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ABSTRACT 

Intravenous feeding of patients with essential and balanced nutrition is required when 

enteral feeding is not tolerated, therefore indicating the need for Total Parenteral Nutrition 

(TPN). This life-saving therapy is also associated with the increase risk of intrahepatic 

cholestasis. The incidence of TPN-related hepatobiliary complications is common in both adults 

and infants on TPN. Previous work in in vivo models suggested that one of the potential 

contributing factors is the aluminum contamination of TPN solutions. The mechanism by which 

aluminum contributes to the PNAC development, though, was unknown. Aluminum as a risk 

factor may influence a number of hepatocellular functions to lead to cholestasis but one possible 

mechanism is the potential for aluminum to cause dysfunction of those transporters responsible 

in the maintenance of bile flow. To provide some initial information regarding the role of 

aluminum as a contributing factor to cholestasis and the possible underlying mechanism, 

cytotoxicity studies were conducted to determine whether aluminum causes direct toxicity of 

HepG2 cells. Furthermore, the influence of aluminum on the mRNA expression of hepatic 

biliary transporters (BSEP, MRP2, MATE1, NTCP) and nuclear transcription factor (FXR) in 

HepG2 cells using real-time RT-PCR analysis was assessed. Since inflammation is a component 

of cholestasis, these investigations also involved the use of an inflammatory stimulus, 

lipopolysaccharide (LPS), to determine whether the effects of aluminum were exacerbated by 

underlying inflammation. My data suggest that for the canalicular hepatic transporters MATE1 

and BSEP, aluminum at higher concentration alone as well as with LPS caused increased mRNA 

expression levels. In addition to this, BSEP mRNA expression was preserved and that of 

MATE1 was increased on LPS exposure. Given the particular importance of BSEP in the 

maintenance of bile flow and reported effects of drug-induced inhibition of BSEP to cause 

hepatic cholestasis, the influence of aluminum on BSEP (and MATE1) protein expression and 

activity warrant investigation. Further studies may identify that inhibition of BSEP function (and 

possibly MATE1) by aluminum contamination of total parenteral nutrition formulations may 

explain, in part, the intrahepatic cholestasis associated with parenteral nutrition. 
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1. Introduction 

1.1 Rationale: 

Intravenous feeding of patients with essential and balanced nutrition is required when 

enteral feeding is not tolerated, therefore indicating the need for Total Parenteral Nutrition 

(TPN). This life-saving therapy is also associated with the increase risk of intrahepatic 

cholestasis. The incidence of TPN-related hepatobiliary complications is common in both adults 

(15-85%) and infants (20-90%) on TPN. Parenteral nutrition associated cholestasis is the most 

common manifestation of liver dysfunction and in infants this accounts for high morbidity and 

occasional mortality (Kelly, 1998).  

The etiology of PNAC is due to multiple factors (Merritt, 1986). A potential contributing 

factor is the aluminum contamination of TPN solutions. Aluminum related adverse effects on the 

liver are well documented (Stein, 1978). Various studies have been conducted in Dr Gordon 

Zello’s Laboratory examining the role of aluminum in PNAC. Findings in his laboratory have 

shown that neonates were more likely to develop cholestasis when on the PN for longer duration 

(Arnold, 2004). Also there are indications that some component of the parenteral solution might 

be a contributing factor for PNAC. Li conducted another study with the primary purpose of 

monitoring the serum aluminum level in correlation with the development of PNAC in the 

infants requiring PN therapy with gastrointestinal failure (Li, 2005). In another study in Dr 

Zello’s laboratory aluminum loading in neonatal piglets caused hepatic injury. Such evidence 

suggests a correlation between aluminum levels and PNAC in neonates but the exact mechanism 

of action of Al in the PNAC development is unknown. Therefore, a step further into this is by 

what mechanism Aluminum contributes in the development of PNAC is required.  

The accumulation of the aluminum in the liver may lead to cholestatic changes 

(Demircan 1998; Klein, 1998), through mechanisms that remain unclear and ill defined. As 

cholestasis involves reduced bile flow, alteration in those transporters responsible for the 

production and maintenance of bile flow as an underlying mechanism of aluminum induced 

intrahepatic cholestasis is possible. The purpose of my research is to investigate whether 

aluminum, like other xenobiotics, alters the expression of hepatic biliary transporters as a 

potential mechanism for cholestasis.  
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Also, in patients with inflammatory processes or extrahepatic infections inflammation 

induced cholestasis is a common complication. The potent inducers of inflammation-induced 

cholestasis are the inflammatory cytokines which are produced in response to different non-

infectious and infectious stimuli. The expression, activity and function of various transporters at 

cellular membranes can be altered by inflammation (Ling et al., 2012). Inflammation results in 

release of cytokines that can cause changes in biliary transporters expression levels, and in turn, 

to reductions in bile flow and cholestasis. Inflammation can further lead to repressed activity of 

nuclear transcriptional regulators that are essential for gene expression of various hepatocyte 

transporters (Kosters and Karpen, 2010). There are several clinical situations where 

inflammation is shown to cause or contribute to cholestatic disease. As liver detoxifies a variety 

of xenobiotics, in acting as the first line of defence against xenobiotics like aluminum, it is 

possible that the liver can show an interrelated response to inflammation. Therefore, my 

evaluations will include the determination of a possible additive effect of inflammation on 

Aluminum induced changes in mRNA expression of hepatic biliary transporters (BSEP, NTCP, 

MRP2, MATE1) and FXR. 
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2. Literature Review 

2.1 Hepatic Physiology: Liver Structure and Function. 

The liver has a wide range of functions including drug biotransformation, detoxification, 

and synthesis of proteins and formation of enzymes required for digestion. Hepatocytes, which 

are the predominant cell type in the liver, form a polarized epithelium with distinct basolateral 

and apical surfaces (Figure 2.1) and hold the machinery for drug metabolism and transport, 

which is responsible for hepatic drug clearance and formation of bile. The hepatocytes are 

arranged in plates such that their basal surface faces the blood sinusoids and the apical faces are 

held together by apical junctional complexes to form the canaliculi (Mirjam and Hoekstra, 1998). 

The hepatic artery (25% blood supply) and portal vein (75% blood supply) supply blood into 

hepatic sinusoids. The sinusoids that lie between hepatic plates feed into the central vein which 

empties blood into the hepatic veins and then into the inferior vena cava. Hepatocytes secrete 

bile into the canaliculi, which empties into the bile ductules and then into the hepatic ducts.  

The functional unit of the liver is the acinus. It is built around a central vein and is 

composed of many hexagonally arranged hepatic cellular plates of parenchymal cells. The acinus 

is divided into three zones: the periportal zone (Zone 1), which lies closest to the arterial and 

portal blood supply; the midzonal zone (Zone 2); and the centrilobular area (Zone 3), which 

surrounds the central vein. The zonal arrangement of the hepatic acinus is accompanied by a 

heterogeneous expression of metabolic enzymes and transporters, particularly transporters 

responsible for the formation of bile (Beath, 2003).  

The remarkable diverse functions of the liver are attributed to its structural organisation 

and these include (1) filtration and storage of blood; (2) bile formation; (3) metabolism of 

hormones, macronutrients and foreign chemicals; (4) storage of iron and vitamins; and (5) 

formation of coagulation factors (Erlinger, 1999). 

Liver serves as the primary regulatory site for taking up and processing ingested nutrients 

for distribution to extrahepatic tissues. The liver is of paramount importance in maintaining 

normal blood glucose levels and cholesterol. In the liver, 80% of cholesterol is converted to bile 

salts, lipoproteins and phospholipids. The liver is also involved in protein metabolism and is 

responsible for the production of 90% of plasma proteins (e.g. transferrin, albumin). These 

proteins not only help develop and maintain plasma osmotic pressure but also serve to transport 

various drugs, hormones, and minerals (e.g. iron and calcium). 
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Figure 2.1: Hepatic Polarity. 

The apical domain is indicated in red. The basolateral and apical membranes are separated by the 

tight junctions (filled in green), forming the epithelial sheet. These tight junctions help maintain 

cellular polarity, causes transcellular vectorial movement of solutes. In addition, it prevents 

paracellular transport of solutes between adjacent cells. 
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Furthermore, acute phase proteins like C-reactive protein, ceruloplasmin and other 

complement factors are also synthesized by liver which play significant roles in the 

inflammatory response (Chwals, 1995).  

2.1.1 Bile secretion and flow: 

A major function of liver cells is the synthesis and secretion of bile. Furthermore, 

hepatocytes are involved in the excretion of xenobiotics and elimination of cholesterol and 

bilirubin. The production of bile by hepatocytes also aids the digestion and absorption of fat-

soluble vitamins and lipids in the intestinal lumen (Scharschmidt, 2003). Bile acids are 

amphipathic physiological detergents that play essential roles in promoting absorption, excretion 

and transport of cholesterol, lipids, lipophilic nutrients and other hydrophobic compounds in the 

liver and intestine (Hofmann, 1999).  

Bile synthesis occurs via an osmotic secretory process and the concentration of bile salts 

and other biliary components in the canalicular lumen act as the driving force (Trauner et al., 

1998). Cholesterol is the precursor for bile acid formation, which comes from either the diet or 

from the breakdown of the fat by the hepatocytes. Cholesterol breakdown yields equal quantities 

of cholic acid and chenodeoxycholic acids. They are the two primary bile acids in humans and 

these can be converted to secondary bile acids, deoxycholic acid and lithocholic acid, 

respectively, by the intestinal bacterial flora (Eloranta and Kullak-Ublick, 2007). These acids 

conjugate with glycine or taurine forming glyco-conjugated or tauro-conjugated bile acids and 

forming bile salts of sodium and potassium making them impermeable to plasma membrane and 

resulting in high concentrations in the bile (Hofmann, 1999). Bile salts have two major actions: 

First, their detergent action helps emulsify fat, and secondly they help in the absorption of fatty 

acids, cholesterols and other lipids from the intestinal tract (Guyton, 2005). Bile acids also 

stimulate bile flow. Bile acids being the major constituent of bile make it unique of all the 

digestive secretions. Bile acids are excreted into the canaliculi and stored in the gall bladder, 

from where it is then released into the small intestine and later recycled back via portal vein into 

the liver (Hofmann, 1999). This continuous process of secretion, absorption followed by 

resecretion is called enterohepatic circulation (Figure 2.2). This serves as a negative feedback 

regulation for cholesterol biosynthesis. With increased concentration of bile acids in the liver 

cells bile acid synthesis decreases and while cholesterol synthesis undergoes a parallel increase 

(Vlahcevic et al., 1991). 
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Figure 2.2: Enterohepatic Circulation of Bile Acids. 

Bile acid salts are major constituent of bile. Enterohepatic circulation of bile acids involve 

continuous process of their excretion into the canaliculi, then storage in the gall bladder, from 

where it is then released into the small intestine and later recycled back via portal vein into the 

liver. Enterohepatic recirculation is one of the major mechanisms that help to maintain the bile 

flow. 
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Three contributing factors to the bile flow are: bile acid dependent bile formation, bile 

acid independent canalicular secretion and bile acid independent ductal flow (Figure 2.3). 

Bile acid-dependent bile formation has three main components: 1) bile acid uptake, 2) 

intracellular transport and 3) canalicular secretion by the hepatocyte (Kullak-Ublick et al., 2000). 

Cloning and characterization of various transport proteins involved in the uptake, intracellular 

transport and secretion of various compounds resulted in important advances in recent years 

concerning the transport processes and systems involved in the formation of bile (Muller and 

Jansen, 1997; Trauner et al., 1998; Hoffmaster et al., 2004). The two major transporters that 

mediate bile acid uptake are Na
+
-taurocholate cotransporting polypeptide (NTCP) and organic 

anion-transporting polypeptide (OATP) (Hagenbuch et al., 1991). The transmembrane Na+ 

gradient, maintained by the Na
+
/K

+
-ATPase provides energy for the NTCP. Further, a voltage-

dependent carrier and an ATP-dependent transport system mediate the canalicular secretion 

(Nishida et al., 1999; Trauner et al., 1998). Active secretion by the liver cells of the bile acid 

provides an osmotic force for canalicular electrolytes and water. Therefore, between the adjacent 

hepatocytes within the lumen of the bile canaliculus osmotic gradient is created which helps 

form bile flow. The most important osmotically active solute is the bile acid, generating 50% of 

the total bile acid-dependent flow (Boyer et al., 1992). Phospholipids also form part of bile acid-

dependent flow and is transported by the proteins of multi-drug resistance (MDR) family. 

Bile acid-independent bile flow involves canalicular excretion of bicarbonate and 

glutathione. Glutathione and its conjugates are transported by canalicular multispecific organic 

anion transporter 1 (cMOAT; also named MRP2) into the canalicular lumen (Oude Elferink et 

al., 1995). Bilirubin is taken up by the hepatocytes and after conjugation cMOAT or MRP2 helps 

secrete them into the canalicular lumen (Keppler et al., 1997; Trauner et al., 1998). 

Ductular bile flow is stimulated by secretin and consists of bicarbonate-rich solution. 

Secretin receptors are located on the basolateral membrane and on binding to secretin cAMP 

production is activated. This then stimulates a chloride channel located on the apical membrane 

named cystic fibrosis transmembrane conductance regulator (CFTR) (Trauner et al., 1998). This 

further activates chloride/bicarbonate exchanger on the apical membrane increasing bicarbonate 

secretion. The apical membrane also has this exchange (Trauner et al., 1998). Bile undergoes 

modification by the bile ducts and ductules and then is delivered to the intestine (Boyer et al., 

1992; Trauner et al., 1998), further leading to enterohepatic circulation as explained in previous 
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section. The transport system on both apical and baso-lateral membranes participates in the 

production and maintenance of the bile flow. Any alteration of any of these transporters may 

cause disruption of bile flow and the development of cholestasis (Lecureur et al., 2000). 
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Figure 2.3: Three major contributing factors to Bile flow: Bile acid-dependent bile formation, 

bile-acid independent canalicular excretion and bile-acid independent flow of ductal origin and 

the involvement of various ion pumps and transporters located on baso-lateral and apical 

membranes. 
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2.2 Cholestasis: 

      Cholestasis refers to the accumulation of bile in the liver cells and biliary passages. 

Therefore, cholestasis is a form of a liver injury that occurs because of reduced bile flow from 

the liver into the duodenum. It can be caused by rapidly developing (acute) or long-term 

(chronic) interruption in the excretion of bile. The obstruction causes bile salts, the bile pigment, 

bilirubin, and fats (lipids) to accumulate in the blood stream instead of being eliminated via the 

biliary system into the gastrointestinal tract. This leads to hyperbilirubinaemia due to the failure 

of normal amounts of bile to reach the duodenum. Cholestasis can be caused by obstruction 

within the liver (intrahepatic) or outside the liver (extrahepatic) (Pausch and Gatzen, 2006). 

Prolonged bile duct obstruction may lead to cirrhosis and secondary fibrosis (Lesur et al., 1993; 

Afroudakis and Kaplowitz, 1981). At the cellular level in cholestasis bile retained in the liver 

damages the hepatocytes. But not all bile acids are equally damaging. More hydrophobic bile 

acids like chenodeoxycholic acid (CDCA) are more injurious than ursodeoxycholic acid, which 

is more hydrophilic (Araki et al., 2003). 

2.2.1 Intrahepatic Cholestasis: 

Intrahepatic cholestasis is due to impaired hepatic excretion of bile and may occur from 

hereditary or acquired disorders. It is characterized by widespread blockage of intrahepatic ducts 

that impair the body's ability to eliminate bile and the accumulation of the toxic bile acid within 

hepatocytes which may induce hepatocellular apoptosis (Guglielmi et al., 2008). There could be 

various causes for intrahepatic cholestasis. Hereditary disorders producing intrahepatic 

obstruction to biliary excretion is also known as pure cholestasis. These may include Dubin-

Johnson syndrome, Rotor syndrome, fibrocystic disease of pancreas, primary biliary cirrhosis, 

vanishing bile duct syndrome which can be further caused by allograft rejection, graft-versus-

host disease, alagill’e syndrome, hodgkin’s disease or idiopathic adult ductopenia (Erlinger, 

1999). Acquired disorders with intrahepatic excretory defect of bilirubin are largely due to 

hepatocellular disease and, hence, known as hepatocellular cholestasis. These may include viral 

hepatitis, alcoholic hepatitis, parenteral nutrition and drug induced cholestasis as from 

administration of oral contraceptives and chlorpromazine. The space occupying lesions that are 

due to primary or secondary liver cancer, lymphoma or amyloidosis is also responsible for 

intrahepatic cholestasis (Erlinger, 1999). Cystic fibrosis also causes obstruction of intrahepatic 

bile ducts (Erlinger, 1999).   
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The features of intrahepatic cholestasis include: predominant conjugated 

hyperbilirubinaemia due to regurgitation of conjugated bilirubin into blood implying impaired 

biliary excretion, bilirubinuria, elevated levels of serum bile acids, elevated serum alkaline 

phosphatase levels indicating biliary obstruction and hyperlipidaemia causing increased levels of 

liver cholesterol (Mohan, 2005).  

2.2.2 Extrahepatic Cholestasis: 

Extrahepatic cholestasis is caused by mechanical obstruction in large bile ducts outside 

the liver or within the porta hepatis. The various causes for this include common bile duct stones, 

inflammatory strictures, carcinoma of the ampulla of Vater, pancreatic carcinoma, pancreatic 

cyst, biliary atresia, AIDS cholangiopathy, benign bile duct strictures, parasites and portal vein 

thrombosis (Erlinger, 1999). The features of extrahepatic cholestasis, like in intrahepatic 

cholestasis, are predominantly conjugated hyperbilirubinaemia, bilirubinuria, elevated levels of 

serum bile acids causing intense pruritus, high serum alkaline phosphatase and hyperlipidaemia 

(Mohan, 2005). However, there are certain features which help to distinguish extrahepatic from 

intrahepatic cholestasis. In extrahepatic cholestasis malabsorption of fat soluble vitamins and 

steatorrhoea resulting in vitamin K deficiency is an important differentiating characteristic. 

2.2.3 Neonatal Cholestasis: 

Cholestasis is an important pathological condition and can have a significant effect on 

morbidity and mortality in both adults and neonates. The incidence is higher in neonates due to 

underdeveloped hepatic system (Adamkin, 2003). The cholestatic propensity of the neonate is 

attributed to its immature liver excretory function. In the fetus the hepatic bile flow is dormant 

and this role is replaced by the placental excretory circulation in the fetus until it completes its 

intrauterine life (Balistreri, 1985). Stimulation of bile flow occurs after the birth and hepatic 

functionality undergoes gradual maturation. Various animal studies have shown prenatal 

presence of NTCP and BSEP but there concentrations at birth are well less than the levels in 

adults (McKiernan, 2002). Transient disturbances related to bile acid transport are prone to occur 

in immature hepatocytes and this may cause decrease bile flow, altered cellular bile formation or 

other clinical cholestatic manifestations (Balistreri, 1985). 
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2.2.3.1 Predisposing factors to cholestasis in infants: 

The various risk factors that predispose newborns to reduced biliary flow include 

impaired bile acid conjugation, inefficient bile acid uptake, decreased bile secretion and bile acid 

synthesis deficiencies (Arnold, 2004). Inefficient bile acid uptake is often accompanied by 

increased levels of bile acids in neonates (Gremse and Balisteri, 1989). There are several 

manifestations of immature bile acid transport and metabolism and these include increased serum 

bile acids, enhanced efflux of bile acids, decreased hepatic uptake of bile acids, decreased 

conjugation, glucuronidation & sulfation, defective quantitative & qualitative synthesis, decrease 

in bile acid pool size, absence of lobular gradient, decreased bile acid secretion rate and decrease 

in intraluminal bile acid concentration (Gremse and Balisteri, 1989). 

2.3 Parenteral nutrition associated cholestasis: 

Parenteral nutrition associated cholestasis is the most common manifestation of liver 

dysfunction and in infants this accounts for high morbidity and occasional mortality (Kelly, 

1998). Cholestasis, cirrhosis and fibrosis may be triggered in these small patients requiring 

prolonged TPN regimen (Benjamin, 1981). Therefore, there is a serious threat of hepatobiliary 

complications in younger patients who need prolonged TPN to survive. Parenteral nutrition 

associated cholestasis (PNAC) encompasses an increase in serum conjugated bilirubin of 2 mg/dl 

or higher, and a rise in glutamyl transpeptidase, serum transaminase and alkaline phosphatase 

(Guglielmi et al., 2006). 

2.3.1 Total Parenteral Nutrition: 

Total parenteral nutrition is intravenous feeding of patients that are unable to tolerate 

enteral feeding, with essential and balanced nutrition. In neonates, parenteral nutrition is given 

when they are unable to obtain nutrition via nursing and thus has become a vital component of 

the care of ill and premature infants. The primary aim of parenteral nutrition (PN) is to provide 

patients with required calories and protein to prevent malnutrition. A normal diet provides an 

individual with an adequate mix of carbohydrates, proteins and fat for energy and tissue 

development. Therefore, parenteral nutrition therapy must also provide patients with these same 

dietary components. Parenteral Nutrition Solution contains protein in the form of amino acids, 

carbohydrates in the form of glucose, fat as a lipid emulsion, water, electrolytes, vitamins and 

trace elements. Though TPN has contributed to improved survival rates of preterm infants and 

considered as a life saving therapy, it is not without limitations and complications. 
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  The incidence of TPN-related hepatobiliary complications is common in both adults and 

infants on TPN. The prevalence is reported to be 20 to 90% in paediatric age group, whereas in 

adults a wide range of about 15 to 85% of various liver dysfunctions has been reported (Luman 

and Shaffer, 2002). The broad spectrum of pathological, biochemical and clinical manifestations 

may range from increases in liver enzymes to hepatic steatosis or liver disease that is 

histologically characterised by intrahepatic cholestasis, reactive bile-duct proliferation, portal 

fibrosis or periportal inflammation (Guglielmi et al., 2006). End-stage liver disease (ESDL) 

afflicts 15 to 20% patients receiving TPN for prolonged periods and exhibits high rates of 

morbidity and mortality (Chan et al., 1999). Another most frequent event is biliary sludge. When 

on TPN, enteric stimulation is lost, impairing the gallbladder motor function and resulting in 

sluggish gall-bladder. This further explains the development of gall stones and biliary sludge 

while on TPN. Messing et al observed in 23 patients on TPN, 50% developed sludge after 4 to 6 

weeks on TPN and formation of gallstones in 6 patients (Messing et al., 1983). Total parenteral 

nutrition is also associated with complications like metabolic imbalance, thromboembolism and 

liver dysfunction (Taylor et al., 1991; Kelly, 1998).  

Histological changes observed in liver biopsies include giant cell transformation, 

extramedullary haematopoiesis, hepatocellular damage, loss of canalicular microvilli (Erlinger, 

1991) and portal fibrosis (Gremse and Balisteri, 1989). In severe cases bile duct proliferation 

may also occur. Clinically, it is associated with a conjugated hyperbilirubinemia along with 

increased levels of alkaline phosphatase and serum aminotransferases. The rise in bilirubin is 

followed by increase in serum bile acid concentrations.  Physical findings include jaundice and 

heptomegaly (Li, 2005).  

As the incidence of cholestasis is higher in infants compared to the adults, it suggests that 

that there is other risk factors that co-exist only in the paediatric population. In neonates due to 

prematurity and low birth weight, the immunity is impaired and hence they become more 

susceptible to infections. Various factors predisposing children to PNAC include premature 

birth, lack of enteral feeding, duration of parenteral nutrition, sepsis, imbalanced nutrients and 

contamination of PN solutions. The nonnutritional and nutritional components of the parenteral 

solutions figure as prominent suspects in the list of risk factors (Forchielli, 2003). Various 

studies identify a strong association between incidence of cholestasis and duration of total 

parenteral nutrition (Whitington, 1985; Kubota et al., 2000; Kelly, 1998). 
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The causative factors and the pathogenesis of cholestasis associated with TPN still 

remain ill-defined. Studies so far suggest that the etiology of the disease is often multifactorial 

(Merritt, 1986). But the most potential etiology worth attention is the contamination of parenteral 

nutrition solutions with aluminum.  

2.4 Aluminum: 

Aluminum is one of the most abundant elements in the earth’s crust. The presence of Al 

in soil, food and drinking water uniformly exposes humans to this element. Over the last few 

decades, human exposure to Al has been increasing. Al is present mainly in food products and 

drinking water as a result of water purification processes (Levesque et al., 2000). In adults, food 

and beverages account for 90-95% total daily intake. Medical treatments and pharmaceutical 

products also incorporate high levels of Al. Despite its ubiquitous presence in food and water, 

few biological functions are associated with Al and this element is considered nonessential.  

2.4.1 Aluminum Metabolism and Toxicity: 

        The absorption of aluminum via the gastrointestinal tract is < 1% (Cooper et al, 1984). After 

absorption, aluminum can either remain free in the blood or is bound to transferrin, the iron-

binding plasma protein (Cooper et al., 1984). The transferrin-aluminum complex is then 

delivered to the liver where it becomes deposited in lipofuscin granules of hepatocytes (Galle et 

al., 1982), in lysosomes of macrophages (Fiejka et al., 1996) and in the nucleus of hepatocytes 

(Kushelevsky et al., 1976). This deposition can create ultrastructural lesions in the liver (Galle et 

al., 1987). A previous study in our laboratory has also detected the early morphological and 

biochemical changes in the liver following the chronic infusion of high dose aluminum. TEM-

EDX (transmission electron microscopy equipped with energy dispersive spectroscopy) 

demonstrated the presence of aluminum deposits in the lysosomes of the liver cells of piglets 

(Alemmari et al., 2011). Also, morphological changes included loss of canalicular microvilli and 

condensation of mitochondria. The ultrastructural changes detected were proportionally 

increased with the increased duration of aluminum infusion (Alemmari et al., 2011).  

Renal elimination is the major route of aluminum excretion (Cooper et al., 1984). In 

healthy adults, most blood aluminum is cleared in the urine and only a small amount is excreted 

in bile (Greger and Sutherland, 1997). In premature neonates, the bound aluminum-transferrin 

complex is nonfilterable and coupled with an underdeveloped renal system and low glomerular 
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filtration rates aluminum accumulation can occur with repeated exposure to aluminum 

(Recknagel et al.,1994; Greger and Sutherland, 1997). 

Aluminum plays a role in a number of different pathological disorders of mammals. In 

human medicine, aluminum toxicity was first described in uremic patients on haemodialysis 

(Berlyne et al., 1970), and later the toxic effects due to high aluminum body loads were noted in 

several other conditions, including bone disease, encephalopathy, and anemia and also is a 

contributing factor in Alzheimer’s and Parkinson’s dementia (Klein, 1995; Koo, 1992; Savory et 

al., 1996). The toxic effects of aluminum are not limited to humans. Aluminum was shown to 

inhibit egg laying in hens due to dysfunction of the egg shell gland mucosal ATPase activity 

mediated by aluminum (Lundholm and Mathson, 1986). Furthermore, the increased levels of 

aluminum in water are reported in some studies to be associated with the death of birds and fish 

(Ganrot, 1986; Driscoll, 1985).  

Aluminum accumulates significantly in the liver. As liver is involved in the uptake of 

aluminum and excretion via biliary flux the known effects of aluminum on the liver require 

discussion. Studies suggest various biochemical changes are associated with aluminum 

accumulation in the liver and include alterations in oxidant status and release of enzyme markers 

of hepatic injury due to disruption of hepatocellular integrity and function (Moumen et al., 2001; 

Wilhelm et al., 1996). High doses of aluminum also cause reductions in bile flow and elevation 

in serum bile acids (Klein et al., 1988). Dose dependent cytotoxic effects include multifocal 

hepatocellular degeneration and fibrous tissue proliferation (Roy et al., 1991; Bertholf et al., 

1989), as well as increases in MDH (malondialdehyde), a marker of lipid peroxidation in the 

liver leading to cell damage and reductions in GSH (glutathione) antioxidant levels and 

subsequent oxidant damage (Turgut et al., 2006).  

Also, there is evidence of other heavy metals that accumulate in the liver to contribute to 

hepatotoxicity. Isolated perfused livers from Sprague-Dawley rats when exposed to cadmium 

chloride caused acute hepatotoxicity and this was evident from cadmium-induced changes in bile 

flow, alanine aminotransferase (ALT) leakage and urea synthesis (Lupo et al., 1986). Cadmium 

also induced lipid peroxidation. Rapid decrease in bile flow followed by complete cholestasis 

was caused by cadmium in livers perfused from Sprague-Dawley rats. A variety of biochemical 

and anatomic effects of lead which includes ultra-structural alterations of the spleen and liver 

have been demonstrated (Hoffmann et al., 1972). Further, lead markedly increases lethality in 
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LPS-treated rats (Seyle et al., 1966). This observation is attributed to the fact that LPS 

detoxification in the liver is impaired by the lead and hence causing endotoxicity (Trejo and Di 

Luzio, 1971). Heavy metals contamination such as mercury, lead, cadmium and arsenic of herbal 

supplements has also been considered to cause hepatic liver injuries leading to cholestasis 

(Ramachandran and Kakar, 2009).  

2.4.2 Aluminum in Total Parenteral Nutrition Solutions  

            In 1982, the contaminant aluminum of PN solutions was identified in a protein source, 

casein hydrolysate, and was found in the blood, urine and bones of patients administered these 

solutions (Klein et al., 1982). The concentration of aluminum in PN solutions ranged from 112 to 

196 µg/L. Later, another study showed higher contamination levels of aluminum in PN, 

particularly in phosphates, calcium salts and trace elements (Popinska et al., 1999). Guidelines 

for contaminant aluminum in PN solutions were published by the Food and Drugs 

Administration (FDA) of U.S.A., where it stated that for small volumes of solution, maximum 

levels of aluminum should be identified on the label and in large volumes the concentration of 

aluminum should not exceed 25 µg/L (FDA, 2000). 

2.4.3 Aluminum & Parenteral Nutrition Associated Cholestasis (PNAC): 

The most implicated constituent in the pathogenesis of PNAC is the contaminant 

aluminum (Arnold et al., 2003). Contaminated PN solutions, heparin, mineral salts and blood 

products like albumin are the major causes of parenteral aluminum exposure (Arnold et al., 

2003). The greatest contamination is found in calcium and phosphate solutions, vitamin C 

preparations with trace elements (Greger and Sutherland, 1997; Davis et al., 1999). The average 

contaminant levels of TPN with aluminum indicate that neonatal patients receive 16.7 µg/kg/day 

as a mean daily intake (Moreno et al., 1994). It was then shown that toxic levels were 

approximately reached when premature infants were on a load of 15-30 µg/kg/day of PN 

solutions (Bishop et al., 1997). 

Various studies have been done with regard to aluminum toxicity. Klein et al studied the 

aluminum accumulation in 5 children of 18-34 months of age and who were on PN for 18 to 33 

months (Klein et al., 1984). Klein et al reported elevated liver enzymes and increases in serum, 

urine and hepatic aluminum concentrations. The histopathological findings included periportal 

fibrosis, bile duct proliferation and cellular necrosis, which were attributed to the abnormal 

accumulation of aluminum in the liver. Further, in a prospective study of newborn infants on PN 
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solutions elevated serum and urine aluminum levels were found in infants on PN relative to 

controls and ~89% of total aluminum intake was accounted for from PN solution (Moreno et al., 

1994).  

Various studies have been conducted in Dr Gordon Zello’s Laboratory examining the role 

of aluminum in PNAC. In a retrospective study of infants at the Royal University Hospital to 

establish PNAC prevalence,  neonates were more likely to develope cholestasis when the 

duration on PN was greater than 18 days (Arnold, 2004). Taking into consideration the duration 

of PN it was clear that the longer requirement of PN as the nutrition source, higher was the risk 

of developing PNAC. This further indicates that some component of the parenteral solution 

might be a contributing factor for PNAC. For an example, toxins like aluminum require a long 

period of hepatic accumulation before manifestation of harmful effects (Arnold, 2004).  

Li conducted another study with the primary purpose of monitoring the serum aluminum 

level in correlation with the development of PNAC in the infants requiring PN therapy with 

gastrointestinal failure (Li, 2005). Serum aluminum as well as bilirubin concentrations were 

determined in 16 infants with some kind of gastrointestinal pathology on various durations of PN 

therapy. Five out of 16 (31.3%) infants developed PNAC by the end of three weeks.  

In another study in Dr Zello’s laboratory aluminum loading in neonatal piglets caused 

hepatic injury. In a model of chronic exposure to Al in PNAC the study suggested that at high 

dose intravenous infusion of Al in neonatal piglets Al accumulated in bile, serum, liver tissues 

and urine. Further investigations with low Al content in PN showed that the reduction in Al level 

in PN solutions reduced the severity and incidence of PNAC (Alemmari et al., 2012). The effects 

were evaluated by measuring the combination of clinical outcomes related with PNAC 

comprising serum direct bilirubin levels, serum total bile acids levels and morphological changes 

in the liver tissues.  

Such evidence suggests a correlation between aluminum levels and PNAC in neonates 

but the exact mechanism of action of Al in the PNAC development is unknown. Therefore, a step 

further into this is by what mechanism Aluminum contributes in the development of PNAC is 

required.  
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2.5 The role of transporters in PNAC: 

Hepatocyte transporters have a key role to play in hepatic xenobiotic exposure and 

xenobiotic clearance. As well, their co-ordinated action is essential for bile formation and for the 

biliary secretion of various ions and xenobiotics (Pauli-Magnus and Meier, 2006). Cholestasis 

results from the disruption of biliary secretion of bile acids. The intracellular levels of bile acids 

need to be regulated tightly. This can be brought about by the regulation of the transcription 

factors and of genes expressing important proteins involved in synthesis and transport of bile 

acids (Mil et al., 2005). Transporter function can be regulated by both exogenous and 

endogenous substances at any level of gene expression, i.e. transcriptional, posttranscriptional, 

translational or posttranslational. For example, downregulation of the NTCP gene following an 

inflammatory stimulus occurs at the transcriptional level, whereas mRNA levels of MRP2 and 

BSEP are unchanged while protein expression levels were reduced suggesting posttranscriptional 

regulation by the inflammatory stimulus (Elferink et al., 2004). Xenobiotics have also been 

shown to regulate transporter function at the translational and posttranslational levels (Williams 

et al., 2000). Many xenobiotics are known to inhibit transporter function through reversible 

inhibition, either through competitive or noncompetitive mechanisms.  

Hepatocyte transporters: 

Specific transporters mediate the enterohepatic circulation of bile acids. These 

transporters are expressed in both the enterocytic and hepatocellular polarized epithelial barrier 

and function in a concerted manner to recycle bile acids between the liver and intestine (Meier 

and Stieger, 2002). The major hepatocyte transporters are presented in the Figure 2.4. The major 

two processes involved in enterohepatic recirculation of bile acids are secretion from the liver 

and absorption from the intestine (Alrefai and Gill, 2007). At the basolateral surface of the 

hepatocellular epithelium, Na+ taurocholate co-transporting peptide (NTCP) and organic anion 

transport polypeptides (OATPs) ensure bile acid transport from the blood into the hepatocyte. 

Excretion of bile salts into the bile requires the function of the bile salt excretory pump (BSEP) 

and multi-drug resistant proteins (MRPs) expressed in the apical portion of the hepatocellular 

epithelium (Alrefai and Gill, 2007).  Bile acids via the bile ducts are presented to the intestinal 

lumen where they facilitate the absorption of lipids and cholesterol. Finally, the majority of bile 

acid is reabsorbed through apical sodium dependent bile acid transporter (ASBT) and sodium 

barrier (Alrefai and Gill, 2007). 
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Figure 2.4: Major hepatocyte transporters. Uptake transporters are present on the basolateral 

membrane whereas the efflux transporters are present on apical membrane with arrowheads 

pointing to the direction of xenobiotic transport. 
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2.5.1 Canalicular hepatic transporters of Bile acids: 

The most critical component of enterohepatic circulation is the canalicular bile acid 

transport as it is the rate-limiting step in bile formation as well as hepatic excretion (Trauner and 

Boyer, 2003). The major transporters involved include BSEP and MRP2. BSEP is responsible 

for the efflux of monovalent bile acids whereas MRP2 exports divalent bile acids (Trauner and 

Boyer, 2003). 

BSEP (Bile salt excretory pump): 

BSEP is exclusively expressed in the liver (Gerloff et al., 1998). It belongs to the ATP 

Binding Cassette (ABC) superfamily and is a member of the multidrug resistance protein family 

(Meier and Stieger, 2002). It has 12 transmembrane spanning domains and Walker A and B 

motifs as intracellular nucleotide-binding domains, which help the binding and hydrolysis of 

ATP (Arerese et al., 2004). BSEP expression occurs during the postnatal period and upon 

hepatocellular de-differentiation (eg. cell culture of primary hepatocytes) BSEP expression 

becomes down regulated (Rippin et al., 2000; Tomer et al., 2003). Defects in the functioning of 

BSEP lead to decrease bile flow and, hence, cholestasis (Oude et al., 2006; Suchy et al., 2006). 

Mutations in the BSEP gene results in progressive familial intrahepatic cholestasis (PFIC) type 2 

and are associated with permanent cholestasis since birth (Jansen and Sturum, 2003).  

MRP2 (Multi-drug resistant protein 2): 

There are 12 members in human the ABCC subfamily which include nine MRPs, cystic 

fibrosis transmembrane conductance regulator (CFTR) and two sulfonyl-urea receptors, SUR1 

and SUR2. In terms of structure MRP2 contains two parts: transmembrane domain (TMD) and 

nucleotide-binding domain (NBD). The ATP binds to the NBDs which cause its hydrolysis and 

this is crucial for the transport of substances across the plasma membrane (Haimeur et al., 2004). 

Organic anionic compounds, glutathione, glucuronic acid or sulphate conjugates of drugs and 

drugs metabolites are substrates of MRP transporters (Funk, 2008). MRP2 (ABCC2), which is 

present on the canalicular membrane, has significance in xenobiotic elimination. Originally it 

was designated as the canalicular multispecific organic anion transporter (cMOAT).  

The expression of MRP2 can be modulated in different physiopathological conditions 

(Payen et al., 2002). MRP2 is down-regulated in cholestasis (Zollner et al., 2001). Various 

experimental studies have shown that in cholestasis the reduced expression of MRP2 leads to 

impaired excretion of bile salts and organic anions like bilirubin (Trauner et al.,1998; Trauner et 
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al.,1999). Further, mutations in MRP2 can lead to defective transporter expression. For example, 

Dubin–Johnson syndrome causes increase levels of conjugated bilirubin in the serum and is often 

associated with the hepatocytes inability to secrete conjugated bilirubin into the bile resulting in 

conjugated hyperbilirubinemia. A defect in the MRP2 gene causes this autosomal recessive 

disease (Paulusma et al., 1999). 

MATE1 (Human multidrug and toxin extrusion 1): 

OCT transporters mediated the hepatocellular entry of organic cations but it was not clear 

how they exited the hepatocyte. Recently, MATE transporters were found to be responsible for 

the removal of organic cations from hepatocytes. MATE transporters belong to the Solute Carrier 

(SLC) superfamily of transporters. MATE is also known to be the transporter responsible for 

executing the last step of excretion for organic cations that are toxic (Hiasa et al., 2006). 

Mammalian MATE1 was the first to be identified from the multidrug and toxin extrusion 

(MATE) protein family (Hiasa et al., 2006). It is predominantly expressed in bile canaliculi and 

causes organic cation excretion by H
+
/OC electro neutral exchange (Inui et al., 2000; Koepsell, 

1998; Koepsell, 2004). 

 2.5.2 Sinusoidal hepatic transporters of bile acids: 

           Finally, to complete the enterohepatic circulation, bile acids are cleared from the portal 

blood in the liver. And this hepatic uptake is supported by dedicated transporters in the 

sinusoidal membrane; mainly the NTCP. 

NTCP (Na
+
 taurocholate co-transporting pepetide): 

NTCP is expressed at the sinusoidal membrane and is the principal uptake transporter for 

bile acids (Hagenbuch et al, 1999). NTCP mediates sodium dependent uptake activity (Kullak-

Ublick et al., 2004; Meier and Steiger, 2002; Trauner and Boyer, 2003). NTCP is also known to 

demonstrate decreased expression upon de-differentiation of hepatocytes (Rippin et al., 2001; 

Liang et al., 1993). NTCP belongs to the SLC10A gene family and is also denoted as SLC10A1 

(Hagenbuch and Dawson, 2004). NTCP mediates the transport of conjugated as well as 

unconjugated bile acids. Also, it transports sulphated bile acids and steroid sulphates (Kullak-

Ublick et al.,1997). High levels of bile acids have shown to suppress the gene expression of 

NTCP (Anwar, 2004). 
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2.5.3 Liver-enriched transcription factor: 

FXR (Farnesoid X receptor): 

FXR is the master regulator of bile acid transport and metabolism. It is the chief sensor of 

intracellular bile acid levels and main executor of bile acid-induced transcriptional programs 

(Kalaany and Mangelsdorf, 2006). Bile acids are ligands of FXR and upon binding activates 

FXR to effect the transcriptional regulation of a number of genes. CDCA is the most efficient 

activator of FXR followed by DCA and CA (Eloranta and Kullak-Ublick, 2007).  FXR gets 

activated following bile acid binding, which heterodimerizes with the retinoid X receptor (RXR). 

The heterodimer binds to its consensus sequence on the promoter regions of genes such as BSEP 

(Redinger., 2003; Arrese et al., 2004). This has been indicative of the fact that on induction of 

BSEP by FXR leads to accumulation of hydrophobic bile acids in the hepatocytes (Arrese et al., 

2004). 

2.5.4 Drug-induced cholestasis through inhibition of transporters: 

Malfunctioning of the transporters responsible for the production and maintenance of bile 

flow may result in cholestatic liver disease. Drug induced cholestasis may be the result of 

inhibition of hepatobiliary transporters mediated by the drug or its metabolites. Drug mediated 

disturbances in transporters can lead to intracellular accumulation of bile acid constituents, 

which may result in cholestatic liver cell damage (Pauli-Magnus and Meier, 2006). The 

inhibition of BSEP on the canalicular membrane by various drugs is thought to result in 

cholestasis (Pauli-Magnus and Meier, 2006). Rifampicin, cyclosporine A, bosentan, 

erythromycin, troglitazone and glibenclamide have shown to inhibit BSEP (Steiger et al., 2000; 

Fattinger et al., 2001; Funk et al., 2001). Several studies suggest that cyclosporine reduces MRP2 

expression leading to reduced bile flow (Padda et al., 2011). Further, the cholestatic effect is 

enhanced with the co-administration of sirolimus (Bramow et al., 2001). Cholestatic drugs like 

cephtriaxone and diclofenac, which are MRP2 drug substrates, are known to induce cholestasis 

(Padda et al., 2011). Estrone-3-sulfate is NTCP drug substrate that can also produce cholestasis 

(Padda et al., 2011). Hepatic accumulation of sulindac causes canalicular bile salt transport 

inhibition and thus contributing to cholestasis (Giroux et al., 1982; McIndoe et al., 1981). 
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2.6 Inflammation Induced Cholestasis: 

The potent inducers of inflammation-induced cholestasis are the proinflammatory 

cytokines, which are produced in response to different non-infectious and infectious stimuli. 

Clinically, intra/extra-hepatic infections, drug-induced hepatic injury, alcohol-induced hepatic 

injury, total parenteral nutrition and postoperative surgeries may lead to inflammation-induced 

cholestasis. Pathophysiologically, the systemic release of proinflammatory cytokines is the 

common denominator underlying all these aetiologies resulting in cholestasis.  

2.6.1 Mediators of inflammation induced cholestasis. 

The early reactions of innate immunity and the later responses of acquired immunity 

mediate defense against infectious or non-infectious stimuli (Trauner et al., 1999). Innate 

immunity, also known as natural immunity; provides first line of defence against microbes. The 

principal components of innate immunity encompass 1) physical barriers, such as epithelia and 

chemical barriers, comprising of anti-microbial chemicals produced by the epithelial membranes, 

2) immune cells (macrophages, neutrophils, dendritic cells and natural killer cells) and 3) 

proteins called cytokines (Abbas et al., 2005). Another form of immunity develops as a response 

to infection and is known as acquired immunity. The acquired immunity is able to recognize and 

react to a large number of microbes and in addition is able to distinguish between various closely 

related microbes or molecules (Flajnik et al., 2004). 

2.6.2 The effect of inflammation on hepatic biliary transporters: 

The pro-inflammatory cytokines are TNFα, IL-1 and IL-6 released from epithelial cells 

and immune cells such as tissue macrophages may be responsible for inflammation induced 

cholestasis (Gabay and Kushner, 1999; Baumann and Gauldie, 1994). The expression, activity 

and function of various transporters at cellular membranes can be altered by these 

proinflammatory cytokines (Ling et al., 2012). Various studies in vitro and in vivo have 

displayed that transporter expression changes during inflammatory conditions. For example, in 

cancers of pancreas, stomach, breast and thyroid, the expression of SMCT1 is down regulated 

(Park et al., 2008; Porra et al., 2005; Thangaraja et al., 2009). MCT1 expression is down 

regulated in intestinal inflammation, which may lead to inflammatory bowel disease (Thibault et 

al., 2007). In mice, renal tubular glucose transporters SGLT2, SGLT3 and GLUT2 were down 

regulated by inflammatory stimuli, which were subsequently accompanied by decrease in plasma 

glucose levels (Ueno et al., 2004). Various transporters in mammary glands are also shown to be 
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altered following LPS induced inflammation. At different stages of lactation, glucose, fatty acids 

and L-carnitine transporter expression changes (Ling et al., 2012). Such evidence suggests 

similar effects of inflammation on hepatic biliary transporters. 

In patients with inflammatory processes or extrahepatic infections inflammation induced 

cholestasis is a common complication. Within hepatocytes signalling pathways are induced 

either directly or via proinflammatory cytokines which are activated by endotoxins (Kosters and 

Karpen, 2010). In response to the inflammatory signalling, the expression and the function of 

hepatocyte transporters is suppressed. Inflammation can further lead to repressed activity of 

nuclear transcriptional regulators that are essential for gene expression of various hepatocyte 

transporters (Kosters and Karpen, 2010). 

In mammals, LPS activates TLR4 signal transducing receptors. Kupffer cells respond to 

the circulating LPS by producing increase levels of cytokines (Kosters and Karpen, 2010). These 

in turn activate the hepatocyte membrane transporters and this further leads to altered transporter 

function (Mulder et al., 2009; Trauner et al., 1999). Studies in rodents have shown that LPS and 

the various cytokines decrease the expression of Ntcp, the basolateral transporter and of Bsep, 

the canalicular transporter (Geier et al., 2005; Ghose et al., 2004; Green et al., 1996). In 

hepatocytes, transporter activities of sodium-taurocholate co-transporting polypeptide (NTCP) 

and organic anion-transporting polypeptides (OATP) have been decreased by TNF α and IL-6 (Vee 

et al., 2009). 

2.7 Models to assess mechanisms leading to neonatal cholestasis: 

Both in vitro and in vivo model systems have been employed to understand the risk 

factors and pathophysiological mechanisms involved in cholestasis. Various studies have used 

several animal models (rodents, rabbits, neonatal piglets) while trying elucidating molecular 

mechanisms involved in TPN-induced liver injury (Burrin et al., 2000; Burrin et al., 2003; 

Wykes et al., 1993; Loff et al., 1998). A widely used model, the TPN fed piglet, provides the 

most relevant system to understand the underlying mechanisms of human neonatal cholestasis, 

given the spontaneous nature of the development of cholestasis, unlike rodent models typically 

require genetic manipulation to express the cholestatic phenotype (Wang et al., 2006). 

Nonetheless, the administration of parenteral nutrition leads to cholestasis has been confirmed 

with the help of mouse models. These models are an efficient way of measuring transaminase 

levels, bile flow and also the expression of hepatic biliary transporters critical in maintaining the 
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bile acid homeostasis (Carter and Shulman, 2007). Mouse models are criticised for their short 

duration of TPN and failure to demonstrate reproducible cholestasis. Rabbit models tend to 

mimic the clinical presentation of hepatobilitary alterations noted in children and such models 

receive greater attention due to their ability for long-term TPN administrations (Loff et al., 

1998). 

The use of animal models for the study of hepatotoxicity is limited, though, by the animal 

welfare and ethical issues. Therefore, in vitro liver preparations are popularly being used as they 

offer a diverse array of approaches to investigate the toxicity (Gronberg et al., 2002). Three 

major in vitro/ex vivo liver models are available for the study of hepatotoxicity. These include: 1) 

liver cell culture model, 2) isolated and perfused organ models and 3) liver slices. Each model 

has its own advantages. Cell culture models offer greater efficiency to assess cellular metabolism 

and cytotoxicity. Whereas, isolated and perfused organs are best used to assess physiological as 

well morphological parameters. Efficiency of liver slices is based on tissue morphology and 

cellular assays.  
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2.8 Hypothesis: 

The etiology of PNAC is due to multiple factors (Merritt, 1986). An important factor 

being studied is the aluminum contamination of PN solutions. Aluminum related adverse effects 

on the liver are well documented (Stein, 1978). Cholestatic changes are caused by the 

accumulation of the aluminum in the liver (Dermican, 1998; Klein, 1998). Despite intensive 

investigation into aluminum toxicity the mechanism of action still remains unclear and ill 

defined. As cholestasis involves reduced bile flow, alteration in hepatic biliary transporters as an 

underlying mechanism of aluminum induced intrahepatic cholestasis is possible. The purpose of 

the study would be to see if aluminum like many other xenobiotics alters the expression of 

hepatic biliary transporters and thus contribute to cholestasis. As well, inflammation is a 

component of cholestasis so the effects of aluminum may be exacerbated by the underlying 

inflammation. Therefore, the other purpose of the study would be to see if LPS has an additive 

effect on aluminum induced changes in mRNA expression of hepatic biliary transporters (BSEP, 

NTCP, MRP2, MATE1) and FXR.  
1) Aluminum alters the mRNA expression of hepatic biliary transporters (BSEP, NTCP, 

MRP2, MATE1) and FXR. 

2) LPS (inflammatory stimulus) has additive effect on aluminum induced changes in mRNA 

expression of hepatic biliary transporters (BSEP, NTCP, MRP2, MATE1) and FXR. 

2.9 Objectives: 

1) To conduct cytotoxicity assays to determine whether Aluminum (Al) and Al with LPS 

(an inflammatory stimulus) cause direct toxicity of HEPG2 cells and to identify the non-

toxic Al and LPS concentration for further studies. 

2) To evaluate the influence of Aluminum (Al) and Al with LPS on mRNA expression of 

hepatic biliary transporters (BSEP, NTCP, MRP2, MATE1) and FXR in HEPG2 cells 

using real-time RT-PCR analysis. 
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3. Materials & Methods 

3.1 Materials 

EMEM cell culture medium was purchased from American Type Culture Collection (ATCC) 

(Rockville, Maryland, USA). T-75 flasks, sterile 15 mL and 50 mL polypropylene centrifuge 

tubes, 6 well plates and 96 well plates, and eppendorf tubes were purchased from ThermoFisher 

Scientific (Ottawa, Ontario, Canada). Ribonucleic acid (RNA) isolation kit was purchased from 

Qiagen Inc (Toronto, Ontario, Canada).  SyberGreen RT-PCR kits were acquired from Applied 

Biosystems (Foster City, California, USA). 

3.2 Gene expression methods employed in assessing the effects of Aluminum and LPS 

exposure on transporter expression. 

3.2.1 Cell Culture  

HEPG2, a human liver carcinoma cell line that has phenotypic characteristics of hepatocytes in 

vivo, was purchased from ATCC at passage number 74. HEPG2 cells were cultured as specified 

by ATCC in Eagle’s Minimum Essential Medium (EMEM) with 10% fetal bovine serum (FBS). 

The cells were incubated at 37˚C under an atmosphere of 95% air and 5% CO2 in a humidified 

incubator.  Cell culture media was changed every 2-3 days. Cells growing in T-75 flasks were 

passaged using 0.25-% trypsin, 0.03-% of EDTA solution. The passaged cells were resuspended 

in T-75 flasks containing cell culture medium. These cells were allowed to grow up to 70-80% 

confluence after which the cells were subcultured at a ratio of 1:4 using 0.25% of trypsin.   

3.2.2 Primer Design  

Gene sequences for each respective transporter were obtained from the National Center for 

Biotechnology Information Genebank (NCBI;http://www.ncbi.nih.gov) with primer sequences 

designed using Primer3 software (http://www.broad.mit.edu/cgi-bin/primer/primer3), a web-

based primer design program. All primers were designed to be between 18-20 base pairs as 

appropriate for the Applied Biosystems real-time PCR platform. The primer sequences and the 

amplicon sizes are given in Table 3.1 
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Table 3.1. Primer details for mRNA expression analysis of transporters using QRT-PCR. 

Gene Accession 

number 

Forward Primer Reverse Primer Tm (
0
C) Base 

pair size 

β-Actin NM_001101.3 ttgctatccaggctgtgc atgtcacgcaagatttcc 86.1 235 

FXR BC144184 cagcagcctgaagagtgg gctcatcccctttgatcc 58.0 185 

BSEP NM_003742 cgcttgtctacggtcagagc atcctggtagctccctctgc 61.0 222 

MATE1 NM_018242 tgtcactggtgtctcagtgg gtaagcctggacacatctgg 58.2 216 

MRP2 NM_000392 acgacctccgagagaagc ccagcctctgtcacttcg 58.0 190 

NTCP NM_003049 cctcagcattgtgatgacc ggtgcaaggaatgaacc 57.0 170 

 

3.2.3 RNA Isolation  

Total RNA was extracted using RNeasy Midi isolation kits as per the manufacturer’s directions. 

Frozen cell pellets were thawed for 10-15 minutes at room temperature. Cell lysate was 

homogenized in 350 µL of lysis buffer RLT containing β-ME using a Polytron cell homogenizer. 

One volume of ethanol (70% EtOH) was added to the homogenized suspension to precipitate the 

nucleic acids. The sample was then applied to the Midi column and series of buffers were used 

for washing away the cellular contaminants (including genomic DNA) as per the manufacturer’s 

instructions. The purified RNA sample was eluted from the column using RNase-free water (30 

μL).  

Total RNA concentration and purity was determined by measuring the absorbance of a 

diluted sample of RNA (RNA:RNase free water) at 260 nm with a Nanoview UV 

spectrophotometer (GE Healthcare Life Sciences, Quebec, Canada) according to equation 1: 

 

                             
    

  
                        (Equation 1) 

 

RNA purity was assessed by measuring the absorbance ratio of a diluted sample of RNA 

(RNA:10 mM TrisCl (pH 7.5)) at 260 nm and 280 nm. Pure RNA has an absorbance ratio of 1.9 

– 2.1. Total RNA was stored at -80°C until analysis. 
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3.2.4 Two-step Quantitative Real-Time Reverse Transcription-Polymerase Chain Reaction 

(QRT-PCR) 

Reserve transcription combined with the polymerase chain reaction (RT-PCR) offers the 

best sensitivity, reproducibility and dynamic range of any standard technique and hence proved 

to be the most powerful method to quantify gene expression. The relative expressions of hepatic 

biliary transporters were determined using QRT-PCR on an Applied Biosystems Real-Time PCR 

system with the use of High-Capacity cDNA Reverse Transcription kits and Power SYBR Green 

PCR Master Mix.  

Two-step QRT-PCR starts with the reverse transcription of total RNA to cDNA using a 

reverse transcriptase. High-Capacity cDNA Reverse Transcription kit uses the random primer 

scheme for initiating cDNA synthesis. The kit contents were allowed to thaw on ice and then the 

total volume of components needed to prepare the RT mix was calculated as per Table 3.2. 

Finally, RNA was added to reverse transcription reactions and the samples were loaded on the 

thermal cycler to perform reverse transcription. 

 

 Table 3.2. Preparation of  2X RT Master Mix (per 20 µL reaction): 

Components Volume (µL) /Reaction Kit 

10X RT Buffer 2.0 

25X dNTP Mix (100mM) 0.8 

10X RT Random Primers 2.0 

MultiScribe™ Reverse Transcriptase 1.0 

RNase Inhibitor 1.0 

Nuclease Free Water 3.2 

Total per Reaction 10.0 

 

Following the first-strand synthesis reaction, cDNA was taken into a separate tube for 

qPCR reaction and as per Table 3.3 the reactions were performed. 
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Table 3.3 QRT-PCR master mix reaction components. 

Components                                  Volume(µL) /Reaction Final   Concentration 

2X Quantitect SYBR Green 12.5 1X 

Left Primer 2 1µM 

Right Primer 2 1µM 

Template cDNA 2 ≤500 ng 

RNase-free water 6.25 - 

Total per reaction 25 - 

 

Optimization and validation of the primers for its most favorable annealing temperature 

and highest primer efficiency was performed. A single specific melting peak for the optimal 

annealing temperature was produced, which was not seen in a negative control (sample with no 

RNA template). QRT-PCR products were further resolved by horizontal 2% (w/v) agarose 

gelelectrophoresis for a single band at the specified amplicon size correlating to the single, 

specific product melt peak, to assure a single PCR product as identified by a single band on the 

gel. From the slope of a 3-point standard curve the primer efficiency was calculated using serial 

dilutions of control RNA and efficiencies of 1.8 to 2.2 were considered as optimal. Using the 

comparative CT or 2
-ΔΔCT

 method, primers showing closer efficiency to β-actin’s efficiency 

which is an internal standard, were used for QRT-PCR reaction. The reactions were quantified 

following determination of the threshold cycle (CT; the amplification cycle when PCR products 

are first detected above baseline fluorescence) and fluorescence was measured from the 

intercalation of SYBR green dye into the double stranded product after the primer elongation 

phase. A nontemplate negative control was incorporated into all analysis runs.  

PCR reactions consisted of an initial activation step (1 cycle at 95ºC for 15 min) followed 

by a three step thermal cycling (40 cycles; denaturing at 94ºC for 15s, annealing at 60ºC for 30s, 

and extension at 60º for 30s). Finally, a melt curve analysis from 65ºC to 95ºC at 0.5ºC/s was 

performed. 
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3.3 Experimental procedures performed in assessing the effects of aluminum and LPS 

exposure on transporter expression 

3.3.1 Aluminum & LPS Cytotoxicity Study.(Pilot Study1) 

The combined cytotoxicity of aluminum and LPS was assessed using the MTT cytotoxicity 

assay. The purpose of using MTT cytotoxicity assay was to determine a range of concentrations 

for combination of AlCl3 with LPS over a time period of 12h and 24h that gave cell viabilities  

>85%.  The cytotoxicity assessments were done in the presence of 50 μM CDCA 

(chenodeoxycholic acid) which is used to up regulate the expression of BSEP in HEPG2 cell line 

(Jinghua et al, 2002). Previous optimization experiments in the laboratory showed 1µg/mL of 

Lipopolysacchride (LPS) induces maximal cytokine (TNF-α) expression without the loss of cell 

viability. Therefore LPS at 1 µg/mL was combined with different concentrations of Aluminum 

(0, 10, 25, 50, 75 & 100 µg/mL). Aluminum and LPS stock solutions were prepared at 

concentration of 400 µg/mL and 2 µg/mL, respectively. Therefore, 53.66 mg of AlCl3.6H2O was 

weighed out and dissolved in 15 mls of cell media to give a final concentration of 400 µg/mL 

elemental aluminum. As LPS is known to react with the glass, the glassware was first coated 

with dichloromethylsilane (silanized) for handling the LPS stock and working solutions.  

  HepG2 cells were plated in triplicate in 96-well plates at a cell density of 300,000 

cells/mL. In each well of 96-well plates, 100 μL of cell suspension was pipetted and the plates 

incubated at 37°C, 5% CO2 for 24 hours. The cell culture media was replaced with fresh media 

after 24 h and subsequently, the cells were exposed to different concentrations of Aluminum and 

LPS for 12h and 24 hr. Cells in media with CDCA was taken to be the negative control. At a 

given incubation time, 15 µL of the 5 mg/mL MTT solution was added per well and the plate 

was further incubated for an additional 3 hours. After that 150 µL of acidified isopropanol was 

added per well and the plate was shaked on an orbital shaker at 50 rpm at room temperature for 1 

hour. Inhibition of cell growth is calculated according to Equation 2 (using the MS-Excel): 

 

                                            
                     

                   
                  (Equation 2) 

 

Where OD refers to the Optical Density as determined using a plate reader at 570 nm. 

 

 



32 
 

3.3.2 Optimization of time exposure (Pilot Study 2). 

Using the MTT cytotoxicity assay, range of concentrations for combination of AlCl3 with 

LPS over a time period of 12h and 24h that gave cell viabilities  >85% were determined in pilot 

study 1 and then these were used to optimize the time exposure. All the assessments were done in 

the presence of 50 μM CDCA (chenodeoxycholic acid) which is used to up regulate the 

expression of BSEP in HepG2 cell line (Jinghua et al, 2002). Therefore, LPS at 1 µg/mL was 

combined with concentrations of aluminum (0, 10 & 50 µg/mL). Aluminum and LPS stock 

solutions were prepared at concentration of 200 µg/mL and 2 µg/mL, respectively. The mRNA 

analysis was carried out with the standard gene β-actin and MRP2 to determine whether the 

concentrations of AlCl3 were appropriate. 

HEPG2 cells were plated in triplicate in 96-well plates at a cell density of 300,000 

cells/mL. In each well of 96-well plates, 100 μL of cell suspension was pipetted and the plates 

incubated at 37°C, 5% CO2 for 24 hours. The cell culture media was replaced with fresh media 

after 24 h and subsequently, the cells were exposed to different concentrations of aluminum and 

LPS for 12h and 24 hr. Cells in media with CDCA was taken to be the negative control.  

This was then followed by RNA isolation using the RNeasy Midi isolation kits. This was 

then followed by 2 step quantitative real-time reverse transcription polymerase chain reaction 

(QRT-PCR). 

3.3.3 Main Study 

Using the MTT cytotoxicity assay, range of concentrations for combination of AlCl3 with 

LPS over a time period of 12h and 24h that gave cell viabilities  >85% were determined in pilot 

study 1 and then time exposure optimization was done using pilot 2. The pilot studies suggested 

the following conditions: LPS at 1 µg/mL combined with Aluminum (0, 10 & 50 µg/mL) over an 

exposure period of 24 h. Aluminum and LPS stock solutions were prepared at concentrations of 

200 µg/mL and 2 µg/mL, respectively. All the assessments were done in the presence of 50 μM 

CDCA (chenodeoxycholic acid) which is used to up regulate the expression of BSEP in HepG2 

cell line (Jinghua et al, 2002). The mRNA analysis was carried out with the standard gene β-actin 

and other genes including BSEP, MATE1, MRP2 and NTCP and FXR. 

HepG2 cells were plated in triplicate in 96-well plates at cell density of 300,000 cells/mL. 

In each well of 96-well plates, 100 μL of cell suspension was pipetted and the plates incubated at 

37°C, 5% CO2 for 24 hours. The cell culture media was replaced with fresh media after 24 h and 
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subsequently, the cells were exposed to different concentrations of Aluminum and LPS for 24 hr. 

Cells in media with CDCA was taken to be the negative control.  

This was then followed by RNA isolation using the RNeasy Midi isolation kits. This was 

then followed by 2 step quantitative real-time reverse transcription polymerase chain reaction 

(QRT-PCR) as explained in the above section. 
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4. Results 

4.1 Pilot Study 1: To determine the cytotoxicity and concentrations of aluminum and LPS 

that gave cell viability greater than 85%.  

To determine the concentrations of aluminum and LPS that gave cell viabilities greater than 

85%, HepG2 cells were exposed to various concentrations of aluminum and a constant 

concentration of LPS (1 µg/mL). Using the MTT assay the combined cytotoxicity of Aluminum 

and LPS was assessed and the range of concentrations for the combination over a time period of 

12h and 24h were calculated using the following equation: 

 

                      
                     

                   
     

Where OD refers to the Optical Density as determined using a plate reader at 570 nm.  

 

Table 4.1 & table 4.2 show that over 12h as well as 24h time period, cell viabilities were >85% 

with Al at 50 µg/mL and lower concentrations when combined with LPS at 1 µg/mL. Al 

concentrations exceeding 50 µg/mL gave unacceptable toxicities. 

 

Table 4.1 Cell viabilities for various concentrations of aluminum and LPS over a period of 12 

hrs. (Each observation indicates the measure of optical density (OD) at 570 nm) 

 LPS 1μg/mL 

Al 100 µg/mL Al 75 µg/mL Al 50 µg/mL Al 25 µg/mL Al 10 µg/mL Al 0 µg/mL 

 0.385 0.419 0.594 0.539 0.633 0.59 

 0.506 0.527 0.716 0.65 0.622 0.649 

 0.429 0.452 0.602 0.508 0.573 0.656 

Average 0.440 0.466 0.637 0.566 0.609 0.632 

Toxicity 27 23 0 6 0 0 

Viability 73 77 106 94 101 105 
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Table 4.2: Cell viabilities for various concentrations of aluminum and LPS over a period of 24 

hrs. (Each observation indicates the measure of optical density (OD) at 570 nm) 

 LPS 1μg/mL 

Al 100 µg/mL Al 75 µg/mL Al 50 µg/mL Al 25 µg/mL Al 10 µg/mL Al 0 µg/mL 

 0.312 0.336 0.471 0.399  0.481 

 0.293 0.367 0.6 0.52 0.435 0.403 

 0.269 0.376 0.498 0.509 0.521 0.471 

Average 0.291 0.360 0.523 0.476 0.478 0.452 

Toxicity 43 30 0 7 7 12 

Viability 57 70 102 93 93 88 

 

4.2 Pilot Study 2: mRNA analysis with β-actin and MRP2 using various concentrations of 

aluminum combined with LPS to optimize the time exposure. 

Using the MTT cytotoxicity assay, range of concentrations for combination of AlCl3 with LPS 

over a time period of 12h and 24h that gave cell viabilities  >85% were determined in pilot study 

1 and then these were used to optimize the time exposure. HepG2 cells were exposed to different 

concentrations of Aluminum and LPS (LPS at 1 µg/mL was combined with concentrations of 

Aluminum (0, 10 & 50 µg/mL) for 12h and 24 hr. 

The mRNA analysis was carried out with the standard gene β-actin and MRP2 to 

determine whether the concentrations of AlCl3 were appropriate. The mRNA expression studies 

revealed that the MRP2 expression levels were found to be similar at 12 hr time point and 24 hr 

time point. Therefore, for the further study the 24 hr time period was chosen. 

4.3 Aluminum and LPS at different combination of concentrations differentially alters the 

mRNA expression hepatic biliary transporters. 

To determine whether aluminum alone or in combination with LPS alters the biliary 

transporters involved in production and maintenance of bile flow, HepG2 cells were exposed to 

aluminum and LPS for 24hrs and mRNA expression levels were evaluated. Figure 4.1 illustrates 

the relative mRNA expression levels of the transcription factor. The mRNA expression of FXR 

was slightly increased (not statistically significant) in a dose-dependent manner with treatment of 

aluminum alone. When combined with LPS, a slight downregulation of FXR expression was 

observed, while LPS alone caused no effect. In HepG2, NTCP mRNA expression showed 

differential changes with different treatments, but this change was not statistical significant 

(Figure 4.2). There was increase in expression level compared to control when aluminum alone 
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was used. But downregulation in expression was seen when combined with LPS. Al at 10 μg/mL 

with LPS at 1μg/mL gave more downregulation compared to the Al at 50 μg/mL with LPS at 

1μg/mL. LPS at 1 μg/mL showed slight decrease in expression.  

MRP2 expression in HepG2 cells was shown to be unaffected. No significant change 

was observed in the relative levels of MRP2 mRNA in HepG2 cells after treatment with either 

aluminum and/or LPS (Figure 4.3). At higher concentrations aluminum alone and with LPS 

caused an increase in MATE1 mRNA expression in HepG2 as illustrated in Figure 4.4. LPS also 

increased MATE1 expression in HEPG2 cells. 

A concentration-dependent increase in BSEP mRNA expression was observed in 

HepG2 exposed to aluminum alone and in combination with LPS stimulation (Figure 4.5). 

However, BSEP mRNA was not significantly affected by LPS alone. 
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Figure 4.1: Mean ± SEM mRNA expression of Farnesoid X receptor (FXR). Expression 

was normalised to β-actin and fold difference (FD) determined by using 2
-ΔΔCT 

method. 

FD in expression of various transporters in HepG2 cells incubated with Al 10 µg/mL, Al 

50 µg/mL, LPS 1 µg/mL, Al 10 µg/mL with LPS 1 µg/mL and Al 50 µg/mL with LPS 1 

µg/mL for 24 h. One-way ANOVA with Tukey’s post hoc test was used for the 

comparisons between the different set of treatments and bars with the same letters 

indicate no significant difference, P < 0.05.  
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Figure 4.2: Mean ± SEM mRNA expression Na+ taurocholate co-transporting peptide 

(NTCP). Expression was normalised to β-actin and fold difference (FD) determined by 

using 2
-ΔΔCT 

method. FD in expression of various transporters in HepG2 cells incubated 

with Al 10 µg/mL, Al 50 µg/mL, LPS 1 µg/mL, Al 10 µg/mL with LPS 1 µg/mL and Al 

50 µg/mL with LPS 1 µg/mL for 24 h One-way ANOVA with Tukey’s post hoc test was 

used for the comparisons between the different set of treatments and bars with the same 

letters indicate no significant difference, P < 0.05. 
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Figure 4.3: Mean ± SEM mRNA expression of Multi-drug resistant protein (MRP2). Expression 

was normalised to β-actin and fold difference (FD) determined by using 2
-ΔΔCT

 method. FD in 

expression of various transporters in HepG2 cells incubated with Al 10 µg/mL, Al 50 µg/mL, 

LPS 1 µg/mL, One-way ANOVA with Tukey’s post hoc test was used for the comparisons 

between the different set of treatments and bars with the same letters indicate no significant 

difference, P < 0.05. 
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Figure 4.4: Mean ± SEM mRNA expression of Human multidrug and toxin extrusion    

1(MATE1). Expression was normalised to β-actin and fold difference (FD) determined by using 

2
-ΔΔCT

 method. FD in expression of various transporters in HepG2 cells incubated with Al 10 

µg/mL, Al 50 µg/mL, LPS µg/mL, Al 10 µg/mL with LPS 1 µg/mL and Al 50 µg/mL with LPS 

1 µg/mL for 24 h. One-way ANOVA with Tukey’s post hoc test was used for the comparisons 

between the different set of treatments and bars with the same letters indicate no significant 

difference, P < 0.05. 
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Figure 4.5: Mean ± SEM mRNA expression of Bile salt excretory pump (BSEP). Expression 

was normalised to β-actin and fold difference (FD) determined by using 2
-ΔΔCT

 method. FD in 

expression of various transporters in HepG2 cells incubated with Al 10 µg/mL, Al 50 µg/mL, 

LPS 1 µg/mL, Al 10 µg/mL with LPS 1 µg/mL and Al 50 µg/mL with LPS 1 µg/mL for 24 h. 

One-way ANOVA with Tukey’s post hoc test was used for the comparisons between the 

different set of treatments and bars with the same letters indicate no significant difference, P < 

0.05. 
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5. Discussion 

Aluminum contamination of parenteral nutrition solutions is thought to be an important 

risk factor contributing in parenteral nutrition induced intrahepatic cholestasis. Aluminum as a 

risk factor may influence a number of hepatocellular functions to lead to cholestasis but one 

important function is the potential for aluminum to cause dysfunction of those transporters 

responsible in the maintenance of bile flow. As well, inflammation is a component of cholestasis 

so the effects of aluminum may be exacerbated by underlying inflammation. In my study, the 

aim was to determine the effect of aluminum and an inflammatory stimulus, LPS, alone or in 

combination on the mRNA expression of hepatic biliary transporters (FXR, NTCP, MRP2, 

MATE1 and BSEP) as a contributing factor to parenteral nutrition induced intrahepatic 

cholestasis using the human liver carcinoma cell line, HepG2. My data suggest that for the 

canalicular hepatic transporters MATE1 and BSEP, aluminum at higher concentration alone as 

well as with LPS caused increased mRNA expression levels. In addition to this, BSEP mRNA 

expression was preserved and that of MATE1 was increased on LPS exposure. Given the 

particular importance of BSEP in the maintenance of bile flow and reported effects of drug-

induced inhibition of BSEP to cause hepatic cholestasis, the influence of aluminum on BSEP 

(and MATE1) protein expression and activity warrant investigation. Inhibition of BSEP function 

(and possibly MATE1) by aluminum contamination of total parenteral nutrition formulations 

may explain, in part, the intrahepatic cholestasis associated with parenteral nutrition.  

Hepatocyte transporters are of paramount importance in hepatic drug exposure and drug 

clearance. Their co-ordinated action is essential for bile formation and for the biliary secretion of 

various ions and xenobiotics (Pauli-Magnus and Meier, 2006). Following passage across the 

gastrointestinal wall, the first organ to be exposed to absorbed nutrients, drugs, metals and other 

xenobiotics is the liver. Efficient scavenging mechanisms extract these absorbed elements from 

the portal blood flow for hepatocellular metabolism and/or secretion into the bile (Diaz, 2000). 

Therefore, the liver is considered to be major detoxifying organ, and extraction from the blood is 

mediated by the parenchymal cells of the liver (hepatocytes) arranged with defined polarity that 

maintains a microvilli rich, specialized apical canalicular membrane and basolateral sinusoidal 

membrane domains, each studded with specific transporter proteins (Evans, 1980). NTCP and 

OATP’s are the major sinusoidal transporters in the hepatocytes that execute the first process 

involved in hepatic elimination i.e. uptake of various endogenous and xenobiotics into the 
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hepatocyte from the circulating blood. Internalized compounds may undergo assimilation and 

then secreted into the bile canaliculus by the canalicular export pumps BSEP, MRP2 and MATE. 

Bile acids then via bile ducts are delivered to the intestinal lumen where they emulsify 

cholesterol and lipids facilitating their absorption.  

An essential role of sinusoidal and canalicular transporters is evident from the pathology 

associated with the disruption of their function (Alrefai and Gill, 2007). The pathophysiology of 

cholestasis is implicated by the malfunctioning of hepatic transporters.  For example, MRP2 

expression is altered in various rat models of cholestasis (Trauner et al., 1997). Additionally, the 

expression of Ntcp and Oatp1 is downregulated in cholestasis and this suggests a co-ordinated 

alteration of transporter expression in cholestatic rats (Gartung et al., 1996; Dumont et al., 1997). 

Various exogenous and endogenous compounds can cause alterations in transporter expression 

and hence influence their functions. Metalloid salts like sodium arsenite can induce MRP2 

expression in primary human and rat hepatocytes in contrast to cadmium chloride which was 

inactive (Vernhet et al., 2001). 

In general, a literature review failed to provide a significant body of supportive evidence 

for the potential of aluminum to contribute to intrahepatic cholestasis, particularly through 

mechanisms implicating the inhibition of hepatocellular transporters involved in bile flow. 

Consequently, for initial evaluations of my thesis work focused primarily on providing in vitro 

support for the ability of aluminum to inhibit transporters in the hepatocyte. Since inflammation 

is a component of cholestasis, these evaluations included the use of an inflammatory stimulus. 

Positive outcomes would then support the use of appropriate in vivo models to investigate the 

hypothesis. In the literature, LPS from E. coli is extensively used for inflammatory challenges 

inducing cytokine release in mammalian cells. Also, the HepG2 cell line has been used in 

previous investigations as a cell culture model to examine the effects of various xenobiotics as 

well as cytokine exposure on epithelial cell function and gene expression. Therefore, 

optimization experiments were conducted using HepG2 cells: 1) to identify the non-toxic 

aluminum and LPS concentrations, and 2) to determine the optimum time exposure. Optimized 

concentrations of aluminum and LPS were employed to determine whether aluminum might lead 

to differential changes in mRNA expression of hepatic biliary transporters, NTCP, MRP2, 

MATE1 and BSEP, and the nuclear receptor, FXR, in HepG2.  
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I evaluated the mRNA expression of FXR, as this nuclear receptor is a major 

transcriptional regulator of the transporters involved in the maintenance of bile flow. Upon 

activation by bile acid binding FXR plays a significant role in the regulation of bile acid 

homeostasis. When bile acid levels are high FXR protects the liver from the harmful effects of 

bile acids by inhibiting synthesis and stimulating excretion of bile acids. The inverted repeat-1 

motif is the preferred DNA binding sequence for FXR within its target promoters and FXR binds 

to it as a heterodimer with another nuclear receptor, RXR (Laffitte et al., 2000). BSEP 

expression is stimulated by FXR in response to bile acids via interaction of FXR-RXR 

heterodimer with IR-1 element of BSEP gene (Ananthanarayan et al., 2001; Schuetz et al., 2001; 

Plass et al., 2002). Therefore, high levels of bile acids stimulate their own hepatocanalicular 

clearance. Similarly, MRP2 expression is also activated by bile acids and FXR through an 

atypical ER-8 (everted repeat-8) (Kast et al., 2002). In cholestatic rodent models, NTCP 

expression is suppressed at mRNA as well as protein levels due to activation of FXR by 

increased intracellular bile acid levels (Fickert et al., 2001). In my study, the mRNA expression 

of FXR was slightly increased (not statistically significant) in a dose-dependent manner with 

treatment of aluminum alone. When combined with LPS, a slight downregulation of FXR 

expression was observed, while LPS alone caused no effect (Figure 4.1). These data suggest 

aluminum has little influence on the transcriptional expression of levels of FXR and is unlikely 

to mediate any effect through alterations in FXR expression.  

In HepG2, NTCP mRNA expression showed differential changes with different treatments, 

but this change was not statistical significant. Uptake of bile salts and organic anions at the 

hepatocellular sinusoidal membrane is markedly impaired in cholestasis in the rat, in part due to 

downregulation of Ntcp expression (Geier et al., 2003). A similar decrease in the Ntcp expression 

has been reported in percutaneous liver biopsy samples of cholestatic liver disease patients 

(Hagenbuch and Dawson, 2004). Downregulation of NTCP is a protective adaptation as it lowers 

the hepatocellular load of potentially cytotoxic bile salts. NTCP, through the action of FXR, has 

been shown to be downregulated by bile acids. The mechanism explaining the observation 

involves the induction of the repressor heterodimer partner (SHP). This further interferes with 

the activity of the RAR/RXR heterodimer that controls Ntcp gene expression. The inflammatory 

cytokine interleukin, (IL)-1β, also downregulates the binding of RAR:RXR complex resulting in 

downregulation of Ntcp expression (Li et al., 2002). In ethinylestradiol-induced cholestasis, rat 
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liver Ntcp expression is associated with decreased binding of HNF1 (hepatocyte nuclear factor 1) 

and C/EBP (CCAAT/enhancer binding protein). Similarly, decreased binding of transactivators 

such as C/EBP, RAR/RXR heterodimer and HNF-1 results in decreased Ntcp transcription in 

endotoxin-induced cholestasis and toxic liver injury (Denson et al., 2001). The failure to observe 

changes in NTCP expression may suggest that aluminum does not affect important 

transactivators or repressors of transcription. However, LPS treatment of HepG2 caused a slight 

decrease in the mRNA expression of NTCP, which is consistent with the reported literature.  

In the present study, MRP2 expression in HepG2 cells was shown to be unaffected. MRP2 

is one of the most important canalicular transport proteins which mediate the transport of a 

variety of amphipathic compounds including organic anions, glutathione and glucuronic acid 

conjugates (Dietrich et al, 2001). No significant change was observed in the relative levels of 

MRP2 mRNA in HepG2 cells after treatment with either aluminum and/or LPS. LPS-induced 

inflammatory responses in vivo and in vitro have been extensively studied. Downregulation of 

Mrp2 following LPS administration has been reported in many in vivo studies in the rats (Vos et 

al., 1998). However, in human liver slices MRP2 at mRNA level is unaffected by the LPS 

treatment but downregulated at the protein level (Elferink et al., 2004). This suggested that the 

impairment of MRP2 expression in humans by LPS is regulated by posttranscriptional process 

(Elferink et al., 2004).  In the rat, MRP2 downregulation is due to suppression of RXR/RAR by 

IL-1β, but in humans this regulatory pathway is apparently not present for MRP2 (Hartmann et 

al., 2002). The posttranscriptional mechanisms involved in the downregulation of MRP2 in 

humans have been further confirmed by the evaluation of liver biopsies of patients with 

inflammation-induced icteric cholestasis (Zollner et al., 2001).  

I expected aluminum alone to downregulate MRP2 expression. A previous study in our 

laboratory demonstrated that infusion of parenteral nutrition solutions containing aluminum to 

neonatal piglets caused the downregulation of the canalicular transporter, MRP2 (Alemmari, 

unpublished data). The aluminum content of the parenteral nutrition infusion was proportional to 

the severity of canalicular microvilli damage (Alemmari et al., 2012). Bile acid transporter 

proteins like MRP2 are expressed in these microvilli rich domains so microvilli damage was 

suspected to cause the loss of bile acid transporters and reduced bile flow. Furthermore, in a rat 

model, an intraperitoneal administration of aluminum resulted in the downregulation of hepatic 

Mrp2 expression (Gonzalez et al., 2004). The failure of aluminum to alter the mRNA expression 
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of MRP2 in HepG2 cells may be due to the possibility that aluminum’s effect on MRP2 

expression in humans may involve posttranscriptional process as observed with LPS treatment. 

Additionally, HepG2 cells do not maintain a strong constitutive expression of MRP2, and any 

influence of aluminum on MRP2 expression may be obscured by these low constitutive MRP2 

expression levels. Evaluations (at the mRNA and protein level) in a cell line that maintains 

MRP2 expression may identify an effect of aluminum on this transporter.  

In my study, a concentration-dependent increase in BSEP mRNA expression was observed 

in HepG2 exposed to aluminum alone and in combination with LPS stimulation. However, BSEP 

mRNA was not significantly affected by LPS alone, which is consistent with observations in in 

vitro experiments reported in the literature (Elferink et al., 2004). BSEP mRNA is induced with 

elevation in bile acid levels as observed with dietary challenges (Wolters et al., 2002) or under 

cholestatic conditions (Zollner et al., 2003). This induction is due to the direct activation of the 

rodent and human BSEP genes by bile acid binding to and activation of the nuclear receptor, 

FXR (Ananthanarayanan et al., 2001). The BSEP induction is not a universal property for all the 

bile acids and is related to the FXR ligand specificity (Parks et al., 1999). As HepG2 cells lack 

constitutive BSEP expression, CDCA was used to up-regulate the expression of BSEP in these 

cells. In my study, the increase in BSEP mRNA levels by aluminum treatment is not likely to 

involve transcriptional upregulation by activation of FXR due to the presence of the strong 

binding ligand of FXR, CDCA, in the cell culture system.  

BSEP does undergo considerable posttranscriptional regulation. Endotoxin-induced 

cholestasis in rodents is caused by the downregulation of Bsep (Vos et al., 1998), but more 

recent studies show that BSEP expression is relatively preserved in endotoxin and other 

cholestatic models of hepatic injury (Lee et al., 2000). In humans hepatic BSEP mRNA 

expression was unaltered but inflammation induced the downregulation of BSEP at the protein 

level in human liver (Elferink et al., 2004). Interestingly, Tazuke et al examined the expression 

of bile canalicular transporters with total parenteral nutrition administration and showed that 

MDR1 mRNA expression increased whereas mRNA expression of MRP2 and BSEP failed to 

show any significant change (Tazuke and Tietelbaum, 2008). In my study the aluminum 

mediated upregulation of BSEP mRNA may suggest a compensatory mechanism, possibly in 

response to posttranscriptional effects of aluminum, and a co-ordinated regulation of liver 

detoxifying transport proteins in response to aluminum (Figure 4.5).  
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Very limited information exists about MATE1 expression during inflammatory state as 

well as with xenobiotic exposure. At higher concentrations aluminum alone and with LPS caused 

an increase in MATE1 mRNA expression in HepG2. LPS also increased MATE1 expression in 

HEPG2 cells. These observations may suggest aluminum (and inflammation) may induce 

compensatory mechanisms in the hepatocyte to maintain cellular homeostasis. The exact 

mechanism underlying these observations is uncertain and warrants further investigation. 

There have been studies on aluminum toxicity in HepG2 cells that have shown that iron 

homeostasis, membrane lipids, Ca
+2

 mediated processes and Mg
+2

 catalysed reactions appears to 

be the target of Al toxicity and contribute to various Al induced abnormalities (Zatta et al., 

2002). Al disrupts oxidative phosphorylation, triggers oxidative stress and as a result an 

anaerobic respiratory regime is adopted by HepG2 cells to generate ATP (Mailloux and 

Appanna, 2007). Also, the non essential amino acid, L-carnitine is involved in the transport of 

fatty acids into the mitochondria (Muniyappa, 2010) and its homeostasis is key regulator in lipid 

metabolism (Vaz and Wanders, 2002). A decrease in L-carnitine levels in Al exposed HepG2 

cells suggest Al to be a contributing factor to dyslipidemia. The underlying molecular 

mechanism involves the reduced activity and expression of enzymes involved in L-carnitine 

synthesis, namely butyrobetaine-aldehyde-dehydrogenase (BADH) and butyrobetaine 

deoxygenase (BBDOX) (Mailloux et al., 2006). Al toxicity also promotes mitochondrial 

dysfunction, i.e. the inability to perform the TCA cycle and thereby limiting L-carnitine 

requirements. Mitochondrial dysfunction further leads to lipid accumulation and slows down 

fatty acid metabolism. This can lead to various liver abnormalities and this could be another 

mechanism how aluminum may cause cholestasis. 

Study Limitations 

In the present study, a number of major limitations preclude any affirmative judgements 

with the observed outcomes. One significant limitation was the choice of the in vitro cell line 

used in the study. HepG2 cells lack constitutive BSEP expression and its expression requires 

induction by addition of CDCA. Furthermore, HepG2 cells tend to exhibit weak expression of 

influx transporters (Le Vee et al., 2006). Consequently, the effects of aluminum exposure on 

mRNA expression may be obscured by the already low transporter expression levels and the 

maximally induced BSEP expression in this cell line. Recently, primary hepatocytes have been 

demonstrated to be a useful and adequate tool for research related to activity and regulation of 
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hepatic drug transporters. They exhibit constituent activity of both sinusoidal as well as 

canalicular transporters (Jigorel et al., 2005; Payen et al., 2000) and also retain the regulatory 

pathways of transporter expression (Payen et al., 2000). However, their scarce and unpredictable 

availability limits their use. Other alternative immortalized hepatic cell lines have been used for 

toxicological studies (Knasmuller et al., 2004; Xue et al., 2004). In this context, HepaRG cell 

line has been shown as a promising substitute for the HepG2 cell line. Another consideration is 

the complexity of the in vitro system. Various cell types in the liver co-ordinate the defence 

against xenobiotics or inflammatory processes. Therefore, it becomes important that these 

studies be conducted in a system which has all different cell types present. An example of such a 

system is precision cut liver slices. This in vitro model has been validated in many laboratories 

working on inflammation-induced reactions in the liver (Olinga et al., 1998; Olinga et al., 2001). 

It has been reported that NTCP levels in human liver slices are maintained much better as 

compared to those in cultured hepatocytes (Kwekkeboom et al., 1989). Obviously, the system 

selected for in vitro evaluations can have a significant impact on study outcomes. 

Another important limitation of the study was its exclusive focus on the evaluation of 

mRNA expression. As discussed above, previous studies with MRP2 and BSEP show that 

mRNA levels are preserved following exposure to inflammation or other cholestasis inducing 

agents, whereas the protein levels are altered indicating that posttranscriptional processes are 

involved in the regulation of these transporters (Elferink et al., 2004). Therefore, further 

investigation is needed at the protein level (and activity level) to determine whether aluminum 

may influence hepatocellular transporter expression and function. Determination of mRNA 

levels alone is not adequate enough to understand the effect of aluminum and LPS on transporter 

expression. Although mRNA levels are not directly proportional to the expression level of 

the proteins they code for, mRNA expression is commonly used as a proxy for estimating 

functional differences occurring at the protein level. 

Also, the use of CDCA in my experiments could be another limiting factor. CDCA was 

used in the study to induce the expression of BSEP in HepG2 cells. However, we know that FXR 

is a key regulator of bile acid homeostasis and bile acids are the most effective activators of FXR 

(Kullal-Ublick et al., 2004). Bile salt transporter genes that are directly or indirectly regulated by 

FXR include BSEP, MRP2 and NTCP (Ananthanarayanan et al., 2001). Therefore, it is quite 
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possible that addition of CDCA to the cell media might have ameliorated the effect of aluminum 

on transporter expression, thereby, confounding experimental outcomes. 
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6. Conclusions and Future Work 

The purpose for this study was to conduct simple initial studies into the possible influence 

of aluminum on the expression of hepatic biliary transporters as a contributing factor to 

intrahepatic cholestasis. The incidence of TPN-related hepatobiliary complications is common in 

both adults and infants on TPN and the etiology of PNAC is multifactorial. Previous work in in 

vivo models suggested that one of the potential contributing factors is the aluminum 

contamination of TPN solutions. The mechanism by which aluminum contributes to the PNAC 

development, though, was unknown. To provide some initial critical information regarding the 

role of aluminum as a potential risk factor contributing to cholestasis and the possible underlying 

mechanism, cytotoxicity studies were conducted to determine whether aluminum and aluminum 

with LPS (an inflammatory stimulus) cause direct toxicity of HepG2 cells and also to evaluate 

the influence of aluminum and LPS on the mRNA expression of hepatic biliary transporters 

(BSEP, MRP2, MATE1, NTCP) and nuclear transcription factor (FXR) in HEepG2 cells using 

real-time RT-PCR analysis. Since inflammation is a component of cholestasis, these 

investigations also involved the use of an inflammatory stimulus to determine whether the effects 

of aluminum were exacerbated by underlying inflammation. My study concludes that aluminum 

and LPS at different combination of concentrations differentially alters the mRNA expression of 

hepatic biliary transporters. For a couple of key transporters (BSEP and MATE1) the differences 

between the various treatment groups were statistically significant. Therefore, these transporters 

warrant further study.  

These observations coupled with the known limitations of the study also suggest that 

further study of the influence of aluminum on hepatocellular expression as an underlying 

mechanism of cholestasis is warranted using a model system that better reflects the liver in vivo. 

The effect of aluminum and aluminum with LPS on hepatic biliary transporters commands 

further evaluations at the level of protein expression and transporter activity, as 

posttranscriptional processes may be involved. Studies at the protein levels may also help 

identify whether the observed changes in mRNA expression levels in the present study are 

reflected through changes in protein expression. Furthermore, with NTCP, MRP2 and FXR the 

difference between the different treatment groups did not reach statistical significance. This 

could be attributed to the weak expression of biliary transporters in the HepG2 cell line. Hence, it 

warrants that mRNA expression levels for these transporters need to be studied using a more 
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efficient cell line. In this context, it may be important to consider the newly characterized 

hepatoma HepaRG cell line as it has been shown to express specific liver functions including 

biliary transporters at relatively high levels in contrast to HepG2 cells. Also, the use of in vivo 

models to evaluate the mRNA expression is necessary. In our laboratory, Alemmari et al have 

shown that parenteral aluminum induces liver injury in a newborn piglet model and that the 

reduced aluminum contamination reduces parenteral nutrition associated liver injury (Alemmari 

et al., 2011; Alemmari et al., 2012). Therefore, the existing tissues from his study where 

microstructural changes in the canalicular membrane were observed needs further evaluation for 

the mRNA expression of the hepatic biliary transporters. Once the effect of aluminum on these 

transporters is established at mRNA as well as protein levels, in in vivo as well as in vitro, then 

we would have experimental support assisting us to understand the mechanism by which 

aluminum may be a potential risk factor contributing to cholestasis. Additional information of 

aluminum contamination of TPN solutions needs thorough examination so that TPN can be 

given safely and efficiently to the adults and infants. 
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