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Abstract 

Meat from food-producing animals play an important role in the dissemination of antimicrobial 

resistant bacteria. Active surveillance programs target major agricultural animals but do not 

include niche food products. In the current investigation, we sought to (1) Identify bacterial 

pathogens from imported reptile and amphibian meat products and determine the presence of broad 

spectrum β-lactamase and colistin resistance genes, (2) determine the antimicrobial resistance 

profiles of Macrococcus caseolyticus isolated from imported meat products and (3) develop a 

culture medium for the selective isolation of M. caseolyticus. Fifty-three imported reptile and 

amphibian meat products were purchased from markets in Vancouver, BC and Saskatoon, SK. We 

found that 41.5% (22/53) of the products carried antimicrobial resistant bacteria with identifiable 

extended spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase and mobile colistin 

resistance genes. Seventy-one isolates from 7 genera of Enterobacteriaceae were recovered (from 

41 of the 53 products), with none of the Salmonella isolates resistant to any of the antimicrobials 

tested. One multidrug resistant E. coli, isolated from a soft shell turtle, produced the CTX-M-55 

enzyme and possessed the mcr-1 gene conferring mobile colistin resistance. An NDM-1 

carbapenemase-producing Acinetobacter spp. was also isolated from a dried turtle carapace. Gram-

positive bacteria resembling Staphylococcus aureus were isolated from imported meat samples 

and identified as Macrococcus caseolyticus; a commensal bacterium found from animal skin and 

food products. All isolates were resistant to the β-lactam class of drugs, including meropenem, and 

possessed the mecB gene conferring methicillin resistance. As the ecological distribution of M. 

caseolyticus in nature is largely unknown, we developed a selective culture medium to help 

facilitate targeted prevalence studies. Of the prepared selective media challenged, colistin nalidixic 

acid (CNA) blood agar with ampicillin 0.5µg/ml and meropenem 0.5µg/ml worked the best. This 
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medium facilitated the growth of M. caseolyticus while inhibiting the growth of Gram-negative 

and most Gram-positive bacteria except for Enterococcus spp. This is the first study to determine 

the prevalence of antimicrobial resistance and identify ESBL, AmpC β-lactamase, carbapenemase, 

methicillin and colistin resistance genes from imported reptile and amphibian meat products. More 

research is required to evaluate the magnitude of the risk that these products have to public health.   
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1 Literature Review 

1.1 Antimicrobial resistance 

1.1.1 General introduction of antimicrobial resistance 

The discovery, commercialization and administration of antibiotics have revolutionized 

both human and animal medicine. Since their discovery, antibiotics have become the mainstay in 

preventive and therapeutic treatment of disease. Antibiotics are classically defined as low 

molecular weight compounds produced by microorganisms which inhibit microbial growth at low 

concentrations (Giguère et al., 2013). The term antimicrobial encompasses a wide variety of 

pharmaceutical agents including antibacterial, antifungal, antiparasitic, and antiviral drugs (Leekha 

et al., 2011). It is defined as any natural, synthetic or semisynthetic compound with the ability to 

kill or inhibit the growth of microorganisms (OIE, 2011). The terms antibiotic and antimicrobial 

have been used interchangeably and will for the purpose of this review be used to describe an 

antibacterial agent. 

Antimicrobials have been used to treat bacterial infections for over 70 years. The first 

natural antibiotic penicillin was discovered by Alexander Fleming in 1928, from a petri dish 

containing a Staphylococcus culture contaminated with a Penicillium mold spore and has been 

used therapeutically since the 1940s (Aminov 2010; Gaynes 2017). Around the same time, Gerhard 

Domagk introduced the first completely synthetic sulfa drug, sulfonamidochrysoidine (Prontosil), 

into therapeutic use (Aminov, 2010). Shortly after the introduction of both Penicillin and Prontosil, 

treatment failures and resistant bacteria were observed (Oldfield and Feng, 2014). Each time a new 

antimicrobial agent has been developed, emergence of resistance has been detected. Antibiotic 

resistance is defined as the ability of a microorganism to grow in the presence and resist the effects 

of a drug designed to kill or inhibit the microorganism (WHO, 2014; CDC, 2018). Antimicrobial 
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resistance is a natural process that becomes more common as a result of selective pressures applied 

by antibiotic use.  

 The emergence and dissemination of antimicrobial resistance is a global public health 

threat (WHO, 2014). With the decreasing development of new antimicrobial agents, the prospect 

of a post-antibiotic era of untreatable infections is a real concern (Alanis, 2005). Antimicrobial 

resistance is associated with increased mortality rates of infected patients and higher economic 

costs due to longer length of hospital stay, additional diagnostic testing and more extensive 

treatments (Cosgrove, 2006). The annual economic burden due to increased health care costs is 

estimated to be approximately $20 billion in the United States and €1.5 billion in Europe (WEF, 

2014; WHO, 2014; Blair et al., 2015). The United States Centers for Disease Control and 

Prevention estimates that more than 2 million infections and approximately 23,000 deaths are 

caused by antimicrobial resistant organisms annually (CDC, 2018).  In Europe it is estimated that 

33,000 deaths are attributed each year to multidrug resistant bacterial infections (EU, 2018). A 

report, reviewing of the global crisis of antimicrobial resistance, commissioned by the UK Prime 

Minister in 2014, projected that mortality attributable to resistant bacterial infections could reach 

approximately 10 million by 2050, if resistance rates rose to 100% (O’Neill, 2016).    

1.1.2 Mechanisms of antimicrobials 

To fully understand how antimicrobial resistance develops in bacteria, it is important to 

recognize how antimicrobial agents work and where they exert their effects. Five mechanisms of 

action are briefly described: (1) interference with cell wall synthesis, (2) disruption of cell 

membrane structure, (3) inhibition of protein synthesis, (4) interference with nucleic acid synthesis, 

and (5) inhibition of metabolic pathways (Walsh, 2000; McDermott et al., 2003; Tenover, 2006; 

Giguère et al., 2013).  
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Interference with cell wall synthesis: Two classes of antibiotics, the β-lactams (e.g. 

penicillin and cephalosporins) and the glycopeptides (e.g. vancomycin) inhibit bacterial cell wall 

synthesis (Walsh, 2000; Tenover, 2006). The β-lactam drugs interfere with transpeptidase and 

transglycosylase enzymes, by binding to penicillin binding proteins (PBPs), required for normal 

peptidoglycan cross-linking. The glycopeptides sequester the D-alanine termini of the 

peptidoglycan strands preventing normal cross-linking. Failure to make peptidoglycan cross-links 

leads to a mechanically weak cell wall, which is susceptible to osmotic lysis (Walsh, 2000). 

Disruption of cell membrane structure: This is the mechanism of action of the 

polymyxins (colistin) and daptomycin. Polymyxins bind to the lipopolysaccharides (LPS) of the 

outer and inner membranes of the bacteria cell, weakening the integrity of the phospholipid layers 

(Yu et al., 2015). This increases the membrane permeability resulting in leakage of cell contents 

and subsequent bacterial cell death. Daptomycin binds to the bacterial cell membrane causing 

membrane depolarization and cell death (Taylor and Palmer, 2016).  

Inhibition of protein synthesis: Ribosomes are the functional units involved in protein 

synthesis and are structurally distinct in bacterial versus eukaryotic cells (Walsh, 2000). 

Antibiotics interfere with ribosomal function by binding to the structural subunits resulting in 

protein synthesis inhibition. The tetracycline and aminoglycoside antibiotics bind to the 30S 

ribosomal subunit, while macrolides and chloramphenicol bind to the 50S subunit (McManus, 

1997; Tenover, 2006).  

Interference with nucleic acid synthesis: The quinolones (nalidixic acid) and 

fluoroquinolones (ciprofloxacin) inhibit nucleic acid synthesis by targeting DNA gyrase and DNA 

topoisomerase IV, respectively. These enzymes are responsible for relaxing positive DNA 

supercoils, allowing for the unhindered replication of DNA by polymerase enzymes. Binding of 
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these enzymes inhibits DNA synthesis. Rifampicin also interferes with nucleic acid synthesis by 

targeting bacterial DNA-dependent RNA polymerase, thus inhibiting RNA synthesis (McManus, 

1997; Walsh, 2000; Tenover, 2006).    

Inhibition of metabolic pathways: Trimethoprim and sulfonamides block the folate 

synthesis pathway and ultimately inhibit DNA synthesis. Sulfonamides compete with para-

aminobenzoic acid (PABA) to inhibit the synthesis of dihydrofolic acid by binding to the 

dihydropteroate synthase enzyme, while trimethoprim directly inhibits the dihydrofolate reductase 

enzyme preventing the formation of tetrahydrofolic acid (Tenover, 2006). Trimethoprim and 

sulfonamides have a synergistic effect when given together as they sequentially inhibit the 

successive steps in the folate synthesis pathway (McManus, 1997).  

1.1.3 Mechanisms of acquiring resistance 

Resistance can be categorized as intrinsic or acquired. Intrinsic resistance is defined as an 

innate characteristic of a bacterial species to resist the action of an antimicrobial due to inherent 

structural or functional properties (Blair et al., 2015). Intrinsic resistance is constitutive to all 

strains in a bacterial genus or species and is independent of antibiotic selective pressure and the 

acquisition of novel genetic material (Cox and Wright, 2013). Bacteria can acquire antimicrobial 

resistance through mutation of chromosomal genes or by acquisition of external genetic 

determinants of resistance by horizontal transfer (McManus, 1997; Thomas and Nielsen, 2005; 

Huddleston, 2014). Chromosomal mutation can occur through spontaneous mutation, production 

of hypermutator strains and adaptive mutagenesis (Watford and Warrington, 2018).  

Mutation: Chromosomal mutation is a random event that occurs during DNA replication. 

Some mutations may confer a fitness advantage such as growth in the presence of antimicrobials, 
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allowing for the selection of resistance populations of bacteria, while others may be costly to the 

bacterium, resulting in cell death (Woodford and Ellington, 2007). 

Horizontal gene transfer is the movement of genetic material between bacteria. It is the 

most common means of dissemination of antibiotic resistance genes among bacteria. Mobile 

genetic elements such as plasmids, transposons, insertion sequences and integrons, containing 

gene cassettes, are important facilitators of resistance genes, and may contain multiple genes 

conferring antimicrobial resistance and virulence factors (Thomas and Nielsen, 2005; Arber, 2014; 

Huddleston, 2014). Classically, the acquisition of resistance genes by horizontal gene transfer 

occurs by three primary mechanisms: transformation, transduction and conjugation.  

Transformation: Is the process whereby bacteria uptake short fragments of DNA and 

incorporate it into their genome. Briefly, DNA is released into the environment from dead bacterial 

cells. Competent bacteria take up this free DNA from the environment and through recombination 

events the acquired DNA is expressed by the recipient cell (Thomas and Nielsen, 2005; 

Huddleston, 2014).  

Transduction: This process occurs when antibiotic resistance genes are transferred by a 

bacteriophage (a virus which infects bacteria). During the replication process, bacteriophages 

inadvertently take up bacterial host genomic DNA. Once, the bacteriophage lyses a host cell it is 

released into the environment. These bacteriophages then infect a new bacterial host and transfer 

the acquired DNA. This DNA is then incorporated and expressed in the bacterial genome (Arber, 

2014; Huddleston, 2014). 

Conjugation: Is the transfer of genetic material between bacteria via a pilus or pore. 

Conjugation requires direct cell to cell contact between the donor and recipient bacterial cells, 
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creating a mating pair. Plasmids and transposons are the main mobile genetic elements transferred 

during conjugation, but integrons can also be frequently transferred (Thomas and Nielsen, 2005; 

Huddleston, 2014).  

1.1.4 Mechanisms of antimicrobial resistance 

Resistance to antimicrobial agents occur by three main mechanisms – decreased 

accessibility of antibiotics to its target, inactivation of antibiotics, and modification or alteration of 

antibiotic targets (McManus, 1997; Blair et al., 2015; Munita and Arias, 2018).  

 Decreased accessibility of antibiotics: Bacteria can minimize the access of antibiotics into 

the cell through active efflux pumps and changes to outer membrane permeability, thus conferring 

resistance. Expression of efflux pumps in the cell membrane reduces the intracellular antimicrobial 

concentration to below inhibitory levels by actively transporting antibiotics out of the cell (Wright, 

2011). Efflux mediated resistance is common for the tetracycline, fluoroquinolone and sulfa drug 

classes (McManus, 1997). Decreased cell permeability to antibiotics is a recognized mechanism 

of resistance among Gram-negative bacteria, including Pseudomonas aeruginosa to the 

carbapenems and E. coli to the tetracyclines (Wright, 2011; Munita and Arias, 2018). This is 

achieved by down regulation of porin expression or replacement of non-selective porin channels 

to more-selective channels (Blair et al., 2015).   

Inactivation of antibiotics: Antibiotics can be inactivated by bacterial enzymatic 

hydrolysis or modification. β-lactamases are enzymes that many Gram-positive and Gram-

negative bacteria produce which can degrade β-lactam drugs (McManus, 1997; McDermott et al., 

2003; Wright, 2011; Blair et al., 2015; Munita and Arias, 2018). These enzymes hydrolyze the β-

lactam ring thus rendering the antibiotics inactive. Antibiotics can also be inactivated by 
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transferring a chemical group to their vulnerable sites by bacterial enzymes (McManus, 1997; 

Wright, 2011; Blair et al., 2015). This prevents the antibiotics from binding to its target protein. 

Several different chemical groups such as adenyl, phosphoryl, or acetyl can be transferred to the 

antibiotic site by specific enzyme transferases and thus modify the antibiotic (McManus, 1997; 

Wright, 2011; Blair et al., 2015). Some examples include, aminoglycosides, chloramphenicol, 

streptogramin, macrolides and rifampicin (McManus, 1997).     

Modification or alteration of antibiotic targets: Target site modification can inhibit 

antibiotic function by preventing binding to the active site (Walsh, 2000). Mutational changes in 

bacterial structures prevent the antibiotic from binding while retaining cellular functions. β-lactam, 

aminoglycosides, tetracyclines, fluoroquinolones, and macrolides are some examples of drug 

classes which can be inhibited by target alteration (McManus, 1997; Blair et al., 2015; Munita and 

Arias, 2018). In Staphylococci, mutation in the penicillin binding proteins (PBPs) decreases the 

affinity of β-lactam drugs from binding and disrupting the peptidoglycan layer in the cell wall, 

thus conferring resistance (McManus, 1997). This is the main mechanism of methicillin resistance 

in Staphylococci.  

1.1.5 Antimicrobial resistance in Gram-negative bacteria 

Resistance in Gram-negative bacteria is currently a major issue. In Gram-negative bacteria, 

broad-spectrum β-lactamase resistance is increasing globally due to the extensive use of 

antimicrobials in both human and veterinary medicine (Paterson, 2006; Partridge, 2015). 

Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae are a serious treat as these 

enzymes confer resistance to critically important drugs such as 3rd generation cephalosporins, 

which are used to treat urinary tract infections, bacteremia and invasive gastrointestinal infections 

caused by Enterobacteriaceae (Pitout, 2010; Rubin and Pitout, 2014; Eng et al., 2015). Multidrug 
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resistance (MDR) is another major concern for Gram-negative bacteria, as they tend to acquire 

resistance mechanisms through horizontal transfer of plasmids capable of harbouring resistance 

genes to multiple classes of drugs (Paterson, 2006; Partridge, 2015; Mathers, 2016; Logan and 

Weinstein, 2017). This limits the ability of clinicians to effectively treat infections, leading to 

increased patient mortality (Dicks et al., 2017). The emergence of carbapenem-resistant 

Enterobacteriaceae including those producing New Delhi metallo-β-lactamase (NDM) and 

Klebsiella pneumoniae carbapenemase (KPC) conferring resistance to last resort drugs, have 

become a serious threat (Logan and Weinstein, 2017). These resistant bacteria have disseminated 

around the world where international travel and trade of food is thought to have played a crucial 

role (Woodford et al., 2014; Hawkey, 2015; Kuenzli, 2016).    

1.1.5.1 Broad spectrum β-lactamases 

β-lactam antibiotics are an important class of drugs and are considered the first line 

treatment for many bacterial infections. They bind with PBPs of the cell membrane to inhibit cell 

wall synthesis. β-lactamase enzymes hydrolyze the β-lactam ring to inactivate these antibiotics 

(McDermott et al., 2003; Poole, 2004; Paterson, 2006; Tenover, 2006; Wright, 2011). Genes 

encoding β-lactamase enzymes are either chromosomally mediated or found on mobile genetic 

elements, including plasmids, transposons and gene cassettes (Poole, 2004). β-lactamases are a 

broad group of enzymes that have been classified using two schemes: Ambler molecular 

classification and the Bush-Jacoby-Medeiros functional classification. In the Ambler classification 

system, β-lactamases are grouped according to protein sequence similarity. There are four classes 

(A-D) in the Ambler scheme where class A, C, and D are serine β-lactamases and class B are 

metallo-β-lactamases (Ambler et al., 1991; Bush et al., 1995; Bush, 2013). Conversely, functional 

similarities of the enzyme substrate and inhibitor profiles are the basis of the Bush-Jacoby-
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Medeiros classification (Bush and Jacoby, 2010). Classification of the β-lactamase enzymes are 

summarized in Table 1.1. The most concerning enzymes found in Enterobacteriaceae are the 

extended-spectrum β-lactamases (ESBLs), plasmid-mediated AmpC β-lactamases and the 

carbapenemases. 



 

 
 

1
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Table 1.1: Classification of β-lactamase enzymes (adapted from Bush and Jacoby, 2010; Rubin and Pitout, 2014) 

Ambler 

Classification 

Buch-Jacoby-

Medeiros 

Group 

Active Site Enzyme Examples 
Spectrum of 

Resistance 
Inhibitors 

A 
2a, 2b, 2be, 2br, 

2ber, 2e, 2f 
Serine 

Narrow spectrum β-

lactamases 

TEM-1, 2 and 13, 

SHV-1 

Penicillins, 

cephalosporins 

Clavulanic 

acid, 

tazobactam, 

sulbactam 

(except 2br) 

Extended spectrum β-

lactamases (ESBLs) 

TEM (except TEM-

1, 2 and 13), SHV 

(except SHV-1), 

CTX-M 

Penicillins, 

cephalosporins, 

monobactams 

Carbapenemases  

(KPC type) 
KPC, SME, IMI 

Penicillins, 

cephalosporins, 

monobactams, 

carbapenems, 

cephamycins 

B 3a 
Zinc-binding 

thiol group 

Carbapenemases 

(Metallo-β-lactamases) 
NDM, VIM, IMP All β-lactams 

EDTA and 

other metal 

chelators 

C 1 Serine 
AmpC 

(Cephalosporinases) 

CMY-2, FOX, ACT, 

MOX, ACC, DHA 

Penicillins, 

cephalosporins, 

cephamycins, 

monobactams 

Cloxacillin, 

oxacillin, 

boronic acid 

D 2df Serine Oxacillinase OXA-48, OXA-181 
Penicillins, 

carbapenems 
NaCl 

Group 1: Cephalosporinases- higher activity towards cephalosporins than benzylpenicillins, active against cephamycins (cefoxitin), high affinity for aztreonam 

Group 2b: Narrow spectrum β-lactamases – hydrolyze penicillins and early cephalosporins (cephaloridine and cephalothin) 

Group 2be: Extended spectrum β-lactamases – broad spectrum of activity against penicillins and cephalosporins of subgroup 2b, plus able to hydrolyze one or 

more oxyimino-β-lactams (cefotaxime, ceftazidime, ceftriaxone, cefepime and aztreonam) 

Group 2df: Oxacillinases – carbapenem hydrolyzing activities, able to hydrolyze cloxacillin or oxacillin 

Group 2f: Serine carbapenemases – Able to hydrolyze the carbapenems and the oxyimino-β-lactams  

Group 3a: Metallo- β-lactamases – Able to hydrolyze all the β-lactams (NDM) including penicillins, carbapenems and oxyimino-β-lactam
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Extended-spectrum β-lactamases (ESBLs): ESBLs are class A enzymes according to 

Ambler classification. SHV (except SHV-1), TEM (except TEM-1, 2 and 13) and the CTX-Ms are 

examples of some of the most common ESBLs. The parent enzymes SHV-1 and TEM-1, 2 and 13 

have narrow spectrum of activity and are only able to hydrolyze penicillin and first generation 

cephalosporins. Mutations in these enzymes have broadened their spectrum of activity leading to 

the designation of SHV and TEM ESBLs (D’Andrea et al., 2013; Rubin and Pitout, 2014). ESBLs 

are capable of degrading a broad-spectrum of β-lactam antibiotics including, penicillins, 

cephalosporins, and monobactams but not cephamycins or carbapenems. These enzymes can be 

inhibited by β-lactamase inhibitors such as clavulanic acid, tazobactam or sulbactam (Lee et al., 

2012). The Lahey database is a curated list of clinically important β-lactamase families; there are 

over 190 SHV and 220 TEM variants described (Bush et al., 2017). The CTX-M enzymes became 

a public health concern when clinically relevant Enterobacteriaceae acquired them through 

horizontal gene transfer from Kluyvera spp. (Humeniuk et al., 2002; Poirel et al., 2002; Pitout and 

Laupland, 2008). The name CTX-M describes the preferential hydrolytic activity of this enzyme 

against cefotaxime than ceftazidime, and the location of München where it was first described 

(Rubin and Pitout, 2014). There are over 170 CTX-M variants described (Bush et al., 2017). The 

CTX-M enzymes are classified into five phylogenetic subgroups based on their amino acid 

sequences and include, CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25 (Bonnet, 

2004; D’Andrea et al., 2013).      

AmpC β-lactamases: This group of enzymes are class C based on Ambler classification. 

AmpC enzymes are structurally similar to ESBLs but have increased affinity for binding to 

cephalosporins. These enzymes confer resistance to penicillins, cephalosporins, monobactams and 
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cephamycins, while cloxacillin, oxacillin and boronic acid are good inhibitors of AmpC enzymes 

(Jacoby, 2009). Chromosomally mediated AmpC β-lactamases were first detected from E. coli, 

while the plasmid mediated gene was reported from Enterobacter cloacae in the 1980s (Philippon 

et al., 2002). The most common plasmid-mediated AmpC β-lactamase is CMY, which was initially 

derived from chromosomally encoded AmpC cephalosporinases from Citrobacter freundii 

(Bauernfeind et al., 1996; Wu et al., 1999). Over 130 CMY variants have been identified to date 

(Bush et al., 2017). 

Carbapenemases: Carbapenemases are a group of enzymes capable of hydrolyzing all 

classes of β-lactam drugs, including the carbapenems. Carbapenems have the broadest spectrum 

of antibacterial activity of the β-lactam antibiotics and are considered the last resort drugs for 

treating multidrug resistant Gram-negative infections (Papp-Wallace et al. 2011). Carbapenemases 

are grouped into two major molecular families: the metallo-β-lactamases and the serine-β-

lactamases (Queenan and Bush, 2007). Metallo-β-lactamases (MBLs) differ structurally from the 

serine-β-lactamases by their requirement for zinc at the active site which facilitates the hydrolysis 

of β-lactam drugs. MBLs can be inhibited by metal ion chelators, such as EDTA but are uninhibited 

by clavulanic acid, tazobactam or sulbactam (Queenan and Bush, 2007). MBLs are classified as 

Ambler class B and functional group 3 (Queenan and Bush, 2007; Bush and Jacoby, 2010). The 

most common types of MBLs are the Verona integron encoded metallo-β-lactamase (VIM), 

imipenemase (IMP) and NDM (Nordmann et al., 2011). In fact, NDM is the most common 

carbapenemase worldwide; it has been identified in more than fifty countries (Logan and 

Weinstein, 2017). Unlike MBLs, serine β-lactamases contain a serine at their active site and metal 

ion chelators like EDTA do not inhibit them (Bush, 2013). Serine β-lactamases belong to Ambler 

class A and D. Some examples include the chromosomally-mediated SME and the plasmid-
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mediated KPC. At present, plasmid-mediated KPC is the most common class A carbapenemase 

found worldwide; it is endemic in an increasing number of countries and are responsible for many 

major outbreaks (Logan and Weinstein, 2017). Oxacillinases (OXA) with carbapenemase activity 

are class D enzymes. They have been reported throughout the world, with OXA-48 being the most 

commonly identified variant (Logan and Weinstein, 2017). The OXA enzymes are a diverse family 

of β-lactamases with the ability to hydrolyze penicillins at high levels, but the hydrolysis of 

carbapenems occur only at low levels (Poirel et al., 2012).     

1.1.5.2 Colistin resistance 

Colistin is one of the last drugs used to combat carbapenem-resistant infections. It is a 

cationic polypeptide with broad spectrum activity against Gram-negative bacteria (Liu et al., 

2016). Colistin was discovered in 1949 and until recently it was considered too toxic for routine 

use, due to the high incidence of reported nephrotoxicity (Falagas and Kasiakou, 2005; Nation and 

Li, 2009). Unfortunately, as with all antimicrobials, increased use has resulted in resistance. 

Resistance is mediated through modification of lipid A by phosphoethannolamine transferase, 

resulting in decreased binding affinity to the outer membrane and prevention of cell lysis 

(Nordmann and Poirel, 2016). Resistance to colistin is not a new phenomenon, as chromosomal 

mutations have been previously described (Falagas et al., 2010). What is problematic is the 

emergence of the plasmid-mediated colistin resistance gene, mcr-1, capable of facilitating 

horizontal gene transfer and the dissemination of resistance (Liu et al., 2016). The plasmid-

mediated nature of these enzymes often results in the acquisition of other resistance genes, leading 

to multidrug resistance. Recently, a KPC-28 carbapenemase-producing E. coli isolate from a 

hospitalized patient in France exhibited colistin resistance and was found to have acquired a mcr-
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1 and blaOXA-48-bearing plasmid following a three week treatment of colistin (Beyrouthy et al., 

2017). 

1.1.5.3 Integrons 

In Gram-negative bacteria, integrons play an important role in the dissemination of 

resistance genes between bacteria. Integrons are composed of three distinct structures: an integrase 

gene (intI), a gene cassette receptor site (attI) and a promoter (Pc), which allows for the site specific 

insertion of a gene cassette and the expression of the associated gene (Hall and Collis, 1995). 

Integrons are not mobile themselves, but the gene cassette within them can be independently 

mobilized. Gene cassettes are small genetic elements which can be incorporated into an integron 

or exist as a free, circular piece of DNA (Fluit and Schmitz, 2004). Integrons are categorized into 

three distinct classes: class 1, class 2 and class 3. Class 1 integrons are most frequently identified 

from clinical isolates (Bennett, 1999; Fluit and Schmitz, 2004). Integrons are capable of carrying 

multiple gene cassettes, resulting in multidrug resistance (Rowe-Magnus and Mazel, 2002). The 

most commonly encoded genes found contained within class 1 integron gene cassettes are 

streptomycin-spectinomycin, trimethoprim and β-lactam resistance (Deng et al., 2015). These 

integrons are commonly located on plasmids which can be transferred to other organisms via 

horizontal gene transfer (Rowe-Magnus and Mazel, 2002; Fluit and Schmitz, 2004). 

1.1.6 Antimicrobial resistance in Gram-positive bacteria  

Gram-positive bacteria are among the most common bacterial causes of clinical infections 

(Eades et al., 2017). Although recent global attention has been focused on multidrug resistant 

Gram-negative organisms, antimicrobial resistant Gram-positive bacteria are also a serious public 

health concern. Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 
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Enterococcus faecium (VRE) are leading causes of healthcare-associated and community-acquired 

infections (Munita et al., 2015; Eades et al., 2017). In the United States, MRSA and VRE cause 

approximately 100,000 healthcare-associated infections resulting in more than 12,000 deaths per 

year (CDC, 2013). Furthermore, MRSA and VRE have the potential for zoonotic transfer between 

humans and companion animals (Pomba et al., 2016). Staphylococcus aureus and Enterococcus 

faecium are commensal bacteria living on the skin and in the intestinal tracts of both humans and 

animals. The extensive use of antimicrobials in both human and veterinary medicine can select for 

resistance, while the close contact with companion animals can facilitate transfer (Guardabassi, 

2004).  

1.1.6.1 Methicillin resistance 

Gram-positive bacteria are covered by a thick layer of peptidoglycan, consisting of short 

glycan chains of N-acetylmuramic acid and β-1-4-N-acetylglucoseamine residues. Pentaglycine 

cross-bridges are cross-linked in the cytoplasmic membrane through transpeptidation which is 

catalyzed by the PBP (Stapleton and Taylor, 2002). The β-lactam class of drugs inhibit the 

transpeptidase activity by acting as an analogue for the terminal D-alanyl bonds of the stem 

peptides. In methicillin resistant staphylococci, β-lactams have a weak affinity towards PBP2a, an 

altered form of PBP2. This is due to the structural change to the serine active site resulting in 

decreased accessibility of β-lactams to its binding site (Stapleton and Taylor, 2002). 

In Staphylococcaceae, the mec family of genes encoding for the altered penicillin-binding 

proteins confer methicillin resistance (Peacock and Paterson, 2015). These genes are found in 

association with the staphylococcal chromosomal cassette (SCC) complex, which is a mobile 

genetic element responsible for horizontal gene transfer that facilitates integration of the mec gene 

into the chromosome (Stapleton and Taylor, 2002; Peacock and Paterson, 2015; Lee et al., 2018). 
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There have been four mec genes characterized to date and include: mecA, mecB, mecC and mecD 

(Schwendener et al., 2017).  

mecA: The mecA gene was first discovered in 1986 and is the most common gene 

expressed in MRSA isolates (Matsuhashi et al., 1986). It is the classical gene conferring methicillin 

resistance, as it encodes PBP2a which has extremely low affinity for almost all β-lactam drugs, 

including the penicillins, cephalosporins, monobactams, cephamycins and carbapenems. Thus, in 

the presence of a β-lactam, the transpeptidase function of peptidoglycan synthesis is retained 

(Becker et al., 2014).  

mecB: The mecB gene was first identified in 2009 from Macrococcus caseolyticus isolated 

from a chicken skin swab in Japan (Baba et al., 2009). Then later identified from Macrococcus 

canis isolated from canine skin samples in Switzerland (Cotting et al., 2017). The mecB gene can 

be associated with the SCCmec element within the chromosome or found on plasmids (Baba et al., 

2009; Tsubakishita et al., 2010; Gómez-Sanz et al., 2015). In February 2016, a S. aureus isolate 

containing a plasmid encoding mecB gene was identified from a hospitalized patient during routine 

MRSA screening (Becker et al., 2018). This is the first description of a mecB-mediated methicillin 

resistance in Staphylococcus aureus.  

mecC: In 2011, mecC was first described from mecA-negative bovine and human MRSA 

isolates in Europe (García-Álvarez et al., 2011). This gene plays a very similar role to mecA but 

the encoded PBP2a has a higher affinity for oxacillin than cefoxitin giving different susceptibility 

profiles compared with mecA encoded MRSA isolates (Lee et al., 2018). This has led to some 

recommendations from CLSI to use cefoxitin over oxacillin for susceptibility testing (CLSI, 2018). 
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mecD: Recently, mecD was identified from methicillin-resistant mecB-negative M. 

caseolyticus from bovine and canine sources in Switzerland (Schwendener et al., 2017). This gene 

conferred high levels of resistance to all classes of β-lactams including the anti-MRSA 

cephalosporins and was associated with a novel genomic island, classified as M. caseolyticus 

resistance island, which has characteristics resembling that of SCCmec elements (Schwendener et 

al., 2017). The risk of this novel methicillin resistance determinant in human patients has yet to be 

determined.  

 

1.2 Detection of antimicrobial resistance 

1.2.1 Phenotypic identification of antimicrobial resistance 

Phenotypic testing is used routinely in diagnostic laboratories (Markey et al., 2013; Procop, 

2017). The principle of phenotypic testing is to compare observable or measurable traits to a known 

set of criteria. The most common phenotypic techniques used to identify antimicrobial resistant 

bacterial strains include the use of culture media and antimicrobial susceptibility testing (Jorgensen 

and Ferraro, 2009; McLain et al., 2016). Underlying resistance mechanisms can often be inferred 

from antimicrobial susceptibility test results using ‘expert rules,’ which are based on current 

clinical microbiological evidence of resistance phenotypes and mechanisms (Leclercq et al., 2013). 

However, molecular testing is still required to confirm the presence of these mechanisms, as 

interpretative reading alone cannot determine if multiple resistance mechanisms or if a new 

mechanism is contributing to the resistance patterns identified (Livermore et al., 2001; Leclercq et 

al., 2013; McLain et al., 2016).  
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1.2.1.1 Bacteriological culture media 

Bacteriological culture media are designed to support the growth of bacteria. They contain 

all the elements that most bacteria require for growth and maintenance (Riley, 2013). Culture 

media can be divided into 5 different categories, including: chemically defined media, basic 

nutritive media, enrichment broths, differential/indicator media and selective media (Washington, 

1996; Markey et al., 2013; Riley, 2013). Broth medium is used for the cultivation of large 

quantities of organisms, while solid medium is used for isolating bacteria to observe colony 

characteristics of individual bacterial species (Riley 2013). In diagnostic laboratories one of the 

most useful media types is selective media. 

Selective media: Any agar medium designed for the selective growth of a bacterium or 

group of bacteria, is classified as a selective medium (Markey et al., 2013). It contains inhibitory 

substances to prevent growth of unwanted bacterial species while not affecting the bacteria of 

interest. Many selective media can also be differential (e.g. MacConkey and Mannitol salt agar) 

when they incorporate dyes or metallic substrates that bacteria utilize, allowing for different 

bacteria to be recognized based on colony colour (Washington, 1996). Antibiotic-based selective 

media have been used for the isolation of a variety of resistant bacteria (McLain et al., 2016). This 

is based on the knowledge that certain bacteria possessing intrinsic or acquired resistance 

mechanisms to specific antibiotics will grow in the presence of higher concentrations of that 

antimicrobial agent. Antibiotic selective media are routinely used as a screening tool for specific 

antimicrobial resistant pathogens (Gazin et al., 2012). Two examples of antibiotic-based selective 

media are CHROMagar ESBL and Mannitol Salt Agar (MSA) with oxacillin (Figure 1.1). 

CHROMagar ESBL: CHROMagar ESBL is a chromogenic medium that is both  

differential and selective for Gram-negative bacteria harbouring ESBLs (CHROMagar, 2016). It 
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incorporates a chromogenic substrate that once hydrolyzed by a bacterial enzyme causes 

accumulation of a coloured dye in the bacterial colony, resulting in differentiation of the targeted 

pathogen (Gazin et al., 2012). The incorporation of a proprietary selective mix allows for the direct 

detection of presumptive ESBL-producing organisms. One study comparing five media for 

detecting ESBL-producing Enterobacteriaceae observed that CHROMagar ESBL had a high 

sensitivity (98.3%) as it was able to detect ESBL-producing strains very consistently, however, 

this media had a moderate specificity (72.3%) indicating it would frequently detect non-ESBL 

strains such as those expressing AmpC β-lactamases (Grohs et al., 2013).  

Mannitol salt agar with oxacillin: Mannitol salt agar is both a selective and differential 

growth medium for the detection of Staphylococcus aureus. The use of a high salt concentration 

(7.5 - 10%) inhibits most bacteria, while the incorporation of mannitol and phenol red is used to 

detect acid production from the fermentation of mannitol (Markey et al., 2013). The addition of 

oxacillin to MSA allows for the selection of methicillin resistant strains of S. aureus. Studies have 

observed that including oxacillin results in high rates of sensitivity and specificity for the detection 

of mecA-positive MRSA (Kumurya, 2017; Lally et al., 1985; Mathanraj et al., 2009). However, 

one study demonstrated that the inclusion of cefoxitin in MSA had even greater levels of sensitivity 

(100%) and specificity (100%) in the detection of mecC-positive MRSA strains then with 

oxacillin, 92% and 96% respectively (Kumurya, 2017). This is due to the higher relative affinity 

of mecC-encoded PBP2a for oxacillin than for cefoxitin, leading to higher levels of resistance to 

cefoxitin over oxacillin (Kim et al., 2012).  
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Figure 1.1: Antibiotic-based selective media: (A) CHROMagar ESBL 

demonstrating the pink colony colour of E. coli, and (B) Mannitol Salt Agar 

with oxacillin showing the yellow pigmented colonies of S. aureus. 
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1.2.1.2 Antimicrobial susceptibility testing 

The principle of antimicrobial susceptibility testing is to determine the effectiveness of an 

antibiotic at inhibiting the growth of a bacterial isolate in a laboratory setting, also known as in 

vitro testing. Antimicrobial susceptibility testing follows a highly standardized protocol to ensure 

reproducible and reliable results (Balouiri et al., 2016). There are two main international standards 

committees recognized: The Clinical and Laboratory Standards Institute (CLSI), and the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST). These committees provide 

updated protocols for testing, and guideline criteria for interpretation of results. The 

standardization of antimicrobial susceptibility testing is important for generating accurate results 

and involves every step of the protocol, including, growth media, antibiotic concentration, 

inoculum concentration, incubation time and temperature, and the use of control bacterial strains. 

Failure to adhere to the recommended standards can render the test results meaningless as 

interpretative criteria for each susceptibility method are based on strict adherence to the 

standardized protocols (Kiska 1998; Balouiri et al. 2016).  There have been numerous methods 

developed and they are broadly categorized into two main groups: diffusion and dilution based 

techniques (Figure 1.2). Depending on the testing method utilized either a qualitative or 

quantitative result will be determined.   

Diffusion based techniques 

Diffusion based techniques include the disk diffusion and gradient strip tests. Both tests 

use the same standardized protocol. To perform these assays, a fresh bacterial suspension in saline 

or deionized water is prepared. The inoculum is prepared to a density of a McFarland 0.5 standard, 

which corresponds to approximately 1.5 x 108 CFU/ml. The inoculum is streaked out onto the 

surface of a 4 mm thick Mueller-Hinton agar (MHA) plate, creating an even lawn of bacteria. After 
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the plate is inoculated, antibiotic disks or antibiotic strips are placed on the plate and incubated at 

35°C for 16-18 hours. Results are interpreted using the CLSI or EUCAST criteria (CLSI, 2018; 

EUCAST, 2018).    

Disk diffusion test: This method was first described by Bauer and colleagues in 1966 and 

is known as Kirby-Bauer antibiotic testing (Bauer et al., 1966). Antibiotic impregnated discs are 

placed on agar plates inoculated with the test bacterium. The antimicrobial agent diffuses into the 

agar radially creating a concentration gradient with high drug concentration immediately 

surrounding the disk and decreasing outwards (Matuschek et al., 2014). Bacteria grow only up to 

the maximum concentration they can tolerate resulting in a zone of inhibition where no bacterial 

growth occurs depending on the susceptibility of the bacterium to an antimicrobial agent (Figure 

1.2A). The diameter of the inhibitory zone is measured to the nearest millimetre using a ruler or 

calipers and is interpreted according to CLSI or EUCAST criteria (CLSI, 2018; EUCAST, 2018). 

The results yielded are qualitative and describe bacterial isolates categorically as susceptible, 

intermediate or resistant to the antimicrobial agent tested. This technique is the simplest to perform 

and is the most cost-effective means for screening both human and animal bacterial pathogens in 

diagnostic laboratories (Jorgensen and Ferraro, 2009).  

Gradient strip test: Gradient strips (e.g. Epsilometer or E-test) are commercially available 

thin inert non-porous plastic reagent strips impregnated with a predefined gradient of an 

antimicrobial agent (Olsson-Liljequist, 1992; Jorgensen and Ferraro, 2009). The surface of the 

strip displays a scale delignating the antibiotic concentrations. During the incubation period, an 

antimicrobial concentration gradient is established with the highest concentration at the top of the 

strip and decreasing to the lowest concentration at the bottom. Following incubation, the test is 

read by viewing where bacterial growth occurs at the intersection of the strip and the tear drop 
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shaped zone of inhibition (Figure 1.2B). The results yielded are quantitative, which allows for the 

determination of the antimicrobial minimum inhibitory concentration (MIC). The MIC is defined 

as the minimum concentration which completely inhibits the growth of bacteria (Coyle, 2005; 

Balouiri et al., 2016). This test is a hybrid diffusion-dilution assay. It is simple to perform but 

errors may occur in reading this test if plates are inoculated poorly or if the gradient strip moves 

when placed (Brown and Brown, 1991).  

Dilution based techniques 

Dilution based techniques can be performed using either agar plates or broth media. Both 

methods consist of making a standard bacterial density prepared from a McFarland 0.5 suspension 

inoculated into a doubling series of antibiotic concentrations. Results are reported quantitatively 

as the antimicrobial MIC (CLSI, 2015).  

 Agar dilution: Mueller-Hinton agar plates are prepared with serial dilutions of 

antimicrobials and a standard bacterial inoculum of 1.0 x 104 CFU is spotted onto the agar surface 

(CLSI, 2015). The plate containing the lowest antimicrobial concentration where no growth is 

observed is the MIC (Figure 1.2C). Although this method is technically simple, it is laborious to 

perform, thus limiting its routine application in most diagnostic settings.   

 Broth dilution: Broth dilution consists of a series of antimicrobial concentrations prepared 

in Mueller-Hinton broth. This technique can be carried out in large tubes (macro broth dilution) or 

in microtiter plates (micro broth dilution). Broth microdilution is a widely used test in both human 

and animal diagnostic laboratories. A bacterial inoculum prepared to a density of McFarland 0.5 

standard is added to broth media creating a final inoculum of 5.0 x 105 CFU/ml which can be 

inoculated into commercially prepared 96 well microtiter plates (Figure 1.2D). These plates 

contain numerous serially diluted antimicrobial agents as well as positive and negative controls 
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(Jorgensen and Ferraro, 2009; CLSI, 2015). The MICs are determined, using a manual (mirror 

box) or automated viewing device, by observing either a lack of turbidity or lack of a cell pellet in 

each well.   

 Automated instrument systems: Fully automated systems, such as the Vitek system, are 

utilized in large diagnostic laboratories, where bacterial growth curves are used to calculate MICs 

(Jorgensen and Ferraro, 2009). In brief, bacterial isolates are grown on sheep blood agar and 

incubated at 37°C for 18-24hrs. A bacterial suspension is prepared to a density of a McFarland 0.5 

standard and diluted to a final inoculum concentration of 1.5 x 107 CFU/ml in 2.5 ml of 0.45% 

sodium chloride. Compact plastic reagent cards that contain microlitre quantities of antibiotics and 

broth media (45 or 64-well format) are filled, sealed and loaded into the instruments for incubation 

and reading. MICs are determined by repetitive monitoring of the turbidity (bacterial growth) 

which is compared to a control well (Ligozzi et al., 2002). A computer software system interprets 

the results based on established resistant breakpoints by CLSI and reports them as antimicrobial 

MICs and categorically as susceptible or resistant (Ligozzi et al., 2002; Jorgensen and Ferraro, 

2009). The use of automated systems allows for faster test results (4-10 hours), allowing for more 

timely implementation or changes in antimicrobial therapy (Jorgensen and Ferraro, 2009).   
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Figure 1.2: Antimicrobial susceptibility testing techniques: (A) Disk diffusion test showing a large 

zone of inhibition around the antibiotic disks. Susceptible/resistant is determined by measuring the 

zone of inhibition to the nearest millimetre. (B) Gradient strip test demonstrating the tear drop 

zone of inhibition. The MIC is determined by measuring the intersection of the zone of inhibition 

and the strip.  (C) Agar dilution with inoculum spotted onto a MHA + antibiotic plate. The MIC is 

the first plate were no growth is observed. (D) Broth microdilution using a commercially available 

96 well plate with cell pellets visible in some of the wells, indicating bacterial growth. The MIC 

is the first concentration in the serial dilution where no turbidity or cell pellet is observed.    
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1.2.2 Molecular identification of antimicrobial resistance 

Polymerase chain reaction: Polymerase chain reaction (PCR) was first described by Kary 

Mullis in 1983 (Mullis et al., 1986). It is a technique that exploits the basic biochemistry of DNA 

replication, allowing for the exponential amplification of specific segments of DNA. The portion 

of DNA amplified contains diagnostically useful information such as bacterial resistance genes 

(Mullis and Faloona, 1987). This method produces millions of copies of a target sequence within 

a short timeframe by using a thermostable DNA polymerase enzyme, known as Taq polymerase, 

to mimic the natural process of DNA replication. It uses existing single-stranded DNA as a 

template and attaches deoxynucleotide triphosphates (dNTPs) into the replicating strand to make 

a complimentary copy (Bartlett and Stirling, 2003). Conventional PCR consists of a cycle of three 

distinct temperature phases repeated 30 to 40 times: denaturation, annealing and extension (Viljoen 

et al., 2005). This technique can be utilized to identify specific bacteria species and strains, single 

or multiple resistance genes, integrons, gene cassettes and plasmids.  

 DNA sequencing: Post-amplification analysis of PCR amplicons by DNA sequencing is 

commonly used to identify single nucleotide polymorphisms and for identifying specific alleles 

for strain typing. Amplicon sequencing is based on the dideoxy method also known as sequencing 

by termination or Sanger sequencing. Traditionally, this method substitutes dideoxynucleotide 

triphosphates (ddNTP) for deoxynucleotides into a growing strand of DNA during polymerization 

resulting in the termination of DNA synthesis in a base-specific manner. Four separate sequencing 

reactions are performed where one radiolabelled-ddNTP analog in addition to the four 

deoxynucleotides (dATP, dGTP, dCTP and dTTP) are included to terminate at A, G, C and T 

residues. Each reaction creates specific fragments which could be resolved by gel electrophoresis 

(Sanger et al., 1977). Improvements to the original Sanger sequencing method increased the speed 
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and efficiency of DNA sequencing by replacing radiolabelling with fluorometric based detection 

(allowing for one instead of four reactions) and the use of capillary based electrophoresis (Heather 

and Chain, 2016).  

 

1.3 Monitoring of antimicrobial use and resistance in animals 

1.3.1 Antimicrobial use and resistance in food-producing animals 

Antimicrobial agents are widely used in animals. Veterinarians prescribe antibiotics for use 

in companion animal medicine and in production animal systems including livestock and 

aquaculture. In animals, antimicrobials are used in four different scenarios, including: therapy 

(treatment of sick animals due to bacterial infection), prophylaxis (use of antibiotics to prevent 

bacterial infection in clinically healthy but at risk animals), metaphylaxis (treatment of a group of 

sick and healthy animals to minimize the spread of infection) and growth promotion (use of 

antibiotics to increase the muscle tonnage of animals destined for meat production) (Page and 

Gautier, 2012; Giguère et al., 2013). Generally, antimicrobials are administered to targeted 

individual animals in the therapeutic and prophylactic treatment of illness, while the administration 

of antibiotics to the entire group or herd occurs with metaphylactic and growth promotion 

scenarios (Spicer, 2010; Page and Gautier, 2012).  

One major concern is centered around the controversial application of antimicrobials used 

as growth promoters in animals. There are numerous beneficial effects of using medicated feeds, 

including, significant increases in production, reduction in infectious diseases and the increased 

overall well-being of animals (Hao et al., 2014). It is hypothesized that the antibiotics interact with 

the physical environment of the intestinal tract and associated microflora, leading to positive 
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effects on growth and health of animals (Lekshmi et al., 2017). However, the administration of 

low or sub-therapeutic concentrations of antibiotics apply continuous selective pressures on 

bacteria and has been attributed to the development of antimicrobial resistance in food animals 

(McDermott et al., 2002). This has led to the ban of antimicrobial growth promoters in many parts 

of the world (notably Europe), resulting in the increased use of copper and zinc as in-feed 

alternatives and for pathogen control in swine and poultry production (Wales and Davies, 2015). 

In Canada, growth promotion claims and related directions for use were removed from medically 

important antibiotics (MIAs) used in human medicine (classified by the Veterinary Drugs 

Directorate as category I, II and III antimicrobials), while responsible use statements were included 

on labels for all in-feed and in-water MIAs (PHAC, 2017). Food animal producers are now 

required to obtain a prescription for MIAs and their use is for treatment of disease only (PHAC, 

2017). 

Another major concern is the use of antibiotics, biocides (disinfectants) and heavy metals 

in agriculture and aquaculture and the development of cross-resistance or the co-selection of 

resistance to unrelated antimicrobials or antibacterial agents (Seiler and Berendonk, 2012; Wales 

and Davies, 2015; Romero et al., 2017). This is an indirect selection process due to coupling of 

resistance mechanisms, which may be mediated by the presence of separate resistance genes, 

against antibiotics and biocides/heavy metals in the same organism (Chapman, 2003). Multidrug 

efflux pumps mediating decreased susceptibility towards antibiotics and biocides/heavy metals by 

their rapid removal out of the bacterial cell is an example of cross-resistance; the genetic linkage 

of two or more resistance genes located next to each other on a mobile genetic element is an 

example of co-resistance (Wales and Davies, 2015). In agricultural and aquatic production 

systems, heavy metals are routinely used as feed additives, organic and inorganic fertilizers, 
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pesticides and as anti-fouling agents, while quaternary ammonium compounds are used as biocides 

on farms and in food-processing plants due to its bactericidal activity in the presence of organic 

matter (Seiler and Berendonk, 2012; Romero et al., 2017). Bacterial communities in these 

production systems are strongly exposed to the environmental contamination of heavy metals and 

antibiotics, which increase the likelihood of selection or co-selection of resistance (Seiler and 

Berendonk, 2012).  

1.3.1.1 Livestock  

In livestock production, the most commonly used antimicrobial drugs come from six major 

classes, including, the β-lactams, tetracyclines, aminoglycosides, macrolides, fluoroquinolones 

and the sulphonamides (McDermott et al., 2002). Antimicrobial use is important in animal 

production industries, where they are directly used for growth promotion and the treatment and 

prevention of disease. In the United States, approximately 70% of the nation’s annual antimicrobial 

consumption are used in livestock production, and of the 41 antibiotics approved for use in animals 

by the United States Food and Drug Administration (FDA), 31 are classified as important, highly 

important or critically important for human medicine (FDA, 2016; Lekshmi et al., 2017). In 

Canada, approximately 78% of all antimicrobials distributed/sold were used in production animals, 

with tetracyclines and β-lactams being the most predominant drug classes (PHAC, 2018). The 

global trend of antimicrobials used in livestock production is projected to rise to approximately 

106,000 tonnes by 2030, up from 63,000 tonnes in 2010, with China, the United States, Brazil, 

India and Mexico having the largest amounts of antimicrobials consumed (Van Boeckel et al., 

2015). 

Animal origin food products are possible sources of antimicrobial resistant organisms for 

transmission into people. A number of published reports have focused on different aspects within 
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livestock production systems including commercial farms, feedlots, processing plants or packing 

plants as sources of antimicrobial resistant bacteria (Aslam et al., 2009; Jouini et al., 2009; 

Sanchez-Maldonado et al., 2017). In each report, meat samples were tested for the presence of 

antimicrobial resistance in either E. coli or Salmonella isolates; multi-drug resistant phenotypes 

and high numbers of resistance genes were identified. One problem with intensive livestock 

production is the close contact between animals, which may enhance disease transmission and 

result in the increased need for  antimicrobials (Marshall and Levy, 2011). To combat this problem 

many farms have implemented increased biosecurity measures such as additional vaccinations and 

improved hygiene protocols. As of yet, there is no evidence that these measures have had any 

direct impact on decreasing antimicrobial resistance; decreased levels of resistance have been 

observed in countries that have completely banned the use of specific antibiotics on farms as 

growth promoters (Hao et al., 2014; Lekshmi et al., 2017). However, the increased use of biocides 

and heavy metals, in an effort to control antimicrobial use, may select for antibiotic resistance 

(Wales and Davies, 2015). Slifierz et al. (2015) found that MRSA in nursery pigs was associated 

with in-feed use of zinc and the frequent disinfection of nursery pens.  

1.3.1.2 Aquaculture  

The aquaculture industry is the fastest growing food-animal production sector in the world, 

comprising both marine and inland capture fisheries, and aquaculture operations (FAO, 2018). The 

world seafood industry produced a total of 171 million tonnes of products in 2016; 151.2 million 

tonnes of shellfish and finfish were intended for human consumption and the remaining 19.8 

million tonnes were used as non-food resources for the production of fishmeal and oil (FAO, 2018). 

Approximately 89% of all aquaculture production comes from the Asia, followed by Europe 

(3.7%), Latin America (3.3%), Africa (2.5%) and North America (0.8%); dominance by Asia is 
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largely attributable to China, comprising 67% of global production (FAO, 2018). Other notable 

aquaculture-producing countries from Asia (ranked in descending order by production volume) 

include India, Indonesia, Vietnam and Bangladesh (FAO, 2018) 

Globally only a few antimicrobials are approved for use in aquaculture. In Canada, these 

drugs include, florfenicol, oxytetracycline and combinations of trimethoprim or ormetoprim with 

sulfadimethoxine or sulfadiazine, for use in lobsters, salmon and trout (Health Canada, 2010). In 

many countries around the world, tetracyclines are approved for aquaculture use, including 

Canada, the United States, India, Norway, Indonesia, Japan and China (Tuševljak, 2012). In 

contrast, the approval of quinolones is less widespread; they are not approved in Canada or the 

United States but are approved in certain European and Asian countries (Hernández Serrano, 

2005). 

As the aquaculture industry continues to grow, utilization of antimicrobials may be an 

important contributor to antimicrobial resistance. In contrast to livestock production systems, 

antimicrobials are given to treat and prevent specific diseases rather than promote growth (Wall et 

al., 2016). No antimicrobial agent has been specifically developed for fish or shellfish therapy, 

therefore, the same agents licensed for use in humans and livestock have been approved for 

selected use in aquatic animals with established withdrawal times (FAO/OIE/WHO, 2006; Health 

Canada, 2010; Wall et al., 2016). Aquaculture production systems vary in size and by type of 

aquatic animals, thus the use of antibiotics in this industry is mainly administered directly to the 

water where animals live (Hernández Serrano, 2005). As a result, antibiotics are given as 

medicated food pellets, where the food not consumed by animals together with the drug excreted, 

eventually reaches the sediment around the pens (Hernández Serrano, 2005). It is estimated that 

70-80% of antimicrobials used in aquaculture settle in the surrounding environment applying 
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selection pressure for the development of resistant bacterial strains in environmental organisms 

(Samuelsen et al., 1992; Hernández Serrano, 2005).  

Resistance genes have been identified in aquatic bacteria, including Aeromonas and Vibrio 

spp., and from E. coli isolated from farmed fish (Miranda et al., 2013). Muziasari et al. (2014) 

isolated resistance genes and bacteria resistant to sulphonamides and trimethoprim from the 

sediment under aquaculture farms, which persisted in the environment during the 6-year 

observation period. Although resistance in the surrounding environments was less prevalent, these 

sediments could act as reservoirs for resistance genes to local fish farms and potential transfer to 

humans through the distribution of food (Muziasari et al., 2014). The association between 

tetracycline use in aquaculture and the development of resistance has been investigated. In a study 

by Rhodes et al. (2000), tetracycline resistance genes from Aeromonas salmonicida were 

transferred to Aeromonas hydrophilia and E. coli, demonstrating the ability of resistance genes 

from an aquatic pathogen to spread to human pathogens. As resistance to tetracyclines developed 

there has been increased usage of quinolones in aquaculture systems, resulting in the detection of 

plasmid-mediated quinolone resistance genes from water samples and farmed fish in several 

countries, including Egypt and China (Ishida et al., 2010; Jiang et al., 2012; Miranda et al., 2013). 

1.3.2 Antimicrobial resistance surveillance programs  

Surveillance programs have been created for monitoring trends in resistance among 

bacteria from animals, food and humans in several countries around the world. Monitoring of 

antimicrobial use is less well established in most countries, with the exception of Denmark, 

Sweden and the Netherlands (Grant et al., 2014). Globally, there are fifteen well-established 

programs including: the Canadian Integrated Program for Antimicrobial Resistance Surveillance 

(CIPARS, 2017), the National Antimicrobial Resistance Monitoring System (NARMS, 2015), 
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Danish Integrated Program for Antimicrobial Resistance Surveillance (DANMAP, 2017), the 

Finnish Veterinary Antimicrobial Resistance Monitoring and Consumption of Antimicrobial 

Agents (FINRES-VET, 2017), the Italian Veterinary Antimicrobial Resistance Monitoring 

(ITAVARM, 2003), the Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals 

in the Netherlands (MARAN, 2018), the Norwegian Surveillance System for Antimicrobial Drug 

Resistance (NORM-VET, 2017), the Swedish Veterinary Antimicrobial Resistance Monitoring 

(SVARM, 2017), the Japanese Veterinary Resistance Monitoring System (JVARM, 2016), the 

Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and 

Animals in Switzerland (ARCH-VET, 2018),  the French Agency for Food, Environmental and 

Occupational Health & Safety (ANSES, 2014), the German Antimicrobial Resistance Strategy 

(DART, 2009), the Austrian Resistance Report (AURES, 2017), the United Kingdom Veterinary 

Antimicrobial Resistance and Sales Surveillance (UK-VARSS, 2017), and the Columbian 

Integrated Program for Antimicrobial Resistance Surveillance (COIPARS, 2015). Surveillance 

programs are the most developed in Europe, as they extensively monitor antimicrobial use and 

resistance in both human and veterinary medicine. A description of global AMR surveillance 

programs is summarized in Table 1.2.  

DANMAP is one of the most comprehensive programs that has adopted the ‘farm-to-fork’ 

approach for tracking antimicrobial resistance along the food chain and monitors antibiotic 

consumption in animals and humans (DANMAP, 2017). This program includes surveillance of pet 

animals, food-producing animals, locally and imported food, and bacterial isolates from humans 

recovered from diagnostic submissions (DANMAP, 2017). DANMAP collects all the 

antimicrobial susceptibility data from bacterial isolates to: (1) study associations between 

antimicrobial consumption and the occurrence of resistance from food animals (on farms, at 
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slaughter and at processing plants) and retail food products to resistance found in human isolates, 

and (2) identify and model potential routes of transmission of resistance from animals or food 

products into humans (Bager, 2000; Grant et al., 2014).  
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Table 1.2: Summary of global antimicrobial resistance surveillance programs targeting food animal and retail meat bacterial isolates 
(ITAVARM, 2003; Barlow and Gobius, 2008; Zaidi et al., 2008; Schroeter et al., 2009; ANSES, 2014; NARMS, 2015; Donado-Godoy et al., 2015; 

CCVO Antimicrobial Use in Animal Agriculture Committee, 2016; JVARM, 2016; AURES, 2017; DANMAP, 2017; FINRES-VET, 2017; 

Government of Canada, 2017; NORM/NORM-VET, 2017; SVARM, 2017; ARCH-VET, 2018; MARAN, 2018) 

Country Program  

(Years Active) 

AMU 

Data collection and target 

animal species* 

AMR 

Animal/Products 

Indicator 

Bacterial Species 

Zoonotic Bacterial 

Species 

N. America 

Canada 
CIPARS 

(1997 – Current) 

Distribution data – broiler 

chickens and grower-finisher pigs 
Cattle, pig, chicken, turkey E. coli 

Salmonella, 

Campylobacter 

USA 
NARMS 

(1996 – Current) 

Sales/distribution data – all food 

animal species 
Cattle, pig, chicken, turkey 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter 

Mexico 

Integrated food chain 

surveillance system 

(Pilot: 2002 – 2005) 

Not monitored Cattle, pig, chicken Not monitored Salmonella 

Europe 

Denmark 
DANMAP 

(1995 – Current) 

Veterinary prescription level – 

most animal species  
Cattle, pig, chicken, turkey 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter, MRSA 

Finland 
FINRES-VET 

(2002 – Current) 

Wholesale data – all animal 

species 

Cattle, pig, chicken, turkey, 

eggs 
E. coli 

Salmonella, 

Campylobacter, MRSA 

Netherlands 
MARAN 

(1999 – Current) 

Sales/distribution (includes 

pharmacotherapeutic groups) and 

farm data – all animal species 

Cattle, pigs, chicken, turkey, 

sheep/lambs, goats, seafood 

(fish and shrimp) 

E. coli 
Salmonella, 

Campylobacter 

Norway 
NORM-VET 

(2000 – Current) 
Sales data – most animal species 

Cattle, pig, chicken, turkey, 

milk, shellfish and molluscs 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter, MRSA 

Sweden 
SVARM 

(2000 – Current) 

Sales data -Terrestrial animal 

species only 

Cattle, pig, chicken, turkey, 

sheep, milk, farmed fish 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter, MRSA 
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Switzerland 
ARCH-VET 

(2006 – Current) 
Sales data – all animal species Cattle, pig, chicken 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter, MRSA 

Italy 
ITAVARM 

(1999 – 2003) 
Not monitored 

Cattle, pig, chicken, turkey, 

sheep, molluscs 

E. coli, 

Enterococcus 
Salmonella 

France 
ANSES 

(1999 – Current) 

Laboratory/manufacture data – 

most animal species 
Cattle, pig, chicken, turkey 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter 

Germany 
DART 

(2008 – Current) 
Not available Cattle, pig, poultry 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter, MRSA 

Austria 
AURES 

(2006 – Current) 

Pharmaceutical companies and 

wholesalers – all animal species 
Cattle, pig, poultry E. coli 

Salmonella, 

Campylobacter 

United 

Kingdom 

UK-VARSS 

(1999 – Current) 

Sales/distribution data – all 

animal species 
Pigs E. coli Salmonella 

Asia/Pacific 

Australia 

Surveillance program for 

AMR in bacteria of animal 

origin (Pilot: 2007 – 2009) 

Not monitored Cattle, pig, poultry 
E. coli, 

Enterococcus 

Salmonella, 

Campylobacter 

Japan 
JVARM 

(1999 – Current) 

Manufactures/importers and feed 

additives – all food animal 

species 

Cattle, pig, chicken 
E. coli, 

Enterococcus 

Salmonella, 

Campylobacter 

S. America 

Colombia 
COIPARS 

(2007 – Current) 
Not available Poultry 

E. coli, 

Enterococcus 

Salmonella, 

Campylobacter 

*For target animal species 2 categories are presented: (1) All animal species – programs explicitly state that all species are included without listing them, and (2) 

Most animal species – programs list many animal species (or categories of animals) which may include all species
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1.3.3 Gaps in antimicrobial resistance surveillance 

Most surveillance programs target only major agricultural animal species such as cattle, 

swine and poultry, while the diversity of other terrestrial and aquatic species consumed globally 

are ignored. In Canada and the United States, no surveillance data is collected from sheep, veal 

and aquaculture production systems even though they are consumed by a proportion of the 

population, routinely given antimicrobials and possess potentially pathogenic bacteria and 

resistance genes (NARMS, 2015; Government of Canada, 2017; PHAC, 2018). In Scandinavian 

countries, such as Denmark, Norway, Sweden and the Netherlands, antimicrobial use in farmed 

fish is monitored and resistance data from seafood products (farmed fish and shellfish) is routinely 

collected (DANMAP, 2017; NORM/NORM-VET, 2017; SVARM 2017; MARAN 2018). 

Wildlife and bush meats are also not included in antimicrobial resistance surveillance. These 

animals act as sentinels for resistant bacteria and resistance genes in the environment (Vittecoq et 

al., 2016; Arnold et al., 2016). Including these animals and associated products in surveillance 

programs would allow for monitoring the occurrence of antimicrobial resistance in nature over 

time.  

Another area that is ignored, is the surveillance of imported meat and other food items, 

including niche products. It has been demonstrated that international travel plays a very important 

role in the dissemination of antimicrobial resistance genes from regions with high prevalence rates; 

people can acquire, carry and transmit antimicrobial resistant bacteria or resistance genes back to 

their home regions where resistance rates may be lower (van der Bij and Pitout, 2012; Arcilla et 

al., 2014; Kuenzli, 2016). Similarly, the global trade of livestock and food products also have the 

potential to transmit and disseminate resistant bacteria and/or resistance genes around the world, 

via the carriage of resistant bacteria in livestock as part of their normal microflora or through 
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contaminated food products, such as meat and produce (Hawkey, 2015; Hanefeld et al., 2017; 

George, 2018). 

Antimicrobial resistance data collected from food animals and associated products are 

restricted to specific, zoonotic and potentially pathogenic bacteria and indicator organisms such as 

Salmonella, Campylobacter and E. coli, while other bacterial species are not included (OIE, 2004; 

CDC, 2014; Government of Canada, 2017; PHAC, 2018). Other bacteria, besides enteric 

pathogens, can also carry resistance genes which may be transmitted to gastrointestinal  microbiota 

when consumed (Huddleston, 2014). Thus, surveillance programs may miss potential bacterial 

reservoirs of resistance genes. Also, the use of indicator organisms like E. coli may be an efficient 

strategy for identifying resistance among bacteria in major agricultural animals (cattle, pig and 

poultry) where recovery rates are nearly 100%; however, this may not be effective when evaluating 

other meats or animals with ill defined microbial communities (Ryu et al., 2012; Morrison and 

Rubin, 2015). When monitoring aquatic food products, the World Organization for Animal Health 

(OIE) recommends testing for Vibrio or Aeromonas species, however in those surveillance 

programs routinely testing seafood, this has not been implemented (OIE, 2004). Overall, these 

exclusions in antimicrobial surveillance programs constitute major gaps in important information, 

as national surveillance is an essential resource regarding exposure of humans to resistant bacteria 

in the food supply. 
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1.4 Niche products 

In the business world, a niche can be defined as a distinct segment within a market, generally 

a targetable part of a larger market, where the demand for a product or service is unfulfilled (Kotler 

and Keller, 2012). Niche markets tend to be highly specialized and focus on specific needs of a 

smaller group of individuals (Shani and Chalasani, 1992). Figure 1.3 illustrates the layers of a 

food industry market. Some examples of niche food markets include organic food, vegan, gluten 

free and specialty coffee. 

Within the food industry, a wide variety of food items are sold within a market, such as grocery 

stores. However, specialty grocery stores exist to cater to the specific needs of the consumer. These 

specialty groceries are considered sub-markets or niche markets, as they still fit into the larger 

context of the market but focus on specific consumer needs. A niche product is a specialty item 

that is not considered mainstream or widely available, in which a subset of the population has a 

specific demand for it. An example of a niche product within the context of this thesis, is reptile 

and amphibian meat products, such as soft shell turtle or frog legs, imported into Canada for use 

in cuisines and herbal preparations not traditionally associated with Western diets or medicine. 

The sub-market/niche market is specialty grocery stores and the unmet customer demand is the 

inability of consumers (specific ethnicities) to buy local, traditional ethnic food items. As the 

population in Canada has become more diverse, there has been an increase in the number of 

specialty food markets carrying imported niche food items.  
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Figure 1.3: Layers of a food industry market. Within the food industry, the market is 

all retail stores selling food items (groceries, butchers, etc.), the sub-market is specialty 

groceries and other specialty stores (herbalist shops), and the niche is specialty 

products (e.g. frog legs, dried snakes).  

  



 

41 

 

1.5 Reptile and amphibian derived products 

Throughout the world, reptiles and amphibians have been collected or raised for a variety 

of uses to benefit humans. They serve as invaluable models in medical research for understanding 

developmental and physiological processes, especially in species capable of limb regeneration 

(O’Rourke, 2007). Reptiles and amphibians provide potential for new pharmaceuticals, such as 

analgesics, anti-cancer and antimicrobial drugs (Xiao et al., 2011; Valencia-Aguilar et al., 2013; 

van Hoek, 2014). Amphibians, more so than reptiles, have historically been used as dissection 

specimens in high school and secondary educational institutions in Western countries, allowing 

students to learn basic anatomy (Jensen and Camp, 2003). Reptiles, and also some amphibians, are 

cultivated for the fashion industry; their skin and hides are processed into leather for the 

manufacturing of purses, wallets, shoes and bags (Jensen and Camp, 2003; Valencia-Aguilar et 

al., 2013). Amphibians and reptiles are some of the most common animals involved in the global 

pet trade; with risks of becoming invasive species, spread of novel pathogens detrimental to local 

populations and public health risks associated with transmission of disease or direct injuries 

(Herrel, 2014; Auliya et al., 2016). Reptiles and amphibians serve as important food sources and 

have been used in traditional medicines and associated with specific cultural beliefs (Klemens and 

Thorbjarnarson, 1995; Jensen and Camp, 2003; Valencia-Aguilar et al., 2013; Hocking and 

Babbitt, 2014). The use of reptiles and amphibians for culinary and traditional medicinal purposes 

will be further described, along with production, consumption and exportation of these products.  

1.5.1 Production, consumption and exportation 

Reptiles and amphibian derived products are consumed for cultural and medicinal purposes 

in addition to a nutritive protein source. The extent of consumption of these products are not well 

known. Most literature tends to focus on the production systems (wild-caught, commercially 
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farmed or hunted) and uses of these products rather than the distribution within specific 

populations that consume them (Klemens and Thorbjarnarson, 1995; Jensen and Camp, 2003; 

Magnino et al., 2009; Valencia-Aguilar et al., 2013; Hocking and Babbitt, 2014; Nijman and 

Bergin, 2017). Information on exportation is limited to a select number of species (Warkentin et 

al., 2009; Gratwicke et al., 2010; FAO, 2014).       

1.5.1.1 Culinary products 

Reptiles and amphibians are used as a food resource in many countries around the world. 

Although many species of reptiles are ingested by humans, extensive consumption and 

commercialization of meat is mainly observed in turtles, while meat consumption of snakes, 

crocodilians and lizards is presumed to be a by-product of commercial harvesting of skin (Klemens 

and Thorbjarnarson, 1995). In terms of amphibians, certain species of giant salamanders (Andrias 

davidianus and A. japonicus) have been used locally in China and Japan for food (Okada et al., 

2008; Cunningham et al., 2016). However, the primary form of amphibians consumed by humans 

are frog legs (Jensen and Camp, 2003; Warkentin et al., 2009).   

Turtles: Turtles are an important source of protein especially in Asia; Chinese soft shell 

turtles (Pelodiscus sinensis), are widely cultivated in China, Japan, Korea, Thailand, Taiwan, 

Vietnam, Malaysia and Indonesia with China being the largest producer and supplying 94% of the 

export market (Jenkins, 1995; Silpachai, 2001; Magnino et al., 2009; FAO, 2014). Wild sea turtles 

and tortoises have also been extensively consumed for their meat, eggs and oil, leading to 

significant declines in marine and inland turtle populations (Merrem et al., 1990; Jenkins, 1995).  

Crocodilians: The consumption of crocodilians is not as wide spread as compared with 

turtles. Crocodile meat is considered a delicacy in regions of the United States, Cuba, South Africa, 
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Ethiopia, Thailand and Australia (Klemens and Thorbjarnarson, 1995). Farming of American 

alligator (Alligator mississippiensis) occurs in the Southern US (Georgia, Florida, Texas and 

Louisiana) mostly for their hides, but an established meat market also exists (Magnino et al., 2009; 

Nickum et al., 2018). In 2014, farmer’s in Louisiana sold more than 383 000 m of alligator skin 

and 445 000 kg of meat valued at $77 million and $7 million respectively; primary export markets 

include France and Italy for alligator skin and Canada and Hong Kong for the meat (Nickum et al., 

2018). Commercial farms in South America produce yacare caimans (Caiman crocodilus yacare) 

for meat and skin, with an estimated value of approximately $900,000 USD per year (Carreira and 

Sabbag, 2015).   

Snakes: The commercial sale of snake meat is not very common except in Southeast Asia, 

where up to 4000 tonnes are served annually in China (Hoffman and Cawthorn, 2012). Pythons 

(Pythonidae) and Boas (Boa constrictor) are commonly hunted as bushmeat in many rural 

communities in West Africa, while venomous snakes are regarded as a delicacy in South Africa 

(Jensen, 2017). In the United States, rattlesnakes are hunted and farmed for their skin with the 

trade of meat as a by-product (Klemens and Thorbjarnarson, 1995; Fitzgerald and Painter, 2000). 

It is estimated that the whole sale value of rattlesnake skin is approximately $9-$11/linear foot and 

meat $13-$27/kg, with the overall magnitude of trade estimated to be more than 125 000 

snakes/year and greater than 75% of these animals originate from Texas (Fitzgerald and Painter, 

2000). Rattlesnake meat is locally available in restaurants and consumed by many indigenous 

communities (Klemens and Thorbjarnarson, 1995; Fitzgerald and Painter, 2000).  

Lizards: Green iguanas (Iguana iguana) are found in Central America, Mexico, the 

Caribbean and Africa, where they are harvested for both their meat and skin (Hoffman and 

Cawthorn, 2012). In South America, tegus (Tupinambis rufescens and T. merianae) have been 
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traditionally hunted and utilized by aboriginal people as a source of fat, protein and leather 

(Valencia-Aguilar et al., 2013). There have been some attempts to farm tegus in Argentina, 

however, these giant lizards are only active during the hot summer, making farming very difficult 

(Saadoun and Cabrera, 2008).  

Frogs: Frog legs are considered an international culinary delicacy. Most products originate 

from Asian countries, with greater than 75% imported into France, Belgium, and the United States, 

and an annual net worth of around half a billion dollars (Gratwicke et al., 2010). Originally, India 

was the major supplier of frogs, but concerns of inhumane killing and declining populations lead 

to an exportation ban in 1987; Indonesia replaced India as the primary exporter of frogs’ legs, 

followed by China (Jensen and Camp, 2003; Kusrini and Alford, 2006; Warkentin et al., 2009; 

Gratwicke et al., 2010). The majority of frogs from Indonesia are wild-caught and consist of the 

crab-eating frog (Fejervarya carncrivora) and the giant Javan frog (Limnonectes macrodon), while 

frogs from China are mainly farmed and consist of the American bullfrog (Lithobates 

catesbeianus) (Kusrini and Alford, 2006; Warkentin et al., 2009).  

1.5.1.2 Medicinal products 

Reptile and amphibian meat products are not just a source of protein but are also used for 

traditional medicinal and religious purposes. In many cultures, particularly in regions with limited 

access to primary health care, animals have long been used as medicinal sources for healing (Alves 

et al., 2007, 2009). Reptiles are more commonly utilized in traditional folk medicine, where their 

role in the prevention and cure of disease has been reported (Alves et al., 2008). Medicinal products 

from meat, fat, skin, eggs, blood, shell and bones are used as raw materials in the preparation of 

powdered medicines, oils, and salves, and are sold in rural markets for the treatment of numerous 

illnesses, such as skin issues, asthma, inflammation, bleeding disorders, rheumatism, arthritis, 
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cancer and epilepsy (Alves et al., 2007, 2008, 2009; Valencia-Aguilar et al., 2013; Pandey, 2015; 

Vats and Thomas, 2015; Nijman and Bergin, 2017). In addition to medicinal uses, many parts of 

these animals are used in rituals, magic spells or as amulets for protection (Alves et al., 2009).  

Over the past few years, numerous studies have been conducted to determine the 

effectiveness of reptile derived substances used in traditional medicine. The body fat from the 

lizard T. merianae is widely used to treat wounds, earaches, swelling, sore throat and bronchitis. 

Many of these illnesses are associated with bacterial infections, suggesting that reptile fat may 

contain antibacterial components. Ferreira et al. (2009) demonstrated that this fat does not have 

significant antimicrobial activity against Escherichia coli and Staphylococcus aureus when used 

alone. However, the oil was effective for treating edema in the ear by reducing pro-inflammatory 

mediators (Ferreira et al., 2010). The fat from the Boa constrictor is also used to treat a wide 

variety of ailments such as lung disease, earaches, sore throat, stomach ache, inflammation, 

erysipelas and boils. In similar tests, the oil extracted from this fat did not demonstrate direct 

antibacterial activity against E. coli and S. aureus but did show significant synergistic activity 

when used in combination with aminoglycosides (Ferreira et al., 2011). Lizards such as Ameiva 

ameiva, Tropidurus hispidus and T. semitaneniatus, are used traditionally to treat inflammation, 

dermatitis, venereal disease, boils, snake bites, sore throat and bacterial pharyngitis and tonsillitis. 

Due to the small size of these lizards, the whole animal is used in the preparation of a decoction (a 

form of tea). Santos et al. (2011, 2012) conducted research to test whether these decoctions had 

effective antibacterial effects against E. coli, S. aureus and P. aeruginosa. The decoctions alone 

did not demonstrate any substantial inhibitory effects on the growth of these bacterial strains, but 

when used in combination with antibiotics they reduced the minimum inhibitory concentrations of 

the assayed antimicrobials (Santos et al., 2012).  
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In Western medicine, many drugs are derived from natural sources (Ji et al., 2009). 

Amphibian skin contains granular glands which produce a wide range of alkaloids, peptides and 

proteins that protect against infection by bacteria, fungi and predators, with many of these 

compounds being researched for the development of new pharmaceutical agents (Valencia-Aguilar 

et al., 2013; Hocking and Babbitt, 2014). In recent decades, more than 200 peptides have been 

identified and many antimicrobial peptides are being used in the development of new drugs to fight 

resistant bacteria, such as MRSA, and multidrug resistant infections caused by Acinetobacter 

baumannii, Pseudomonas aeruginosa and Enterobacteriaceae (Xiao et al., 2011; Conlon, 2011). 

The discovery of the alkaloid epibatidine, isolated from the toxic secretions of the poison dart frog 

(Epipedobates tricolor), demonstrated significant pain suppression, with analgesic potency of 200 

times greater than morphine when administered to mice and rats (Daly et al., 2000; Hocking and 

Babbitt, 2014). Unfortunately, the narrow analgesic to toxic dose range prevented it from moving 

forward in clinical trials (Daly et al., 2000). Many reptiles produce large quantities of toxins, that 

tend to be a mixture of peptides, proteins and biomolecules that can produce various effects in 

humans (King, 2011; Valencia-Aguilar et al., 2013). The study of reptile toxins has contributed to 

the development of numerous pharmaceuticals used for the treatment of human diseases (King, 

2011). The development of captopril, an angiotensin converting enzyme inhibitor for the treatment 

of hypertension, was synthesized from a peptide found in the venom of the South American 

lancehead pit viper (Bothrops jararaca) (King, 2011; Harvey, 2014). Eptifibatide, a synthetic 

cyclic heptapeptide derived from a protein found in the venom of the Southeastern pygmy 

rattlesnake (Sistrurus miliarius barbouri), is a drug used to treat acute coronary syndrome by 

preventing platelet aggregation and clot formation (King, 2011; Harvey, 2014). Finally, exenatide 

is a synthetic analogue of the protein exendin-4, derived from the saliva of the Gila monster lizard 
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(Heloderma suspectum), used as an anti-diabetic agent for the control of type 2-diabetes (King, 

2011; Harvey, 2014).  

 

1.6 Bacterial hazards associated with the consumption of reptiles and amphibians 

Like other meats, reptiles and amphibian products have been associated with foodborne 

pathogens (Magnino et al., 2009). Owing to their popularity as pets, reptiles are recognized as 

common carriers of Salmonella (Minette, 1984). Limited information is available regarding the 

presence of Salmonellae in reptile meat, other than crocodilians farmed for meat consumption. 

Studies on crocodile meat have documented Salmonella enterica subspecies enterica, salamae, 

arizonae and diarizonae, in both fresh chilled and frozen samples (Manolis et al., 1991; Obwolo, 

1993; Madsen, 1993, 1996; van der Walt et al., 1997). Although many of these serotypes are rarely 

or never associated with human disease, the isolates belonging to subsp. enterica, comprises 

potential human pathogens, such as S. Typhimurium and S. Enteritidis (Gurakan et al., 2008). From 

marine turtle meat, Salmonella Chester was isolated in Australia and S. Typhimurium was isolated 

in Japan from snapping turtle meat (O’Grady and Krause, 1999; Aguirre et al., 2006).  

Cases of human Salmonellosis have been reported following the consumption of raw and 

cooked meat from soft shell turtles in Japan, and sea turtle meat in Northern Australia (O’Grady 

and Krause, 1999; Fukushima et al., 2008). Numerous outbreaks of Salmonellosis have occurred 

following consumption of dried rattlesnake meat used for traditional medicinal purposes in 

aboriginal communities in the United States (Waterman et al., 1990; Kelly et al., 1995; Magnino 

et al., 2009). Contamination of frog legs with Salmonella is also a well recognized food safety risk 

and has led the US FDA to issue import alerts for frog legs imported from China, India, 
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Bangladesh, Indonesia, Philippines, Singapore, Taiwan, Thailand and Vietnam (FDA, 2014). The 

identification of unapproved drug residues has also led to import alerts for frog legs imported from 

China, Malaysia and Vietnam (FDA, 2017). 
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Study Rationale 

Animal origin food products are recognized as potential reservoirs of antimicrobial 

resistant organisms. These organisms may be transmitted to the intestinal microbiota following 

consumption. For this reason, numerous countries have active surveillance programs targeting 

resistant bacteria from major agricultural food animal species such as cattle, swine and poultry. 

These programs focus on specific, zoonotic and potentially pathogenic bacteria and indicator 

organisms, including Salmonella, Campylobacter and E. coli, while mobile resistance from non-

pathogenic bacteria are not included. In Canada, the Canadian Integrated Program for 

Antimicrobial Resistance Surveillance (CIPARS) collects antimicrobial resistance data from 

domestically raised food animals and associated products, while other terrestrial and aquatic 

animal species are ignored, including imported meat. It has been demonstrated that international 

travel plays an important role in the dissemination of antimicrobial resistance from regions of high 

to low prevalence rates. Thus, the international trade of food may be a critical player in the 

transmission and dissemination of resistant bacteria or mobile resistance genes.  

Objectives 

o To evaluate imported reptile and amphibian meat products for pathogen identification 

and to determine if broad spectrum β-lactamase and colistin resistance genes are present 

in bacterial isolates.  

o To determine the antimicrobial resistance profiles of Macrococcus caseolyticus isolated 

from imported seafood, reptile and amphibian meat products. 

o To develop a bacteriological culture medium for the selective isolation of Macrococcus 

caseolyticus.   



 

50 

 

2 Identification of ESBL, AmpC β-lactamase, carbapenemase and colistin 

resistance from imported culinary reptiles and amphibians  

 

B.J. Morrison1 and J.E. Rubin1 

1Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada 

__________________________________________________________________________________________ 

 

Author contribution: 

Conceived and designed the experiments: BJM, JER. Sample collection and preparation: 

BJM, JER. Performed the experiments: BJM. Analyzed the data: BJM, JER. Wrote the paper: 

BJM, JER. 

  



 

51 

 

2.1 Abstract 

Meat from food-producing animals play an important role in the dissemination of 

antimicrobial resistant bacteria. Although many countries have active surveillance programs 

targeting resistant organisms in retail beef, pork and poultry, they typically do not capture the 

diversity of foods available including niche market meats. Therefore, we conducted this 

investigation to screen imported reptile and amphibian meat products for antimicrobial resistant 

bacteria. A total of 53 items including whole soft-shelled turtles (n=11), frog legs (n=20), dried 

geckos (n=12), dried snakes (n=9) and dried turtle carapace (n=1) were purchased from markets 

in Vancouver and Saskatoon, Canada. Samples were washed in sterile buffered peptone water and 

rinsates were cultured for Salmonella, E. coli, and ESBL and carbapenemase-producing 

organisms. Antimicrobial susceptibility of isolates was determined by a combination of broth 

microdilution and agar dilution. Based on phenotypic susceptibility, isolates were screened for 

ESBLs, carbapenemases and the mcr-1 gene by PCR and the identity of amplicons were confirmed 

by DNA sequencing. Salmonella, all pan-susceptible, were grown from 6 dried geckos. E. coli 

were isolated from 19 samples, including 9 isolates from 6 food items which produced CTX-M-

type ESBLs. One E. coli isolated from a soft shell turtle produced a CTX-M-55 enzyme, was 

resistant to tetracycline, sulfonamides, chloramphenicol, aminoglycosides and the 

fluoroquinolones, was also colistin resistant and possessed the mcr-1 gene. An NDM-1 producing 

Acinetobacter spp. was also isolated from a dried turtle carapace. Our results suggest that imported 

reptile and amphibian meats are an underappreciated source of resistant organisms with mobile 

resistant genes to clinically relevant drugs. The presence of bacteria possessing acquired resistance 

mechanisms to the last line of defense antimicrobials from these niche market food items 

represents a potential public health hazard that warrants further investigation.  
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2.2 Introduction 

The food supply is recognized as a potential source of antimicrobial resistant organisms. 

Recent publications describing the presence of carbapenemase-producing organisms (CPO) and 

mobile colistin resistance (MCR-1) are particularly alarming (Rubin et al., 2014; Liu et al., 2016). 

Although many countries have active surveillance programs targeting E. coli, Salmonella and 

Campylobacter in retail beef, pork and poultry, they typically do not capture the diversity foods 

available including niche market meats, nor are imported products typically included (Morrison 

and Rubin, 2015). 

Reptile and amphibian derived products are consumed for cultural and medicinal purposes 

in addition to a nutritive protein source (Klemens and Thorbjarnarson, 1995). The extent of 

consumption of these products is not well known. Most literature tends to focus on the production 

systems and uses of these products rather than the distribution within specific populations that 

consume them. Turtles are an important source of protein especially in Asia; Chinese soft shell 

turtles (Pelodiscus sinensis), are widely cultivated in China, Japan, Korea, Thailand, Taiwan, 

Vietnam, Malaysia and Indonesia with China being the largest producer and supplying 94% of the 

export market (Silpachai, 2001; FAO, 2014). Wild sea turtles have also been extensively consumed 

for their meat, eggs and oil, leading to significant declines in marine turtle populations (Merrem 

et al., 1990). The commercial sale of snake meat is not very common except in Southeast Asia, but 

it is consumed in many parts of the world (Magnino et al., 2009). In the United States, rattlesnakes 

are farmed for meat production and are consumed by many indigenous communities (Kelly et al., 

1995). Along with snakes, the consumption of lizard meat is often related to alleged medicinal or 

cultural benefits derived from their flesh and skin (Alves et al., 2009; Nóbrega Alves et al., 2012). 

Of the culinary reptiles and amphibians exported internationally, the trade in frog legs is perhaps 
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the best defined; most products originate from Asian countries, with greater than 75% imported 

into France, Belgium and the United states (Gratwicke et al., 2010).  

Like other meats, reptile and amphibian products have been associated with foodborne 

pathogens (Magnino et al., 2009). Owing to their popularity as pets, reptiles are well recognized 

as common carriers of Salmonella (Minette, 1984). Cases of Salmonellosis have been associated 

with the consumption of turtles and rattlesnakes (Waterman et al., 1990; Kelly et al., 1995; Aguirre 

et al., 2006; Fukushima et al., 2008). Contamination of frog legs with Salmonella is also a well 

recognized food safety risk and has led the US FDA to issue import alerts for frog legs imported 

from China, India, Bangladesh, Indonesia, Philippines, Singapore, Taiwan, Thailand and Vietnam 

(FDA, 2014). The identification of unapproved drug residues has also led to import alerts for frog 

legs imported from China, Malaysia and Vietnam (FDA, 2017a). Despite these potential hazards, 

few studies have examined the role of these niche market meats in the epidemiology of 

antimicrobial resistance. 

In Canada, a number of recent reports describing CPOs including Pseudomonas fluorescens 

(VIM-2) from a Korean squid, a variety of non-fermenters (OXA-48) from Korean and Chinese 

seafood products, Vibrio cholerae (VCC-1) from Indian black tiger shrimp and a variety of 

Enterobacter spp. (NDM-1, IMI-1 and IMI-2) from Vietnamese clams and shrimp (Rubin et al., 

2014; Morrison and Rubin, 2015; Mangat et al., 2016; Janecko et al., 2016). Others have reported 

the importation of carbapenemase-producing organisms in vegetables (OXA-181) and ornamental 

fish (OXA-48-like) (Zurfluh et al., 2015; Ceccarelli et al., 2017). There is growing literature 

describing the presence of CPOs in agricultural animals and retail meats globally (Woodford et 

al., 2014). However, with the use of carbapenem antibiotics restricted to the treatment of resistant 

infections in humans and very specific cases in animals, the origin of acquired carbapenemase 
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genes remains unclear. Similarly, the recognition of the global distribution of MCR-1 (including 

in people, animals, retail meat and the environment in North and South America, Europe, Asia and 

Africa) following its initial description in late 2015, highlights the need for a globally focused 

One-Health approach to understanding the epidemiology of antimicrobial resistance (Schwarz and 

Johnson, 2016). 

Although international travel has been demonstrated to play a role in the global 

epidemiology of resistant bacteria, relatively little attention has been paid to the role of the 

international food trade in the dissemination of CPOs (Woodford and Johnson, 2013; Mataseje et 

al., 2016). The objective of this investigation was therefore to screen niche market reptile and 

amphibian meat products for antimicrobial resistant bacteria.  

 

2.3 Materials and methods 

2.3.1 Study design 

This study was conducted to identify potential bacterial pathogens from imported niche 

reptile and amphibian meat products that are not otherwise investigated by food surveillance 

programs. International travel has played an important role in the dissemination of antimicrobial 

resistance around the world, thus, international trade is also likely to be a critical player. Therefore, 

we evaluated all Gram-negative isolates for extended spectrum β-lactamase, AmpC β-lactamase, 

carbapenemase and mobile colistin resistance.  

2.3.2 Sample collection and processing 

A total of 53 reptile and amphibian meat products were purchased from specialty groceries 

and herbalist shops in Vancouver (n=42) and Saskatoon (n=11), Canada in July 2015. Products 

included dried gecko (n=12), snake (n=9) and turtle carapace (n=1) and frozen soft shelled turtle 



 

55 

 

(n=11), and frog legs (n=20) (Figure 2.1).  Of the 11 soft shelled turtles, one was whole and un-

gutted, while the remaining 10 were gutted but contained remnants of intestines where fecal 

material was collected. No country of origin labeling was present for 22 samples and the remainder 

were from China (n=28) and Thailand (n=3).  

The products were processed using CIPARS retail meat surveillance methodology (PHAC, 

2017). For frozen products a 25g sub-sample was dissected and washed in 250ml of buffered 

peptone water (BPW) in a sterile sample bag. Dried specimens were rehydrated in BPW for 4 

hours prior. BPW was then selectively cultured for Salmonella, E. coli, ESBL-producing 

Enterobacteriaceae and carbapenem-resistant organisms. Briefly, Salmonella was cultured by 

incubating BPW at 35°C overnight followed by sub-culture to Rappaport-Verssiliadis and 

tetrathionate broths. Aliquots of each broth were then sub-cultured onto xylose lysine deoxycholate 

(XLD) and brilliant green agar. Suspect Salmonella, black colonies on XLD and pink colonies on 

brilliant greed agar, were sub-cultured to blood agar and presumptively identified using the triple 

sugar iron biochemical test (production of hydrogen sulphide).  For E. coli, equal volumes of BPW 

rinsate and 2X MacConkey broth were mixed and incubated overnight at 35°C. Broth was then 

plated onto eosin methylene blue agar. Suspect E. coli colonies were sub-cultured to blood agar 

and presumptively identified using the indole, citrate and urea biochemical tests. Taxa-independent 

culture for ESBL producers and carbapenem-resistant organisms was achieved by plating BPW 

aliquots onto CHROMagar ESBL (CHROMagar, Paris, France) and Mueller-Hinton agar + 2μg/ml 

meropenem (MHM). Any organisms recovered from MHM were Gram stained and any Gram-

negatives were identified by phylogenetic analysis of partial 16S sequences using previously 

published primers (Dorsch and Stackebrandt, 1992). All Salmonella isolates were serotyped by the 

World Organization for Animal Health (OIE) Reference Laboratory for Salmonellosis at the 
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National Microbiology Laboratory at Guelph, Ontario Canada. Up to 3 isolates per genus type 

were saved. This was based on colony morphology differences observed on blood agar.    
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Figure 2.1: Food products collected from retail markets in Vancouver, BC and Saskatoon, SK 

A: dried turtle carapace; B: dried snake; C: dried gecko; D: soft shell turtle 

in package; E: frog legs in package; F: soft shell turtle opened 
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Table 2.1: Properties for bacterial isolation and identification. Colonies were selected based on colony morphology on selective media 

and positive biochemical reactions identified genus of bacteria. Up to three colonies per genus type per sample were saved based on 

colony morphology differences observed on blood. 

 

 
Selective Media Colony appearance  Biochemical Reactions Identifying Characteristic 

E. coli Eosin methylene blue (EMB) Dark metallic green  
Tryptophanase 

production 

Indole -  positive 

Citrate - negative 

Urea - negative 

Salmonella 

Xylose lysine deoxycholate (XLD) 

 

Black colonies  

 

Gas and hydrogen 

sulphide production 

Triple sugar iron slant (TSI): 

Red slant with black middle 

(due to hydrogen sulphide 

production) and yellow butt 

lifted off the bottom (due to 

gas production) Brilliant green agar (BGA) 
Pink-white colonies with 

red zones 

ESBL-producing 

Enterobacteriaceae 
CHROMagar ESBL 

E. coli: Dark pink to red  

Facultative anaerobes Oxidase negative 

Other Enterobacteriaceae: 

Metallic blue 



 

59 
 

2.3.3 Antibiotic susceptibility testing 

Antimicrobial susceptibility testing was performed by broth microdilution using the 

Sensititre system (Trek Diagnostics, Cleveland, OH). The CMV3AGNF and GNX3F plate formats 

were used in this study according to the manufacturer’s instructions. In brief, isolates were sub-

cultured onto a 5% sheep blood agar plate and incubated overnight at 35°C. To prepare the 

inoculum, 3 – 4 colonies were suspended in 5ml of demineralized water to a McFarland 0.5 

density. Thirty microliters of bacterial suspension was then added to 11ml of cation-adjusted 

Muller Hinton broth (Trek Diagnostics, OH, USA). Fifty microliters of inoculum was dispensed 

into the 96 well plate using the Sensititre auto-inoculator. Plates were sealed with adhesive film to 

prevent evaporation and incubated at 35°C for 18-24 hours. Antimicrobial MICs were interpreted, 

as susceptible or resistant, according to CLSI guidelines (CLSI, 2018). The antibiotic test ranges 

used in this study are described in Table 2.1. For quality control, S. aureus ATCC 29213 and E. 

coli ATCC 25422 were used.  

Agar dilution was used to determine colistin susceptibility. Briefly, a series of Mueller-

Hinton agar plates containing 0.032-64µg/ml of colistin sulfate were prepared. Isolates were sub-

cultured onto 5% sheep blood agar and incubated overnight at 35°C. The inoculum was prepared 

as above making a McFarland 0.5 density and diluted 1:10. Using a multichannel pipettor, 2µl of 

each bacterial suspension was spotted onto each agar plate and incubated at 35°C for 18 hours. 

The presence or absence of growth at each spot was noted. Colistin MIC was interpreted according 

to the EUCAST guidelines, as there are no MIC breakpoints available using CLSI, and the 

antibiotic test range used is listed in Table 2.1. The clinical breakpoint for colistin resistance is 

2µg/ml. E. coli ATCC 25922 and P. aeruginosa ATCC 27853 were used as quality control strains.  
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Table 2.2: List of antibiotics used in antibiotic susceptibility testing CMV3AGNF and GNX3F 

panels. 

Antibiotic Class Antibiotic Tested Range (µg/ml) 

β-lactams 

Aztreonam 2 – 16  

Ampicillin 1 – 32  

Cefoxitin 0.5 – 32 

Ceftriaxone 0.25 – 64 

Ceftiofur 0.12 – 8  

Ceftazidime 1 – 16 

Cefepime 2 – 32 

Amoxicillin-clavulanic acid 1/0.5 – 32/16 

Ticarcillin-clavulanic acid 16/2 – 128/2 

Piperacillin-tazobactam 8/4 – 64/4 

Doripenem 0.5 – 4 

Imipenem 1 – 8 

Meropenem 1 – 8  

Phenicols Chloramphenicol 2 – 32  

Tetracyclines Tetracycline 4 – 32  

Sulfonamides 
Sulfisoxazole 16 – 256  

Trimethoprim-sulfamethoxazole 0.12/2.38 – 4/76  

Quinolones 

Ciprofloxacin 0.015 – 4  

Levofloxacin 1 – 8 

Nalidixic acid 0.5 – 32  

Macrolides Azithromycin 0.12 – 16  

Aminoglycosides 

Amikacin 4 – 32 

Gentamicin 0.25 – 16  

Streptomycin 2 – 64  

Tobramycin 1 – 8  

Polymyxins 
Polymyxin B 0.25 – 4 

Colistin 0.25 – 4 
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2.3.4 Carbapenemase detection 

All organisms grown on MHM were screened for carbapenemase production using the β-

CARBA test according to the manufacturer's instructions (Bio-Rad., Montreal, Quebec, Canada). 

The β-CARBA test is a qualitative colorimetric assay used for the detection of any carbapenemase-

producing strains. Briefly, 40µl of reagent R1 and 40µl of R2 are added to a microcentrifuge tube, 

followed by a 1µl loop of freshly isolated bacterial colony. The mixture was homogenized and 

incubated at 35°C for 30mins. The test was interpreted within 30 minutes of incubation. Any color 

change from yellow to orange, red or purple constituted a positive result (Figure 2.2).  
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Figure 2.2: The β-CARBA test for detecting carbapenemase production:  

(A) Negative result showing no color change from yellow; (B) Positive result with 

some orange-red color at bottom of tube; (C) Positive result with more orange-red 

color change; and (D) Positive result with complete colour change to pink-red  
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2.3.5 Bacterial DNA extraction and PCR of targeted gene sequences 

Crude DNA extracts, boil preparations, of cultures were made in sterile distilled water. In 

brief, bacteria were sub-cultured on a 5% blood agar plate and incubated overnight at 35°C. In a 

sterile 1.5ml microcentrifuge tube, 200µl of ultrapure water was added and several colonies were 

suspended in it. Tubes were then vortexed and boiled in a heat block for 10 minutes at 100°C. 

After boiling, tubes were cooled to room temperature, approximately 5 minutes, and centrifuged 

for 1 minute at 15871 x g. The supernatant was then transferred to a sterile 1.5ml microcentrifuge 

tube and stored at -20°C until used.  

Previously published primers targeting CTX-M-U, CTX-M-G1, CTX-M-G9, TEM, SHV, 

CMY-2, NDM, IMP, VIM, KPC, OXA-48 and CLR5 (MCR-1) were used to detect ESBL, AmpC, 

carbapenemase and colistin resistance genes (Table 2.2). PCR reactions were carried out in 25µL 

volumes including 24µL of mastermix and 1µL of bacterial DNA template. In each set of reactions, 

both positive and negative controls were included. Thermocycler conditions were as follows: initial 

denaturation at 94°C for 6 mins followed by 35 cycles of denaturation at 94°C for 1 min, annealing 

at varying temperatures (Table 2.3) for 1 min, elongation at 72°C for 1 min and final extension at 

72°C for 10 mins. For class I integrons, touchdown PCR was performed with the following 

conditions: 94°C for 6 mins, 22 cycles of 94°C for 1 min, 78°C -1°C for 1min, 72°C for 1 min, 15 

cycles of 94°C for 1 min, 56°C -1°C for 1 min, 72°C for 1 min with final extension at 72°C for 10 

mins. Amplicons were resolved by electrophoresis using 1% agarose gel with 0.5µL ethidium 

bromide at 110 volts for 30 minutes. A DNA gene Ladder was added to the first well for 

determination of amplicon size. Gels were visualized under UV light using an AlphaImager® HP 

(Fischer Scientific, Toronto, ON). 
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Table 2.3: PCR primers used for detecting ESBL, AmpC β-lactamase, carbapenemase, mobile 

colistin resistance and class I integrons. 

Primer 

Name 
Primer Sequence References 

CTX-M-U 
5´-ATGTGCAGYACCAGTAARGTKATGGC-3´  

(Mulvey et al. 2003)  
5´-TGGGTRAARTARGTSACCAGAAYCAGCGG-3´ 

CTX-M-G1 
5´-GTTGTTAATTCGTCTCTTCC-3´  

(Ghosh 2017)  
5´-AGTTTCCCCATTCCGTTTC-3´ 

CTX-M-G9 
5´-GACCGTATTGGGAGTTTGAG´ (Hammad et al. 2009) 

5´-ATCTGATCCTTCAACTCAGC-3´ (Gonsalves 2011) 

TEM 
5´-GCGGAACCCCTATTTG-3´ 

(Olesen et al. 2004) 
5´-ACCAATGCTTAATCAGTGAG-3´ 

SHV 

5´-TTATCTCCCTGTTAGCCACC-3´ 
(Arlet et al. 2006) 

5´-GATTTGCTGATTTCGCTCGG-3´ 

5´-CGGCCCTCACTCAAGGATG-3´  
(SHV-F1 sequencing primer) 

(Bradford 1999) 

5´-GCGAGTAGTCCACCAGATCC-3´ 
(SHV-F2 sequencing primer) 

(Jung, 2019) 

5´-ATTACCGACCGGCATCTCTC-3´ 
(SHV-R1 sequencing primer) 

(Jung, 2019) 
5´-CTGCTGCAGTGGATGGTG-3´ 
(SHV-R2 sequencing primer) 

5´-CGCCGGGTTATTCTTATTTGTCGC-3´ (SHV-UP) 
(Perilli et al. 2002) 

5´-TCTTTCCGATGCCGCCGCCAGTCA-3´ (SHV-LO) 

CMY-2 
5´-ATGATGAAAAAATCGTTATGCTGC-3´  (Kruger et al. 2004) 

5´-GCTTTTCAAGAATGCGCCAGG-3´ (Hasman et al. 2015) 

NDM 
5´-GCAGCTTGTCGGCCATGCGGGC-3´  

(Peirano et al. 2011) 
5´-GGTCGCGAAGCTGAGCACCGCAT-3´ 

KPC 
5´-TGTCACTGTATCGCCGTC-3´ 

(Yigit et al. 2001) 
5´-CTCAGTGCTCTACAGAAAACC-3´ 

IMP 
5´-GAAGGCGTTTATGTTCATAC-3´ 

(Pitout et al. 2005) 
5´-GTACGTTTCAAGAGTGATGC-3´ 

VIM 
5´-GTTTGGTCGCATATCGCAAC-3´ 

(Pitout et al. 2005) 
5´-AATGCGCAGCACCAGGATAG-3´ 



 

65 
 

OXA-48 
5´-GCGTGGTTAAGGATGAACAC-3´ 

(Poirel et al. 2011) 
5´-CATCAAGTTCAACCCAACCG-3´ 

CLR5 

(MCR-1) 

5ʹ-CGGTCAGTCCGTTTGTTC-3ʹ 
(Liu et al. 2016) 

5ʹ-CTTGGTCGGTCTGTAGGG-3ʹ 

Class I 

Integron 

5´-GGCATCCAAGCAGCAAG-3´ 
(Pellegrini et al. 2011) 

5´-AAAGCAGACTTGACCTGA-3´  
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Table 2.4: Annealing temperatures used for primer binding of ESBL, AmpC β-lactamase, 

carbapenemase and colistin resistance genes.  

Primer Name 
Annealing 

Temperature 

CTX-M-U 61.0°C 

CTX-M-G1 61.0°C 

CTX-M-G9 48.0°C 

TEM 58.3°C 

SHV 68.0°C 

CMY-2 68.0°C 

NDM 58.3°C 

KPC 54.8°C 

IMP 55.1°C 

VIM 60.3°C 

OXA-48 60.3°C 

CLR5 (MCR-1) 56.0°C 
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2.3.6 PCR amplicon purification and nucleotide sequencing 

PCR products were purified using EZ-10 Spin Column PCR purification kit (Bio Basic 

Canada INC., ON, Canada) and DNA was quantified using a spectrophotometer (NanoDropTM 

1000). Purified DNA with a 1.8 ratio of absorbance at 260nm and 280nm and 2.0 – 2.2 of 260/280 

values were considered sufficiently high quality for sequencing. DNA with a concentration 

between 10 – 50ng/µL was subsequently sequenced by a commercial lab (Macrogen) using 

amplification primers. DNA sequences were assembled, edited and analyzed using Staden Package 

software (pregap4 and gap4). Using NCBI BLAST (basic local alignment search tool), nucleotide 

consensus sequences were compared with a collection database to identify potential resistance 

genes. The identity of specific resistance gene variants was determined by comparing nucleotide 

reference sequences listed on the Lahey database (Bush et al., 2017)  to the consensus sequences 

using CLC sequence viewer. Sequences with single nucleotide polymorphisms (SNPs) were 

further compared at the amino acid level to determine if there was a change in the protein sequence 

resulting in a new gene variant.  
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2.4 Results 

2.4.1 Bacteria recovery rate  

Of the 53 imported reptile and amphibian meat products tested, 71 bacterial isolates from 

seven genera of Enterobacteriaceae including Salmonella (n=6), Escherichia (n=48), Citrobacter 

(n=3), Enterobacter (n=3), Klebsiella (n=6), Serratia (n=4) and Kluyvera (n=1) were recovered 

from 41 of the products. Bacteria recovery rate per sample type is summarized in Table 2.4. 

Selective culture for Salmonella revealed six samples containing this organism, all dried geckos, 

and additional characterization revealed five unique serotypes (Table 2.5). A total of 48 E. coli 

isolates were recovered from 19 samples, with the largest proportion isolated from soft shell 

turtles. A great diversity of other Enterobacteriaceae were cultured from CHROMagar ESBL 

media, with the highest percentage from the frog legs. Finally, three carbapenemase-producing 

organisms were isolated from soft shell turtles (n=2) and the dried turtle carapace (n=1).  
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Table 2.5: Bacteria recovery rate per product type of imported culinary reptile and amphibians 

collected from retail markets in the census metropolitan regions of Vancouver, BC and 

Saskatoon, SK. 

 Reptile and Amphibian Products (n=53) 

Isolates (n=71) Soft shell 

turtle (n=11) 

Frog legs 

(n=20) 

Dried gecko 

(n=12) 

Dried snake 

(n=9) 

Dried carapace 

(n=1) 

Escherichia (n=48) 26 (10/11) 2 (1/20) 11 (5/12) 9 (3/9) 0 

Salmonella (n=6) 0 0 6 (6/12) 0 0 

Klebsiella (n=6) 0 4 (3/20) 2 (2/12) 0 0 

Serratia (n=4) 0 4 (4/20) 0 0 0 

Citrobacter (n=3) 1 (1/11) 1 (1/20) 0 1 (1/9) 0 

Enterobacter (n=3) 0 2 (2/20) 0 0 1 (1/1) 

Kluyvera (n=1) 0 1 (1/20) 0 0 0 
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Table 2.6: Salmonella serotypes identified from imported reptile and amphibian meat products. 

Organism ID Sample 

Salmonella I:Rough-Or:z6 BR006E1-a Dried Gecko 

Salmonella Poona BR017E1-a Dried Gecko 

Salmonella Chicago BR018E2-a Dried Gecko 

Salmonella Poona BR040E2-a Dried Gecko 

Salmonella Urbana BR041E2-a Dried Gecko 

Salmonella Weltevreden BR042E2-a Dried Gecko 
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2.4.2 Antimicrobial resistant profiles of E. coli 

2.4.2.1 MIC distribution of E. coli isolates based on drug class 

The antimicrobial minimum inhibitory concentrations of the 48 E. coli isolates were 

determined and interpreted based on CLSI guidelines. The MIC distribution of isolates to 

antibiotics categorized by class are presented in Table 2.6. Overall, 52.1% (25/48) of isolates were 

resistant to ampicillin while ceftiofur and ceftriaxone resistance was observed in 35.4% (17/48) 

and 33.3% (16/48) of isolates respectively. The frequency of resistance to cefoxitin and 

amoxicillin-clavulanic acid was lower including 10.4% (5/48) and 6.3% (3/48) of isolates 

respectively. Resistance to trimethoprim-sulfamethoxazole was observed in 39.6% (19/48) of 

isolates, while 58.3% (28/48) of isolates were resistant to potentiated sulfisoxazole. Resistance to 

tetracycline was found in 47.9% (23/48) of isolates, while 45.8% (22/48) of isolates were resistant 

to chloramphenicol and nalidixic acid. Resistance to colistin was observed in one isolate with a 

MIC of 16 µg/ml. Within a sample, the susceptibility of isolates recovered were generally 

homogenous. Resistance profiles for eleven of the most notable isolates is summarized in Table 

2.7. 
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Table 2.7: Minimum inhibitory concentration distribution of E. coli (n=48) from imported reptile and amphibian meat products. 

Drug Class Name 0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 

% R 

Isolates 

(n=48) 

% R 

Samples 

(n=19) 

β-lactams 

AMP        9 10 4   25    52.1 (25) 57.9 (11) 

AUG        9 14 16 6 1 2    6.25 (3) 10.5 (2) 

XNL     5 17 8  2  16      33.3 (16) 42.1 (8) 

FOX        9 10 19 5 2 3    10.4 (5) 21.0 (4) 

AXO     30   1 1  3   13   35.4 (17) 47.4 (9) 

Sulfonamides 
FIS           6 6 8   28 58.3 (28) 68.4 (13) 

SXT    21 6 2    19       39.6 (19) 47.4 (9) 

Quinolones 
CIP 20    5 6 1 2 1 13       29.1 (14) 36.8 (7) 

NAL       9 5 6 2 4  22    45.8 (22) 52.6 (10) 

Aminoglycosides 
GEN     6 6 20 4 2 1 1 8     20.8 (10) 31.6 (6) 

STR        6 4 10 5 2  21   43.8 (21) 63.2 (12) 

Tetracyclines TET         25  1  22    47.9 (23) 52.6 (10) 

Phenicol CHL        2 8 10 6  22    45.8 (22) 52.6 (10) 

Ampicillin (AMP), amoxicillin + clavulanic acid 2:1 (AUG), ceftiofur (XNL), cefoxitin (FOX), ceftriaxone (AXO), sulfisoxazole (FIS), trimethoprim + 

sulfamethoxazole 1:19 (SXT), ciprofloxacin (CIP), nalidixic acid (NAL), gentamicin (GEN), streptomycin (STR), tetracycline (TET) and chloramphenicol 

(CHL). Cells corresponding to the concentrations tested are in white and resistance breakpoints are denoted by the dark bars. The number of isolates 

inhibited at each concentration are noted in each cell, isolates not inhibited by the highest concentration of each drug are enumerated in the first concentration 

above the highest concentration tested.
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Table 2.8: Antimicrobial resistance profiles, broad spectrum β-lactamases and other resistance genes identified from E. coli isolates 

(n=11). 

ID Sample Antimicrobial Resistance Profile* 
β-lactamase 

Genes 

Other 

Genes 

BR050B-b Frog legs AMP + XNL + AXO + FIS + SXT + NAL+ GEN + TET + CHL CTX-M-64  

BR027B-c Soft shelled turtle AMP + XNL + AXO + FIS + SXT + NAL+ CHL CTX-M-55  

BR028B-c Soft shelled turtle AMP + XNL + AXO + FIS + SXT + CIP + NAL+ TET CTX-M-65  

BR028B-d Soft shelled turtle AMP + XNL + AXO + TET CTX-M-18  

BR029D-a Soft shelled turtle AMP + XNL + AXO + FOX + AUG + FIS + NAL + CIP + GEN + 

TET + CHL 

CMY-61, 

TEM-33 
 

BR030B-c Soft shelled turtle AMP + XNL + AXO + FIS + SXT + NAL + CIP + GEN + TET + 

CHL 

CTX-M-18  

BR030B-d Soft shelled turtle AMP + XNL + AXO + FOX + FIS + SXT + NAL + CIP + GEN + 

TET + CHL 

CTX-M-55 mcr-1 

BR037D-a Soft shelled turtle AMP + XNL + AXO + FOX + AUG + FIS + SXT + NAL + CIP + 

TET + CHL 

CMY-61 
 

BR051B-b Soft shelled turtle AMP + XNL + AXO + FIS + SXT + TET + CHL CTX-M-55  

BR053B-a Soft shelled turtle AMP + XNL + AXO + FIS + SXT + TET + CHL CTX-M-55  

BR053B-b Soft shelled turtle AMP + XNL + AXO + FIS + SXT + NAL + CIP + TET + CHL CTX-M-3  

*A total of six drug classes were tested including (1) β-lactams (Red): Ampicillin (AMP), ceftiofur (XNL), ceftriaxone (AXO), amoxicillin + clavulanic 

acid (AUG), cefoxitin (FOX), (2) sulfonamides (Blue): Sulfisoxazole (FIS), trimethoprim + sulfamethoxazole (SXT), (3) quinolones (Green): Nalidixic 

acid (NAL), ciprofloxacin (CIP), (4) aminoglycosides (Black): gentamicin (GEN), (5) tetracyclines (Purple): tetracycline (TET) and (6) phenicols 

(Brown): chloramphenicol (CHL).   
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2.4.2.2 Percentage of E. coli isolates and samples resistant to different antimicrobial classes 

Full susceptibility to all drugs was found in 35.4% (17/48) of isolates from 42.1% (8/19 of 

samples. Multidrug resistance, defined as resistance to three or more drug classes (Tadesse et al., 

2012), was observed in 56.3% (27/48) of isolates. Resistance to all drugs tested was identified in 

14.5% (7/48) of isolates from 21.1% (4/19) of samples (Table 2.8).  
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Table 2.9: Percentage of E. coli isolates and samples resistant to different antimicrobial drug 

classes. 

Resistance to Antimicrobial Classes* Isolates (n=48) N (%) Samples (n=19) N (%) 

Pan-susceptible 17 (35.4%) 8 (42.1%) 

1 Antimicrobial class 2 (4.2%)  2 (10.5%) 

2 Antimicrobial classes 2 (4.2%) 2 (10.5%) 

3 Antimicrobial classes 4 (8.3%) 3 (15.8%) 

4 Antimicrobial classes 10 (20.8%) 5 (26.3%) 

5 Antimicrobial classes 6 (12.5%) 4 (21.1%) 

6 Antimicrobial classes 7 (14.5%) 4 (21.1%) 

 *Drug classes: β-lactams, aminoglycosides, sulfonamides, quinolones, tetracyclines and phenicols 
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2.4.3 Antimicrobial resistant profiles of non-E. coli Enterobacteriaceae 

Antimicrobial susceptibility testing was performed on 23 non-E. coli Enterobacteriaceae 

isolates. The resistance profiles for 17 of the isolates is presented in Table 2.9. Of the six 

Salmonella isolates recovered, all were susceptible to all drugs tested. Only one isolate in the 

Kluyvera genus was recovered, Kluyvera intermedia, and it was resistant to all 6 antimicrobial 

classes tested. Of the six Klebsiella isolates recovered, all were resistant to ampicillin, ceftiofur, 

ceftriaxone, tetracycline, trimethoprim-sulfamethoxazole and sulfisoxazole. Resistance to 

nalidixic acid and gentamicin was observed in 83.3% (5/6) of isolates, while 66.7% (4/6) of isolates 

were resistant to ciprofloxacin and chloramphenicol. Three isolates of the genus Citrobacter were 

recovered, with 100% (3/3) of isolates resistant to ampicillin and cefoxitin. Resistance to 

amoxicillin-clavulanic acid, the sulfonamides, ciprofloxacin, nalidixic acid, chloramphenicol and 

tetracycline was observed in 66.7% (2/3) of isolates. Of the three Enterobacter isolates recovered, 

all were resistant to ampicillin, ceftiofur, cefoxitin, ceftriaxone, trimethoprim-sulfamethoxazole, 

sulfisoxazole and tetracycline, while 66.7% (2/3) of isolates were resistant to amoxicillin-

clavulanic acid, ciprofloxacin, nalidixic acid, gentamicin and chloramphenicol. Lastly, four 

Serratia fonticola isolates were recovered, with 100% (4/4) resistant to ampicillin and 75% (3/4) 

resistant to ceftriaxone. 
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 Table 2.10: Antimicrobial resistance profiles and β-lactamase genes from non-E. coli Enterobacteriaceae isolates (n=17). 

ID Sample Organism Antimicrobial Resistance Profile* β-lactamase Genes 

BR004B-c Dried carapace Enterobacter sp. AMP + FOX + AXO + XNL + AUG + FIS + SXT + TET CTX-M-15 

BR041B-a Dried gecko Klebsiella pneumoniae AMP + AXO + XNL + FIS + SXT + NAL + GEN + TET CTX-M-83 

BR042B-b Dried gecko Klebsiella pneumoniae AMP + AXO + XNL + FIS + SXT + GEN + TET CTX-M-83 

BR012B-b Dried snake Citrobacter freundii AMP + FOX + AUG CMY-98 

BR050B-a Frog legs Citrobacter braakii AMP + FOX + FIS + SXT + CIP + NAL + TET + CHL TEM-33 

BR026B-c Frog legs Enterobacter sp. 
AMP + FOX + AXO + XNL + AUG + FIS + SXT + CIP + NAL + GEN 

+ TET + CHL 
SHV-12, TEM-206 

BR045B-a Frog legs Enterobacter sp. 
AMP + FOX + AXO + XNL + FIS + SXT + CIP + NAL + GEN + TET 

+ CHL 
CTX-M-2, TEM-33 

BR019B-a Frog legs Klebsiella oxytoca 
AMP + AXO + XNL + AUG + FIS + SXT + CIP + NAL + GEN + TET 

+ CHL 
OXY-2-10 

BR019B-b Frog legs Klebsiella oxytoca AMP + AXO + XNL + FIS + SXT + CIP + NAL + TET + CHL CTX-M- 83 

BR025B-a Frog legs Klebsiella oxytoca 
AMP + AXO + XNL + AUG + FIS + SXT + CIP + NAL + GEN + TET 

+ CHL 
OXY-2-2 

BR048B-c Frog legs Klebsiella oxytoca 
AMP + AXO + XNL + AUG + FIS + SXT + CIP + NAL  + GEN + 

TET + CHL 
OXY-2-2 

BR021B-c Frog legs Kluyvera intermedia 
AMP + FOX + AXO + XNL + FIS + SXT + CIP + NAL  + GEN + TET 

+ CHL 
CTX-M-27 

BR033B-b Frog legs Serratia fonticola AMP + AXO + AUG + CIP + NAL FONA-5 

BR034B-b Frog legs Serratia fonticola AMP + AXO FONA-5 

BR047B-c Frog legs Serratia fonticola AMP + AXO + XNL FONA-5 

BR049B-c Frog legs Serratia fonticola AMP FONA-5 

BR037B-a Turtle Citrobacter freundii AMP + FOX + AUG + FIS + SXT + CIP + NAL + TET + CHL CTX-M-1, CMY-83 

*A total of six drug classes were tested including (1) β-lactams (Red): Ampicillin (AMP), ceftiofur (XNL), ceftriaxone (AXO), amoxicillin + clavulanic acid (AUG), cefoxitin 

(FOX), (2) sulfonamides (Blue): Sulfisoxazole (FIS), trimethoprim + sulfamethoxazole (SXT), (3) quinolones (Green): Nalidixic acid (NAL), ciprofloxacin (CIP), (4) 

aminoglycosides (Black): gentamicin (GEN), (5) tetracyclines (Purple): tetracycline (TET) and (6) phenicols (Brown): chloramphenicol (CHL).   
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2.4.4 Carbapenemase-producing organisms  

The -CARBA test revealed three carbapenemase-producing organisms among those 

isolated on MHM. All three isolates were resistant to meropenem, imipenem and doripenem (not 

shown). Two of the isolates were cultured from soft shell turtles and were identified as a 

Stenotrophomonas sp. and a Chryseobacterium sp. The last isolate, an Acinetobacter sp. was 

recovered from the dried turtle carapace. All three isolates were screened for the five most 

clinically relevant carbapenemase genes including, NDM, KPC, IMP, VIM and OXA-48. Only the 

Acinetobacter sp. possessed NDM-1 and was resistant to the cephalosporins, carbapenems, 

aztreonam, ciprofloxacin and trimethoprim-sulfamethoxazole and was susceptible to the 

aminoglycosides, tetracyclines and polymyxins. The other two isolates were negative for the 

carbapenemase genes tested. 

2.4.5 Molecular detection of resistance 

2.4.5.1 Broad spectrum β-lactamase and mobile colistin resistance genes  

Of the 48 Enterobacteriaceae isolates with antimicrobial resistance phenotypes, up to two 

isolates of each genus type per sample, 28 isolates from 22 samples, were screened for ESBL and 

AmpC β-lactamases. A summary of the isolates, sample types and resistance profiles that 

possessed resistance genes are presented for E. coli in Table 2.7 and the non-E. coli 

Enterobacteriaceae in Table 2.9. Of the 28 isolates, 85.7% (24/28) of isolates from 90.9% (20/22) 

of samples were found to carry ESBL encoding genes, while 14.3% (4/28) of isolates were positive 

for AmpC encoding genes from 13.6% (3) of samples.  

DNA sequencing results revealed of the 24 ESBL-producing isolates, 17 possessed a 

variety of CTX-M-type enzymes,1 harboured a SHV-12 enzyme and 3 Klebsiella oxytoca and 4 
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Serratia fonticola isolates produced OXY-type and FONA-type ESBLs, respectively. Four isolates 

were found to harbour CMY-type enzymes which were determined to be CMY-61 (n=2), CMY-

83 (n=1) and CMY-98 (n=1). TEM-type β-lactamases were identified in 4 (14.3%) isolates from 

4 (18.2%) of samples, which were identified as TEM-33 (n=3) and TEM-206 (n=1). One colistin 

resistant E. coli isolate was found to possess the mobile colistin resistance, MCR-1 enzyme and 

co-harboured CTX-M-55. Co-location of ESBL and AmpC β-lactamases was observed in one 

isolate, which harboured the CTX-M-1 and CMY-83 enzymes (Table 2.10).   

2.4.5.2 Class I integron genes 

All 48 Enterobacteriaceae isolates and one Acinetobacter sp. were screened for class I 

integrons and amplicons were sequenced revealing 8 integron positive isolates. Four isolates 

harboured the aadA1 (E. coli, n=1) and aadA2 (E. coli, n=1 and Enterobacter, n=2) genes 

encoding the protein streptomycin 3´-adenylyltransferase, which confers resistance to 

streptomycin and spectinomycin. Of those that possessed the aadA2 gene, the E. coli isolate also 

carried the CTX-M-18 enzyme and one of the Enterobacter sp. carried the SHV-12 and TEM-206 

enzymes. Three isolates, one CTX-M-15 producing Enterobacter sp. and two CTX-M-83 

producing Klebsiella pneumonia, harboured the dfrA1 gene encoding the protein dihydrofolate 

reductase, which confers resistance to the sulfonamides. Lastly, the NDM-1 producing 

Acinetobacter sp. possessed fosC2, which confers resistance to fosfomycin by encoding the protein 

fosfomycin phosphotransferase.  
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Table 2.11: Number of ESBL, AmpC β-lactamase and penicillinase-producing Enterobacteriaceae 

from imported reptile and amphibian meat samples.  

Classes of β-lactamase 

genes tested 

Number of samples positive 

for β-lactamase genes (n=22) 
β-lactamase variants 

ESBL 20 (90.9%) 

CTX-M-1 (1; 4.2%) 

CTX-M-2 (1; 4.2%) 

CTX-M-3 (1; 4.2%) 

CTX-M-15 (1; 4.2%) 

CTX-M-18 (2; 8.3%) 

CTX-M-27 (1; 4.2%) 

CTX-M-55 (4; 16.7%) 

CTX-M-64 (1; 4.2%) 

CTX-M-65 (1; 4.2%) 

CTX-M-83 (3; 12.5%) 

SHV-12 (1; 4.2%) 

OXY-2-2 (2; 8.3%) 

OXY-2-10 (1; 4.2%) 

FONA-5 (4; 16.7%) 

AmpC 3 (13.6%) 

CMY-61 (2; 50%) 

CMY-83 (1; 25%) 

CMY-98 (1; 25%) 

Penicillinase 4 (18.2%) 
TEM-33 (3; 75%) 

TEM-206 (1; 25%) 

Both ESBL and AmpC 1 (4.5%) 
CTX-M-1 + CMY-83  

(1; 100%) 

Both ESBL and 

penicillinase 
2 (9.0%) 

SHV-12 + TEM-206  

(1; 50%) 

CTX-M-2 + TEM-33  

(1; 50%) 

Both AmpC and 

penicillinase 
1 (4.5%) 

CMY-61 + TEM-33  

(1; 100%) 

 

  



 

81 
 

2.5 Discussion 

The propensity of reptiles and amphibians to carry pathogenic bacteria, particularly 

Salmonella, is well recognized (Aguirre et al., 2006). Outbreaks associated with pet turtles have 

led to regulatory changes affecting the ownership of these animals in the United States (Cohen, 

1980; Bosch et al., 2015; FDA, 2017b). While zoonotic transmission from exotic pets has been 

examined, the role of reptile meat in the food supply has not been studied. Interestingly, relatively 

little attention has been paid to the role of reptile/amphibian derived products in the food supply 

to the epidemiology of foodborne illness or the dissemination of resistance. In the United States, 

there are reports of pathogenic Salmonella Pomona isolated from alligator meat and a case of 

recurrent Salmonella Arizona infection in a patient who consumed rattlesnake (Cortes et al., 1992; 

Sakaguchi et al., 2017). Imported reptile and amphibian products have largely escaped study 

despite the large scale of production; the soft shell turtle production reached 344 800 tonnes in 

2014 (FAO, 2014). Interestingly, the role of the international pet trade in the dissemination of 

resistance was recently highlighted. A mcr-1 producing E. coli was isolated from Asian grass 

lizards imported into Germany from Vietnam leading the authors to suggest that the international 

pet trade may be a vehicle for the dissemination of resistant organisms (Unger et al., 2017). 

The emergence of resistance to last line of defense drugs mediated by the carbapenemases 

and mcr family of genes has ignited interest in identifying organisms possessing these genes on 

food products imported from regions of the world where these resistance mechanisms may be 

endemic. Since the initial detection of the VIM-2 carbapenemase gene from a Korean squid 

imported into Canada in 2014, several more studies have detected carbapenemase genes from a 

variety of Enterobacteriaceae and non-Enterobacteriaceae isolated from imported seafood and 

vegetables from Southeast Asian countries (Rubin et al., 2014; Morrison and Rubin, 2015; Mangat 
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et al., 2016; Janecko et al., 2016; Ceccarelli et al., 2017). Also, a few studies have detected the 

mcr-1 gene isolated from E. coli in imported vegetables and chicken from Thailand, Vietnam and 

South America (Hasman et al., 2015; Zurfuh et al., 2016). Although the overall prevalence of these 

resistance genes in imported food remains low, it is worrisome as the consumption of raw or 

improperly cooked food provide the ideal condition for transmission and spread of resistant 

bacteria or their respective mobile genetic elements to resident intestinal flora. These studies 

emphasize the need for further monitoring of antimicrobial resistance and inclusion of imported 

products into national surveillance programs.  

In the current investigation some food safety hazards unique to the products tested compared 

to foods derived from major agricultural species were identified. We were very surprised to find 

that one of the soft shell turtles that were included in this investigation was sold un-gutted. The 

opportunities for cross contamination are substantially greater when whole animals, including 

intestines with visible fecal material, are dressed and prepared in the kitchen than when other meats 

are used. It was also observed that the dried products, including the geckos which is where all 

Salmonella isolates were recovered from, were not handled in a manner which was consistent with 

a high level of meat hygiene. These products were uniformly displayed without packaging in the 

open air at the retail location and were handled with bare hands.   

Reptile and amphibian meat products are not just a source of protein but are also used for 

traditional medicinal reasons and religious purposes. The meat, fat, skin, blood and bones are used 

as raw materials in the preparation of powdered medicines, oils, and salves for the treatment and 

prevention of numerous illnesses, such as sore throat, skin issues, aches, inflammation, burns, 

asthma, bleeding disorders, rheumatism, cancer and many more (Alves et al., 2008; Vats and 

Thomas, 2015). Many parts of these animals are used in rituals, magic spells or used as amulets 
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for protection (Alves et al., 2009). Public health professionals investigating outbreaks should be 

cognisant of this when designing questionnaires to capture the different types of products that 

people may have consumed as they are not necessarily considered meat. 

In this investigation we have demonstrated that reptile and amphibian derived products are 

an underappreciated source of resistance. Future studies should seek to identify at what stage of 

the production cycle (on farm, at slaughter, during processing/packaging or at the retail level) 

resistant organisms enter the food products. Although the sample size was small, the Salmonella 

serotypes and CTX-M variants identified are not inconsistent with the organisms originating in 

Asia. Of the Salmonella isolated in this study, Urbana and Poona are reptile associated serotypes 

that have been linked to outbreaks in fresh produce and pet reptiles (Jackson et al., 2013; Walters 

et al., 2016). Salmonella Weltevreden is the most common serotype associated with imported 

seafood and aquatic production systems and is a frequent and increasing cause of human infection 

predominating Southeast Asia (Ponce et al., 2008; Makendi et al., 2016).  Of the CTX-M enzymes 

identified, CTX-M-55, -83 and -27 are found most commonly in Asia especially China, but also 

in North Africa; while CTX-M-15 is the most prominent variant found worldwide (Zhao and Hu, 

2013; Tong et al., 2015).  

In this study the use of a taxa independent resistance selective culture media allowed for the 

identification of clinically relevant resistance in bacterial species which are not targeted by 

resistance surveillance programs. The breadth of non-Escherichia or Salmonella genera of 

Enterobacteriaceae possessing ESBLs, and the NDM-1 producing Acinetobacter sp. highlight the 

gaps of traditional surveillance approached. The presumptive location of these broad spectrum β-

lactamases on transmissible plasmids in the context of these findings indicates that consideration 
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of the resistome of the whole bacterial community is required for a holistic understanding of the 

epidemiology of antimicrobial resistance. 
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2.7 Transition statement 

The first study was designed to identify bacterial pathogens from imported meat products 

and to evaluate the prevalence of antimicrobial resistance. A substantial proportion of isolated 

Gram-negative bacteria from the family Enterobacteriaceae were multidrug resistant and 

expressed one or more mobile β-lactamase resistance genes. However, resistant Gram-positive 

bacteria were also found. While isolating potential carbapenem-resistant organisms, there were 

some bacteria identified with similar colony morphology to Staphylococcus aureus. Further 

characterization revealed these isolates to be Macrococcus caseolyticus showing resistance to 

meropenem. There is not an extensive amount of literature regarding the resistance profile and 

prevalence of M. caseolyticus, but it is known to carry a gene conferring resistance similar to that 

seen with methicillin-resistant Staphylococcus aureus (MRSA). Therefore, we were interested in 

further investigating its phenotypic antimicrobial susceptibility and developing a culture medium 

that would selectively isolate this bacterium.  
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3.1 Abstract 

Macrococcus caseolyticus is a commensal bacterial species that can be isolated from animal 

skin and food products, but rarely causes human or animal infection. It is closely related to the 

genus Staphylococcus and up until 1998 this bacterium was named Staphylococcus caseolyticus. 

It has acquired plasmid-mediated methicillin resistance which may impact both veterinary and 

human medicine. To date, there have been very few studies assessing the prevalence of M. 

caseolyticus. Thus, the purpose of this study is to develop a selective culture medium that will 

facilitate targeted studies and address the question of prevalence more systematically. Nine M. 

caseolyticus isolates cultured from imported meat products containing the mecB gene conferring 

methicillin resistance, were used. Antimicrobial susceptibility testing using broth microdilution 

was performed. Selective media were challenged using rinsates from animal feces, soil, meat 

products, and milk samples spiked with two concentrations of M. caseolyticus creating final 

inoculums of 3.0 x106 CFU/ml and 3.0x105 CFU/ml. The selective medium that worked the best 

consisted of colistin nalidixic acid (CNA) agar with 5% defibrinated sheep blood with ampicillin 

0.5µg/ml and meropenem 0.5µg/ml. This medium inhibited the growth of Gram-negative bacteria 

and most Gram-positive bacteria except for Enterococcus spp., which have intrinsic resistance to 

numerous drug classes. All nine M. caseolyticus isolates grew well on this medium and were 

recovered from each sample containing a mixture of bacteria. This medium allowed for phenotypic 

differentiation of M. caseolyticus from other Gram-positive bacteria based on colony morphology. 

Although Macrococcus caseolyticus is part of the normal skin microbiota of animals, the potential 

transmissibility of mec encoded β-lactam resistance to other bacteria is a concern. Our results 

confirm that this medium can selectively isolate M. caseolyticus from a variety of samples. This 

will give researchers a reliable way to conduct further studies on M. caseolyticus. 
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3.2 Introduction 

The genus Macrococcus are Gram-positive cocci, that are coagulase negative, oxidase and 

catalase positive, belonging to the family Staphylococcaceae (Mazhar et al., 2018). Macrococci 

are evolutionarily closely related to the genus Staphylococcus but are composed of smaller 

genomes (Baba et al., 2009). The genus Macrococcus was originally classified as Micrococcus, 

then reclassified to Staphylococcus and finally in 1998 it received its current designation (Kloos 

et al., 1998). There are currently eleven species within this genus including, M. bovicus, M. 

carouselicus, M. equipercicus, M. epidermidis, M. goetzii, M. burnensis, M. hajekii, M. lamae, M. 

bohemicus, M. canis and M. caseolyticus (Brawand et al., 2017; Mazhar et al., 2018; Mašlaňová 

et al., 2018). The ecological distribution of macrococci in nature is not fully known, but they have 

been isolated from animal skin (ponies, horses, cattle, llamas, sheep, goats, dogs, whales and 

dolphins), from milk and meat products (Kloos et al., 1998; Mannerova, 2003; Brawand et al., 

2017; Mazhar et al., 2018).  

M. caseolyticus is a commensal bacterium isolated from animals and food products, but in 

contrast to staphylococci it is not considered to be a human pathogen, however, this species has 

been associated with veterinary infections, being isolated from ovine abscesses, bovine mastitis, 

and canine skin and soft tissue infections (de la Fuente et al., 1992; Gómez-Sanz et al., 2015; 

Cotting et al., 2017; Schwendener et al., 2017). Methicillin resistance has been described in this 

species and the basis for this resistance is through the expression of altered PBP2a, encoded by the 

mec gene, conferring resistance to the entire β-lactam class of antimicrobials (Tsubakishita et al., 

2010; Cotting et al., 2017; Schwendener et al., 2017). There are currently four mec gene homologs 

(mecA-D) described among staphylococci and macrococci (Becker et al., 2014; Schwendener et 

al., 2017). In the case of methicillin resistant staphylococci, including methicillin resistant S. 
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aureus (MRSA) and methicillin resistant S. pseudintermedius (MRSP), the predominant mec gene 

type is mecA, with mecC found at a very low frequency in MRSA (Peacock and Paterson, 2015). 

In contrast, mecA and mecC have not been reported in macrococci, but mecB and mecD have been 

found in M. caseolyticus, with mecB also being reported in M. canis (Tsubakishita et al., 2010; 

Gómez-Sanz et al., 2015; Cotting et al., 2017; Schwendener et al., 2017).  

The close relationship between macrococci and staphylococci as commensal bacteria sharing 

similar ecological niches, raises a concern for the potential transfer of antibiotic resistance, 

specifically mecB and mecD-mediated methicillin resistance, to more pathogenic strains 

(MacFadyen et al., 2018). It has been proposed that the mecB gene complex found in M. 

caseolyticus is a primordial form of mecA found in methicillin resistant staphylococci (Baba et al., 

2009). Recently, evidence for cross-genus transmission of methicillin resistance facilitated by the 

mec genes comes from the discovery of a mecB-positive MRSA isolate from a hospitalized patient 

in Germany (Becker et al., 2018). This is the first description of plasmid-mediated methicillin 

resistance in staphylococci. M. caseolyticus and M. canis closely resemble members in the genus 

Staphylococcus, which may lead to potential diagnostic challenges in terms of producing false-

positive results in routine MRSA screening and false-negative results from molecular based 

techniques in identifying mecA and mecC (Rubin and Chirino-Trejo, 2010; Mazhar et al., 2018; 

MacFadyen et al., 2018).  

Although there is limited information available regarding host preference of Macrococcus 

caseolyticus and its presence in food, the prevalence of this species is still largely unknown. 

Therefore, the objective of this study was to develop a selective culture medium that will help 

facilitate targeted studies and address the question of prevalence more systematically. 
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3.3 Materials and methods 

3.3.1 Study design 

This study was conducted to develop a selective culture medium for M. caseolyticus that 

will help facilitate targeted studies and address the question of prevalence more systematically. As 

there have been reports of methicillin resistance in M. caseolyticus, we also investigated the 

antimicrobial susceptibility of these isolates. This was a collaborative study with researchers at the 

University Hospital of Münster, Germany. Bacterial isolate collection, antimicrobial susceptibility 

testing and selective culture medium creation was performed at the University of Saskatchewan. 

Confirmation of M. caseolyticus identity using matrix assisted laser desorption ionization-time of 

flight (MALDI-TOF) mass spectrometry and molecular characterization of isolates was performed 

at the University Hospital of Münster. 

3.3.2 Bacterial isolates  

Nine Macrococcus caseolyticus isolates were used in this study. These isolates were 

cultured from imported seafood (clams, n=2), reptile (soft shell turtle, n=1) and amphibian (frog 

legs, n=6) meat products. All isolates grew on MHM agar and resembled Staphylococcus spp. The 

isolates were shipped on swabs in Aimes transport medium to Dr. Becker’s lab at the University 

Hospital of Münster for molecular characterization. 

3.3.3 Antibiotic susceptibility testing 

Antimicrobial susceptibility testing was performed on all isolates by broth microdilution 

using the Sensititre system (Trek Diagnostics, Cleveland, OH). The GPALL1F plate format was 

used in this study according to the manufacturer’s instructions. In brief, isolates were sub-cultured 

onto a 5% sheep blood agar plate and incubated overnight at 35°C. To prepare the inoculum, 1 – 
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2 colonies were suspended in 5ml of demineralized water to a 0.5 McFarland density. Thirty 

microliters of bacterial suspension was then added to 11ml of cation-adjusted Muller Hinton broth 

(Trek Diagnostics, OH, USA). Fifty microliters of inoculum was dispensed into the 96 well plate 

using the Sensititre auto-inoculator. Plates were sealed with adhesive film to prevent evaporation 

and incubated at 35°C for 18-24 hours. Antimicrobial MICs were interpreted, as susceptible or 

resistant, according to the CLSI guidelines for Staphylococcus spp. The clinical antimicrobial 

breakpoints used in this study are described in Table 3.1. For quality control, S. aureus ATCC 

29213 and E. faecalis ATCC 29212 were used.  
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Table 3.1: List of antibiotics with respective CLSI resistance breakpoints used in antibiotic 

susceptibility testing GPALL1F and CMV4AGNF* panels. 

Antibiotic Class Antibiotic Tested Range 
Resistance 

Breakpoints** 

β-lactams 

Ampicillin 0.12 – 8 ≥ 0.25 

Penicillin 0.06 – 8   ≥ 0.25 

Oxacillin + 2% NaCl 0.25 – 4   ≥ 4 

Cefoxitin Screen 8 ≥ 8 

Meropenem 0.06 – 4  ≥ 4 

Glycopeptides Vancomycin 0.25 - 32  ≥ 16 

Streptogramin Quinopristin-dalfopristin 0.5 – 4  ≥ 4 

Oxazolidinone Linezolid 1 – 8  ≥ 8 

Lincosamide Clindamycin 0.5 – 2  ≥ 4 

Macrolide Erythromycin 0.25 – 4  ≥ 8 

Tetracyclines Tetracycline 2 – 16  ≥ 16 

Sulfonamides Trimethoprim-sulfamethoxazole 0.5/9.5 – 4/76  ≥ 4/76 

Ansamycins Rifampin 0.5 – 4  ≥ 4 

Phenicol Chloramphenicol 2 – 16  ≥ 32 

Quinolones 

Ciprofloxacin 1 – 2   ≥ 4 

Levofloxacin 0.25 – 4  ≥ 4 

Moxifloxacin 0.25 – 4 ≥ 2 

Aminoglycosides Gentamicin 2 -16   ≥ 16 

*The CMV4AGNF panel was used to test meropenem susceptibility 

**The resistance breakpoints presented here are those for Staphylococcus spp. from the Clinical and Laboratory 

Standards Institute (CLSI).  
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3.3.4 Determination of optimal growth conditions 

Temperature, pH and salt gradients were performed to determine the optimal growth 

conditions for M. caseolyticus. First the optimal growth temperature was assessed. Each isolate 

was inoculated onto a 5% sheep blood agar plate and incubated at 5 different temperatures (35°C, 

37°C, 39°C, 42°C and 45°C) for 18-20 hours. Growth at different pH and salt concentrations was 

determined by making 4 different 5% sheep blood agar plates and incorporating 0.5%, 5.0%, 7.5% 

and 10% NaCl. The pH of a smaller volume of each agar media was then adjusted to 6.0, 6.5, 7.0, 

7.5 and 8.0. All isolates were inoculated onto each blood agar plate and incubated overnight at 

35°C for 18-20 hours. Each plate was evaluated for growth. 

3.3.5 CFU enumeration of M. caseolyticus 

The concentration of M. caseolyticus was enumerated using a spiral plater. In brief, isolates 

were sub-cultured onto a 5% sheep blood agar plate and incubated overnight at 35°C. To prepare 

the inoculum, 1 – 2 colonies were suspended in 5ml of saline water to a McFarland 0.5 density. 

Using a spiral plater (Spiral Biotech Inc., Norwood, MA), a 1:200 dilution of the inoculum was 

plated on 5% sheep blood agar plates in triplicate and incubated overnight at 35°C. Colony 

numbers were counted on each plate and the average of the 3 plates was determined (Figure 3.1). 

The concentration of the stock inoculum was back calculated using the following formula: CFU/ml 

= (number of colonies x dilution factor x 1000) / (volume inoculated onto culture plate). The 

concentration of a M. caseolyticus inoculum at a density of McFarland 0.5 was 1.5 x 107 CFU/ml. 
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Figure 3.1: Macrococcus caseolyticus on 5% sheep blood agar inoculated using a spiral 

plater (1:200 dilution of McFarland 0.5 standard) for CFU enumeration. 
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3.3.6 Development of the selective medium 

Seven media were selected and prepared to determine a suitable base medium, including: 

mannitol salt agar, trehalose salt agar, phenol red lactose agar, P agar, chapman stone agar, azide 

blood agar and colistin nalidixic acid blood agar. All isolates were cultured onto each medium and 

incubated overnight at 35°C. All plates were assessed for growth. Once a suitable base medium 

was chosen, the addition of two NaCl concentrations, 0.5% and 5.0%, were incorporated along 

with two combinations of β-lactam antibiotics (1) 0.5µg/ml meropenem (MP) and 0.5µg/ml 

ampicillin (AMP) and (2) 0.5µg/ml cloxacillin (CLX) and 1.0µg/ml ampicillin. Thus, a total of 4 

selective media were prepared. All nine M. caseolyticus along with four quality control strains, E. 

coli ATCC 25422, S. aureus ATCC 29213, E. faecalis ATCC 29212 and P. aeruginosa ATCC 

27853 were inoculated onto the selective media and incubated overnight at 35°C. All plates were 

assessed for growth.  

  



 

96 
 

3.3.7 Challenge of the selective media  

The selective media were challenged by spiking each M. caseolyticus isolates into a variety 

of samples (n=35) including feces (canine and feline), dirt, retail meat products (beef, chicken, 

pork, fish and shrimp) and mastitic milk samples. Canine (n=3) and feline (n=2) fecal samples 

were collected fresh on the day of challenge from healthy dog and cats owned by lab members. 

Dirt samples (n=5) were collected from various locations around Saskatoon, SK. Retail beef (n=3), 

chicken (n=3), pork (n=2), fish (n=1) and shrimp (n=1) products were purchased from local 

grocery stores in Saskatoon, SK. Frozen milk samples (n=15) were provided by Prairie Diagnostic 

Services (PDS) after confirmation of bacterial infection. Briefly, 0.5g of each fecal and dirt sample 

was homogenized with 5ml of tryptic soy broth (TSB). For the meat samples, 5g of each sample 

was dissected and rinsed with 50ml of buffered peptone water in a sterile bag; a 5ml aliquot was 

transferred into a sterile tube and incubated at 35°C for 18 hours. Milk samples were thawed at 

room temperature and a 5ml aliquot was transferred into a sterile tube. A McFarland 1.0 density 

of each M. caseolyticus isolates, with a known concentration of 3.0 x 107 CFU/ml, was spiked 

twice into each sample making a 1:10 and 1:100 final dilution. Ten microlitres of each dilution of 

spiked samples were inoculated onto the CNA blood agar with MP + AMP and CNA blood agar 

with CLX + AMP selective media and incubated at 35°C for 18 hours. Plates were assessed for 

growth of M. caseolyticus. Any breakthrough growth of bacterial organisms other than M. 

caseolyticus were further investigated. In brief, isolates were Gram stained and phenotypic 

identification was performed using colony morphology, biochemical tests (catalase, oxidase and 

coagulase) and antimicrobial susceptibility testing using broth microdilution as described above. 

PCR and DNA sequencing were performed for molecular identification of the bacterial isolates 

using primers for the cpn60 gene H729 (5'-CGCCAGGGTTTTCCCAGTCACGACGAIIIIGCI 
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GGIGAYGGIACIACIAC-3') and H730 (5'-AGCGGATAACAATTTCACACAGGAYKIYKIT 

CICCRAAICCIGGIGCYTT-3') with the underlined regions indicating the M13 sequencing 

primers (Brousseau et al., 2001).  

 

3.4 Results  

3.4.1 Colony morphology of M. caseolyticus 

Macrococcus caseolyticus grows as non-hemolytic grey to cream 4 – 5 mm colonies on 

5% sheep blood agar. Compared with Staphylococcus pseudintermedius and Staphylococcus 

aureus there are morphological similarities. S. pseudintermedius grows as greyish colonies 1 – 2 

mm in diameter and is typically associated with a double zone of hemolysis, while S. aureus grows 

as grey-white to golden colonies 1 – 4 mm in diameter with β-hemolysis on 5% sheep blood agar.  

Figure 3.2 shows a side by side comparison of colony similarities of M. caseolyticus and S. 

pseudintermedius on 5% sheep blood agar.  

 

  



 

98 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Colony morphology comparison between two species of staphylococci and 

Macrococcus caseolyticus. (A) Grey non-hemolytic M. caseolyticus colonies (4.0mm) are 2.5x 

larger than the white-grey hemolytic S. aureus colonies (1.6mm). (B) Grey non-hemolytic M. 

caseolyticus colonies (4.0mm) are 2x larger than the white-grey hemolytic S. pseudintermedius 

colonies (2.0mm). (C). Cream pigmented M. caseolyticus colonies (3.5mm) are 1.75x larger than 

the grey S. aureus colonies (2.0mm). (D) Cream pigmented M. caseolyticus colonies (3.5mm) are 

2x larger than the white -grey S. pseudintermedius colonies (1.7mm). 
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3.4.2 Molecular characterization of M. caseolyticus 

All nine isolates were analyzed with MALDI-TOF and identified as Macrococcus 

caseolyticus, having a score ≥ 1.700 and 2.000 (n=6) indicating probable genus identity and ≥ 

2.000 (n=3) indicating secure genus and probable species identification. Isolates were also 

screened using primers for the 16S rRNA gene and all had 100% sequence identity to Macrococcus 

caseolyticus JCSC5402. All isolates were positive for the mecB gene. 

3.4.3 Antimicrobial resistance profiles of M. caseolyticus  

The antimicrobial minimum inhibitory concentrations of all 9 isolates were determined and 

interpreted based on CLSI guidelines for Staphylococcus spp. The MIC distributions of isolates to 

drugs categorized by class are presented in Table 3.2. Overall, there were no pan-susceptible 

isolates found and 100% (9/9) of isolates were resistant to ampicillin, penicillin, oxacillin, 

cefoxitin screening test and meropenem. Resistance to tetracycline was frequently observed in 

77.8% (7/9) of isolates. Resistance to the quinolones (ciprofloxacin, moxifloxacin and 

levofloxacin), chloramphenicol and clindamycin was observed in 66.7% (6/9) of isolates. The 

frequency of resistance to rifampicin, erythromycin, gentamicin, and trimethoprim-

sulfamethoxazole was 44.4% (4/9), 55.6% (5/9), 44.4% (4/9) and 33.3% (3/9) of isolates 

respectively. One isolate was resistant to the antibiotic linezolid. The resistance profiles of isolates 

are presented in Table 3.3.   
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Table 3.2: Minimum inhibitory concentration distribution of Macrococcus caseolyticus (n=9) from imported meat products. 

Drug Class Antibiotic 0.06 0.12 0.25 0.50 1 2 4 8 16 32 
%R Isolates 

(n=9) 

%R Samples 

(n=9) 

β-lactams 

Ampicillin       2 7   100 (9) 100 (9) 

Penicillin        9   100 (9) 100 (9) 

Oxacillin        9    100 (9) 100 (9) 

Cefoxitin         9   100 (9) 100 (9) 

Meropenem       9    100 (9) 100 (9) 

Glycopeptides Vancomycin   1 8       0 (0) 0 (0) 

Streptogramin 
Quinopristin-

dalfopristin 
   4 3 2     0 (0) 0 (0) 

Oxazolidinone Linezolid      8  1   11.1 (1) 11.1 (1) 

Lincosamide Clindamycin    3   6    66.7 (6) 66.7 (6) 

Macrolide Erythromycin   3    1 5   55.6 (5) 55.6 (5) 

Tetracyclines Tetracycline      2   7  77.8 (7) 77.8 (7) 

Sulfonamides 
Trimethoprim-

sulfamethoxazole 
   5 1  3    33.3 (3) 33.3 (3) 

Ansamycins Rifampin    5   4    44.4 (4) 44.4 (4) 

Phenicol Chloramphenicol       3   6 66.7 (6) 66.7 (6) 

Quinolones 

Ciprofloxacin     2 1 6    66.7 (6) 66.7 (6) 

Levofloxacin   2 1   6    66.7 (6) 66.7 (6) 

Moxifloxacin   2 1   6    66.7 (6) 66.7 (6) 

Aminoglycosides Gentamicin      4  1 4  44.4 (4) 44.4 (4) 

Cells corresponding to the antimicrobial concentrations for each drug tested are in white and resistance breakpoints are denoted by the dark bars. The 

number of isolates inhibited at each concentration are noted in each cell. %R Isolates indicates the number of resistant isolates, while %R Samples indicates 

the number of samples from which an isolate resistant to each drug was isolated. 
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Table 3.3: Antimicrobial resistance profiles from Macrococcus caseolyticus isolates (n=9). 

ID Sample Antibiotic Resistance Profile 

AM08CR03 Soft shelled turtle 
AMP + PEN + OXA + FOX + MP + CLI + ERY + TET + 

RIF + CIP + LEVO + MXF 

AM20CR01 Clams AMP + PEN + OXA + FOX + MP 

AM22CR01 Clams AMP + PEN + OXA + FOX + MP 

14ON049C Frog legs 
AMP + PEN + OXA + FOX + MP + CLI + ERY + TET + 

CHL + GEN 

BR032A-c Frog legs 
AMP + PEN + OXA + FOX + MP + LZD + CLI + ERY + 

TET + RIF + CIP + LEVO + MXF  

BR033A-a Frog legs 
AMP + PEN + OXA + FOX + MP + TET + CHL + CIP + 

LEVO + MXF + GEN 

BR043A-a Frog legs 
AMP + PEN + OXA + FOX + MP + CLI + ERY + TET + 

SXT + RIF + CHL + CIP + LEVO + MXF + GEN 

BR045A-a Frog legs 
AMP + PEN + OXA + FOX + MP + CLI + ERY + TET + 

SXT + CIP + LEVO + MXF  

BR047A-b Frog legs 
AMP + PEN + OXA + FOX + MP + CLI + TET + SXT + 

RIF + CHL + CIP + LEVO + MXF + GEN 

Ampicillin (AMP), penicillin (PEN), oxacillin (OXA), cefoxitin (FOX), meropenem (MP), linezolid (LZD), 

clindamycin (CLI), erythromycin (ERY), tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), rifampin (RIF), 

ciprofloxacin (CIP), levofloxacin (LEVO), moxifloxacin (MXF), chloramphenicol (CHL) and gentamicin (GEN) 
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3.4.4 Optimal growth of M. caseolyticus 

To determine the conditions that would allow for the optimum growth of M. caseolyticus, 

temperature, pH and salt concentration gradients were performed. Growth and colony diameter 

were assessed at 24 hours. All isolates were able to grow at temperatures from 35°C to 45°C, at 

salt concentrations from 0.5% to 10% and at pH 6.5 to 7.5. Colony diameter was maintained at 

all temperatures. However, it was observed that the incorporation of a higher concentrations of 

salt (7.5% to 10%) restricted growth as seen by smaller colony diameter and fewer colonies as 

compared to the addition of lower salt concentrations (0.5% to 5%).  
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Table 3.4: Summary of temperature optimization gradient for M. caseolyticus isolates. A 

description of growth or no growth is noted for each temperature tested. 

Temperature Growth (Pos/Neg) 

35°C Pos – well defined colonies, colony diameter maintained 

37°C Pos – well defined colonies, colony diameter maintained 

39°C Pos – well defined colonies, colony diameter maintained 

42°C Pos – well defined colonies, colony diameter maintained 

45°C Pos – well defined colonies, colony diameter maintained 

*Pos = Growth; Neg = No growth  

 

 

  



 

104 
 

Table 3.5: Summary of salt concentration and pH gradients for M. caseolyticus, including a 

description of growth or no growth noted at each concentration and pH after incubation at 35°C. 

 pH 

Salt Concentration 6.0 6.5 7.0 7.5 8.0 

0.5% Neg 
Pos – well 

defined colonies 

Pos – well defined 

colonies 

Pos – well defined 

colonies 
Neg 

5.0% Neg 
Pos – small 

colonies 

Pos – small 

colonies 

Pos – small 

colonies 
Neg 

7.5% Neg 
Pos – small 

colonies 

Pos – small 

colonies 

Pos – small 

colonies 
Neg 

10.0% Neg 

Pos – Only a few 

small colonies in 

first streak 

Pos – Some growth 

in first streak, small 

colonies 

Pos – Only a few 

small colonies in 

first streak 

Neg 

*Pos = Growth; Neg = No growth  
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3.4.5 Selective media 

Of the seven initial selective media prepared and inoculated with M. caseolyticus, 

growth was observed on all media (Table 3.6). However, acid production from the 

fermentation of carbohydrates (mannitol, trehalose and lactose) was not observed by these 

isolates. Thus, they would not act as a useful differential indicator. Also, the notable clear 

zone surrounding S. aureus colonies grown on CSA was not observed with M. caseolyticus. 

The incorporation of sodium azide to blood agar lowered the growth rate of all M. 

caseolyticus isolates, resulting in small colonies. M. caseolyticus grew well on colistin 

nalidixic acid blood agar. The incorporation of colistin and nalidixic acid inhibits Gram-

negative bacteria, acting as a suitable initial base medium that could be built upon. 

Therefore, colistin nalidixic acid blood agar was chosen as the base medium. Four 

variations of selective media were prepared including: CNA blood agar with MP + AMP 

and CNA blood agar with CLX + AMP at two salt concentrations (0.5% and 5%), incubated 

at 35°C . All M. caseolyticus isolates were able to grow on the selective media with 0.5% 

NaCl. However, not all isolates grew on the selective media with the higher (5%) NaCl 

concentration. Therefore, only the selective media with 0.5% NaCl were used in the 

selective media challenge with the incubation temperature of 35°C. Four ATCC quality 

control isolates were inoculated onto the selective media to determine if the media would 

inhibit the growth of Gram-negative and other Gram-positive bacteria; E. coli, P. 

aeruginosa, S. aureus and E. faecalis were inhibited (Table 3.7).  

  



 

106 
 

Table 3.6: Description of seven media prepared and inoculated with M. caseolyticus, including 

the indications for use, unique feature and whether growth was observed. 

 Indication Unique Feature Growth (pos/neg) 

Differential Media 

Mannitol salt agar 

(MSA) 

For the determination of a 

microorganism to ferment mannitol  

Positive fermentation = 

yellow zone around 

colonies 

Pos – well defined 

colonies, no 

fermentation 

Trehalose salt agar 

(TSA) 

For the determination of a 

microorganism to ferment trehalose  

Positive fermentation = 

yellow zone around 

colonies 

Pos – well defined 

colonies, no 

fermentation 

Phenol red lactose 

agar (PRL) 

For the determination of a 

microorganism to ferment lactose  

Positive fermentation = 

yellow zone around 

colonies 

Pos – well defined 

colonies, no 

fermentation 

Selective Media 

P agar (PA) For cultivation of Staphylococci No special feature 
Pos – well defined 

colonies 

Chapman stone 

agar (CSA) 
For the isolation of Staphylococci 

Gelatinase activity = clear 

zone around colonies 

Pos – well defined 

colonies 

Azide blood agar 

(AzBA) 

For the isolation of Streptococci and 

Staphylococci from mixed bacterial 

samples 

Contains sodium azide to 

inhibit Gram-negatives 

Pos – small 

colonies 

Colistin nalidixic 

acid blood agar 

(CNA BA) 

Supports the growth of 

Staphylococci, Streptococci and 

Enterococci  

Contains two antibiotics 

(colistin and nalidixic 

acid) to inhibit Gram-

negatives 

Pos – well defined 

colonies 
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Table 3.7: Summary of growth of M. caseolyticus and four quality control strains on colistin 

nalidixic acid (CNA) blood agar with meropenem 0.5µg/ml + ampicillin 0.5µg/ml and CNA 

blood agar with cloxacillin 0.5µg/ml + ampicillin 1.0µg/ml. 

 Base Medium + Antibiotic Combination 

Isolate 
CNA BA+ 0.5µg/ml MP + 

0.5µg/ml AMP 

CNA BA + 1.0µg/ml AMP 

+ 0.5µg/ml CLX 

14ON049C Growth Growth 

AM08CR03 Growth Growth 

AM20CRO1 Growth Growth 

AM22CR01 Growth Growth 

BRO32A-c Growth Growth 

BR033A-a Growth Growth 

BR043A-a Growth Growth 

BR045A-a Growth Growth 

BR047A-b Growth Growth 

Quality Control Strains 

E. coli ATCC 25422 No Growth No Growth 

P. aeruginosa ATCC 27853 No Growth No Growth 

S. aureus ATCC 29213 No Growth No Growth 

E. faecalis ATCC 29212 No Growth No Growth 
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3.4.6 Selective media challenge 

To confirm that the selective media could identify Macrococcus caseolyticus in a sample 

with a mixture of bacteria, a challenge study was carried out using fecal, dirt, retail meat and 

mastitic milk samples with a known concentration of M. caseolyticus added. Both selective 

mediums enabled the growth of each M. caseolyticus isolate while inhibiting Gram-negative and 

most Gram-positive bacteria. Breakthrough growth was observed on both selective media, but a 

higher occurrence on the CNA blood agar with CLX + AMP. Breakthrough growth isolates were 

Gram-positive cocci with smaller colony diameters (1.0 to 2.0mm) than that of M. caseolyticus 

(4.0mm). Antimicrobial susceptibility testing using broth microdilution identified higher MICs for 

ampicillin, oxacillin (cloxacillin) and meropenem then what was added to the media. The isolates 

were identified as species from the genus Enterococcus and Staphylococcus (Table 3.5).  
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Table 3.8: Summary of breakthrough growth isolated from colistin nalidixic acid (CNA) blood 

agar with meropenem 0.5µg/ml + ampicillin 0.5µg/ml and CNA blood agar with cloxacillin 

0.5µg/ml + ampicillin 1.0µg/ml with Macrococcus caseolyticus included for comparison. 

Bacterial Species Colony Morphology 
Minimum Inhibitory Concentration (µg/ml) 

Ampicillin Oxacillin Meropenem 

Macrococcus caseolyticus 
4.0mm, round, cream, 

non-hemolytic 
8.0 ≥ 4.0 4.0 

Enterococcus faecalis 
1.0mm, round, white, 

hemolytic 
1.0 ≥ 4.0 4.0 

Enterococcus sp. 
1.0mm, round, white, 

hemolytic 
2.0 ≥ 4.0 ≥ 4.0 

Enterococcus gilvus 
1.0mm, round, white, 

hemolytic 
1.0 ≥ 4.0 4.0 

Staphylococcus warneri 
2.0mm, round, white, 

non-hemolytic 
8.0 ≥ 4.0 1.0 
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3.5 Discussion 

Staphylococcus aureus, an important foodborne pathogen, is responsible for food outbreaks 

and is a causative agent of food poisoning due to the production of heat-stable enterotoxin A 

(Argudín et al., 2010; Hennekinne et al., 2012; Kadariya et al., 2014). Meat producing animals and 

food products can become contaminated through infected environmental sources and by food 

handlers during processing and preparation (Kadariya et al., 2014). S. aureus is vulnerable to 

destruction by heating and sanitization agents, thus the presence is indicative of poor food hygiene 

or sanitation (Hennekinne et al., 2012). The biggest concern with this organism is the incidence of 

methicillin resistance (Oniciuc et al., 2017). In this study, bacterial colonies resembling 

Staphylococcus aureus, cultured on MSA and MHM, were isolated from imported seafood, reptile 

and amphibian meat samples. These isolates were meropenem and oxacillin resistant and identified 

as methicillin resistant Macrococcus caseolyticus, possessing the mecB gene.  

Most species of Macrococcus are sensitive to oxacillin, however, methicillin resistance has 

been reported in M. caseolyticus and M. canis (Kloos et al., 1998; Baba et al., 2009; Cotting et al., 

2017; Schwendener et al., 2017). Methicillin resistance in M. caseolyticus is mediated by the mecB 

and the newly identified mecD genes (Tsubakishita et al., 2010; Gómez-Sanz et al., 2015; Cotting 

et al., 2017; Schwendener et al., 2017). Similar to the mecA gene in methicillin resistant 

staphylococci, the mecB gene has been found within the chromosome as part of a mobile 

Staphylococcal Cassette Chromosome (SCCmec)-like element (Tsubakishita et al., 2010). Most 

concerning is the identification of plasmid-mediated mecB, that has the ability to transfer to more 

pathogenic bacteria. This was observed by Becker et al. (2018) with the identification of a plasmid-

mediated mecB-positive MRSA isolate; genetic analysis of the plasmid revealed similarity to a 

previously described mecB containing M. caseolyticus plasmid. Also concerning is the mecD gene, 
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most closely related to mecB, which encodes resistance to all classes of β-lactams including the 

anti-MRSA cephalosporins (Schwendener et al., 2017). As of yet, there have been no strains of 

methicillin resistant staphylococci containing this gene, however, there is a potential for 

dissemination as it was located on a genomic island containing site-specific integrases with 

characteristics resembling SCCmec elements (Schwendener et al., 2017). 

M. caseolyticus has been found in numerous food animals and associated products. This 

species was first identified in cow’s milk in 1916 and was characterized by its ability to peptonize 

the milk, thus giving the name caseolyticus, meaning casein-dissolving (Mazhar et al., 2018). 

Since then, methicillin susceptible M. caseolyticus have been identified from pigs, goose eggs, 

sausage and prawns (Wang et al., 2012; Karani et al., 2015; Hansen et al., 2015; Geniş and Tuncer, 

2018). While methicillin resistant M. caseolyticus have been isolated from bovine skin, mastitic 

milk, broiler chickens, retail chicken meat, cheese, and bulk milk tanks (Baba et al., 2009; Cicconi-

Hogan et al., 2014; Schwendener et al., 2017; Li et al., 2018; MacFadyen et al., 2018).  

In this study, a culture medium was developed to selectively isolate M. caseolyticus. M. 

caseolyticus has similar colony morphology as staphylococci on blood agar but are larger in size. 

Thus, the incorporation of 5% defibrinated sheep blood was used in the selective medium for 

phenotypic identification based on colony morphology. Antimicrobial susceptibility profiles of M. 

caseolyticus isolates were used to determine which antimicrobials to include in the culture 

medium. The addition of penicillins, carbapenem, polymyxin and quinolone antimicrobials to the 

medium allowed for the inhibition of Gram-negative bacteria and other Gram-positive bacteria.  

Therefore, two selective media were prepared: colistin nalidixic acid (CNA) blood agar with 

meropenem 0.5µg/ml + ampicillin 0.5 µg/ml and CNA blood agar with cloxacillin 0.5 µg/ml + 

ampicillin 1.0 µg/ml. Both selective media inhibited the growth of E. coli, P. aeruginosa and S. 
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aureus but not E. faecalis control strains, while M. caseolyticus grew well on these media and were 

easily differentiated from E. faecalis based on colony morphology.  

All nine M. caseolyticus isolates grew well on the selective media when spiked into 

challenge samples. There was considerably more growth with the 1:10 dilution versus the 1:100 

dilution; regardless growth occurred at both concentrations. Breakthrough growth was observed 

on plates inoculated with the meat samples. Isolates were identified as Enterococcus spp. and 

Staphylococcus warneri. The colony morphology of the Enterococcus spp, were easily 

differentiated from M. caseolyticus, as they were smaller in size and hemolytic. While 

Staphylococcus warneri was only distinguishable based on smaller colony diameter. The 

Enterococcus spp. and S. warneri had higher MICs for ampicillin, oxacillin and meropenem which 

allowed for growth on both selective mediums. This challenge study confirmed that both mediums 

could be used for the selective isolation of M. caseolyticus. However, of the two media, CNA 

blood agar with MP + AMP had less breakthrough growth, only Enterococcus spp. grew, and thus 

may be more selective than CNA blood agar with CLX + AMP.   
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4 General Discussion and Conclusion 

The presence of antimicrobial resistant bacteria from imported culinary reptile and amphibian 

meat products were investigated. Specifically, we examined the occurrence of extended spectrum 

β-lactamase, AmpC β-lactamase, carbapenemase and mobile colistin resistance in isolated Gram-

negative bacteria. Additionally, we investigated the antimicrobial susceptibility of a Gram-positive 

bacteria, M. caseolyticus, that had phenotypic characteristics similar to methicillin resistant S. 

aureus. Finally, we developed a culture media for the selective isolation of M. caseolyticus. 

We identified seven genera of Enterobacteriaceae from 77% (41/53) of the reptile and 

amphibian meat samples. Salmonella was isolated exclusively from dried geckos (11.3% (6/53) of 

total samples) and were not resistant to any of the antimicrobials tested. Of the five serotypes 

identified, Poona and Urbana have been associated with Salmonellosis outbreaks from fresh 

produce and pet turtles, while Weltevreden has been associated with outbreaks from seafood and 

aquaculture in Southeast Asia (Ponce et al. 2008; Jackson et al. 2013; Walters et al. 2016; Makendi 

et al. 2016). E. coli was recovered from 35.8% (19/53) of samples, with eleven isolates showing 

resistant phenotypes; 91% (10/11) were cultured from soft shell turtles while the other was isolated 

from frog legs. All eleven isolates produced β-lactamase enzymes. Of those, 81.8% (9/11) were 

ESBLs (CTX-M-type) and 18.2% (2/11) were AmpC (CMY-61) β-lactamases. Two isolates 

(18.2%) co-produced multiple resistance genes including, one isolate with CMY-61 and a 

penicillinase (TEM-33) and one isolate with CTX-M-55 and the mobile colistin resistance gene, 

mcr-1. The other five genera of Enterobacteriaceae were isolated from 30.2% (16/53) of the 

samples and consisted of Klebsiella (9.4%), Serratia (7.5%), Citrobacter (5.7%), Enterobacter 

(5.7%) and Kluyvera (1.9%). Seventeen isolates possessed β-lactamase enzymes with 15 (88.2%) 

ESBLs (CTX-M-type, SHV-type, OXY-type and FONA-type), 1 (5.9%) AmpC (CMY-98) β-
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lactamases and 1 (5.9%) penicillinase (TEM-33). Similarly, 3 (17.6%) isolates co-produced two 

resistance genes including, one Citrobacter sp. producing CTX-M-1 and CMY-83, one 

Enterobacter sp. with SHV-12 and TEM-206 and another Enterobacter sp. possessing CTX-M-2 

and TEM-33. Of the CTX-M-type ESBLs identified in this study, CTX-M-55, -83 and -27 are 

found in Asia, while CTX-M-15 is the most common variant found throughout the world (Zhao 

and Hu 2013; Tong et al. 2015). The OXY and FONA-type enzymes are species specific β-

lactamases from the organisms Klebsiella oxytoca and Serratia fonticola respectively, which are 

biochemically indistinguishable from ESBLs and have thus been placed into subgroup 2be of the 

Bush-Jacoby-Medeiros functional classification scheme (Bush et al. 1995; Gniadkowski 2001; 

Blaak et al. 2014). Finally, one carbapenemase-producing Gram-negative non-fermenter, an 

Acinetobacter sp. isolated from dried turtle carapace, possessed the blaNDM-1 gene and exhibited 

multidrug resistance.  

Resistance surveillance programs have been implemented in many countries around the world, 

where they are designed to detect the emergence of resistance in food (Morrison and Rubin, 2015). 

However, only major agricultural animal species and meats such as pork, poultry and beef are 

targeted with the focus on potentially pathogenic indicator organisms such as E. coli, Salmonella, 

and Campylobacter spp. (OIE, 2004; NARMS, 2015; Morrison and Rubin, 2015; DANMAP, 

2017; Government of Canada, 2017). E. coli has commonly been used as an indicator organism 

for antimicrobial resistance for other taxa of the gastrointestinal microbiota, as it has a high 

recovery rate in bovine, poultry and swine (Franklin et al., 2001; Zhao et al., 2012; Government 

of Canada, 2017). However, previous studies investigating antimicrobial resistance in imported 

seafood found E. coli recovery rates of less than 10% (Ryu et al. 2012; Wang et al. 2012). Gordon 

and Cowling (2003), investigated the distribution of E. coli in 2300 live non-domesticated 
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vertebrates including mammals, birds, reptiles, amphibians and fish; observing an E. coli recovery 

rate between 2-33% in reptiles (depending on species), 12% in frogs and 10% in fish. Similarly, 

in our study, the recovery rate of E. coli from reptile products was 34%, with 18.9% from whole 

un-gutted and gutted soft shell turtle, 9.4% from whole gutted dried gecko and 5.7% from whole 

gutted dried snake. However, there was only a 1.8% recovery rate of E. coli from frog legs which 

is not surprising as these products were not packaged as whole animals but only as skinned legs. 

This suggests that E. coli may be more adapted to mammalian gastrointestinal tracts and may not 

be suitable indicator organisms in non-mammalian vertebrates.  

In our second study, antimicrobial susceptibility testing was performed on Macrococcus 

caseolyticus isolates, cultured on carbapenem-selective media from imported seafood, reptile and 

amphibian meat products. All isolates were resistant to the β-lactam class of drugs mediated by 

mecB, the methicillin resistance conferring gene, while 77.8% of isolates were resistant to 

tetracycline and 66.7% were resistant to the quinolones. M. caseolyticus has been identified from 

animal, meat and dairy sources, but the overall dissemination and prevalence is largely unknown 

(Mazhar et al., 2018). M. caseolyticus is not thought to cause infection in humans but may have a 

potential as a veterinary pathogen as it has been associated with multiple animal infections (de la 

Fuente et al., 1992; Gómez-Sanz et al., 2015; Cotting et al., 2017; Schwendener et al., 2017). Of 

great concern, is the close ecological relationship of M. caseolyticus and staphylococci as 

commensal bacteria and the transmission of plasmid-mediated methicillin resistance (mecB gene) 

to pathogenic S. aureus (Becker et al., 2018). This demonstrates a novel risk of methicillin 

resistance transmission between staphylococci of unknown magnitude that warrants further 

investigation.   
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The results from this surveillance investigation revealed the presence of extended spectrum β-

lactamase, AmpC β-lactamase, carbapenemase, mobile colistin resistance and methicillin 

resistance genes from imported meat products. These niche market foods are not routinely targeted 

by resistance surveillance programs; thus, representing a potential public health hazard that 

warrants further investigation.   

4.1 Limitations of the study 

4.1.1 Small sample size of imported reptile and meat products tested 

Unfortunately, there was a limited variety of different imported reptile and amphibian meat 

products and of those available most were from the same distributor. Thus, a smaller sample size 

was tested in favor of a variety of products from different distributors and regions. Regardless of 

the sample size, numerous multidrug resistant bacteria with identifiable resistance genes were 

found. However, a larger sample size would improve the likelihood that the results observed in 

this study were not due to chance. 

4.1.2 Selective culture media 

Imported reptile and amphibian meat products were cultured on selective media. This 

allowed us to systematically identify specific pathogens, such as Salmonella, and phenotypically 

detect ESBL and carbapenemase producers. However, we may have missed other potential 

foodborne bacterial pathogens by using only selective media. The use of antimicrobials as selective 

agents may have inhibited susceptible pathogenic bacteria, thus not enabling their identification. 

Also, many aquatic and environmental bacteria have different nutrient and growth requirements 

compared to many enteric bacteria, which makes it tremendously difficult to culture them in 

general and nearly impossible for them to grow on our selective culture media.   
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4.1.3 Interpretation of antimicrobial susceptibility results from M. caseolyticus isolates  

Clinical breakpoints have been published for many genera and species of bacteria, however, 

there are no specific guidelines for Macrococcus species. Therefore, the antimicrobial MICs for 

M. caseolyticus was interpreted using Staphylococcus genus-specific clinical breakpoints. 

Although macrococci are closely related to staphylococci they are not 100% identical, and the 

clinical breakpoints may be different. 

4.2 Future directions 

This study provides the first description of the presence of antimicrobial resistant bacteria 

with narrow and broad spectrum β-lactamases, mobile colistin resistance and methicillin 

resistance, from imported culinary reptile and amphibian meat products. Performing similar 

studies in other food products not investigated by antimicrobial resistance surveillance programs 

would help to better understand the epidemiology of antimicrobial resistance and identify other 

underappreciated sources of resistance. Future studies to identify at what stage of the production 

cycle (on farm, at slaughter, during processing/packaging or at the retail level) resistant organisms 

enter food products would be beneficial to inform evidence-based policy to control the spread of 

antimicrobial resistance. Furthermore, determining the sequence types and genetic relatedness 

among the different Enterobacteriaceae isolates would help identify transfer patterns of resistance 

genes. Moreover, it would also be interesting to compare bacterial recovery rates from reptile and 

amphibian meat products at different points during cooking and medicinal preparation, to help 

determine food safety hazards as there are no universal internal cooking temperatures to ensure 

bacterial cell death and many products may be consumed raw. Finally, performing targeted studies 

utilizing the Macrococcus selective culture medium may help to determine the prevalence of 

methicillin resistant M. caseolyticus in animals and food. 
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