containing sub-matrices    and    are combined and normalized in 

accordance with (3.3) to obtain: 

  [ 1  .171
1  .859

]         (5.4) 

Manipulating the sub-matrices in (5.3) in accordance with (3.4) gives the pseudo-transfer matrix 

 ̅ .  It defines the mapping between the single independent modal control     1 and the 

single actuator force     1 which takes the form: 

 1   ̅    −7.59 1         (5.5) 

The pseudo-transfer matrix  ̅  −7.59 takes a scalar value in this case, as it only involves a 

single actuator.  The rate parameter   and effort parameter   are obtained from operation (3.5a) 

and (3.5b) as: 

  | 𝑒   |   .147,    | 𝑒  ̅ |  7.59     (5.6) 

Recall that having the rate parameter   ‘close’ to unity indicates that the actuator configuration is 

well positioned to attenuate all modes of vibration with similar attenuation rates.  Also, having 

the effort parameter   at a ‘small’ value minimizes the peak force amplitudes.  The subjective 

meaning of the terms ‘small’ and ‘close’ will be illustrated in this example.  The rate parameter   

and effort parameter   are summarized for each case in Table 5-1. 
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Table 5-1.  Rate parameter   and effort parameter   for cases 1 to 7. 

Case Number Rate Parameter,   Effort Parameter,   

1 0.147 7.59 

2 0.171 4.21 

3 0.273 5.53 

4 393 4.21 

5 0.163 5.50 

6 0.347 74,500,000 

7 0.242 5.20 

 

Cases 1, 2, and 3 are expected to adequately control the first three modes of vibration 

based on the rate parameter values obtained in Table 5-1.  Of these cases, case 3 is expected to 

have the best overall attenuation rate because it has a rate parameter value closest to unity.  In 

case 4, four modes of vibration are considered and the rate parameter takes an extremely large 

value.  This indicates that poor attenuation of the fourth mode of vibration should be expected.  

Intuitively, this is because actuator  2 is poorly positioned with respect to the fourth mode of 

vibration because it is attached at points that do not undergo displacements in that modal shape.  

The actuator location in Case 5 is expected to have much better control over all four modes of 

vibration, as indicated by the rate parameter value similar to those obtained in cases 1, 2, and 3. 

Cases 6 and 7 involve two actuators working simultaneously to attenuate the disturbance. 

Case 6 offers an example of poor positioning of two actuators for controlling the three dominant 

modes of vibration.  The reason is somewhat more complicated than in case 4 and will be 

discussed later, but note that the problem is indicated by the extremely large effort parameter in 

Table 5-1.  Case 7 is a better configuration of two actuators for controlling the three dominant 

modes, as reflected by the reduction in the effort parameter to a value more consistent with the 

first five cases. 
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5.3 Control Stage 

 The results of the control stage are discussed in detail for case 1.  For the sake of 

discussion only the plots will be presented for the remaining cases.  The optimality and 

constraint equations for case 1 are written in the form of equations (3.13) and (3.14), respectively, 

giving: 

 ̈̈ +   
2 ̈ + 2  

4   𝐴1   
2( ̈1 +   

2 1) + 𝐴2   
2( ̈2 +   

2 2),  𝑖  1,2,3 (5.7) 

𝐴 1( ̈1 +  1
2 1) + 𝐴 2( ̈2 +  2

2 2) + 𝐴  ( ̈ +   
2  )   ,  𝑗  1,2  (5.8) 

The optimality equations (5.7) and the constraint equations (5.8) are written with the differential 

operator      /    and substituted into the matrix notation (3.15) to obtain a characteristic 

equation in the form (3.17).  The roots of this characteristic equation are complex numbers in the 

form (3.18) with the real and imaginary components: 

 1  7.31
 1  27.7

   
 2  5 .4
 2  117

  
   62.2
   214

     (5.9) 

The modal frequencies    2𝜋   (frequencies    are shown in Figure 5.1b) are approximately 

equal to the parameter    given in (5.9), indicating that the active controls do not significantly 

alter the frame’s passive vibration frequencies.  The 3-percent settling times for each mode are: 

 1
    .479𝑠,   2

    . 694𝑠,    
    . 563𝑠  (5.10) 

The effective settling time     is the time required for all controlled modes of vibration to decay 

to 3-percent of their initial value; therefore the slowest-damped vibration mode governs.  In 

Figure 5-3 the plots of the system dynamics for case 1 confirm visually that oscillations with the 

second and third frequencies are negligible after approximately 0.07s, while those with the first 

frequency persist until approximately 0.5s. 
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Figure 5-3.  (a,b,c) Plots of modal variables, (d,e,f) modal controls, (g) actuation force, and (h,i)  

displacements over 0.6s of the maneuver (case 1). 

The dynamic behaviour for case 1 is plotted in Figure 5-3 for the first 0.6s of the 

maneuver.  Though only the first three modes of vibration are actively attenuated, the effect of 

the fourth uncontrolled modal variable is included in the response plots by including the function 

 4( )   4( ) 𝑜𝑠( 4 ) when transferring the dynamics of the frame into DOF-space.  However, 
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due to its shape (see Figure 5-1b), it does not visibly contribute to the horizontal nodal 

displacements  𝑥
27 and  𝑥

7 (see Figure 5-3h), but it does however have a significant impact on the 

vertical displacement  𝑦
24 (see Figure 5-3i).  The actuation force  1 has a peak value of 131N 

(see Figure 5-3g).  

To solve the dynamics of the system, as shown in the plots of Figure 5-3, the following 

steps are performed.  Step 1: The solution functions (3.20) are substituted into the    3 

optimality equations (5.7) and    2 constraint equations (5.8) with the numerical values from 

(5.9).  Step 2: The method of undetermined coefficients is applied to obtain 2     3  linear 

equations relating thirty unknown integration constants    
1  and    

2  (  1,2,3 and 𝑗  1,2):  

2(  )
2  18 constants define the     3 modal variables    and 2     12 constants 

define the    2 Lagrange multipliers   .  Step 3: To render a set of 30 linear equations that can 

be solved to determine the unknown integration constants, 2   6  initial conditions (5.1a) and 

(5.1b) (initial conditions pertaining to  4 are ignored for this case) must replace one set of 

2   6 equations obtained in the previous step.  Step 4: The unknown coefficients are solved 

for and substituted into (3.20) to obtain the desired time varying functions describing the 

dynamics of modal variables, modal controls, actuation force, and response of any DOF of 

interest.  All steps in this solution process, including the matter of obtaining all unknown 

integration constants, is handled automatically using the symbolic mathematical capabilities of 

MAPLE software.  A sample of the MAPLE commands used for this example is provided in 

Appendix A. 

Table 5-2 summarizes some key dynamic characteristics for the seven cases shown in 

Figure 5-2.  The modal dampening parameters   , frequencies   , effective settling times    , and 

peak actuation force amplitudes are given for each case in Table 5-2. 
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Table 5-2.  Modal damping parameters   , frequencies   , effective settling time    , and peak 

force amplitude(s). 

Case 

#  
          (s) Peak force(s) (N) 

i=1 2 3 4 i=1 2 3 4   

1 7.31 50.4 62.2 - 27.7 117 214 - 0.479  1  131 
2 12.9 9.26 88.7 - 27.5 113 219 - 0.378  2  121 
3 10.7 46.1 45.6 - 27.7 114 217 - 0.326    131 
4 12.9 9.26 88.7 0.0366 27.5 113 219 461 95.6  2  33  
5 12.4 7.48 79.0 87.8 27.5 113 222 458 0.468  4  24  
6 18.2 26.1 133 - 27.1 115 214 - 0.193  2   5  2(1 

9) 
7 16.8 45.3 115 - 27.3 116 213 - 0.209  2  7 ,    76 

 

The key dynamic characteristics from Table 5-2 are in agreement with the controllability 

indicators obtained in the structural stage, listed in Table 5-1.  The first three cases attenuate the 

disturbance with similar damping rates, attenuation times, and force requirements, with case 3 

marginally providing the shortest effective settling time of these cases (     .326𝑠).  Case 4, 

which uses the same actuator as case 2 ( 2), struggles to attenuate the fourth mode of vibration 

(while damping the first three modes identical to case 2) and requires a larger peak force in doing 

so.  The system oscillates with the fourth mode for     95.6𝑠; this is approximately 250 times 

longer than it takes to effectively attenuate the other modes.  This was expected from the large 

value of   in Table 5-1.  In case 5, the actuator  4 is better able to dampen the fourth mode with 

only a slight reduction in the damping of the other three modes in comparison to case 4.  The 

effective settling time is reduced to      .468𝑠 and the maximum actuator force amplitude 

decreases. 

Case 6, employing actuators  2 and  5, is able to attenuate the three dominant modes of 

vibration quickly, but the forces required are approximately seven orders of magnitude larger 

than in cases 1 to 3.  This was expected in the structural stage from the large value of   in Table 

5-1.  Case 7, employing actuators  2 and   , is better suited to controlling the three modes of 
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vibration, as it achieves similar damping characteristics as case 6, but with much smaller force 

requirements.  Note that the rate of attenuation is faster and the maximum force requirements are 

lower in case 7 in comparison to cases 2 and 3, which employed the same actuators acting 

individually.  In all cases the dampened system frequencies    are relatively unchanged and 

approximately equal to the passive system frequencies    (   2𝜋  ). 

In Figure 5-4, the actuator forces and displacement  𝑥
7 (horizontal displacement at node 7) 

are plotted for cases 1, 2, and 3 over a period of 0.6s.  These plots confirm that cases 1 to 3 are 

similarly capable of attenuating the frame’s first three modes of vibration, with similar peak 

force requirements.   

 
Figure 5-4.  Optimal control force (left) and DOF response  𝑥

7 (right) for (a) case 1, (b) case 2, 

and (c) case 3. 

In Figure 5-5, the displacement responses  𝑥
7 and  𝑦

24 are plotted for case 4 in Figures 5-

5a and 5-5b respectively, over a maneuver time of 0.6s.  Figure 5-5c and 5-5d show the active 

force  2 over a time period of 0.6s and 100s respectively.  The long time period in Figure 5-5d is 
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shown to better demonstrate the decay period required to dampen the fourth mode to 3-percent of 

its initial magnitude ( 4
   95.6𝑠).  Note that in a real structure this mode would dissipate due to 

passive damping effects, but in these examples such effects were ignored to emphasize active 

damping. 

 
Figure 5-5.  (a) DOF responses  𝑥

27 and (b)  𝑦
24 and control force  2 for a period of (c) 0.6s and 

(d) 100s (case 4). 

The vertical displacement  𝑦
24 is very sensitive to the fourth mode of vibration and the 

plot in Figure 5.5b demonstrates that this mode is very poorly attenuated.  Note that the 

horizontal displacement  𝑥
7 in Figure 5.5a is affected by the fourth mode of vibration, which is 
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not the case when the fourth mode is left un-attenuated, producing a plot similar to Figure 5-3h 

for case 1.  The reason is that, although the location of the DOF  𝑥
7 is a stationary point in the 

fourth mode of vibration (see Figure 5-1b), when the actuator attempts to control the fourth mode 

of vibration, its action causes oscillations with the fourth mode frequency at this location of the 

structure.  Essentially the controlled dynamics are dominated by the fourth mode of vibration 

which vibrates at a frequency of 73.4 𝑧 (461    𝑠⁄ ).  After a short initial maneuver time the 

first three modes of vibration are effectively dampened and the remaining control effort is 

devoted to attenuating the persistent fourth mode.   

Plots similar to those of Figure 5-5 are obtained if actuators  1 or    is substituted in lieu 

of actuator  2 to control the four dominant modes of vibration.  Each configuration produces 

poor controllability over the fourth mode of vibration due to its positioning.  In case 5, actuator 

 4 is better located to attenuate the fourth mode.  Several plots for case 5 are shown in Figure 5-6. 

 
Figure 5-6.  DOF responses (a)  𝑥

7 and (b)  𝑦
24, and (c) control force  4 (case 5). 

The responses  𝑥
7 and  𝑦

24 are shown in Figure 5.6a and Figure 5-6b and the actuation 

force  4 is shown in Figure 5-6c over a period of 0.4s.  Comparing these plots with those of 

Figure 5-5, the maneuver in case 5 attenuates the fourth mode of vibration in a fraction of the 

time required for case 4.  
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Case 1 to 5 each uses a single actuator to control the frame vibrations, however in cases 6 

and 7 two actuators are employed to control the three dominant modes of vibration.  In case 6, 

actuators  2 and  5 are considered, which produce excessively large forces to attenuate the 

vibrations.  Several plots of the dynamics for case 6 are shown in Figure 5-7. 

 
Figure 5-7.  DOF responses (a)  𝑥

27 and (b)  𝑦
24, (c) actuation forces  2 and  5, and (d) their 

difference  2 −  5 (case 6). 

The displacements of DOFs  𝑥
27 and  𝑦

24 are shown in Figure 5-7a and Figure 5-7b 

respectively, over a maneuver time of 0.5s.  The plots of actuation forces  2 and  5 are shown in 

Figure 5-7c, however due to the scale they are indistinguishable so they appear as one single line.  

Nonetheless, the time-varying actuation forces are distinct, as demonstrated in Figure 5-7d, 

where their difference  2 −  5 is plotted. 
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Despite their individually large force amplitudes (approximately 2GN), actuators  2 and 

 5 produce distinct forces and their difference produces a plot that is somewhat similar to the 

action of the lone actuator  2 in case 2 (see Figure 5-4b).  Also the peak magnitude in plot Figure 

5-7d is approximately 92N, which is in the same order of magnitude as the peak force in Case 2 

(approximately 121N).  

The large forces resulting from the combination of actuators  2 and  5 is due to their 

positions relative to the modal shapes of the first and second modes of vibration.  Recall that 

actuator  5 acts upon nodes 2 and 18 and actuator  2 acts upon nodes 7 and 13 (see Figure 5-2).  

As the frame vibrates in the first and second modes of vibration the distance between nodes 2 

and 18 increases (decreases) in a nearly identical proportion as the decrease (increase) in the 

distance between node 7 and 13 (see Figure 5.1b).  Hence, the actuators essentially neutralize 

each other’s action in their attempt to attenuate these modes of vibration.  In case 2 the single 

actuator  2 performed essentially the same maneuver with forces that were approximately seven 

orders of magnitude smaller.  The addition of actuator  5 in case 6 is detrimental to the maneuver 

and should be eliminated or relocated.  As shown in Table 5-1, this poor actuator positioning is 

reflected in the large effort parameter  . 

In the case 7, another two actuator configuration with actuators  2 and    attenuating the 

disturbance was considered.  It did not generate the counterproductive actuation forces 

demonstrated in case 6. The time-varying plot of displacement  𝑥
27 is shown in Figure 5-8a and 

the plot of  𝑦
24 is shown in Figure 5-8b over a maneuver time of 0.5s.  The actuation forces  2 

and    are shown in Figure 5-8c and Figure 5-8d respectively. 

Unlike in case 6, the peak actuation forces  2 and    required for the maneuver are 

smaller than those required in their individual actuator cases (case 2 and case 3).  Note that if the 
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fourth mode of vibration were considered for either Case 6 or Case 7, then a result similar to 

Case 4 would be expected, where a very large value of the rate parameter   would be obtained 

signalling very slow attenuation of the fourth mode.    

 

 
Figure 5-8.  DOF responses (a)  𝑥

27, (b)  𝑦
24, and actuation forces (c)  2, and (d)    (case 7). 

5.4 Verification Stage 

 The verification stage takes the actuation forces   (t), obtained in the control stage and 

applies them to the FEM model of the frame in a transient dynamic analysis to check that the 

resulting time-integrated displacement     ( ) are consistent with those displacements obtained 
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in the control stage  ( ).  In this example, ANSYS was used for modelling the transient response 

of the frame system.  The following steps are involved in the verification stage: 

1. Input actuation forces from the control stage to FEM model. 

2. Initialize the FEM transient analysis. 

3. Choose time-integration steps and load steps for the FEM transient analysis. 

4. Compare the DOF responses. 

5. Check for spillover effects from higher modes of vibration. 

A general overview of each of these steps will be considered, however a more detailed handling 

of the verification stage for this problem is covered in Appendix C. 

 The frame system of Figure 5-1 with actuator  2 (case 2 in Figure 5-2) is considered.  

However, only two modes of vibration will be actively attenuated and the initial conditions are 

different from those in (5.1a) and (5.1b); they are: 

 1( )   . 5     2( )   .  5      (5.11a) 

 ̇1( )   ̇2( )            (5.11b) 

Note that the selection of the initial conditions does not affect the procedure and is arbitrary.  The 

solution of the system dynamics is obtained using the same procedure discussed in Section 5.3.  

The actuator force  2 and the response  𝑥
7 obtained from the control stage is plotted in Figure 5-

9a and Figure 5-9b respectively. 
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Figure 5-9.  (a) Actuator force  2 and (b) response  𝑥
7 for initial conditions in equation (5.11) 

from the control stage. 

In the verification stage, the force  2 in Figure 5-9a is applied to the transient FEM model and 

the resulting response should match the displacement  𝑥
7 shown in Figure 5-9b.  Otherwise, there 

may be spillover effects from higher modes of vibration.  

Step 1: Input actuation forces from control stage to FEM model.  The actuation force 

obtained in the control stage is a continuous, time-varying function  2( ).  This continuous 

function is translated into a discrete form that can be numerically input into the ANSYS program.  

This operation is easily performed by intermediately using a spreadsheet calculation software, 

such as the Microsoft EXCEL program, to calculate instantaneous forces  2(   ) at all   

increments.  This data is tabulated over the desired number of increments extending over the 

desired time period, and then written to a text file.  This text file is properly formatted for input 

to the ANSYS program as an array parameter.  

The data from the text file is stored in the ANSYS program as an array parameter of type 

“table”.  Parameters of this type are defined by a “primary” variable, which is taken as the time  , 

and a dependant variable, which is taken as the actuator force at that time.  The benefit of 

 

(a) (b) 

 2 [N]   𝑥
7  [m] 
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defining forces in this manner is that a looping logic structure can be implemented where each 

time step in the transient analysis is indexed by the “primary” variable, such that the applied 

force updates automatically in each load step in the transient solution process.  The details of 

these data manipulation are included in Appendix C. 

Step 2: Initialize the FEM transient analysis.  The first initializing load step is the most 

critical to properly approximate the initial conditions of the frame structure as described by 

equations (5.11).  In the first load step, the initial conditions of the problem must be setup; 

however there are two separate sets of initializing forces to consider: the initial disturbing force 

vector,    𝒔 , and the initial actuation forces,  2( ). 

The initial disturbing forces in vector    𝒔  displace the structure into its initial 

configuration. In order to do this exactly, all DOFs must be forced into the assumed initial 

configuration.  However, the initial position can be accurately approximated by choosing a more 

limited number of DOFs to perturb the system into the initial disturbed shape described by (5.11).  

In this example fourteen DOFs at the upper intersection points of the beams and columns and 

near the midpoints of each member (at DOFs 2x, 5x, 7x, 9x, 13x, 15x, 18x, 21x, 27x, 27y, 30, 32, 

35x, 35y) were selected to produce an initial disturbed shape that deviated in position less than 

0.3-percent from the exact initial configuration.  Also, the initial actuation force  2( ) must be 

applied to the appropriate nodes of the FEM model in this initializing load step; however, this 

will change the initial configuration of the frame introducing error to the initial load step.  A 

simple method of obtaining the correct initial disturbing forces is to run a static analysis of the 

frame with the fourteen DOFs acted upon by the forces in vector    𝒔  with displacement 

constraints in the initial deformed configuration while applying the initial actuation force  2( ) 

at the appropriate DOFs.  The reactions obtained from this static analysis will provide all the 
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initial disturbing forces in vector    𝒔 .  In this manner, the set of initial disturbing forces in 

vector    𝒔  and the initial actuator force  2( ) are applied in the first load step.  Then, in the 

following load step all forces are deleted and only the updated actuation force  2(   ) is applied 

to the appropriate DOFs in the subsequent load steps  .  This initialization method is discussed 

more completely, with reference to the ANSYS command code, in Appendix C. 

Step 3: Choose Time Steps and Load Steps.  The choice of time steps and load steps 

impacts the accuracy of the transient dynamic FEM model.  The time step influences the number 

of time integrations that are used in computing the system’s dynamic response – more steps give 

better accuracy but at a greater computational cost.  On the other hand, the load step influences 

how often the external actuation forces are updated in the time integration equations.  Typically 

the load steps and time steps are chosen independently (with typically fewer load steps), but for 

actively dampened systems both the actuation force and the dynamic response of the structure 

are characterized by the same frequencies so load steps and time steps are also chosen to be 

similar.  This is particularly important early in the attenuation process when the actuation force 

undergoes large oscillations as seen in Figure 5-9a. 

To effectively capture sinusoidal oscillations, time steps should be small enough to 

capture twenty samples per period [30].  Therefore to capture the first two modes of vibration of 

the frame structure the time steps should be no larger than:    1 2 ⁄ (17.9 𝑧) 1   .  279𝑠.  

This recommended time step was found to produce large errors particularly with increasing time, 

as errors introduced early in the transient process tend to be additive and produce larger errors 

later in the analysis.  Based on some trial and error, described in more detail in Appendix C, the 

time steps were chosen at 0.0001s and the load steps were chosen identically for 0.0001s for 
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 ≤  ≤  . 1𝑠, but larger load steps of 0.0005s were chosen for  . 1𝑠 ≤  ≤  .4𝑠.  This 

requires a total of 881 load steps to cover the attenuation period of 0.4s. 

Step 4: Compare the DOF responses.  The response obtained from the transient FEM 

model, obtained with ANSYS, is compared with the exact solution obtained in the control stage, 

obtained with MAPLE.  Recall that in the control stage two dominant modes of vibration were 

considered; similarly, using the modal superposition method the FEM transient analysis also 

considers the superposition of these same two modes.  Figure 5-10 shows the displacement 

response  𝑥
7 obtained from the FEM transient analysis alongside that obtained from the control 

stage.  The plots are visually indistinguishable, verifying the validity of the dynamic response 

obtained in the control stage. 

 
Figure 5-10.  Response  𝑥

7 from the (a) verification stage and (b) the control stage. 

 Step 5: Check for spillover effects from higher modes of vibration.  The implicit 

assumption in modelling the active attenuation of the frame’s first two modes of vibration is that 

higher modes play an insignificant role in the dynamics.  By considering these higher modes in 

the verification stage, the validity of this assumption is evaluated.  To perform this check, the 

number of additional modes to be considered may be included in a transient analysis based on 
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the mode superposition method in ANSYS.  Alternatively, a full transient analysis where all 

DOFs are directly integrated in time, can be performed, but at an increased computational cost. 

A transient modal superposition analysis was performed with four modes of vibration 

included in the dynamics.  Figure 5-11 shows the displacement response of two selected DOFs 

on the frame.  The response  𝑥
7 is plotted in Figure 5-11a and the response  𝑦

 8, chosen for its 

sensitivity to the fourth mode of vibration (see Figure 5-1 for location) is plotted in Figure 5-11b.  

Also, the passive (uncontrolled) response of the structure with four modes considered in the 

dynamics is included in these plots for comparison. 

 
Figure 5-11.  (a) Response  𝑥

7 and (b)  𝑦
 8 with two modes actively controlled and four modes 

considered in the dynamics.  Based on FEM transient analysis with control applied from actuator 

 2 (thick line) and with no control (thin line). 

 In both plots in Figure 5-11 a residual vibration mode persists as time progresses and it 

has a frequency is 35.  𝑧, which can be verified in the figures.  Note that the oscillation 

amplitudes in Figure 5-11a are approximately 100 times larger than those in Figure 5-11b 

because node 38 undergoes very small displacements ( 𝑦
 8) in the first three modes of vibration.  

Also note that the fourth mode of vibration is not visibly present in the plots, even though node 

38 is sensitive to vertical displacements in this mode.  This result is somewhat expected because 

the initial disturbance did not deflect the structure into a shape effecting the fourth mode.  It is 

(a) (b) 

  uncontrolled    2 modes 

controlled    2 modes 

controlled  

  uncontrolled  
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also evident in Figure 5-11 that the passive (uncontrolled) response of the frame subjected to the 

same initial disturbance is dominated by the first two modes of vibration.  This result is 

interesting because, due to its placement relative to the third mode of vibration, the actuator  2 

actually excites the third mode of vibration in attempting to dampen the first two modes of 

vibration.  In other words, controlling the first two modes with actuator  2 resulted in spillover 

effects on the third mode of vibration. 
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6. THREE-DIMENSIONAL MAST PROBLEM 

6.1 Mast Model [20] 

This example demonstrates the CMSOC method for simulating and analyzing active 

vibration attenuation in a mast structure.  Several different positions and actuator locations will 

be investigated, in search of a “good” configuration for eliminating vibrations.  Different 

configurations will be evaluated in the structural stage by assessing the controllability parameters 

  and   and in the control stage by the forces and responses obtained.  The verification stage is 

not presented for sake of brevity, but can be considered in a similar manner as Chapter 5 to 

detect spillover effects and verify the system responses as required. 

The mast structure shown in Figure 6-1 is based on the geometry and characteristics of an 

experimental active structure that was discussed in [1] and shown in Figure 1-1.  The structure 

extends into the z-direction 1820mm with twelve 140mm high repeating bays and two irregular 

half-bays at the fixed end and free end.  A 15mm thick, 162mm diameter steel plate is supported 

at the free end of the mast by the adjoining members.  When viewed along its length (z-direction) 

the centerlines of the three chord members form the points of an isosceles triangle with a base of 

140mm and a height of 100mm.  All members are 4mm diameter steel members and all their 

connections are assumed to be rigid.  The steel is assumed have a modulus of elasticity of 

  2  𝐺𝑃  and density of   78    /𝑚 .  The members near the base of the structure that 

will be considered as potential actuator locations are shown in Figure 6-1 and labelled with the 

uppercase letters A through E.  Point p, located at the center of the circular plate supported at the 

free end of the mast, will be used as a location for observing and plotting the dynamic response 
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of the structure.  To emphasize the active damping in the system all passive damping 

mechanisms are ignored.  

 
Figure 6-1.  (a) Mast model and modal shapes of the (b) first mode, (c) second mode, and (d) 

third mode.  

In the Figure 6-1, the first three dominant mode shapes are shown from an isometric 

perspective as well as a top down view.  The first vibration modes is a global flexural bending 

mode occurring primarily in the xz-plane at a radian frequency of  1  55.2   /𝑠  (period of 

 1   .114𝑠).  The second vibration mode is a second flexural bending mode, that oscillates 

primarily in the yz- plane and at a slightly higher frequency of   2  66.7   /𝑠  (period of 

 2   . 942𝑠).  The third vibration mode is a global twisting mode where the mast undergoes 
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axial rotation at a considerably higher frequency of     426   /𝑠  (period of    

 . . 148𝑠).      

 In [1] several feedback algorithms were investigated and experimentally tested on the 

experimental apparatus from which the current model is based.  The experimental structure was 

capable of attenuating the motion of the first two modes (   2) using two actuators (   2) 

located in positions A and B shown in Figure 6-1.  The apparatus employed piezoelectric linear 

actuators with collocated force transducers to attenuate the vibrations using various feedback 

control laws.  Conveniently, the stiffness and length of the actuators were approximately equal to 

those of the steel that they replaced.  The studies were limited to fully-actuated control systems 

(     ) considering two modes of vibration, whereas this example explores the possibility of 

controlling up to three modes using one, two, or three actuators.  The force produced by an 

actuator is denoted by    where i denotes the actuator position (i = A,B,C,D,E). 

 The task in each case is to bring the mast structure from an initial disturbed state to a 

resting state using a time-invariant control system.  The structural stage and control stage are 

briefly covered for each case; however the verification stage will not be discussed in this 

example.  The optimization criteria for the process is based on the performance index in the form 

shown in equation (2.8) with the weighting coefficients selections taken as:   1,   1, and 

   .1.  Here the actuator work weighting coefficient ( ) is weighted at a lower value to obtain 

faster response times more consistent with those obtained in [1].  The seven cases that are 

considered in this example are: 

1. Two actuators in locations A and B attenuating two dominant modes of vibration. 

2. Two actuators in locations D and E attenuating two dominant modes of vibration. 

3. One actuator in location A attenuating two dominant modes of vibration. 
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4. One actuator in location B attenuating two dominant modes of vibration. 

5. One actuator in location C attenuating two dominant modes of vibration. 

6. Two actuators in locations A and B attenuating three dominant modes of vibration. 

7. One actuator in location A attenuating three dominant modes of vibration. 

In each case the system is analyzed for an initial disturbance given by: 

 1( )   .  4 ,    2( )   .  4,    ( )   .  1   (6.1a) 

 ̇1( )   ̇2( )   ̇ ( )           (6.1b) 

In DOF-space the initial frame position described by (6.1a) and (6.2b) corresponds to a 

stationary deformed shape with point p at the top of the mast (see Figure 5-1) deflected 2.28mm 

in the x-direction, 2.58mm in the y-direction, and rotated 0.548° about the z-axis (counter-

clockwise when viewed from the top).  Note that in cases 1 to 5, only the first two modes are 

considered in the dynamic model; hence, initial disturbances causing mast twisting (third mode 

of vibration) are left un-attenuated. 

6.2 Structural Stage 

 The controllability parameters (  and  ), obtained in the structural stage of the CMSOC 

methodology, are shown in Table 6-1 for the seven cases.  Details of the solution procedure can 

be found in [20].  Note that the rate parameter   does not apply to fully-actuated systems (case 1 

and 2) because the modal controls are uncoupled and their rates of attenuation are not affected by 

changes in actuator positions.  Recall that it is generally desirable for an under-actuated system 

to have a value of the rate parameter   close to unity to ensure all modes are attenuated 

adequately.  Also the effort parameter   should be as small as possible for small actuation force 

amplitudes.  Note that these rules are approximate correlations and are only beneficial for 

comparing various actuator configurations for the same system with the same number of modes 
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and actuators.  For example, a meaningful comparison can be made between the controllability 

parameters obtained for cases 3 to 5, which all involve single actuator configurations that 

attenuate the mast’s two dominant modes of vibration, but a comparison between cases 6 and 7 is 

less meaningful because the latter uses two actuators while the former uses only one. 

Table 6-1.  Dimensions   and   , rate parameter  , and effort parameter  , for cases 1 to 7. 

Case 

Number 

Number of Modes, 

   

Number of  Actuators, 

   

Rate Parameter, 

  

Effort Parameter, 

  

1 2 2 - 45.0(10
3
) 

2 2 2 - 783(10
3
) 

3 2 1 0.436 457 

4 2 1 11.7 220 

5 2 1 0.527 386 

6 3 2 0.713 45.4(10
3
) 

7 3 1 0.637 457 

 

 In [1] it was shown that good actuator locations are related to the level of strain in the 

member to be considered for an actuator position.  In other words, if an actuator is substituted for 

a member in the structure that contains a large percentage of the total modal strain energy for a 

particular mode shape then good attenuation of that mode should be expected.  The percentage of 

strain energy in the members in positions A through E is shown in Table 6-2 for the three 

dominant modes of vibration.  The percentage of modal strain energy is obtained from the FEM 

program output following the modal analysis. 

Table 6-2.  Percentage of strain energy in selected members of the mast structure for the first 

three modes of vibration. 

Member 
Percentage of strain energy 

Mode 1  

Percentage of strain energy 

Mode 2  

Percentage of strain energy 

Mode 3  

A 2.83 10.2 0.125 

B 12.2 0.0630 0.351 

C 3.95 9.75 0.0710 



 

88 

 

D 0.0260 0.0120 1.02 

E 0.00200 0.102 3.30 

 

In Table 6-2, members containing a relatively larger percentage of strain energy for a particular 

mode are in a better position for controlling that mode. 

 Cases 1 and 2 are fully-actuated systems and produce identical responses (not considering 

spillover effects on higher modes), but the forces required to produce the same response differ 

significantly.  In Table 6-1, case 2 has a larger value   and so is expected to use significantly 

larger forces than in case 1 to attenuate the same disturbance.  This result should be expected 

considering that case 2 uses actuators in positions D and E, which undergo small relative strains 

in the first two modes (see Table 6-2).  Cases 3 to 5 are single actuator systems controlling two 

modes of vibration; Table 6-1 indicates that Case 4 has a large value of   and so poor attenuation 

of one of the modes is expected.  Table 6-2 indicates that the actuator in position B is poorly 

suited for controlling the second mode of vibration, which agrees intuitively with Figure 6-1b, as 

position B effectively lies on the neutral axis of the built-up mast cross section and undergoes 

considerably smaller strains than the locations A and C.  Cases 6 and 7 each consider three 

dominant modes of vibration in the dynamics and attenuate them with two and one actuator(s), 

respectively.  Table 6-1 indicates that all modes will be attenuated in reasonable times, but Table 

6-2 suggests that the third twisting mode of vibration will be attenuated most slowly.  In the 

control stage these observations will be reflected in the dynamics of the structure. 

6.3 Control Stage 

 The control stage of the CMSOC methodology solves the dynamic responses for the 

seven cases.  The mast response is characterized by the modal dampening parameters    and 
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frequencies   , the effective settling times, and the peak actuation force amplitudes which are 

tabulated in Table 6-3. 

Table 6-3.  Modal damping parameters   , frequencies   , effective settling time    , and peak 

force amplitude(s) for six cases for the mast example. 

Case #            (s) Peak force(s) (kN) 

i=1 2 3 i=1 2 3  

1 12.3 14.8 - 55.2 66.7 - 0.285 | 𝐴|  1.45, | 𝐵|  1.25 
2 12.3 14.8 - 55.2 66.7 - 0.285 | 𝐷|  17. , | 𝐸|  14.5 
3 3.79 13.2 - 56.0 66.0 - 0.925 | 𝐴|  1.15 
4 12.2 0.717 - 55.2 66.7 - 4.88 | 𝐵|  1.   
5 4.51 12.6 - 56.2 65.7 - 0.775 | 𝐶|  1.58 
6 12.1 14.5 25.0 55.2 66.7 426 0.290 | 𝐴|  2.4 , | 𝐵|  2.8  
7 3.78 13.1 8.98 56.0 66.0 426 0.926 | 𝐴|  2.4  

 

 For cases 1 and 2, the dynamic responses (  ,  ,     etc.) do not change, but the actuation 

forces required to produce the response do change.  The peak actuation forces required in case 2 

significantly exceed that needed in case 1.  Comparing cases 3 to 5, case 4 stands out as having 

poor attenuation of the second mode of vibration and has a long effective attenuation time 

(    4.88𝑠).  Case 6 shows that the third mode of vibration can effectively be controlled using 

the same two-actuator configuration ( 𝐴 and  𝐵) as case 1 and case 7 demonstrates that a single 

actuator can control the three dominant modes of vibration although there is some reduction in 

the attenuation rate when compared to case 6. 

The above observations are visually confirmed in the Figures 6-2 to Figure 6-7 which 

show plots of the actuation force and the system responses over a period of 0.4s.  The system 

responses are plotted in terms of the time-varying displacements  𝑥
 
 and  𝑦

 
 and rotations about 

the z-axis  𝑟𝑜 𝑧
 

 at point p.  The trajectory that the point p follows in the xy-plane is also plotted.  

Figure 6-2 shows the plots for case 1 and Figure 6-3 shows plots for case 2.  As expected, the 
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responses shown in Figures 6-3 and 6-2 are identical, but the actuation forces are much larger for 

case 2 (Figure 6-3). 

 

Figure 6-2.  (a) Attenuation forces  𝐴 and  𝐵, (b) tip deflections  𝑥
 
 and  𝑦

 
 of point p as 

functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 1). 

 
Figure 6-3.  (a) Attenuation forces  𝐷 and  𝐸, (b) tip deflections  𝑥

 
 and  𝑦

 
 of point p as 

functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 2). 

In Figures 6-4, Figure 6-5, and Figure 6-6 results are shown for cases 3, 4, and 5 

respectively.  As expected, the plots for case 4 (Figure 6-5) involving force  𝐵 show the effects 

of the poorly attenuated second mode of vibration, as the mast undergoes more persistent 

vibrations than cases 3 and 5.  Interestingly, in Figure 6-6 it is evident that the tip of the mast 

begins to deflect around its resting position in a clockwise pattern, consistent with cases 3 and 4; 

however, the motion switches to a counter-clockwise orbiting pattern after approximately 0.01s 
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of the maneuver.  This directional switch requires a larger peak actuation force when compared 

with cases3 and 5, but the maneuver eliminates the vibrations in the least amount of time. 

 
Figure 6-4.  (a) Attenuation force  𝐴, (b) tip deflections  𝑥

 
 and  𝑦

 
 of point p as functions of time, 

and (c) the displacement of point p as they appear in the xy-plane (case 3). 

 
Figure 6-5.  (a) Attenuation force  𝐵, (b) tip deflections  𝑥

 
 and  𝑦

 
 of point p as functions of time, 

and (c) the displacement of point p as they appear in the xy-plane (case 4). 

 
Figure 6-6.  (a) Attenuation force  𝐶, (b) tip deflections  𝑥

 
 and  𝑦

 
 of point p as functions of time, 

and (c) the displacement of point p as they appear in the xy-plane (case 5). 
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 In Figures 6-7 and 6-8 plots are shown for case 6 and case 7.  In Figure 6-7, one can see 

the similarity in the tip trajectory of point p in comparison to case 1 in Figure 6-2, however in 

this case the third twisting mode of vibration is also simultaneously attenuated by the same 

actuators  𝐴 and  𝐵.  In Figure 6-8, a similar tip trajectory as case 3 in Figure 6-4 is produced; 

however, the third mode of vibration is also simultaneously attenuated.  The three modes of 

vibration are attenuated considerably more quickly with both actuators  𝐴 and  𝐵 in Figure 6-7 

than with the solitary actuator  𝐴 in Figure 6-8. 

 
Figure 6-7.  (a) Attenuation forces  𝐴 and  𝐵, (b) tip deflections  𝑥

 
 and  𝑦

 
 of point p as 

functions of time, and (c) the displacement of point p as they appear in the xy-plane (case 6).  

Also, the rotation of point p in the z-direction  𝑟𝑜 𝑧
 

 is shown inset in graph (b). 

Figure 6-8.  (a) Attenuation force  𝐴, (b) tip deflections  𝑥
 
 and  𝑦

 
 of point p as functions of time, 

and (c) the displacement of point p as they appear in the xy-plane (case 6).  Also, the rotation of 

point p in the z-direction  𝑟𝑜 𝑧
 

 is shown inset in graph (b). 

  



 

93 

 

 

7. CONCLUSIONS AND FUTURE WORK 

The CMSOC methodology was formulated and demonstrated to show how it can be 

employed for designing and analyzing the dynamics of actively dampened structures.  The 

methodology is an extension of computational mechanics into the area of control and its 

advantage is that it can be applied to arbitrary linear structures or mechanical systems involving 

any number of DOFs that are controlled by any number of actuators.  It was implemented on 

several example systems ranging from very simple, such as the gantry crane, to the more 

complex, such as the mast structure.  The examples served to show how the three stages of the 

methodology – the structural stage, the control stage, and the verification stage – are well suited 

for the study of under-actuated linear systems.  Each step of the solution is relatively automated 

by integrating the capabilities of the ANSYS FEM program and the MAPLE mathematical 

program. 

 The structural stage involves constructing the FEM model in ANSYS, performing the 

modal analysis to obtain the number of significant modal shapes and frequencies, transferring 

this information to MAPLE and then assigning the actuator configurations.  This data is 

automatically manipulated to obtain the system transfer matrix, constraints due to under-

actuation, and indicators of poor controllability.  If poor controllability is expected than 

adjustments to the actuator configuration are made to obtain more favourable indicators that 

suggest that continuing to the control stage is warranted. 

The control stage involves inputting the initial conditions and optimization parameters 

into the MAPLE worksheet, with the information from the structural stage, to calculate the 
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unknown actuation forces and system response over time.  If the actuators are controlled in a 

closed-loop, than the sensor configuration is input and the corresponding gains are automatically 

calculated.  The potentially large numbers of computationally intensive symbolic calculations are 

handled automatically in the MAPLE program. 

The verification stage involves transferring the actuation forces, obtained in the control 

stage to the FEM model to obtain the transient time-integrated response of the system for 

comparison to the system response from the control stage.  Any spill-over effects are detected by 

include higher modes of vibration when performing the transient analysis. 

The problem is essentially transformed into a constrained optimization problem, with all 

the constraints handled by time-dependant Lagrange multipliers.  Since the method includes all 

constraints that may arise due to under-actuation, it avoids difficulties with unstable inverse 

dynamics often associated with addressing under-actuated problems.  Moreover, the method 

incorporates ‘built-in’ assessment parameters that can be used to predict controllability issues 

and quantitatively compare the performance of different actuator configurations. 

The strength of the CMSOC method lies in its ability to address the dynamics of 

essentially any actively dampened structure, with any arbitrary shape and passive dynamic 

characteristics, and any arbitrary number of actuators.  The limitation is that the structure, for the 

range of motions under consideration, must generally exhibit linear elastic behavior.  The 

methodology does not replace other controller design approaches, as it deals only with idealized 

systems and has no means to account for inherent ‘real world’ errors.  Therefore its usefulness is 

primarily in the initial design stages of such systems as it can provide insight into the physical 

significance of under-actuation and how actuator positioning affects controllability and system 

performance in actively dampened structures.   
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Some areas that are of interest to future study are the application of the CMSOC 

approach when dealing with systems that exhibit two modes with the same frequency (bimodal 

systems).  Also an interesting system to consider would be one that exhibits vibrations with 

frequencies that are integer multiples of each other, such that actively attenuating the vibrations 

of a lower frequency mode could excite vibrations of a  higher mode with a frequency that is an 

integer multiple of the lower mode.  Another interesting study would be to experimentally test an 

actively dampened structure to demonstrate how an under-actuated type control system could be 

designed and implemented using the CMSOC methodology complemented with other control 

strategies.  
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APPENDIX A: MAPLE PROGRAM 

This appendix presents the maple commands that were used for solving the active 

dampening structure presented in Chapter 5 and shown in Figure 5-1a.  The commands and 

outputs are shown for case 1 in Chapter 5, which uses the single actuator  1 to control the frames 

first three dominant modes of vibration. 
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APPENDIX B: ON OBTAINING GAINS 

This appendix presents a detailed discussion on how gains may be obtained when using 

the CMSOC method.  The method can be easily carried out using the MAPLE program, for 

which the necessary program commands are given in Appendix A for the plane frame problem. 

In modal-space, a system’s output vector   must be written in terms of modal variables 

by substituting (2.9a) into (3.21) to obtain: 

      +     ̇  [      ] [
 
 ̇]   ̃𝑵        (A.1) 

The matrix  ̃  [      ], of size   × 2  , will be referred to as the modal observability 

matrix because it transfers the modal state vector 𝑵  [ 𝑇  ̇𝑇]𝑇 into the output vector  .  It 

indicates how well suited a particular sensor location is for measuring various modes of vibration 

in the system.   

Actuation forces can be related to the modal state vector by substituting the output vector 

in the form (A.1) into the feedback equation (3.22) to yield the equations: 

     ̃𝑵  −    −     ̇  −𝒈  − 𝒈  ̇      (A.2) 

The modal gains matrices 𝒈  and 𝒈  contain 2     components    𝑗and    𝑗, where 𝑖  

1, … ,    and  𝑗  1,… ,   .  In modal-space the feedback relation (A.2) can be substituted into 

equations (3.1) and (2.12) to obtain: 

  ̈ + ( +  ̂𝒈 ) ̇ + ( +  ̂𝒈 )          (A.3)  
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 To obtain the    actuation forces   𝑗  contained in vector    the solution functions (3.20) 

are substituted into equations (3.4) with the appropriate substitution from (2.12) to obtain: 

  𝑗  ∑ 𝑒 𝛼𝑘 [ ̃  
1 𝑠𝑖 (   ) +  ̃  

2  𝑜𝑠(   )]
𝑛𝑚
 =1       (A.4) 

It can be shown through appropriate mathematical substitutions that the coefficients  ̃  
1  and  ̃  

2  

are related to the integration constants    
1  and    

2  in (3.20) and to the gains in (A.2) by: 

 ̃  
1  ∑ {   𝑗(     

1 +      
2 ) −    𝑗   

1 }
𝑛𝑚
 =1       (A.5a) 

 ̃  
2  ∑ {   𝑗(     

2 −      
1 ) −    𝑗   

2 }
𝑛𝑚
 =1        (A.5b) 

The algebraic equations contained in (A.5a) and (A.5b) contain 2     equations that can be 

solved for an equal number of unknown gains    𝑗  and    𝑗 contained in modal gains matrices 

𝒈  and 𝒈 , respectively.  These gains are independent of the initial conditions despite the fact 

that these conditions were used in calculating the integration constants    
1  and    

2 . 

It is possible to obtain the gains 𝒈  and 𝒈  without intermediately calculating the 

integration constants that are dependent on initial conditions as described above.  This is 

performed by substituting the solution functions (3.20) into equations (A.3) and then using the 

method of undetermined coefficients to obtain 2     algebraic equations from which all 

unknown gains    𝑗  and    𝑗 may be determined (without consideration for initial conditions). 

In order to obtain constant modal gains in matrices 𝒈  and 𝒈  all system states, which 

includes the positions and velocities of all    modal variables (2   states in total), must be 

observed by sensors.  In other words, each state that is to be controlled using a constant gain 

feedback relation must be observed, which requires that the number of sensors must be equal in 

number to the modes of vibration that are to be controlled (     ).  If fewer than the required 
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2   states are observed than the modal gains must vary with time to satisfy the feedback relation 

(A.2).   

The modal state vector 𝑵 is determined by manipulating equations (A.1) to obtain: 

𝑵  [
 
 ̇]  ( ̃

𝑇 ̃)
 1
 ̃𝑇           (A.6) 

The existence of operation (A.6) is required for the system with       position and velocity 

sensors to be considered observable (i.e. ( ̃𝑇 ̃)
 1

 must be defined).  Formally, the gains matrix 

  transferring the sensor output vector   into to the actuation force vector   , in accordance with 

equations (3.22), may then be obtained from: 

  [𝒈 𝒈 ]( ̃𝑇 ̃)
 1
 ̃𝑇         (A.7) 
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APPENDIX C: PERFORMING THE VERIFICATION STAGE 

This appendix presents the complete details for performing the verification stage using 

the ANSYS FEM program, the MAPLE program, and the EXCEL program.  In this appendix the 

results of the verification stage are provided for the three level plane frame problem described in 

Section 5.4.   

C.1 Overview of the Frame Problem 

The frame structure under consideration is consistent with that of Chapter 5, which is 

shown in Figure 5-1a.  Figure C-1a and C-1b shows the actuator that is employed in this 

example along with the first four dominant mode shapes.  The solution for the problem with the 

single actuator exerting the actuation force, Fact(t), on nodes 7 and 13 to control the first two 

modes of vibration is considered.  This structural stage and control stage of this solution were 

covered in detail in Chapter 5. 

 
Figure C-1.  (a) Frame structure and (b) its four dominant mode shapes. 
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The analytical solution of the optimal attenuation problem, subjected to the initial 

disturbance described by 005.0)0(1  and 002.0)0(2    From this solution the trajectory of 

the actuation force, Fact(t), as well as the response of response of node 7 in the x direction,  𝑥
7, 

are obtained; these functions are plotted in Fig. 2a and 2b, respectively. 

 
Figure C-2.  (a) Actuator force histogram, Fact(t), and (b) the displacement response,  𝑥

7 (t).  

These analytical solutions, characterized by the plots of Figure C-2, are checked in the 

verification stage, covered in the following discussion.  The ANSYS model should produce a 

nearly identical response,  𝑥
7, when subjected to the force, Fact(t).  However, the first step in this 

verification process is to transfer the function, Fact(t), obtained analytically from the MAPLE 

program, into a discrete form, Fact(nΔt), that can be implemented in ANSYS (where Δt is a 

chosen time step for discretization and n=0,1,2…). 

C.2 Transferring Optimal Control Forces from MAPLE to ANSYS 

The function Fact(t) is obtained in MAPLE and input into a two column table of 

increasing time steps, Δt, and the corresponding actuation force, Fact(nΔt), at that particular 

increment time increment n.  This task is accomplished using the formulaic and automatic cell-

referencing capabilities of EXCEL, as demonstrated in Figure C-3.  Additional columns 

(a) (b) 

 (N)  (m) 
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representing the respective components of Fact(nΔt) at nodes 7 and 13 are also included in this 

table.  Subsequently, the columns of time and nodal forces are copied to text files that can easily 

be input into the ANSYS program, which is also shown in Figure C-3. 

 
Figure C-3.  Data manipulations involved in transferring forces from MAPLE to ANSYS. 

Only the first eight time steps are shown in Figure C-3, whereas the entire table actually 

consists of 581 entries – up to a final time of 0.4s.  Also note that the time increment, Δt, was 

chosen as 0.0001s, for 0 < t < 0.01s; 0.0005, for 0.0105 < t < 0.1s; and 0.001, for 0.101 < t < 0.4s.  

Time increments are lengthened as time increases because Fact(t) becomes less transient, and so 

fewer time steps are needed to accurately describe the trajectory as time progresses.  This chosen 

number of data points is still computationally economic – the text files created are under 15kB 

and can be read very quickly by the ANSYS program into array parameters of type “TABLE” (as 

oppose to type ‘ARRAY’, see [30]). 

The advantage of storing the time varying discrete nodal actuation forces as ‘TABLE’ 

parameters lies in the capability of denoting the advancing time increment column as a ‘primary 

variable’ so that the accompanying ‘dependant variable’ column automatically adjusts in 

correspondence with global changes in the primary variable.  In this manner the entire table is 

applied as a nodal force boundary condition and its value automatically updates as time advances 

in the transient solution process – this permits the use of looping structures to automatically 

t (s) Fact (N) Fn7y and Fn13x Fn7x and Fn13y

0 -8.888535801 -6.28514394 6.28514394

0.0001 -8.514607567 -6.020736749 6.020736749

0.0002 -8.141345091 -5.756800322 5.756800322

0.0003 -7.768800113 -5.493371242 5.493371242

0.0004 -7.397024102 -5.230485903 5.230485903

0.0005 -7.026068243 -4.9681805 4.9681805

0.0006 -6.655983439 -4.706491025 4.706491025

0.0007 -6.286820299 -4.445453266 4.445453266

Nodal forces

= Fact
i
(t 

i
)   

  i   

i+1 
etc. 

= 2
-1/2

*Fact
i
(t 

i
)    Convert each nodal 

 force to .txt file  

0 -6.28514394 

0.0001          -6.020736749 

0.0002 -5.756800322 

0.0003 -5.493371242 

0.0004 -5.230485903 

0.0005 -4.9681805 

0.0006 -4.706491025 

0.0007 -4.445453266    

 

 etc. 
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perform each load step in the transient analysis without the need for manually changing the 

applied actuation forces.  Another attribute that makes ‘TABLE’ parameters attractive is that 

values are automatically linearly interpolated if the current global value of the primary variable 

falls in between tabulated entries.    

C.3 Initializing the ANSYS Transient Analysis 

The first initializing load step is the most critical and most difficult step in the ANSYS 

dynamic simulation of an active attenuation problem.  In the first load step, the initial conditions 

of the problem must be written; however in the vibrating frame problem, there are two separate 

sets of initializing forces to consider: the initial disturbing forces, Fdist, and the initial actuation 

force, Fact(0).  The difficulty lies in choosing the correct order of application of these initial 

forces. 

The forces, Fdist, displace the structure into the initial deformed configuration that was 

assumed in the analytical solution, as described by the initial modal conditions, 005.0)0(1   

and 002.0)0(2  .  The following degrees of freedom were constrained to deform the frame into 

this assumed initial configuration: 2x, 5x, 7x, 9x, 13x, 15x, 18x, 21x, 27x, 27y, 30x, 32x, 32y, 

35x.  By assigning the appropriate initializing forces, Fdist, at these DOFs the exact initial 

configuration can be accurately approximated (all DOFs must be constrained to obtain this 

exactly).  The chosen selection of DOFs ensures that deviations in unconstrained DOFs are 

generally less than 0.3% from the exact initial configuration.  Refer to the ANSYS command 

code in Section X for the numerical values of the forces, Fdist. 

The method requires that the initial actuation force components at nodes 7 and 13 are 

applied when running a static analysis of the frame with the selected DOFs constrained in the 

deformed configuration.  This procedure determines the initializing forces, Fdist, that are required 
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at each selected DOF to create the assumed disturbed configuration.  In this manner, the set of 

initial disturbing forces to set the initial conditions, Fdist, and the non-zero force, Fact(0) 

(consisting of four nodal force components), are applied in the first step at time = 0, while still 

producing the correct initial disturbed configuration.  Then, in the following load step all forces 

are deleted, and only the nodal actuation force components are applied in the subsequent load 

steps.   

Note that this initializing load step method pertains to a modal superposition ANSYS 

dynamic analysis; a slight modification must be made when performing a full dynamic analysis.  

In a full dynamic analysis both initial conditions are applied in a similar manner, only they are 

applied in two static sub-steps over a small time interval and not at time = 0.  Consequently, 

actuation forces must be correspondingly time shifted by the amount of this first time step.  This 

modified procedure is also demonstrated in Section X.  With the correct initial load steps 

determined, the remaining problem is to choose appropriate time steps and load steps to 

accurately model the attenuation process. 

C.4 Choosing Time Steps and Load Steps 

The choice of time steps and load steps has a significant impact on the accuracy of the 

dynamic FEM model of the attenuation process.  Generally, the time step influences the number 

of Newmark time integrations that are used in computing the system’s dynamic response – more 

steps give better accuracy but at a greater computational cost.  On the other hand, the load step 

influences how often the external actuation forces are updated in the time integration equations.  

Although typically the load steps and time steps are chosen independently (with typically far 

fewer load steps), the active attenuation problem is an exception because both the actuation force, 

Fact(t), and the dynamic response of the structure, x(t), involve the same oscillation frequencies.  

Therefore the choice of time steps and load steps should be similar, particularly in the early 
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stages of attenuation, when Fact(t) is changing most rapidly.  In the ANSYS help documentation 

it is suggested that to effectively capture sinusoidal oscillations time steps should be small 

enough to capture twenty samples per period [30].  According to this suggestion the time step for 

the frame structure, modeled dynamically by its first two modes, should be no larger than: 

  00279.020/9.171 t s.  However, this suggested step was too large, which is evident in 

Figure C-4, where even smaller time steps (i.e. Δt=0.001 or 0.0005) failed to accurately 

reproduce the response of the exact MAPLE solution.   

In Fig. 4, the x-displacement response of node 7,  𝑥
7, is plotted for time and load steps of 

0.001s, 0.0005s, and 0.0001s alongside the exact MAPLE response that was previously shown in 

Figure C-2.  The time steps are chosen to be equal to the load steps because choosing smaller 

time steps, while leaving load steps unchanged, did not change the overall response, suggesting 

that the solution accuracy was primarily limited by the time length of load steps.   
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Figure C-4.  Plots of  𝑥

7 (t), obtained from FEM for several different time and load steps 

compared to the exact response.  The inset graph shows the last half of the attenuation period. 

As expected, Figure C-4 demonstrates that choosing smaller time steps and load steps 

yields a response closer to the exact response.  Also notable in this figure is the fact that errors 

tend to accumulate as time progresses – in the first 0.03s all curves are nearly indistinguishable 

but as time progresses the differences between the exact and FEM response grows much larger, 

especially for the larger time steps.  This problem is compounded by the fact that the variation in 

time of Fact(t) is greatest at the beginning of the attenuation period, thus the numerical errors 

associated with representing it by discrete straight line segments will be most significant during 

this initial phase.  Therefore, initially small errors in  𝑥
7 (t) propagate into large errors at later 

times, and consequently result in the FEM response failing to reach an attenuated state.  This 

suggests that load steps need to be smallest during the first moments of the attenuation period 
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and can be increased as time progresses. 

In confirmation of this last point, the response,  𝑥
7 (t), that was obtained with a constant 

load step of 0.0001s (requiring 4001 load steps in total) was essentially identical to that obtained 

by using a step of 0.0001s only in the first 100 load steps and then switching to load steps of 

0.001s for the remainder of the attenuation period (requiring only 491 load steps in total).  

Although both produce the same result, the latter solution is computationally much more 

economic.  In the following sections, a common load step scheme is used to perform the ANSYS 

simulations of the frame structure; however, higher modes of vibration are also of interest so a 

more computationally expensive load step scheme is chosen as follows: 0.0001s for st 01.00   

and 0.0005s for st 4.001.0  .  This requires a total of 881 load steps to cover the attenuation 

period of 0.4s, as is shown in the ANSYS command code of Section X.    

C.5 Comparing the Response of the ANSYS model to the exact MAPLE Solution 

The ANSYS FEM response and the exact MAPLE response of the frame model were 

compared in the previous section as a means of investigating the effect of time steps on the 

solution; however, this comparison will now be explicitly addressed.  To verify the exact 

response obtained from MAPLE with the first two modes of vibration considered, the mode 

superposition method must be used to perform the FEM analysis, and these same two modes 

should be superposed to approximate the dynamic motion.  Figure C-5 shows the response,  𝑥
7, 

obtained from FEM and that obtained analytically in MAPLE.  These plots are essentially 

identical, verifying that the actuation force, Fact(t), does indeed produce the actively dampened 

response,  𝑥
7.  
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Figure C-5.  Response,  𝑥

7, for the (a) FEM model and (b) analytical model. 

C.6 Effect of Higher Modes on Frame’ Response 

The assumption in solving the active attenuation problem for only the first two modes of 

vibration is that all higher modes are insignificant.  However, by considering these higher modes 

in the FEM model, the validity of this assumption may be evaluated by checking if the 

uncontrolled, higher frequency vibration modes are significant in the displacement response.  

There are two methods of considering these residual vibration modes in ANSYS.  One option is 

to simply use the extra higher frequency modes in the mode superposition method, or another 

option is to use a full transient analysis, where all DOFs are directly integrated in time, which 

essentially picks up all modes of vibration (that may be described by the finite number of DOFs). 

First, consider a mode superposition solution, where four modes of vibration are included.  

Figure C-6a shows the response,  𝑥
7, and Figure C-6b shows the y-displacement response of 

node 38,  𝑦
 8(chosen to capture the motion of the fourth mode).  Also, the uncontrolled response 

of the structure is included in these plots for comparison.  On reviewing Figure C-6, it is 

apparent that one residual mode has a significant effect on the frame’s response.  These relatively 

large amplitude residual vibrations are caused by the third mode of vibration, which can be 
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checked by observing that the residual vibration frequency in both Figure C-6a and Figure C-6b 

is 35.0Hz.  Note that the oscillations in Figure C-6a are roughly 100 times smaller than those in 

Figure C-6b because the first three mode shapes involve no significant relative changes in  𝑦
 8.  

Also note that the fourth mode of vibration is not present in the frame’s response, even in the 

response of  𝑦
 8– a DOF that undergoes significant relative deflection in the fourth mode shape.  

However, this result is not surprising, as the assumed initial disturbed configuration is unable to 

excite the fourth mode of vibration.  One last observation from Figure C-6 is that the free 

response, as expected, is completely dominated by the first two modes of vibration. 

 
Figure C-6.  (a) Response,  𝑥

7, and response,  𝑦
 8, (node 38 in y-direction) obtained by 

superposing first four modes of vibration.  Uncontrolled responses are also shown. 

To confirm that the system dynamics are accurately modeled in FEM by superposing 

only the first four vibration modes, a full dynamic analysis is performed to check for any 

significant presence of higher modes in the response.  In Figure C-7 the responses obtained from 

superposing the first four modes are compared to those obtained in the full DOF analysis.  In 

Figure C-7a, there is no distinguishable difference in the response of  𝑥
7, but in Figure C-7b one 

can see the slight affect of higher vibration modes in the full DOF response of  𝑦
 8.  Differences 

are so slight that for practical purposes the mode superposition method provides an equivalent 

(a) (b) 

  uncontrolled    2 modes 

controlled    uncontrolled    2 modes 

controlled  
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response at a reduced computational cost.  In fact three modes would likely be adequate to model 

the structures response, as it provides agreement with the full method to an order well below 10
-

6
m. 

 

 
Figure C-7: (a) Displacement response X7x(t) and (b) X38y(t),  obtained by superposing first four 

modes of vibration compared with those obtained by the full DOF analysis. 

C.7 ANSYS Input Codes 

The ANSYS input code for performing the modal analysis and performing the modal 

superposition transient dynamic analysis with four modes considered is: 

fini 
/clear   
  
/filnam,m_t1_bc1 
/prep7   
/title,truss 
et,1,beam3  
!acel,,9.8  
r,1,76e-6,4585.33e-12,20e-3  
r,2,0.0357/100,1.01501e-4,0.2132 
mp,ex,1,7.17e10  
mp,dens,1,2800   
mp,gxy,1,7.17e10/2.6 
k,1  
k,2,1    
k,3,,1   
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k,4,1,1  
k,5,,2   
k,6,1,2  
k,7,,3   
k,8,1,3  
real,1   
l,1,3    
l,3,5    
l,2,4    
l,4,6    
l,3,4    
l,5,7    
l,6,8    
l,5,6    
esize,,5 
lmesh,all    
real,2   
l,7,8    
esize,,1 
lmesh,all    
finish   
!initial displacements   
!d,2,ux,.00315601    
!d,5,ux,.00178415    
!d,7,ux,.00429341    
!d,9,ux,.00391305    
!d,13,ux,.00315601   
!d,15,ux,.000941175  
!d,18,ux,.00429341   
!d,21,ux,.00417508   
!d,27,ux,.00304104   
!d,27,uy,-.162375e-5 
!d,30,ux,.00344938   
!d,32,ux,.00304104   
!d,32,uy,.162335e-5  
!d,35,ux,.00344938   
 
/solu    !modal analysis 
d,1,all  
d,12,all 
antype,modal 
modopt,lanb,4  
solve    
save 
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finish   
 
/solu    
antype,trans 
trnopt,msup,4 
outpr,nsol 
outres,nsol 
deltim,.0001 
f,2,fx,4.4721    
f,5,fx,1.3528    
f,7,fx,-1.7978+6.28514394  
f,7,fy,-6.28514394   
f,9,fx,2.8826    
f,13,fx,12.096-6.28514394  
f,13,fy,6.28514394  
f,15,fx,1.1068   
f,18,fx,3.6931   
f,21,fx,2.7329   
f,27,fx,-4.3442  
f,30,fx,0.24252  
f,32,fx,-4.4114  
f,35,fx,.42924  
f,27,fy,4.2308 
f,32,fy,-2.1365 
lswrite  
 
fdele,all 
 
*do,k,1,800 
  time,.0005*k 
  !F,7,fx,%F2_neg%  
  !F,7,fy,%F2%  
  !F,13,fx,%F2% 
  !F,13,fy,%F2_neg% 
  !kbc,0      
  lswrite  
*enddo   
 
save 
lssolve,1,801 
finish 
/solu 
expass,on 
numexp,all 
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solve 
finish 

The ANSYS input code for performing the full transient analysis is: 

fini 
/clear   
  
/filnam,full 
/prep7   
/title,truss 
et,1,beam3   
r,1,76e-6,4585.33e-12,20e-3  
r,2,0.0357/100,1.01501e-4,0.2132 
mp,ex,1,7.17e10  
mp,dens,1,2800   
mp,gxy,1,7.17e10/2.6 
k,1  
k,2,1    
k,3,,1   
k,4,1,1  
k,5,,2   
k,6,1,2  
k,7,,3   
k,8,1,3  
real,1   
l,1,3    
l,3,5    
l,2,4    
l,4,6    
l,3,4    
l,5,7    
l,6,8    
l,5,6    
esize,,5 
lmesh,all    
real,2   
l,7,8    
esize,,1 
lmesh,all    
finish   
!initial displacements   
!d,2,ux,.00315601    
!d,5,ux,.00178415    
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!d,7,ux,.00429341    
!d,9,ux,.00391305    
!d,13,ux,.00315601   
!d,15,ux,.000941175  
!d,18,ux,.00429341   
!d,21,ux,.00417508   
!d,27,ux,.00304104   
!d,27,uy,-.162375e-5 
!d,30,ux,.00344938   
!d,32,ux,.00304104   
!d,32,uy,.162335e-5  
!d,35,ux,.00344938   
 
!get optimal force from textfile 
*dim,F2,table,581,1,1,time   
*tread,F2,'F2','txt','E:\ME858\project\' 
*dim,F2_neg,table,581,1,1,time   
*tread,F2_neg,'F2_neg','txt','E:\ME858\project\' 
 
/solu    
antype,trans 
trnopt,full 
outpr,nsol 
outres,nsol 
deltim,.0001  
timint,off  
d,1,all  
d,12,all   
f,2,fx,4.4721    
f,5,fx,1.3528    
f,7,fx,-1.7978+6.28514394 !initial actuation force added 
f,7,fy,-6.28514394        !initial actuation force added 
f,9,fx,2.8826    
f,13,fx,12.096-6.28514394 !initial actuation force added 
f,13,fy,6.28514394        !initial actuation force added 
f,15,fx,1.1068   
f,18,fx,3.6931   
f,21,fx,2.7329   
f,27,fx,-4.3442  
f,30,fx,0.24252  
f,32,fx,-4.4114  
f,35,fx,.42924  
f,27,fy,4.2308 
f,32,fy,-2.1365 
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time,.0001 
nsubst,2 
kbc,1 
lswrite  
 
timint,on 
fdele,all 
    
*do,k,2,100  
  time,.0001*k  
  F,7,fx,%F2_neg%  
  F,7,fy,%F2%  
  F,13,fx,%F2% 
  F,13,fy,%F2_neg% 
  kbc,0     
  lswrite  
*enddo 
 
*do,k,11,400 
  time,.001*k 
  F,7,fx,%F2_neg%  
  F,7,fy,%F2%  
  F,13,fx,%F2% 
  F,13,fy,%F2_neg% 
  kbc,0      
  lswrite  
*enddo   
 
save 
lssolve,1,491   
finish 


