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ABSTRACT 

 

SHP-1 is a protein tyrosine phosphatase that often targets the 

phosphatidylinositol 3'-kinase (PI3K)/Akt signalling pathway. PI3K/Akt signalling 

regulates cell growth and survival, proliferation and differentiation. Growth factor-

stimulated PI3K phospholipid production at the plasma membrane helps to recruit 3'-

phosphoinositide-dependent protein kinase-1 (PDK1) and Akt, where PDK1 

phosphorylates and activates the pro-survival kinase Akt. 

Tyrosine phosphorylation of PDK1 may regulate its function and, perhaps more 

importantly, its nuclear localization. Yet, it is unclear how PDK1 is imported into the 

nucleus as it does not contain a nuclear localization signal (NLS), although it does 

contain a nuclear export signal (NES). Interestingly, several tyrosines in PDK1 are 

targets for Src kinase and are putative target motifs for SHP-1, which does have an NLS. 

Hypothesis: SHP-1 and PDK1 form a tyrosine-dependent, nucleo-cytoplasmic 

shuttling complex.  

Removal of serum from C6 glioma cell cultures induces a platelet-derived 

growth factor receptor (PDGFR)-sensitive redistribution of PI3K lipid kinase activity to 

the nucleus. PDK1 tyrosine phosphorylation and its association with SHP-1 are also 

increased, as is the accumulation of both SHP-1 and PDK1 in the nucleus. Site-directed 

mutagenesis of tyrosine residues in PDK1 reveals that tyrosine 9 (Tyr9) and Tyr376 are 

important for the interaction of PDK1 with SHP1, whereas Tyr333 and Tyr 373 are not. 

Using pharmacological and genetic manipulations, it was demonstrated that SHP-1 and 

PDK1 shuttle between the nucleus and cytoplasm, and that the C-terminal-expressed 

NLS of SHP-1 facilitates shuttling, while dephosphorylation of PDK1 Tyr9 and Tyr376 

regulates the rate of PDK1 (and by virtue of association, SHP-1) export from the 

nucleus. The SHP-1/PDK1 complex, which is constitutive in most cell lines, is 

functionally relevant as indicated by its requirement for NGF-induced differentiation of 

preneuronal cells to a neuronal phenotype. 
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1.  REVIEW OF THE LITERATURE 

 

1.1 Signal Transduction. 

Normal cellular function is mediated by several factors including external signals 

or stimuli that most often act through membrane receptors. This transfer of information 

from the environment to the cell's interior is commonly referred to as signal 

transduction. Signal transduction pathways mediate the sensing and processing of 

stimuli and often depend on the balance between activation and inhibition of 

intracellular proteins.  

 

1.1.2 Cellular tyrosine phosphorylation. 

 Tyrosine phosphorylation of cellular proteins regulates fundamental biochemical 

processes in cells exerting both positive and negative effects on signal transduction 

pathways. Post-translational modification of proteins by tyrosine phosphorylation is an 

evolutionarily conserved mechanism critical for regulating a variety of cell functions 

(Walton and Dixon, 1993). This dynamic process is regulated by the opposing actions of 

kinases and phosphatases that are often themselves regulated by phosphorylation. 

Protein tyrosine kinases catalyze tyrosine phosphorylation and protein tyrosine 

phosphatases catalyze tyrosine dephosphorylation of proteins. Deregulation of  kinases 

or phosphatases contributes to several human pathologies, including neurodegeneration, 

cancer and diabetes (Tonks, 2006).  

 

1.1.3 Receptor tyrosine kinases (RTKs). 

Protein tyrosine kinases are a diverse group of proteins that exist throughout the 

cell either plasma membrane-bound or free within the cytoplasm. Receptor tyrosine 

kinases (RTKs) are a large family of transmembrane receptors that control
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fundamental cellular processes including cell cycle, migration, metabolism, survival, 

proliferation, as well as differentiation (Hunter, 2000; Schlessinger, 2000). All RTKs 

contain an extracellular ligand-binding domain, a hydrophobic transmembrane domain, a 

cytoplasmic domain that contains a catalytic kinase segment, as well as regulatory 

sequences that are subjected to autophosphorylation and phosphorylation by other 

protein kinases (Hubbard et al., 1998; Hunter, 1998).  

With the exception of the insulin receptor family of RTKs, all known RTKs 

including the epidermal growth factor receptor (EGFR) and the platelet-derived growth 

factor receptor (PDGFR), exist as monomers in the cell membrane (Lemmon and 

Schlessinger, 1994). A general mechanism for ligand-induced activation of receptor 

tyrosine kinases follows ligand binding to the extracellular domain and the induction of 

receptor dimerization (Lemmon and Schlessinger, 1994). Dimerization leads to 

activation of the kinase domain and autophosphorylation that, in turn, leads to 

generation of docking sites for SH2 (Src homology 2) domain containing proteins 

(Pawson and Scott, 1997). This results in the initiation of signal transduction pathways. 

The activation and function of RTKs are primarily regulated by the tyrosine 

phosphorylation state of the intracellular kinase domain. Inhibition of RTK signalling 

very often occurs through dephosphorylation by protein tyrosine phosphatases.  

 

1.1.4 Non-receptor protein kinases (NRPKs). 

 Non-receptor protein kinases are located in the cytoplasm, nucleus or localized to 

the inner portion of the plasma membrane. They can be divided into protein tyrosine 

kinases and serine/threonine kinases. Protein tyrosine kinases are grouped into eight 

families: Src, Abl, Btk, Janus kinases (Jak), focal adhesion kinases (Fak), Fps, Csk and 

Syk (Hubbard and Till, 2000) and each family consists of several members. With the 

exception of homologous kinase domains and some protein-protein interaction domains, 

they have little in common structurally (Hubbard and Till, 2000). Protein tyrosine 

kinases have diverse roles in the regulation of cellular processes. For example, Src 

kinases are involved in cell growth and Fps kinases are involved in differentiation, while 

Abl kinases are involved in growth inhibition and Fak activity is associated with cell 

adhesion (Hubbard and Till, 2000).  
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 Similarly, serine/threonine kinases play a role in several cellular processes (Cross 

et al., 2000). Members of this family include the mitogen-activated protein kinase 

(MAPK) family (includes ERK, p38, JNK) and the AGC kinase family (cAMP-

dependent protein kinase, cGMP-dependent protein kinase and protein kinase C)  

specifically Akt  (also known as protein kinase B: PKB), 3'-phosphoinositide-dependent 

protein kinase-1 (PDK1) and protein kinase C (PKC) (Cross et al., 2000).  

 Protein kinases are regulated through phosphorylation by kinases and 

dephosphorylation by phosphatases, however, unlike RTKs, dephosphorylation of 

NRPKs can lead to activation or inhibition of signalling. Some of these kinases will be 

discussed in more detail in subsequent sections that deal with specific signalling 

pathways. 

 

1.1.5 Protein tyrosine phosphatases (PTPs). 

 Protein tyrosine phosphatases participate in diverse cellular processes to offset 

the effect of protein tyrosine kinase activity, e.g. RTKs. There are as many as 45 

individual protein tyrosine phosphatase species, yet relatively little is known about their 

precise role in cellular function (Tonks, 2006) (Figure 1.1).  

 PTPs have at least one highly conserved catalytic domain of ~280 amino acids 

that contains an active site with the consensus sequence (I/V)HCXAGXXR(S/T)G 

(single-letter code for amino acids, where X represents any amino acid) (Dixon, 1995). 

They are inhibited by pervanadate, can hydrolyze p-nitrophenyl phosphate, they are 

insensitive to okadaic acid (an inhibitor of tyrosine kinases and serine/threonine 

phosphatases) and do not require metal ions during catalysis (Zhang, 1998; Zhang, 

2002). Generally, PTPs display poor substrate specificity in vitro, suggesting that 

conditions for their activity in vivo must be tightly regulated in order to elicit signalling 

responses. 

 Regulation of PTP activity in vivo can occur through modulation of steady-state 

protein levels, post-translational modification (i.e. phosphorylation), dimerization and 

subcellular localization. Both the catalytic domain and non-catalytic segments of PTPs 

contribute to substrate specificity. Detailed enzyme studies and crystal structure analysis 
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Figure 1.1: Major receptor protein tyrosine phosphatases (PTPs), non-receptor 

PTPs and dual-specificity phosphatases expressed in the nervous system. Src 

homology-2 (SH2); cell membrane (CM); Cdc 25 homology domain (CH2). (Birkhäuser 

Verlag AG, Basel, 2003, Cellular and Molecular Life Sciences, 60, S. Paul, and P.J. 

Lombroso, 2465-2482) 
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of several PTPs reveal that the active site contains a cysteine residue that is important for 

enzymatic activity, as mutation of this residue inactivates the enzymes. The cysteine 

residue functions in nucleophilic attack on the substrate phosphotyrosine residue, 

forming a transient phosphoenzyme intermediate. A nearby arginine residue within the 

active site helps to stabilize the enzyme-substrate interaction. A conserved aspartic acid 

facilitates this reaction by serving as a proton donor to the leaving phenolic oxygen. The 

reaction is terminated by the hydrolysis of the phosphoenzyme intermediate. 

Termination is also facilitated by the same aspartic acid through abstraction of a proton 

for the attacking water molecule. In contrast, the non-catalytic domain serves to target 

PTPs to specific proteins or intracellular compartments (Barford, 1999; Zhang, 1998; 

Zhang, 2002).  

 The PTP family consists of both tyrosine-specific and dual specificity 

phosphatases. Tyrosine-specific phosphatases hydrolyze only phosphotyrosine-

containing proteins. In contrast, the dual specificity phosphatases can target proteins that 

contain both phosphotyrosine as well as phosphoserine or phosphothreonine residues. 

The tyrosine-specific phosphatases are further divided into two groups: the receptor-like 

PTPs and the non-receptor-like PTPs (Figure 1.1). 

 

1.1.5.1 Receptor-like protein tyrosine phosphatases (RPTPs). 

RPTPs function as an interface between the extracellular and intracellular 

environment of a cell and its intracellular signalling pathways. They usually possess two 

functional intracellular phosphatase domains (Alonso et al., 2004). Their extracellular 

domains contain motifs that are implicated in cell adhesion, although RPTPs are all 

highly variable. Most RPTPs are considered orphan receptors, as their mode of action 

and function is largely unknown (Alonso et al., 2004).  

 

1.1.5.2 Non-receptor protein tyrosine phosphatases (NPTPs). 

The NPTPs are further divided into two groups based on their substrate 

specificity. The first group includes the tyrosine-specific phosphatases, i.e. Src 

homology 2 (SH2) domain containing phosphatases (SHP), SHP-1 and SHP-2 (Zhao et 

al., 1995) (Figure 1.2). The second group includes dual specificity phosphatases such as 
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mitogen-activated protein kinase phosphatase (MKP-3) (Muda et al., 1996). In contrast 

to RPTPs, members of this family lack a transmembrane domain, possess a single 

phosphatase domain, and have multiple variable domains either in the N- or C-terminus.  

There are a large number of protein tyrosine phosphatases with distinct substrate 

specificities and modes of regulation. SHP-1 is one such phosphatase that belongs to a 

subfamily of cytoplasmic protein tyrosine phosphatases referred to as Src homology 2 

(SH2) domain containing phosphatases (SHP). During PubMed literature searches, one 

should not confuse SHP-1 with the atypical nuclear receptor, small heterodimeric 

partner (SHP), which is upregulated by the nuclear receptor transcription factor, 

Farnesoid X Receptor (FXR) (Denson et al., 2001). Other members of the protein 

tyrosine family of phosphatases include SHP-2 and the homologue of mammalian SHP-

2, Drosophila Csw. SHP-1 and SHP-2 have nearly 55% overall sequence homology and 

59% sequence homology within the two SH2 domains and the catalytic domain (Zhao et 

al., 1995) (Figure 1.2). SHP-1 and SHP-2 are also regulated in a similar manner (Zhao et 

al., 1995). However, SHP-1 is generally considered as a negative regulator of signal 

transduction and SHP-2 is considered to be a positive regulator of signal transduction 

(Adachi et al., 1996; Perkins et al., 1992).  

 

1.2 Src homology-2 domain containing phosphatase-1 (SHP-1). 

 SHP-1, cloned in 1991 (Shen et al., 1991; Yi et al., 1991) and also known as 

PTP1C, SHP-PTP1, HCP, PTPN6, or SHP (Adachi et al., 1996), is expressed at high 

levels in peripheral tissues including the liver, spleen and thymus, with particularly high 

expression in hematopoietic cells (Yi et al., 1992). SHP-1 is also expressed in the central 

nervous system (CNS), i.e. in brain (cerebral cortex, hippocampus and cerebellum) and 

spinal cord (Jena et al., 1997; Massa et al., 2000). 

 

1.2.1 SHP-1 structure and regulation of activity. 

 The human SHP-1 gene is located on chromosome 12p13-p12 and consists of 17 

exons spanning 17 kb of DNA (Matsushita et al., 1999; Plutzky et al., 1992; Yi et al., 

1992). There are three non-hematopoietic SHP-1 transcripts identified in various cell 

lines and shown to be transcribed from a common promoter (Banville et al., 1995). The 
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Figure 1.2: Protein structures of Src homology-2 domain containing phosphatase 

(SHP-1) isoforms and SHP-2. Splice variants of SHP-1 generate 4 gene products; 3 

variants of SHP-1 with variations at the N-terminus of the protein and a long form of 

SHP-1 (SHP-1L) where the N-terminus is conserved, but the C-terminus is extended. 

The other tyrosine phosphatase, SHP-2 shares 59% sequence homology with SHP-1 

isoform 1 within the two SH2 domains and the catalytic domain (Adapted from: Poole 

and Jones, 2005). 
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hematopoietic form of the SHP-1 transcript is initiated at a downstream promoter 

separated by 7 kb from the non-hematopoietic promoter. Activation of the downstream 

promoter is exclusive to cells of hematopoietic lineage (Banville et al., 1995). The 

hematopoietic cell-specific isoforms of SHP-1 and the non-hematopoietic cell-specific 

isoforms differ only by their alternative initiation sites and by three amino acids at the 

N-terminus (Banville et al., 1995) (Figure 1.2).    

 SHP-1 is comprised of two N-terminal SH2 domains, named after a conserved 

sequence region of the oncoprotein Src (Pawson, 1988; Sadowski et al., 1986), a central 

catalytic domain and a C-terminal domain (Yang et al., 1998) (Figure 1.2). As with other 

signalling molecules, protein-protein interactions are an integral part of the function of 

SHP-1. These interactions are mediated by domains such as SH2, SH3 and breakpoint 

cluster region domains, which recognize specific amino acid motifs in their interacting 

protein (Cohen et al., 1995). Binding domains resulting in interactions can mediate 

different events including catalyzing phosphorylation, bringing substrates to catalytic 

centres, linking signal transducers to upstream proteins, conformation changes or 

localizing protein complexes to cellular sub-regions. SH2 domains for example, bind 

specifically to tyrosine phosphorylated substrates. Most SH2 domains fall into one of 

two broad categories: class I SH2 domains prefer to bind substrates containing the 

consensus motif, pY-hl-hl-h (pY, phosphotyrosine; hl, hydrophilic amino acid; h, 

hydrophobic amino acid); and class III SH2 domains have a high affinity for the 

consensus motif, pY-h-X-h (pY, phosphotyrosine; h, hydrophobic amino acid; X, any 

amino acid) (Cohen et al., 1995; Pawson and Gish, 1992).  

 Analysis of the crystal structure of the C-terminus of SHP-1 has lead to the 

proposed model whereby the N-terminal SH2 domain regulates the phosphatase activity 

of the enzyme (Yang et al., 2003). In the “closed” or inhibited form, the N-terminal SH2 

domain is in contact with the catalytic domain through charge-charge interactions. The 

C-terminal SH2 domain has little interaction with the N-terminal SH2 domain or the 

catalytic domain except through the connecting peptide backbone. In the inactive state, 

the N-terminal SH2 domain is in contact with the charged residues near the catalytic 

cleft and part of the SH2 domain is inserted into the catalytic cleft. In this state there is a 

blockade of the active site to its substrates (Figure 1.3). Truncation of the SH2
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Figure 1.3: Regulation of SHP-1 phosphatase activity. (A) Inactive state of SHP-1, 

in which the N-terminal SH2 domain sits within the catalytic domain of the molecule 

restrict access of substrates to the phosphatase. The C-terminal SH2 domain is exposed 

and searches for potential binding partners which contain the pYXX(V/IL) consensus 

motif. Upon interaction with a phosphorylated substrate (B) or phosphorylated 

interacting protein (i.e. a receptor tyrosine kinase) (C) the phosphatase is activated. 
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domain(s) results in activation of SHP-1 (Pei et al., 1994; Townley et al., 1993). 

Truncation of the two SH2 domains of SHP-1 (amino acids 1-204) or the last 35 amino 

acids of the C-terminal SH2 increases SHP-1 activity by 30-fold and 20-34 fold relative 

to the wildtype, respectively (Pei et al., 1994) as well as its affinity towards synthetic 

phosphotyrosyl peptides (Townley et al., 1993). Conventionally, binding of the N-

terminal SH2 domain to a phosphopeptide causes a conformation change in the N-

terminal domain so that it “opens” (now an activated form), thereby disrupting the 

interaction between the SH2 domain and the catalytic domain. When in the activated 

form, the catalytic domain of SHP-1 is accessible to its substrates for dephosphorylation 

(Poole and Jones, 2005) (Figure 1.3).  

The active site of the catalytic domain of SHP-1 contains three important amino 

acid residues: Cys455 acts as a nucleophil to attack the substrate; Arg459 stabilizes the 

negative charge of the phosphotyrosine substrate; and Asp421, the proton donor and 

proton acceptor involved in product release. Both biochemical and crystallographic data 

have shown that the catalytic domain of SHP-1 prefers substrates containing the 

consensus sequence (D/E)X(L/I/V)X1-2pYXX(L/I/V) (Yang et al., 2000; Yang et al., 

1998). This consensus sequence is often referred to in the literature as an 

immunoreceptor tyrosine-based inhibitory motif (ITIM).  

 

1.2.2 Regulation of signalling through ITIMs and ITAMs. 

ITIMs and immunoreceptor tyrosine-based activation motifs (ITAMs), as their 

names suggest, were first characterized in the immune system. The activation of many 

immune cell types occurs through ITAMs, which contains the consensus sequence 

YXXL/I(X6-8)YXXL/I (Cambier, 1995; Reth, 1989). ITAMs are encoded by the 

cytoplasmic tail of the ligand binding transmembrane receptor, e.g. FcγRIIA. Upon 

ligand binding and receptor clustering, tyrosine residues are phosphorylated by Src 

family protein tyrosine kinases. ITAMs serve as docking sites for the tandem SH2 

domains of cytoplasmic protein tyrosine kinases, ZAP-70 or Syk (Samelson, 2002; 

Weiss, 1993).  

The immune system negatively regulates ITAM-containing receptors (Daeron et 

al., 1995) through co-ligation with ITIM-containing co-receptors (Vivier and Daeron, 
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1997), which can result in a reduced or absent cellular response. ITIMs share a 

consensus amino acid sequence in their cytoplasmic tail, (I/V/L/S)XYXX(L/V) (Ravetch 

and Lanier, 2000). Upon co-ligation with an activating ITAM-containing receptor or 

ligand engagement, Src family protein tyrosine kinases phosphorylate the tyrosine 

residue in the ITIM sequence (Binstadt et al., 1996; Burshtyn et al., 1996; Ravetch and 

Lanier, 2000). The tyrosine phosphorylated ITIM-containing receptor can then recruit  

SH2 domain–containing negative regulators: the inositol phosphatase SHIP (Src 

homology 2–containing inositol polyphosphate 5'-phosphatase) (Ravetch and Lanier, 

2000), the tyrosine phosphatase SHP-1 (Burshtyn et al., 1996) or the tyrosine 

phosphatase SHP-2 (Barrow and Trowsdale, 2006). Negative regulation by ITIM-

bearing molecules is correlated with the recruitment of SH2 domain-bearing 

phosphatases SHIP and SHP-1 by phosphorylated ITIMs (Scharenberg and Kinet, 1996). 

However, the role of SHP-2 in ITIM-mediated inhibition is less clear than for the other 

mediators (Barrow and Trowsdale, 2006). 

 

1.2.3 Function of the SHP-1 C-terminus.  

While much of the characterization of SHP-1 is centered on its function as a 

PTP, there is evidence to suggest that its C-terminus has a role in regulating its function 

and activity. The C-terminus of SHP-1 consists of approximately 60 amino acids. 

Truncation of the last 35 amino acids of SHP-1 greatly enhances its phosphatase activity 

and mutations within these 60 amino acids of SHP-1 increases its phosphatase activity 

(Pei et al., 1994). The C-terminal tail is also important for association of SHP-1 with the 

insulin receptor in vitro (Uchida et al., 1994). However, this is not a generalized 

mechanism as it does not mediate association with the EGF receptor (Tenev et al., 

1997). Although the structure and function of the C-terminal tail remains unknown, 

primarily because the full-length SHP-1 structure is not solved, there are several 

functions that have been demonstrated for this region of SHP-1. These include (i) 

tyrosine and serine phosphorylation (Jones et al., 2004; Lorenz et al., 1994; Uchida et 

al., 1994), (ii) phospholipid binding (Frank et al., 1999), (iii) lipid raft localization 

(Fawcett and Lorenz, 2005) and (iv) nuclear localization (Craggs and Kellie, 2001).  
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1.2.4 Tyrosine phosphorylation of SHP-1. 

Phosphorylation of SHP-1 at the C-terminus is critical for its activity. The major 

phosphorylation sites have been mapped to Tyr536 and Tyr564. Initially, SHP-1 was 

demonstrated to undergo tyrosine phosphorylation in a T cell hybridoma cell line and in 

primary thymocytes upon stimulation of surface receptors, including cluster of 

differentiation 4 (CD4) or CD8 (Lorenz et al., 1994). These authors identified Tyr536 

and Tyr564 as major phosphorylation sites and provided evidence for phosphorylation of 

Tyr564 by the tyrosine kinase p56Lck. Upon RTK stimulation with insulin (Uchida et 

al., 1994) or PDGF (Bouchard et al., 1994), SHP-1 undergoes phosphorylation on 

Tyr538 (note: Tyr538 in the epithelial variant of SHP-1 is equivalent to Tyr536), which 

results in an increase in phosphatase activity. Bouchard et al. (1994) showed 

phosphorylation on Tyr538 may be regulated through autodephosphorylation. Normally, 

upon stimulation of HEK293 cells with PDGF, SHP-1 undergoes a rapid 

autodephosphorylation; however, phosphorylation at this site is maintained by the 

addition of pervanadate (a general PTP inhibitor) or mutation of the catalytic Cys 

residue of SHP-1 (Bouchard et al., 1994). Another tyrosine kinase, Src kinase, 

phosphorylates SHP-1. Cells transformed with v-src have high levels of tyrosine 

phosphorylated SHP-1, whereas non-transformed cells do not (Matozaki et al., 1994). 

Src also phosphorylates SHP-1 in vitro leading to an increase in phosphatase activity and 

again Tyr538 and Tyr538/566 are implicated as substitution of these Tyr for Phe 

decreases the ability of SHP-1 to dephosphorylate phosphoproteins (Frank et al., 2004).  

 

1.2.5 SHP-1 phospholipid binding. 

SHP-1 is activated through direct interaction with acidic phospholipids, 

including phosphatidic acid (PA), phosphatidylserine (PS), cardiolipin (CL), 

phosphatidylglycerol (PG) and phosphatidylinositol (PI) (Zhao et al., 1993). PA also 

increases the association of SHP-1 with the EGFR and dephosphorylation of the EGFR 

is enhanced in the presence of PA (Tomic et al., 1995). It is now known that the last 41 

C-terminal amino acids of SHP-1 bind directly to acidic phospholipids (Frank et al., 

1999). This region has a preference for PA, phosphatidylinositol-3,4,5-trisphosphate 

(PI3,4,5P3) and dipalmitoylphosphatidic acid over other phospholipids and has less 
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affinity for dipalmitoylphosphatidylglycerol, phosphatidylinositol-3,4-bisphosphate 

(PI3,4P2) and phosphatidylserine (Frank et al., 1999). These authors speculated that lipid 

binding to SHP-1 may confer structural changes similar to that following 

phosphopeptide binding, thus facilitating substrate access to the active site. C-terminal 

truncation abrogates activation by the C-terminal lipid binding site (Frank et al., 1999). 

In addition to the contribution of lipid binding to SHP-1 has to its phosphatase activity, 

it is not unreasonable to consider that its lipid binding capacity could also mediate the 

cellular localization of SHP-1.  

 

1.3 Regulation of signal transduction pathways by SHP-1. 

 

1.3.1 Motheaten mice.  

The importance of SHP-1 in regulating cell function is highlighted by the 

motheaten mouse (Shultz and Green, 1976). In motheaten mice homozygous (me/me) 

there is a naturally occurring mutation in the SHP-1 locus that results in no expression of 

SHP-1 and in the allelic viable (mev/mev) mice a functionally inactive form of SHP-1 is 

expressed (Shultz et al., 1993; Tsui et al., 1993). Mice with this deficiency are 

characterized by widespread autoimmune phenomena, caused by an inability to 

negatively regulate immune responses. These mice display severe hematopoietic 

disruption with chronic inflammation, systemic autoimmunity and hemorrhagic 

pneumonitis (inflamed and bleeding lungs) that results in death at about 2-3 (me/me) or 

9-12 (mev/mev) weeks (Bignon and Siminovitch, 1994; Green and Shultz, 1975). The 

functional loss of SHP-1 in motheaten mouse brain is associated with a reduced infarct 

volume, less caspase-3-positive cells and increased neuronal survival (Beamer et al., 

2006). However, this same loss of SHP-1 is also associated with a reduction in the 

number of glia (Wishcamper et al., 2001). These effects on brain function and structure 

will be discussed later. 

 Parenthetically, mutations in SHP-2, the orthologue for SHP-1, also affect cell 

function. For example, loss of SHP-2 expression is embryonic lethal (Saxton et al., 

1997) and the D61G gain-of-function mutation results in cardiomyopathies associated 

with Noonan syndrome (Tartaglia et al., 2003). 
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1.3.2 SHP-1 regulation of immunity. 

 The characterization of SHP-1 function focuses on the numerous immune defects 

displayed in moutheaten mice and strongly implicates SHP-1 as a negative regulator of 

immune responses. It is now well established that SHP-1 is a central component in the 

negative regulation of signalling pathways of several immune cells including B 

lymphocytes (B cells), T lymphocytes (T cells), natural killer cells and myeloid cell 

function and that most of this occurs through modulation of immune cell receptors and 

effector molecules (Zhang et al., 2000). A brief review of the associated literature is 

included so as to demonstrate the diverse effects of SHP-1 during immune responses. 

 Stimulation of the antigen receptors on B and T cells evokes a complex cascade 

of signal transduction events, which provide guidance for proliferation, differentiation 

and other biological outcomes (Alberola-Ila et al., 1997; Healy and Goodnow, 1998). 

For example, the B and T cell antigen receptors (BCR and TCR, respectively) represent 

multimeric complexes containing either a peptide/major histocompatibility complex 

(MHC) or antigen recognition module associated with signalling molecules composed of 

various transmembrane proteins such as CD3γ, δ, ε and TCRζ chains in T cells and Ig-α 

and Ig-β chains in B cells. Antigen receptor engagement is rapidly followed by the 

activation of Src family protein tyrosine kinases, such as Lyn, Fyn and/or Blk in B cells 

and Lck and Fyn in T-cells, with the consequent tyrosine phosphorylation of ITAMs 

present in the cytosolic region of the antigen receptor signalling subunits. ITAMs allow 

for membrane recruitment of other signalling molecules, providing docking sites for the 

SH2-domain containing kinases Syk and ZAP-70 in B and T cells, respectively 

(Campbell, 1999; Chan and Shaw, 1996; van Oers, 1999). In contrast to Src kinases, 

SHP-1 is identified as a negative regulator of antigen receptor signalling and lymphocyte 

activation. 

 Through modulation of the BCR, SHP-1 affects proliferation and BCR-evoked 

apoptosis (Ono et al., 1997; Pani et al., 1995; Wu et al., 1998; Wu et al., 1995). While 

the mechanism involved in the effects of SHP-1 in BCR signalling is not fully 

understood, data suggest that direct protein-protein interaction is occurring. For 

example, SHP-1 constitutively associates with the BCR complex to dephosphorylate Ig-

α and Ig-β chains in resting B cells (Dustin et al., 1999). This association forces the 
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BCR complex into an inactive state, enabling stimuli to initiate BCR signalling. In 

contrast to resting cells, B cells activated by BCR engagement do not contain SHP-1 

within the BCR complex (Dustin et al., 1999). Instead, SHP-1 is recruited to other sites 

within the cell, such as the co-modulatory receptors implicated in the inhibition of BCR 

signalling (Bolland and Ravetch, 1999; Cambier, 1997). Unlike the ITAM-containing 

receptors and receptor subunits which promote BCR signalling, the BCR inhibitory 

receptors contain ITIMs, which upon phosphorylation, enable SHP-1 binding and 

termination of BCR signalling (Bolland and Ravetch, 1999; Cambier, 1997). SHP-1 is 

found to interact with other ITIM-containing BCR modulators upon BCR ligation 

including CD22 (Doody et al., 1995), FcγRIIB (D'Ambrosio et al., 1995), paired 

immunoglobulin-like receptor B (PIR-B/p91A) (Blery et al., 1998) and CD72 (Adachi et 

al., 1998). In addition to its effect on the BCR and its co-receptors, SHP-1 is also linked 

to the modulation of several cytosolic molecules involved in BCR signalling. Some of 

these BCR effectors include Lyn (Somani et al., 2001), Syk (Dustin et al., 1999) and 

BLNK/SLP-65, an adaptor protein which is recruited into the BCR signalling cascade 

followed by activation of Syk (Fu et al., 1998).  

 Natural killer (NK) cells have a significant role in infection control and tumor 

surveillance. One important activation pathway implicated in natural killing is initiated 

by Fc receptor (FcR) engagement and the consequent activation of kinases such as Lck, 

ZAP-70 and Syk (Brumbaugh et al., 1998; Leibson, 1997) (Figure 1.4). This activation 

pathway has been shown to be negatively regulated by a number of inhibitory receptors 

including the killer inhibitory receptor (KIR), gp49 and leukocyte Ig-like receptor 1/Ig-

like transcript 2 (LTR-1/ILT-2) receptors (Brumbaugh et al., 1998; Leibson, 1997; 

Yokoyama, 1998). Although these receptors are structurally diverse, most contain ITIMs 

in their cytosolic domain and interact with MHC class I molecules and transduce an 

inhibitory signal following their interaction with MHC class I protein on target cells 

(Long, 1999; Yokoyama, 1998). Upon engagement of the KIR by target cell MHC class 

I molecules there is an induction of tyrosine phosphorylation of the KIR ITIMs, 

recruitment of SHP-1, and consequently inhibition of target cell cytolysis (Binstadt et 

al., 1996; Burshtyn et al., 1996) (Figure 1.4). To further support this finding, 

catalytically inactive SHP-1 overexpression abrogates KIR-mediated inhibitory effects 
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Figure 1.4: Inhibition of NK cell ITAM-bearing receptors by SHP-1 associated-

ITIM-bearing receptors. Upon engagement of ITIM bearing receptors, ITIMs are 

tyrosine phosphorylated and recruit protein tyrosine phosphatases, such as SHP-1. 

Substrates of SHP-1 include a variety of tyrosine phosphorylated proteins, such as 

ITAM-bearing receptors, i.e. B cell receptors (BCR) or T cell receptors (TCR) or Fc 

receptors (FcR), Src-family protein tyrosine kinases (Lyn and Lck) or Syk-family 

protein tyrosine kinases (ZAP-70 and Syk). Dephosphorylation of such signalling 

molecules leads to inhibition of the NK activating signalling pathways (Adapted from: 

Tomasello et al., 2000). 
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on NK cell cytolytic activity (Binstadt et al., 1996; Burshtyn et al., 1996). Other ITIM-

containing inhibitory receptors, which SHP-1 interacts with and is responsible for 

attenuating NK-cell mediated killing, include Ly-49A (Nakamura et al., 1997), gp48B 

(also present in mast cells) (Rojo et al., 1997) and p75/AIRMI (Falco et al., 1999). These 

data reveal the ability of SHP-1 to inhibit NK-cell activating receptor signalling. 

 Cells of myeloid lineage, including macrophages, neutrophils, monocytes and 

mast cells can be activated through interactions with chemotactic peptides, cytokines 

and other ligands (Downey et al., 1995). The role for SHP-1 in these signalling pathways 

is demonstrated by the severe inflammation found in motheaten mice. SHP-1 suppresses 

signalling pathways that promote myeloid cell growth, survival and activation (Dong et 

al., 1999) and regulates adhesive properties of myeloid cells as well as the chemotactic 

responses of both immature and mature myeloid cells (Koo et al., 1993; Roach et al., 

1998). The inhibitory effects on myeloid cell physiology can again be attributed in part 

to association with a number of ITIM-containing inhibitory receptors on these cells. 

These include PIR-B (Timms et al., 1998), which is expressed on macrophages and mast 

cells, gp49B (Lu-Kuo et al., 1999), LIR-1 and LIR-2 (Wang et al., 1999), two MHC 

class-I binding receptors present on monocytes. The latter receptors associate with SHP-

1 upon tyrosine phosphorylation and, when co-ligated with FcγRI, inhibit tyrosine 

phosphorylation of FcγRI and Syk. These effects result in the inhibition of FcγRI-

mediated monocyte activation. SHPS-1, a plasma membrane-associated glycoprotein 

binds PTPs via its ITIMs and is involved in growth-factor-cell adhesion-induced 

signalling. For example, upon tyrosine phosphorylation of the two ITIMs in SHPS-1, 

SHP-1 is recruited and downregulates integrin-mediated signalling (Timms et al., 1999; 

Veillette et al., 1998). Finally, the myloid cell paired immunoglobulin-like receptor 

(PILR-α) contains several ITIMs and associates with SHP-1 upon tyrosine 

phosphorylation (Mousseau et al., 2000). 

 

1.4 Phosphatidylinositol 3'-kinase (PI3K) pathway. 

As described above, SHP-1 is clearly a negative regulatory of a number of 

signalling pathways in hematopoietic cells. However, its function in non-hematopoietic 

cells is not as clear. SHP-1 negatively regulates phosphatidylinositol 3'-kinase (PI3K) 
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signalling, but is a positive regulator of mitogen-activated protein kinase (MAPK) and 

Janus kinases/signal transducers and activators of transcription (JAK/STAT) signalling. 

One objective of this thesis was to determine the role of SHP-1 in modulating PI3K in 

the CNS. 

 

1.4.1 RTK activation of the PI3K pathway. 

The PI3K pathway is activated by a number of RTKs with ligands as diverse as 

nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) (Dolcet et al., 

1999; Encinas et al., 1999; Hetman et al., 1999; Yao and Cooper, 1995), as well as 

PDGF, EGF, angiotensin II, insulin and insulin-like growth factor-1 (IGF-1) (Borgatti et 

al., 2000; Isenovic et al., 2002; Zheng et al., 2000). 

Regardless of how PI3K is activated, it ultimately initiates signalling cascades 

that regulate cellular activities such as the promotion of cell survival, proliferation, 

differentiation, apoptosis, cytoskeletal rearrangement and vacuolar trafficking (Datta et 

al., 1999). The factors that determine cellular function are complex and are determined 

based on the type of stimulus, the isoform of PI3K and the nature of the second 

messenger lipid.  

 

1.4.2 PI3K classification and subunits. 

There are multiple isoforms of PI3K in mammalian cells that are divided into 

three classes, denoted as I, II and III, according to their substrate preference (Domin and 

Waterfield, 1997). All class I PI3Ks form a heterodimeric complex and are responsive to 

ligand stimulation and can be subdivided into class IA and IB depending on their 

activation by RTKs and G-protein coupled receptors, respectively (Domin and 

Waterfield, 1997). The PI3Ks from class IA are diverse in mammals. These form a 

heterodimeric complex consisting of a 110-120-kDa catalytic subunit and a regulatory 

protein often called p85 proteins, based on the molecular weight of the first two isoforms 

to be identified. The mammalian class IA catalytic subunits include three isoforms, 

p110α, p110β and p110δ (Hiles et al., 1992; Hu et al., 1993; Vanhaesebroeck et al., 

1997). The catalytic subunits all contain a C-terminal kinase domain and a nearby N-
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terminal binding site for the regulatory subunit, p85 (Holt et al., 1994) and a region for 

binding with p21ras-GTP (Rodriguez-Viciana et al., 1996).  

There are five regulatory subunits for class IA that have been identified to 

associate with the catalytic subunit. The regulatory subunits are generated by expression 

and splicing of three different genes, p85α, p85β and p55γ (Vanhaesebroeck and Alessi, 

2000) (Figure 1.5). The two homologous p85 regulatory subunits, p85α and p85β, 

contain an N-terminal SH3 domain followed by a proline-rich domain, a breakpoint 

cluster region homology domain, a second proline-rich domain and two SH2 domains. 

Shorter forms (p55) lack the SH3 and BCR homology domains (Antonetti et al., 1996; 

Pons et al., 1995) (Figure 1.5). All of the p85/p55 proteins contain putative coiled-coil 

domains that mediate the stable dimerization with the p110 catalytic subunits (p110α, 

p110β and p110δ) (Dhand et al., 1994a). Class IB PI3Ks are not as diverse as the class 

IA and are present in platelets and neutrophils, acting downstream of receptors which 

signal through G-proteins (Kucera and Rittenhouse, 1990; Stephens et al., 1993). This 

class of PI3Ks is found only in mammals and contains a 110 kDa catalytic subunit that is 

associated with a 101 kDa regulatory subunit.  

 

1.4.3 Activation of PI3K. 

Activation of class IA PI3Ks, which is focused on in this thesis, is mediated 

through binding of the p85 regulatory subunit either directly to RTKs or through adaptor 

molecules, i.e. Grb2-associated binder-1 (Gab1) (Ong et al., 2001; Rodrigues et al., 

2000) (Figure 1.6). Upon activation of a RTK and autophosphorylation of its 

cytoplasmic domain, PI3K is recruited directly to the receptor through binding of the 

p85 SH2 domains. Nearly all p85 adapter subunits and splice variants contain two class 

III SH2 domains, which enable p85 to bind phosphotyrosine residues. In all known p85 

proteins both the N-terminal and the C-terminal SH2 domains bind preferentially to a 

specific amino acid consensus sequence, pYXXM (Songyang et al., 1994). Under resting 

conditions, p85 stabilizes the p110 protein and inhibits PI3K lipid kinase activity. PI3K, 

in its inactive state, is localized to the cytoplasm (Klippel et al., 1996). The inhibitory 

effect of p85 on p110 is relieved by binding of the p85 SH2 domains, particularly the N-

terminal SH2 domain, to tyrosine-phosphorylated peptides or receptors such as the 
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Figure 1.5: The main isoforms of the class IA PI3K regulatory subunits. P1 and 

P2, proline-rich regions 1 and 2, respectively; iSH2, the inter-SH2 domain; N-SH2, the 

NH2-terminal SH2 domain; C-SH2, the COOH-terminal SH2 domain. The names in 

parenthesis represent other names by which the proteins are known. The p55α and p50α 

N-termini of 34 and 6 amino acids are shown in yellow and red, respectively. (From: K. 

Okkenhaug and B. Vanhaesebroeck (2001) New responsibilities for the PI3K regulatory 

subunit p85 alpha. Sci STKE 2001, PE1. Reprinted with permission from AAAS) 
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Figure 1.6: The PI3K/PDK1/Akt signalling cascade. Ligand stimulation of a receptor 

initiates the activation of the PI3K/PDK1/Akt pathway. PI3K is activated by directed 

recruitment by the SH2 domain of the p85 regulatory subunit to the tyrosine 

phosphorylated receptor or through recruitment by the Gab1 adaptor molecule. When 

PI3K is activated it phosphorylates 3'-OH position of the inositol ring of membrane-

localized phosphatidylinositols generating phosphatidylinositol-3,4-bisphosphate 

(PI3,4P2) and phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3). Akt and PDK1 bind 

PI3,4P2 and PI3,4,5P3 by their individual PH-domains and are localized to the plasma 

membrane where PDK1 phosphorylates Akt on Thr308 which leads to phosphorylation 

on Ser473. Once Akt is activated it phosphorylates its downstream targets which results 

in promotion of cell survival and proliferation. SHP-1 inhibits PI3K/PDK1/Akt 

signalling through dephosphorylation of p85. 
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PDGFR or to molecules containing the pYXXM motif (Yu et al., 1998b). Site-directed 

mutagenesis of the PDGFR at sites containing the consensus sequence, e.g. Y740MDM 

and Y751VPM, disrupt binding of p85 (PI3K) to the PDGFR (Yu et al., 1998b). Binding 

of the N-terminal SH2 domain of p85 to its tyrosine phosphorylated substrates and the 

resulting relief of the inhibitory effect of p85 on p110 is critical for PI3K localization to 

the plasma membrane and activation of the PI3K pathway (Klippel et al., 1996; 

McGlade et al., 1992). 

The Grb2-associated binder (Gab) family of adaptor molecules mediates PI3K 

localization to RTKs that lack p85 binding sites. For example, Gab1 binding to p85 is a 

route for PI3K activation downstream of fibroblast growth factor receptors (FGFRs) 

(Ong et al., 2001) and the EGFR (Rodrigues et al., 2000). Gab proteins also recruit PI3K 

in response to stimulation of receptors that have p85 binding sites, such as the TrkA 

(tropomyosin receptor kinase A)-receptor (Holgado-Madruga et al., 1997) and Ret 

(rearranged during transfection)-receptor (Besset et al., 2000) or receptor systems in 

which co-receptors also recruit PI3K, such as the BCR (Ingham et al., 2001) and TCR 

(Pratt et al., 2000; Yamasaki et al., 2001). All Gab family proteins share a common 

architecture consisting of a highly conserved N-terminal pleckstrin homology (PH) 

domain, a central proline-rich domain and multiple tyrosines that are binding motifs for 

various SH2 domain-containing proteins. Most Gab protein-receptor interactions occur 

indirectly via Grb2. Gab proteins contain several proline-rich motifs, two of which can 

mediate binding of Gab1 or Gab2 to Grb2 SH3 domains (Lock et al., 2000; Schaeper et 

al., 2000). Grb2 contains an SH2 domain, which targets the constitutive Grb2-Gab 

complex to receptors containing Grb2 SH2 domain binding sites (pYXNX, Note: this is 

an example of a class II SH2 domain) (den Hertog et al., 1994). In some signalling 

pathways, Grb2-Gab complexes are recruited to receptors indirectly by other tyrosyl-

phosphorylated adaptor proteins. For example, recruitment of Gab1 and Gab2 to the 

thrombopoietin receptor (Bouscary et al., 2001) and the Ret-receptor (Besset et al., 

2000) involves a Shc-Grb2-Gab2 complex. In the FGFR pathway, Gab1 phosphorylation 

involves an additional scaffolding adaptor, fibroblast growth factor receptor substrate 

(FRS2). Upon receptor activation, FRS2 becomes tyrosine phosphorylated and binds to 

Grb2 that, in turn, recruits Gab1 (Hadari et al., 2001; Ong et al., 2001). The Trk 
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receptors, TrkA and neurotrophin (NT), also evoke FRS2 and Gab1 phosphorylation and 

recruitment to the receptor (Meakin et al., 1999). 

The interaction between p85(PI3K) and Gab proteins occurs through three 

YXXM motifs, which are consensus binding site for the SH2 domain of p85, present in 

all mammalian Gab proteins. Mutations at the p85-binding sites of mammalian Gab1 

and Gab2 result in inhibition of several signalling pathways (Gu et al., 2000; Holgado-

Madruga et al., 1997; Laffargue et al., 1999; Yart et al., 2001). The physical association 

between p85 and Gab1 or Gab2 is crucial in mediating the PI3K/Akt signalling pathway 

induced by a variety of stimuli including cytokines IL-2 and IL-3 (Gu et al., 2000; Gu et 

al., 2001), NGF (Holgado-Madruga et al., 1997), EGF (Rodrigues et al., 2000) and 

hepatocyte growth factor (Maroun et al., 1999). Overexpression of Gab1 potentiates 

FGF-induced Akt activity, whereas overexpression of the p85-binding mutant of Gab1 

decreases Akt activation (Ong et al., 2001) and is unable to provide anti-apoptotic 

signals in response to NGF stimulation (Holgado-Madruga et al., 1997). Similarly, 

mutations at the p85-binding sites of Gab2 were found to impair the ability of IL-3 to 

activate Akt and to induce cell growth (Gu et al., 2000). Moreover, the activation of 

PI3K leads to the production of phosphatidylinositol-3,4-bisphosphate (PI3,4P2) and 

phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3) also recruits the PH domain of Gab 

proteins and presumably promotes further activation of PI3K, a positive feedback loop 

could be formed to amplify the signals through the Gab proteins (Rodrigues et al., 2000). 

Recruitment to the RTK either directly or indirectly is an important step in 

relieving the inhibitory effect the regulatory p85 subunit exerts on the p110 catalytic 

subunit. Recruitment of p85 to RTKs allows for tyrosine phosphorylation on p85 which 

changes the conformation of p85 enough to relieve its inhibitory effect on p110. 

Supporting evidence is provided by the increased tyrosine phosphorylation state of p85 

in response to a variety of stimuli including PDGF simulation and other tyrosine kinases, 

such as Abl and Lck (von Willebrand et al., 1994; von Willebrand et al., 1998; Yu et al., 

1998c). Elevated levels of  tyrosine phosphorylation of p85 also correlate with 

proliferation in Jurkat cells (Martinez-Lorenzo et al., 2000) and altered SH2 domain 

binding properties of p85 (von Willebrand et al., 1998). PI3K activity is higher in 

tyrosine phosphorylated p85 immunoprecipitates when compared to those with depleted 
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p85 tyrosine phosphorylation (Cuevas et al., 2001). A critical tyrosine residue, Tyr688, 

mapped within the C-terminal SH2 domain on p85, may directly regulate PI3K activity. 

Tyr688 on p85 is a target for Src kinase family members Lck and Abl (von Willebrand 

et al., 1998) and coexpression of Lck with PI3K in COS-7 cells results in an increase in 

PI3K activity (Cuevas et al., 1999). The importance of phosphorylation of Tyr688 for 

the regulation of PI3K activity was further demonstrated through mutating Tyr688 to 

Ala, which results in inhibition of PI3K activity (Cuevas et al., 2001). Substituting this 

same residue with an Asp, which would mimic phosphorylation, results in the activation 

of PI3K and its downstream targets Akt and nuclear factor-kappa B (NF-κB) in COS-7 

cells (Cuevas et al., 2001). These authors suggest that phosphorylation of p85 on Tyr688 

could allow for an intramolecular association of the phosphorylated Tyr688 residue 

within the p85 C-terminal tail to the p85 N-terminal SH2 domain, which would relieve 

its inhibitory effect on p110. The authors also propose that Tyr688 phosphorylation 

triggers an intermolecular interaction between individual p85 proteins or other substrates 

of p85, again inducing a disruption of the inhibitory effect of p85 on p110. 

The regulation of p85 is not limited to its phosphorylation on Tyr688. For 

example, the p85 is phosphorylated on Y508 by the PDGFR activation (Kavanaugh et 

al., 1994) and phosphorylation of Ser608 by p110 acts as a negative feedback regulatory 

mechanism (Dhand et al., 1994b) 

While the role of PI3K during growth factor stimulation is apparently quite clear, 

there is evidence that this model may not apply to all cases. This is particularly evident 

following the removal of essential growth factors from cell cultures. Removing serum 

from cell cultures is often used as a model of growth factor withdrawal (Liang et al., 

2007; Lieberthal et al., 1998; Wei et al., 2004) and often inhibits PI3K activity. This 

initiates apoptotic events in neuronal cell lines (Jin et al., 2000; Poser et al., 2003; Zhong 

et al., 1993) and can affect proliferation of glial cells (Fan, 1983; Michler-Stuke and 

Bottenstein, 1982). Absence or withdrawal of growth factors induces caspase activity 

and leads to cells death of PC12 cells (Batistatou and Greene, 1991). Hypoxia, which 

can initiate specific adaptive responses, can activate PI3K and, thus, protect against 

apoptosis during serum withdrawal (Alvarez-Tejado et al., 2001). In cortical neurons 
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cAMP antagonizes neurotrophin-mediated protection during serum withdrawal by 

inhibiting the PI3K pathway (Poser et al., 2003).  

Serum withdrawal does not always readily induce apoptosis as it can also, for 

example, reduce cell growth and promote differentiation of glial cells (Chou and 

Langan, 2003; Fan, 1983). The effect of removing serum on signalling pathways is 

unclear as removal of serum from U937 (human leukemic monocyte lymphoma) cell 

cultures increases PI3K activity (Lee et al., 2005), but induces the loss of Akt 

phosphorylation and the induction of the proapoptotic protein Bax in HeLa cultures 

(Tsuruta et al., 2002).  

 

1.4.4 PI3K/PDK1/Akt signalling. 

When PI3Ks are activated, the p110 catalytic subunit catalyzes the transfer of a 

phosphate from ATP to the 3'-OH position of the inositol ring of membrane-localized 

phosphatidylinositols (PI), generating PI3,4P2 and PI3,4,5P3 (Figure 1.7). These 

phosphorylated lipids exist in the inner portion of the plasma membrane and once 

generated, they serve as docking sites for signalling molecules that contain pleckstrin 

homology (PH) domains. A major downstream target of PI3,4P2 and PI3,4,5P3 is Akt, 

also known as protein kinase B (PKB) (Franke et al., 1997; Franke et al., 1995; Kulik 

and Weber, 1998). Akt is a 57 kDa serine/threoine kinase and belongs to the subfamily 

of the mammalian AGC family of kinases. Akt exists as one of three isoforms, 

PKBα/Akt1, PKBβ/Akt2 and PKBγ/Akt3 (Coffer et al., 1998). 

The binding to PI3,4P2 and PI3,4,5P3 via its PH domain localizes Akt to the 

plasma membrane (Franke et al., 1997; Frech et al., 1997; James et al., 1996; Kulik and 

Weber, 1998) (Figure 1.6). At the plasma membrane, Akt is activated by 

phosphorylation on two critical residues, Thr308 and Ser473 (Bellacosa et al., 1998). 

The phosphorylation on Thr308 is mediated by 3'-phosphoinositide-dependent protein 

kinase-1 (PDK1), which is also localized to the plasma membrane through binding of its
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Figure 1.7: Generation of 3'-phosphatidylinositide. Inositol-containing lipids 

consist of a glycerol backbone with fatty acids attached at positions 1 and 2, and an 

inositol 1-phosphate group at position 3.  If the inositol ring has no additional 

phosphates, it is called phosphatidylinositol (PtdIns/PI). When PI3Ks is activated the 

p110 catalytic subunit catalyzes the transfer of a phosphate from ATP to the 3-OH 

position of the inositol ring of membrane-localized phosphatidylinositols (PtdIns/PI), 

generating PI3,4P2 and PI3,4,5P3. (Reproduced with permission, from B. 

Vanhaesebroeck and D.R. Alessi, 2000, Biochem J, 346, 561-576. © the Biochemical 

Society) 

. 
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own PH domain to PI3,4P2 and PI3,4,5P3 (Anderson et al., 1998; Stephens et al., 1998) 

(Figure 1.6). Interestingly, the PH domain of PDK1 has a higher affinity for PI3,4,5P3 

than the Akt PH domain (Stokoe et al., 1997), undoubtedly accounting for its 

constitutive association with the plasma membrane. It is not clear how Ser473 is 

phosphorylated, but it may undergo autophosphorylation (Toker and Newton, 2000a) or 

be targeted by the rictor-mTor complex (Sarbassov and Sabatini, 2005). There are 

several other kinases that phosphorylate Ser473 in vitro, including integrin-linked kinase 

(ILK), MAPK-activated protein kinase (MAPKAPK-2), p90 ribosomal S6 kinase (RSK) 

(Delcommenne et al., 1998), as well as NEK6 (Belham et al., 2001). 

Once activated, Akt detaches from the membrane and targets cytosolic, 

mitochondrial and nuclear substrates such as the proapoptotic proteins, glycogen 

synthase kinase-3 beta (GSK-3β) (Shaw et al., 1997), BCL2 antagonist of cell death 

(BAD) (Datta et al., 1997),  caspase-9 (Cardone et al., 1998), forkhead transcription 

factors (Brunet et al., 1999) and nuclear receptor subfamily 4, group A, member 1 

(NR4A1) (Masuyama et al., 2001). Also targeted are the antiapoptotic proteins, NF-κB 

(Romashkova and Makarov, 1999) and cAMP-response element-binding protein 

(CREB) (Pugazhenthi et al., 2000) (Figure 1.6). 

Most research regarding PI3K/PDK1/Akt signalling is based on phosphoinositide 

generation and signalling from the plasma membrane, yet phosphoinositides and their 

biosynthetic machinery are also present in the nucleus (D'Santos et al., 1998). 

Regulation of these two inositol pools is independent, suggesting a different functional 

importance for nuclear phosphoinositides. Not surprisingly, nuclear PI3K is activated in 

response to different cellular responses. For example, translocation of PI3K to the 

nucleus occurs under conditions of differentiation in PC12 cells by NGF (Neri et al., 

1994), in Saos-2 (human osteosarcoma) cells with IL-1 stimulation (Bavelloni et al., 

1999), in MC-3T3-E1 (murine osteoblastic-like) cells in response to mitogenic factors 

such as insulin-like growth factor-1 (IGF-1) or PDGF (Martelli et al., 2000), and in C6 

cells grown in serum-free medium (Sephton and Mousseau, 2007, manuscript 

submitted). There is evidence that nuclear PI3K may play a role in RNA metabolism 

(Bunney et al., 2000), regulation of transcription (Yu et al., 1998a) and activation of 
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protein kinase C zeta (PKC-ζ) (Toker et al., 1994). The nuclear function of PI3K is still 

unclear and nuclear targets are still being defined.  

 

1.5 3'-phosphoinositide-dependent protein kinase-1 (PDK1). 

 

1.5.1 Regulation of the PI3K/Akt pathway by PDK1. 

PDK1 is a central activator and the next “player” in the PI3K/PDK1/Akt 

pathway. As described in Section 1.4.4, a model has been proposed for PI3K/Akt 

activation by hormone or growth factor stimulation of receptors. In summary, activation 

of cell surface receptors increases the levels of PI3Ks’ lipid products, PI3,4P2 and 

PI3,4,5P3, which leads to the translocalization of PDK1 and Akt to the plasma 

membrane where PDK1 phosphorylates and activates Akt (Figure 1.6).  

The PDK1 gene maps to chromosome 16p13.3 and the translated protein is a 63 

kDa monomer with serine/threonine kinase activity. PDK1 is ubiquitously expressed in 

human tissues and cells (Alessi et al., 1997a; Stephens et al., 1998). The kinase domain 

of PDK1 is situated within the N-terminal domain, followed by a linker region and a C-

terminal PH domain. PDK1 was the first kinase identified to phosphorylate Akt on 

Thr308 and to initiate Akt activation in a PI3,4,5P3-dependent manner (Alessi et al., 

1997b). The interaction with PI3,4P2 and PI3,4,5P3 is mediated by the individual PH 

domains found in Akt and PDK1. In the presence of phospholipids, PI3,4P2 or PI3,4,5P3 

(but no other PIs), Akt phosphorylation is enhanced over 1000-fold (Alessi et al., 

1997b). The major effect of PI3,4P2/PI3,4,5P3 binding of PDK1, in addition to directing 

the localization of PDK1 to the plasma membrane to phosphorylate Akt, is the effect 

PI3,4,5P3 binding has on PDK1 substrates (Alessi et al., 1997b). Akt binding to 

PI3,4P2/PI3,4,5P3 induces a conformational change that increases the accessibility of 

PDK1 to the Thr308 residue on Akt (Vanhaesebroeck and Waterfield, 1999; Yang et al., 

2002a) (Figure 1.8). This enables other kinases to access and phosphorylate Ser473 

leading to full activation of Akt (Alessi et al., 1996). In the absence of PI3,4P2/PI3,4,5P3, 

PDK1 is unable to phosphorylate wildtype Akt (Alessi et al., 1997a; Stephens et al., 

1998). Point mutations in the PH domain of Akt, which block its interaction with 

PI3,4,5P3, prevent PDK1 phosphorylation in the presence of PI3,4,5P3
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Figure 1.8: Mechanism of activation of Akt, S6K and SGK by PDK1. Akt is 

activated following its recruitment to the plasma membrane through binding of its PH 

domain to PI3,4,5P3, where it is phosphorylated at its T-loop by PDK1 and its 

hydrophobic motif (HM) by an unknown kinase. Once Akt is phosphorylated at its T-

loop, intramolecular binding occurs through the phosphorylated HM the hydrophobic 

pocket resulting in maximal Akt activation. In contrast, phosphorylation of the HM of 

S6K and SGK enables PDK1 to interact with these enzymes through its PIF-pocket, and 

permits the T-loop phosphorylation of these substrates (Adapted from: Mora et al., 

2004).  
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(Stokoe et al., 1997) and Akt with a deleted PH domain is not activated in the presence 

of PI3,4,5P3 (Alessi et al., 1997a). However, PDK1 is still able to phosphorylate Akt that 

lacks its PH domain (ΔPH-Akt) (Alessi et al., 1997a; Stephens et al., 1998). Moreover, 

artificially promoting the interaction of PDK1 with wildtype Akt and ΔPH-Akt, by the 

attachment of a high-affinity PDK1 interaction motif to these enzymes, induces 

phosphorylation of the T-loop in ΔPH-Akt, but not in wildtype Akt unstimulated cells 

(Biondi et al., 2001), which further supports that PI3,4,5P3 induces a conformational 

change in Akt which allows for phosphorylation by PDK1. In contrast, removing the PH 

domain on PDK1 does not obstruct Akt phosphorylation and activation, but the rate of 

Akt activation by this PDK1 mutant was reduced around 30-fold compared to wildtype 

PDK1 (Alessi et al., 1997a).  

There are reported cases where phosphorylation on Thr308 and Ser473 does not 

conform to the expected paradigm. For example, in PDK1-deficient cells, Akt is largely 

inactive, yet phosphorylation on Ser473 remains responsive to insulin stimulation 

(Williams et al., 2000). In other cases, staurosporine, an inhibitor of PDK1 activity, 

prevents Thr308 phosphorylation, but does not inhibit Ser473 phosphorylation (Hill et 

al., 2001; Scheid et al., 2002). A new model for Akt phosphorylation has been proposed 

by Scheid et al. (2002), who suggest that Ser473 regulates the phosphorylation of 

Thr308. This model describes PI3K-induced Akt translocation to the plasma membrane 

where Ser473 is first phosphorylated, allowing for subsequent PDK1-mediated 

phosphorylation of Thr308. Scheid et al. (2002) show that substitution of Ser473 to 

alanine reduced the degree of Thr308 phosphorylation, an effect that was not observed 

when Ser473 was mutated to aspartic acid. A point mutation in the substrate-binding 

region (PIF-pocket) of PDK1 (L155E) resulted in a reduced level of phosphorylation on 

Thr308 and did not affect the level of phosphorylation on Ser473 at the plasma 

membrane. However, this mutant completely abolished Akt phosphorylation in the 

cytosol (Scheid et al., 2002). These data suggest two distinct mechanisms of Akt 

phosphorylation in the cytoplasm versus at the plasma membrane. [Note: others have 

shown that the PIF pocket is not required for binding or activation of Akt: Biondi et al. 

(2000)]. 
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1.5.2 Activation of AGC kinases by PDK1. 

The diverse metabolic, proliferative and survival effects initiated by PI3K 

activation and the ensuing generation of PI3,4,5P3 are mediated by the activation of a 

subgroup of AGC family of protein kinases. These include isoforms of Akt (Brazil and 

Hemmings, 2001), p70 ribosomal S6 kinase (S6K) (Avruch et al., 2001), serum- and 

glucocorticoid-induced protein kinase (SGK) (Lang and Cohen, 2001) and atypical 

isoforms of protein kinase C (PKC) (Newton, 2003). These enzymes are activated within 

minutes of insulin or growth factor stimulation of PI3K. Akt, as previously discussed, 

regulates apoptosis, cell division and glucose metabolism (Lawlor and Alessi, 2001). 

S6K controls protein synthesis required for cell growth and amino acid storage 

(Volarevic and Thomas, 2001) and SGK regulates cell growth and ion transport (Lang 

and Cohen, 2001). The roles of atypical PKC isoforms (ζ, λ/ι) downstream of PI3K are 

less well defined.  

All AGC kinases have residues equivalent to Thr308 of Akt, known as the T-

loop or activation loop which is located in the core of their kinase catalytic domain, and 

display a high degree of primary sequence conservation within their respective kinase 

domains (Niederberger and Schweingruber, 1999; Toker and Newton, 2000b). Another 

common feature of AGC kinases is the presence of a C-terminal hydrophobic motif 

(HM) FXXF/Y[S/T]F/Y (the S/T represents the site of phosphorylation) which is 

involved in stabilization of the active conformation of these kinases (Johnson et al., 

2001; Knighton et al., 1991) (Figure 1.8). Outside of these catalytic domains, the AGC 

kinases generally show little similarity.   

Activation of AGC kinases, including those activated by PI3K (Akt, SGK, S6K 

and atypical PKC isoforms), is dependent on their phosphorylation by PDK1. PDK1 

targets members of this family in a different manner than established for Akt, e.g. 

phosphoinositide-dependence. All recognized PDK1 substrates, other than Akt, are 

phosphorylated efficiently in a phosphoinositide-independent manner in vitro 

(Vanhaesebroeck and Alessi, 2000). With substrates other than Akt, PDK1 interacts 

directly through the C-terminal HM. In some AGC kinases, the HM contains a 

phosphorylation site (FXXF/Y[S/T]F/Y) that, when phosphorylated, triggers the 

interaction with PDK1. HM phosphorylation is required for the interaction of PDK1 
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with substrates such as S6K, SGK and RSK (Balendran et al., 1999; Biondi et al., 2001; 

Frodin et al., 2002; Frodin et al., 2000) (Figure 1.8).  

 Although an AGC kinase itself, PDK1 differs from other members in that it does 

not possess an equivalent HM, instead having a homologous pocket, with no 

intramolecular HM-binding partner. In PDK1, this pocket interacts with the C-terminal 

HM of protein substrates, and is termed PIF (PDK1-interacting fragment)-binding 

pocket (Biondi et al., 2000). This interaction results in PDK1 activation (Biondi et al., 

2000; Frodin et al., 2000). Evidence for a role for the PIF pocket in the regulation of 

PDK1 intrinsic activity is further supported by the generation of PIF-pocket mutants, 

which can stabilize active conformations of PDK1 (Biondi et al., 2000). Peptides that 

encompass the HM of S6K (Biondi et al., 2002) and RSK (Frodin et al., 2000) induced a 

four- to six-fold activation of PDK1, indicating that peptide binding of the PIF pocket on 

PDK1 is important for its enhanced activity. 

S6K and SGK, which do not contain a PH domain, become activated upon 

phosphorylation at the two highly conserved Ser/Thr residues. One is located in the T-

loop (activation-loop), and the other is located C-terminal to the catalytic domain in the 

hydrophobic motif (Kobayashi and Cohen, 1999; Park et al., 1999; Pearson et al., 1995). 

PDK1 efficiently catalyzes the phosphorylation of the activation-loop residues of 

isoforms of S6K (Pullen et al., 1998) and SGK (Williams et al., 2000) (Figure 1.8). 

Phosphorylation of both residues is required for maximal activation of these enzymes. 

Substitution of the Ser/Thr residue in the HM of either S6K1 (Pullen et al., 1998) or 

SGK1 (Kobayashi and Cohen, 1999; Park et al., 1999) to an acidic residue to mimic 

phosphorylation greatly enhances the phosphorylation of these enzymes by PDK1. 

Hydrophobic pocket mutants, such as PDK1L155E, were incapable of binding or 

phosphorylating S6K and SGK (Biondi et al., 2001), which supports the importance of 

the PIF-pocket of PDK1 as a substrate-docking site. Mutations of S6K and SGK that 

make them constitutively active do not affect their activity or T-loop phosphorylation by 

inhibitors of PI3K (Kobayashi and Cohen, 1999; Park et al., 1999; Pullen et al., 1998). 

These results suggest that PI3K promotes the activation of S6K and SGK by controlling 

hydrophobic motif phosphorylation of these enzymes. 
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Other AGC kinases are constitutively phosphorylated, as is the case for the 

classical members of the PKC family (Newton, 2001; Parekh et al., 2000). Similar to 

Akt, PKC has a related pattern of activation, in which PKCδ can be phosphorylated by 

PDK1 on its activation loop site, Thr505 (Le Good et al., 1998). In contrast with Akt, 

PKCδ is fully activated through co-recruitment to membranes/liposomes by its own 

allosteric activator diacylglycerol (DAG), in combination with PI3,4,5P3 (Le Good et al., 

1998). Similarly, modification of the HM of the atypical PKC isoform, PKCζ, reduces 

the ability of PDK1 to interact with and phosphorylate PKCζ at its T-loop residue 

(Balendran et al., 2000). 

 

1.5.3 PDK1 function in development. 

The role for PDK1 activation of certain AGC kinase members was established by 

the finding that mouse embryonic stem (ES) cells lacking PDK1 failed to activate Akt, 

S6K and RSK in response to stimuli that trigger the activation of these enzymes in 

wildtype ES cells (Williams et al., 2000). It was unexpected that ES cells lacking PDK1 

were viable, morphologically indistinguishable from wildtype cells and proliferated at 

the same rate, because Akt and RSK have often been reported to play important roles in 

regulating survival and proliferation in other cell types (Williams et al., 2000). Thus, in 

ES cells, PDK1 is not intrinsically required for survival and proliferation. However, 

knocking out PDK1 homologues in Saccharomyces cerevisiae (Niederberger and 

Schweingruber, 1999), in Caenorhabditis elegans (Paradis et al., 1999), in Drosophila 

(Cho et al., 2001; Rintelen et al., 2001) and in mice (Lawlor et al., 2002) has revealed 

that PDK1 is required for the normal development and viability of these organisms. 

Specifically, PDK1-deficient Drosophila embryos die during early larval stages (Cho et 

al., 2001; Rintelen et al., 2001). Similarly, PDK1 is important for the normal 

development of mice. The PDK1 knockout in mice (PDK1-/-) is embryonic lethal (day 

9.5) and the PDK1-/- embryos display multiple abnormalities including lack of somites, 

forebrain and neural crest-derived tissues (Lawlor et al., 2002). In addition to the normal 

development of mice, PDK1 plays a role in regulating cell size independently of cell 

number or proliferation and mediates the effects of insulin on activating Akt, S6K and 

RSK (Lawlor et al., 2002). 
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1.5.4 Regulation of PDK1 activity.  

 

1.5.4.1 PDK1 response to growth factors.  

In unstimulated cells PDK1 is mainly cytosolic, with some localization at the 

plasma membrane (Anderson et al., 1998; Deak et al., 1999). PDK1 was once thought to 

be constitutively active in resting cells and its activity did not change by growth factor 

stimulation (Casamayor et al., 1999). A pool of PDK1 is constitutive active in cells in 

the absence of growth factor stimulation which may be partly due to its constitutive 

association with the plasma membrane. Although, PDK1’s PH domain binds PI3,4,5P3 

with higher affinity than other PIs such as PI3,4P2 (Stokoe et al., 1997), the constitutive 

localization of PDK1 to the plasma membrane is attributed to its association with 

endogenous phosphatidylinositol-4,5-bisphosphate (Vanhaesebroeck and Alessi, 2000).  

It is uncertain whether PDK1 is directly activated or inhibited by any 

extracellular signals. Some reports show that PDK1 is growth factor-insensitive and 

others show PDK1 is growth factor-dependent and translocates to the plasma membrane. 

For example, PDGF stimulation of endothelial cells (Anderson et al., 1998) and insulin 

stimulation of HeLa cells (Filippa et al., 2000) and HEK293 cells (Park et al., 2001) 

cause a redistribution of PDK1 to the plasma membrane in a PI3K-dependent manner. 

However, others are unable to induce membrane localization of PDK1 in response to 

IGF-1 stimulation of HEK293 cells, although an increase in PDK1 kinase activity was 

demonstrated (Alessi et al., 1997a; Currie et al., 1999). Similarly, using Porcine Aortic 

Endothelial (PAE) cells overexpressing the PDGFR, translocation of PDK1 to the 

plasma membrane does not occur after stimulation with either IGF-1 or PDGF, but Akt 

activity is increased 6- and 8-fold respectively, suggesting PDK1 is activated (Currie et 

al., 1999). Similarly, insulin stimulation of adipocytes does not induce membrane 

translocation of PDK1, yet pervanadate, which is used to mimic the effect of insulin, 

potently induces PDK1 localization to the plasma membrane (Grillo et al., 2000).  

It is possible that PI3,4P2 and PI3,4,5P3 regulate the cellular localization of 

PDK1. However, the binding and localization of PDK1 to the plasma membrane may 

not significantly contribute to its intrinsic protein kinase activity. The PH domain of 

PDK1, in addition to its role in mediating membrane association, acts to auto-inhibit the 
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kinase activity of PDK1, and PI3,4,5P3 binding relieves this inhibition. Thus, the total 

effect of PI3,4,5P3 binding may also increase the catalytic activity of PDK1 towards its 

substrates (Filippa et al., 2000).  

 

1.5.4.2 PDK1 regulation by serine phosphorylation 

After the discovery of PDK1, there was much attention surrounding the 

regulation of PDK1 kinase activity by serine phosphorylation. The original PDK1 

studies identified several serine (Ser) residues, including Ser25, Ser241, Ser393, Ser396 

and Ser410, that were phosphorylated on PDK1 in unstimulated HEK293 cells, and the 

phosphorylation on these sites was unaffected by stimulation with IGF-1 (Casamayor et 

al., 1999). Substitutions of the individual serine sites with alanine, designed to mimic 

dephosphorylation, did not affect PDK1 activity. However, Ser241, unlike the other 

serine phosphorylation sites, contributes positively to PDK1 catalytic activity 

(Casamayor et al., 1999). Of these serine residues, Ser241 is also the only one that is 

highly conserved across different species and is located on the activation loop of PDK1 

kinase domain in an equivalent position to the site that PDK1 phosphorylates on its 

AGC kinase substrates (Mora et al., 2004). While phosphorylation on the activation loop 

is shown in certain instances to be required for PDK1 activity, it is not clear how the 

phosphorylation of this site is regulated. PDK1 purified from rabbit skeletal muscle 

could not be dephosphorylated on Ser241 or inactivated following the incubation with 

high concentrations of serine/threonine-specific protein phosphatase 2A (PP2A) or 

protein phosphatase-1 (PP-1) (Alessi et al., 1997a). It is possible that Ser241 is resistant 

to dephosphorylation by protein phosphatases because it is buried inside the PDK1 

protein (Cheng et al., 1998; Steinberg et al., 1993). PDK1 expressed in bacteria is active 

and phosphorylated on Ser241, demonstrating PDK1 can autophosphorylate at this 

residue (Casamayor et al., 1999). However, it cannot be ruled out that in mammalian 

cells other kinases besides PDK1 may phosphorylate Ser241 of PDK1. 

Contrary to the reported importance of Ser241 phosphorylation on PDK1, others 

have reported only a modest increase in Ser241 and Ser25 in response to stimulation of 

cells with insulin (Chen et al., 2001) or pervanadate (Park et al., 2001). Recently, a study 

showed that upon insulin stimulation PDK1 is phosphorylated on Ser164 and that its 
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activity is independent of Ser241 (Riojas et al., 2006). This study indicates that Ser164 

phosphorylation on PDK1 is necessary and contributes to PDK1 activity (Riojas et al., 

2006).   

 

1.5.4.3 PDK1 regulation by tyrosine phosphorylation. 

Tyrosine phosphorylation has recently emerged as an important component to 

PDK1 activation and function. Treatments including insulin, NGF, hydrogen peroxide 

(H2O2), pervanadate (an inhibitor of PTPs) and Src kinases increase tyrosine 

phosphorylation on PDK1 (Fiory et al., 2005; Grillo et al., 2000; Park et al., 2001; 

Prasad et al., 2000). Pervanadate significantly increases the tyrosine phosphorylation of 

PDK1 with only a modest increase in serine phosphorylation. Both H2O2 and 

pervanadate activate PI3K and increase PDK1 activity towards its substrates SGK and 

Akt (Prasad et al., 2000). Pervanadate stimulation induces a 1.5-3 fold increase in PDK1 

activity and specifically increases tyrosine phosphorylation on Tyr9, Tyr373 and Tyr376 

(Park et al., 2001). Tyr9 facilitates Tyr373/376 phosphorylation and Tyr373/376 

phosphorylation is important for PDK1 activity and membrane localization (Park et al., 

2001).  

Specific tyrosine kinases, i.e. c-Src and c-Abl, also phosphorylate PDK1 in vitro. 

Tyrosine phosphorylation of PDK1 by Abl kinase results in increased activity of PDK1 

toward SGK and Akt (Prasad et al., 2000) and Src is capable of phosphorylating PDK1 

on Tyr9, Tyr373 and Tyr485 (Park et al., 2001). Both Tyr373/376 are phosphorylated by 

Src kinase in vitro, and expression of Src leads to tyrosine phosphorylation and 

activation of PDK1 in HEK293 cells (Grillo et al., 2000; Park et al., 2001). Due to the 

regulation of PDK1 by insulin and Src kinases, PDK1 is implicated in insulin signalling 

(Grillo et al., 2000). PDK1 is recruited to the insulin receptor in response to insulin 

stimulation and binds directly to the receptor (a kinase) resulting in PDK1 tyrosine 

phosphorylation by the insulin receptor, an event required for activation of glucose 

uptake and glycogen synthesis (Fiory et al., 2005).  

The tyrosine phosphorylation state of PDK1 is not always dependent on PI3K. 

For example, effects of pervanadate may be dependent on PI3K, whereas those of Src 

and H2O2 may be independently of PI3K. The increase in tyrosine phosphorylation on 



 37

PDK1 by Src kinase and H2O2 (Prasad et al., 2000) is reported to be wortmannin (PI3K 

inhibitor)-insensitive, suggesting they act independent of PI3K, whereas, pervanadate- 

and insulin-induced tyrosine phosphorylation is dependent on PI3K activity (Fiory et al., 

2005; Park et al., 2001). Both serine and tyrosine phosphorylation have emerged as 

important mechanisms of PDK1 regulation, though it is unclear what the exact 

contribution of each has in controlling PDK1 activity and its influence on PI3K/Akt 

signalling. It is very interesting, however, that the Tyr residues in PDK1 targeted by Src 

reside in YXX(V/I/L) motifs similar to the ITIMs targeted by SHP-1 (Yang et al., 2000; 

Yang et al., 1998).  

 

1.6 Inactivation of PI3K signalling. 

PI3K signalling is terminated in different ways. One is by the dephosphorylation 

of PI3,4P2 and PI3,4,5P3 by lipid phosphatases. PTEN (phosphatase and tensin 

homologue deleted on chromosome 10) is a PI3,4P2 and PI3,4,5P3 phosphatase and 

functions as a tumor suppressor (Cantley and Neel, 1999). It converts PI3,4P2 to 

phosphatidylinositol-4-monophosphate (PI4P) and PI3,4,5P3  to phosphatidylinositol-

4,5-bisphosphate (PI4,5P2) (Cantley and Neel, 1999), blocking the recruitment of Akt to 

the plasma membrane and inhibiting Akt activation. In several types of human cancers 

PTEN is mutated and/or inactivated such that the PI3K/PDK1/Akt signalling pathway is 

constitutively activated due to the high levels of PI3,4,5P3 (Li et al., 1997). Mutations, 

frameshifts, or deletions in PTEN contribute to the phenotype in several glioblastoma 

cells lines (Li et al., 1997).  

Other phosphatases which downregulate PI3K signalling include SHIP-1 and 

SHIP-2 (for Src Homology domain-containing Inositol Phosphatases). These lipid 

phosphatases are capable of removing the 5'-phosphate from PI3,4,5P3 to yield PI3,4P2 

(Damen et al., 1996; Lioubin et al., 1996). PI3K can also be inactivated by the direct 

dephosphorylation of the regulatory subunit, p85 by protein tyrosine phosphatases such 

as SHP-1 (Cuevas et al., 1999; Yu et al., 1998c). 
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1.6.1 Regulation of PI3K signalling by SHP-1. 

As discussed above, SHP-1 is a regulator of a variety of signalling cascades, 

including the PI3K/Akt pathway. Most studies support SHP-1 as a negative regulator of 

this signalling cascade. The mode of regulation of PI3K signalling can occur either 

through direct regulation of the receptor or through binding to p85(PI3K)  (Cuevas et al., 

1999; Yu et al., 1998c). It is the N-terminal SH2 domain of SHP-1 that mediates the 

interaction between its substrates i.e. tyrosine phosphorylated receptors or p85 (Cuevas 

et al., 1999; Yu et al., 1998c). SHP-1 dephosphorylates p85 upon stimulation with IL-4 

(Imani et al., 1997) or PDGF (Yu et al., 1998c), and upon ligation of the TCR (Cuevas et 

al., 1999). SHP-1 interacts with and dephosphorylates receptors for IGF-1, PDGF, EGF 

(Tonks and Neel, 2001) and Ros (Keilhack et al., 2001). In response to PDGF 

stimulation of MCF-7 cells (human breast adenocarcinoma cell line) and TRMP cells 

(canine kidney epithelial cell line), SHP-1 associates with both p85 and the 

overexpressed PDGFR, resulting in the negative regulation of this signalling cascade 

(Yu et al., 1998c). SHP-1 specifically dephosphorylates p85 on Tyr688, which is 

required for PI3K activity, resulting in the inactivation of the PI3K pathway (Cuevas et 

al., 2001). Insulin stimulates the activation of SHP-1 and its association with the insulin 

receptor (Bousquet et al., 1998; Uchida et al., 1994). Viable motheaten mice (mev/mev), 

which bear a functionally deficient SHP-1 protein, display enhanced glucose tolerance 

and insulin sensitivity compared to wildtype littermates. mev/mev mice are found to have 

enhanced insulin receptor signalling as measured by an increase in PI3K activity and 

associated Akt phosphorylation in liver and muscle (Dubois et al., 2006). Other evidence 

for the negative modulation of PI3K activity by SHP-1 is demonstrated in T cell antigen 

receptor-stimulated thymocytes from SHP-1-deficient motheaten mice. In the motheaten 

thymocytes, PI3K activity and the level of Akt phosphorylation on Ser473 is markedly 

higher compared to wildtype cells (Cuevas et al., 2001). 

There is evidence that SHP-1 may also regulate PI3K through regulation of p85 

protein expression. Treatment of MCF-7 cells stably expressing SHP-1 with trichostatin-

A (TSA), a histone deacetylase (HDAC) inhibitor, results in a loss of p85 expression and 

Akt phosphorylation, and increases sensitivity of cells to TSA (Xu et al., 2003). 

Interestingly, different HDAC inhibitors affect the total cellular phosphotyrosine status 
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of cells by means of different mechanisms; butyrate represses the mRNA (and protein 

expression) of the c-src tyrosine kinase (Kostyniuk et al., 2002), wherease TSA induces 

SHP-1 expression specifically by increasing the activity of the tissue-specific P1 

promotor, as demonstrated in MCF-7 cells (Xu et al., 2001).  

In contrast, SHP-2, the orthologue to SHP-1, has been implicated in the positive 

regulation of PI3K in response to growth factor and cytokine signal transduction 

pathways. Like SHP-1, SHP-2 regulates signalling through association with the receptor 

or through binding to p85(PI3K). SHP-2 associates with and dephosphorylates the 

PDGFR (DeMali et al., 1999) and IGF-1R (Maile and Clemmons, 2002). SHP-2 also 

associates with IRS-1 to modulate the ability of EGF, insulin or IGF-1 to activate PI3K 

(Hayashi et al., 2004; Ugi et al., 1996).  A more direct role for SHP-2 in regulating PI3K 

is through its association with p85(PI3K). EGF stimulation of mouse fibroblast cells 

induces p85 co-immunoprecipitation with SHP-2 (Wu et al., 2001). Expression of a 

SHP-2 mutant with an N-terminal SH2 domain deletion results in impaired stimulation 

of PI3K and Akt phosphorylation in response to EGF, PDGF (Wu et al., 2001) and IGF-

1 (Ling et al., 2003). Similar to SHP-1, the SH2 domain of SHP-2 mediates its binding 

to target proteins and binds to the tyrosine motif, YxxV/I/L (Fujioka et al., 1996; Maile 

and Clemmons, 2002; Myers et al., 1998). SHP-2 was shown to associate with p85 in 

response to IL-2 in hematopoietic cells (Gesbert 1998, Craddock Welham 1997) and in 

U87MG glioblastoma cells in response to EGF stimulation (Wu et al., 2001). Wu et al. 

(2001) showed that EGF induced an association of p85 with SHP-2 and that deletion of 

the N-terminal SH2 domain of SHP-2 impaired PDGF- and IGF-induced Akt 

phosphorylation. Furthermore, they demonstrated that SHP-2 association with p85 was 

correlated with PI3K lipid kinase activity and Akt phosphorylation. More recently, in 

smooth muscle cells, IGF-1 induced SHP-2 binding to p85, an association which is 

disrupted with the substitution of tyrosines 528 and 556 to phenylalanine on p85 (Kwon 

et al., 2006). The loss of interaction under these conditions impaired PI3K activity and 

the cell migration associated with IGF-1 stimulation of smooth muscle cells (Kwon et 

al., 2006).  
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1.7 SHP-1 as a positive regulator of signalling pathways. 

Most research has been focused on the function of SHP-1 as a negative regulator 

of hematopoiesis and the immune system. However, there is evidence SHP-1 may be a 

positive regulator in development and differentiation of the CNS. SHP-1 is implicated as 

a positive regulator of neurotransmission and is reported to be localized at synaptic 

vesicles and interacts with vesicle-associated protein, synaptophysin (Jena et al., 1997). 

In the brains of motheaten mice, there is a decrease in the number of astrocytes and 

microglia and reduced myelination in the CNS, also implicating SHP-1 as a positive 

regulator of differentiation and proliferation of glia (Massa et al., 2004; Wishcamper et 

al., 2001).  

There is strong support for a positive role for SHP-1 modulation of the mitogen-

activated protein kinase (MAPK) pathway, which can regulate gene expression, mitosis, 

differentiation and cell survival (Pearson et al., 2001). In epithelial cells, SHP-1 activity 

was shown to be required for MAPK activation in response to EGF stimulation. When 

the catalytically inactive mutant of SHP-1, SHP-1(C455S), is overexpressed in HEK293 

cells the stimulatory effects of EGF or serum on cell proliferation, early gene 

transcription and DNA synthesis are strongly repressed (Su et al., 1996). Similarly, the 

phosphorylation of MAPK and of the mitogen and extracellular signal-activated protein 

kinase kinase (MEK) is markedly inhibited by overexpression of  SHP-1(C455S) (Su et 

al., 1996). Knockdown of the SHP-1 gene using siRNA causes a reduction of MAPK 

and Akt activation in response to EGF stimulation (Wang et al., 2006).  

Positive modulation of the MAPK pathway by SHP-1 has largely been 

characterized in non-hematopoietic cells. However, SHP-1 activity is also required for 

Ras-dependent activation of the MAPK pathway in hematopoietic cells (Krautwald et 

al., 1996). Using macrophages from viable motheaten mice the authors demonstrated a 

decreased activation of MAPK in response to colony-stimulating factor 1 (CSF-1), 

which is a growth factor that stimulates macrophage survival, growth and differentiation. 

Using a CSF-1-dependent macrophage cell line (BAC-1.2F5), they demonstrated that 

expression of a dominant-negative Ras mutant strongly reduced CSF-1-mediated 

stimulation of MEK and MAPK. In these cells SHP-1 was activated in the course of 
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mitogenic signal transduction in a Ras-dependent manner and the phosphatase activity 

was necessary for the activation of the MAPK pathway (Krautwald et al., 1996).  

Another pathway that has been identified as being positively modulated by SHP-

1 is the Janus kinases/signal transducers and activators of transcription (JAK/STAT) 

signalling pathway. The JAK/STAT pathway regulates cellular responses to cytokines 

and growth factors (Rawlings et al., 2004). This pathway plays a central role in cell fate 

decisions, regulating cell proliferation, differentiation and apoptosis (Rawlings et al., 

2004). SHP-1 also functions as a positive regulator of EGF- and interferon (INF)γ-

induced STAT activation in HeLa cells (You and Zhao, 1997).  

 

1.7.1 SHP-1 involvement in differentiation. 

SHP-1 has been identified as a central regulator in differentiation of both neurons 

and glia in the CNS. In me/me brains, there is a decrease in the number of astrocytes and 

microglia (Wishcamper et al., 2001) as well as a reduction in myelination in the CNS 

(Massa et al., 2004). These reports suggest SHP-1 may play a role in astrocyte 

differentiation and proliferation as well as for oligodendrocytes differentiation, 

maturation and survival. However, a positive role for SHP-1 during glial development 

may be specific to development as SHP-1 functions as a negative regulator in mature 

activated glia and microglia (Sorbel et al., 2002). 

SHP-1 may contribute to differentiation of PC12 cells. NGF results in 

differentiation of PC12 cells to a neuronal phenotype (Greene and Tischler, 1976; Huff 

et al., 1981) and results in the tyrosine phosphorylation of SHP-1 (Vambutas et al., 

1995). In contrast, the activated EGFR, which is also able to phosphorylate and activate 

SHP-1 (You and Zhao, 1997), does not induce differentiation in PC12 cells, but induces 

proliferation (Huff et al., 1981). Obviously, the role of SHP-1 is greatly dependent on 

the growth factor receptor that is stimulated. A direct role for SHP-1 in NGF-mediated 

events is suggested by the fact that SHP-1 can bind to the TrkA-receptor and that anti-

TrkA immunoprecipitates have protein tyrosine phosphatase activity (Vambutas et al., 

1995). This same group later demonstrated that SHP-1 negatively regulates TrkA 

through direct dephosphorylation of the receptor and that mice lacking SHP-1 had 

increased numbers of sympathetic neurons during the period of naturally occurring cell 
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death (Marsh et al., 2003). Although the role for SHP-1 in NGF-mediated differentiation 

remains unclear, these authors suggested that although SHP-1 in their study appeared as 

a negative regulator of TrkA, it may function in this manner in order to sustain TrkA 

sensitivity to NGF during the time of differentiation (Marsh et al., 2003). Src kinase, 

which phosphorylates SHP-1 in vitro, is also activated during NGF-induced PC12 

differentiation (Kremer et al., 1991), yet activation of the Src kinase member Lyn (often 

viewed as an anti-apoptotic event) is inhibited, most likely by SHP-1, during NGF-

induced PC12 differentiation (Daigle et al., 2002). 

This review of the literature has provided information on PI3K/PDK1/Akt 

signalling and how this can influence cell function; it has touched upon the role of 

tyrosine phosphorylation and the role of SHP-1 in modulating these events. It has also 

provided evidence that PDK1 is a kinase central to PI3K function. Not surprisingly, the 

tyrosine residues on PDK1 that may contribute to its function are targets for Src kinase 

and reside in YXX(V/I/L) motifs, putative targets for SHP-1. The function of Tyr-

phosphorylated PDK1, however, remains unclear. 

Given that both SHP-1 and PDK1 have been implicated in differentiation and 

that differentiation invariably involves a nuclear event, the last section of this review of 

the literature will provide information on the nucleus and on its potential as a subcellular 

target for SHP-1 and PDK1 localization. 

 

1.8 Nuclear shuttling of proteins.  

 Over the last several years, there has been mounting evidence for the presence of 

a nuclear-specific PI3K signalling pathway. In addition, key signalling components 

including an independent pool of PI3,4,5P3 and downstream effectors such as PDK1, 

Akt and PKCζ, are all present and activated in the nucleus (Neri et al., 2002; Neri et al., 

1999). In addition, modulators of PI3K signalling such as SHP-1 (Craggs and Kellie, 

2001; Yang et al., 2002b), PTEN (Lachyankar et al., 2000) and SHIP-2 (Deleris et al., 

2003) are also present in the nucleus.  
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1.8.1 Nuclear pore complex (NPC). 

The transport of proteins between the nucleus and the cytoplasm is necessary for 

the exchange of information within the cell. The bidirectional movement of molecules 

across the nuclear envelope is mediated by channels within the nuclear pore complex 

(NPC). The NPC is a huge macromolecular assembly with a mass of ~120 MDa in 

vertebrates and is composed of approximately 30 proteins, called nucleoportins (Fried 

and Kutay, 2003). The overall structure can be divided into basic parts: the nuclear 

basket, the central core and the cytoplasmic fibrils (Figure 1.9). Passive diffusion across 

the NPC occurs with ions and molecules smaller than 25-40 kDa (Fried and Kutay, 

2003). In contrast, proteins and RNA molecules larger than 40 kDa do not diffuse across 

the NPC (Fried and Kutay, 2003). Rather, macromolecules are carried through the 

central channel of the NPC by specific transport receptor proteins. These carriers are 

collectively referred to as karyopherins (Radu et al., 1995), with those involved in 

import (Gorlich et al., 1994) and export (Stade et al., 1997) termed importins and 

exportins, respectively. Many transport receptors are members of the 

importinβ superfamily. In some instances cargo proteins (i.e. proteins that are 

cotransported in and out of the nucleus) can bind directly to importinβ. However, most 

often, the interaction between importinβ and the cargo is mediated by the adaptor 

molecule importinα. Transport receptors identify specific signals, such as a nuclear 

localization signal (NLS) present within the cargo molecules which allows for the 

interaction and transport of that molecule into the nucleus. This type of transport 

requires energy, usually derived from GTP hydrolysis (Fried and Kutay, 2003).  

The energy for nuclear transport is provided by the small Ras family of GTPase, 

Ran (Quimby and Dasso, 2003). Like other GTPases, Ran cycles between a GTP- and a 

GDP-bound state (Bourne et al., 1990). The different forms of Ran are not evenly 

distributed in the cell, with RanGTP being found predominantly in the nucleus and 

RanGDP in the cytoplasm (Kalab et al., 2002; Smith et al., 2002). Therefore, import 

receptors bind cargo in the cytoplasm in the absence of RanGTP and release cargo 

proteins in the nucleus upon RanGTP binding to the complex. The importin-RanGTP 

complex is then recycled to the cytoplasm, where RanGTP is displaced from the
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Figure 1.9: The main structure of the nuclear pore complex (NPC). The NPCs are 

composed of approximately 30 proteins, collectively called nucleoportins. This huge 

macromolecular assembly is a calculated mass of 120 MDa in vertebrates. The basic 

architecture of the NPC can be divided into three basic elements: the nuclear basket, the 

central core and the cytoplasmic fibrils (Adapted from: Fried and Kutay, 2003). 
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importin by RanBP1 and/or RanBP2 and subsequently hydrolyzed by the RanGTPase in 

the presence of RanGAP (Figure 1.10). In contrast, export receptors bind cargo proteins 

in the nucleus in a complex with RanGTP. The trimeric complex is then translocated 

through the NPC to the cytoplasm, where RanGTP is removed from the complex by 

GTP hydrolysis to GDP and this triggers the dissociation of the exportin from the cargo 

protein (Figure 1.10). 

Proteins containing NLS are transported into the nucleus via NPC recognition. A 

NLS is a short peptide sequence with high content of basic amino acids residues (Jans et 

al., 2000; Moroianu, 1999). Three classes of NLS have been identified: (i) the SV40-like 

NLS is composed of a single peptide region containing basic residues, (ii) the bipartite 

NLS is composed of two regions of basic residues separated by a spacer, (iii) the third 

class NLS is uncommon and defined by the N-terminal signal of the yeast protein, Mat 

α2, K-I-P-I-K (Hall et al., 1984). There are some rare examples that do not conform to 

these three classes (Boehm et al., 1995; Dingwall and Laskey, 1991; Siomi and 

Dreyfuss, 1995). The NLS are specifically recognized by distinct importin proteins that 

help transport the targets into the nucleus (Moroianu, 1999). Binding of these proteins 

can be influenced by phosphorylation, which may increase the identification and 

interaction or hide the NLS of the protein.  

Exportins facilitate the nuclear export of several different proteins, RNA 

molecules and enzymes. The export receptor chromosomal region maintenance protein 1 

(CRM1) is the most versatile of all export factors, as it is involved in export of many 

different classes of proteins including cell cycle regulators, transcription factors and 

RNA binding proteins. Most commonly, CRM1’s export substrates that contain a short, 

leucine-rich nuclear export signal (NES) and the export complex formed with NES-

containing substrates requires RanGTP binding to CRM1 (Fornerod et al., 1997). 

 

1.8.2 Nuclear shuttling of SHP-1. 

Expression of SHP-1 is found in a variety of cells including hematopoietic and 

non-hematopoietic cells. In most hematopoietic cells, SHP-1 expression is high and 

localized predominantly in the cytoplasm. In contrast, SHP-1 in non-hematopoietic cells 

is found in both the cytoplasm and the nucleus under resting conditions
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Figure 1.10:  Nuclear shuttling of cargo proteins by importins and exportins. (Left) 

In the cytoplasm an importin binds to cargo proteins containing a nuclear localization 

signal and mediates interactions with the nuclear pore complex (NPC) to translocate the 

complex into the nucleus. Nuclear RanGTP binds to the importin and induces the release 

of the cargo protein from the complex. The importin–RanGTP complex is then recycled 

to the cytoplasm, where RanGTP is displaced from the importin by RanBP1 and/or 

RanBP2 and subsequently hydrolyzed by RanGTPase in presence of RanGAP. (Right) 

In the case of export, cargo protein with a nuclear export signal binds to an exportin 

induced by RanGTP in the nucleus and the trimeric complex is then translocated through 

the NPC to the cytoplasm, where RanGTP is removed from the complex by GTP 

hydrolysis and the exportin dissociates from the cargo. The exportin recycles back to the 

nucleus and is ready to translocate more cargo proteins to the cytoplasm (Adapted from: 

Fried and Kutay, 2003). 
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(Brumell et al., 1997; Ganesan et al., 2003; He et al., 2005). In both hematopoietic and 

non-hematopoietic cells, growth factor stimulation is shown to induce SHP-1 nuclear 

localization. For example, SHP-1 is constitutively present in the both cytosol and 

nucleus of liver cells extracted from Fischer rats, with the amount of SHP-1 present in 

the nucleus increasing in response to growth hormone (GH) (Ram and Waxman, 1997). 

Nuclear localization of SHP-1 is reported in non-hematopoietic cells A431 (skin cancer), 

COS-7 (monkey kidney), Swiss 3T3 (mouse fibroblast), A549 (human alveolar basal 

epithelial cells), MCF-7 and HeLa and in hematopoietic cells U937 (human lymphoma) 

(Craggs and Kellie, 2001; Tenev et al., 2000). EGF stimulation of HEK293 and COS-7 

as well as A431 and HT29 cells increases the translocation of SHP-1 to the nucleus 

(Craggs and Kellie, 2001; He et al., 2005). Other examples of ligand-induced nuclear 

localization of SHP-1 include; IL-4 stimulation of NIH3T3 cells and IL-4 and IL-7 

stimulation of PBLC-1, a hematopoietic cell line (Yang et al., 2002b). The subcellular 

localization and/or its potential to relocalize to the nucleus in different cell types could 

explain how SHP-1 can act as a negative regulator as well as a positive regulator of cell 

signalling. 

 

1.8.2.1 Mechanism of SHP-1 nuclear import. 

The mechanism of SHP-1 nuclear import has not been extensively studied. When 

SHP-1 was first cloned, it was reported to contain three nuclear localization-like motifs 

at the C-terminus, TTKKKLE (aa 518-524),  KVKKQRSAD (aa 576-584) and 

KNKGSLKRK (aa 587-595) (Yi et al., 1992). The latter basic sequences fall into a 

typical bipartite nuclear localization signal (NLS). Craggs and Kellie (2001) reported 

that SHP-1 is localized to the nucleus of several non-hematopoietic cell lines including, 

HEK293, HeLa, MCF-7, A549, primary rat embryo fibroblast and CHO (Chinese 

hamster ovary) cells, and excluded from the nucleus in several other hematopoietic cell 

lines including, HL-60, U937 macrophage and Jurkat T-cell leukemia. These authors 

mutated the various NLS on SHP-1 and identified the C-terminal cluster of basic amino 

acids (KRK) as functioning independently and required for nuclear import (Craggs and 

Kellie, 2001). This finding was unexpected as the accepted paradigm for bipartite NLS 

is that neither basic region can function independently to target proteins to the nucleus. 
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However, this finding was not unprecedented; T cell protein tyrosine phosphatase 

(TCPTP) is another example of a PTP where the basic regions of the bipartite NLS 

function independently to a limited degree (Tiganis et al., 1997).  

There remains some controversy regarding the requirement for the bipartite NLS 

for nuclear localization of SHP-1. Yang et al. (2002) demonstrate that both basic regions 

of the SHP-1 NLS are required for nuclear localization in NIH3T3 cells. Using EGFP-

fusion proteins containing three different fragments of the C-terminal region of the SHP-

1 NLS, (amino acid (aa) 551-595; aa 576-595; aa 588-595) the subcellular localization 

of the fusion proteins was determined. Fusion proteins containing both C-terminal 

bipartite regions completely localized to the nucleus. This finding was also reproduced 

in a macrophage cell line, Bac1.2f5 cells, using the fusion protein, EGFP(551-595). In 

these cells expression of the EGFP(551-595) protein fragment plasmid is expressed 

exclusively in the nucleus of all transfected cells (Yang et al., 2002b). 

 Nuclear import of SHP-1 is likely mediated through recognition of its NLS by 

the NPC. This has not been extensively researched, but there is evidence that SHP-1 

nuclear import occurs through a GTP-independent mode of import (Tenev et al., 2000). 

GTP-independent import, unlike GTP-dependent import, is activated by increased 

cytoplasmic calcium (Ca2+) levels and occurs in a calmodulin-dependent manner. 

Treatment of A431 and HaCaT (human epidermal keratinocytes) cells with the calcium 

ionophore, A23187, increases the localization of SHP-1 to the nucleus. This localization 

is blocked with a calmodulin antagonist, calmidazolium chloride, suggesting SHP-1 

nuclear import is mediated by a Ca2+-calmodulin-dependent mechanism (Tenev et al., 

2000). GTP-independent and Ca2+-calmodulin dependent nuclear transport has been 

reported to occur (Sweitzer and Hanover, 1996). Although GTP-dependent nuclear 

import of SHP-1 has not been demonstrated, it can not be excluded as a mechanism of 

SHP-1 nuclear import. 

 

1.8.2.2 Role for nuclear SHP-1. 

 Functions for SHP-1 in the nucleus have not been fully characterized. It is 

possible that SHP-1 localization to the nucleus might be a way to prevent interactions 
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with cytoplasmic signalling molecules or that it has specific nuclear phosphoprotein 

targets and/or that it modulates nuclear signalling cascades.  

SHP-1 localizes to the nucleus of cultured liver cells and in rat liver in vivo in 

response to stimulation with GH (Ram and Waxman, 1997). GH regulates the 

transcription of a variety of genes that mediate growth and metabolism (Thomas, 1998). 

The actions of GH are mediated through activation of STAT transcription factors which 

are involved in regulating cell proliferation, differentiation and apoptosis (Thomas, 

1998). GH also induces nuclear translocation of SHP-1 and binding to tyrosine-

phosphorylated STAT5b, (but not to STAT3) (Ram and Waxman, 1997). These authors 

suggest that the nuclear inactivation of STAT5b by SHP-1 may contribute to the 

sustained sensitivity of STAT5b to GH, unlike STAT3 (which does not bind SHP-1), 

which becomes desensitized to GH over time (Ram and Waxman, 1997). An indirect 

link between SHP-1 and STATs is suggested by the observation that overexpression of 

SHP-1 in A431 cells leads to the attenuation of the EGF-dependent STAT signalling 

(Tenev et al., 2000). In inducible SHP-1-expressing A431 cells, SHP-1 mediates a 

reduction in STAT1/3 DNA binding activity when stimulated with EGF (Tenev et al., 

2000).  

 

1.8.3 Other PTPs that contain a NLS. 

 There are several PTPs besides SHP-1 that contain a NLS and shuttle between 

the cytoplasm and the nucleus including PTEN, PEST-enriched phosphatase (PEP) 

(Flores et al., 1994), non-receptor protein tyrosine phosphatase-ε (NRPTPε) (Kraut et 

al., 2002) and PP-1 (Lesage et al., 2004). For example, PTEN accumulates in the 

nucleus during cell differentiation (Lachyankar et al., 2000) or cell cycle (Gil et al., 

2006; Ginn-Pease and Eng, 2003). Localization of PTEN to the nucleus is mediated by 

its own NLS-like motif which is located in the N-terminal region of PTEN (Chung and 

Eng, 2005; Chung et al., 2005). The role of importins in PTEN nuclear entry is not clear, 

but it is known that nuclear accumulation of PTEN occurs in a RanGTP-dependent 

manner (Gil et al., 2006). Several reports have demonstrated that the function of PTEN 

in the nucleus is independent of its catalytic activity and depends on the direct 

interaction of PTEN with nuclear target proteins, such as the tumor suppressor p53 
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(Freeman et al., 2003) or the oncoprotein MSP58/MCRS1 (Okumura et al., 2005). 

However, the phosphatase activity of PTEN is required for other functions mediated by 

nuclear PTEN. For example, the catalytic activity of PTEN mediates the decrease in 

cyclin D1 levels in the nucleus leading to cell cycle arrest (Chung and Eng, 2005; Radu 

et al., 2003; Weng et al., 2001). Interestingly, the catalytic activity of nuclear PTEN may 

mediate growth suppression independent of Akt activity (Liu et al., 2005). In addition, 

several findings indicate a proapoptotic function for nuclear PTEN. Active PTEN 

purified from vascular smooth muscle cell nuclei dephosphorylated PI3,4,5P3 (Deleris et 

al., 2003), and nuclei from NGF-treated PC12 cells incubated with recombinant PTEN 

showed increased apoptotic DNA fragmentation (Ahn et al., 2004). 

 A role for nuclear TCPTP is implicated in regulating cell proliferation. 

Alternative splicing of the TCPTP transcript generates a 45-kDa form that lacks the 

hydrophobic segment at the C-terminial (Champion-Arnaud et al., 1991; Tillmann et al., 

1994). This 45-kDa form of TCPTP is found in the nucleus, and a NLS has been 

identified in the C-terminal segment (residues 550-381) (Lorenzen et al., 1995; Tillmann 

et al., 1994). The nuclear localization of TCPTP suggests a potential role for this 

phosphatase in cell cycle regulation. TCPTP lacking the NLS can revert transformation 

of Rat2 cells, as well as inhibit the potential of these cells to induce tumor growth in 

nude mice (Zander et al., 1993). Furthermore, overexpression of TCPTP in U87MG 

glioblastoma cells inhibits proliferation and anchorage-independent growth in vitro and 

suppresses the tumorigenicity of U87MG cells implanted in mice (Klingler-Hoffmann et 

al., 2001). There is a decreased proliferation rate of TCPTP null fibroblasts compared to 

wildtype fibroblasts (Ibarra-Sanchez et al., 2001). Further investigation of the cell cycle 

revealed a reduced progression through the G1 phase and delayed induction of cyclin D1 

in TCPTP null cells. These cells presented delayed activation of NFκB and decreased 

IκB kinase (IKKβ) activity, suggesting that TCPTP might exert a positive regulatory 

effect on the cell cycle by enhancing signalling through the NFκB pathway (Ibarra-

Sanchez et al., 2001). The ability of NFκB to stimulate cell proliferation and to prevent 

apoptosis can undoubtedly favor cancer development, and activation of NFκB has been 

linked with many human cancers (Ghosh and Karin, 2002). In other types of cancer, 
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such as colon cancer, decreased activity of NFκB is associated with tumorigenesis 

(Deng et al., 2002). 

 

1.8.4 Nuclear shuttling of PDK1. 

In unstimulated cells, endogenous PDK1 resides mostly in the cytoplasm with a 

small pool being localized at the plasma membrane. In most cells constitutive nuclear 

PDK1 is not often observed (Grillo et al., 2000; Kim et al., 2001; Lim et al., 2003; 

Scheid et al., 2005). However, it can localize to the nucleus upon growth factor (i.e. 

insulin, IGF-1, NGF and PDGF) stimulation (Lim et al., 2003; Salinas et al., 2000; 

Scheid et al., 2005). This suggests PDK1 shuttles between the nucleus and cytoplasm, 

with the rate of nuclear export occurring at a higher rate than the import rate (Kikani et 

al., 2005). The above mentioned growth factors all have been associated with activation 

of the PI3K pathway. Lim et al. (2003) demonstrate an increase in the nuclear 

accumulation of PDK1 in PTEN-/- embryonic fibroblasts which suggest that PDK1 

nuclear shuttling is regulated by the PI3K pathway and the availability of PI3,4,5P3.  

 

1.8.4.1 PDK1 mechanism of nuclear export. 

The nuclear export of PDK1 is mediated through its own nuclear export signal 

(NES). Deletion mapping and mutagenesis of mouse PDK1 identified a functional NES 

located between the kinase domain and the PH domain (amino acid residues 382-391) 

(Lim et al., 2003). It is most likely that the NES of PDK1 associates with the nuclear 

export protein CRM1 which allows for its cytoplasmic relocalization through the NPC 

(Kutay and Guttinger, 2005). Evidence for this is demonstrated by treatment of cells 

with leptomycin-B (LMB), a compound that dissociates CRM1 from RanGTP and 

substrates (Kutay and Guttinger, 2005). LMB treatment of CHO/IR (Chinese hamster 

ovary cells overexpressing the insulin receptor) and MCF-7 cells causes nuclear 

accumulation of PDK1 (Lim et al., 2003; Scheid et al., 2005).  

 

1.8.4.2 Mechanism of PDK1 nuclear import. 

The mechanism used for the import of PDK1 into the nucleus is unknown. It has 

been suggested by Scheid et al. (2005) that phosphorylation on Ser396 located close to 
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the NES is important for shuttling of PDK1 to and from the nucleus. Indeed, mutating 

Ser396 to Ala reduces the import of PDK1 into the nucleus of PTEN-/- MEF (mouse 

embryonic fibroblast) cells stimulated with PDGF and in MCF-7 cells treated with IGF-

1, although some localization of PDK1Ser396Ala to the nucleus still occurs. These same 

authors offer two explanations for their observation; first, phosphorylation on Ser396 

may occur at the plasma membrane which subsequently allows for its import into the 

nucleus. Second, phosphorylation on Ser396 may occur in the nucleus where it could 

influence the adjacent NES resulting in the disruption of the CRM1-PDK1 complex that 

forms prior to nuclear export. Interestingly, these same authors observed that 

overexpression of PDK1 did not result in a proportional increase in nuclear PDK1 upon 

growth factor stimulation, suggesting that a component of the nuclear import mechanism 

may be saturated and, thus, be unable to contribute to additional PDK1 nuclear 

accumulation. Others have tried to explain nuclear entry of PDK1 by suggesting PDK1 

contains a NLS bipartite-like motif which could influence nuclear localization (Kikani et 

al., 2005). Drosophila PDK1, Dstpk61, has a putative bipartite nuclear localization 

signal (Clyde and Bownes, 2000), which could influence nuclear localization; however, 

this has never been adequately demonstrated. 

 

1.8.4.3 Roles of nuclear PDK1. 

Similar to SHP-1, the function of nuclear PDK1 and its nuclear targets are 

currently being characterized. There is evidence that shuttling of PDK1 to the nucleus is 

required for growth and proliferation. Stable expression of PDK1 in Comma-1D 

(mammary epithelial) cells induces anchorage-independent growth whereas stable 

expression of PDK1ΔNES, which is unable to localize to the cytoplasm because of a 

deleted NES (ΔNES), inhibits anchorage-independent growth (Lim et al., 2003). 

Similarly, NMuMg (mouse mammary epithelial) cells stably expressing PDK1 survived 

better than cells expressing PDK1ΔNES when exposed to UV induced cell death (Lim et 

al., 2003).  

Nuclear shuttling of PDK1 may also mediate signalling of the nuclear PI3K 

pathway. The presence of nuclear PI3,4,5P3 and key signalling components of the PI3K 

pathway, including PI3K, Akt, PKCζ, p70S6KβI and p70S6KβII, are all found present 
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and activated in the nucleus (Neri et al., 2002). PDK1 could directly phosphorylate its 

substrates in the nucleus. For example, insulin, which stimulates PI3K activity and Akt 

phosphorylation, also induces PDK1 localization to the nucleus in cells (Lim et al., 

2003). Scheid et al. (2005) demonstrated that overexpressed PDK1mNES (with serine 

substitution at L380 and F384 causing it to accumulate in the nucleus) colocalized with 

Akt and repressed transcriptional activity of FOXO3a. Upon phosphorylation Akt and 

other AGC kinases phosphorylate FOXO3a causing it to redistribute to the cytoplasm 

where it docks with the 14-3-3 sequestering proteins (Brunet et al., 1999). This reduces 

FOXO3a transcriptional activity and, ultimately, inhibition of apoptosis (Brunet et al., 

1999). These findings suggest a functional role for PDK1 in the nucleus; however, they 

do not support the finding by Lim et al. (2003) who demonstrate that PDK1 localization 

to the nucleus does not alter Ser241 phosphorylation or kinase activity of PDK1, but 

simply negatively regulates its function (i.e. activation of Akt) by virtue of removal from 

the cytoplasm.  

  Nuclear PDK1 has been implicated in the effects of NGF in PC12 cells (Martelli 

et al., 2003) and COS-7 cells (Salinas et al., 2000). In the latter case, NGF stimulation 

induces nuclear and perinuclear localization of PDK1 (Salinas et al., 2000). Nuclear- 

specific PI3K signalling has been suggested to be mediated by PDK1 (Neri et al., 2002). 

PDK1 has also been shown to translocate to the nucleus with peroxisome proliferator 

activated-receptor-γ (PPARγ) in response to PPARγ agonists and to induce transcription 

of genes required for adipocyte differentiation (Yin et al., 2006).  

 

1.8.5 Nuclear import by “piggy-back.” 

 There are numerous proteins that do not contain recognition signals for the NPC 

(i.e. NLS or NES), but are still able to undergo nuclear shuttling. The nuclear shuttling 

of such proteins can occur via a “piggy-back” mechanism. For example, IL-5 affects 

nuclear transport of its α- and β-receptor subunits apparently through a “piggy-back” 

mechanism. IL-5 is central in regulating eosinophilia in allergic disease and parasitic 

infections (Sanderson, 1990). The receptor for IL-5 is comprised of an α-subunit which 

recognizes IL-5 specifically (Takaki et al., 1990) and a β-subunit which lacks ligand-

binding activity, but is essential for signal transduction (Devos et al., 1991). Human 
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(h)IL-5 possesses a functional NLS signal and localizes to the nucleus of intact receptor-

expressing cells (Jans et al., 1997b). Only in the presence of both the hIL-5 binding α-

subunit and hIL-5 was the β-subunit (which lacks IL-5 binding activity) able to 

accumulate in the nucleus (Jans et al., 1997a). Similiary, the nuclear accumulation of the 

IL-5-binding α-subunit was dependent on the presence of IL-5 (Jans et al., 1997a). 

 The serine/threonine phosphatase PP-1 is expressed in all eukaryotic cells and 

controls numerous cellular processes including metabolism, cell division, apoptosis and 

protein synthesis (Bollen, 2001; Cohen, 2002). Although PP-1 is very abundant in the 

nucleus, the mechanism underlying its nuclear translocation is unknown. PP-1 (36-38 

kDa) is small enough to enter the nucleus passively; however, this is not the most likely 

mechanism because PP-1 does not appear to exist in the cell as a free monomer (Bollen 

and Stalmans, 1992). PP-1 isoforms contain classical bipartite nuclear NLS that mediate 

transport by importins (Okano et al., 1997), but the functionality of the NLS of many of 

these isoforms is unclear. Another possible mechanism for nuclear translocation is 

“piggy-back” transport involving the cotransport with an interactor that contains an NLS 

(Mizuno et al., 1996; Turpin et al., 1999; Zhao and Padmanabhan, 1988). At least four 

nuclear interactors of PP-1 have either putative NLS as is the case for PP-1 nuclear 

targeting subunit (PNUTS) and Sds22 or established NLS found in the nuclear inhibitor 

of PP-1 (NIPP) and SIPP1, making them candidate cotransporters of PP-1 (Allen et al., 

1998; Jagiello et al., 2000; Llorian et al., 2004; Stone et al., 1993). Also, strains of 

Saccharomyces cerevisiae that carried temperature-sensitive sds22 alleles showed a 

rapid loss of nuclear PP-1 under restrictive conditions, providing additional evidence for 

a role of Sds22 in maintaining the normal nuclear localization of PP-1 (Peggie et al., 

2002). One isoform, PP-1γ1, does not contain a functional NLS and its nuclear 

accumulation and nuclear targeting depends on the interaction with NIPP1 and PNUTS 

that contain both a NLS and a binding motif (RVXF) for PP-1γ1. PP-1γ1 mutants with a 

cytoplasmic accumulation are retargeted to the nucleus by the overexpression of NIPP1 

and PNUTS with a functional RVXF motif (Lesage et al., 2004). 

 The mechanism of “piggy-backing” also occurs for the export of proteins from 

the nucleus. For example, the dual-specificity MKP-3 is found to regulate the nuclear 

localization of ERK2. MKP-3 is localized in the cytoplasm and contains a NES within 
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its N-terminal non-catalytic domain (Karlsson et al., 2004). This NES mediates the 

CRM1-dependent nuclear export of MKP-3 and functions independently of a conserved 

KIM (kinase interaction motif), which mediates ERK binding and is also located in this 

domain of the protein. The observation that either mutation of the NES or exposure of 

cells to the export inhibitor LMB, causes MKP-3 to accumulate in the cell nucleus, 

suggests that MKP-3 is capable of nucleo–cytoplasmic shuttling (Karlsson et al., 2004). 

In addition to dephosphorylation and inactivation of ERK2, MKP-3 is able to sequester 

ERK2 in the cytoplasm. Furthermore, mutation of either the NES or the KIM abolished 

cytoplasmic anchoring, indicating that both motifs within MKP-3 are required for this 

function. These findings suggest that MKP-3 regulates the activity as well as the 

subcellular localization of ERK2 (Karlsson et al., 2004).  

 Similarly, the oncoprotein v-ErbA, a virally-derived, dominant negative variant 

of thyroid hormone receptor (TR), contains a NES and is actively exported to the 

cytoplasm by the CRM1 export receptor (Bunn et al., 2001; DeLong et al., 2004). In situ 

protein-protein interaction assays, and colocalization studies in transiently transfected 

cells indicate that v-ErbA dimerizes with TRα and the retinoid X receptor (RXR) and 

sequesters a significant fraction of the two nuclear receptors in the cytoplasm (Bonamy 

et al., 2005). Bonamy et al., (2005) suggest that the mislocalization is most likely due to 

the CRM1-mediated nuclear export of TRα and RXR, which are “piggy-backed” to the 

cytoplasm by v-ErbA after formation of the dimers in the nucleus (Bonamy and Allison, 

2006). The mislocalization of TR, RXR and possibly other coactivators by v-ErbA 

blocks these transcription factors from their normal function in the nucleus which may 

contribute to cellular transformation by v-ErbA, resulting in cancer (Bonamy and 

Allison, 2006).  

  

1.8.6 Can SHP-1 regulate PDK1 function and localization? 

Both SHP-1 and PDK1 function at the plasma membrane; however, independent 

reports also provide evidence of their being localized to the nucleus. SHP-1 interacts 

with proteins that contain ITIMS, with the consensus sequence pYXX(V/I/L). SHP-1 is 

capable of dephosphorylating Src kinase substrates (Frank et al., 2004). As PDK1 is a 
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Src kinase substrate (Park et al., 2001) and as it contains putative ITIM-like motifs, it is 

not unreasonable to consider a regulatory role for SHP-1 in PDK-1 function. 

Furthermore, it is obvious that not all proteins that translocate to the nucleus 

have a NLS, thus suggesting that the notion of a “piggy-back”-like mechanism may be 

prevalent. The same holds true for proteins that do not contain a NES but appear to cycle 

through the nuclear compartment. Perhaps a similar mechanism accounts for the ability 

of SHP-1 (with its NLS) and PDK1 (with its NES) to shuttle into and out of the nucleus 

under a variety of conditions? 
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1.9 Objectives. 

 This review of the literature reflects the linear PI3K signalling model, initiated 

by membrane-bound receptor tyrosine kinases and PI3K-mediated phospholipid 

production at the plasma membrane, as a means for regulating Akt function. While this 

paradigm is championed repeatedly in the growth factor receptor field, several issues 

must be considered; first, PI3K function/activity is more often than not measured 

indirectly as it is simply more convenient to infer/assess its activity by the 

phosphorylation status of its primary effector Akt. However, Akt phosphorylation need 

not always directly reflect PI3K function, second; our laboratory has recently shown that 

activation of the sigma2 receptor system by the antipsychotic drug haloperidol induces 

PI3K activity and a concurrent loss of Akt phosphorylation (Dai et al., 2007, in press). 

Furthermore, differentiation of C6 glioma cell cultures using dibutyryl-cAMP (in 

combination with serum withdrawal) can induce PI3K activity (Roymans et al., 2001), 

while inhibiting the phosphorylation of Akt (Van Kolen and Slegers, 2004). A similar 

uncoupling is observed in differentiated 3T3-L1 adipocytes chronically treated with GH 

(Takano et al., 2001). It is the contention of this laboratory that this “uncoupling” of 

PI3K activity and Akt phosphorylation has been observed before, but is not published. 

 With this in mind, this thesis was originally undertaken to determine why PI3K 

signalling does not concord with Akt phosphorylation during growth of C6 cells in 

serum-free medium and to determine how this compares/contrasts with “normal” linear 

PI3K/PDK1/Akt signalling. During the course of this work, a unique means of 

regulation of PI3K function by SHP-1 was observed in these cells. The regulation of 

PDK1 phosphorylation/localization/function by SHP-1 became the focus of this thesis. 

 

The specific objectives of this thesis are: 

(1) To identify the function of SHP-1 in CNS cell lines. 

(2) To determine how SHP-1 modulates the PI3K/PDK1/Akt pathway in C6 

glioblastoma cells using serum withdrawal as a model of cell stress. 

(3) To determine if SHP-1 can interact with PDK1 in a phosphotyrosine-dependent 

manner. 

(4) To determine the significance of PDK1 and SHP-1 nucleo-cytoplasmic shuttling. 
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2.  MATERIALS AND METHODS 

 

2.1 Reagents. 

 All reagents used were of molecular biological or analytical grade. The names of 

the reagents and their suppliers are listed in Table 2.1. The addresses of the individual 

suppliers from which all supplies were obtained are given in Table 2.4. 

 

2.2 Culture of mammalian cell lines. 

C6 rat glioblastoma (ATCC #CCL-107: Rattus norvegicus), human embryonic 

kidney (HEK293) (ATCC #CRL-1573: Homo sapiens) and pheochromocytoma (PC12) 

(#CRL-1721: Rattus norvegicus) cell lines were utilized throughout the course of this 

work. C6 and HEK293A cells were propagated in Dulbecco’s modified Eagle’s Medium 

(DMEM): Nutrient Mixture 4.0 mM/L L-glutamine, 1000 mg/L glucose, 110 mg/L 

sodium pyruvate, supplemented with 10% fetal bovine serum (FBS) in tissue culture 

plates and grown at 37°C in a 5% CO2 environment.  

C6 and HEK293A cells were passaged bi-weekly by aspirating the medium from 

the culture plates, washing with PBS and adding Trypsin-EDTA. The detached cells 

were resuspended in DMEM containing 10% FBS, and seeded to a ratio of 1:4.  

PC12 cells were cultured on cell cultured plates coated with rat tail collagen type 

I (200 μg/mL) using medium containing Ham's F12K medium with 2 mM L-glutamine 

adjusted to contain 1.5 g/L sodium bicarbonate, 82.5%; horse serum, 10%; FBS, 5%. 

They were propagated bi-weekly by removing the adhered cells with 5 mL of fresh 

medium and cell suspensions were passed through a syringe 5 times to break up the cell 

clusters. Cells were then seeded to a ratio of 1:3. 

Stocks were prepared by detaching cells from their plates with trypsin (C6 and 

HEK293A) or by medium (PC12), as detailed above. The cells were then suspended in 

Gibco recovery cell culture freezing medium. The cells were placed in a NalgeneCryo 

1°C Freezing Container and placed at -70°C for 24 hrs, then stored in liquid nitrogen.
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Table 2.1: Lists of Reagents and Suppliers. 
Reagents Supplier 

Absolute Ethanol BDH 
Acrylamide Bio-Rad 
Agarose Invitrogen 
Ammonium Persulfate EMD 
Bovine Serum Albumin EMD 
Bromophenol Blue Sigma 
Calcium Chloride BDH 
Chloroform BDH 
Coomassie Brilliant Blue R-250 Sigma 
1,2-Diacyl-sn-glycero-3-phospho-L-serine  Sigma 
Diethylpyrocarbonate (DEPC) BDH 
Dimethylsulfoxide (DMSO) Sigma 
N,N-Dimethylformamide BDH 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) Calbiochem 
Ethidium Bromide Sigma 
Ethylene-Diamine Tetraacetic Acid Disodium Salt (EDTA) Sigma 
Ethylene Glycol Bis (2-Aminoethyl Ether)-N,N,N’N’-Tetraacetic 
Acid Disodium Salt (EGTA) 

Sigma 

Goat Serum Sigma 
Glacial Acetic Acid EMD 
D-Glucose BDH 
Glycerol MP Biomedicals 
β-Glycerophosphate BDH 
L-Glycine MP Biomedicals 
N-2-Hydroethylpiperazine-N’-2-Ethane Sulfonic Acid (HEPES) USB 
Hydrochloric Acid (HCl) EMD 
Isobutanol BDH 
Isopropanol EMD 
LiCl EMD 
L-α-Phosphatidylinositol 4,5-diphosphate sodium salt Sigma 
Magnesium Chloride (MgCl2) EMD 
Magnesium Sulfate (MgSO4) EMD 
β-Mercaptoethanol EMD 
Methanol BDH 
Non-fat Dry Milk Carnation Nestle 
NZ amine (casein hydrolysate) Sigma 
Okadaic Acid Sigma 
Paraformadehyde EMD 
Phenol Sigma 
Phenylmethylsulfonyl Fluoride (PMSF) Sigma 
1,4-Piperazine Diethane Sulfonic Acid, Sodium Salt (PIPES) EMD 
Polyethylene Glycol (PEG) Sigma 
Potassium Chloride (KCl) BDH 
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Table 2.1: Lists of Reagents and Suppliers. (continued)  
Reagents Supplier 

Protease Inhibitor Cocktail Sigma 
Sodium Acetate BDH 
Sodium Chloride (NaCl) VWR 
Sodium Bicarbonate (Na2CO3) EMD 
Sodium Dodecyl Sulfate (SDS) ICN 
Sodium Fluoride (NaF) Sigma 
Sodium Hydroxide (NaOH) EMD 
Sodium Orthovanadate Sigma 
Sodium Pyrophosphate Sigma 
Sucrose BDH 
N,N'- methylene-bis-acrylamide Bio-Rad 
N,N,N’,N’-Tetramethylenediamine (TEMED) Bio-Rad 
Tris-Acetate EMD 
Tris-HCl INC 
Triton-X100 Sigma 
TrizolTM GIBCO-BRL 
Trypsin-EDTA GIBCO-BRL 
Tween-20 EMD 

Cell Growth Reagents Supplier 
Ampicillin EMD 
Bacto-Agar BD 
Bacto-Tryptone BD 
Bacto-Yeast Extract BD 
Calf Serum GIBCO-BRL 
Collagen Type I (rat tail) BD 
Dulbecco’s Modified Eagle’s Medium: DME/Low  Hyclone 
Fetal Bovine Serum GIBCO-BRL 
Kanamycin Sigma 
Opti-MEM Reduced Serum Medium Invitrogen 
Recovery Cell Culture Freezing Medium GIBCO-BRL 

Pharmacological Agents Supplier 
A23187 Sigma 
BAPTA-AM  Sigma 
Leptomycin-B Cedarlane 
LY294002 Cell Signaling 

Transfection Reagents Supplier 
ExGen500 Fermentas 
Lipofectamine2000 Invitrogen 
SiLentFect Lipid Reagent BioRad 

Radioactive-Substrates Supplier 
32P (250 μCi/μl) Perkin-Elmer 
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Table 2.2: List of Antibodies and the Dilutions used for Western Blotting. 
Primary Antibody Dilution Supplier 

β-Actin (A5441) 1 : 3000 Sigma-Aldrich Inc 
Akt (total) 1 : 750 Cell Signaling 

Technology (CST) 
ERK1 and ERK2 MAP Kinase (M5670)  1 : 2000 Sigma-Aldrich Inc 
FOXO3a 1 : 1000 CST 
Gab-1 (C-Terminal) 1 : 1000 Upstate 
GSK-3β 1 : 1000 Santa Cruz 

Biotechnology (SCB) 
HA-tag 1 : 750 Biovision 
PDK1 Monoclonal 1 : 1000 CST 
PDK1 Polyclonal 1 : 1000 SCB 
PDK1 (Ser241) 1 : 1000 CST 
Phosphatidylinositol-3,4,5-triphosphate-Biotin 
conjugated 

1 : 5000 Echelon 

Phospho-p44/42 MAP Kinase (Thr202/Tyr204) 
(E10) Monoclonal (#9106) 

1 : 1000 CST 

Phospho-Akt (Ser473) 1 : 750 CST 
Phospho-Akt (Thr308) 1 : 500 CST 
Phospho-GSK-3β (Ser9) 4G10 1 : 1000 SCB 
Phosphotyrosine 4G10 1 : 3000 Upstate 
Phosphoserine 1 : 1000 Sigma-Aldrich Inc 
Phospho-S6 Ribosomal protein Ser235/236 1 : 1000 CST 
PtdIns (3,4,5)P3 IgM Biotin 1 : 100 Echelon  
PTEN-HPR (milk only) 1 : 1000 SCB 
p85 (SH3) Monoclonal 1 : 1200 Upstate 
p85 (SH2) Polyclonal 1: 1000 Upstate 
SHP-1/PTP1C Monoclonal 1 : 750 BD Biosciences 
SHP-1/SHPTP1 (C19) Polyclonal 1 : 1000 SCB 
SHP-2/PTP1D Monoclonal 1 : 1500 BD Biosciences 

Secondary Antibody Dilution Supplier 
Alexa Fluor 488 Goat Anti-Rabbit IgG 1 : 1000 Invitrogen 
Alexa Fluor 594 Goat Anti-Rabbit IgG 1 : 700 Invitrogen 
Alexa Fluor 488 Streptavidin conjugate 1 : 2000 Invitrogen 
Donkey Anti-Goat IgG, HRP-conjugate 1 : 3000 SCB 
Goat Anti-Rabbit IgG, HRP-conjugate  1 : 3000 Cedarlane  
Goat Anti-Mouse IgG, HRP-conjugate 1 : 3000 Cedarlane 
Rabbit Anti-Sheep IgG, HRP-conjugate (#12-342) 1 : 6000 Upstate  
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Table 2.3:  List of Commercial Kits. 
Commercial Kit Supplier 

BCA™ Protein Assay Kit Pierce 
SuperScript™ III First-strand Synthesis System for RT-PCR Invitrogen 
Qiaex II Gel Extraction Kit 500 Qiagen 
Quantum Prep® Plasmid Midiprep Kit BioRad 
QuikChange® Site-Directed Mutagenesis Kit Stratagene 

 
 
Table 2.4: List of Oligonucleotides (Invitrogen) for Site-directed Mutagenesis,    
Subcloning and siRNA S=Sense A.S.= Anti-Sense.  

Gene Name 
and mutation 

Primer Sequence and Orientation for Mutagenesis 

p85 Y688D  5'-CCCTATAACTTGGATAGCTCTCTGAAAG-3' (S) 
p85 Y688D  5'-CTTTCAGAGAGCTATCCAAGTTATAGG-3'  (A.S.) 
PDK1 Y9F  5'-CCAGCCAGCTGTTTGACGCCGTGCC -3' (S) 
PDK1 Y9F  5'- GGCACGGCGTCAAACAGCTGGCTGG-3' (A.S.) 
PDK1 Y333F 5'-TGAGGAAATGGAAGGATTCGGACCTCTTAAAGCAC -3' (S) 
PDK1 Y333F 5'- GTGCTTTAAGAGGTCCGAATCCTTCCATTTCCTCA-3' (A.S.) 
PDK1 Y373F 5'-ACGACGAGGACTGCTTTGGCAATTATGACAATCTC -3' (S) 
PDK1 Y373F 5'-GAGATTGTCATAATTGCCAAAGCAGTCCTCGTCGT -3' (A.S.) 
PDK1 Y376F 5'-GGACTGCTATGGCAATTTTGACAATCTCCTGAGCC -3' (S) 
PDK1 Y376F 5'-GGCTCAGGAGATTGTCAAAATTGCCATAGCAGTCC -3' (A.S.) 
PDK1 S241E  5'-CAAGCCAGGGCCAACGAATTCGTGGGAACAGC-3'(S) 
PDK1 S241E  5'-GCTGTTCCCACGAATTCGTTGGCCCTGGCTTG-3' (A.S.) 
Primer Name Primer Sequence and Orientation for Subcloning 
SHP-1 FXhoI 5'-ATCTCGAGTGCTGTCCCGTGGGTGG -3' (S) 
SHP-1 REcoRI 5'-GGAATTCTCACTTCCTCTTGAGGGAACCC -3' (A.S.) 
PDK1 FSalI 5'-TTAGTCGACTTGCCAGGACCACCAGCC-3' (S) 
PDK1 RBglII 5'-ATAAGATCTCTGCACAGCGGCGTCC-3' (A.S.) 

siRNA 
Oligomers 

Primer Sequence and Orientation 

SHP-1 5 5'-GCUCUACUCUGUGACCAACUGUAAA-3' (S) 
SHP-1 5 5'-UUUACAGUUGGUCACAGAGUAGAGC-3' (A.S.) 
SHP-1 6 5'-GCGAGAGGUAUCAUGGUCACAU-3' (S) 
SHP-1 6 5'-AUGUGACCAUGAUACCACCUCUCGC-3' (A.S.) 
SHP-1 7 5'-CCACUCGGGUAAAUGCAGCAGACAU-3' (S) 
SHP-1 7 5'-AUGUCUGCUGCAUUUACCCGAGUGG-3' (A.S) 
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Table 2.5: Names and Addresses of Suppliers. 
Supplier Address 

BD (Becton Dickinson) 2771 Bristol Circle, Oakville, ON., Canada 
BDH 501-45th Street West, Saskatoon, SK., Canada 
Bio-Rad 5671 McAdam Road, Mississauga, ON., Canada 
Cedarlane Laboratories  5516 8th Line, Hornby, ON., Canada 
Cell Signaling 
Technology Inc.  

159J Cummings Center Beverly, MA 01915, USA 

Echelon Biosciences Inc. Box 58537, Salt Lake City, UT 84158-0537, USA 
EMD Biosciences Inc. 10394 Pacific Center Court, San Diego, CA 92121, USA 
Fermentas Life Sciences 830 Harrington Crt., Burlington, ON., Canada 
GIBCO-BRL Box 9418, Gaithersburg, MD 20898, USA 
ICN Biomedicals Inc 15 Morgan, Irvine, CA 92618-2005, USA 
Invitrogen 1600 Faraday Avenue, Carlsbad, CA 92008, USA 
Molecular Probes  
MP Biomedicals 29525 Fountain Pkwy.,  Solon, OH 44139, USA 
Perkin-Elmer 501 Rowntree Dairy Road, Woodbridge, ON., Canada 
Promega 2360 Argentia Road, Mississauga, ON., Canada 
Santa Cruz 
Biotechnology 

2161 Delaware Ave., Santa Cruz, CA, USA 

Sigma 2149 Winston Park Drive, Oakville, ON., Canada 
Upstate USA Inc. 4588 Collections Center Drive Chicago, IL 60693, USA 
USB 300 Laurier Blvd., Brockville, ON., Canada 
Qiagen 2800 Argentia Road, Unit 7 Mississauga, ON., Canada 

 

 

2.3 Western blotting. 

 

2.3.1 Isolation of protein lysates from mammalian cell lines. 

 Medium was aspirated from cells and the cells were rinsed in 10 mL of PBS. 

Lysis buffer consisting of 1% TritonX-100, 1% NP40, 10% glycerol, 1 mM EDTA, 20 

mM Tris pH 7.4, 1 mM Na orthovanadate, and 1X of mammalian anti-protease cocktail, 

was added to each 100 mm culture dish. Cells were scraped into microcentrifuge tubes, 

lysed for 30 min on ice and centrifuged at 12000×g at 4°C for 30 min. Protein 

concentration of lysates was determined using a BCA Protein Assay Kit and 

concentrations of proteins were analyzed using a Spectra Max Plus384 microplate reader 

from Molecular Devices, at a wavelength of 562 nm. Protein lysates were diluted to 1 

μg/μL with lysis buffer and 1X loading buffer and boiled for 5 min at 95°C. 
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2.3.2 Protein immunoprecipitation. 

 300-500 μg of cell protein lysates were incubated with 3-5 μg of antibody and 

incubated overnight at 4°C with rocking. 30 μL Sepharose A for polyclonal antibodies 

or Sepharose G for monoclonal antibodies was added to the lysates and incubated for 1 

hour at 4°C with rocking. Samples were centrifuged at 8000×g for 5 min and washed 

with ice-cold lysis buffer three times. 25 μL of 1X loading buffer was added to the 

Sepharose pellet and boiled for 5 min at 95°C. 

 

2.3.3 Subcellular fractionation. 

Cells were grown in a 100 mm cell culture plate. Following treatment or 

transfection, cells were washed with ice-cold PBS and removed from plate using 

Trypsin-EDTA. Total cell lysates were obtained as described above. Subcellular 

fractions were obtained by centrifuging cell suspension at 2500×g, for 5 min and 320 μL 

suspension buffer containing 20 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 1 mM 

EGTA, 1 mM DTT, 320 mM sucrose and 1X protease inhibitor cocktail, was added to 

pellet and the cell suspension was homogenized. Cells were disrupted with 20 strokes 

using a Dounce Homogenizer. Homogenates were centrifuged at 900×g at 4°C for 10 

min to remove nuclei and cellular debris. The supernatant was then centrifuged at 

18000×g for 40 min at 4°C to separate the heavy membrane compartment from the 

soluble fraction. The 18000×g pellets were resuspended in cold lysis buffer and 

represented the mitochondria-rich fraction. The 18000×g supernatant was used as the 

cytosolic fraction. 

To isolate nuclear extracts, cells were resuspended in 1 mL Hypotonic buffer 

containing 20 mM HEPES, 1 mM MgCl2, 10 mM KCl, 2 mM PMSF, 0.5 μM DTT, 5 

μg/mL Aprotinin, 5 μg/mL Leupeptin, 0.1 % Triton X-100 and 20 % Glycerol and the 

cell suspension was homogenized. Cells were disrupted with 20 strokes using a Dounce 

Homogenizer. Homogenates were centrifuged at 900 rcf at 4°C for 5 min to separate the 

soluble fraction from the nuclei. The nuclei were resuspended in 100 μL of cold 

Extraction buffer containing 20 mM HEPES, 1 mM MgCl2, 10 mM KCl, 2 mM PMSF, 

0.5 μM DTT, 5 μg/mL Aprotinin, 5 μg/mL Leupeptin, 0.1 % Triton X-100, 20 % 

Glycerol and 420 mM NaCl, and rocked for 20 min at 4°C. Samples were centrifuged 
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for 10 min at 18000×g, to pellet nuclear matrix. The remaining supernatant contained the 

nuclear extract. 

 

2.3.4 Resolution of proteins by SDS-PAGE. 

Proteins were resolved by SDS-PAGE. The resolving gel was composed of 

acrylamide (X1 for 8%; X2 for 10%): N,N'-methylene-bis-acrylamide (37.3:1-acryl:bis), 

375 mM Tris-HCl at pH 8.8, 0.1% SDS. The stacking gel was composed of acrylamide:  

N,N'-methylene-bis-acrylamide (37.3:1-acryl:bis), 130 mM Tris-HCl at pH 6.8 and 0.1% 

SDS. The resolving gel and stacking gel were polymerized with 0.1 % APS and 0.04% 

TEMED. Quantified protein lysates were added onto the gel and proteins were 

electrophoresed at 100 volts (Bio-Rad PowerPac200) in running buffer composed of 25 

mM Tris-HCl pH 7.4, 250 mM glycine and 0.1% SDS. 

 The resolved samples were then transferred onto a nitrocellulose membrane 

using a Bio-Rad Transblot apparatus at 0.23 amps for 55 min at 4°C in a buffer 

composed of 39 mM glycine, 48 mM Tris-HCl and 20% methanol. The membrane was 

incubated with a 5% milk solution (Carnation non-fat dry milk dissolved in TBS) and 

blocked for 1 hr at RT. The membrane was then incubated with primary antibody in 

TBS containing 0.5% Tween-20 (TBST) with 5% milk solution for 2 hr at RT or 

overnight at 4°C, and washed three times with the TBST-5% milk solution. The 

membrane was incubated with secondary antibody conjugated to horseradish peroxidase 

(HPR) in TBST-5% milk for 1 hr. This was followed by three 10 min washes with 

TBST-5% milk. The Amersham Biosciences ECLTM Western Blotting Detection 

Reagent was used to detect conjugated HPR. The signal protein-antibody complex was 

detected using Amersham Biosciences HyperflimTM or Kodak T-Mat L/RA film. 

 

2.4 Bacterial strains and medium preparation. 

 The Escherichia coli (E. coli) strains DH5α (methylating) and BW58 (non-

methylating) were used for replication of plasmid DNA. Details of the strain can be 

found elsewhere (Hanahan 1983; Bethesda Research Laboratories 1986). 

 Double yeast and tryptone (dYT) plates were used to propagate the bacterial cells 

following transformation with plasmid. Selection was dependent on the ampicillin 
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(Amp) or the kanamycin (Kan) resistance gene expressed by the plasmid. The plates 

were prepared by combining 16 g of bacto-tryptone, 10 g of bacto-yeast extract, 5 g of 

NaCl and 15 g of agar in 1 L of double distilled water (ddH2O). This solution was 

autoclaved for 20 min at 15 lb/sq. After the temperature of the medium had cooled 

sufficiently, ampicillin or kanamycin was added to a final concentration of 50 μg/mL 

and the medium was poured into Petri dishes. 

 Terrific Broth, as described by Sambrook et al. (1989), was used to propagate 

bacterial cells in a liquid medium overnight at 37ºC with agitation. This medium was 

prepared by combining 12 g of bacto-tryptone, 24 g of bacto-yeast extract and 4 mL of 

glycerol in 900 mL of ddH2O. This solution was autoclaved as above. The medium was 

complete by adding 100 mL sterile solution of 0.17 M KH2PO4 and 0.72 M K2HPO4 and 

the appropriate antibiotic. 

 

2.5 General biochemical techniques. 

 Protocols in this section are based on those described in (Sambrook et al., 1989).  

 

2.5.1 Plasmid DNA. 

SHP-1 and SHP-2 cDNA cloned into the pcDNA3 mammalian expression vector 

as well as their catalytic (SHP-1C455S and SHP-2C453S) and substrate binding (SHP-

1D421A and SHP-2D419A) mutants were obtained from Dr. S.H. Shen (Molecular 

Pharmaceutical Sector, National Research Council of Canada). The PTENC124S 

phosphate-dead plasmid was a kind gift from Dr. D.H. Anderson (Saskatchewan Cancer 

Agency, Canada). PH-mRFP1 was provided by Dr. E.R. Prossnitz (Department of Cell 

Biology and Physiology, University of New Mexico) with permission for transfer of an 

mRFP1-based plasmid obtained from Dr. R.Y. Tsien (Howard Hughes Medical Institue, 

UCSD). The constituively active, N-myristoylated full-length membrane-directed mouse 

Akt (myr-Akt) cDNA was a gift from Dr. A.B. Vojtek (University of Michigan, Ann 

Arbor, MI). The N-myristoylated full-length membrane-directed PDK1 (myr-PDK1) and 

pEGFP (green fluorescent protein)-PDK1 expression vectors were obtained from Drs. S. 

Kim and J. Chung (Korea Advanced Institute of Science and Technology, Republic of 

Korea). Any mutagenesis was done according to section 2.6.8. 
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2.5.2 Preparation of competent cells.  

 A single colony of E. coli was used to inoculate 5 mL of LB broth in a 50 mL 

sterile conical tube and incubated overnight at 37°C with agitation. A 2 mL aliquot of 

this culture was used to inoculate 200 mL SOB medium (2% Bacto-trypone, 0.5% yeast 

extract, 10mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4), and a sample was 

removed and used to determine the optical density (O.D.) of the culture at time zero. The 

culture was grown at 37°C with agitation until an O.D. of 0.45 was reached. The culture 

was aliquoted into 50 mL pre-chilled sterile conical tubes and incubated on ice for 10 

min before pelleting at 2500 rpm for 10 min at 4°C in a mid-range Alegra 25R 

centrifuge from Beckman Coulter. The supernatant was removed and the cell pellets 

were resuspended in 32 mL of an ice-cold transformation buffer containing 15 mM 

CaCl2, 250 mM KCl, 10 mM PIPES and 55 mM MnCl2 at pH 6.7 and left on ice for 10 

min. The cells were pelleted and then resuspended in 8 mL of fresh transformation 

buffer containing 7% DMSO and incubated on ice for 10 min. Cells were aliquoted into 

pre-chilled sterile tubes and stored at -80°C. 

 

2.5.3 Large scale isolation of plasmid DNA. 

 

2.5.3.1 Transformation of competent cells with plasmid DNA. 

 A 50 μL aliquot of competent cells was incubated with 1 μg of plasmid DNA in a 

13 mL polypropylene tube and incubated for 30 min on ice. The cells were subjected to 

heat-shock at 42°C for 45 sec to allow transformation. The cells were incubated on ice 

for 2 min, SOC medium (SOB medium containing 20 mM glucose) was added and 

incubated for 30 min at 37°C with shaking, 250 rpm, after which they were plated on an 

dYT-selection agar plate and incubated overnight at 37 °C. Single colonies of bacteria 

were selected and propagated for plasmid isolation. 

A 500 mL culture of Terrific Broth containing 0.17 M KH2PO4 and 0.72 M 

K2HPO4 and the appropriate antibiotic was inoculated with a 5 mL culture grown from a 

single bacterial colony and grown overnight at 37°C with agitation (250 rpm).  
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2.5.3.2 DNA extraction. 

Bacterial cells were centrifuged at 5000×g for 10 minutes. The pellet was washed 

with 100 mL ice cold 1X PBS and centrifuged at 5000×g for 10 minutes. The pellet was 

resuspended in 20 mL of solution I (50 mM Glucose, 25 mM Tris-Cl, 10 mM EDTA, pH 

8) by vortexing. 40 mL of NaOH/SDS lysis solution II (0.2 M NaOH, 1% SDS) was 

then added and the tube was gently inverted 8 times. Solution III (20 mL) was added and 

the tube was gently inverted eight times. Solution III neutralizes the NaOH in solution II 

and precipitates the genomic DNA and SDS. The solution was then centrifuged at 

5000×g for 15 min. The supernatant was filtered through cheesecloth in a centrifuge 

bottle and 48 mL of isopropanol was added and mixed followed by centrifugation 

5000×g, 15 min at RT. The supernatant was removed and the DNA pellet was rinsed 

with 85% ethanol (EtOH) and allowed to evaporate. The pellet was then dissolved in 3 

mL TE (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) and poured into a 15 mL Cortex tube.  

 

2.5.3.3 Removal of RNA. 

4.8 mL of ice cold 5M LiCl was added to the above solution and vortexed. The 

solution was centrifuged at 9000×g for 10min to pellet the precipitated RNA. The 

supernatant containing the plasmid DNA was transferred to a 30 mL cortex tube and 7.8 

mL of isopropanol was added and mixed to precipitate the plasmid DNA. The solution 

was centrifuged at 9000×g for 10 min (RT) and the supernatant was removed. The pellet 

was rinsed with 85% EtOH. The EtOH was allowed to evaporate and the pellet was 

dissolved in 500 μL TE. The remaining RNA was digested with 0.1 mg/mL RNase at 

RT for 30 min.  

 

2.5.3.4 Protein extraction. 

The plasmid DNA was precipitated with 400μl PEG solution (1.6 M NaCl and 

13% (w/v) PEG800) and pelleted with centrifugation at 12000×g for 2min, 4°C. The 

DNA pellet was dissolved in 500 μL TE and proteins were extracted twice with 500 μL 

phenol. After each extraction, samples were centrifuged at 14000×g for 5 min and the 

top (aqueous) layer was transferred to a fresh tube. The phenol was removed using 500 
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μL chloroform, then centrifuged at 14000×g for 5 min and the top (aqueous) layer was 

transferred to a fresh tube. 

 

2.5.3.5 Precipitation of pure DNA. 

NaCl was added to the sample to a final concentration of 125 mM and DNA was 

precipitated by adding two volumes of absolute EtOH (400 μL each time) and 

centrifuged at 12000×g for 5min (RT). 85% EtOH was added to samples and vortexed 

briefly before being centrifuged at 12000×g for 2 min (RT, 4°C). The supernatant was 

removed and the EtOH was allowed to precipitate before dissolving the DNA in sterile 

ddH2O. The plasmid DNA pellet was resuspended in sterile ddH2O to a concentration of 

1 μg/μL as determined by O.D. at 260 nm where 1 O.D. corresponds to 50 μg plasmid 

DNA.  
 

2.5.4 Medium scale isolation of plasmid DNA. 

For medium scale isolation of plasmid DNA the BioRad Quantum Prep® 

Plasmid midiprep Kit is based on the alkaline lysis method described in Section 2.5.3 

Large scale isolation of plasmid DNA. The kit was used as per the manufacturer’s 

instructions. 

 

2.5.5 Mini scale isolation of plasmid DNA. 

A 2 mL culture of Terrific Broth with the appropriate antibiotic was inoculated 

with a single bacterial colony and grown overnight at 37°C. Isolation of the plasmid was 

based on the alkaline lysis method described by Sambrook et al. (1989). The plasmid 

DNA pellet was resuspended in sterile ddH2O to a concentration of 1 μg/μL as 

determined by O.D. at 260 nm where 1 O.D. corresponds to 50 μg plasmid DNA.  

 

2.6 DNA manipulation. 

 

2.6.1 Isolation of total RNA from mammalian cell lines. 

The cell lines were grown to 70% cell confluency on 100 mm cell culture plates. 

Medium was removed and the cells were washed with PBS. A 0.75 mL volume of 
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TRIzol™ reagent (GibcoBRL) was added to each plate. Cells were scraped into a 

microcentrifuge tube and incubated for 5 min. A 200 μL volume of chloroform was 

added to the tube, gently agitated, and incubated at RT for 15 min. The emulsion was 

separated by centrifugation at 12000×g for 15 min at 4°C. The supernatant was removed 

and transferred into 500 μL of isopropanol, followed by incubating 10 min at RT. RNA 

was pelleted by centrifugation at 12000×g for 10 min at 4°C. Supernatant was removed 

and the pellet washed with 70% ethanol/DEPC. The ethanol was allowed to evaporate 

and the pellet suspended in 50 μL DEPC-treated ddH2O. The RNA was heated at 65°C 

for 5 min to dissolve. RNA concentration was determined using a Du640 

spectrophotometer from Beckman Coulter. An O.D. ratio (e.g. 260/280 nm) between 

1.6-1.9 indicated that the isolated RNA is free of DNA and protein. 

  

2.6.2 Reverse transcription of mRNA. 

Reverse transcription of mRNA was performed using Invitrogen’s Superscript™ 

III First-strand Synthesis System for RT-PCR. The RNA/primer mixture was prepared 

by combining 5 μg of RNA with 1 μL of 50 ng/μL random hexamers, 1 μL 10 mM 

dNTP mix to 10 μL DEPC-treated water. The mix was incubated for 5 min at 65°C and 

placed on ice for 1 min. The cDNA synthesis mix was prepared in a solution containing 

1X RT buffer, 5 mM MgCl2, 10 mM DTT, 40 U RNaseOUT (40 U/μL) and 200 U 

Superscript III RT (200 U/ μL), and 10 μL was added to each RNA/primer mixture and 

incubated for 10 min at 25°C followed by 50 min at 50°C. Reactions were terminated by 

heating at 85°C for 5 min. Cooled reactions were then incubated with 1 μL RNase H, 

which was added to each tube and incubated for 20 min at 37°C. cDNA synthesis 

reactions were stored at -20°C or used for PCR. 

 

2.6.3 Polymerase chain reaction (PCR).  

 PCR is an in vitro technique used for exponentially amplifying DNA, via 

enzymatic replication. This technique is based on polymerases, i.e. Taq-polymerase is 

used to amplify DNA for screening purposes and Pfu-polymerase, which contains a 

proofreading function, is used to amplify DNA for the purpose of subcloning or 

sequencing.  
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 Taq-based PCR began with a 1 min, 95°C denaturing step, followed by 25 cycles 

of denaturing (30 sec, 94°C), annealing (30 sec, 50°C), and extension/elongation (1 

min/kb, 72°C). The PCR program included a final elongation time of 5 min at 72°C. 

 Pfu-based PCR began with a 1 min, 95°C denaturing step, followed by 30 cycles 

of denaturing (30 sec, 94°C), annealing (30 sec, 52°C), and extension/elongation (1 

min/kb, 72°C). The PCR program included a final elongation time of 5 min at 72°C. 

 

2.6.4 Agarose gel electrophoresis. 

 DNA was subjected to agarose gel electrophoresis on a 1% agarose gel in a 40 

mM Tris-Acetate and 1 mM EDTA at pH 8.0 (TAE) buffer and 0.5 μg/mL ethidium 

bromide in a TAE running buffer. DNA samples were mixed with an appropriate 

volume of 5X agarose gel sample buffer, consisting of 50% glycerol, 50 mM EDTA, a 

trace of bromophenol blue and xylene cyanol FF at pH 8.0, before being loaded onto the 

gel. Electrophoresis was typically carried out between 80 and 100 Volts, until the 

necessary resolution was achieved. 

 

2.6.5 DNA extraction. 

DNA extractions from agarose were performed using Qiaex II Gel Extraction Kit 

500 as per the manufacturer’s instructions. 

 

2.6.6 Restriction digest of DNA. 

 Digestion of DNA with restriction enzymes was carried out using 1 μg DNA in a 

solution containing 1X Reaction buffer (selected by manufacturer’s recommendations), 

and 1-2 U of individual restriction endonucleases in a final volume of 20 μL with 

ddH2O. Typically, samples were incubated at 37°C for 1-2 hr. 

 

2.6.7 Subcloning. 

After DNA extraction from agarose gel, digested insert and plasmid were 

combined with >3 fold excess of insert to plasmid in 2 μL of 10X ligation buffer and 5U 

of T4 DNA ligase (5U/μL) in a final volume of 20 μL with ddH2O. The ligation mixture 

was incubated overnight at 21°C. Following the ligation, 5 μL of the ligation mixture 
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was transformed into the appropriate bacterial strain and plated on dYT plates 

containing the appropriate antibiotic selection and grown overnight at 37°C. Colonies 

were selected and grown in dYT medium with antibiotic selection and screened for 

insertion of the ligated DNA insert by restriction digestion of islolated plasmid DNA. 

 

2.6.8 Site-directed mutagenesis.  

Mutagenesis of DNA was performed using QuikChange® Site-Directed 

Mutagenesis Kit as per the manufacture’s instructions. Briefly, 25 ng of double-stranded 

(ds)DNA was combined with a solution containing 1X reaction buffer, 125 ng forward 

primer and reverse primer and 1 μL of dNTP mix. The mixture was then subjected to 

PCR for incorporation of the mutation. Following PCR, the methylated parent dsDNA 

was digested using 10 U of Dpn I (10 U/ μL), which selectively cleaves methylated 

DNA, for 1h at 37°C. The remaining mutated dsDNA was then transformed into XL1-

Blue supercompetent cells and 0.5 mL NZY+ broth (10 g NZ amine casein hydrolysate, 

5 g yeast extract, 85.5 mM NaCl, 12.5 mM MgCl2, 12.5 mM MgSO4, 20 mM glucose, 

pH 7.5) was added to the transformed bacteria. The transformed cells were then 

incubated at 37°C with agitation for 1 h and plated on dYT plates containing the 

appropriate antibiotic selection. 

 

2.7 Treatment of mammalian cell lines. 

 

2.7.1 Transfection of mammalian cell lines. 

Cells were plated the day before transfection experiments onto 100 mm cell 

culture plates, and grown to 70-80% confluency. The transfection mixture was made by 

combining 20 μg DNA in 914 μL 150 mM NaCl solution incubated with 66 μL 

ExGen500. The combined mixture was incubated for 10 min at room temperature (RT) 

before adding it to the cultured cells. Transfected cells were then incubated at 37°C in 

5% CO2 for 4 h. The medium was aspirated and replaced with DMEM with 10% FBS. 

Transfection efficiency ranged from 20% in C6 cells to 50% in PC12 cells and 80% in 

HEK293A cells. 
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When conducting the MTT reduction assay, cells were transfected with 

Lipofectamine2000. Cells were passaged the day before onto 96-well culture plates and 

grown to 70-80% confluency. The transfection mixture was made by combining 0.2 μg 

DNA in 25 μL DMEM serum-free medium and mixed with 0.5 μL Lipofectamine2000 

in 25 μL DMEM serum free medium which had been pre-incubated for 5 min at RT. The 

transfection mixture was incubated at RT for 20 min before adding it to the cultured 

cells, transfected cells were then incubated at 37°C in 5% CO2 for 4 h. The medium was 

then aspirated and replaced with DMEM with 10% FBS.  

 

2.7.2 Pharmacological treatment of cell lines. 

 

2.7.2.1 PI3K signalling inhibitor. 

Cells were passaged the day before treatment and grown to 70-80% confluency 

in 100 mm cell culture plates. The PI3K signalling pathway was inhibited using the 

chemical inhibitor LY294002 (25 μM, 30 min). After treatment of cells, protein lysates 

were subject to Western blot (see Section 2.3). 

 

2.7.2.2 Nuclear pore complex (NPC) inhibitors. 

Leptomycin B (LMB) is a specific inhibitor of CRM-1, which is responsible for 

the export of proteins out of the nucleus (Kutay and Guttinger, 2005; Lim et al., 2003; 

Scheid et al., 2005). BAPTA-AM is a calcium chelator used to inhibit nuclear pore 

complex (NPC) formation (Macaulay and Forbes, 1996). The calcium ionophore, 

A23187 is used to activate Ca2+-calmodulin dependent nuclear transport of proteins by 

the NPC (Tenev et al., 2000). Cells were treated with LMB (50 nM, 3 h), BAPTA-AM 

(100 μM, 30 min), or A23187 (5 μM, 10 min) before fixing cells for confocal 

microscopy (see Section 2.8) or collecting protein lysates for Western blot (see Section 

2.3).  

 

2.7.2.3 Protein tyrosine phosphate (PTP) inhibitor. 

 Pervanadate is a general PTP inhibitor. Before treating cells, cell culture medium 

was preincubated with vanadate (100 μM) and H2O2 (100 μM) at RT for 15 min to allow 



 74

formation of pervanadate. Cell culture medium was aspirated and replaced with the 

pervanadate solution and incubated for 30 min, 37°C. 

 

2.8 Confocal microscopy. 

 

2.8.1 Fluorescence. 

Cells were grown in chambered cell culture slides and transfected with DNA 

designed to express fluorophores, e.g. GFP or RFP. After 24 h of transfection, cells were 

rinsed once with PBS, warmed to 37°C and removed. Cells were fixed using 4% 

paraformaldehyde and incubated for 30 min at RT or over night (O/N) in a humidity box 

at 4°C. After fixing with paraformaldehyde, cells were washed with PBS three times. 

For nuclear staining, cells were first permeabilized with 0.5% Triton-100/PBS for 15 

min at RT and washed with PBS three times followed by staining with DAPI (1 μg/mL) 

for 5 min. Cells were washed three times with PBS. Mounting medium, ProLong Gold 

antifade (Molecular Probes), was then added to the slides and a 22 X 50 mm (1 once) 

micro coverslip was used to cover cells. The slide was allowed to cure on a flat surface 

and analyzed using an Olympus FV300 confocal microscope. 

 

2.8.2 Immunofluorescence. 

Cells were grown in chambered cell culture slide and fixed with 4% 

paraformaldehyde for 30 min at RT or O/N in a humidity box at 4°C. Cells were washed 

with PBS three times and then permeabilized with 0.5% Triton-100/PBS for 15 min at 

RT. Cells were washed three times with PBS. The slide was blocked with 3% BSA/TBS 

and incubated for 30 min followed by three PBS washes. Primary antibody (monoclonal 

1:100 and polyclonal 1:500) diluted in 3% BSA/TBST was added and incubated at RT 

for 90 min and washed with PBS three times. Secondary antibody diluted in H2O was 

added and incubated for 90 min and washed three times with PBS. Nuclear staining was 

done using DAPI as described above in section 2.8.1. The slide was dried and mounting 

medium, ProLong Gold antifade reagent, was added. A coverslip was added and allowed 

to cure on a flat surface in the dark. Samples were analyzed using an Olympus FV300 

confocal microscope. 
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2.8.2.1 PI3,4,5P3 immunofluorescence. 

 Cells were grown in chambered cell culture slide and fixed with an equal volume 

of 4% paraformaldehyde in cell medium for 20 min at RT. Cells were washed three 

times with TBS then permeabilized with 0.5% Triton-100/TBS for 15 min at RT. Cells 

were washed with TBS three times and blocked with 10% goat serum (GS)/TBS 30 min 

at 37°C or overnight at 4°C. Anti- PI3,4,5P3 antibody (1:100) diluted in TBST-GS was 

added to cells and allowed to incubate for 60 min followed by three washes with TBST-

GS. Streptavidin-AlexaFluor 488 (1:2000) diluted in TBS was added to cells and 

incubated for 30 min at 37°C. Following incubation, cells were rinsed with H2O, dried 

and sealed with mounting medium, ProLong Gold antifade reagent. The slide was 

allowed to cure on a flat surface in the dark. Samples were analyzed using an Olympus 

FV300 confocal microscope. 

 

 2.9 PI3K activity assay. 

Cells were grown on 100 mm culture plates. After treatment, cells were washed 

with PBS and PLC lysis buffer containing 50 mM Hepes, pH 7.5, 150 mM NaCl, 10% 

glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA, 10 mM NaPPi 

(pyrophosphate), 100 mM NaF with freshly added 1x protease cocktail and 1 mM Na 

orthovanadate, was added to each 100 mm culture dish. Cells were scraped into 

microcentrifuge tubes, lysed for 30 min and centrifuged at 12000×g at 4°C for 30 min. 

Protein concentration of lysates was determined using a BCA Protein Assay Kit. 

Samples were immunoprecipitated using the p85 (SH3) antibody O/N at 4°C. 

Following incubation, 30 µL of protein Sepharose A was added to lysates and incubated 

for 1h at 4ºC for 30-60 min. Samples were centrifuged at 5000×g for 30 sec. Liquid was 

aspirated and the Sepharose pellet was washed with 500 µl HNTG wash buffer 

containing 20 mM Hepes, pH 7.5, 150 mM NaCl, 1.0% Triton X-100, 10% glycerol and 

1 mM Na orthovanadate and centrifuged. The washes and centrifugation were repeated 

three times. Samples were kept at 4ºC until ready to use for [γ-32P]ATP incorporation. 

The immunoprecipitates were washed with each of the following: wash 1 

(phosphate-buffered saline), wash 2 (100 mM Tris-HCl, pH 7.4, 50 mM LiCl), and wash 

3 (10 mM Tris-HCl pH 7.4, 100 mM NaCl, 1 mM EDTA). Excess liquid was removed 
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from the immunoprecipitates. Lipid micelles were generated by sonicating 

phosphatidylserine and phosphatidylinositol in PI3K assay buffer (25 mM Hepes, pH 

7.4, 10 mM MgCl2) in a sonicating water bath for 20 min. Each sample was incubated 

with lipid micelles (5 µg of phosphatidylserine + 2.5 µg of phosphatidylinositol) in PI3K 

assay buffer and 10 µCi of [γ-32P]ATP in a total volume of 50 µl for 15 min at 20°C 

while gently rocking. The reaction was stopped by the addition of HCl (to 1.7 M). Lipids 

were extracted into chloroform:methanol (1:1) and further washed with methanol, 1 N 

HCl (1:1). Reaction products were dried down, resuspended in chloroform:methanol 

(1:1), and spotted onto a thin layer chromatography plate (Silica Gel 60; VWR Canlab). 

Samples were developed in 1-propanol, water, acetic acid (17.4:7.9:1) in a 

chromatography chamber for 4 h, dried, and exposed to a PhosphorImager screen. 

Results were visualized and quantified using Quantity One software (Bio-Rad), and 

statistical analysis was performed using Prism software (GraphPad Software, Inc., San 

Diego, CA).  

 

2.10 Cell viability/growth assays. 

 

2.10.1 MTT conversion/reduction assay.  

Cells were grown in a 96-well plate. After treatment or transfection, the growth 

medium was gently aspirated. To each well 50µl 0.5 mg/mL 3-(4,5-dimethythiazol-2-

yl)-2,5-diphenyl tetrazolium (MTT) mix (0.5 mg/mL MTT diluted in DMEM containing 

1% FBS) was added and incubated for 3-4 hrs at 37°C. After incubation, 100 µl DMSO 

was added to each well to dissolve the generated purple formazan crystals. Formazan 

crystal dissolution was then allowed to occur at room temperature for 5 min. The O.D 

was determined with a Spectra Max Plus384 microplate reader from Molecular Devices, 

at a wavelength of 570 nm.  

 

2.10.2 Flow cytometry. 

Cells were grown in a 100 mm plate. Following treatment or transfection, cells 

were washed with PBS and removed from the plate using Trypsin-EDTA. Cells were 

washed, counted, and diluted to a concentration of 106 cells/mL. Cells were pelleted and 
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resuspended in an ice-cold solution containing 30% PBS and 70% absolute ethanol. 

Ethanol was added slowly. Fixed cells were kept on ice for at least 2 hours or overnight 

at 4°C. Cells were transfered to an Eppendorff tube and pelleted at 300×g for 5 min. The 

pellet was resuspended with PBS containing 100 μg/mL RNase and 50 μg/mL 

propidium iodide (PI) and incubated for 20 min. Samples were filtered with a nylon 

filter and placed on ice for DNA analysis. DNA content was measured by exciting 

propidium iodide at 488 nm and measuring the emission at 580 nm. Samples were 

analyzed by a Coulter® EPICS® XL flow cytometer using EXPO32 ADC software. 

 

2.11 Statistical analysis. 

 Significance (set at P<0.05) was assessed by unpaired Student’s t-test (two 

groups) or by analysis of variance (three groups or more) with post-hoc analysis relying 

on Newman-Keuls Multiple Comparison Test (GraphPad Software, Inc., San Diego, 

CA). Data are represented as mean ± standard deviation (S.D.). 
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3.  RESULTS 

 

3.1 Characterization of C6 glioma cells. 

Cell culture is a useful model for examining aspects of cellular biology. Primary 

cell cultures, which are extracted directly from the host organism, are ideal models given 

that they better represent the host; however, they generally lack the ability to proliferate. 

Immortalized cell lines grow and divide indefinitely, which allows for a limitless source 

of that cell type. These cells can be naturally generated in the case of cancer or generated 

by chemical means. For example, C6 glioma cells were generated from a rat glial tumor 

induced by N-nitrosomethylurea (Benda et al., 1968). In this case, N-nitrosomethylurea 

was injected into rats and the resulting glial tumors were propagated in culture 

(Druckrey et al., 1965). In the case of the human embryonic kidney (HEK293) cell line, 

often used for overexpression and characterization studies, the cells have been 

immortalized following transformation with the adenovirus early region 1B (E1B) 19K 

protein (a prosurvival Bcl-2-like protein) (Han et al., 1996). 

 

3.1.1 C6 cell morphology. 

The glioblastoma C6 cell line displayed a fibroblast-like morphology (Figure 

3.1) as previously described (Benda et al., 1968). In comparison, the pheochromocytoma 

PC12 cell line displayed a round, polygonal morphology. The HEK293A cell line 

displayed an epithelial-like morphology (Figure 3.1).  

 

3.1.2 Protein expression in selected cell lines. 

 The endogenous expression of proteins of interest, specifically SHP-1, SHP-2, 

p85 and ERK1/2, were examined in C6 cells and compared with other cell lines, e.g. 

HEK293A, N2a and SHSY5Y. SHP-1 expression in C6 and HEK293A cells was 

comparable and higher than in the neuronal cell lines, N2a and SHSY5Y (Figure 3.2). 
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Figure 3.1: Morphology of C6, PC12 and HEK293A cell lines. C6 and HEK293A 

cells were grown on a glass-coverslip and PC12 cells were grown on a glass-coverslip 

coated with rat tail collagen type I (200 μg/mL) and fixed for 30 min with 4% 

paraformaldehyde. Cell morphology was assessed using phase contrast on an IMT-2 

Olympus microscope.  
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Figure 3.2: Expression of SHP-1 and selected proteins in C6 cells and other cell 

lines. Cells were harvested at 80% confluence and total cellular proteins were extracted. 

Proteins (30 μg per lane) were resolved by SDS-PAGE and immunoblotted (IB) for p85, 

SHP-1, SHP-2, Erk1/2 and β-actin using the appropriate antibodies. 
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The expression of p85 in C6 and HEK293A cells was lower than in the neuronal cell 

lines (Figure 3.2).  

 

3.2 Characterization of C6 cells cultured in serum-free medium. 

 Removing serum from cell cultures is routinely used to induce cell cycle arrest at 

G1 (Chou and Langan, 2003) and to reduce a cell’s ability to grow and multiply (Heldin 

et al., 1980). Removal of serum does not readily induce apoptosis in glial cells, although 

it can promote differentiation (Chou and Langan, 2003; Fan, 1983) and promote 

morphological changes from a fibroblast-like flattened shape to a rounded astrocyte-like 

morphology (Baranska et al., 2004).   

 

3.2.1 Serum withdrawal affects growth rate and cell cycle.  

Phases of the cell cycle of C6 cells cultured in serum-free medium were assessed 

using flow cytometry. Twelve hours of growth in serum-free conditions resulted in an 

increase in the number of cells in G1/S phase and a reduction in the number of cells 

progressing into G2/M phase (Figure 3.3). G1/S arrest extended over the 72-hour test 

interval (Figure 3.3).  

The MTT conversion assay, which measures cell number/proliferation, was used 

to assess growth of C6 cells in response to serum withdrawal (SWD). A decreased MTT 

conversion (indicating diminished cell number) was evident as early as 12 hours 

following SWD (Figure 3.4). 

 

3.2.2 C6 cell morphology changes in response to SWD.  

 C6 cell morphology was examined at several time points following SWD. After 

30 minutes of SWD, cells displayed a heterogenous cell morphology including some that 

were unchanged, flat without polarity, whereas others were less flat and more elongated
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Figure 3.3: Cell cycle arrest of C6 cells cultured in serum-free medium. C6 cells 

were grown in serum-free medium for the indicated times (h) or maintained in growth 

medium (DMEM, 10% FBS) (CTL). Cells were suspended at a concentration of 106/ml 

and stained with 50 μg/ml propidium iodide. DNA content was analyzed by a 

Coulter® EPICS® XL flow cytometer. (A) Flow cytometry analysis overlays of control 

cells and cells grown in serum-free medium. (B) Statistical representation of flow 

cytometry analysis. SWD: serum withdrawal; * & **: P<0.05 and 0.01, respectively, 

versus control (CTL). Data are represented as mean ± SD, n=4. 
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Figure 3.4: Loss of C6 cell proliferation in response to serum withdrawal (SWD). 

Cells were grown in a 96 well plate and cultured in serum-free medium for the indicated 

times (h). Medium was removed and MTT was added to a concentration of 0.5 mg/ml. 

The reaction (4 h at 37°C) was terminated by addition of 100 μl of DMSO. The O.D. 

was determined using a SpectraMax Plus384microplate reader at 570 nm.* & ***: 

P<0.01 and P<0.001 versus control (CTL). Range for control was 0.3-0.9, O.D. 570 nm 

and data are represented as mean ± SD, n=3. 
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(Figure 3.5). By 24 hours, all cells were more elongated and these changes were 

maintained over the time intervals studied (Figure 3.5). 

 

3.3 Effect of SWD on the PI3K/Akt pathway.   

 There are reports that C6 glioma cell cultured in serum-free medium in 

combination with dibutyryl-cAMP can induce PI3K activity (Roymans et al., 2001), 

while inhibiting the phosphorylation of Akt (Van Kolen and Slegers, 2004). The 

mechanism behind this observation is unclear. 

The commonly accepted paradigm suggests that Akt phosphorylation is 

dependent on PI3K activation (Figure 3.6A). This depends on the recruitment of PI3K to 

RTKs at the plasma membrane either directly or by scaffolding molecules such as Gab1 

(Ingham et al., 2001). The tyrosine phosphorylation status of p85, which contributes to 

p110/PI3K activation (Cuevas et al., 2001), can be modified by its interaction with 

protein tyrosine phosphatases such as SHP-1 (Cuevas et al., 2001) and SHP-2 (Wu et al., 

2001). Similarly, Akt recruitment to the plasma membrane where it is phosphorylated 

and activated is dependent on the generation of PI3K lipid products PI3,4P2 and 

PI3,4,5P3 (Bellacosa et al., 1998; Franke et al., 1997; Franke et al., 1995; Klippel et al., 

1997). The balance between PI3K and the phosphoinositide phosphatase PTEN 

(phosphatase and tensin homologue deleted on chromosome 10) frequently determines 

PI3,4,5P3 levels and Akt function (Gericke et al., 2006). The effect of SWD on 

components involved in PI3K activation was further examined. 

 

3.3.1 SWD induces PI3K activity, but inhibits Akt phosphorylation. 

 Protein lysates of C6 cells cultures (SWD for 4, 24 and 48 hours) were 

immunoprecipitated with the p85 antibody and used for the p110/PI3K lipid kinase 

assay, based on [γ-32P]ATP incorporation into PI. p85-associated PI3K activity was 

found to be increased at 4 hours (Figure 3.6B,C). The PI3K activity at 4 hours did not 

correspond with the decreased levels of Akt phosphorylation in corresponding lysates 

(Figure 3.7). 
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Figure 3.5: Morphology of C6 cells cultured in serum-free medium. Cells were 

grown on a glass-coverslip and cultured in serum-free medium for the indicated times 

(h) then fixed for 30 min with 4% paraformaldehyde. Cell morphology was assessed 

using phase contrast on an IMT-2 Olympus microscope. Data are representative of three 

independent experiments. 
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Figure 3.6: Increase in PI3K activity in C6 cells grown in serum-free medium. 

(A) The schematic of PI3K signalling through the PDK1/Akt pathway (originally shown 

in Figure 1.4) is included to remind the reader of “normal” growth factor-dependent 

PI3K signalling. (B,C) Cells were cultured in serum-free medium for the indicated 

times. (B) p85 was immunoprecipitated from 300 μg of total protein and used to assay 

for associated PI3K activity. [γ32P]ATP-labeled PI3K lipid products were resolved by 

thin layer chromatography. (C) Results were quantified using Quantity One software 

(Bio-Rad). PI3P: phosphatidylinositol-3-monophosphate. *:P<0.05 (ANOVA); data are 

represented as mean ± SD, n=3. 
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Figure 3.7: C6 cells cultured in serum-free medium have a transient loss of Akt 

phosphorylation. Cells were cultured in serum-free medium for the indicated times (h, 

SWD: serum withdrawal). Proteins (25 μg per lane) were resolved by SDS-PAGE and 

immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) and for total Akt, 

as well as for p85 and β-actin. Data are representative of three independent experiments. 
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3.3.2 Membrane-bound Akt does not protect against the effects of SWD. 

The constitutively active, myristoylated (myr)-Akt protein contains a N-terminal 

myristoylation sequence that localizes Akt to the plasma membrane (Goswami et al., 

1999; Kohn et al., 1996). 

C6 cells overexpressing myr-Akt were cultured in serum-free medium for 4 

hours. There was no loss of Akt phosphorylation on Thr308 and Ser473 in these cells 

under these conditions (Figure 3.8A). Overexpression of myr-Akt did not protect against 

the inhibition of cell proliferation induced by SWD (Figure 3.8B), which was expected 

as this protein is bound to the plasma membrane and may not be capable of targeting 

some of its downstream substrates. (note, 24 h of SWD was used as 4h of SWD does not 

induce a significant inhibition of cell number). 

 

3.3.3 Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) does 

not affect Akt phosphorylation during SWD. 

The loss of Akt phosphorylation observed during SWD could result from the 

activation of the lipid phosphatase PTEN and the subsequent dephosphorylation of 

plasma membrane-bound PI3,4,5P3 necessary for recruitment of Akt. Loss-of-function 

mutations in PTEN can contribute to tumorigenicity in cell lines. 

In order to compare and contrast PTEN expression in a variety of cell lines, 

including the C6 cell line which had previously been shown to be PTEN null 

(Kubiatowski et al., 2001), several cell lines were screened for PTEN expression. These 

included PC12, N2a, T98G (human glioma), HT22 (mouse hippocampal cells) and 

HEK293A cells. PTEN was expressed in all cell lines (Figure 3.9A). To determine if a 

mutation was contributing to C6 cell phenotype, the PTEN gene was amplified by RT-

PCR (Figure 3.9B) and sequenced. There was no evidence of any deletions, insertions, 

frame-shifts, or other mutations to the PTEN gene in our C6 cells (data not shown). 

 Next, the influence of PTEN on the loss of Akt phosphorylation in C6 cells 

cultured in serum-free medium was assessed using the PTENC124S catalytically 

inactive mutant of PTEN (Maehama and Dixon, 1998; Ono et al., 2001). C6 cells 

overexpressing PTENC124S were grown in serum-free medium for 4 hours. PTEN 

overexpression was difficult to assess by Western blot (Figure 3.10).
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Figure 3.8: Effect of activated Akt (myr-Akt) on C6 cell proliferation in response 

to SWD. C6 cells were transfected with pcDNA3 or myristoylated (myr) pCS2+-Akt 

(myr-Akt). (A) 24 h post-transfection cells were cultured in serum-free medium (4 h, 

SWD: serum withdrawal) and proteins (25 μg of protein per lane) were resolved by 

SDS-PAGE and immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) 

and for total Akt. (B) Similar cells were grown in serum-free medium (24 h). Medium 

was then removed and MTT was added to a concentration of 0.5 mg/ml. The reaction (4 

h at 37°C) was terminated by addition of 100 μl of DMSO. Range for control was 0.3-

0.9, O.D. 570 nm and data are represented as mean ± SD, n=3. 
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Figure 3.9: PTEN expression in C6 cells. (A) Total cell protein (25 μg of protein 

per lane) from six cell lines was resolved by SDS-PAGE and immunoblotted (IB) for 

PTEN and β-actin. (B) RNA was extracted from C6 cells and transcribed to DNA using 

RT-PCR. Using specific primers, PTEN was amplified from C6 cells and Flag-

PTENC124S using PCR. Products were resolved on a 5% agarose gel.  
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Figure 3.10: Catalytically inactive PTEN (PTENC124S) does not protect against 

the loss of Akt phosphorylation in response to SWD. C6 cells were transfected with 

pcDNA3 or Flag-PTENC124S and 24 h post-transfection cells were cultured in serum-

free medium (4 h). Proteins (25 μg of protein per lane) were resolved by SDS-PAGE 

and immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) and for total 

Akt, as well as for PTEN. Levels of β-actin were used to monitor protein loading. Data 

are representative of two independent experiments. SWD: serum withdrawal. 
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It is not clear at this point why it was difficult to detect, but PTENC124S expression was 

implied indirectly by the increase in Akt phosphorylation under control conditions. 

PTENC124S was ineffective in protecting against the loss of Akt phosphorylation 

during SWD (Figure 3.10).  

 

3.3.4 SWD does not affect the association between p85 and Gab1 

Gab1 is a scaffolding/docking protein that helps to recruit p85/PI3K to RTKs for 

activation (Ingham et al., 2001). It is generally accepted that the interaction between the 

phosphatase SHP-2 and Gabl positively regulates PI3K activity (Kong et al., 2000; 

Maeda et al., 2004) (Figure 3.11A). However, there are a few exceptions (Zhang et al., 

2002). 

The interaction between p85 and Gab1 was examined in C6 cells cultured in 

serum-free medium. Following SWD (4 h), the cells were treated with pervanadate (PV), 

a general tyrosine phosphatase inhibitor that allows for the accumulation of 

phosphotyrosine-dependent associations between proteins. Protein lysates were 

immunoprecipitated for p85. The association between p85 and Gab1 during SWD was 

maintained and was increased by PV, indicating the association is phosphotyrosine-

dependent (Figure 3.11B). The decreased mobility of Gab1 in PV-treated groups 

confirmed a post-translational modification, presumably tyrosine phosphorylation 

(Figure 3.11B). The association between p85 and SHP-2 was decreased in response to 

SWD, but enhanced by the combination of SWD and PV (Figure 3.11B). 

Protein lysates were also immunoprecipitated for SHP-2. The association 

between SHP-2 and Gab1 was enhanced in response to SWD (Figure 3.11C) and further 

enhanced by treatment with PV. The association between SHP-2 and p85 was decreased 

in response to SWD and, again, enhanced by the combination of SWD and PV (Figure 

3.11C), confirming the corresponding observations using p85 immunoprecipitates 

(Figure 3.11B). Similarly to Gab1, the decreased mobility of SHP-2 in PV-treated 

groups confirmed a post-translational modification, again presumably tyrosine 

phosphorylation (Figure 3.11C). 

 The fact that the association between p85 and SHP-2 is disrupted by SWD is 

counter-intuitive given the demonstrated increase in PI3K lipid kinase activity. As SWD
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Figure 3.11: Effect of SWD on p85 association with Gab1 and SHP-2. (A) 

Reminder of aspects of growth factor-dependent PI3K signalling. C6 cells were cultured 

in serum-free medium (4 h, SWD: serum withdrawal) and treated with pervanadate (PV) 

for 30 min. (B) p85 and (C) SHP-2 were immunoprecipitated (IP: 300 μg of total 

protein) and immune complexes were resolved by SDS-PAGE and immunoblotted (IB) 

with anti-Gab1, anti-p85 and anti-SHP-2 antibodies. Data are representative of two 

independent experiments.(TCL: total cell lystate) 
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decreases the association between p85 and SHP-2, and PV enhances the association, it is 

possible that the phosphorylation of p85 is affected by SWD. 

 

3.3.5 Tyrosine phosphorylation of p85 is lost in response to SWD. 

There was a sustained loss of p85 tyrosine phosphorylation over the SWD 

intervals studied (Figure 3.12), which is unexpected as PI3K at 4h of SWD was 

increased (recall Figure 3.6). A tyrosine-to-aspartate (Y-to-D) substitution mutant [i.e. a 

phosphorylation mimic] of p85 was generated (Figure 3.13A) based on the observation 

that the phosphorylation of p85Tyr688 (p85Y688) increases Akt phosphorylation 

(Cuevas et al., 2001) by affecting PI3K activity independent of ligand stimulation. Wild 

type p85 was not used as it can act as a dominant-negative protein in a variety of cases 

(Ueki et al., 2000). The p85Y688D substitution mutant was overexpressed in C6 cells 

and did not affect Akt phosphorylation (Figure 3.13B). The inhibition of cell 

proliferation by SWD (24 h) was not affected by overexpression of p85Y688D (Figure 

3.13C) (note, 24 h of SWD was used as 4h of SWD does not induce a significant 

inhibition of cell number).  

 

 3.3.6 SWD induces p85 and PI3,4,5P3 redistribution to the nucleus.  

Recruitment of p85 to ligand-stimulated RTKs allows for tyrosine 

phosphorylation on p85 leading to the conformation change that relieves its inhibitory 

effect on p110/PI3K (Yu et al., 1998b; Yu et al., 1998c). However, SWD increased 

PI3K activity did not correspond with an increase in p85 tyrosine phosphorylation. 

Therefore, the follow experiments were conducted in order to determine the localization 

of p85 and cellular production of PI3K-associated lipid products in reponse to SWD. 

 C6 cells were cultured in serum-free medium for 4 hours and then fixed for 

confocal microscopic visualization of the localization of p85. In response to SWD, p85 

(Figure 3.14; upper panel) was redistributed to the vicinity of the nucleus and a 

perinuclear distribution, although present in control C6 cells, was much more evident in 

cells grown in sum-free medium. PI3,4,5P3, used to indirectly monitor PI3K activity, 

was also detected in this same region in cells cultured in serum-free medium (Figure 

3.14; lower panel). 
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Figure 3.12: SWD induces a loss of p85 tyrosine phosphorylation. C6 cells were 

cultured in serum-free medium for the indicated times (h, SWD: serum withdrawal). 

Proteins (300 μg of total protein) were immunoprecipitated (IP) for p85 and resolved by 

SDS-PAGE. Membranes were probed with anti-phosphotyrosine and anti-p85 

antibodies. Corresponding protein lysates (25 μg of protein per lane) were resolved by 

SDS-PAGE and immunoblotted (IB) p85 and β-actin. Data are representative of three 

independent experiments  
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Figure 3.13: Activated p85 (p85Y688D) does not affect C6 cell proliferation in 

response to SWD. p85 tyrosine (Tyr/Y) 688 was substituted with an aspartic acid 

(Asp/D). Plasmid DNA was extracted using the alkaline lysis method and sequenced. 

(A) Chromatogram of p85 (WT) and p85Tyr688Asp. Cells were transfected with 

pActag-HA-tagged or pActag-HA-tagged-p85 (p85), or pActag-HA-tagged-p85Y688D 

(p85Y688D). (B) 24 h post-transfection protein lysates (30 μg of protein per lane) were 

resolved by SDS-PAGE and immunoblotted (IB) for phosphorylated Akt(Thr308) and p-

Akt(Ser473) and for total Akt, HA and β-actin using antibodies. (C) Similar cells were 

grown in serum-free medium for 24 h and tested for MTT conversion. Data are 

represented as mean ± SD, n=3. 
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Figure 3.14: Perinuclear distribution of p85 and PI3,4,5P3 in response to SWD. C6 

cells were cultured in the presence or absence of serum (4 h) in chambered culture 

slides. Cells were then fixed with 4% paraformaldehyde and incubated with either anti-

p85 or anti-phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3) IgM-Biotin. FITC-

conjugated secondary antibody (green) or streptavidin-AlexaFluor 488 (green), 

respectively were used for visualization by confocal microscopy. SWD: serum 

withdrawal. Excitation/emission wavelengths for both secondary antibody conjugates 

are 495/520 nm. Data are representative of two independent experiments. 
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3.3.7 Growth factor stimulation with PDGF reverses the effects of SWD in C6 

cells.  

A number of receptor tyrosine kinases, with ligands as diverse as the platelet-

derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), epidermal growth 

factor (EGF) and angiotensin II (Kazlauskas and Cooper, 1990; Okamoto et al., 1993; 

Ram and Ethier, 1996; Saward and Zahradka, 1997) are known to stimulate PI3K 

activity. C6 cells have been well characterized and contain both the EGFR and the 

PDGFR (Grobben et al., 2002). Supplementing medium with both EGF or PDGF is 

reported to maintain cell proliferation of C6 cells cultured in serum-free medium (Heldin 

et al., 1980). The following experiments were conducted to determine the role, if any, of 

PDGF and EGF on the effects observed in the present model. 

Stimulation with PDGF, but not EGF, maintained Akt phosphorylation in serum-

free conditions (Figure 3.15B). In addition, PDGF stimulation increased the tyrosine 

phosphorylation of the PDGF receptor and its association with p85 (Figure 3.15B). EGF 

stimulation increased basal Akt phosphorylation (indicating the presence of an active 

EGF system in C6 cells), but did not protect Akt from dephosphorylation in response to 

SWD (Figure 3.15B).  

 

3.3.8 The nuclear redistribution of PI3,4,5P3 and the loss of Akt phosphorylation 

occur as early as 30 min following SWD. 

To determine if the loss of Akt phosphorylation was the direct result of a 

signalling event, shorter intervals of SWD were used. The dephosphorylation of Akt was 

observed as early as 30 minutes following the removal of serum (Figure 3.16).  

 C6 cells overexpressing a fluorophore (red fluorescent protein: RFP)-tagged 

pleckstrin homology protein, PH-mRFP1, which makes use of the pleckstrin homology 

(PH) from Dictyostelium to detect PI3,4,5P3 distribution (Revankar et al., 2005), were 

cultured in serum-free medium for 30 min and 4 hours. PH-mRFP1 expression was 

diffusely distributed in control cells. The PH-mRFP signal was redistributed to the 

nucleus upon SWD (Figure 3.17). It was also noted that after 4 hours of removing serum 

from C6 cell cultures there were morphological changes (cell shrinkage), which was
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Figure 3.15: The loss of Akt phosphorylation in C6 cells cultured in serum-free 

medium is sensitive to PDGF stimulation. (A) Reminder of growth factor-dependent 

PI3K signalling. (B) C6 cells cultured in serum-free medium (4 h) were stimulated with 

either 50 ng/ml of PDGF (platelet-derived growth factor) or EGF (epidermal growth 

factor) for 10 min. Protein lysates (25 μg of protein per lane) were resolved by SDS-

PAGE and probed for phosphorylated Akt(Thr308) and Akt(Ser473) and for total Akt. 

Proteins (300 μg) were also immunoprecipitated (IP) with anti-p85 and resolved by 

SDS-PAGE. Membranes were probed with anti-phosphotyrosine (pY), anti-PDGF 

receptor (PDGFR) and anti-p85 antibodies. Data are representative of two independent 

experiments. SWD: serum withdrawal. 
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Figure 3.16: Akt phosphorylation is decreased within 30 minutes of removing 

serum from C6 cell cultures. (A) Cells were cultured in serum-free medium for the 

indicated times (min). Proteins (25 μg of protein per lane) were subjected to SDS-PAGE 

and immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) and for total 

Akt. The levels of β-actin were used to monitor protein loading. (B) Densitometric 

analysis of resolved proteins in (A); expressed as percent control. Data are representative 

of two independent experiments. 
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Figure 3.17: Distribution of PI3,4,5P3 at 30 min compared to 4 h of SWD. C6 cells 

were transfected with PH-mRFP1 (red) and post-transfection (24 h) were cultured in 

serum-free medium (30 min and 4 h). Cells were fixed with 4% paraformaldehyde, and 

analyzed using an Olympus FV300 confocal microscope. SWD: serum withdrawal. 

Excitation/emission wavelengths (nm) are 584/607. Data are representative of three 

independent experiments. 
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identified as a potential confounding factor when studying localization using confocal 

microscopy. There was virtually no shrinkage of the cells over the 30-minute interval.  

 

3.3.9 PDGF reverses the effects of SWD and stimulates membrane-associated 

PI3,4,5P3 production.  

The PH-mRFP1 protein, which binds to PI3,4,5P3, was again used to monitor 

PI3,4,5P3 distribution in the cell. C6 cells overexpressing PH-mRFP1 were grown in 

serum-free medium (30 min) and stimulated with PDGF (10 min). In response to SWD, 

nuclear PH-mRFP1 was confirmed (Figure 3.18). PDGF stimulation of cells grown in 

serum-free medium induced a detectable increase in plasma-membrane associated PH-

mRFP1 (arrows in Figure 3.18). 

 

3.3.10 C6 cells grown in serum-free medium are sensitive to PDGF. 

The effect of supplementing serum-free cultures of C6 cells with PDGF or EGF 

on cell cycle was determined. PDGF had modest effects on preventing G1/S arrest. 

PDGF decreased the number of cells in G1/S arrest and increased the number of cells in 

G2/M (Figure 3.19). There was no effect of EGF on cell cycle during SWD (Figure 

3.19).  

 

3.4 Effect of protein tyrosine phosphatases on PI3K signalling induced by SWD. 

PI3K function and activity can be modulated by the protein tyrosine 

phosphatases SHP-1 and SHP-2 (Cuevas et al., 2001; Wu et al., 2001). While both 

phosphatases are known to dephosphorylate p85 on tyrosine residues, SHP-2 is 

considered as a positive regulator of p85 and PI3K activity (Wu et al., 2001), while 

SHP-1 is traditionally considered as a negative regulator of p85/PI3K function (Cuevas 

et al., 1999; Imani et al., 1997).  

 The interaction between p85 and either SHP-1 or SHP-2 was examined in C6 

cells after 4 hours of SWD. Protein lysates were collected and immunoprecipitated for 

p85. The association between SHP-2 and p85 was decreased (Figure 3.20, upper panel) 

and the association of SHP-1 and p85 was maintained (Figure 3.20, lower panel) during 

SWD. It was noted that the tyrosine phosphorylation state of p85 associated with SHP-1
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Figure 3.18: The distribution of PI3,4,5P3 in C6 cells cultured in serum-free 

medium is sensitive to PDGF stimulation. Cells were transfected with PH-mRFP1 

expression vector. 24 h post-transfection, serum was removed from cultures (30 min) 

followed by stimulation with PDGF (50 ng/ml, 10 min) prior to preparation for confocal 

microscopy. Nuclei were counterstained with DAPI (blue, 1 μg/μl, 5 min). Samples 

were analyzed using a Zeiss LSM 510 META confocal microscope. Excitation/emission 

wavelengths (nm) are mRFP1 (red): 584/607 and DAPI (blue): 358/461. (arrows: 

indicate increased RFP-PH signal at the plasma-membrane following PDGF treatment; 

asterisk: represent cells that were magnified; shown in far right column). 

* 

* 

* 

* 
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Figure 3.19: C6 cell cycle arrest induced by removal of serum is sensitive to 

PDGF. Cells cultured in serum-free medium (12 h) were supplemented with 50 ng/ml of 

PDGF or EGF. Cells were suspended at a concentration of 106/ml and stained with 

propidium iodide (50 μg/ml). DNA content was analyzed by a Coulter® EPICS® XL 

flow cytometer. SWD: serum withdrawal; * and ***: P<0.05 and 0.001, respectively, 

versus SWD-G1/S; ###: P<0.001, versus SWD-G2/M alone. Data are represented as 

mean ± SD, n=3. 
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Figure 3.20: The interaction between p85 and SHP-1 is maintained in response to 

SWD. C6 cells were cultured in serum-free medium for 4 h. Endogenous SHP-1 or 

SHP-2 were immunoprecipitated (IP) from 300 μg of total protein and resolved by SDS-

PAGE and immunoblotted (IB) with anti-phosphotyrosine, anti-p85, anti-SHP-1, or anti-

SHP-2 antibodies. Data are representative of three independent experiments. 
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and SHP-2 was decreased with SWD (Figure 3.20). As the interaction between p85 and 

SHP-1 was maintained, the effects of SHP-1 on p85 were assumed to be predominant. 

However, it was not clear whether SHP-1 exerts a positive or negative effect on p85 

under these conditions.  

 

3.4.1 Effect of SHP-1 catalytic activity on Akt phosphorylation. 

Substitution mutations in the protein tyrosine phosphatases, SHP-1 and SHP-2, 

can be used to study their catalytic function. The substitution of Cys/C455 to Ser/S 

generates a catalytically inactivate SHP-1, SHP-1C455S (Yu et al., 1998c). Similarly, 

the SHP-2C453S substitution mutant is catalytically inactive.  

The pcDNA3-SHP-1 and pcDNA3-SHP-2 plasmids were confirmed by DNA 

sequencing (Figure 3.21). Peak expression of SHP-1 in C6 cells (Figure 3.22) was 

determined to occur at about 24 h (Figure 3.22). SHP-1 and SHP-2 proteins were 

overexpressed in C6 cells for 24 h. Overexpressed SHP-1 (WT) and SHP-1C455S 

(Figure 3.23A), but not SHP-2 (WT) or SHP-2C453S (Figure 3.23B), increased Akt 

phosphorylation on Ser473.  

C6 cells transiently overexpressing SHP-1 (WT) and SHP-1C455S were grown 

in serum-free medium for 4 hours. SHP-1, but not SHP-1C455S, protected against the 

loss of Akt phosphorylation in response to SWD (Figure 3.24).  

The overexpression of SHP-1 (WT) protected against the inhibition of 

proliferation in cells grown in serum-free medium (Figure 3.25). The overexpression of 

SHP-1C455S did not protect against the inhibition of proliferation induced by SWD 

(Figure 3.25)  

 

3.5 Regulation of PDK1 in C6 cells. 

Akt and PDK1 are recruited to the plasma membrane by PI3,4P2 and PI3,4,5P3 

generated by PI3K (Anderson et al., 1998; Bellacosa et al., 1998; Stephens et al., 1998). 

At the plasma membrane, PDK1 phosphorylates Akt on Thr308 allowing for the 

subsequent activation of Akt (Bellacosa et al., 1998). The phosphorylation of PDK1 on 

Ser241 is thought to be required for its activation (Casamayor et al., 1999). The effect of 

SWD on PDK1 was determined. 
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Figure 3.21: Chromatograms of SHP-1 and SHP-2 wildtype (WT) and 

catalytically inactive mutants. SHP-1 and SHP-2 cDNA plasmids were sequenced and 

mutations determined. SHP-1 WT and catalytic Cys455Ser mutants (upper panel) and 

the SHP-2 WT and catalytic Cys453Ser mutants (lower panel) were confirmed.  
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Figure 3.22: Transient expression of SHP-1 in C6 cells. Cells were transfected with 

pcDNA3-SHP-1 and SHP-1 was overexpressed for the indicated times (h). Proteins (10 

μg of protein per lane) were resolved by SDS-PAGE and immunoblotted (IB) for SHP-1 

and β-actin. Data are representative of two independent experiments.  
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Figure 3.23: Effect of SHP-1 and SHP-2 on Akt phosphorylation. (A) C6 cells were 

transfected with pcDNA3 or pcDNA3-SHP-1 (SHP-1), or pcDNA3-SHP-1C455S (SHP-

1C455S). (B) C6 cells were transfected with pcDNA3 or pcDNA3-SHP-2 (SHP-2), or 

pcDNA3-SHP-2C453S (SHP-2C453S). Post-transfection (24 h) proteins (25 μg of 

protein per lane) were resolved by SDS-PAGE and probed with anti-Akt(Ser473) and 

anti-SHP-1 or anti-SHP-2 antibodies. The levels of β-actin were used to monitor protein 

loading. Data are representative of two independent experiments. 
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Figure 3.24: SHP-1 attenuates Akt dephosphorylation in response to SWD. C6 

cells were transfected with pcDNA3 or pcDNA3-SHP-1 (SHP-1) or pcDNA3-SHP-

1C455S (SHP-1C455S) and 24 h post-transfection cultured in serum-free medium for 4 

h. Proteins (25 μg of protein per lane) were resolved by SDS-PAGE and probed for 

phosphorylated Akt(Thr308) and for total Akt and SHP-1. The levels of β-actin were 

used to monitor protein loading. Data are representative of two independent 

experiments.  
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Figure 3.25: SHP-1 attenuates the loss of C6 cell proliferation induced by SWD. 

C6 cells were transfected with pcDNA3 or pcDNA3-SHP-1 (SHP-1), or pcDNA3-SHP-

1C455S (SHP-1C455S), and 24 h post-transfection were cultured in serum-free medium 

for a further 24 h. MTT conversion was assessed. SWD: serum withdrawal. ###: 

P<0.001 versus SWD-pcDNA3; and **: P<0.01 versus SWD-SHP-1C455S. Data are 

represented as mean ± SD, n=4. 
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3.5.1 Expression of PDK1 in different cell lines. 

PDK1 is a monomeric ~63 kDa serine/threonine kinase ubiquitously expressed in 

human tissues and cells (Alessi et al., 1997a; Stephens et al., 1998). Several cell lines 

including, C6, PC12, HEK293A and T98G, were screened for PDK1 expression. PDK1 

was expressed in all cell lines, but expression levels and molecular weights varied 

between cell lines (Figure 3.26). 

 

3.5.2 The response time of C6 cells to SWD on Akt phosphorylation. 

The phosphorylation of PDK1 on Ser241 was not affected by SWD; however, a 

decrease in PDK1 mobility was observed (Figure 3.27), which suggests PDK1 may be 

modified (i.e. phosphorylated) at a site other than Ser241 under these conditions.  

  

3.5.3 The PDK1 Ser241 phosphorylation mimic (PDK1S241E) does not protect 

against the loss of Akt phosphorylation in reponse to SWD. 

To confirm the finding that phosphorylation of Ser241 does not affect Akt 

phosphorylation in reponse to SWD, a phosphorylation mimic was generated by 

substituting Ser241 to glutamic acid (Glu/E). The pEGFP-PDK1S241E cDNA was 

sequenced to confirm the substitution (Figure 3.28A). Overexpression of EGFP-

PDK1S241E did not block the loss of Akt phosphorylation induced by SWD (4 h) in C6 

cells (Figure 3.28B).  

 

3.5.4 Membrane-bound PDK1 does not affect Akt phosphorylation in response to 

SWD.  

The constitutively membrane-bound PDK1 mutant (myr-PDK1) containing a N-

terminal myristoylation signal is able to constitutively activate co-expressed Akt protein 

in vivo (Anderson et al., 1998). C6 cells overexpressing myr-PDK1 were cultured in 

serum-free medium for 4 hours. Myr-PDK1 did not protect against the loss of Thr308 

phosphorylation (Figure 3.29).  
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Figure 3.26: PDK1 expression in cell lines. Proteins (25 μg of protein per lane) from 

the indicated cell lines were resolved by SDS-PAGE and immunoblotted (IB) for PDK1, 

SHP-1 and β-actin.  
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Figure 3.27: SWD induces a decrease in PDK1 mobility in C6 cells. Cells were 

cultured in serum-free medium for the indicated times (min). Proteins (25 μg of protein 

per lane) were resolved to SDS-PAGE and immunoblotted (IB) for phosphorylated 

PDK1(Ser241) and for total PDK1. The levels of β-actin were used to monitor protein 

loading. Data are representative of three independent experiments.  
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Figure 3.28: “Activated” PDK1 (PDK1S241E) does not attenuate Akt 

dephosphorylation induced by SWD. pEGFP-PDK1 (Ser/S) 241 was substituted with 

a glutamic acid (Glu/E). Plasmid DNA was extracted using the alkaline lysis method and 

sequenced. (A) Chromatogram of PDK1 wildtype (WT) and PDK1Ser241Glu. (B) C6 

cells were transfected with pEGFP (vector), pEGFP-PDK1 (WT), or pEGFP-

PDK1S241E (S241E). 24 h post-transfection cells were cultured in serum-free medium 

for 4 h. Proteins (25 μg of protein per lane) were resolved by SDS-PAGE and 

immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) and for total Akt, 

and for phosphorylated PDK1(Ser241) and for total PDK1. The levels of β-actin were 

used to monitor protein loading. Data are representative of two independent 

experiments. SWD: serum withdrawal.  
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Figure 3.29: Membrane-bound PDK1 (myr-PDK1) does not attenuate Akt 

dephosphorylation induced by SWD. C6 cells were transfected with pcDNA3 or 

myristoylated (myr) pBJ5-myr-PDK1-FLAG (myr-PDK1) and 24 h post-transfection 

cells were cultured in serum-free medium for 4 h. Resolved proteins (25 μg of protein 

per lane) were immunoblotted (IB) for phosphorylated Akt(Thr308) and Akt(Ser473) 

and for total Akt and PDK1. Data are representative of two independent experiments. 
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3.5.5 SWD-induced decreased PDK1 mobility is PI3K-independent. 

C6 cells overexpressing myr-Akt were cultured in serum-free medium for 4 

hours. Akt phosphorylation in these cells was maintained during SWD. It did not affect 

the change in PDK1 mobility induced by serum-free conditions, thus suggesting that Akt 

does not appear to phosphorylate PDK1 as a possible feedback mechanism contributing 

to PDK1 mobility (Figure 3.30)   

 The decreased mobility of PDK1 in response to removing serum from C6 cell 

cultures may be induced by the increased PI3K activity demonstrated in Figure 3.6. C6 

cells were treated with the PI3K inhibitor, LY260004, followed by the removal of serum 

from cultures. Inhibition of PI3K did not affect the mobility of PDK1 in response to 

SWD (Figure 3.31). 

 

3.6 Tyrosine phosphorylation of PDK1. 

 There is evidence that tyrosine phosphorylation may also contribute to the 

regulation of PDK1 activity and function (Park et al., 2001; Prasad et al., 2000). The 

influence of SWD on tyrosine phosphorylation was investigated and compared with 

known inducers of PDK1 tyrosine phosphorylation, e.g. PV and Src.  

 

3.6.1 SWD increases the tyrosine phosphorylation of PDK1. 

C6 cells were grown in serum-free medium, treated with PV, or transfected with 

activated chicken SrcY527F (Src). Protein lysates were immunoprecipitated for PDK1 

and analyzed for tyrosine phosphorylation using the phosphotyrosine-specific antibody 

4G10. The tyrosine phosphorylation of PDK1 was slightly increased in response to 

SWD but to a greater exent with PV and activated Src (Figure 3.32). All treatments 

increased the total cellular tyrosine phosphorylation state (Figure 3.32), though SWD 

showed the smallest increase. 

 Cells were grown in serum-free medium followed by treatment with PV. The 

effect on PDK1 mobility was then assessed. The combination of SWD and PV resulted 

in a greater decrease in PDK1 mobility than with either SWD or PV alone (Figure 3.33), 

suggesting PV and SWD could be inducing PDK1 phosphorylation on different residues.
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Figure 3.30: Myr-Akt does not affect the decrease in PDK1 mobility induced by 

SWD. C6 cells were transfected with pcDNA3 or myristoylated (myr) pCS2+-Akt (myr-

Akt) and 24 h post-transfection cells were cultured in serum-free medium for 4 h. 

Resolved proteins (25 μg of protein per lane) and immunoblotted (IB) for 

phosphorylated Akt(Thr308) and Akt(Ser473) and for total Akt as well as for PDK1. 
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Figure 3.31: The SWD-induced decrease in PDK1 mobility is independent of 

PI3K. C6 cells were cultured in serum-free medium (4 h) and treated with 25 μM 

LY294002 for 30 min. Resolved proteins (25 μg of protein per lane) were 

immunoblotted (IB) for phosphorylated Akt(Thr308) and for total Akt and PDK1. The 

levels of β-actin were used to monitor protein loading. Data are representative of two 

independent experiments.  
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Figure 3.32: SWD, pervanadate and Src kinase induce an increase in PDK1 

tyrosine phosphorylation. (A) C6 cells were grown in serum-free medium (SWD: 

serum withdrawal, 4 h), or treated with pervanadate (PV, 30 min), or transfected with 

pcDNA3 (V) or activated chicken SrcY527F kinase (Src). 300 μg protein lysates were 

used to immunoprecipitate (IP) PDK1. 25 μg of protein from corresponding total cell 

lysates (TCL) and immunoprecipitants were resolved by SDS-PAGE and immunoblotted 

(IB) for phosphotyrosine (pY), total PDK1, Src and β-actin. (B) Densitometric analysis 

of tyrosine phosphorylated PDK1 in response to SWD in (A); expressed as percent 

control. Data are representative of two independent experiments.  



 121

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33: Effect of SWD and pervanadate on PDK1 mobility. C6 cells were 

grown in serum-free medium for 4 h and treated with pervanadate (PV) for 30 min. 

Proteins (25 μg of protein per lane) were resolved by SDS-PAGE and immunoblotted 

(IB) for phosphorylated Akt(Thr308) and Akt(Ser473) and for total Akt, as well as for 

phosphorylated PDK1(Ser241) and for total PDK1. β-Actin were used to monitor 

protein loading. Data are representative of two independent experiments.  
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It was noted that treatment with PV increased the phosphorylation of Akt on Thr308 and 

Ser473 and blocked the loss of Akt phosphorylation induced by SWD (Figure 3.33).  

 

3.7 Regulation of PDK1 by SHP-1. 

 The PDK1 sequence contains several tyrosine residues, several of which are 

found in immunoreceptor tyrosine-based inhibitory motifs (ITIMs). ITIMs with the 

consensus sequence pYXX(V/I/L), are recognized by the SH2 domains of SHP-1 

(Doody et al., 1995). PDK1 Tyr, 9, 156, 248, 273, 299, 333, 376 and 486 fall into 

putative ITIMs for SHP-1 (Figure 3.34). Interestingly, two of them are also targeted by 

Src and PV, e.g. Tyr9 and Tyr376 (Park et al., 2001) (Figure 3.34). A recent study 

indicated that the SHP-1 is capable of dephosphorylating Src substrates (Frank et al., 

2004). The potential regulation of PDK1 by SHP-1 was investigated.  

 

3.7.1 SHP-1 associates with PDK1 in a phosphotyrosine-dependent manner.  

The association between PDK1 and SHP-1 was examined using SWD, PV and 

activated Src, all of which are inducers of PDK1 tyrosine phosphorylation, SWD having 

only a modest effect on PDK1 tyrosine phosphorylation (recall Figure 3.32). SWD 

increased the association between PDK1 and SHP-1 (Figure 3.35A). It was noted that 

the basal tyrosine phosphorylation levels of PDK1 allowed for an association with SHP-

1 (Figure 3.35A). In cells treated with PV the association with PDK1 was decreased, 

however, the PDK1 that was associated with SHP-1 had a decreased mobility compared 

with the control group (Figure 3.35B). Overexpressing activated Src induced an 

increased association between SHP-1 and PDK1 (Figure 3.35C). 

To determine if the association between SHP-1 and PDK1 was affected by PI3K 

activity, cells were treated with the PI3K inhibitor, LY294002. PI3K inhibition with 

LY294002 treatment was confirmed indirectly by the reduction in Akt phosphorylation 

in LY-treated groups (Figure 3.36). Inhibiting PI3K did not affect the association 

between SHP-1 and PDK1 (Figure 3.36).  

 SHP-1 contains three important amino acid residues that mediate 

dephosphorylation of tyrosine phosphorylated proteins. Cys455 acts as a nucleophile to 

attack the substrate; Arg459 stabilizes the negative charge of the phosphotyrosine 
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Figure 3.34: PDK1 protein sequence. The human PDK1 protein sequence was 

obtained from the National Center for Biotechnology Information (accession number 

NP_002604). The putative immunoreceptor tyrosine-based inhibitory motif (ITIMs) 

recognized by the SH2 domains of SHP-1 are highlighted in bold: Tyrosine (Y)9, Y156, 

Y248, Y273, Y299, Y333, Y376 and Y486. The Src kinase-targeted tyrosines are 

underlined: Y9, Y373, Y376 and Y485.  
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Figure 3.35: SHP-1 associates with PDK1. C6 cells were (A) cultured in serum-free 

medium (SWD: serum withdrawal, 4 h) or (B) treated for 30 min with pervanadate (PV) 

or (C) transfected with vector control (V) or SrcY527F (Src). Proteins (300 μg) were 

also immunoprecipitated (IP) with anti-SHP-1 and resolved by SDS-PAGE. Membranes 

were probed with anti-PDK1 and anti-SHP-1 antibodies. Data are representative of three 

independent experiments.  
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Figure 3.36: Inhibition of PI3K does not affect the association between SHP-1 and 

PDK1. C6 cells were treated with LY294002 (25 μM, 30 min). Resolved proteins (300 

μg) were immunoprecipitated (IP) with anti-SHP-1 and immunoblotted (IB) for 

phosphorylated PDK1(Ser241) and for total PDK1 and p85. Corresponding proteins (25 

μg of protein per lane) were resolved by SDS-PAGE and probed for phosphorylated 

Akt(Thr308), Akt(Ser473) and for total Akt. The levels of β-actin were used to monitor 

protein loading. Data are representative of two independent experiments.  
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substrate; and Asp421, the proton donor and proton acceptor controls substrate release 

(Yang et al., 2000; Yang et al., 1998). Dephosphoryation of tyrosine phosphorylated 

proteins by SHP-2 also follows this paradigm (Barford, 1999). Mutagenesis of the Asp 

that is responsible for substrate release (i.e. Asp421 for SHP-1 and Asp419 for SHP-2) 

can be used to study the interaction of these phosphatases with substrate proteins. 

Substitution of Asp421 to Ala in SHP-1 (and the analogous Asp419 to Ala in SHP-2) 

generates substrate-trapping mutants, SHP-1D421A and SHP-2D419A (Flint et al., 

1997; Yu et al., 1998c). These mutants were used to identify a phosphotyrosine-

dependent interaction with PDK1.  

The pcDNA3-SHP-1 and pcDNA3-SHP-2 DNA plasmids were purified and 

sequenced (Figure 3.37). These were then coexpressed with activated SrcY527F (Src). 

The respective phosphatases were immunoprecipitated with specific antibodies. There 

was an increase in detectable PDK1 in SHP-1D241A immunoprecipitates suggesting 

that PDK1 is constitutively tyrosine phosphorylated. This was modestly increased by co-

overexpressing activated Src (Figure 3.38A). In contrast, the association between SHP-

2D419A and PDK1 was decreased in cells coexpressing activated Src (Figure 3.38B). 

 

3.7.2 SHP-1 catalytic activity affects the tyrosine phosphorylation of PDK1. 

A strategy for determining the function of a phosphatase is to use a catalytically 

inactive mutant protein to act as a dominant negative and block the function of the 

normal endogenous protein. C6 cells overexpressing SHP-1 (WT) and the inactive 

mutant SHP-1C455S were cultured in serum-free medium for 4 hours. Expression of 

SHP-1C455S blocked the decreased mobility of PDK1 in response to SWD (Figure 

3.39). The change in PDK1 mobility induced by SWD was unaffected by overexpression 

of the pcDNA3 plasmid vector and SHP-1 (Figure 3.39).  

 To determine whether SHP-1 regulates the tyrosine phosphorylation on PDK1, 

C6 cells were cotransfected with activated Src and either SHP-1 or SHP-1C455S. 

Protein lysates were immunoprecipitated for PDK1. There was a significant decrease in 

the tyrosine phosphorylation of immunoprecipitated PDK1 in cells overexpressing SHP-

1 and activated Src as compared to Src alone (Figure 3.40). Whereas a significant 

increase in PDK1 tyrosine phosphorylation was observed in immunoprecipitates from
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Figure 3.37: Chromatograms of SHP-1 and SHP-2 wildtype (WT) and substrate 

trapping mutants. SHP-1 and SHP-2 cDNA plasmids were sequenced and mutations 

were determined. (upper panel) SHP-1 WT and substrate trapping mutant Asp241Ala 

and the (lower panel) SHP-2 WT and substrate trapping mutant Asp419Ala were 

confirmed.  
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Figure 3.38: PDK1 associates with SHP-1 or SHP-2 substrate trapping mutants. 

(A) C6 cells were cotransfected with activated SrcY527F (Src) or pcDNA3-SHP-

1D421A (SHP-1D421A) and 24 h post-transfection, proteins (300 μg) were 

immunoprecipitated with anti-SHP-1. (B) C6 cells were cotransfected with activated 

SrcY527F (Src) or pcDNA3-SHP-2D419A (SHP-2D419A) and proteins were 

immunoprecipitated with anti-SHP-2. Immunoprecipitants and corresponding protein 

lysates (25 μg of protein per lane) were resolved by SDS-PAGE and immunoblotted 

(IB) with anti-PDK1(Ser241), anti-SHP-1 or anti-SHP-2 antibodies. The levels of β-

actin were used to monitor protein loading. Data are representative of two independent 

experiments.  
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Figure 3.39: SHP-1 catalytic activity contributes to the decrease in PDK1 mobility 

induced by SWD. C6 cells were transfected with pcDNA3 or pcDNA3-SHP-1 (SHP-1) 

or pcDNA3-SHP-1C455S (SHP-1C455S) and 24 h post-transfection, cells were grown 

in serum-free medium for 4 h. Resolved proteins (25 μg of protein per lane) were probed 

for phosphorylated PDK1(Ser241) and for total PDK1 and SHP-1. The levels of β-actin 

were used to monitor protein loading. Data are representative of two independent 

experiments.  
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Figure 3.40: The catalytic activity of SHP-1 affects PDK1 tyrosine 

phosphorylation. C6 cells were cotransfected with activated SrcY527F (Src) and 

pcDNA3 or pcDNA3-SHP-1 (SHP-1) or pcDNA3-SHP-1C455S (SHP-1C455S). 

Proteins (300 μg) were immunoprecipitated (IP) from cell lysates with a PDK1 antibody. 

The immunoprecipitates were resolved by SDS-PAGE and immunoblotted (IB) with 

anti-phosphotyrosine (pY) and anti-PDK1 antibodies. Corresponding proteins were 

resolved by SDS-PAGE and immunoblotted for phosphorylated Akt(Thr308) and 

Akt(Ser473) and for total Akt, as well as for phosphorylated PDK1(Ser241) and for total 

PDK1. Overexpression of proteins was determined using anti-SHP-1 and anti-Src 

antibodies. Data are representative of three independent experiments. 
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cells overexpressing the catalytic mutant as compared to Src alone and cells 

coexpressing Src and SHP-1 (Figure 3.40).  

 

3.7.3 Mutagenesis of PDK1 on tyrosine residues. 

Substituting tyrosine (Tyr/Y) residues with phenylalanine (Phe/F) [i.e. 

dephosphorylation mimic] is a strategy for examining the importance of specific tyrosine 

residues on the association between proteins. In order to distinguish endogenous PDK1 

from PDK1 substitution mutants when employing Western blot/immunoprecipitations 

(and planning ahead for immunofluorescence studies), PDK1 subcloned into the pEGFP 

expression vector was used. pEGFP-PDK1 single as well as double Y-to-F substitution 

mutants were generated (Y9F, Y333F, Y373F, Y376F, Y9/376F and Y333/373F). The 

single mutations were chosen based on ITIMS for SHP-1 binding and Src 

phosphorylation sites (recall Figure 3.34). 

Primers for mutagenesis of PDK1 were designed based on the human PDK1 

nucleotide sequence, accession number NM002613 (Figure 3.41). The generated 

pEGFP-PDK1 plasmids were purified and sequenced (Figure 3.42A shows an example 

chromatogram and Figure 3.42B shows the deduced amino acid sequence). The Y-to-F 

substitution mutants were generated by site-directed mutagenesis and confirmed by 

sequencing (Figure 3.43). 

 

3.7.4 Effect of PDK1 tyrosine substitution mutants on the association with SHP-1 

and on Akt phosphorylation. 

The EGFP-PDK1 mutants were overexpressed in C6 cells and migrate at a 

molecular weight of ~90 kDa (which corresponds to PDK1: ~63 kDa plus GFP: ~30 

kDa) (Figure 3.44). The interaction between endogenous SHP-1 and the EGFP-PDK1 

mutants was not consistent in that some experiments showed a decreased association 

between SHP-1 and EGFP-Y9F and -Y376F mutants and other experiments showed the 

association was maintained (Figure 3.44).  

The overexpression of the EGFP-PDK1 tyrosine mutants exerted effects on Akt 

phosphorylation that also were not very clear/consistent. The experiment was repeated 

several times and each experiment generated different results regarding the
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Figure 3.41: PDK1 DNA sequence. Primers were designed based on the human 

PDK1 nucleotide sequence obtained from the National Center for Biotechnology 

Information (accession number NM_002613). The underlined portion of the sequence 

indicates where the primers for mutagenesis were designed. The text above the 

underlined portion of the DNA indicates the generated mutation and in brackets the 

generated amino acid change. Start codon (atg) and stop codon (tgc) are as indicated.  
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Figure 3.42: PDK1 chromatogram and deduced amino acid sequence. PDK1 

plasmid DNA was extracted using the alkaline lysis method and sequenced. (A) 

Chromatogram of wildtype PDK1. (B) PDK1 amino acid (single-letter code) sequence.  
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Figure 3.43: Chromatograms showing PDK1 mutations. PDK1 tyrosines (Tyr)9, 

333, 373 and 376 were substituted with a phenylalanine (Phe) using the Quikchange®  

site-directed mutagenesis kit. PDK1 plasmid DNA was extracted using the alkaline lysis 

method and sequenced. 
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Figure 3.44: PDK1 substitution mutants, Y9F, Y333F, Y373F, Y376F, Y333/373F 

and S241E associate with SHP-1. C6 cells were transfected with pEGFP (Vector) or 

pEGFP-PDK1 wildtype (WT) or pEGFP-PDK1 substitution mutants, Y9F, Y333F, 

Y373F, Y376F, Y333/373F, or S241E. 24 h post-transfection, proteins (300 μg) were 

immunoprecipitated (IP) from cell lysates with the SHP-1 antibody and resolved by 

SDS-PAGE and immunoblotted (IB) with for PDK1 (the GFP-fusion protein migrates at 

~90 kDa). Corresponding proteins (25 μg of protein per lane) were resolved by SDS-

PAGE and immunoblotted (IB) for phosphorylated Akt(Thr308) and for total Akt, and 

for phosphorylated PDK1(Ser241) and for total PDK1. Data are representative of three 

independent experiments. 
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 phosphorylation of Akt (Figure 3.44). The expression of the activated EGFP-PDK1 

mutant, S241E, did not increase the phosphorylation of Akt (Figure 3.44). 

 

3.7.5 PDK1 Y-to-F mutants do not generally affect proliferation of C6 cells. 

The effect of the EGFP-PDK1 substitution mutants on cell proliferation was 

assessed using the MTT reduction assay. Cells overexpressing EGFP-Y373F or EGFP-

S241E had a modest reduction in proliferation compared to cells overexpressing EGFP-

PDK1 (WT) or any of the other substitution mutants (Figure 3.45).  

 

3.7.6 PDK1Y9F is insensitive to PV treatment. 

C6 cells overexpressing the EGFP-PDK1 substitution mutants were treated with 

PV for 30 minutes. All EGFP-PDK1 substitution mutants, except for EGFP-Y9F 

responded to pervanadate with a decrease in mobility (Figure 3.46), as expected (recall 

Figure 3.33). Akt phosphorylation was also examined in these lysates and was increased 

by PV treatment in cells overexpressing EGFP-PDK1, -Y9F and -Y376F (Figure 3.46). 

The increase was lower in cells overexpressing EGFP-Y333F, -Y373F and -S241E 

(Figure 3.46). This suggests that the change in PDK1 mobility upon PV-treatment may 

be due to phosphorylation at Tyr9. 

 

3.7.7 Effect of SWD on the interaction between SHP-1 and PDK1 mutants.  

C6 cells overexpressing the EGFP-PDK1 substitution mutants were grown in 

serum-free medium for 4 hours. There was an increased association between SHP-1 and 

the EGFP-PDK1 substitution mutants EGFP-Y333F and -Y373F compared to EGFP-

PDK1 (WT) (Figure 3.47). Akt phosphorylation was modestly decreased in groups 

expressing EGFP-PDK1 (WT), -Y9F and -Y376F (Figure 3.47), but maintained in 

groups overexpressing the EGFP-Y333F and -Y373F substitution mutants (Figure 3.47).  

 

3.7.8 Effect of PDK1 double Y-to-F mutants on the interaction with SHP-1. 

The results in Sections 3.7.6 and 3.7.7 indicate that in response to pervanadate or 

SWD, the PDK1 substitution mutants EGFP-Y9F and -Y376F exerted different effects 

than did the EGFP-Y333F and -Y373F mutants on Akt phosphorylation.
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Figure 3.45: PDK1 Y-toF substitution mutants do not generally affect C6 cell 

proliferation. Cells were grown in a 96 well plate and transfected with pEGFP (GFP) or 

pEGFP-PDK1 wildtype (WT) or pEGFP-PDK1 substitution mutants, Y9F, Y333F, 

Y373F, Y376F, or S241E. 24 h post-transfection, MTT conversion (proliferation) was 

assessed. Y: tyrosine, F: phenylalanine, S: serine, E: glutamic acid. *: P<0.05 versus 

vector control (GFP). Data are represented as mean ± SD, n=3. 
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Figure 3.46: PDK1 substitution mutant, Y9F does not respond to pervanadate 

(PV) treatment. C6 cells were transfected with pEGFP (Vector) or pEGFP-PDK1 

wildtype (WT), or pEGFP-PDK1 substitution mutants, Y9F, Y333F, Y373F, Y376F, 

Y333/373F, or S241E and 24 h post-transfection treated with pervanadate (PV) for 30 

min. Proteins (25 μg of protein per lane) were resolved by SDS-PAGE and 

immunoblotted (IB) for phosphorylated Akt(Thr308) and for total Akt, as well as for 

phosphorylated PDK1(Ser241) and for total PDK1. The levels of β-actin were used to 

monitor protein loading. Y: tyrosine, F: phenylalanine, S: serine, E: glutamic acid. Data 

are representative of one experiment. 
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Figure 3.47: SWD induces an increased association between SHP-1 and PDK1 

substitution mutants, Y333F and Y373F. (A) C6 cells were transfected with pEGFP 

(Vector) or pEGFP-PDK1 wildtype (WT), or pEGFP-PDK1 substitution mutants, Y9F, 

Y333F, Y373F, Y376F, or S241E. 24 h post-transfection, cells were grown in serum-

free medium (SWD) for 4h. Proteins (300 μg) were immunoprecipitated (IP) from cell 

lysates with the SHP-1 antibody and resolved by SDS-PAGE and immunoblotted (IB) 

with for PDK1. Corresponding proteins (25 μg of protein per lane) were resolved by 

SDS-PAGE and immunoblotted (IB) for phosphorylated Akt(Thr308) and for total Akt, 

as well as for phosphorylated PDK1(Ser241) and for total PDK1. (B) Densitometry, % 

control for PDK1 associated with immunoprecipitated SHP-1 in (A). Data are 

representative of two independent experiments. Y: tyrosine, F: phenylalanine.  
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Double substitution mutations of these tyrosine pairs were generated and sequenced 

(Figure 3.43). C6 cell overexpressing the double substitution mutants were grown in 

serum-free medium for 30 min. The association between EGFP-Y9/376F and SHP-1 

was decreased both under control and SWD (Figure 3.48). The association between 

EGFP-Y333/373F and SHP-1 was unchanged (Figure 3.48). 

Overexpression of EGFP-Y9/376F decreased the phosphorylation of Akt 

(Thr308) and did not have any additional effects on Akt phosphorylation when serum 

was removed (Figure 3.48). EGFP-Y333/373F had no effect on Akt phosphorylation 

during SWD (Figure 3.48). This suggests that unlike EGFP-Y333/373F, EGFP-Y9/376F 

is functioning like a dominant negative towards Akt phosphorylation/function. 

 

3.7.9 Src decreases the association between SHP-1 and PDK1Y9/376F. 

Src was used in the following experiment to determine the importance of 

tyrosine residues Y9 and Y376 for the recognition and interaction with SHP-1. 

C6 cells were cotransfected with activated Src, and either EGFP-Y9/376F or 

EGFP-Y333/373F. There was a significant loss of association between endogenous 

SHP-1 and EGFP-Y9/376F when co-expressed with Src (Figure 3.49). The association 

between endogenous SHP-1 and EGFP-Y333/373F was unchanged from control groups 

(Figure 3.49). These data suggest Src phosphorylation of PDK1 on Y9 and Y376 

contributes to the interaction between SHP-1 and PDK1, but does not address the 

possibility that Src could be indirectly affecting PDK1 Y9 and Y376 via some other 

cellular intermediate. 

 

3.8 Cellular localization of SHP-1 and PDK1. 

Both SHP-1 and PDK1 are shown to function at the plasma membrane 

(Anderson et al., 1998; Cuevas et al., 1999; Stephens et al., 1998; Yu et al., 1998c); 

however, there are reports that they can also localize to the nucleus (Craggs and Kellie, 

2001; Lim et al., 2003; Yang et al., 2002b). SHP-1 localization to the nucleus depends 

on its nuclear localization sequence (NLS) (Craggs and Kellie, 2001; Yang et al., 

2002b), however, the role of nuclear SHP-1 is unclear as is its means of export from the 

nucleus.
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Figure 3.48: There is a decreased association between SHP-1 and the PDK1 

double substitution mutant Y9/376F. C6 cells were transfected with pEGFP-PDK1 

wildtype (WT), or pEGFP-PDK1 double substitution mutants, Y9/376F or Y333/373F. 

24 h post-transfection, cells were grown in serum-free medium (SWD, 30 min). Proteins 

(300 μg) were immunoprecipitated (IP) from cell lysates with the SHP-1 antibody and 

resolved by SDS-PAGE and immunoblotted (IB) with for PDK1. Corresponding 

proteins (25 μg of protein per lane) were resolved by SDS-PAGE and immunoblotted 

(IB) for phosphorylated Akt(Thr308) and for total Akt as well as for phosphorylated 

PDK1(Ser241) and for total PDK1 and β-actin. (B) Densitometric analysis of SHP-1-

immunoprecipitated PDK1 in (A); expressed as percent control of WT PDK1. Data are 

representative of two independent experiments. Y: tyrosine, F: phenylalanine.  



 142

A. 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

Figure 3.49: There is a decreased association between SHP-1 and the PDK1 

double substitution mutant Y9/376F when cotransfected with activated Src. C6 cells 

were cotransfected with SHP-1D421A and SrcY527F (Src) and pEGFP-PDK1 wildtype 

(WT), or pEGFP-Y9/376F (Y9/376F), or pEGFP-Y333/373F (Y333/373F). Proteins 

(300 μg) were immunoprecipitated (IP) with the SHP-1 antibody and resolved by SDS-

PAGE. Membranes were immunoblotted (IB) for phosphorylated PDK1(Ser241) and for 

total PDK1 and for SHP-1. Corresponding total cell lysates (TCL) were immunoblotted 

for the same proteins. The levels of β-actin were used to monitor protein loading. (B) 

Densitometric analysis of SHP-1-immunoprecipitated PDK1 in (A); expressed as 

percent control of WT PDK1/no Src. Data are representative of two independent 

experiments. Y: tyrosine, F: phenylalanine.  
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 Export of PDK1 from the nucleus has been demonstrated to be mediated through its 

own nuclear export sequence (NES) (Lim et al., 2003). However, the mechanism used 

for nuclear import by PDK1 is also unknown. 

 

3.8.1 SHP-1 and PDK1 are redistributed to the nucleus in response to SWD in C6 

cells.  

To determine if SHP-1 interacts with PDK1 at the plasma membrane during 

SWD, membrane-directed myr-PDK1 (myr-PDK1) was expressed in C6 cells. Its 

association with SHP-1 was then determined. Under control conditions there was a 

significant association between endogenous SHP-1 and myr-PDK1. During SWD the 

association with membrane-directed PDK1 was significantly decreased (Figure 3.50). 

The association between endogenous SHP-1 and PDK1 was examined in 

subcellular fractions. The association between SHP-1 and PDK1 was maintained in the 

in the nuclear extracts in response to SWD (Figure 3.51). In the cytoplasmic fraction 

PDK1-associated with SHP-1 has a modest decreased mobility as compared with PDK1-

assciated with SHP-1 in the nuclear extract (Figure 3.51).  

Confocal microscopy was used to monitor the localization of these proteins in C6 

cells during SWD. It was demonstrated that endogenous SHP-1 and EGFP1-PDK1 

colocalized to the nucleus in response to SWD (Figure 3.52). This corresponded with a 

loss of cytoplasmic Akt (Ser473 and Thr308) phosphorylation in response to SWD 

(Figure 3.53). This loss of phosphorylation was not due to a loss of total Akt protein 

during SWD (Figure 3.53, upper panel), thus confirming our results obtained using 

Western blot (recall Figure 3.7). Subcellular fractionation was conducted to confirm 

theses findings (Figure 3.54). 

Scheid et al. (2005) demonstrated that nuclear localization of PDK1, and the 

ensuing increase in nuclear Akt, blocked the translocation of FOXO3a to the nucleus. 

Localization of FOXO3a was examined in C6 cells and was distributed throughout the 

cell. The signal began to localize more to the nucleus after 30 min of SWD (Figure 

3.55). 
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Figure 3.50: The association between SHP-1 and PDK1 is reduced at the plasma 

membrane in response to SWD. C6 cells were transfected with pcDNA3 and 

myristoylated (myr) pBJ5-myr-PDK1-FLAG (myr-PDK1) and 24 h post-transfection 

grown in serum-free medium for 4 h. Proteins (300 μg) were immunoprecipitated (IP) 

with anti-SHP-1 antibody and the immunoprecipitates were resolved by SDS-PAGE and 

probed for p85 and PDK1. Corresponding proteins were resolved by SDS-PAGE and 

immunoblotted (IB) with anti-PDK1 and anti-β-actin. SWD: serum withdrawal. Data are 

representative of two independent experiments. 
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Figure 3.51: SHP-1 associates with PDK1 in the nucleus of C6 cells. C6 cells were 

grown in serum-free medium (SWD: serum withdrawal, 4 h) and nuclear extracts (NE) 

were obtained. Proteins (300 μg) were immunoprecipitated (IP) with anti-SHP-1 

antibody and the immunoprecipitates were resolved by SDS-PAGE and probed for 

phosphorylated PDK1(Ser241) and for total PDK1. Corresponding total protein (TP, 30 

μg of protein per lane) were resolved by SDS-PAGE and immunoblotted (IB) with anti-

PDK1(Ser241), anti-total PDK1 and anti-β-actin. Fraction purity was determined using 

anti-PCNA. Data are representative of two independent experiments. 
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Figure 3.52: SHP-1 and PDK1 localize to the nucleus in response to SWD. C6 cells 

were transfected with pEGFP (EGFP) or pEGFP-PDK1 (PDK1) and 24 h post-

transfection grown in serum-free medium (30 min). Cells were fixed, permeabilized, and 

incubated with primary antibody SHP-1 (1:500), followed by incubation with the 

secondary antibody AlexaFluor 594 (1:1000). Samples were analyzed using an Olympus 

FV300 confocal microscope. SWD: serum withdrawal. Excitation/emission wavelengths 

(nm) are AlexaFluor 594 (red): 590/617 and EGFP (green): 488/507. Data are 

representative of three independent experiments. 
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Figure 3.53: Cellular distribution of Akt phosphorylation in response to SWD. C6 

cells were grown in serum-free medium (30 min). Cells were fixed, permeabilized, and 

incubated with primary antibodies for total Akt, Akt(Thr308), or Akt(Ser473), followed 

by incubation with the secondary antibody AlexaFluor 594 (1:1000). Samples were then 

stained with DAPI (1 μg/ml, 5 min) and analyzed using a Zeiss LSM 510 META 

confocal microscope. SWD: serum withdrawal. Excitation/emission wavelengths (nm) 

are AlexaFluor 594 (red): 590/617 and DAPI (blue): 358/461. Data are representative of 

one experiment. (asterisk: represent cells that were magnified; shown in far right 

column).
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Figure 3.54: Cellular distribution of Akt phosphorylation in response to SWD. (A) 

C6 cells were grown in serum-free medium and proteins from cytosol (S) and nuclear 

extracts (NE) were obtained. Proteins (30 μg of protein per lane) were resolved by SDS-

PAGE and membranes were probed using antibodies for Akt(Ser473), total Akt, SHP-2 

and VDAC. (B) Densitometry, % control for resolved proteins in (A). Data are 

representative of three independent experiments. 
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Figure 3.55: Distribution of FOXO3a in C6 cells grown in serum-free medium. C6 

cells were grown in serum-free medium (30 min). Cells were fixed, permeabilized, and 

incubated with primary antibodies for FOXO3a (1:500), followed by incubation with the 

secondary antibody AlexaFluor 488 (1:1000). Samples were stained with DAPI (1 

μg/ml, 5 min) and analyzed using a Zeiss LSM 510 META confocal microscope. SWD: 

serum withdrawal. Excitation/emission wavelengths (nm) are AlexaFluor 488 (green): 

495/520 and DAPI (blue): 358/461. Data are representative of one experiment. 
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3.8.2 SHP-1 and PDK1 are not redistributed to the nucleus in response to SWD in 

HEK293A cells.  

 The effects of SWD on the subcellular localization of PDK1, SHP-1 and Akt 

were determined in a non-neuronly derived cell line, HEK293A. The cellular 

distribution of SHP-1 and PDK1 were determined in HEK239A cells and grown in 

serum-free medium for 30 min. Endogenous SHP-1 was expressed throughout the cells 

and EGFP-PDK1 was predominantly expressed in the cytoplasm (Figure 3.56). In 

response to SWD, there was no observable redistribution of either protein throughout the 

cell (Figure 3.56). SWD did not change the cellular distribution of total Akt and there 

was only a slight decrease in phosphorylation of Akt(Ser473) in the cytoplasm and 

nuclear region upon SWD, and perhaps a modest decrease in phosphorylation of 

Akt(Thr308) in the cytosol upon SWD (Figure 3.57). 

 

3.8.3 Endogenous SHP-1 and the PDK1Y9/376F mutant are not co-localized in 

the cell when coexpressed with activated Src. 

In Figure 3.48 the interaction between endogenous SHP-1 the EGFP-Y9/376F 

mutant was decreased in control conditions and during SWD. The subcellular 

distribution of endogenous SHP-1 and EGFP-PDK1 substitution mutants, Y9F, Y376F 

and Y9/376F were examined using confocal microscopy. In C6 cells cultured in serum-

free medium the EGFP-Y9F, -Y376F and -Y9/376F substitution mutants did not localize 

to the nucleus of cells (Figure 3.58). In cells expressing these substitution mutants there 

was some redistribution of SHP-1 to the nucleus in response to SWD (Figure 3.58).  

 The subsequent confocal microscopy experiments were ultimately going to lead 

to mutagenesis of SHP-1. To monitor the mutated protein a fluorophore-tagged fusion 

protein was needed. The SHP-1 gene was subcloned into the pRFP-momomer-C1 

plasmid, which is a mammalian expression vector that encodes pRFP-Monomer 

(DsRed.M1). The SHP-1 gene was subcloned into DsRed.M1 (Figure 3.59A). The 

expression of the red fluorescent protein-tagged-SHP-1 (RFP-SHP-1) fusion protein was 

confirmed by Western blot (Figure 3.59C). 
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Figure 3.56: SHP-1 and PDK1 do not redistribute to the nucleus of HEK293A 

cells in response to SWD. Cells were transfected with pEGFP (EGFP) or pEGFP-PDK1 

(PDK1) and 24 h post-transfection grown in serum-free medium (30 min). Cells were 

prepared and analyzed as described in Figure 3.54. SWD: serum withdrawal. 

Excitation/emission wavelengths (nm) are AlexaFluor 594 (red): 590/617 and EGFP 

(green): 488/507. Data are representative of two independent experiments. 
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Figure 3.57: Cellular distribution of Akt phosphorylation in HEK293A cells in 

response to SWD. C6 cells were grown in serum-free medium (30 min). Cells were 

prepared and analyzed as described in Figure 3.55. SWD: serum withdrawal. 

Excitation/emission wavelengths (nm) are AlexaFluor 594 (red): 590/617 and DAPI 

(blue): 358/461. Data are representative of one experiment. (asterisk: represent cells that 

were magnified; shown in far right column). 
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Figure 3.58: PDK1 tyrosine residues: Y9 and Y376F affect the distribution of 

PDK1 to the nucleus in C6 cells in response to SWD. Cells were transfected with 

pEGFP-Y9F (Y9F) or pEGFP-Y376F (Y376F), or pEGFP-Y9/376F (Y9/376F) and 24 h 

post-transfection grown in serum-free medium (30 min). Cells were prepared and 

analyzed as described in Figure 3.54. SWD: serum withdrawal. Excitation/emission 

wavelengths (nm) are AlexaFluor 594 (red): 590/617and EGFP (green): 488/507. Data 

are representative of three independent experiments. 
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Figure 3.59: Red fluorescent protein-tagged-SHP-1 (pRFP-SHP-1). (A) The SHP-1 

gene (human) was subcloned into pRFP-monomer-C1 using EcoRI and SalI restriction 

sites. KanR/NeoR: kanamycin/neomycin resistant genes, SV40 ori: mammalian origin of 

replication, SV40 polyA: polyadenylation signal, PpUC ori: origin of replication for E. 

coli: F1 ori: origin for ssDNA production, Herpes simplex virus thymidine kinase (HSV 

TK polyA): polyadenylation signal allows stably transfected eukaryotic cells using 

G418. (B) Deletion of the SHP-1 nuclear localization sequence (NLS), was 

accomplished by inserting a STOP codon at Lysine (Lys) 592 using Quikchange® site-

directed mutagenesis kit. (C) Expression of pRFP-SHP-1 constructs in C6 and 

HEK293A cells using Western blot. Membranes were probed using antibodies for SHP-

1 and equal loading was monitored using β-actin 
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 In Figure 3.49, the interaction between endogenous SHP-1 and EGFP-Y9/376F 

was decreased in the presence of activated Src. C6 cells were cotransfected with pRFP-

SHP-1 and either pEGFP1-Y9/376F or pEGFP1-Y333/373F, in the absence or presence 

of activated Src, and their subcellular localization was examined using confocal 

microscopy. There was a distinct colocalization of RFP-SHP-1 and EGFP1-Y9/376F 

throughout the cells, however, in the presence of Src, RFP-SHP-1 was localized more to 

the nucleus and EGFP1-Y9/376F was localized more in the cytoplasm. The 

colocalization of RFP-SHP-1 and EGFP-Y333/373F was not affected by Src 

overexpression (Figure 3.60).  

 

3.8.4 SHP-1 and PDK1 localization to the nucleus occurs via the nuclear pore 

complex. 

Shuttling of proteins in and out of the nucleus occurs through the nuclear pore 

complex (NPC). Nuclear import of SHP-1 has been demonstrated to be mediated by its 

NLS (Craggs and Kellie, 2001). The calcium inonophore, A23187, has been 

demonstrated to induce Ca2+-calmodulin dependent activation of the NPC resulting in 

SHP-1 nuclear accumulation (Tenev et al., 2000). PDK1 nuclear export has been 

demonstrated to occur via its NES and leptomycin-B (LMB), which is an inhibitor of 

CRM-1 of the NPC-export machinery, has been demonstrated to cause nuclear 

accumulation of PDK1 (Lim et al., 2003; Scheid et al., 2005). 

Blocking NPC-mediated nuclear export with LMB or enhancing NPC-mediated 

import with A23187 both resulted in the nuclear accumulation of both EGFP1-PDK1 

and RFP-SHP-1 (Figure 3.61). Treatment with BAPTA-AM, which blocks NPC-

mediated import as a result of inhibition of the assembly of the NPC (Macaulay and 

Forbes, 1996), resulted in a slightly stronger cytoplasmic signal for both RFP-SHP-1 and 

EGFP1-PDK1 (Figure 3.61). 

 

3.8.5 SHP-1 associates with the nuclear matrix upon dissociation from PDK1. 

 C6 cells co-expressing SHP-1 (WT) and the double mutant PDK1Y6/376F were 

treated with LMB. The nuclei were isolated and the nuclear matrix was separated from 
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Figure 3.60: The SHP-1 and PDK1 double substitution mutant Y9/376F do not 

colocalize in cells cotransfected with Src. C6 cells were cotransfected with pRFP-

SHP-1 (SHP-1) or pEGFP-PDK1 (WT) or pEGFP-Y9/376F (Y9/376F) or pEGFP-

Y333/373F (Y333/373F) and activated chicken SrcY527F (Src). Samples were fixed, 

permeabilize, stained with DAPI (1 μg/ml, 5 min), and analyzed using a Zeiss LSM 510 

META confocal microscopy. Data are representative of two independent experiments. 
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Figure 3.61: The nuclear pore complex mediates SHP-1 and PDK1 nuclear 

shuttling. C6 cells were cotransfected with pEGFP-PDK1 (PDK1) and pRFP-SHP-1 

(SHP-1) and treated with leptomycin-B (LMB; 50 nM, 3 h) or A23187 (5 μM, 10 min), 

or BAPTA-AM (100 μM, 30 min). Cells were prepared and analyzed as described in 

Figure 3.61. Excitation/emission wavelengths (nm) are RFP (red): 557/585, EGFP 

(green): 488/507 and DAPI (blue): 358/461. Data are representative of three independent 

experiments.  
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the soluble fraction. Proteins were resolved by SDS-PAGE and examined for SHP-1 and 

PDK1 expression (Figure 3.62). 

 

3.8.6 The SHP-1 NLS contributes to the nuclear localization of PDK1.  

The following experiments were conducted to determine if the nuclear 

localization signal (NLS) of SHP-1 influences the import of RFP-SHP-1 (and EGFP1-

PDK1) to the nucleus. The last 3 amino acids of the C-terminus of SHP-1 constitute a 

NLS (Craggs and Kellie, 2001). This NLS was deleted by insertion of a STOP codon at 

the Lysine (Lys) 592 immediately preceding the NLS (Figure 3.59B). 

C6 cells were treated with LMB to determine if the SHP-1 mutant lacking the 

NLS (RFP-SHP-1ΔNLS) could block the localization and accumulation of EGFP1-

PDK1 in the nucleus. RFP-SHP-1 and EGFP1-PDK1 both accumulated in the nucleus of 

LMB-treated cells (Figure 3.63). The RFP-SHP-1ΔNLS mutant was not completely 

excluded from the nucleus (Figure 3.63). EGFP1-PDK1 was also excluded from the 

nucleus of these cells, even following treatment with LMB (Figure 3.63). The RFP-SHP-

1ΔNLS mutant was not completely excluded from the nucleus, perhaps due to a 

contribution to nuclear import by the N-terminal NLS on SHP-1. 

The effect of RFP-SHP-1ΔNLS on the nuclear accumulation of EGFP1-PDK1 in 

response to SWD was examined. RFP-SHP-1ΔNLS was effective in reducing the 

nuclear accumulation of EGFP1-PDK1 in response to SWD (Figure 3.64). Once again 

the RFP-SHP-1ΔNLS was not completely excluded from the nucleus in C6 cells. Yang 

et al., (2002) reported that the nuclear localization of SHP-1 can be dependent on both 

the C and N-terminal localization signals of SHP-1. However, Craiggs and Kellie 

(2001), reported that the C-terminal NLS and not the N-terminal NLS regulates SHP-1 

nuclear localization in HEK293 cells. Therefore, HEK293A cells were used to test the 

influence of the RFP-SHP-1ΔNLS on EGFP1-PDK1 localization. 

HEK293A cells overexpressing the RFP-SHP-1ΔNLS clearly had reduced 

nuclear SHP-1 signal intensity and a reduced nuclear accumulation of EGFP-PDK1, 

even when treated with LMB (Figure 3.65). 
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Figure 3.62: SHP-1 associates with the nuclear matrix upon dissociation from 

PDK1. C6 cells were transfected with pRFP-SHP-1 and pEGFP-PDK1 (WT) or pEGFP-

Y9/376F and 24 h post-transfection treated with leptomycin-B (LMB; 50 nM, 3 h). 

Proteins from the nuclear matrix (NM) and nuclear extracts (NE) were obtained. 

Proteins (30 μg of protein per lane) were resolved by SDS-PAGE and membranes were 

probed using antibodies for SHP-1 and PDK1. 
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Figure 3.63: Deletion of the SHP-1 nuclear localization signal (NLS) inhibits the 

nuclear accumulation of SHP-1 and PDK1 in C6 cells. Cells were cotransfected with 

pEGFP (EGFP) and pRFP (RFP), or pEGFP-PDK1 (PDK1) and pRFP-SHP-1 (SHP-1) 

or pRFP-SHP-1ΔNLS (SHP-1ΔNLS) and treated with leptomycin-B (LMB; 50 nM, 4 h). 

Cells were fixed, permeabilized and analyzed by confocal microscopy. 

Excitation/emission wavelengths (nm) are RFP (red): 557/585 and EGFP (green): 

488/507. Data are representative of three independent experiments. 
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Figure 3.64: Deletion of the SHP-1 NLS reduced the nuclear localization of RFP-

SHP-1ΔNLS and EGFP-PDK1 in response to SWD. C6 cells were cotransfected with 

pEGPF-PDK1 (PDK1) and pRFP-SHP-1ΔNLS (SHP-1ΔNLS) and grown in serum-free 

medium (SWD) for 30 min or treated with leptomycin-B (LMB; 50 nM, 3 h). Cells were 

prepared and analyzed as described in Figure 3.61. Excitation/emission wavelengths 

(nm) are RFP (red): 557/585, EGFP (green): 488/507 and DAPI (blue): 358/461. Data 

are representative of two independent experiments. 
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Figure 3.65: Deletion of the SHP-1 NLS inhibits the nuclear accumulation of RFP-

SHP-1ΔNLS and EGFP-PDK1 in HEK293A cells. Cells were cotransfected with 

pEGFP-PDK1 (PDK1) and pRFP-SHP-1 (SHP-1) or pRFP-SHP-1ΔNLS (SHP-1ΔNLS). 

24 h post-transfection cells were treated with leptomycin-B (LMB; 50 nM, 4 h). Cells 

were prepared and analyzed as described in Figure 3.61. Excitation/emission 

wavelengths (nm) are RFP (red): 557/585, EGFP (green): 488/507 and DAPI (blue): 

358/461. Data are representative of three independent experiments. 
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3.9 Usage of PC12 cells to determine the function of the SHP-1:PDK1 complex. 

 The removal of serum from C6 cells is likely to affect concurrently many 

signalling pathways and cellular processes, i.e. metabolism, which would make any 

observation difficult to interpret. PDK1 and SHP-1 have been implicated independently 

in a variety of cell functions, including differentiation. PDK1 mediates differentiation of 

adipocytes (Yin et al., 2006). In addition, SHP-1 has been implicated in the 

differentiation of astrocytes (Massa et al., 2004; Wishcamper et al., 2001) and PC12 

cells (Marsh et al., 2003; Vambutas et al., 1995). Furthermore, nuclear PDK1 has been 

implicated in the effects of NGF in PC12 cells (Martelli et al., 2003) and in COS-7 cells 

overexpressing the NGF receptor, TrkA (Salinas et al., 2000).  

 

3.9.1 The SHP-1:PDK1 complex shuttles to the nucleus during differentiation of 

PC12 cells. 

RFP-SHP-1 and RFP-SHP-1ΔNLS, EGFP-PDK1 and EGFP-Y9/376F were 

overexpressed in PC12 cells (Figure 3.66). Stimulation of PC12 cells with NGF for 30 

minutes did not affect the phenotype of vector-transfected cell cultures. The co-

expression of SHP-1 and PDK1 was sufficient to induce modest neurite extension in 

vehicle-treated cultures (CTL) and more so in NGF-treated cultures (Figure 3.67). 

Overexpression of the SHP-1ΔNLS protein blocked the effect of NGF (Figure 3.67). 

Longer treatment of PC12 cells with NGF (e.g. two days) began to induce neurite 

extension in vector-transfected cultures; however, coexpression of SHP-1 and PDK1 

significantly enhanced the effect of NGF (Figure 3.68). The SHP-1ΔNLS protein 

blocked the effects of NGF, as did the overexpression of the PDK1Y9/376F mutant 

(Figure 3.68).  

This series of experiments was repeated and included LMB treatment to test 

whether SHP-1 and PDK1 enter the nucleus during stimulation of cells with NGF. 

Nuclear accumulation of SHP-1 and PDK1 proteins was observed in cultures 

overexpressing the wildtype SHP-1 and PDK1 proteins as well as in cultures 

overexpressing the wildtype SHP-1 and PDK1Y9/376F proteins (Figure 3.69). In 

contrast, there was significantly less nuclear accumulation of SHP-1 and PDK1 signals 

in cultures overexpressing the SHP-1ΔNLS protein (Figure 3.69). Stimulation with NGF
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Figure 3.66: Expression of EGFP1-PDK1 and RFP-SHP-1 proteins in PC12 cells. 

Cells were transfected with (A) pEGFP (GFP) or pEGFP-PDK1 (PDK1), or pEGFP-

Y9/376F (Y9/376F) and (B) pRFP (RFP) or pRFP-SHP-1 (SHP-1), or pRFP-SHP-

1ΔNLS (SHP-1ΔNLS). 24 h post-transfection proteins (10 μg of protein per lane) were 

resolved by SDS-PAGE and membranes were probed using antibodies for PDK1, SHP-1 

and equal loading was monitored using β-actin. 
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Figure 3.67: Effect of NGF stimulation on SHP-1:PDK1 nuclear localization in 

PC12 cells. Cells were cotransfected with pEGFP (GFP) and pRFP (RFP) or pEGFP-

PDK1 (PDK1) and pRFP-SHP-1 (SHP-1) or pEGFP-PDK1 (PDK1) and pRFP-SHP-

1ΔNLS. 24 h post-transfection cells were treated with NGF (50 nM, 30 min). Cells were 

fixed and analyzed using an Olympus FV300 confocal microscope. Excitiation/emission 

wavelengths (nm) are RFP (red): 557/585 and EGFP (green): 488/507. Data are 

representative of two independent experiments. 
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Figure 3.68:  Effect of NGF on SHP-1:PDK1 nuclear localization in PC12 cells. 

Cells were cotransfected with pEGFP (GFP) and pRFP (RFP) or pEGFP-PDK1 (PDK1) 

and pRFP-SHP-1 (SHP-1) or pRFP-SHP-1ΔNLS (SHP-1ΔNLS) or pEGFP-

PDK1Y9/376F and SHP-1. 24 h post-transfection cell were treated with NGF (50 nM, 2 

days). Cells were prepared and analyzed as described in Figure 3.67. 

Excitation/emission wavelengths (nm) are RFP (red): 557/585 and EGFP (green): 

488/507. Data are representative of two independent experiments. 
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Figure 3.69: SHP-1:PDK1 accumulate in the nucleus of PC12 cells when treated 

with LMB. Cells were cotransfected with pEGFP (GFP) and pRFP (RFP) or pEGFP-

PDK1 (PDK1) and pRFP-SHP-1 (SHP-1) or pRFP-SHP-1ΔNLS (SHP-1ΔNLS) or 

pEGFP-PDK1Y9/376F (PDK1Y9/376F) and pRFP-SHP-1 (SHP-1). 24 h post-

transfection cells were treated with leptomycin-B (LMB; 20 nM, 3 h) and NGF (50 nM, 

30 min) Cells were prepared and analyzed as described in Figure 3.67. 

Excitation/emission wavelengths (nm) are RFP (red): 557/585 and EGFP (green): 

488/507. Data are representative of two independent experiments. 
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 (30 min) resulted in additional accumulation of SHP-1 and PDK1 in cells 

overexpressing the wildtype SHP-1 and PDK1 (or PDK1Y9/376F) proteins (Figure 

3.69). The reduction of nuclear localization of proteins in cells overexpressing SHP-

1ΔNLS was not affected by NGF treatment (Figure 3.69).  

 

3.9.2 The association between SHP-1 and PDK1 is maintained during NGF 

treatment of PC12 cells.  

 NGF has been shown to increase the tyrosine phosphorylation status of PDK1. 

PC12 cells were treated with NGF and proteins were examined for phosphorylation 

changes in PDK1 and whether the interaction with SHP-1 was affected as a result of 

treatments. Treatment of PC12 cells with NGF for either 30 minutes or two days did not 

affect the association between SHP-1 and PDK1 (Figure 3.70). NGF treatment did, 

however, cause a decrease in PDK1 mobility and a corresponding increase in Akt 

phosphorylation (Figure 3.70).  
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Figure 3.70: The association between SHP-1:PDK1 is maintained with NGF 

treatment of PC12 cells. Cells were treated with NGF (50 nM, 30 min or 2 d). Proteins 

(300 μg) were immunoprecipitated (IP) with anti-PDK1 antibody and the 

immunoprecipitates were resolved by SDS-PAGE and probed for SHP-1 and for total 

PDK1. Corresponding protein lysates (TCL) were resolved by SDS-PAGE and 

immunoblotted (IB) with anti-total PDK1, anti-Akt(Thr308), anti-Akt(Ser473), anti-total 

Akt and anti-β-actin. Data are representative of one experiment. 
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4. DISCUSSION 

SHP-1 has been implicated as a negative regulator of cellular events, most often 

in cancer and immune cells. The PI3K/PDK1/Akt signalling pathway is credited with 

regulating growth, proliferation and differentiation in cells in the periphery as well as in 

the central nervous system (CNS); it is this signalling pathway that is most often 

targeted by SHP-1, yet there is a paucity of data regarding the role of SHP-1 in 

regulating the PI3K/PDK1/Akt pathway in the CNS. 

This thesis provides evidence for an association between SHP-1 and PDK1. This 

association is dependent on the tyrosine phosphorylation of PDK1 and plays a critical 

role in regulating PDK1 function and localization. Most importantly, this thesis provides 

clear evidence for a SHP-1:PDK1 nucleo-cytoplasmic shuttling complex that relies on 

the SHP-1-NLS and the PDK1-NES. This complex is constitutively present in several 

cell lines and plays a critical role during cellular stress, i.e. SWD or NGF-mediated 

differentiation. 

 

4.1 Response of the PI3K pathway in C6 cells grown in serum-free medium. 

Akt phosphorylation need not always directly reflect PI3K function. Our 

laboratory has recently shown that activation of the sigma2 receptor system by the 

antipsychotic drug haloperidol induces PI3K activity and a concurrent loss of Akt 

phosphorylation (Dai et al., 2007, in press). Furthermore, differentiation of C6 glioma 

cell cultures using dibutyryl-cAMP (in combination with serum withdrawal) can induce 

PI3K activity (Roymans et al., 2001), while inhibiting the phosphorylation of Akt (Van 

Kolen and Slegers, 2004). A similar uncoupling is observed in differentiated 3T3-L1 

adipocytes chronically treated with GH (Takano et al., 2001). It is the contention of this 

laboratory that this “uncoupling” of PI3K activity and Akt phosphorylation has been 

observed before, but is not published. I chose to investigate the contribution of SHP-1 to 

this phenomenon. 
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Removal of serum from the culture medium results in the expected change in 

morphology (Baranska et al., 2004), e.g. from a fibroblast-like flat shape to a rounded 

astrocyte-like phenotype. Furthermore, this corresponds with cell cycle arrest and a 

reduction in proliferation, thereby confirming previous reports (Chou and Langan, 2003; 

Fan, 1983; Heldin et al., 1980). Both cell cycle progression and differentiation are 

known to involve PI3K activation of effector molecules such as Akt and Erk1/2 (Datta et 

al., 1999; Zhang and Liu, 2002). Initial characterization of the PI3K signalling pathway 

revealed an increase in p85/PI3K-associated lipid kinase activity and the concurrent loss 

of Akt phosphorylation, reflecting similarly reported paradoxical observations (Roymans 

et al., 2001; Takano et al., 2001; Van Kolen and Slegers, 2004) however, the concurrent 

loss of p85 phosphorylation is unexpected as tyrosine phosphorylation of p85 is thought 

to be an obligate condition for PI3K activation or for PI3K recruitment to RTKs (Cuevas 

et al., 2001; Yu et al., 1998c). Overexpression of the p85 protein, p85Y688D, which 

mimics tyrosine phosphorylation and is known to increase Akt phosphorylation 

presumably by affecting PI3K activity (Cuevas et al., 2001), increases Akt 

phosphorylation, but does not reverse the effect of serum withdrawal (SWD) on C6 cell 

proliferation. Furthermore, the maintained association of endogenous p85 with Gab1, a 

scaffolding protein thought to recruit p85 to RTKs (Ingham et al., 2001), suggests that 

the events and machinery necessary for PI3K activation are intact. Confocal microscopy 

confirmed the increased production of PI3,4,5P3 in this model; however, these PI3,4,5P3 

are not localized at the plasma membrane as would be expected of a cell line with 

constitutively active PI3K (Maher et al., 2001; Roymans et al., 2001), but rather are 

concentrated in the perinuclear region. In keeping with this, p85, whose distribution 

under control conditions is diffuse and throughout the cell, including in the nucleus, is 

also concentrated in the perinuclear region during SWD. 

The redistribution of p85(PI3K) and PI3,4,5P3 to the perinuclear region of C6 

cells grown in serum-free medium could explain why overexpression of the catalytic 

dead PTENC124S mutant (which is incapable of dephosphorylating PI3,4,5P3) does not 

protect against the loss of Akt phosphorylation that occurs in response to SWD. Indeed, 

PTEN preferentially targets PI3,4,5P3 at the plasma membrane, but not the nuclear pool 

(Lindsay et al., 2006). Similarly, the inability of the plasma membrane-directed 
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myristoylated PDK1 (myr-PDK1) to protect against the loss of Akt phosphorylation in 

reponse to SWD may be due to the redistribution of PI3,4,5P3 synthesis, and 

corresponding redistribution of Akt, to the nucleus. Obviously, a plasma-membrane 

bound PDK1 could not activate a nuclear pool of Akt. Although not examined in this 

thesis, it is possible that myr-PDK1 can be expressed in other cellular compartments 

besides the plasma membrane (Scheid et al., 2002). Despite all the required machinery 

present in the nuclear region, Akt is not phosphorylated. This may not be that surprising 

and part of the story may be suggested by the weak distribution of FOXO3a to the 

nucleus of cells in response to SWD. Indeed, nuclear FOXO31 is associated with 

apoptosis (Brunet et al., 1999), yet removal of serum is more often associated with 

differentiation, and not apoptosis (Chou and Langan, 2003; Fan, 1983). This could 

therefore be indicating events required to set up the nucleus for differentiation. 

However, the data in this thesis could also be indicating that additional events may be 

occurring within the nucleus to disrupt proper Akt phosphorylation. Possible 

explanations could be that (i) PDK1 is not active in the nucleus of these cells; (ii) SHP-1 

sterically hinders PDK1; (iii) myr-PDK1 may not be anchored on the same aspect of the 

nuclear membrane as PI3,4,5P3 synthesis; (iv) or it could be something much less 

obvious such as a difference in pH, which is definately heterogeneous across subcellular 

compartments, particularly the nucleus and cytoplasm (Masuda et al., 1998), and which 

could affect SHP-1 conformation and activity (Thangaraju et al., 1999). Obviously, 

further studies are warranted. 

PDGF stimulation of C6 cells grown in serum-free medium recruits p85 to the 

PDGF receptor (PDGFR), as expected (Yu et al., 1998c), and protects against the loss of 

Akt phosphorylation. PDGF supplemented in serum-free medium also promotes cell 

cycle progression compared to serum-free medium alone, confirming previous 

observations with this growth factor (Heldin et al., 1980) and it (but not EGF) does so by 

inducing a re-distribution of PI3,4,5P3 to the plasma membrane. This suggests that p85, 

and presumably the PI3K complex, is not being recruited to this RTK during SWD. The 

lack of effect of the overexpressed p85Y688D mutant, which has been associated with 

both PI3K activation and recruitment to tyrosine phosphorylated proteins, suggests that 

the observed loss of p85 tyrosine phosphorylation during SWD may extend to other 
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tyrosine residues that are equally important for proper p85/PI3K function and 

localization. This is supported indirectly by the intact association between p85 and the 

docking protein Gab1 (presumably still associated with the PI3K complex) as well as by 

the ability of PDGF stimulation to maintain the localization of a pool of p85 to the 

plasma membrane during SWD. Obviously combinations of various phosphorylated and 

dephosphorylated tyrosine residues on p85 could dictate its function in a context-

dependent manner. This intriging notion also warrants investigation. 

 

4.2  Tyrosine-phosphorylated PDK1 interacts with SHP-1. 

The decrease in PDK1 mobility during SWD indicates a post-translational 

modification. The phosphorylation of the PDK1(Ser241) residue commonly associated 

with PDK1 activation (Casamayor et al., 1999) is not a contributing factor. This is 

clearly supported by the inability of overexpressed PDK1Ser241Glu phosphorylation 

mimic to protect against the loss of Akt phosphorylation. This is not that surprising 

given reports of a similar disconnect between PDK1(Ser241) and activation of Akt 

(Chen et al., 2001; Riojas et al., 2006).  

A review of the literature revealed that tyrosine phosphorylation of PDK1 also 

contributes to the regulation of its activity and ultimately that of its downstream 

effectors (Fiory et al., 2005; Grillo et al., 2000; Park et al., 2001). There is evidence that 

H2O2, pervanadate and c-Abl all increase PDK1 tyrosine phosphorylation and its activity 

towards its substrates SGK and Akt (Grillo et al., 2000; Park et al., 2001). The present 

series of experiments reveals that SWD, pervanadate and Src kinase increase PDK1 

tyrosine phosphorylation. While Src kinase and pervanadate are both known to induce 

tyrosine phosphorylation of PDK1, they exert their effects via PI3K-independent and -

dependent manners, respectively (Grillo et al., 2000; Prasad et al., 2000). The mobility 

shift in PDK1 induced by SWD is also PI3K-independent (i.e. LY294002-insensitive). 

Regardless of the approach used, they all increase the association between SHP-1 and a 

higher molecular weight PDK1 species.  

While the effect of pervanadate is the strongest, the effects of pervanadate and 

SWD are additive suggesting that these approaches target different residues on PDK1. 

Furthermore, treatment with pervanadate increases Akt phosphorylation and this effect 



dominates during SWD. These effects may be reflecting the properties of pervanadate as 

a general tyrosine phosphatase inhibitor, i.e. it can also target other phosphatases such as 

SHP-2 (Xu et al., 2002) and SHIP (Phee et al., 2000), thus, making it difficult to 

attribute specific effects to endogenous SHP-1. 

The association between SHP-1 and PDK1 is not unexpected given that PDK1 is 

a Src substrate (Park et al., 2001) and that SHP-1 is a general phosphatase of Src 

substrates (Frank et al., 2004). There is at least one other known common substrate of 

Src and SHP-1, p120ctn, which is recognized as a prominent Src substrate (Mariner et al., 

2001). The Src phosphorylation sites on p120ctn have been mapped and SHP-1 can bind 

to, and dephosphorylate, p120ctn (Mariner et al., 2001). In this thesis, a role for SHP-1 in 

regulating PDK1 phosphorylation is demonstrated by the decrease of endogenous PDK1 

tyrosine phosphorylation in C6 cell cultures co-expressing activated Src and wildtype 

SHP-1, but not in cultures co-expressing the catalytically inactive mutant SHP-1C455S. 

Examination of the PDK1 protein sequence reveals that Y9, Y373 and Y376, known 

targets of Src kinase (Park et al., 2001), are contained within putative ITIMs 

[pYXX(V/I/L)] and, thus, are potential targets of SHP-1 (Yang et al., 2000; Yang et al., 

1998). The PhosphoMotif Finder on the Human Protein Reference Database 

(http://www.hprd.org/) identifies several residues, including the three mentioned above, 

as being potential targets for Src kinase, but also, that Y373 and Y376 (and, in addition 

Y333), are also potential targets for SHP-1 (Appendix I). Overexpression of the 

corresponding tyrosine to phenylalanine substitution mutants of PDK1 (i.e Y9F, Y333F, 

Y373F, Y376F) do not exert any consistent effects on their own on either C6 cell 

proliferation or cell cycle, supporting the hypothesis that a combination of tyrosines 

regulates PDK1 function (Park et al., 2001). However, overexpression of these same 

mutants in cells treated with either pervanadate or SWD reveals that Y9 and Y376 exert 

similar effects on Akt phosphorylation, and that these effects contrast those of Y333 and 

Y373. The importance of the Y9 and Y376 residues is underscored by the reduced 

association between the Y9/376F double mutant and SHP-1 in reponse to SWD or in the 

presence of activated Src. The loss of association between these two proteins is not 

complete, indicating that other tyrosines (possibly Tyr273, which resides within an 

IXYXXV  motif)  contribute  to  the  interaction. However,  the importance of the Y9 and 
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Y376 residues is further demonstrated by the dominant-negative inhibitory effect of the 

double PDK1Y9/376F mutant on Akt phosphorylation. These obervations are seemingly 

counter-intuitive, especially if viewed from within the paradigm that the predominant 

role of SHP-1 in the cell is that of a negative regulator of PI3K/PDK1/Akt function. 

However, there is evidence that SHP-1 functions beyond simply being a phosphatase. 

Indeed, SHP-1 can bind to phopholipids, which may confer structural changes that 

facilitate substrate access to the active site (Frank et al., 1999; Zhao et al., 1993). In 

addition, the presence of a nuclear localization signal (NLS) enables it to translocate to 

the nucleus (Craggs and Kellie, 2001) and presumably target a distinct pool of 

substrates/functions. 

 It is already known that tyrosine phosphorylation of PDK1 is not only important 

for its activation, but also for membrane localization (Park et al., 2001). The current data 

suggest that SHP-1 contributes to this event. 

 

5.3 Cellular localization of SHP-1 and PDK1 

 The mechanism that underlies the nuclear localization of PDK1 is not known, but 

what is known is that it can relocalize to this subcellular compartment upon stimulation 

with growth factors (i.e. insulin, NGF and IGF-1), all of which increase PDK1 tyrosine 

phosphorylation (Lim et al., 2003; Salinas et al., 2000; Scheid et al., 2005). While IGF-1 

can induce the nuclear localization of endogenous PDK1, it is perplexing that there is 

not a proportional increase in nuclear accumulation of overexpressed PDK1 with IGF-1 

stimulation (Scheid et al., 2005). As stated above, the mechanism by which PDK1 is 

imported into the nucleus is not known; yet, if the association between SHP-1 and PDK1 

goes beyond a simple regulation of cytoplasmic signalling cascades, then it is not 

unreasonable to accept that the import of PDK1 to the nucleus could occur via a “piggy-

back” mechanism, based on SHP-1 (by virtue of its NLS) (Craggs and Kellie, 2001) as 

an import vehicle and that the nuclear localization of overexpressed PDK1 is limited if 

the endogenous pool of SHP-1 is saturated.  

 In fact, SHP-1 and PDK1 do colocalize to the nucleus with SWD, a condition 

that modesly increases the tyrosine phosphorylation of PDK1 and its interaction with 

SHP-1 (Figure 4.1). Interestingly, PDK1 localization to the plasma membrane can be 
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Figure 4.1:  Model for SHP-1:PDK1 nuclear shuttling in response to SWD in C6 

cells. (Left) Activated PI3K generates PI3,4P2 and PI3,3,5P3 which localize PDK1 to the 

plasma membrane. PDK1 is phosphorylated on putative ITIMs, including Y9 and Y376, 

which leads to an interaction with SHP-1. PDK1 is then able to “piggy-back” to the 

nucleus, an event mediated by the nuclear localization signal (NLS) of SHP-1. In the 

nucleus PDK1 is dephosphorylated (on Y9 and/or Y376?). SHP-1:PDK1 then shuttles to 

the cytosol, an event mediated by the nuclear export signal of PDK1. (Right) In response 

to serum withdrawal (SWD) PI3K-associated lipid production occurs near the nucleus 

which localizes PDK1 to this lipid pool. PDK1 is phosphorylated, particularly on Y9 and 

Y376 which leads to an interaction with SHP-1. The SHP-1PDK1 complex is not 

exported (mechanism unknown) from the nucleus leading the complex accumulation 

(fast rate of protein shuttling: thick arrows; slow rate of protein shuttling: thin arrows).     
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disrupted in the presence of increased levels of intracellular cAMP (Kim et al., 2001). 

The mechanism by which cAMP impairs PDK1 localization to the plasma membrane 

has not been described, however, it is possible a similar mechanism is occurring in 

reponse to SWD which increases the levels of cellular cAMP as discussed previously 

(Baranska et al., 2004). 

 The nuclear accumulation of both SHP-1 and PDK1 in cells treated with A23187 

(induces Ca2+-calmodulin-dependent activation of the NPC; Sweitzer and Hanover, 

1996) or with leptomycin-B (LMB: inhibits the nuclear pore complex (NPC)-export 

machinery; Kutay and Guttinger, 2005) implicates the NPC in their transport across the 

nuclear membrane. This is corroborated by the exclusion of both molecules from the 

nucleus of cell treated with BAPTA-AM (inhibits the assembly of the NPC; (Macaulay 

and Forbes, 1996). The combined molecular weight of an SHP-1:PDK1 complex is well 

above the 25-40 kDa threshold for passive diffusion and, therefore, undoubtedly requires 

energy-dependent active transport across the NPC (i.e. RanGTP-dependent) (Fried and 

Kutay, 2003). A pivotal role for SHP-1 in this transport is demonstrated by the reduction 

in nuclear accumulation of PDK1 in cells overexpressing the SHP-1 protein truncated at 

the C-terminal NLS (SHP-1ΔNLS). However, the effect of the SHP-1ΔNLS in C6 cells 

is not absolute, whereas it is in HEK293 cells. This suggests that the nuclear import of 

SHP-1 in HEK293 cells depends exclusively on the C-terminal NLS, whereas in C6 

cells the N-terminal NLS (Yang et al., 2002b) may also contribute.   

 Other proteins able to contribute to PDK1 nuclear import can not be discounted. 

There are several other proteins which contain a NLS that could act in a similar way as 

SHP-1. For example, the PhosphoMotif Finder on the Human Protein Reference 

Database identified PDK1 as having phosphorylation motifs for the NLS-containing 

tyrosine phosphatase, TCPTP (Lorenzen et al., 1995; Tillmann et al., 1994) and the 

NLS-containing serine/threonine kinase MAPKAPK-2 (Stokoe et al., 1993). Although 

these proteins do not contain SH2 domains, they could potentially target PDK1 to the 

nucleus as part of a larger, multimeric protein complex.  

 The fact that SHP-1 and PDK1 accumulate in the nucleus of LMB-treated cells 

suggests that the SHP-1:PDK1 complex shuttles between the cytoplasm and the nucleus 

under resting conditions, with the speed, or rate, of export being significantly greater 
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than the rate of import. What controls the rate of nuclear shuttling of the SHP-1:PDK1 

complex? If the NLS of SHP-1 controls the nuclear import of the SHP-1:PDK1 complex 

and the tyrosine phosphorylation state of PDK1 drives that association with SHP-1, then 

it is not unreasonable to consider that the tyrosine phosphorylation state of PDK1 is also 

contributing to nuclear shuttling of this complex. In the nuclear extracts of both resting 

cells and in cells grown in serum-free medium, SHP-1 associates with a lower molecular 

weight form of PDK1, suggesting SHP-1-associated PDK1 is in a dephosphorylated 

state in the nucleus (Figure 4.1). Overexpressing the substitution mutants (Y9F, Y376F, 

or Y9/376F) in cells grown in serum-free medium does not result in the expected nuclear 

accumulation of PDK1; however, endogenous SHP-1 expression is more diffuse 

throughout these cells and can be found in the nucleus as well. A similar effect is 

observed in cells coexpressing the Y9/376F mutant with SHP-1 and activated Src. This 

initially suggested that the interaction between SHP-1 and PDK1 is disrupted due to the 

mutations on Y9/376; this is supported by the subsequent observation of a nuclear 

accumulation of both SHP-1 and PDK1Y9/376F in cells treated with LMB. By 

extension, this may also be indicating that the Y9/376 residues on PDK1 are influential 

in the rate of export of PDK1 from the nucleus.  

The dephosphorylation of Y9 and Y376 on PDK1 also affected SHP-1 export 

(recall: SHP-1 remains in the nucleus, while PDK1 Y9F, Y376F and Y9/376F mutants 

are cytoplasmic). Given that SHP-1 interacts less with PDK1 dephosphorylated on 

Y9/376, and SHP-1 is “left-behind” in the nucleus of cells overexpressing this mutant, 

argues that these sites are important for the association of SHP-1 with PDK1 and not 

only for regulating its own rate of export from the nucleus, but also regulating the rate of 

export of SHP-1. Does SHP-1 “piggy-back” out of the nucleus or is it left behind (Figure 

4.1)? The retention of SHP-1 in the nuclear matrix when co-expressed with the 

PDK1Y9/376F protein is also revealing. Indeed, Lyn, a Src kinase family member, is 

associated with the nuclear matrix, and not in the chromatin fraction of the nucleus, and 

is maximally activated at the G1/S transition phase (Radha et al., 1996). If any 

conclusions can be drawn from the fact that SHP-1 can associate with, and inactivate, 

such Src kinases such as Lck (Chiang and Sefton, 2001; Frank et al., 2004) and Lyn 

(Daigle et al., 2002), and that PDK1 can be targeted by Src kinases (Grillo et al., 2000; 
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Park et al., 2001), then it is possible that Lyn is activated during serum withdrawal (and 

the ensuing G1 arrest), which would promote the phosphorylation of PDK1 and its 

retention within the nucleus. 

Both SHP-1 and PDK1 have been implicated in differentiation, which invariably 

involves a nuclear event (Marsh et al., 2003; Martelli et al., 2003; Vambutas et al., 

1995). The function of nuclear shuttling of SHP-1 and PDK1 was considered using 

NGF-induced differentiation of PC12 cells. This model was used instead of SWD in C6 

cells (also shown to induce differentiation), because NGF targets the TrkA-receptor 

specifically, and presumably is more selective as to which signalling pathways are 

affected, unlike SWD in C6 cells which could be affecting a number of receptors and 

many signalling pathways. 

PC12 cells coexpressing SHP-1 and PDK1 are more sensitive to acute and 

subchronic NGF treatment as observed by the presence of vast neuritic branching, which 

usually is only observed after a longer period of treatment (5-14 days). The sensitivity of 

these cells to NGF is blocked by the overexpressed SHP-1ΔNLS protein or the 

overexpressed PDK1 Y9/376F mutant, implicating important roles for both SHP-1 and 

PDK1 in NGF-induced differentiation of PC12 cells (Figure 4.2). However, their roles 

may not be strictly limited to signalling. For example, the role of SHP-1 may be that of a 

carrier (if any conclusion can be drawn from the fact that SHP-1 is nuclear when co-

expressed with mutated PDK1, yet NGF does not stimulate differentiation in these 

cells). The actual differentiation process may rely on PDK1 or it could rely on both 

SHP-1 and PDK1 needing to reside in the nucleus for a critical interval and the rapid 

export of the PDK1Y9/376F mutant mitigates its effect on the machinery involved in 

differentiation. Whatever the case, it is obvious that if PDK1 (or a SHP-1:PDK1 

complex) does not reside within the nucleus long enough, then differentiation does not 

occur.  

NGF is reported to increase the tyrosine phosphorylation of PDK1 in HEK293 

cells stably expressing the TrkA receptor (Prasad et al., 2000). There is an observable 

decrease in mobility on PDK1 in PC12 cells treated with NGF, however this does not 

reflect any change in tyrosine phosphorylation on PDK1 in these cells (which 

constitutively express the TrkA receptor; (Kaplan et al., 1991). While it is difficult to 
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reconcile these contrasting observations, it may simply be that tyrosine phosphorylation 

of PDK1 is minimal, yet sufficient, to allow for constitutive association with SHP-1 and 

for nucleo-cytoplasmic shuttling, an event that may exist simply as a means of priming 

the nuclear machinery or that may serve to maintain normal PC12 growth and function.  

 Nuclear shuttling of the SHP-1:PDK1 complex is a conserved event, occurring in 

glial, neuronal and peripheral cell lines. What might be attracting these proteins to the 

nuclear membrane in the first place? There are two possible models: first, the tyrosine 

phosphorylation of PDK1 induced by growth factor stimulation or conditions of stress 

results in the recruitment and binding of SHP-1, and together they are directed to the 

NPC by importins. In this model, SHP-1 is simply functioning to bring PDK1 to the 

nucleus where it can be dephosphorylated and recycled to the cytosol for modulation of 

its targets. A second possibility is that SHP-1:PDK1 shuttling may occur through 

direction of nuclear PI3K production of 3'-phospholipids, which is observed in NGF-

induced differentiation of PC12 cells (Martelli et al., 2003) and is observed in response 

to SWD in C6 cells (current data). Both SHP-1 and PDK1 have binding affinities for 

PI3,4,5P3 (Frank et al., 1999; Vanhaesebroeck and Alessi, 2000). They may be recruited 

to the nuclear envelope where they are able to interact and, due to proximity, are 

recognized by the NPC and rapidly imported in the nucleus (Figure 4.2). It is possible 

that both models are correct, but simply context-dependent. Whatever the case, it is clear 

that SHP-1 and PDK1 contribute to differentiation in these cells and it is therefore 

highly possible that these two proteins existing in a complex can contribute to 

differentiation in many other cell types (glial, neuronal and non-neuronal). 
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Figure 4.2:  Model for SHP-1:PDK1 nuclear shuttling in response to NGF 

stimulation of PC12 cells. In response to NGF stimulation, PI3K is active at the plasma 

membrane, but more so at the nuclear membrane. PDK1 is associated predominantly 

with the nuclear membrane where it is phosphorylated, particularly on Y9 and Y376 

(two putative ITIMs) which leads to an interaction with SHP-1. PDK1 is then able to 

“piggy-back” to the nucleus, an event mediated by the nuclear localization signal (NLS) 

of SHP-1. In the nucleus SHP-1:PDK1 complex mediates NGF-induced PC12 

differentiation. PDK1 is then dephosphorylated possibly by SHP-1 or another 

phosphatase then shuttles to the cytosol, an event mediated by the nuclear export signal 

of PDK1. Shuttling from the outer nuclear membrane into the nucleus occurs at a fast 

rate (indicated by the thick arrows) in comparison to shuttling from the plasma 

membrane which possibly occurs to a lesser extent in response to NGF treatment 

(dashed arrows).  
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6. FUTURE DIRECTIONS 
 

This work demonstrates that SHP-1 can regulate the tyrosine phosphorylation 

and subcellular distribution of PDK1. Moreover, the rate of SHP-1:PDK1 nucleo-

cytoplasmic shuttling can be determined by the type of stimulation, i.e. SWD causes a 

nuclear accumulation of the SHP-1:PDK1 complex and NGF stimulation does not 

induce a noticeable accumulation of either protein, but does require a SHP-1:PDK1 

nuclear event. These findings suggest that distinct events regulate the rate of SHP-

1:PDK1 nuclear shuttling and that tyrosine phosphorylation is an important contributing 

factor. How the tyrosine phosphorylation of PDK1 affects SHP-1:PDK1 nuclear 

shuttling needs to be investigated further. The interaction between SHP-1 and PDK1 is 

demonstrated in this work to be phosphotyrosine-dependent. Introduction of point 

mutations (R to A) into the SH2 domains of SHP-1 would determine their roles and/or 

which SH2 domain(s) mediates the interaction with PDK1.  

 The data presented in this thesis do not identify any nuclear targets of the SHP-

1:PDK1 complex, however, such targets must exist. The PI3K/Ak pathway is active and 

produces PI3,4,5P3 in the nucleus of NGF-differentiated PC12 cells  and several 

downstream targets of PDK1 and SHP-1 are also present in the nucleus (Neri et al., 

2002; Ram and Waxman, 1997). The SHP-1:PDK1 complex promotes differentiation 

and may be important for cell cycle arrest. Identifying the nuclear function of PDK1 and 

SHP-1 as well as their nuclear targets would surely further our understanding of 

regulation of nuclear events.  

Some of the data, although not characterized as extensively, indicate that PDK1 

may regulate the nuclear export of SHP-1. It is interesting that there are distinct 

differences with the subcellular distribution of SHP-1 between hematopoietic and non-

hematopoietic cell lines (Brumell et al., 1997; Ganesan et al., 2003; He et al., 2005). The 

expression, or rate, of nuclear PDK1 shuttling may provide some insight to differences 

in SHP-1 distribution. Understanding how nucleo-cytoplasmic shuttling of SHP-1 is 
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regulated may present better models to understanding differences in the regulation of 

these cells. There is still more to learn about nuclear SHP-1, such as its function, the 

mechanism involved in nuclear targeting and import, and even how it may be exported 

from the nucleus. 

Neurotrophins such as NGF or brain-derived neurotrophic factor (BDNF) are 

involved in a variety of neuromodulatory processes in the brain, including neuronal 

survival, neurite outgrowth and synapse formation (Altar and DiStefano, 1998). Growth 

factors such as NGF and BDNF are abnormally regulated in models of psychiatric 

diseases such as schizophrenia and depression (Angelucci et al., 2004). Recently, certain 

second generation antipsychotic (Angelucci et al., 2005) and antidepressant (Mallei et 

al., 2002; Nibuya et al., 1995) drugs have been shown to alter the brain levels of 

neurotrophins and promote differentiation of neurons (Lu and Dwyer, 2005; Malberg 

and Blendy, 2005). Interestingly, most antidepressant drugs increase intracellular levels 

of cAMP through activation of adrenoceptors or serotonin receptors, but it is important 

to note that not all subtypes of these receptors are coupled to the adenylyl cyclase-

cAMP-PKA pathway (Malberg and Blendy, 2005). Thus, the proposed mechanism 

involving SHP-1 and PDK1 in mediating differentiation may also provide more insight 

into how some of these psychiatric drugs are mediating differentiation and, more 

importantly, neurogenesis. Furthermore, a better understanding of the mechanisms 

underlying the effects of the differentiation/neurogenesis induced by some psychiatric 

drugs might lead to new therapeutics. 
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6. APPENDIX I 
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