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Abstract

The combination of plant phenotyping and computer techniques has gained popularity amongst breeders

and computer scientists. The recent evolution of the latter has allowed High-Throughput Phenotyping (HTP)

to play a significant role in filling the genotype-to-phenotype gap. While most of the related work in HTP

is performed in controlled environments, such as greenhouses, that allow automatic devices to capture the

data reliably, research in in-field phenotyping is not as robust due to environmental confounds (i.e., fog or

sun-reflections). The usage of high temporal density data has not been exploited to the same degree as

high spatial resolution information. However, many phenotypes (e.g., canola flowering) have a temporal

component. In this document, we present an image-processing-based method that attempts to detect and

count flowers of canola during the early flowering stage on in-field time-lapse images. This approach can be

used to analyze the evolution of the flower density of canola plants over short periods of time during the first

days of flowering thanks to the availability of high temporal resolution images. We used images extracted

during Summer 2016 to generate ground truth, tune the flower detection method and count the flowers during

the first days of the flowering period. We provide an overview and a discussion about additional steps that

might be needed to overcome the impact of sunlight reflection on canola leaves in the detection of flowers.
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Chapter 1

Introduction

1.1 Motivation

With the recent developments in technology, farming and computers have been linked for a common objective:

to increase and facilitate crop production. We can read about multiple studies that benefit from including

imaging techniques using modern devices such as drones [24], or multi-spectral cameras [64]. Image-based

methods can perform plant classification on numerous pictures of plants based on their observable character-

istics and features - this process is called image-based phenotyping. Often these techniques use information

that the human eye cannot see, such as multi-spectral images that capture light frequencies outside the visible

range.

An interesting area that can benefit from this agriculture-computer combination is the study of canola.

It is responsible for the production of canola oil, used for cooking (among other applications), and Canada

one of the top producers of canola oil in the world. The provinces of Alberta, Manitoba, and Saskatchewan

have the most significant production of canola plants within the country, yielding to a great opportunity of

studying this plant. In 2017, farmers reported 22.8 million acres of canola planted in Canada (12.1% more

than 2016), more than half of which were planted in Saskatchewan (12.6 million acres, 13.6% more than 2016)

[4]. The Canola Council of Canada has reported on its 2016’s annual report that canola has contributed $26.7

billion to the Canadian economy [1]

There exists a relationship between the canola oil produced and the number of flowers present in canola

plants: the oil is extracted by crushing the seeds produced by the plants. These seeds are contained in

productive pods, which in turn, are produced by the canola flowers. The Canola Council of Canada, [2],

describes in detail the growth of canola plants, including their flowering stage, determining that the flowering

stage can last between 14 and 21 days. By counting the flowers, we can determine the growth rate of the

canola flower density, which in turn can relate to the maximum number of flowers produced, thus allowing

for an estimation for the number of pods and seeds produced. Image processing is needed to automatically

count flowers of canola using in-field images during the flowering stage.

1



Genotyping is the analysis and study of the genetic constitution of an organism, while phenotyping is

defined as the analysis and study of observable physical features. Genotyping has provided larger amounts

of data compared to phenotyping [63]. Even though during the last decade computer-aided techniques have

been used for plant phenotyping to accelerate its processes, there are still many limitations in this field

(also referred to as the phenotyping bottleneck [39]). Most of the current phenotyping procedures rely on

low-throughput technologies: ground truth extraction techniques often require manual measurements of the

physical properties of plants, which are not only time-consuming but also error-prone procedures. Examples

include measuring the height of a plant with a ruler or manually counting flowers or leaves of a plant. These

methods might result in unreliable measurements, which will eventually lead to inconsistent results.

Field-based phenotyping often focuses on providing high spatial resolution for image processing. Examples

include ground-based platforms or multi-spectral drone imaging. However, many phenotypes have essential

temporal components, such as growth stages; therefore there is a need for new imaging systems that have

high temporal resolution, such as time-lapse cameras.

We define high-throughput phenotyping (a.k.a, HTP) as analyzing and capturing physical characteristics

of plants using automated or semi-automated data acquisition and processing tools, which are capable of

handling large quantities of information (e.g., classification of plants through image processing using au-

tomated cameras). HTP is most commonly performed in controlled environments, such as greenhouses or

growth chambers that use automation to speed up image acquisition, thus increasing the total throughput.

Within a controlled environment, the image acquisition system can be set up so that the pictures are acquired

free from undesired effects (e.g., plants placed either in front of flat-coloured backgrounds to facilitate image

segmentation, or on separated pots to avoid overlapping leaves). Additionally, cameras can be set up at

precise angles that are tailored to the phenotypic information sought.

However, many of these approaches are not possible in the field, where plants grow close together in a

canopy, backgrounds are uncontrolled, lighting is variable minute-to-minute or plants move from frame to

frame due to the wind. Additional image processing steps are often required to overcome these limitations

[36]. Nonetheless, controlled environments do not necessarily emulate the real conditions to which outdoor

fields are exposed. Outdoor fields are often exposed to significant temperature or humidity variability absent

in growth chambers.

HTP with high temporal resolution may be valuable in many phenotyping contexts for which high spatial

resolution might fail to provide relevant data. Temporally-dense data can provide information of flowering-

related phenotypes, e.g., onset, duration, termination of flowering, as well as the number of flowers, which

are critical in plant breeding. Canola plants and flowers contain important temporal characteristics [2], [51].

It takes between one and two weeks for canola plants to reach maximum flowering. This fact requires canola

flower counting to be performed with enough temporal resolution so that the flower density growth rate can

be reliably measured. It is not feasible to count the canola flowers of large fields every day manually. There

is a trend towards larger breeding experiments with larger crops, where manually counting flowers would be

2



highly time-consuming. A more reasonable approach is to have cameras frequently taking pictures of the

crop and use their images to count the number of flowers.

However, having temporally-dense in-field images of canola plants during the flowering season can be

challenging: variable weather conditions, such as rain, fog or direct sunlight, can affect not only the image

acquisition equipment but also the pictures obtained themselves. While some of these effects require addi-

tional image processing steps, others should be anticipated and prevented a prori during data acquisition.

1.2 Solution

This thesis proposes a method that takes advantage of using temporally-dense images of outdoor canola fields

extracted from time-lapse cameras. It provides a count of the number of canola flowers in an area of interest,

which can be used to obtain a graphical representation of the growth of the number of canola flowers over

time. Our method makes use of images taken by time-lapse cameras during the flowering season of canola

plants placed in a waterproof casing to avoid water damage. These cameras record pictures automatically 24

hours a day, which reduces the human effort needed to acquire the in-field data.

It is unavoidable to encounter side effects in the extracted images due to harsh weather and other natural

phenomena (e.g., direct sunlight hitting the canola plants, which can affect the flower detection process).

While the cameras used in our experiment were not prepared to reduce these effects, affected images can

be identified and removed. Such photos are expected to provide inconsistent flower counts. Having a high

temporal resolution could allow us to discard these images and use only the subset of pictures not affected by

weather, which are expected to provide a much more reliable and consistent flower count. However, there are

some cases where we cannot use the high temporal resolution to solve this problem, and extra steps would

be needed to get rid of the affected images.

1.3 Contributions

The contributions of this thesis include:

1. An image processing pipeline designed to detect canola flowers in in-field time-lapse images, which is

focused and applied to images taken during the early flowering stages. This pipeline relies on the colour

of the flowers. It uses both the RGB and CIELab colour spaces combined with a blob detector to

identify canola flowers.

2. An analysis of different parameter combinations of the image processing pipeline and the accuracy

offered by each.

3. Ground truth data acquisition through manual flower counting performed on a subset of images from

early flowering days.
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4. A discussion of different approaches that can be used to filter out images in which our method has

detected flower count that is far off from the actual number of flowers. We offer an analysis of the data

observed, summarize each approach’s advantages and disadvantages and their expected results.

5. A discussion of how some of the challenges faced during the entire process have been overcome during

the image pre-processing step, and a list of recommendation to improve data acquisition process.

1.3.1 Thesis organization

This thesis will be organized as follows:

• Chapter 2 provides an overview of the related work in indoors and outdoors image-based phenotyping.

We will provide references to other methods that aim to detect some aspects of plants.

• In chapter 3 we give a brief description of the acquired data, such as the field description, cameras set

up or data availability. Additionally, we describe the main challenges that we had to face during the

image analysis and acquisition.

• Chapter 4 describes the pre-processing that we applied to the images, such as how the plot boundaries

are defined in the time-lapse images or extraction of the timestamp from the pictures. These are

one-time procedures that must be applied right after data has been collected.

• In chapter 5 we describe the flower detection pipeline, which is the one in charge of detecting the yellow

flowers within the plot boundaries and count them. Additionally, we define the parameter tuning that

we have followed and its results.

• Chapter 6 offers a discussion on methods that try to overcome a problem that we have found throughout

the entire method development. We found that images taken on the same day and plot can provide

very different flower counts. We discuss the cause of this problem and various methods that might be

able to solve it.

• Finally, the thesis finishes with an overview of 2017’s data as future work. We propose a set of steps

to be taken to use 2017’s season images and a brief explanation about which cameras provided images

that might be more useful to improve our flower detection method
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Chapter 2

Related work

In this chapter, we will discuss previous work conducted in the area of phenotyping performed indoors

and outdoors using image processing approaches. We will present a variety of papers which describe different

methods that are related to this thesis. This chapter describes how previous researchers have developed their

algorithms and achieved the desired results. Previous publications have proved to be very helpful and have

significantly contributed to research in image-based phenotyping. However, most of the related work focuses

on indoors imaging as the data source. Outdoor imaging requires additional processing to overcome natural

phenomena (as mentioned in Chapter 1). Similarly, we have also found that phenotyping using temporally-

dense data (e.g., time-lapse imaging or evolution of plants over time) is not as popular as spatially-dense data

(such as drone imaging). Our work attempts to use in-field temporally-dense images to monitor the number

of canola flowers during the first days of the flowering season.

2.1 In-field vs. Controlled environment

Often, image-based phenotyping is performed under controlled environments, such as greenhouses or labora-

tories. This approach usually presents some advantages over performing in-field image-based phenotyping.

Image acquisition is typically performed under controlled conditions. In-field conditions can present high

humidity levels, which can generate condensation on the lens of the camera or intense light reflections that

prevent us from having a reliable image of a plant, thus interfering with the image processing procedures.

For indoor imaging, these conditions can be controlled so that the images obtained are optimal.

Controlled environments also allow placing the plants in front of flat-coloured backgrounds to avoid the

effects of undesired objects during the image processing processes. Additionally, plants can be placed at a

certain distance from each other so that they do not overlap in the images. By doing this, individual plant

analysis can be performed on each of them. In the fields it is common to find plants growing next to each

other, making it very difficult to differentiate them when they grow. However, in a controlled environment,

plants can be grown in individual pots, which can be separated when taking an image of them.

Ground truth acquisition is another advantage that controlled environments have over in-field phenotyp-

ing. For example, it is easier to manually count elements in plants (e.g., flowers or fruits) on plants that are

growing in small pots than those growing in a large field growing along with each other.
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2.1.1 Controlled environment

Controlled environments allow scientists to arrange the plants under study as desired (e.g., grids of fixed-sized

cells, each containing a small pot) and take advantage of robotic arms facilitate the automatic acquisition of

data and monitoring tasks, [25].

A different approach taken in controlled environments is to arrange the cameras and sensors in a specified

position and fixed location, while the plants are moved with the help of a conveyor belt to go through these

cameras and sensors, [27]. Illumination and image background in the pictures taken can be controlled to

maximize the performance of the proposed methods, [10, 18].

Black or white backgrounds are often chosen to prevent external elements from interfering in the data

analysis process. In other fields, such as microscopy, where the image processing methods are very similar

to those used for plant phenotyping, count of elements also take advantage of having a black background,

[17, 21].

Having plants separated from each other in pots allow for multi-view image capture, [26], which can be

used for reconstruction of plants or movement tracking of leaves. However, performing these image acquisition

techniques in the fields, where there is usually a higher number of plants growing close to each other, are

often cumbersome due to a high overlap of plant leaves or flowers.

In some cases, plant phenotyping procedures need to take an image of other parts of the plants, such as

roots, [29, 22], and requires to be performed in controlled environments where visual access to these elements

is needed.

2.1.2 In-field

In-field work has the advantage of studying the evolution of plants under real environments, where weather,

illumination and other factors are uncontrolled. Work using this approach is not as popular as indoor plant

phenotyping. One of the main reasons is the challenge of overcoming natural effects, such as direct sunlight

illumination, [36], which affect the detection of flowers or fruits directly, thus leading to a lower accuracy

than experiments run in controlled environments.

The growth and arrangements of plants cannot be controlled either. It is common to find overlapping

between plant elements (e.g., flowers or fruits), thus having some of them partially-hidden, which means

that some of those items will go undetected. Specific approaches and algorithms are sometimes needed to

overcome the overlapping problem, [47]).

Day and night times also affect the data acquisition process - images taken at night are often not usable,

as the lighting is very low or completely null. Some methods rely on extracting pictures at certain times of

the day, e.g., around noon, [6], when the sun is in an optimal position to minimize the effects of the direct

sunlight illumination while maximizing the lighting of the scene.
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2.2 High temporal vs. spatial resolution

Most popular in-field methods focus on having high spatial resolution data, which can be useful to cover large

areas of a field or depict small features of a plant. However, there are some phenotypes with critical temporal

characteristics, like the evolution of the number of flowers over time that spatially-dense data cannot depict.

2.2.1 High spatial resolution

The high spatial resolution term represents the acquisition of images that cover large areas while maintaining

a resolution high enough to analyze small portions of the surface covered. Drone and satellite imaging is

popular for in-field phenotyping where large fields have to be covered. Some of the pictures taken by current

geostationary satellites are publicly available for researchers, [32]. Often, these approaches are combined with

the use of multi-spectral cameras. Images acquired by these can provide additional information that regular

RGB cameras cannot capture, as different plants have different spectral properties. Besides the regular RGB

cameras, aerial imaging often uses infrared or multi-spectral cameras, [53]. Alongside with aerial imaging,

ground-based platforms with multi-spectral cameras can be also used in the field, [30]. Near-infrared (NIR)

cameras are often useful, [24], as healthy plants present a high reflectance in this spectral band. Often,

some additional parameters are calculated from the intensity of various spectral bands. One of the most

popular parameters is the Normalized Difference Vegetation Index (NDVI), [64], which provides information

on whether there is live green vegetation in the picture under study.

2.2.2 High temporal resolution

A caption of temporal phenotypes is harder to perform in the field, as unsupervised continuous data acqui-

sition is required, and the use of devices resilient to diverse weather conditions is crucial to avoid data loss.

The study of temporal characteristics of plants is often performed under laboratories other controlled envi-

ronments: Researchers can perform unsupervised data acquisition without the need to worry about external

agents (e.g., cameras and sensors being exposed to rainfalls or strong winds). Sometimes, the methods im-

plemented permit a low tolerance regarding errors in data acquisition. For example, the study of the growth

of a plant leaf require to monitor closely the position of the leaves at any time, [11], or root plant evolution

over time, [8]. Block matching algorithms can be used to keep track of the position of the leaves/root over

time. The influence of wind on the plants could compromise the entire experiment. These methods can be

also combined with multi-spectral cameras, [13].
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Due to the similarity in the image processing methods or the time analysis of the data obtained, it is worth

mentioning that time-lapse video and data analysis is popular in microscopy imaging. Position tracking, [16],

and detection to predict the phenotype from the genotype, [43], are some examples of time-lapse analysis

combined with image processing.

Researchers need to choose the rate of data acquisition carefully. High temporal resolution can translate

into different data capturing rates depending on the experiment. For example, for an experiment that takes

around one day, (e.g., some cellular-level processes) capturing an image every hour might not be enough,

depending on what the researchers seek. However, for a process that takes one year, extracting an image

every hour might seem excessive.

2.3 Image processing

One of the essential steps in our work is to detect canola flowers in images taken at the fields. This step

infers the implementation of an image processing algorithm, which will do the vast majority of the work.

This area has experienced an in-depth development up until today, providing a large number of methods and

algorithms for different purposes. Much of the related work found that focuses on detecting elements from

plants make use of custom-made image processing procedures. In the end, the image processing procedure

that the researcher chooses depends mainly on the expected final result and the images on which said method

would be applied. Images themselves depend on many other factors, such as the environment (e.g. outdoor

vs. indoor location, daylight vs. night imaging) or the camera that is being used. However, it can be useful

to review what previous researchers have implemented to detect elements (e.g., flowers, fruits) on various

plant species. This section reviews some of the image processing techniques most commonly used by the

literature found, which can serve as a basis to build up our image processing pipeline to detect canola flowers

in the images we have extracted.

Regardless of the images with which we are working or the final desired outcome, all the image processing

methods tend to follow the canonical image processing pipeline, whose steps can be described as:

1. Pre-processing: Consists of modifying the image so that the objects we want to detect are highlighted.

2. Segmentation: This step attempts to divide the image into areas of interest, and often, to get rid of

those areas that are not important for our results.

3. Description: Extract numerical features that describe those areas in the image (e.g. feature extraction,

or as it is in our case, detect the position of the flowers in the image).

4. Recognition: Assign labels or names to objects based on the output of the previous step (e.g. similar

textures in an image tend to have similar features; therefore those can be assigned the same label).
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2.3.1 Pre-processing

The pre-processing step comprises a wide range of operations, from intensity transformations such as thresh-

olding or gamma transforms, to noise reduction. One of the steps that are considered as pre-processing is

colour space shifting. Images, by default, are represented in RGB (Red, Green and Blue), which represents

an image’s intensity in the three primary light components. However, depending on the application, other

colour spaces might be a better fit and thus improve the final result. Using RGB color space for image

pre-processing can be used to depict elements whose colour reflects a high intensity of either red, blue or

green, [65].

However, RGB also provides the image’s intensity, which means that two images of the same object with

different illumination will provide very different values in the RGB colour space. It is usual to find related

work that uses a colour space where the luminance is separated from the colour description or chrominance.

HSV (Hue, Saturation, Value) colour space codes the chrominance in its first two coordinates while the

third is used for luminance: The Hue coordinate uses an angle from 0 to 360 degrees to represent which

colour a pixel has, while the Saturation coordinate describes the dillution of the colour described by the

Hue component. That is, maximum saturation means that the colour is pure (i.e., it is not dilluted), while

minimum saturation means that there is no colour (i.e., the pixel will represent a scale of gray determined

by the Value coordinate). Shifting from RGB to HSV can be very beneficial for images where the foreground

has a colour that makes it very distinguishable from the background, [54, 57].

Another popular color space is CIELab. Similarly to HSV, one component represents the luminance of

a pixel, while the other two are chrominance. In this case, the a component represents the green versus

magenta intensity, while the b component shows yellow versus blue. The luminance channel can provide high

intensities for white objects, [59]. A similar approach would be to use YCrCb, which provides red difference

and blue difference in its chrominance components, [19].

As mentioned earlier, pre-processing can mean intensity transformations. One common operation is

thresholding, which separates foreground from background given a threshold value based on each pixel’s

intensity. There are different approaches, such as global thresholding (i.e., the same thresholding value is

applied to the entire image) or local adaptive thresholding (i.e., the threshold value varies across different

regions of the image).

One popular thresholding algorithm is Otsu, [44]. It is designed to be applied to those images that produce

a bi-modal histogram. This algorithm computes the optimal intensity that separates pixels belonging to each

of the histogram’s modes, [12].

After performing thresholding, it is usual to have noisy edges or small groups of pixels that can interfere

in the future steps. Some methods utilize morphological operations such as erosion or dilation, [15], to

smoothen sharp and noisy edges or to eliminate small clusters of foreground pixels that made it through the

thresholding process but should be considered as background, [57, 12].
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2.3.2 Segmentation

Some applications require dividing the image into two or more groups of pixels based on their properties.

This approach is called clustering and attempts to assign each pixel to different groups based on a given

feature (e.g., pixel’s intensity) and a specified metric. The intended result is that pixels that present similar

features should belong to the same group or cluster. One popular clustering algorithm is K-means clustering.

It is an example of unsupervised clustering (i.e., does not need ground truth collection) where each element is

assigned to a cluster based on its similarity with that cluster’s centroid. The type of features used for elements

in flower detection and counting are mostly colour, due to the contrast they present, with their background,

[62, 59]. Two-dimensional clustering (i.e., using two features per element) can be used to determine the

similarity between two pixels, using features such as colour and proximity to cluster the pixels, [5].

Besides presenting a distinct colour, often flowers have a certain shape, such as circular. Some methods

were designed to identify certain shapes on a segmented image. Regarding flower detection, the most popular

algorithm is the Hough transform, designed to detect elements of an a priori known shape. Even though

the method was originally designed to detect straight lines, it is often used to detect circles or ellipses,

[59, 38]. The Hough transform scans all the image for elements of a specified shape, transforming it into an

N-dimensional space that will present notably high values in the positions where an object is detected. In

the example of circle detection, there are usually three degrees of freedom (the radius of the circle and the

X and Y coordinates of its centre); therefore it transforms the image into a 3-dimensional space where local

maxima represent the centre of a possible circle.

Watershed algorithm is another segmentation algorithm that can be used to extract elements of interest

from the background, not only for plant phenotyping [42], but also for other image processing applications

such as microscopy imaging [16]. The idea of this algorithm is to interpret the gradient magnitude as a

topographic surface, where high gradient areas (which correspond to local maxima) are region boundaries.

If the gradient magnitude image is drawn in a 3D plot, the region boundaries correspond to dams, and the

basins that the dams create are the segmented objects.

Another algorithm to separate an image in different regions is Region growing. This method starts from a

seed point (or a group of seed points) that can be automatically selected, and grow a region around these seed

points based on the similarity between the neighbouring regions and the seed points. This is, neighbouring

regions that are similar to the seed points are added to the region. A similarity criterion needs to be specified

in the method, which can be based on the colour or surface properties [45]. Sometimes, this method can be

used after classification to correct regions that have been misclassified [46].

After performing some of the previous steps, there might be disjoint elements in the foreground that

need to be identified and counted. Related work has showed that detecting connected components has been

useful when the elements to be detected appear as disjoint groups of foreground pixels, [37, 34]. In some

cases, flowers fulfill this description after performing thresholding, thus detecting and labeling them can be

adequate methods to count them [38].
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2.3.3 Description

Once segmentation has been performed, some applications require the elements of interest in the foreground to

be assigned numerical values and descriptors so that they can be distinguished. Feature extraction algorithms,

such as SURF, [9], or SIFT, [33], are very common. These methods can extract numerical descriptors to

uniquely identify elements of an image (e.g., the cover of a book or the texture of a piece of cloth). In plant

image processing, they can be used to describe various parts and use those descriptors to identify the plant.

However, other features can be computed that describe colour, shape or area, that will be used for plant

recognition, [50], [31].

2.3.4 Decision making

In combination with feature extraction algorithms, complex methods for classification are used. Artificial

Neural Networks are found to be useful for feature classification. They are designed to predict an output

given an input variable. Neural networks require a training or learning stage where input-output pairs are

provided, and usually, a large dataset of training data is needed to obtain successful classification results.

These methods are commonly used in plant identification, which can be based on its leaves’ shape properties,

[14, 31], or plant disease detection based on colour and texture features, [28]. Support Vector Machines

(SVM) are also a classification method that identifies a feature point as part of one of two classes. They can

be used to separate different parts of plants based on their surface or colour properties [46].

Deep learning

In the recent years, deep learning techniques have become more popular for identification and classification

purposes, among others. Typically, deep learning techniques require large datasets to be trained. The latest

advances in technology allow us to process larger amounts of information in an acceptable amount of time,

which permits researchers to implement deep learning techniques and achieve with them high accuracy values

in their methods. Convolutional Neural Networks (CNN) are widely used for identification of plants [52],

plant elements such as roots or leaves [49], or plant disease recognition [58, 40]. Deep learning techniques

can be used as well to detect fine details such as wheat spikes [48]. These techniques usually achieve high

accuracies compared to other methods, are fully automated and often they require little image pre-processing.

However, the dataset used for training is critical for them. Some techniques might have much worse results

using pictures extracted under different conditions than that of the images used for training [40] Additionally,

as mentioned earlier, some of them require large amounts of images to achieve these high accuracy values.
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2.4 Summary

Previous work has shown different image processing and machine learning processes applied to the analysis,

detection and counting of plant elements. Despite the different approaches, all the image processing designs

tend to follow the canonical image processing pipeline, described at the beginning of Section 2.3. Additionally,

many methods have to face an initial pre-processing to overcome adverse effects in the images that appeared

during the data acquisition step. These kind of challenges are common on in-field image acquisition, and

some of them will have to be tackled by our method.
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Chapter 3

Data acquisition

Our imaging experiment was conducted in collaboration with Agriculture and Agri-Food Canada (AAFC)

at a canola breeding trial located near Saskatoon, Saskatchewan (Canada). The trial consisted of 56 b. Napus

cultivars grown in adjacent 12m2 (2m × 6m) plots that were replicated in 3 blocks (see Figure 3.1).

Figure 3.1: Aerial image of the entire canola crop taken during the flowering season showing the

selected plots in red boxes (credit to Dr. Steve Shirtliffe).
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We set up six Brinno TLC200Pro time-lapse cameras (Phase 3 Systems, Stuart, FL) to capture images

of six different plots. The cameras were affixed to a round post 2 m high facing diagonally to the plot of

interest. Each camera was situated one plot away from the one they were imaging. That way, given the

field-of-view of the camera, the cameras could capture the entire boundary of the plot within its frame. A

view of the camera set up can be seen in Figure 3.2, where the plots are delimited by orange and blue sticks.

The time-lapse cameras were initially configured to record non-stop before the first flowers bloomed.

However, after a visual inspection, we found that roughly between 22:00 and 04:00, the images had little or

no luminosity at all, thus not providing any additional information about the number of flowers. We also

took into account the possibility that images during the flowering season at 04:00 or 22:00 could be a bit

darker than those taken one month earlier at the same times, due to daylight time shortening. Therefore, we

decided that for flower counting purposes, we would use only images taken between 05:00 and 21:00. Flower

detection will be performed on all images taken within this time frame. Chapters 5 and 6 show how these

images are used to determine the number of flowers on a given day.

We chose to image plots from 2 different accessions across the three replicated blocks with the intention of

assessing repeatability. However, after collecting the data, we have been unable to assess said repeatability.

The quality of the images was lower than we expected: some cameras produced blurry images or none at all

for the early days of flowering; Section 3.1 discusses the different causes of these blurry or missing images,

among other challenges. As for peak flowering days, there is high flower overlapping in pictures extracted

from those days, and manually counting flowers in them can be very difficult; Section 5.3 describes how

manual flower count was performed in the images and gives examples of early and peak flowering images.

Table 3.1 provides a short overview of the details of the configuration of the time-lapse cameras during

the flowering season.

Table 3.1: Parameters of the cameras set-up

# of cameras 6

Image resolution 1280 x 720

Start/End recording time 05:00/21:00

Image interval 1 minute

Expected images per day per camera 960

Camera’s height 2 m

Distance to plot 2 m
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Figure 3.2: Image of one of the time-lapse cameras set up in the field.

The canola plants were seeded on May 27th, 2016, and the cameras were installed in the field on June

21th, 2016 (25 days after seeding). Cameras were removed on September 9th, 2016 (105 days after seeding),

after maturity and right before harvest. Through qualitative observation of the time-lapse videos, we found

that flowers started to appear on day 38. The flowering stage of canola plants can last one month, [60], but

full flowering can be reached within the first 10 days from flowering. Our method aims to detect flowers

during the first days of growth and allow for an analysis of the flower density evolution over time. Thus,

we decided to use and analyze images taken between day 38 and day 46 from seeding (referred to as day 0

and day 8 from flowering from now on). We will refer to this period as early flower growth period. Similarly,

all dates mentioned from this point in the article must be interpreted as days from flowering date (unless

specified).

During the early flower growth period, each camera was expected to capture 8640 images (960 images per

day, which would be almost 52000 images in total).

3.1 Challenges

There were different challenges that we had to face during and after the data acquisition step. Most of these

were not anticipated and made it hard to detect flowers in the time-lapse images accurately. In this section,

we summarize said challenges and discuss approaches that can be taken to prevent them a priori, or overcome

them once the pictures have already been extracted.
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3.1.1 Direct sunlight on canola leaves

In some of the images, when the sky is clear, we can see that the sunlight hits directly the plants and

the canola leaves are backlit. This causes that areas corresponding to canola leaves present a high yellow

component. This can affect the entire flower detection process, as our method will rely on the characteristic

yellow colour of the canola flowers to identify them. Figure 3.3 shows two different pictures taken on the

same area at different times of the day. In each of the images, we applied a threshold on their CIELab’s b

component (which gives us yellow-vs-blue intensity) and painted in red every pixel that passed that threshold.

Our intention with this is to show that the CIELab’s b intensity of the canola leaves increases when direct

sunlight hits them canola. However, when the sky is cloudy, we have diffuse lighting, as the sunlight is

not hitting the field directly. This is the case of the left image in Figure 3.3, where the pixels that passed

the threshold correspond to flower pixels. As we will see in further chapters, our method makes use of the

CIELab’s b component to detect flowers. This means that having direct lighting from the sun might interfere

with the detection of yellow flowers, thus producing false positives (i.e., detecting flowers where there are

none).

Unfortunately, there is not a proper way that this problem can be avoided during the data acquisition

stage. Therefore an a posteriori solution has to be implemented.

Figure 3.3: Example of effects of direct lighting over canola leaves (in red, the yellow pixels) on three

different images of the same region taken on day 2.
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3.1.2 Foggy images

We noticed the appearance of fog in images, especially at the beginning of some days. This problem affects

our current pipeline in a way that different parameters are needed to detect flowers in foggy pictures than

in the rest of the images. This means that our current implementation requires a way of classifying images

based on the presence of fog and act accordingly based on such classification.

Figure 3.4: Comparison between an image with fog caused by condensation on the lens (left) and an

image taken under normal conditions (right).

The appearance of such fog is due to the condensation that forms on the cameras’ lens or the waterproof

case. There is no easy way to avoid that, as we intend to avoid somebody physically going to the fields and

check every camera one by one. This fog affects the image’s b channel (from CIELab colour space) in a way

that the flowers go undetected (i.e. the histograms are a bit compressed, therefore lowering the threshold

wouldn’t be enough) plus the images are blurry; thus any detection will be inaccurate.

Different lens protectors can keep the lens warm enough so that no condensation is formed. There exist

anti-fog inserts that are placed inside the case, which absorb the moisture, preventing it from condensing on

the case. A right combination of these proposed solutions (depending on the camera, some will apply or not)

could be able to keep this effect from happening.

We were not able to predict this problem during the first season. Because images affected by fog require a

different combination of parameters, we cannot run them through the pipeline along with pictures without fog

in them. One possible solution is to tune the pipeline to be used with these images and run them separately

from the rest. Related work shows how fog can be automatically detected in images, [7], and how it can be

automatically removed, [23], [41]. However, having multiple images per day, and given that the condensation

causing the fog in the images appears mainly at the early hours in the morning, an appropriate approach

might be to remove them from the flower detection process.
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3.1.3 Camera’s angle and distance respect to the target plot

Due to the angle in which the cameras were set up, the size of the flowers within a single plot varies depending

on their position. Nearby flowers look larger than those from plants situated further away from the cameras.

This effect is caused by the one-point perspective that the scene presents in the images. Further objects

look smaller than those located nearby.

In the ideal case, the scene in the images would present an orthogonal perspective, which can be achieved

by placing the time-lapse cameras over their plots of interest. This is the case of drone imaging. However,

this set up can add other effects in the images, such as the shadow of the camera itself projected over the

plants.

There exist projection transformation operations that can be applied to the images to convert a one-point

perspective into an orthogonal perspective. However, this inserts distortion, as plants situated far from the

camera will be stretched out. It is essential that the cameras be placed at an angle such that this perspective

transformation inserts as little distortion as possible. For example, angles closer to 0 degrees respect to the

camera’s pole provide images with a perspective closer to orthogonal; therefore the projection transformation

mentioned earlier would insert little distortion.

3.1.4 Missing data

During the data capturing process of the first season, we found that some of the cameras failed to record

images for several days during the period of interest (i.e., early flower growth).

The Brinno TLC200Pro cameras were initially set up to record 24 hours a day, seven days a week (even

though we only used images between 05:00 and 21:00 for flower detection). By design, they record time-lapse

videos as an open file, and it is closed when the cameras are set to stop recording (either automatically or

manually). However, in the case of full memory or dead batteries, the video file is never closed, and thus the

video is lost.

Figure 3.5: Data availability of each plot (Y-axis) across time based on the quality of the images.
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This error was discovered later in the season, and the cameras were configured to start recording at 04:00

and stop at 22:00 every day. By doing this, the video files are always closed and complete by the end of

each day. If the cameras run out of memory or battery, videos from previous days will remain stored in the

memory card. However, it is highly recommended to estimate how long the cameras can record before the

batteries die or the memory cards become full, to prevent data loss.

Knowing that the flower growth is a continuous function, it is feasible to estimate one day worth of data

loss. Similarly, the derivative of the flower growth function is a continuous curve as well, which means that, if

the number of flowers was increasing for the day N, it would likely be growing as well for day N+1. However,

if the data is missing for several days, estimation becomes unreliable, as flower growth rate can quickly vary

during early flowering days.

3.1.5 Blurry images

Some of the cameras captured a significant number of blurry images. Detecting flowers on them is difficult.

Flowers can be hard to distinguish when presented in small clusters. Similarly, small isolated flowers could

blend with the background, thus not being detected. It is usual to find a lower number of flowers detected

in blurry images than in the sharp ones.

Figure 3.6: Comparison between an image taken under normal conditions (left) and a blurry image

due to bad camera focus (right).

The Brinno TLC200Pro focus is manually adjusted on the lens with a small screw. A small screen in

their back allows the user to see live what the camera is capturing. However, its reduced size makes it

hard to determine whether the images are focused or not. Cameras must be correctly focused prior starting

recording. While this can be a hard task for the Brinno TLC200Pro model, other cameras allow automatic

focus, which would prevent any blurriness from appearing in the images.

It might be unfeasible to use image pre-processing to correct this problem when the pictures are too

blurry. On the other hand, the number of flowers detected in blurry photos can be compared to that detected

in sharp pictures. If it turns out that there exists a mapping between these two variables, a more accurate

flower count can be estimated for blurry images.
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3.2 Drone images

During 2016’s season, a drone was flown every few days to capture aerial images of the canola plots. A

Micasense RedEdge multi-spectral camera was attached to the drone to get the pictures of the crop. The

camera generated each image’s component as a separate image. Using a custom-made software, we aligned

the multi-spectral components and corrected their intensities combine them in a colour image where we could

detect canola flowers. Additionally, custom software was developed to stitch multiple images together to have

a single view of the entire crop. Figure 3.1 is an example of the result of multiple drone images whose red,

green and blue components were stitched,

After a drone flight, several images were extracted. These images had to advantages over time-lapse

images:

• Orthogonal view of the plot. As we mentioned in Section 3.1, having a one-point perspective of the

plot might cause having a different number of flowers detected at different points of the same plot.

Drone imaging addresses this problem by providing an orthogonal view of the plots, where the distance

between two flowers in the plot and the image is independent of the position of those flowers within

the plot.

• Multi-spectral image. The Micasense RedEdge provides a near-infrared and red edge components that

might be helpful for different image processing purposes. However, as our main focus was to work with

time-lapse images, we have developed our method to work with RGB images and their representation

in other colour spaces.

However, the main disadvantage of the drone images is that it could not constantly be flown to take many

images on the same day. During 2016’s season, the drone was flown only once every two weeks roughly. That

means that we could not use these images to monitor the growth of the canola flowers, as canola plants can

go from zero to peak flowering within two weeks.

3.3 Summary

The numerous challenges that we encountered during the data acquisition process have impacted our pipeline

directly. Additional steps and measures had to be taken to be able to extract reliable data from the images.

A recommended approach to solving some of the main problems that we faced is to use a more proper camera

model: Blurry photos could be avoided by having a camera with automatic focus. Additionally, by having

a higher image resolution, we might be able to address flower overlapping, and thus use images from peak

flowering.
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Due to data availability and quality, comparison of canola growth across plots became unfeasible. Ad-

ditionally, looking at Figure 3.5, we can observe that after the flowering date, only three of the cameras

produced images. However, the pictures taken by two of them were too blurry to perform an accurate

analysis. As discussed in Section 3.1.5, flower detection might not be reliable on these images, and manual

flower counting can be hard for the raters to generate reliable ground truth. Only one of the cameras (1109)

produced sharp images during the first days of flowering. Based on that, we decided to use the images from

that camera to manually and automatically count canola flowers.
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Chapter 4

Pre-processing

There is information that can be extracted from the time-lapse images that will be useful for the future

steps. Our approach uses the timestamp of each image to separate the images by day of extraction. Each

image not only captures the camera’s plot of interest but also parts of the crop that are not relevant for

further image processing steps. Additionally, the histograms of the images can tell us important information

about them such as how many yellow areas it contains. In this chapter we described procedures that attempt

to address these issues, which are:

• Extraction of each image’s timestamp.

• Definition of the boundaries of the plot of interest.

• Calculation of misalignment of the histogram of the CIELab’s b channel from each image respect to

others taken the same day.

4.1 Image and timestamp extraction

Brinno cameras produced a time-lapse video instead of image files. FFmpeg was used to separate the time-

lapse videos into frames. Most cameras write the image’s timestamp on the file’s metadata, which is easier

to extract. However, the Brinno TLC200Pro printed the timestamp on a narrow black band at the bottom

of the image itself, which presented the following characteristics:

• The timestamp’s format was TLC200PRO yyyy/MM/dd hh:mm:ss.

• This black band printed at the bottom was always 16 pixels high going from left to right of the image.

• All characters were white, and their shape was invariant.

• None of the characters were overlapping (i.e., there was always a vertical black line at least 1 pixel wide

that separated each of them).

Based on these, we stored a copy of each possible character as an image. For a new image, the timestamp

extraction process was as follows:
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1. Keep the 16 bottom lines of pixels of the image (which would correspond to the timestamp).

2. Split them into groups of vertical lines, using as delimiter a vertical black line, which will provide each

character as a single group of pixels.

3. For each group of pixels, calculate the Mean-Squared Error (MSE) with the images of every possible

character we initially stored and assign this group the character that gives the lowest MSE.

Figure 4.1: Illustration of an example of a timestamp and how characters are divided.

4.2 Plot region definition

We manually defined plot boundaries in the time-lapse images for each of the plots under observation once

for the entire image segment. A simple graphical user interface (GUI) was developed that allows the user to

specify the plot’s boundaries. Figure 4.2 shows what this GUI looks like: A coloured trapezoid is displayed

whose corners have to be moved using the mouse to their correct location. This GUI presents the user with

an image of the plot of choice and has to move the corners of a trapezoid overlaid on the picture to the plot

edges. For future steps, pixels outside the plot boundaries are ignored, as they do not contain any relevant

information.

Figure 4.2: Illustration of the plot region definition GUI where the trapezoid is enclosing a single

plot.
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4.3 Histogram alignment

Previous work shows that working in a color space other than RGB can be beneficial for colour-based

segmentation of objects such as flowers, [54], or fruits, [62]. Canola flowers are characteristically yellow,

therefore to distinguish yellow pixels from the rest, we used CIELab color space, which provides a yellow-vs-

blue channel that presents high values on yellow pixels and lower values in the remainder of the image.

Images taken by the same camera during the same day are expected to give similar histograms of this

CIELab’s yellow channel. However, we observed that these histograms have appeared shifted horizontally

across images taken on the same day. Figure 4.3 shows at the bottom left corner the histogram of two pictures

taken on the same day and plot prior histogram pre-processing. Their shape is similar, but one is shifted

across the X-axis from the other.

Some processes, such as thresholding, require a pixel intensity value. However, due to these histogram

shifts, each image requires a different intensity value, which would be calculated as a function of the shift

amount. We calculated how much each of the CIELab’s b channel’s histogram is shifted (referred to as

histogram shift from now on). The histogram shift is calculated as follows:

Figure 4.3: Example of the histograms of the CIELab’s b channel of two images from plot 1109 taken

on day 2 from flowering.
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1. We group the images by day and plot. This means that the histogram shift of an image will be computed

using only histograms from images taken on the same day and plot.

2. Calculate the histogram of the CIELab’s b channel, hi(n), for every image of a plot in a single day,

where n is an integer that can take the value of any of the possible pixel’s intensities.

3. To be able to calculate the shift of the histograms of all images, we need to have a reference histogram,

so that we can calculate by how much each histogram is horizontally shifted respect to the reference

histogram. However, at this point, we do not have any information as to which histogram should be

the reference (i.e., which histogram should have a shift of 0). So, for now, we randomly choose one

histogram to serve as the reference, I(n). It is possible that the randomly-chosen reference histogram

might not be such a good reference (e.g., if I(n) is significantly shifted from the rest of the histograms).

However, this potential problem is addressed in further steps within this procedure.

4. Calculate the histogram shift, Si, of each individual histogram, hi(n), respect to I(n), by calculating

the argument that maximizes the cross-correlation between hi(n) and I(n):

Si = arg max
x

∑
∀n

I(n) · hi(n− x) (4.1)

5. We just calculated how much each histogram is shifted towards a reference histogram that we chose

randomly. However, we there is a possibility that our reference histogram, I(n) is heavily shifted from

the rest. For example, let’s say that all 10 ≤ Si ≤ 12 for every histogram. We can say that, if Si = K

and Sj = K + 1, then the displacement between the ith histogram and the jth histogram is 1. In

this situation, we assume that I(n) is a bad reference histogram. We believed that these histogram

shifts were occurred due to changing lighting conditions throughout the day. We assumed that the

majority of the time, the lighting conditions were similar and thus we should consider those lighting

conditions as the reference lighting conditions. That would mean that the majority of the images were

taken under those so-called reference lighting conditions, which would mean that those images should

be considered as a reference when calculating this histogram shift. This means that the majority of the

images should have a histogram shift of 0, as a well-chosen reference histogram should have the same

shift as the majority of the images (i.e., the mode of all the calculated histogram shifts should be 0).

If the majority of the images had a histogram shift other than zero, we could think that our reference

histogram was incorrectly chosen. Otherwise, it would be very coincidental that a large group of images

were taken under different lighting conditions than the image of the reference histogram (thus having

a histogram shift different from 0) and still had the same histogram shift among them. As we believe

that the former situation is more likely than the latter, we decided to address the problem of having

chosen an incorrect reference histogram. Given these assumptions, we calculate the final histogram

shift of the ith image as:
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S′i = Si −M (4.2)

M = mode(Si),∀i (4.3)

By doing this, we make the majority of the images to have a histogram shift of 0.

Figure 4.3 shows an example of two images that were taken on the same day and plot (upper half). These

images have histograms that are slightly horizontally shifted (lower left image). By using the procedure

described above, we calculated that the displacement between them is 4 units. While the bottom-left side of

the image shows the original histograms before applying any histogram shifts, while the bottom-right side of

the figure shows the histograms after applying to one of them the histogram shift calculated respect to the

other.

4.4 Results

4.4.1 Timestamp extraction

From the entire data set, we decided to use 30 time-lapse images where the timestamp band was perfectly

legible. The ground truth extraction was done by manually creating a list with the name of each file and the

timestamp that they had in the expected format. The code designed for this was written in Python, taking

an image array at the input, and returning a datetime instance with time zone as “America/Regina.”

For non-corrupted images, the success rate was 100%. However, a group of images were corrupted in a

way that either the timestamp was coloured, or completely disappeared (see Figure 4.4). The success rate for

these was 0%. However, as we mentioned, the period between images was always 60 seconds, which means

that the timestamp of a corrupted image could be estimated using either the previous or the next picture.

Figure 4.4: Example of corrupted images with a timestamp with different colour (left) or completely

erased (right).
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Percentage of total success/failure

The total dataset contained 667618 images. Our code was able to parse the timestamp of 87.21% of these.

The timestamp of the rest of the pictures could be estimated from those taken earlier or later, thus being

able to extract the timestamp of the 100% of the images used for this experiment.

4.4.2 Histogram alignment

Histogram shifts are calculated per day and plot. This means that the histograms are aligned with those

from images taken on the same day and by the same camera. To show the results of our implementation,

we have performed histogram alignment on the images taken on plot 1109 on day 1 from flowering. From

this subset of images, we have chosen 4 of them and plotted their CIELab’s b histograms in Figure 4.5. The

left side of the figure shows these histograms before applying any histogram shift where, for example, we can

see that the green histogram is heavily displaced from the rest. On the right side of the image, we show the

same histograms after being shifted by their calculated histogram shift. In this case, we can see that the

green histogram aligns better with the rest of the histograms, as we expected. In Figure 4.6 we plotted the

histogram of all the shifts of the images taken on plot 1109 on day 1. In it, we can see that the majority

of the images have a histogram shift of 0, as our method forces in the last step. In this example, it would

be very unusual that the majority of the histograms had a shift different than zero. As we explained earlier

in this chapter, it would be very coincidental that the majority of the images (in this case, the 86% of all

the images) were taken under lighting conditions different from the so-called reference lighting condition that

caused them to have the same histogram shift with a value other than 0. In such case, it would make more

sense to think that the choice of the reference histogram, I(n), was not correct and that problem should be

addressed (as the step 5 in the histogram shift calculation method does).

Figure 4.5: Histogram of CIELab’s b channel of 4 random images from day 1 from flowering, plot

1109. Left: Original histograms. Right: Histograms after applying shift
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Figure 4.6: Histogram of the calculated shifts, Si for the images taken in day 1 from flowering on

plot 1109 before applying.
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Chapter 5

Flower detection pipeline

In this chapter, we show the process that we have developed to detect canola flowers in time-lapse images.

First of all, we need to operationalize a canola flower. This is how we identify a canola flower in our images,

what unique characteristics it has that can be used to identify them, etc. Once we have defined the concept

of a canola flower, we can start looking into the different possibilities we have to detect and count them in

the time-lapse images automatically. There are various image processing approaches that we discussed in

Chapter 2 whose strengths rely on the nature of the objects we want to detect.

5.1 Operationalizing a canola flower

To define the concept of a canola flower in a time-lapse image, we started by taking a look at the images

from the early flowering season. Figure 5.1 is an example of an early flowering season time-lapse image.

In this picture, we can observe the flowers separated from each other, which can help us with the flower

operationalization process.

We could say that the main visual characteristic of canola flowers is their colour: There is usually a

notable contrast between the yellow colour of the flowers versus the green chrominance of the canola leaves.

Therefore we could start the definition of canola flowers in time-lapse images as yellow areas over green

background.

The second characteristic that we can observe in Figure 5.1 is that the flowers usually appear as small

roughly-round yellow shapes over green background. While the colour makes them distinguishable, it does

not seem possible to detect unique shape features on the flowers. Additionally, the size of these flowers does

not look very large: by observing it directly, we could say that the size of a flower could range from a couple

of pixels ( 5 pixels) to roughly 20 pixels from side to side.

Given these observations, we can determine that, to detect yellow flowers in our time-lapse images, we shall

look for round-like yellow shapes whose size from side to side ranges from 5 to 20 pixels roughly. However,

using this concept of canola flower in time-lapse images can have some disadvantages:
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Figure 5.1: Example of a time-lapse image of a canola plot taken during the early flowering season.

• We have discussed earlier in Chapters 3 and 4 the effect that lighting differences and direct sunlight

can have on the images. As we already discussed in said chapters, these phenomena alter the colour of

the image and could difficult the detection of yellow areas.

• We have a similar situation with foggy images, also discussed in Chapter 3: The colour of the image is

altered, forcing us to address these images separately.

• When some flowers grow close to each other, they can overlap in the images. This could mean that

these overlapping flowers would present as large yellow areas, and depending on how our method is

implemented, they could be interpreted as one large single canola flower or many canola flowers.

5.2 Method

There are multiple popular approaches for detecting elements in images after pre-processing is done. For

example, feature extraction has proved to be very useful when detecting unique characteristics of the objects

of interest, such as shape or colour, [50], detecting circle-alike shapes using Hough transform, [59], or applying

feature extraction methods such as SURF, [9], applied to chrominance channels, [35]. In our case, because we

have defined canola flowers as yellow areas, we will attempt to detect flowers by using their colour (yellow)

and shape (round-like) features. The size of the flowers in the images is a limiting factor: we believed that

methods such as the previously mentioned Hough transform would not perform well, as the shape of the

flowers is not precisely circle, but it can present as a circle, ellipse, etc.
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The objective of our method is to detect small yellow areas. The CIELab colour space provides in its b

coordinate the yellow-vs-blue intensity of each pixel. This means that, in this channel, yellow areas will have

a higher intensity than non-yellow regions. We have defined the shape of the flowers as round-like. However,

another term that, in our opinion, could apply to the canola flowers is blob. We could use a blob detector

on the CIELab’s b channel to detect yellow blobs in the image. However, during the development of the

method, we felt the need to add extra steps to reduce the appearance of false positives/negatives.

Figure 5.2: Flower detection example over a fragment of a time-lapse image. Steps: 1. RGB Gamma

Transform, 2. Color space shift, 3. CIELab Intensity mapping, 4. Blob detector.

The steps of our image processing pipeline and their details are described below:

1. RGB Gamma Transformation: The first step applies a gamma transform to the Red and Green

channels from the RGB colour space. The original objective of this stage was to reduce the effect of the

direct sunlight hitting the canola plants that we mentioned in Section 3.1.1. Using image processing

software (e.g., Adobe Photoshop) we tried to manipulate the Red, Green and Blue channels attempting

to find a transformation that would reduce said reflections. We observed in the CIELab’s b channel

that areas directly illuminated by sunlight and flowers had similar intensities. That is why we believed

that we could reduce the reflections intensity by using a different colour space prior manipulating the

CIELab’s b channel. We found that the Gamma Transform in the R and G channels reduced the

intensity of some reflections. The Results section of this chapter shows that the accuracy is higher with

this RGB Gamma Transform (see Section 5.4.2.2). We attempted to find the transformation in the

CIELab that produced the same effect. To do so, we obtained the CIELab’s b channel of an image before

and after applying the RGB Gamma Transform. Figure 5.3 shows the intensity relationship between

these two images in the Red channel (left) and in the CIELab’s b channel (right). The transformation

between the two images in the CIELab’s b channel does not correspond to a known curve; thus we

decided to apply the Gamma Transform using the RGB colour space instead of using the CIELab

colour space.

We observed that a Gamma Transform in the Red and Green channels helped reduce the effect of direct

sunlight in a handful of images taken during sunny periods. We decided to incorporate it and, as it is

shown in the Results in Section 5.4, the accuracy increases having this step in the pipeline.

31



Figure 5.3: Pixel-wise intensity relationship in the RGB’s Red or Green channels (left) and in the

CIELab’s b channel (right) before and after applying RGB Gamma Transform.

The Gamma Transformation is defined by the formula below:

y = 2551−γ · xγ (5.1)

where x and y are the input and output intensities respectively. A scaling factor of 255γ−1 ensures that

0 ≤ y ≤ 255. Figure 5.5 shows the input/output relationship in this step, and the visual result of this

step shows the flowers highlighted in yellow while leaving the background as blue (see step 2 of Figure

5.2).

2. Color space change: As we mentioned before, yellow pixels are well distinguished in CIELab’s b

channel. In addition to this, the previous step transformed all the background pixels to blue, leaving

the flower pixels yellow, which means that this flower-vs-background distinction should be clearer in

said colour space. This step converts the image from RGB to CIELab colour space representation and

extracts the b channel. As mentioned earlier, the b coordinate can reach negative values. However,

OpenCV transforms these intensities so that the output values will fall within the range [0, 255]. Figure

5.2) shows the result of this operation.

3. CIELab Intensity Mapping: We perform an intensity mapping in the CIELab’s b channel, with

which we attempt to increase the intensity of the yellow pixels, while darkening the rest of the colours.

A sigmoid curve (Figure 5.4) applied to the CIELab’s b channel could have this effect. The formula of

a sigmoid curve is:

S(x) =
1

1 + e−x
(5.2)

However, we need to be able to move this curve in the X axis and take into account the histogram

shift calculated in Section 4.3. Additionally, we need to apply a scaling factor so that S(0) = 0 and

S(Imax) = Imax, where Imax is the maximum possible pixel intensity. After adding these adjustments

to the sigmoid formula, the resulting equation is:

f(x) =
255

1 + ek·(t−Si−x)
(5.3)
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where x is the input intensity of a pixel, Si is the histogram shift of the ith image (calculated in 4.3).

In the formula above, the parameter t acts as a threshold, determining which pixels will be considered

yellow and which will not, while k defines how aggressive the mapping will be. A scaling factor is

applied to ensure that 0 ≤ y ≤ 255. A sample of what the image looks like at the output of this

operation is shown in step 4 of Figure 5.2. In Section 5.4 we compare the performance of the Sigmoid

mapping step with other intensity mapping approaches to validate our choice.

Figure 5.4: Illustration of a generic sigmoid

curve shifted horizontally to fit within the

[0, 255] range.

Figure 5.5: Intensity transformation per-

formed on the RGB color space on the Gamma

Transform step.

4. Blob detection: At the input of this step, the flowers appeared as white blobs over a black background.

We ran SciKit’s blob detector implementation, [61], [55]. This approach offers three different variants:

Laplacian of Gaussian (LoG), Difference of Gaussian (DoG) and Determinant of Hessian (DoH). SciKit’s

implementation provides not only the position of the blob but also the radius of each of the blobs, which

can be used to calculate its area (i.e., an approximation of the area of the canola flower represented by

that blob). In Section 5.4 we present an analysis of the performance of each of the three approaches with

different parameter combinations. They show that the DoH has produced better results; therefore we

decided to use that approach in our pipeline. An example of the flowers detected by the blob detector

is shown in step 5 of Figure 5.2.

To detect multiple flowers overlapping, we could look for a relationship between the blob size and the

actual number of flowers in the detected blob. If our pipeline is not able to distinguish many flowers within

one single blob, we would expect that larger blobs correspond to clusters of flowers, rather than one big

flower. However, as difficult as it is for our pipeline to detect multiple flowers in the same cluster, so it is for

a rater to manually count many flowers that are overlapping in the image, therefore it is hard to have reliable

ground truth to test this process of separating overlapping flowers. Also, having temporally dense data does
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not help us in this situation, as we cannot track the position of the flowers over time. From image to image,

the location of a flower in the image can change drastically due to wind, and when the number of flowers is

too high, it is very difficult to keep track of a single flower over time.

5.2.1 Blob detection approaches

As we mentioned earlier, there are three different approaches for blob detection that we can use: The

Laplacian of Gaussian (LoG), Difference of Gaussians (DoG) and Determinant of Hessian (DoH). They all

process a two-dimensional image to look for blobs described as local maxima in intensity. The DoG and LoG

approaches follow a similar process:

1. Blur the image using a Gaussian mask.

2. Repeat the first step using different σ values, which represent the variance of the Gaussian mask.

3. Stack the resulting 2D images to form a three-dimensional image.

4. Find local maxima points in the resulting 3D image, which will correspond to blobs.

The difference between DoG and LoG resides in the mask they use. While the LoG uses a 2D Gaussian

function as a mask, DoG uses the difference of two Gaussian functions to blur the images. In Figure 5.6

we can see a graphical representation of each of the masks, in which the left image corresponds to the LoG

mask, and the right side of the image shows the DoG mask.

Figure 5.6: Graphic illustration of the masks used by the Laplacian of Gaussian (left) and the

Difference of Gaussians (right).
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The DoH approach follows a different procedure:

1. For each pixel, we calculate the Hessian matrix at that pixel’s position.

2. For each Hessian matrix, calculate its eigenvectors and eigenvalues.

3. In a given location the eigenvector at that position with the highest eigenvalue determines the direction

of the greatest difference in intensity, while the eigenvector with the lowest eigenvalue points in the

direction of the lowest difference in intensity. If we represent the intensity of a pixel at the position (X,

Y) in the third dimension (i.e., the height of the image at (X, Y)), one of the eigenvectors points to the

direction with the highest curvature and the other points in the direction of the lowest curvature.

Once we have done this, we can determine if there is a blob at a specific location by looking at the

eigenvalues. If the absolute value of both eigenvalues is higher than zero, it means that the curvature is

high in the direction of both eigenvectors, which indicates the presence of a blob. On the contrary, if the

eigenvalues are close to zero, means that the image is almost flat at that point, thus indicating that there is

no blob. Additional parameters, such as a threshold applied to the eigenvalues’ magnitudes, can be used to

determine whether a low-intensity blob can be considered a blob or not.

Figure 5.7 provides a graphical representation of the intensity of a 2D image, where the third dimension

represents the intensity of the image at a given location (i.e., high locations correspond to high pixel intensities,

while low locations represent low intensities). In that case, we can see a blob in the position (-10, -10), where

both eigenvalues have a similar magnitude, indicating that the curvature is the same in both directions. On

the flat surface, both eigenvalues will have a value of zero, indicating that the curvature is flat and equal in

both directions.

Figure 5.7: Graphic illustration of the intensity of a 2D image and the Hessian matrix’s eigenvectors

calculated at a given point in the image. (Credit: https://milania.de/blog/Introduction_to_

the_Hessian_feature_detector_for_finding_blobs_in_an_image)
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5.3 Ground truth acquisition

To verify the flower count values extracted by our pipeline, we have performed a manual count on a small

subset of images taken this day. Five people were asked to perform once this manual count. They were asked

to count the flowers in these images. The instructions the users received were the following:

• The user was required to count all the flowers they were able to see within a region that was marked

on the image.

• The user was given an example of what was considered a flower (Figure 5.8 shows an example of this).

• In case of ambiguity (e.g., when flowers grew too close to each other) they were instructed to use

their judgment to decide the number of flowers they were seeing. Figure 5.9 shows an example of this

situation and the result of two different users.

Figure 5.8: Illustration of what the user is presented (left) and some flowers rounded to serve as

example (right).

Figure 5.9: Example of compact clusters of flowers (left) and how two different users have detected

them (middle & right).

The users were provided with a simple Graphical User Interface (GUI) where an image is presented with

a region marked with red boundaries. The user is asked to click on every flower they can distinguish within

that region and press any key when they are finished. The images were presented in random order to avoid

bias from previous counts.
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Manual flower counting can be tiresome for the users if the number of images or the flowers is large, which

can cause the user to provide an unreliable manual count. To avoid this situation, the region in which the

user was asked to count flowers consisted of a small portion of the entire plot, where the number of flowers

could range from 0 to 80 (depending on the image’s day of capture).

We used 20 images per day from day 0 to 5 from flowering taken on plot 1109 (i.e., a total of 120 images)

to extract the ground truth. The images were hand-picked so that the scene had a diffuse illumination (i.e.,

there was no direct sunlight over the canola plants) to make it easier for the rater to manually count flowers.

From the five users that participated, three of them were Computer Science students, while the other two were

Biology students. To calculate the inter-rater reliability, we decided to calculate the intra-class correlation

(ICC) which can be used to estimate inter-rater reliability when the data is continuous (i.e., quantitative)

rather than classified (i.e., qualitative) data [3]. All our raters have counted flowers in the same images, and

we can consider that they represent a sample of the population of raters, as many other people could have

counted flowers in these images. Based on this, we decided to use class 2 of ICC (also known as ICC(2)).

The intra-class correlation calculated was 93%, with lower and upper bounds of 87% and 95% respectively,

using a confidence level of 95%.

5.4 Results

5.4.1 Error measurement

To validate our results, we will compare the flower count at the output of our pipeline in a group of images

against the manually annotated number of flowers. To provide a numerical, we calculated the average relative

error and correlation between the manual and automatic flower count.

The relative error between automatic and manual flower count can be calculated as follows:

error =
|x− y|
x

(5.4)

being x and y the manual and automatic count respectively. However, to solve the zero-denominator problem,

we use the following formula:

error =

 0 if x = y = 0

|x−y|
max(x,y) otherwise

(5.5)

Finally, the average relative error over all the images tested is:

Avg.Error =

N∑
i=0

errori
N

(5.6)

where errori is the relative error calculated for the ith image, and N is the total number of images used.

To calculate the correlation between two sets of values X and Y we used Pearson’s correlation coefficient,

for which the Python library NumPy provides functions to calculate.
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5.4.2 Parameter tuning

Almost every step of the pipeline allows parameter tuning. The entire configuration contains a total of 8

parameters, distributed as follows:

• Gamma Transform: 1 parameter.

• CIELab Intensity mapping: 2 parameters.

• Blob detection: 5 parameters.

The pipeline described in this chapter can analyze each image independently from the others. Therefore,

we designed our code to distribute the flower detection processing of each image over 40 cores. We found that

our design needed around 20 seconds (at the best case) to process 120 images (i.e., the ones from which ground

truth was extracted) given a single combination of parameters. To test 5 different values for each parameter,

we need to try over 390000 combinations. The blob detection step allows three different approaches (DoH,

DoG and LoG), which means that we will have to test these combinations for each of the three methods.

This leaves us with over 1 million combinations, which will take 270 days to process in the best case.

Tuning strategy

We decided to do a 3-step parameter tuning described as follows:

1. Tune the Gamma Transform and the Intensity Mapping steps together as one (3 parameters in to-

tal). For this step, we used the DoH blob detection approach as it has been reported to be the

fastest. The parameters used for the DoH blob detector were their default except for Max.Sigma = 7,

Min.Sigma = 3. In future steps, we will use the three different blob detection approaches and compare

their performance.

2. Tune the Blob Detection step. Here we will use the three approaches (DoG, DoH and LoG) and tune

them separately. For this steps, we have used the Gamma Transform and Intensity Mapping parameters

that produced the lowest error in the previous step.

3. For each of the three Blob Detection approaches, we tune the Gamma Transform and the Intensity

Mapping steps again. In this case, we use the Blob Detection parameters that produced the lowest

error in the previous step.

The reason why we decided to perform a 3-step parameter tuning is to avoid bias towards the first Blob

Detection approach used. We believed that, because the Gamma Transform and the Intensity Mapping are

tuned using the DoH approach, it is possible that the parameters of these steps are optimized to be used only

in combination with the DoH approach but not with the other two approaches. The third step re-tunes the

Gamma Transform and Intensity Mapping to eliminate this bias towards the DoH blob detection approach.

38



We will show the results of each of the steps in the upcoming sections. The relative error displayed in all

figures was computed by averaging the relative error in each of the 120 images used in this process, which

was calculated using Equation 5.5.

Step 1: Gamma Transform & Intensity mapping

We wanted to compare the performance of the transformation we chose for the Intensity Mapping step

(described in Equation 5.3) with other common transformations. Equation 5.7 describes a Linear Mapping,

while Equation 5.8 describes a threshold. We will call Sigmoid Mapping to the transformation we chose for

our pipeline to distinguish it from the other two approaches. Figure 5.10 shows a graphical representation of

these three transformations.

f(x) = k · (x− t) + t

0 ≤ f(x) ≤ 255
(5.7)

f(x) =

0, if x < threshold

x, otherwise

(5.8)

Figure 5.10: Input-Output relationship of the three different Intensity Mapping approaches discussed.

Intensity Mapping: Sigmoid mapping

The lowest relative error obtained was 18.23% using γ = 3,K = 0.5, t = 135. Table 5.1 summarizes the

ranges of values tested for each of the parameters of the Gamma Transform and Sigmoid mapping steps.
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Table 5.1: Summary of the range of values tested for each of the parameters of the Gamma Transform

and Sigmoid mapping steps.

Parameter Min Max

Gamma 1 4

K 0.05 0.5

t 120 160

Intensity Mapping: Linear Mapping

The lowest relative error obtained was 21.24% using γ = 3,K = 3, t = 145. Table 5.2 summarizes the ranges

of values tested for each of the parameters of the Gamma Transform and Linear mapping steps.

Table 5.2: Summary of the range of values tested for each of the parameters of the Gamma Transform

and Linear mapping steps.

Parameter Min Max

Gamma 1 4

K 2 3

t 135 170

Intensity Mapping: Thresholding

The lowest relative error obtained was 19.25% using γ = 3, t = 120. Table 5.3 summarizes the ranges of

values tested for each of the parameters of the Gamma Transform and Thresholding steps.

Table 5.3: Summary of the range of values tested for each of the parameters of the Gamma Transform

and Thresholding steps.

Parameter Min Max

Gamma 1 4

t 110 140

Gamma Transform & Intensity mapping summary

We have compared the error obtained using different approaches for the Intensity Mapping step. We have

observed that the lowest relative error achieved was using the Sigmoid Mapping approach (18.23%). Thresh-

olding has produced the second lowest error (19.25%), being the Linear Mapping the technique that has been

the least accurate (21.24% of relative error).
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Table 5.4 summarizes the lowest relative error obtained with each of the three approaches and the pa-

rameters that produced it.

Table 5.4: Intensity Mapping approaches comparison

Intensity Mapping approach Sigmoid Linear Thresholding

Gamma 3 3 3

K 0.5 3 N/A

t 135 145 120

Relative Error 18.23% 21.24% 19.25%

Step 2: Blob detection

The Blob detection step has 5 parameters for all their approaches. As listed in the scikit-image documentation

(see [56]):

• Minimum sigma, maximum sigma and number of sigma values: Accepted sigma values for the

Gaussian kernel used by the blob detection method.

• Threshold: The absolute minimum scale space maxima. Lower threshold values allow detection of

weaker blobs.

• Overlap: Ratio of overlap between two blobs above which the larger blob absorbs the smaller.

Blob detection: DoG

The DoG approach has sigma ratio instead of number of sigma values as a parameter, which represents

the ratio of the standard deviation of the Gaussian Kernels used. The lowest relative error obtained by the

DoG approach was 17.4%. Table 5.5 summarizes the ranges of values tested for each of the DoG blob detector

parameters.

Table 5.5: Summary of the range of values tested for each of the parameters of the DoG blob detector.

Parameter Min Max

Max. Sigma 5 12

Min. Sigma 1 6

Sigma ratio 0.5 2.5

Threshold 0.01 2.5

Overlap 0 1

41



Blob detection: DoH

The Determinant of Hessian approach is the fastest of the three. However, it is unable to detect blobs with a

radius lower than 3 pixels accurately. It is because of this that we decided to have a fixed value of Minimum

sigma = 3 for this specific approach. The lowest relative error obtained by the DoH approach was 17.02%.

Table 5.6 summarizes the ranges of values tested for each of the DoH blob detector parameters.

Table 5.6: Summary of the range of values tested for each of the parameters of the DoH blob detector.

Parameter Min Max

Max. Sigma 4 10

Min. Sigma 3 5

Num. Sigma 1 10

Threshold 0.005 0.06

Overlap 0 1

Blob detection: LoG

The Laplacian of Gaussian is the slowest of the approaches but reported to be the most accurate of the three.

The lowest relative error obtained was 23.59%. Table 5.7 summarizes the ranges of values tested for each of

the LoG blob detector parameters.

Table 5.7: Summary of the range of values tested for each of the parameters of the LoG blob detector.

Parameter Min Max

Max. Sigma 5 9

Min. Sigma 1 5

Num. Sigma 1 10

Threshold 0.005 0.04

Overlap 0 1

42



Blob detection summary

Table 5.8: Blob detection parameter results on the 2nd tuning step

Blob detection approach DoH DoG LoG

Max. Sigma 6 6 9

Min. Sigma 3 2 4

Num. Sigma/Sigma Ratio 5 1.25 1

Threshold 0.01 0.1 0.03

Overlap 0.5 0.8 0.75

Relative Error 17.02% 17.4% 23.59%

Step 3: Re-tuning Gamma Transform & Intensity Mapping

As mentioned earlier, in this third step we will re-tune the Gamma Transform and Intensity Mapping steps

using each of the three Blob Detection approaches. For each of them, we will use the parameters that

produced the lowest error during the Blob Detection tuning.

During the Blob Detection parameter tuning, the DoH approach produced the lowest relative error.

However, there is a chance that the DoH approach performed better because it is the blob detector that we

used during the first step of the parameter tuning.

This third parameter tuning step performs an additional parameter tuning of the Gamma Transform, and

the Sigmoid Mapping stages using the three different blob detection approaches with their best combination

of parameters. By doing this, we attempt to eliminate the bias towards the DoH blob detection.

Table 5.9 gathers the relative error obtained with each of the three approaches as well as the combination

of parameters that produced it. We can observe that the DoH blob detector has given the best results after

this third parameter tuning step, followed very closely by the DoG blob detector. Additionally, we can see

that the optimal parameters obtained in this third tuning step are identical to those obtained during the

first step of the tuning process, which could be an indicator that there was little bias towards the DoH blob

detector approach when tuning these parameters for the first time.

Table 5.9: Summary of the 3rd step of parameter tuning

Blob Detection approach DoH DoG LoG

Gamma 3 3 3

K 0.5 0.4 0.3

t 135 135 140

Relative Error 17.02% 17.37%% 20.6%
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Parameter tuning summary

We have performed a 3-step parameter tuning on our flower detection pipeline. We started tuning the Gamma

Transform and Intensity mapping steps together, using the DoH blob detection approach as the last pipeline’s

step and compared the performance of different intensity mapping approaches. The second step tunes the

parameters of the blob detector step and compares the performance of the three available methods. Finally,

we re-tuned the parameters of the Gamma Transform and Intensity mapping steps to eliminate possible bias

towards the DoH blob detection approach. We have found that the Sigmoid mapping and the DoH are the

Intensity mapping and Blob detection approaches that produced the lowest error (17.02%). However, the

DoG blob detector obtained a close relative error (17.4%); therefore both methods could be equally valid for

our purposes. Table 5.10 summarizes the parameters that have produced the lowest error.

Table 5.10: Final parameters of the flower detection pipeline after tuning

Pipeline step Parameter Value

Gamma Transform Gamma 3

Intensity Mapping K 0.5

DoH Blob Detector t 135

DoH Blob Detector Max. Sigma 6

DoH Blob Detector Min. Sigma 3

DoH Blob Detector Num. Sigma/Sigma Ratio 5

DoH Blob Detector Threshold 0.01

DoH Blob Detector Overlap 0.5

Relative Error 17.02%

5.5 Flower detection of first days of flowering

After tuning the parameters, we ran images taken during the first days of flowering through our flower

detection pipeline. As we discussed in Section 3.1, images have been affected during the early days of

flowering. Some cameras did not provide pictures between days 0 and 12 from flowering, while others

captured blurry images that can cause our flower detection to be poorly reliable.

We have not found any given time of the day that always produces better images than a different time

of the day for flower counting. Therefore, to calculate the number of flowers on a given day and plot, we

use the number of flowers detected on all the images captured at that day and plot. Once we have run the

images through the flower detection pipeline, we gather the flower counts of all those images and extract

the histogram of those flower counts. For example, Figure 5.11 shows the histogram (in blue) of the flower

counts obtained from images taken on day 1 from flowering at plot 1109, with a bin width of 5 flowers. If
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we calculate the histogram of the flower counts with a bin width of 1 and pass the result through a sliding

window, the result is what Figure 5.11 shows in the orange line. At this point, we calculate the number of

flowers of a given day as the argument that maximizes the previously described sliding window, which in

Figure 5.11 represents the point in the X-axis where the orange curve is maximum. The belief behind this

idea is that the majority of the images that agree on the same number of flowers represent the actual number

of flowers in that plot on that day. This is also known as majority voting. In each day, there is a possibility

that our pipeline has many false positives or false negatives in some of the images. This would mean that

for some images, the flower count on them is far away from the actual number of flowers that we can see in

them. However, it would be very coincidental that our pipeline detected a highly incorrect number of flowers

on a subset of images and, at the same time, that all those images agreed on the same flower count. It is

much more probable that very few of those images agree on the same flower count. At the same time, we

expect that the majority of the images that agree on the same flower count are producing a flower count

that is close to the actual value. However, it is also common that these flowers might not agree on the same

flower count, but rather on similar flower counts. For example, if 30% of the images agree that there are 99

flowers, another 30% agrees on 100 flowers, and another 30% agrees on 101, with a sliding window of 3 we

would obtain that 90% of the images agree on 100 flowers, which is a relatively accurate result.

Figure 5.11: Histogram (bin width = 5) of the number of flowers detected on plot 1109 on day 1

from flowering. In orange, the result of passing a 5-unit wide sliding window across the histogram (bin

width = 1) of the number of flowers detected on plot 1109 on day 1 from flowering.
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The camera situated on plot 1109 had provided sharp images during the first six days of flowering.

Therefore we decided to calculate the number of flowers during the first days of flowering on images from this

camera. Figure 5.13 shows in blue the flower density of plot 1109 during the first days of flowering obtained

from the result of the sliding window method described earlier with a window size of 5. The flower density

has been calculated by dividing the number of flowers by the area of the plot (12m2, as discussed at the

beginning of Chapter 3). The green line shows the result of a sliding window passed through the number

of flowers that were manually counted following the procedure described in Section 5.3, while the red line

shows the relative error of this method for each of the days, calculated with the formula described in Section

5.4.1. We see that the error is high on day 0 from flowering (given that our method determines there are

5 flowers, while the manual count determines there are only 3). However, for the following days, the error

ranges between roughly 10% to 20%. Figure 5.12 shows the relative error curve for different sliding window

sizes, W . As we can see, the relative error is similar for each sliding window size.

We can see that the flower density growth increases notably from day 2, and tends to decrease again after

day 4. The flower density is expected to keep growing until approximately day 10 from flowering. However,

as the actual number of flowers increase, they will overlap between each other and will make it more difficult

to distinguish them.

Figure 5.12: Relative error between the calculated number of flowers per day using the sliding window

method and the ground truth for different sliding window widths (W ).
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Figure 5.13: Flower density (blue) calculating by the sliding window method described, the flower

density calculated from ground truth data (green) and the relative error between the two (red).

5.6 Comparison to previous work

As part of analyzing the performance of our method, we decided to compare our results to similar work.

While we have not found related work about counting canola flowers on in-field time-lapse images, we have

decided to compare the performance of our method to other image processing approaches designed to detect

and count different elements of plants (e.g., fruits, [36, 38] or flowers, [20]) from different species other than

canola. The lowest relative error obtained with our method has been 17.02%. Some of the related work

achieves high performance, [36], [20], although other designs that work with small flowers present slightly

higher error percentage than ours, [38]. Table 5.11 summarizes the comparison between our results and that

reflected in other articles about image processing techniques to detect and count plant elements.
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Table 5.11: Comparison of relative error and correlation between our method and related work

Relative error % Correlation %

Our method 17.02 96.29

[20] (Tangerine flower detection) 17 97

[38] (Orange detection) 6.05 -

[38] (Apple detection) 11.25 -

[38] (Plum detection) 29.8 -

[36] (Orange detection, best) 7.7 99.42

[36] (Orange detection, worst) 9.7 96.88

5.7 Summary

In this chapter, we have presented our flower detection pipeline. For each of the steps of our pipeline, we

have tuned their parameters to minimize the relative error. We obtained ground truth by manually counting

flowers on a small set of images taken on the first days of flowering.

While we presented an image processing pipeline capable of detecting flowers on time-lapse images, this

method is designed to work with images that are not affected by external factors. In combination with this

pipeline, it would be optimal to have a step that identifies and treats these affected images, so that the final

flower count is not compromised.
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Chapter 6

Automatically Detecting Bad Flower Counts

During data acquisition, the time-lapse cameras are set up to capture one image every minute. This

means that a single camera generates 960 images from 05:00 to 21:00 on a single day. It is expected that our

image processing pipeline detects a similar number of flowers in all of them, as the flower density is not likely

to change on the same day significantly.

However, we have obtained a significant disparity of the number of flowers detected at certain moments

of the day. Figure 6.1 shows the number of flowers detected between 05:00 and 21:00 during the first days

of flowering and the histogram of the flower count (referred to as HoFC from now on) from day -1 to 3 from

flowering. In the charts, we can see in blue the number of flowers detected by our pipeline at any time of

the day and their histograms. In green, we show the manual flower count that we performed in some of the

images and their histograms so that we can compare what our pipeline has detected with the flower counts

our raters performed. The illustration shows how the flower count significantly varies at arbitrary moments

of the day. The number of flowers identified ranges from 0 to over 160 in the early days, and up to 255 when

the flower density increases. We can see at the top of Figure 6.1 that on day -1 from flowering or flower

counting pipeline detects no flowers for most of the cases. However, during the second half of the day, the

number of flowers increases up to almost 350 at 5 PM (the charts in Figure 6.1 are clipped to 150 flowers for

displaying purposes). Because we know that it is not possible that the same portion of the plot has 0 flowers

during the morning and 350 flowers in the afternoon for the same day, it is evident that there is a subset of

images that produce incorrect flower counts. The question that might arise after this description is: “Are

there 300 flower or no flowers at all?”. Looking at the number of flowers detected along the day and the

HoFC at its right, we could assume that the actual number of flowers is zero (given that half of the images

say so). However, during the afternoon, for some reason that we do not know at the moment, the images

were affected in a way that our flower detection pipeline thinks that there are more flowers than there should

be.
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Figure 6.1: Number of flowers counted on the different times of the day (left) and their histogram

(right) from day -1 to 3 from flowering. Blue series: number of flowers detected by our pipeline; Green:

number of flowers manually counted by the raters (described in Section 5.3).
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This introduces the concepts of good and bad images. An arbitrary image is considered a good image if

the number of flowers detected on it matches or is relatively close to the actual number of flowers seen in it.

On the other hand, a bad image is that in which the flower detection pipeline has computed a flower count

that significantly differs from the actual number of flowers. Using the description of the flower counts in day

-1 from flowering that we described earlier, good images are those whose flower count equals or is close to 0,

while bad images are those images that produced an unusual flower count. It is hard to determine which is

the flower count that divides the good images from the bad images. We said that a good image has a flower

count that is equal or close to the actual flower count. But, how close is close enough? One acceptable way

to determine if an image is good or bad is that, as we reported that our pipeline has a relative error of 17%,

a good image would have a flower count whose relative error is less or equal than 17%.

We mentioned that we determine whether an image is good or bad based on how close its flower count

is to the actual number of flowers (i.e., the manually annotated flower count) that are seen in the image.

However, we will not know what the actual flower count is for every period of time, as we do not have ground

truth data for all of them. On the other hand, we do have ground truth for some days, therefore for those

days, we can easily identify which images are good and which are bad. We are interested in finding features

that those images identified as good have in common, and that separates them from the bad images. If we

are able to identify these features, then we can look for the same features in images taken on days without

any ground truth data, so that we can identify which of those images are good or bad, and therefore which

of those have a reliable flower count.

In this chapter we focus on the analysis of images taken on the early flowering days and the number of

flowers counted on them. We aim to learn and understand what the cause of the incorrect flower counts

that we mentioned earlier is and discuss methods that could be used to identify common features that good

images share and that distinguish them from bad images. For the analysis presented in this chapter, we have

used ground truth extracted following the procedure described in Section 5.3. Our pipeline was set up to

detect flowers within the same region in which the users were asked to count flowers (described in Section

5.3) so that we could use that ground truth in this analysis.

6.1 Possible hypothesis and solutions

6.1.1 Using the correlation coefficient between histograms

The flower detection process depends on the content of the CIELab’s b channel: as it can be recalled from

Chapter 5, a modified version of this channel is passed through the blob detector. We looked at the CIELab’s

b component of the images taken in some of the days with high flower count disparity. In them, we tried to

search for features that could be used to separate the good images from the bad images. We believed it could

be possible that images that produce a correct flower count are similar to each other, but images with an

incorrect flower count are not necessarily. As we mentioned earlier at the end of Chapter 5, we believe that
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the majority of the images that agree on the same (or similar) number of flowers for a given day represent the

actual number of flowers in that day. Similarly, for images whose flower count is incorrect will likely disagree

on the number of flowers with other images. At the same time, we believed that images that agree on the

same flower counts would have similar CIELab’s b component. Therefore their histograms would be similar.

On the other hand, two images that do not agree on the same number of flowers will likely have different

CIELab’s b components, which could mean that their histograms could be different. Given this, we believed

that the image that had the lowest flower count error would have a similar CIELab’s b histogram than the

rest of the images that had a similar flower count. At the same time, the image with the lowest flower count

error would have a less similar histogram to that of an image with an incorrect flower count.

To test this theory, we calculated the average of the manual flower counts performed on each day,

avgmanual. We looked at the image taken on the same day that produced the closest flower count to

avgmanual. We will call this image Minimum Error Image (MiEI), and its flower count Minimum Error

Flower Count (MiEFC). Finally, we calculated the correlation coefficient between MiEI ’s histogram and the

histogram of the rest of the images taken on the same day.

As an example, Figure 6.2 shows the histogram of the MiEI and the Maximum Error Image (MaEI)

from plot 1109 taken on day 1 from flowering. For that plot and day, we obtained avgmanual = 22.297 and

MiEFC = 22, while the flower count of MaEI was 157. In Figure 6.2, there is a notable difference between

the two histograms for high intensities, which correspond to yellow pixels.

We erased the regions of the histograms whose value is zero (in Figure 6.2, x < 100 or x > 180) and

used the remaining values to calculate the correlation coefficient. These regions are not relevant to compute

the similarity between the histograms, as their value is always 0 for all the images. Figure 6.3 shows the

correlation coefficient between the image that produces the lowest error (i.e., MiEI ) and the rest of the

histograms for days 0 to 5 from flowering. In the case of day 1, we can see that MiEI ’s histogram has a

higher correlation coefficient with images that provide similar flower count. The correlation value obtained

decreases as the flower count of the image strays from the manually-obtained flower count. However, some of

the lowest correlation values are obtained with images with a good flower count. In general, looking at the

charts in Figure 6.3, it is not clear which images could have a good or a bad flower count, which means that

our hypothesis that we could use the correlation coefficient between histograms to distinguish between good

and bad images was not correct.
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Figure 6.2: Histograms of the CIELab’s b channel of MiEI and MaEI. Zones not showing in the

figure have a value of 0

Figure 6.3: Correlation coefficient between the MiEI ’s histogram and the rest of the image’s CIELab’s

b histograms for each day from day 0 to day 5 from flowering.
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6.1.2 Sunlight-based classification

At the start of the development of this thesis, it was believed that the extremely high flower counts in Figure

6.1 were due to the effect that direct sunlight had on the canola leaves. Given that the yellow component

increased during sunny periods (i.e., direct lighting), these could make it hard for our pipeline and even the

human eye to distinguish the flowers. Section 3.1.1 describes this problem and how it presents in the images.

We started by obtaining ground truth to test said hypothesis. Five people were asked to classify the

images based on the following instructions:

• Images shall be classified in two classes based on the scene’s lighting: diffuse sunlight (class #0) and

direct sunlight (class #1).

• An image shall be classified as diffuse sunlight if little or no direct sunlight is hitting the canola plants.

In this case, the absence of direct sunlight makes it easier for the user to distinguish flowers.

• An image shall be classified as direct sunlight the sunlight is directly hitting the canola plants(i.e.,

there is direct lighting). This would cause the user to have difficulties distinguishing flowers from the

background.

The users were presented with two examples of diffuse sunlight and direct sunlight images respectively (see

Figure 6.4). The manual classification was done by running a Python script that presented the user with

images to be classified. The images used for classification were taken on day 1 from flowering on plot 1109

(960 images in total).

Figure 6.4: Example of diffuse (left) and direct (right) sunlight images presented to the user as a

reference for classification.
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We observed that the vast majority of the unreliable flower counts were produced by direct sunlight

images. Figure 6.5 shows the Histogram of Flower Count for day 1 from flowering divided into the two

categories. We observe in this image that, while almost all the diffuse sunlight images produced good flower

counts, a significant amount of the direct sunlight images (red histogram) produced good flower counts too.

This proves that the hypothesis that the incorrect flower counts are caused by direct sunlight illumination

on the canola leaves is wrong.

However, when we looked at the number of flowers detected versus the yellow pixels in the image for all

the images from each of the two classes (diffuse sunlight and direct sunlight), shown in Figure 6.6, we thought

that probably our classification was not appropriate. We could think that in Figure 6.6 we see two groups

of data points, as it looks like the data form two clusters. However, it could be the case that our direct

sunlight/diffuse sunlight classification was not correct, as we see that some of the direct sunlight images are

located in the same cluster as the diffuse sunlight images. Therefore, there is a possibility that we can classify

the images in good or bad images using the number of yellow pixels and the number of flowers detected, which

we evaluate in the next section.

Figure 6.5: HoFC for manually-labeled diffuse sunlight (green) and direct sunlight (red) images

from plot 1109 on day 1 from flowering. A gold vertical line marks the number of flowers in the plot

determined by the ground truth.
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Figure 6.6: Number of flowers vs. yellow pixels, separated by the two classes we described (diffuse

sunlight (green) and direct sunlight (red)), for images from plot 1109 on day 1 from flowering.

6.1.3 Using the number of yellow pixels

The flower detection pipeline looks for yellow blobs in an image. This means that, in general, the number of

flowers increases when the total yellow area in an image increases. We believed that we could use the number

of yellow pixels to identify which images were more likely to give an incorrect flower count. We hypothesized

that, if the number of yellow pixels in an image strongly differed from the majority of the photos, then it

would be likely that its flower count strongly differed as well. Computing the number of yellow pixels of

an image is computationally less expensive than detecting and counting its flowers. If our hypothesis was

correct, we could use the number of yellow pixels to predict which images are likely to produce an incorrect

flower count and remove them from further analysis.

We calculated the number of yellow pixels in an image by performing thresholding in its CIELab’s b

channel (after applying the alignment described in Section 4.3). The threshold value was chosen so that it

maximized the correlation coefficient between the number of flowers and the number of yellow pixels. To find

the threshold value, we followed this method:

1. Take images from day 0 to 5 from flowering and apply the previously described thresholding using a

threshold value T .

2. Calculate the correlation coefficient between the number of flowers detected and the number of yellow

pixels per image.

3. Repeat the two previous steps using values T ∈ [130, 170].
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Figure 6.7: Correlation coefficient obtained

between the number of yellow pixels and the

number of flowers detected on images from

day 0 to 5 from flowering on plot 1109 for

different yellow threshold values.

Figure 6.8: Correlation coefficient obtained

between the number of yellow pixels and the

number of flowers detected on images from

each day with a yellow threshold of T = 157

Figure 6.7 shows the correlation coefficient values obtained with the different threshold values tested. We

obtained a maximum correlation coefficient of 92.27% with T = 157, which implies a strong relationship

between the number of flowers and number of yellow pixels. However, when we repeated the previously

described method only with images taken on the same day and plot, we obtained very different values for

every day. As an example, for images taken at plot 1109 on days 1 and 4 from flowering, the correlation

coefficient ranged from 92% to 55% respectively. Figure 6.8 shows the correlation values obtained for each

day using T = 157. This proved that using the described method to compute the number of yellow pixels

and that there was not a high and consistent correlation between yellow pixels and flowers.

At the end of the previous section, we briefly introduced the idea of classifying the images into good or

bad using the number of flowers detected and the number of yellow pixels in the image, as Figure 6.6 seems

to show two clusters of data points based on their position on the chart. To start tackling this possibility,

we decided to extract the number of yellow pixels versus the number of flowers detected for every image for

various days during the early flowering. Figure 6.9 shows, in the blue series, the yellow pixels vs. the number

of flowers detected by our pipeline for all the images from day -1 to 3 from flowering. The green series in each

chart represents the number of yellow pixels versus the number of flowers manually counted by our raters.

We can see that, for day 1, we can distinguish two clusters of data points. However, for any other day, there

is no clear division between two or more clusters of points that could lead to a division between good and bad

images. Given that we have only seen the two-cluster situation for one day, we cannot assume that it will

happen for any other day, concluding that we cannot classify images as good or bad based on the relationship

between the number of yellow pixels and number of flowers detected.
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Figure 6.9: Yellow pixels vs. number of flowers automatically detected (blue series) and manually

counted (green series) in all images from day -1 to 3 from flowering.

6.1.4 Using histogram of flower count (HoFC)

One of the approaches that were discussed is to make use of the HoFC of the images of each day. After

performing flower count for the first time, the actual number of flowers in the plot is unknown. Taking Figure

6.1 as an example, the number of flowers detected for day 1 ranges from 0 to 160, which implies that some

images are not producing reliable flower counts. However, we can assume that:

• Images whose flower count falls in those zones where the histogram is more compact are very likely to

have a reliableflower count. In the case of Figure 6.1, this is the case of the images whose flower counts

fall roughly between 20 and 40 for day 1.

58



• Images whose flower count falls in those zones where the histogram is more spread are very likely to

have an unreliable flower count. In the case of Figure 6.1, this is the case of the images whose flower

counts is higher than 40 for day 1.

Using this observation, we can define a feature named Compactness of the HoFC. This feature is an

intuition we initially had of “how compact the HoFC is around a given value”. For example, in Figure 6.1,

for day 1 from flowering, we could think that the histogram looks more compact around the red line (i.e.,

around X = 27), while in the other areas it seems spread. We did not operationalize this concept at the

beginning. Nevertheless, we found that the sliding window procedure that we described in Section 5.5 is an

operationalization of our intuition that describes the Compactness that we talked about.

Using the sliding window should have two main advantages:

• It is independent of the number of flowers the images present. The sliding window over the HoFC will

be higher on those flower count values where the HoFC is higher, independently of what those flower

counts could be.

• It is independent of the ratio between the images that give a reliable flower count versus those that

produce an unreliable result. Should all the images produced an unreliable result, the HoFC would be

evenly distributed, and thus the sliding window result would be almost constant. On the other hand, if

all the images produce a reliable flower count, it is expected that the HoFC is more compact, therefore

having a high peak in the sliding window result.

To evaluate the performance of our theory about using the HoFC, we have calculated the compactness of

the histogram by calculating a sliding window of width 5 over the histograms plotted in Figure 6.1. Figure

6.10 shows the result of a sliding window over the histograms of the number of flowers calculated by our

pipeline (in blue) and performed manually by the raters (in green) for the days from -1 to 1 from flowering.

The peak of the green series indicates the point where most of the raters have agreed on the number of flowers

for a given day (with an error of +/- 5 flowers). If the compactness of the HoFC was a good indicator of

whether an image has a reliable flower count or not, we would expect the compactness of the histogram of

the automatic flower counts (i.e., the blue series) to be high where the compactness of the histogram of the

manual flower counts (i.e., the green series) is high too.

In Figure 6.10 we can see that for days -1 and 2, the peak for the sliding window results from both

automatic, and manual flower counts match with a small error (1 flower), which indicates that our method

and the raters have agreed on the same number of flowers for those days. However, day 0 from flowering,

there is a striking distance between the peaks (8 flowers). This indicates a disagreement between our pipeline

and the raters, which is indicating that using the compactness of the HoFC might not be a good method to

identify good and bad images.
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Figure 6.10: Sliding window over the HoFC using automatic flower counts (blue series) and manual

flower counts (green series) from days -1 to 2 flowering. For day 2 we show 2 of the 3 periods in which

we divided the day (sliding window between 10:20 and 15:40 not showing due to lack of manual flower

counts for that period)
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Figure 6.11: Error (calculated as flower count difference) between automatic and manual flower

counts (X axis) against compactness of the HoFC (Y axis) for every image from day -1 to 2 from

flowering. The green series shows an intuition of what the chart should ideally look like, included for

displaying purposes only.

To get a sense of how well the compactness of the HoFC works for flagging good/bad images, we want to

calculate the compactness of the HoFC vs the error in the flower count for each image. We assumed that,

given that the peak of the green series indicates the number of flowers on which our raters have agreed for a

given day, we would interpret that value as the actual number of flowers for a given day. This means that,

for day -1, 0 and 1, the actual number of flowers in the field was 0, 6 and 28 respectively. We calculate the

error on the flower count of an image as the difference between the actual number of flowers and the flower

count calculated by our pipeline. In Figure 6.11 we plotted the error of an image with a flower count X
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against the compactness of the histogram, Y , at the position X, from day -1 to 2 from flowering. This is

basically the blue series of the charts in Figure 6.10 shifted horizontally so that the peak of the green series

falls on x = 0, which gives us a sense of whether high compactness relates to a reliable flower count. To give

an idea of what we expected in these charts, we included the green series as a reference, which represents an

intuition of what the data should look like in an ideal case. This reference series was included for displaying

purposes only and has not been used in the analysis of this method. We consider the green series to be

a representation of an ideal case because, for high values of compactness, the error is low, while the error

increases as the compactness decreases. We also expect a saturation region, which represents the flat region

of the green series, as the compactness is almost constant and close to zero when the error is above a certain

value.

As we expected, for days -1 and 1, the error is low for those flower counts with high compactness. In

the case of day 0, this is true as well; however, there are some flower counts with even lower error and low

compactness (i.e., the points near to the coordinates origin), which indicates not an excellent performance of

this method. However, the compactness relates to flower count reliability for days -1 and 1.

We analyzed the data from day 2 from flowering, and we have to take a different approach here. If we

see the HoFC for day 2 in Figure 6.1, we can predict that the compactness of HoFC will not have a good

result either for this day. However, in that same figure, if we look closer at the number of flowers over time

for day 2, it looks like the number of flowers grows along the day, which is something that we can expect,

as the flower growth rate is high during the first days of flowering. Even if we look at the histogram of the

ground truth in Figure 6.1 for day 2, we can see two local maxima, which correspond to the number of flowers

manually counted at the beginning and the end of the day respectively.

If the number of flowers increases through the day, then we must divide the day into different portions

and evaluate them separately. We can divide day 2 into 3 portions between 05:00 and 21:00: the first goes

from 05:00 to 10:20, the second goes from 10:21 to 15:40, while the third period corresponds to the remaining

time slot. Figure 6.10 also shows the compactness of the HoFC for the first and the third periods (given

that, as we can see in Figure 6.1, there is no ground truth for day 2 between 10:20 and 15:40). In this case,

the compactness looks better, and the maxima for both green (manual flower count) and blue (automatic

flower count) series seem to be closer to each other than in the HoFC shown in Figure 6.1. We calculated the

error vs compactness similarly to what we did for days -1, 0 and 1 from flowering. The results show, again,

that images with high compactness have a small flower count error, which supports the hypothesis that the

compactness of HoFC can be used to identify which images have a reliable flower count and which have not.

We attempted to perform the same analysis for the data from day 3 from flowering. Figure 6.12 shows

the compactness of HoFC using manual (green) and automatic (blue) flower counts for day 3 from flowering.

We can see that there is a considerable error between the automatic and manual flower count. However, as

we have mentioned before in this thesis, day 3 contains a significant amount of flowers and not only can it

be difficult for our raters to manually count flowers due to the high flower overlapping, but also the flower
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detection pipeline might not be as precise as it could be. Due to the images’ quality, it can be hard for both

raters and the flower detection pipeline to perfectly distinguish how many flowers they see in a cluster of

flowers. In case of day 3, an image with a flower count with high compactness (i.e., where the sliding window

is high) is not necessarily an image with low error. However, as we said, it is difficult to validate our method

for day 3 on from flowering, as the quality of the images does not allow to distinguish flowers when they are

overlapping with each other perfectly.

Figure 6.12: Sliding window over the HoFC using automatic flower counts (blue series) and manual

flower counts (green series) for day 3 from flowering

6.2 Summary

We have discovered that our image processing pipeline detects an unusually higher number of flowers on a

significant amount of images for a given day. It is important to filter these pictures out, as they are not

producing reliable flower count values. We proposed and discussed different hypotheses and methods that

can be applied to achieve this filtering to provide a basis for future work.

Some of the hypotheses have seemed to be right under certain circumstances, but it is not assured that

they will be true for every set of images. Among all the methods proposed, using the Compactness of the

Histogram of Flower Count (HoFC ) has proven to be useful to identify which images have provided an

incorrect flower count after the fact. While the rest of the methods rely on having a relationship between

the number of flowers and other features obtained prior flower detection (e.g., number of yellow pixels or the

histogram shape), needs only the number of flowers detected in each image, calculating the HoFC and its

compactness from the flower counts.
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Chapter 7

Future Work

During the development of this method, we have only used images from 2016 season. However, new images

were taken during the summer of 2017. Images from 16 cameras can be retrieved from 2017’s database, all

of which were recording different traits of canola, while only six time-lapse cameras were installed in 2016’s

season. 5 of the 16 cameras for 2017 season were Brinno TLC200 Pro, while the other 11 are custom cameras

that use a Raspberry Pi programmed to take a picture roughly every 5 minutes, while 2016’s cameras were

configured to capture a new image every minute. These new cameras were powered using solar panels,

removing the need to take them down to change the batteries. Additionally, by using a Raspberry Pi, we

could retrieve the images by connecting a USB cable without moving the cameras, which takes care of possible

changes in the camera’s orientation. Figure 7.1 shows an example of one of the images generated by one of

the 2017’s season cameras.

Figure 7.1: Example of a time-lapse image taken during the 2017’s season.
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To extract the information provided in this section, we performed a visual inspection of the images that

are available in 2017’s season database. Figures 7.2 and 7.3 show the data available that can be found in the

2017’s database. For Figure 7.3 we divided the images in OK, Bad or Undetermined based on the quality of

the images, which depends on blurriness, colour or lens filters that the cameras used (e.g., camera from plot

1122 uses a NIR lens filter). In both figures, the flowering date is marked with a blue square. This date has

been calculated by visually inspecting the images and searching for the first day that flowers can be seen in

them. While the flowering date that we calculated for these charts can be used as a reference, it might not

match the actual flowering date (e.g., it can be the case that flowers appeared one day before the flowering

date). We can see that most of the cameras have taken images during the early flowering and some of them

provided images during peak flowering. However, some of them (e.g., the cameras in plots 1130 or 1213) do

not provide images during late flowering. Additionally, the camera placed in plot 1146 did not provide any

images during flowering; therefore that camera cannot be used.

Figure 7.2: 2017’s season data availability of each plot across time based on the quality of the images

of the 11 custom cameras.
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Figure 7.3: 2017’s season data availability of each plot across time based on the quality of the images

of the 5 Brinno cameras.

Despite using a different model of camera, we will still face some problems mentioned on this thesis, such as

dealing with blurry images (e.g., cameras from lots 1243 or 1105), see Figure 7.4 for example. Additionally,

we found that some images still present a sunlight intensity problem. In some cases, the sunlight is so

intense that identifying flowers can be very hard. Figure 7.5 shows an example of an image affected by this

phenomenon.

In the case of the Brinno cameras, we found that the colour setting on cameras placed in plots 1122 and

1213 does not seem to be same as for the rest of the cameras. 1122’s camera uses a NIR filter, which makes

the images to have a high yellow intensity. This will most likely strongly affect the results of our pipeline,

meaning that we cannot use the images from this camera with our pipeline design.

Figure 7.4: Difference between a blurry image (left) and a sharp image (right) taken by the 2017’s

season cameras.
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Figure 7.5: Difference between a direct sunlight image (left) and a diffuse sunlight image (right)

taken by the 2017’s season cameras.

7.1 Suggestions on how to use 2017’s data

After visually inspecting the images from 2017’s season, we believe that the cameras placed on plots 1143

and 1242 will be the most useful to improve our method. They all provided sharp images during most of the

flowering season. Additionally, the camera on plot 1142 provided sharp images during early flowering, which

will be very useful as well. Images from all these plots could be used to extract ground truth and use it to

finer tune the flower detection pipeline.

On the other hand, images taken by cameras from plots 1105, 1215 or 1243 might not be beneficial, as

they generated blurry images, despite having worked during the entire flowering season. Additionally, the

camera from plot 1146 did not provide images during any of the flowering season days, thus being of no use

for flower detection.

Some of the suggested methods and approaches to use 2017’s include:

1. Testing whether using images taken with a different camera model affects the performance of our

pipeline. It is possible that our pipeline, which is tuned to work on images extracted from the Brinno

TLC200Pro cameras, might not perform as good as expected with images taken by a different camera,

as the colour balances are not the same. For example, canola leaves on Brinno cameras look usually

darker than images extracted with 2017’s cameras. This might make a difference in the CIELab colour

space, thus forcing us to re-tune the flower detection pipeline.

2. Ground truth acquisition. As mentioned earlier, images taken on plots 1143, 1242 and 1142 might be

a good source of ground truth. The flowers look sharp on them, and they provide images during the

early flowering days, which are the easiest for a user on which to manually count flowers.

67



7.2 Suggestions facing future seasons

In this thesis, not only did we present and discussed our flower counting method but also we gave an overview

of the challenges that had to be faced during 2016’s data acquisition term. One of our purposes when going

over those challenges is to learn from the unforeseen problems that we encountered and try to anticipate

them in future seasons.

As we discussed in Section 3.1, there were two main problems that we had to face after extracting the

data:

• Missing data: There were long periods of time for which we did not have any images. This limits the

amount of data that we can use to improve and validate our method. Our belief is that dead batteries

and memory cards running out of space were the main reasons for this problem, which can be overcome

by estimating a priori how long the batteries will last and how long will the camera take to fill up

the memory cards, and thus going to the field to either change the batteries or empty out the memory

cards.

• Blurry images: There were large amounts of images that were blurry due to a bad camera focus, which

also limits the amount of data that can be used to develop our method.

The camera model used for 2016’s season, the Brinno TLC200 Pro time-lapse camera is easy to set up,

but after working with its images, it might not be the best choice for this project. Based on our opinion, a

different time-lapse camera model should be used for future seasons, which allows an easier image extraction

from the memory cards and an appropriate focus adjustment. Using a different time-lapse camera could

prevent these two problems, providing a much larger amount of high-quality images to be used for this

method.

7.3 Summary

While only data from 2016 has been used for the development of this thesis, there is much more data extracted

on the summer of 2017. This can serve as a new source of ground truth, refining the flower detection pipeline

and verify the methods that we presented here. It will be interesting to know whether our design works for

images taken using a different camera model and if the pipeline needs to be readjusted or modified. Through

an in-depth analysis of 2017’s images, we aim to develop a more robust method to detect canola flowers using

time-lapse images.
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Chapter 8

Conclusion

In this thesis, we have presented an automated method for canola flower detection and counting on

images acquired during the first days of canola flowering. We have performed a parameter tuning to gather

the optimal combination of parameters that reduce the relative error of our method. Using images from the

first days of flowering, we have used our flower detection pipeline to detect flowers on pictures from one of

the plots taken in the Summer of 2016.

In the early chapters, we have reviewed the main limitations and challenges that we had to face during

the development of this thesis. One of the main problems that we had to face was data availability. Most

of the images from the first days of flowering were missing, making it difficult to use the available pictures

to validate our method. However, a plan to use the images extracted on Summer of 2017 is provided, along

with an overview of the data availability. While we did not use photos from 2017 during the development

of this thesis, we believe that the higher data availability will help us improve our method. Additionally,

we found a significant amount of blurry images that make it difficult for our image processing pipeline and

raters to count the number of flowers. As we discussed in Chapters 3 and 7, we believe that using a different

camera model will help solve the missing data and blurry images problem. Also, we believed that the direct

sunlight illumination on the canola leaves was the cause of many incorrect flower counts; however, we saw in

the latest chapters that the sunlight was not the cause.

We believe our method can be considered somewhat robust, given that we have used a small dataset for

validation and that we did not have access to large portions of high-quality data due to missing or blurry

images, as we have reviewed earlier. While we could personally consider our method reliable for the early

flowering season when properly tuned for the images used, we do believe that its reliability can be significantly

improved with an appropriate dataset (i.e., a complete dataset of high-quality images).

We identified a series of initial steps through which the images should go through before any further

processing. We would need to execute these just one time after image extraction. We developed a simple

method to extract the timestamp from the images, which was printed in the image itself, instead of being

embedded in the image’s metadata. We also developed a tool with which a user could define a plot’s

boundaries. Assuming that the cameras do not move during the season, these boundaries could be valid for

all the images taken from the same camera throughout the season. Finally, we observed that the histogram

of the CIELab’s b channel was shifted between pictures produced by the same camera within the same day.
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We developed a simple algorithm to compute how much these histograms were misaligned so that it could

be corrected during the following image processing steps.

We developed an image processing pipeline that manipulates the images individually and detects the

number of flowers present within a specified region within the plot boundaries. This pipeline first modifies

the intensities of the RGB’s Red and Green components of each pixel, then transforms the intensity CIELab’s

b component with the aim of highlighting flowers over the background. Finally, an OpenCV’s implementation

of the Determinant of Hessian (DoH) blob detector is used to localize and count the flowers present. Chapter

5 also shows how we tuned the parameters of this pipeline by using ground truth obtained through performing

manual flower counts over a subset of images. Additionally, we validated the steps of the pipeline by comparing

their performance with other similar approaches, such as the Determinant of Gaussian (DoG) or Laplacian

of Gaussian (LoG) blob detectors.

After running different images through our pipeline, we observed that some of them produced a highly

inaccurate flower count value. Chapter 6 attempts to address this problem. We offer a discussion on different

hypotheses as to why we could be having these incorrect flower counts. We provided deep data analysis and

different procedures that could be used to identify a priori which images are prone to produce an incorrect

flower count.

Finally, this thesis provides a brief overview of the data extracted in the summer of 2017. Without deep

analyzing the images, the data availability seems undoubtedly higher than in 2016. However, the steps of our

flower detection pipeline were designed and tuned to use images taken with a Brinno TLC200 Pro; therefore,

it is possible that re-tuning or even additional steps are needed to process these images. Nevertheless, 2017’s

dataset contains images from 5 Brinno TLC200 Pro time-lapse cameras; therefore it is likely that re-tuning

or modifying the pipeline will not be needed to process these images. However, data availability for images

from the Brinno cameras does not look as good as for the rest.

In our research, we take advantage of having high temporal resolution images, captured through time-

lapse cameras, that will allow us to monitor the evolution of canola flowers over shorts periods of time. As

opposed to other work that relies on obtaining data under controlled environments, our method handles

in-field images, whose use in research is not as extended as indoors phenotyping, thus leading to an evolution

in HTP.
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