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Abstract

Currently, crop insurance companies rarely work in co-operation with remote sensing
scientists as they believe that the data quality and resolution are too low to accurately
delineate crop areas and predict yields. This is due to the cost of high spatial and
temporal resolution data, which generally exceeds that of sending a field team to
randomly inspect cropped areas. However, methods have been initiated recently, that
increase the classification accuracy of medium resolution and coarse resolution data. In
this study, SPOT-4 20 m resolution images for June, July and August were provided by
Agriculture Financial Services Corporation (AFSC), Alberta for the area of Scott,
Saskatchewan to ascertain the classification accuracy of current methodology and
evaluate the possible applications of remote sensing data. Results show that hybrid
classification and using normalized difference vegetation index (NDVI) are able to
produce 85% classification accuracy for a three image multi-temporal stack. Using the
normalized moisture difference index with the mid-infrared band for the August image
resulted in 90% classification accuracy, although average per-crop-classifications were
low. The best classification result was a July-August standard multi-image stack using
hybrid classification (green, red, NIR-NDVI ISODATA for each image and the near-
infrared band), offering higher per-crop classification accuracy than for any single image
classification. The accuracy changes little with adding the June scene to the July/August
multi-image stack.

1.0 Introduction

Determining crop class and area of agricultural land-use activities in the prairie provinces
of Canada is a vital issue for crop insurance and marketing firms. These data are required
in order to determine possible yield quantities based on area planted, crop health,
growing season, and moisture level (AFSC, 2005). In Saskatchewan, data collection has
traditionally been completed via random field surveys that could obtain accurate data for
only a small area (Saskatchewan Agriculture, 2005). Provincial crop insurance companies
(such as AFSC), or marketing firms (such as the Canadian Wheat Board) however, work
with areas equal in area to half their province, suggesting that a larger area classification



project should be attempted. Additionally, producers give oral and written reports based
on crude plant density measurements, area planted, and local weather data. As weather
stations are not necessarily directly near the fields or even within 100 km, the data
obtained may cause substantial error in yield estimation. Remote sensing based data
collected in addition to the random field data collection would be one way to accurately
and feasibly achieve the twin goals of crop class delineation and area calculation for use
in yield prediction estimates.

The use of remotely sensed data from different airborne and spatial platforms for crop
classification has been well documented in the literature (e.g. Basnyat et al., 2004;
Lunetta et al., 2003; Cohen and Shoshany, 2002). However, many crop insurance
companies in Saskatchewan feel they cannot depend on remote sensing products for
several reasons. Classification accuracy has not reached levels they can trust (>85%) for
such a project to be cost-effective. The general consensus has been that the growing
season must be monitored extensively due to varying phenological or growth rates of
different crop types. Satellite imagery with which temporal requirements may be met--
MODIS or AVHRR--is very inexpensive but has very coarse spatial resolution (250m for
MODIS and 1km for AVHRR). The AFSC has recently initiated a satellite monitoring
program using the aforementioned MODIS and AVHRR to determine moisture levels
and productivity in relation to resulting yield figures. Results from 2002 and 2003
showed that pasture yield was highly correlated (r = 0.87) to differences in the product of
the NDVI of MODIS and AVHRR (Bedard and Crump, 2004). However, as many crop
fields have a width smaller than this (quarter sections of land have an area of
approximately 250m), these data sets are not an option to delineate or separate fields.
Therefore, the need for a high spatial and high temporal resolution data set for this task is
clear. Unfortunately, both high temporal and spatial resolution in other orbital platforms
is not only difficult to attain but is also very expensive, leading the discussion back to
cost-effectiveness. Therefore, the ability of medium spatial resolution data (e.g. SPOT-4
20m or Landsat TM 30m) to detect crop classes in Saskatchewan should thus be tested.

Recent studies have shown that detecting crop class with higher spatial resolution
imagery can still be very difficult. Inaccuracies in crop-parcel delineation have been the
result of similar crop phenology (Lunetta, 2004; Vincent and Pierre, 2003) and
heterogeneity within the fields themselves (Cohen et al., 2002; Basnyat et al., 2004). To
combat the issue of crop phenology, several images--ranging from two to daily--are
integrated together (called an image “stack”) and used to “follow” the growth of the
vegetation over the season. As daily images are only available for coarse resolution
sensors such as AVHRR, many researchers opt for two to four images from SPOT,
Landsat, or other medium spatial resolution sensors (e.g. Rydberg, 2000; Oro et al., 2003;
Vincent and Pierre, 2003). This technique is called standard multi-temporal stack analysis
(Van Niel and McVicar, 2004) and has been shown effective in detecting differences
between rice and cereal fields (Barrett, et al., 2003; Murakami, et al., 2001; Oro et al.,
2003; Van Niel and McVicar, 2004).

One drawback to stacking images is that along with an increase in information, comes an
increase in background and atmospheric noise. The most common method to reduce
noise levels within images is to normalize the bands with respect to the targeted
parameter by ratioing different spectral bands. The most common index used with crop



areas is the NDVI (2.3.1., Jensen, 2004). NDVI is correlated to green, healthy vegetation
and can indicate species cover (Rouse et al., 1974; Cohen and Shoshany, 2002; Basnyat
et al., 2004). To determine differences in moisture level, a second index called the
normalized difference moisture index (NDMI) has been used in studies targeting canopy
removal in forestry (Wilson and Sader, 2002). This index may be able to show moisture
stress better than NDVI. It is unknown how well the index will perform to decipher
minute differences between crops.

Multi-temporal stacks, even when used with vegetation indices, cannot classify crop
boundaries or heterogeneity within field due to moisture differences or weed infestations.
This creates problems with calculating area based on classified pixels. Arikan (2004) and
Barrett (2001) digitized the crop parcels in an ArcGIS system and used the vector file to
identify homogeneous land cover. Basically, the polygon would be classified as “potato”
if the majority of pixels within that polygon were “potato” increasing post-classification
accuracy. However, this introduces the problem of digitizing crop areas from a different
media (the authors in both studies used air photos) which creates problems due to
projection and edge distortion. Rydberg (2000) used a different method to automatically
determine crop boundaries called a multispectral edge detector. Both of these methods
are not general enough to be used in areas larger than their scenes. In the case of the
latter, masking edges of fields may increase error in yield estimation due to inaccurate
area measurements from resulting data. For that reason, unsupervised classification may
be a more feasible way to cluster pixels into homogeneous groups as it is based on
spectral signature and/or a vegetation index (such as NDVI) and location relative to one
another (Lillesand et al., 2004). The classified layer can then be used as an input with a
band indicative of vegetation (such as near-infrared) with supervised classification to
create an accurate classification, also called hybrid classification (Jensen, 2004). This
method has been used extensively in other eco-regions, such as land cover and forested
area (Keuchel et al., 2003; Wulder et al., 2004) but has limited coverage in agricultural
areas (Cohen and Shoshany, 2002). Hybrid classification, when tested with multi-
temporal data, should result in a higher accuracy map that is both time-wise and cost -
effective.

This research focused on testing this hypothesis with a SPOT-4 20m spatial resolution for
three separate dates (June, July, and August, 2004) to determine if the aforementioned
methods could be feasible in Saskatchewan’s shorter growing season. The specific
objectives were to:

i) determine the best classification method using the NDVI and the NDMI for single
date images comparing supervised, unsupervised, and hybrid techniques;

ii) establish the most accurate scene combination out of the three SPOT-4 scenes
provided for a short growing season using the standard multi-temporal stack
technique.

This resulting information could be used to determine crop yield (by area) for crop
insurance purposes. Using higher resolution imagery would complement current coarse
imagery acquisitions creating a larger information base from which both producers and
marketers alike may draw. Lastly, due to higher levels of detail, resulting information and
imagery may be important in future uses of precision agriculture.



2.0 Methods

2.1 Study Area

Scott, Saskatchewan (Figure 1, 52°23’N, 108°54’W) is a typical farming community in
West-Central Saskatchewan. Rural municipalities 349, 379, 380, 381, 409, and 410 from
the 7B soil district (SD) were included incorporating a total area of ~3,000 km2. This
farming region is located in the moist mixed grassland eco-region of Saskatchewan,
along the southern border of the aspen parkland. According to previous years data
provided from by Saskatchewan Agriculture (2003, figure 2), producers in the soil region
7B grow approximately 50% wheat-spring/winter/durum, 20% Canola, barley, oat, ~20%
Summer Fallow and 10% special crops (Lentil, pea, mustard, canary seed). Table 1
shows the crop classes further broken down by rural municipality with examples of yields
per acre.

Crop reports for June 28, July 19, and August 15, 2004 were obtained from
Saskatchewan Agriculture, Food, and Rural Revitalization (2004) and are summarized
below. These dates correspond to image acquisition dates (June 28, July 18, and August
13) and indicate precipitation received the previous week, crop conditions, and harvest
progress.

At the end of June, crop conditions in the 7B SD were in good to excellent condition.
Canola and peas had incurred a bit of damage due to frost and a late start to the growing
season. Producers in the region reported that crop development was 76% behind normal
as a direct result. Top soil moisture conditions were exacerbated due to low precipitation



(< 1mm). Pasture conditions had also worsened since May. Hay was 3% cut at this point
at a fair to good quality.

Figure 2. Harvested acres in 
2003 by crop class
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Source: Saskatchewan Agriculture, 2003

In mid-July summer had finally arrived resulting in a hot and humid week and the 7B SD
region received 5mm of precipitation. Due to storm activity, there was scattered hail and
flooding damage across the district, resulting in some cases with 100% damage.
However, crops were still in good to excellent condition and topsoil moisture was listed
as adequate. Crop development ranged from 19% to 81% behind and some leaf diseases
and mildew on peas were reported resulting in application of fungicide. Hay was 25%
harvested and 33% cut at this point.

During the week of August 8-15, drought stress and burning was reported throughout the
7B district, although precipitation averaged between 2mm to 45mm over the area. Other
sources of crop damage were caused by insects, blight, leaf disease and large antelope
herds (especially in pea fields). Four percent of fall rye and winter wheat were combined
and two percent of the other crops were lying in swath. Topsoil moisture was rated
adequate (34%) and crop conditions in hay and pasture lands had also improved.

Table 1. Crop Yield in 2003 for Scott Saskatchewan Area

Winter
wheat

Spring
wheat

Durum Oats Barley
Fall
Rye

Flax Canola Mustard Lentils Peas
Canary
SeedRM

bu/ac bu/ac bu/ac bu/ac bu/ac bu/ac bu/ac bu/ac lbs/ac lbs/ac lbs/ac lbs/ac

349 20.4 18.9 17.6 27.3 15  10.8 452 630 825  

379 21 18.6 32.1 30.6   9.3 340 548 1130  

380 20.1 38.5 33.5 11.4 675 1394  

381 36.1 20.5 20.2 29.9 29.5 25 10 12.2 320  929 400

409 6.5 19.5 28 23 13.5 11.9 665 999  

410 22.5 21.3 39.6 32 30  13.7  1200 1064  



2.2 Field Data collection

Field data were collected on August 4, 2004 for the Scott, Saskatchewan area. 544
Random GPS points of different field crop type (Summer fallow, wheat, barley, canola,
lentil, mustard, oat or pea) or land-cover type (grass) were recorded per location for
training data and post-classification analysis. Ground control points (GCPs) were also
collected for geo-rectification (at road intersections in both rural areas and within the
town site) of the three SPOT-4 images.

2.3 Imagery and pre-processing

Three SPOT-4 images (20 m resolution) were acquired for the same area on the dates of
June 28, July 18, and August 13 of 2004. All three images were orthorectified using 44
GCPs (RMSE less than 0.5 pixels) and the Saskatchewan Digital Elevation Model
(SkDEM). All three scenes were reprojected to UTM, zone 13, datum NAD-83; D-04.
Both the normalized difference vegetation index (NDVI) and the normalized difference
moisture index (NDMI) were calculated for each image and the data range was stretched.
The formulas are as follows:
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where red is band 2; NIR is near infra-red band 3, and MIR is the mid-infrared band 4 for
SPOT-4 imagery.

All imagery was mosaiked in PCI GCP-works to ensure that all images overlaid each
other perfectly and further analysis could be done using the new standard multi-date
image stack. To ensure that all layers were of covered the same area a polygon was traced
around the “stacked” bands in order to apply classification schemes to only that area
covered by all three bands (Figure 1, study area boundary).

2.4 Classification Procedures

The classification processes used in this study were completed on each single image, two-
date stacks (June/July, June/August, July/August), and the three-date stack. All
combinations were tested on single images and stacks and compared for both
classification and post-classification accuracy. Training data for all classifications was
consistent and composed of approximately 250 GCP points. These points were randomly
located in the targeted fields. To optimize the training data, histograms were viewed to
make sure that the classes were uni-modal that all spectral classes within one major crop
class were separated. Two to four pixels were chosen from each identified field that
visually represented the most “pure” reflectance value. Wheat, barley, and canola were
sub-classified into two or three clusters based on visual detection of spectral differences
(Lillesand and Kiefer, 2004).



2.4.1. Supervised Classification

Many different input combinations were tested using the maximum likelihood classifier
due to its low CPU time (Emrahoglu et al., 2003), accuracy (Arikan, 2004; Jensen, 2004;
Lillesand and Kiefer, 2004), and ease of use with PCI. SPOT-4 bands two, three, and four
(red, NIR, and MIR) were tested in combination with either vegetation index (NDVI or
NDMI) in order to ascertain the importance of full spectra data complemented by a
vegetation index. We also compared using the NDMI with the NIR band and the NDVI
index with the MIR band. Lastly, the NDVI alone was used as the lone input to test its
ability to separate differences in every image set.

2.4.2. Unsupervised Classification

Unsupervised classification was used focusing on the ISODATA algorithm, proven
useful in agricultural areas (Cohen and Shoshany, 2002; Lunetta et al., 2003), again with
different input combinations. The algorithm was set for 20 maximum iterations and 20
clusters to take all possible variance in the area into consideration. Only two types of
unsupervised classification were completed for each single date. Inputs were the red, NIR
and MIR bands with either the NDMI or the NDVI. The classes were labeled based on
the majority rule (> 80% of the classified pixels indicating one crop type) and used in
further hybrid classification attempts. These classifications were only completed with
single-date images.

2.4.3. Hybrid Classification

Hybrid classification was completed using the maximum likelihood classifier with the
results of the single-date unsupervised classification (Iso-fr-NDVI or Iso-fr-NDMI, Table
2) and either the NIR or the MIR band as inputs. Training data was again consistent with
that from the supervised classifications described above. These were completed with both
single-date and multi-temporal image stacks.

2.5 Accuracy Assessment

In order to determine the accuracy of all classifications, approximately half of collected
points (250+ GCP points and more from water features determined from spectral
response and overlay of a water GIS layer) were retained and used in post-classification
analysis. This was completed by comparing classified pixels with actual reference classes
via computation of the Kappa coefficient of agreement (2.5.1., Jensen, 2005), from a
classification error matrix (Table 2) to give a view of overall accuracy. Kappa
coefficients were also calculated for each crop within the stack to determine which stack
was the most accurate. To verify the post-classification results, crop area from the
classification was calculated (Number of pixels classified as “pea”/Total number of
pixels classified as a crop) and compared to Figure 2.



3.0 Results and Discussion

3.1 Classification methods

Based on the post-classification analysis, the most accurate classification was the August
single-date image created using supervised classification of NDMI with the red, NIR, and
MIR bands. The best classification method for June was the same as for August, with a
decrease in accuracy, however, of more than half. The July image was also classified best
with a supervised technique, however, the NDVI (in the place of the NDMI), red, NIR,
and MIR band combination was more successful.

The next best overall classification was the July/August stack (88.3% classification
accuracy, 68.4% post-classification accuracy) created using hybrid classification of the
MIR band with the unsupervised classification result from the NDMI and red, NIR, and
MIR bands (Iso-fr-NDMI). For all two-image stacks hybrid classification provided the
most accurate classification. The June/July multi-temporal stack was classified best using
the unsupervised Iso-fr-NDVI and the MIR band whereas the June/August stack was
classed equally well with both the unsupervised Iso-fr-NDVI with the MIR band and
unsupervised Iso-fr-NDMI with the MIR band.

There was not an increase in post-classification accuracy in the three-image stack, rather
a decrease (83.64% classification accuracy; 57.2% post-classification accuracy) created
using the hybrid technique using the unsupervised Iso-fr-NDMI and MIR, similar to the
results seen with the two image stacks. The second best classifications were the
supervised technique using only the NDVI (74.1% classification accuracy, 55.9% post-
classification accuracy) or using NDVI with MIR (84.61% classification accuracy,
50.67% post-classification accuracy).

Unsupervised classification was not very accurate indicating that its use alone as a means
of crop classification would not be comparable to other methods (hence the results are not
reported here). Nevertheless, this procedure clustered pixels of similar reflectance values
within a set number of classes (pre-determined, here 20 to catch differences within crop



types as well as between them) which helped determine patterns in the data. Two
classifications were completed for each single image with one of the two indices and the
three broad bands (red, NIR, MIR). These classifications were then used in the hybrid
classifications increasing the classification accuracy by 50% and more in some cases.

It is interesting to note that single-image classifications were significantly more accurate
when using spectral information with a vegetation index, yet for the stacks, the hybrid
classifications worked better (Figure 4). This is due to a reduction in data redundancy and
noise by normalization. In addition, as can be seen in Figure 4, the unsupervised
classification creates a homogeneous raster layer that seems to filter out the small within-
field disparities. This coupled with a vegetation index further reduces noise and results in
more correctly classified pixels (the null-class is practically non-existent). The problem
of heterogeneity at the field borders is also reduced (less variance) and these pixels are
less likely to be misclassified.

3.2. Vegetation indices

Supervised classification using a vegetation index and three broad spectral bands was
more useful in single images than in stacks. With this method overall the NDMI more
accurately classified the area than the NDVI in 6/7 cases (Table 2). However, the
differences were not very large. When using the NDMI with only the NIR band, the
accuracy was higher than using the NDVI with MIR band for only June and the three
image stack, otherwise the NDVI with the MIR band was substantially more accurate (the

Table 2. Overall Post Classification Accuracy

Two images
Single Image

Standard Stack
Three images

Method
Vegetation

Index

June July August June/July June/Aug July/Aug
Standard

Stack
2-3-4-NDVI 43.1 61.6** 68.6 43.9 38.6 23.9 11.0
2-3-4-NDMI 43.4** 51.1 70.0** 50.0 40.8 51.5 15.8

NDVI only 11.6 27.9 39.3 39.3 22.8 52.0 55.9

NDVI

MIR band
25.4 55.9 54.2 52.7 54.4 64.5 50.7

NDMI

Maximum
Likelihood
Classifier

NIR band
34.4 23.5 52.2 33.3 50.2 55.3 55.3

Iso-fr-NDVI

+MIR band
27.6 59.4 59.2 64.5** 57.9 68.2 53.5

Iso-fr-NDVI

+NIR band
38.6 48.76 53.5 55.3 59.6 64.3 51.8

Iso-fr-NDMI

+MIR band
34.4 55.9 57.2 61.6 61.6** 68.4** 57.2**

Iso-fr-NDMI

Hybrid-MLC

+NIR band
42.1 55.9 51.5 57.7 61.6** 61.8 54.6

where Iso-fr-NDVI indicates an ISODATA unsupervised classification from NDVI-green-red-NIR as an input and Iso-fr-NDMI an
unsupervised classification from NDMI-green-red-NIR as an input.
**indicates best post-classification image/stack for the set.



June/July stack the accuracy increased by 40%). When using the NDVI only, the
accuracy was very low for 5/7 classifications. The July/August and August NDVI only
classifications were 40% to 50% higher than the other five.

Many different band combinations were used with the unsupervised clusters to determine
the most optimal hybrid classification for use in this study. The four best were (in order):

1. Unsupervised classification from 2-3-4-NDMI with MIR
2. Unsupervised classification from 2-3-4-NDMI with NIR
3. Unsupervised classification from 2-3-4-NDVI with MIR
4. Unsupervised classification from 2-3-4-NDVI with NIR

From this list it is obvious that the most accurate classification techniques incorporated
NDMI more than NDVI, showing the importance of the NDMI to crop studies.
Additionally, five from seven (70%) of the best post-classification accuracies used the
NDMI as compared the NDVI. The varying topsoil moisture (as indicated in the
Saskatchewan crop reports, 2004) was indicative of crop growth, thus detecting moisture
(using the NDMI) could also be integral to determining the health of these crops for use
in yield prediction. However, this was a very wet year for Saskatchewan after many
seasons of drought, suggesting that only this index be tested in a drier year to determine if
the results are similar.

3.3 Classification validation

It was important to compare not only overall classification accuracies, but also separate
accuracies per crop. Figure 3 shows the comparison of these using the best classification
techniques for each single date, 2-day stack, or 3-day stack. Water was well classified in
every image. The use of the three date multi-date stack increased the classification
accuracy of alfalfa, oat, grass and pea. The two date (July/Aug) stack however, was able
to classify barley, canola and lentils better. Summer fallow was well classified by either
July or August (but not well by the July/Aug stack). Wheat was classified best by the
August image. Mustard was not well classified in any image-stack.

Results from the post-classification analysis were verified by calculating the area each
crop type as compared to the total area classified as agricultural land use (Table 3). These
values were compared to the previous years’ harvested area (Figure 2) to discern how
well the classification techniques depicted reality. The single-date August image has a
reasonable value for wheat (37.8% compared with 38.13%), however all other values are
not as accurate. Both the June and July single-date images are inconsistent with the data
from Figure 2. Of the three two-date image stacks, the June/August stack is the most
similar (major crop areas are the closest). The July/Aug stack overestimates the wheat
area by 10% and the canola crop by 5%. It is interesting to note that the NDVI-only 3-
image-stack, although less accurate, shows more reasonable crop area estimates than that
of the hybrid classification. In all cases, mustard and summer fallow were underestimated
and pea were overestimated (except in the case of the single June or July images). For a
visual comparison of these results, see Figure 4 below. However, the area data are from



the previous year; we can’t conclude the classification accuracy is low based on this
comparison.

Figure 3. Comparison of Kappa Statistics for the 
best classification technique for each image set (see Table 2)
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Table 3. Percent area by crop for the best classification of each image-stack
Percent of Crop Area

Crop June July August June/July June/Aug July/Aug June/July/Aug

Wheat 27.72% 39.20% 37.80% 36.27% 34.55% 47.50% 47.22% 36.46%

Oat 21.56% 14.90% 9.90% 8.34% 12.04% 9.95% 7.47% 6.02%

Barley 8.38% 6.28% 10.57% 12.21% 4.44% 5.17% 4.95% 4.29%

Canola 5.77% 13.54% 13.86% 12.12% 22.06% 14.68% 17.51% 19.35%

Peas 8.58% 12.58% 19.43% 12.66% 14.12% 10.41% 10.29% 16.65%

Alfalfa 6.90% 5.34% 1.25% 6.67% 5.13% 3.76% 1.92% 2.80%

Lentils 9.64% 0.62% 0.58% 2.97% 0.73% 0.46% 0.40% 3.35%

Mustard 0.55% 0.03% 0.67% 0.05% 0.26% 0.24% 0.03% 0.98%

Summer Fallow 10.90% 7.52% 5.95% 8.70% 6.67% 7.84% 10.22% 10.09%

CLASSIFICATION
METHOD MLC-2-3-4-NDMI MLC-2-3-4-NDVI MLC-2-3-4-NDMI Iso-fr-NDVI+MIR Iso-fr-NDMI + MIR NDVI-only

3.4 Optimal scene combination

The August single-image was resulted in the best classification, indicating the necessity
of its use in remote sensing for crop delineation in Saskatchewan. As most crops were
sown in early June, reached maturity at the beginning of August, and were harvested in
late August early September, one could hypothesize that the highest level of greenness
for these crops ranged from the end of July to the end of August. The aforementioned
could also explain why the July-August image stacks are better able to classify between
different crop types (Tables 2 and 3, Figure 3) than the June-August or June-July image
stacks. On the other hand, due to a late start to the growing season, all crops were behind
schedule (as indicated in the study area crop reports, 2004) suggesting that in “normal”



years two July images (early and late) may work as well as the July-August stack. These
results support those reported by Murakami, et. al. (2001), Arikan (2004), and Van Niel
and McVicar (2004).

a.      e.  

b.      f.  

c. 

d. 

Figure 4. a. Original false colour composite (4,2,3); b. Isodata unsupervised classification
for August; c. Supervised classification 2-3-4-NDMI for August; d: June/Aug hybrid
classification; e: July/Aug hybrid classification; f. June/July/Aug Supervised NDVI-only.



The supervised June-July-August three-image stack (NDVI-only method) better
quantified the crop percentage for the area (Table 3), indicating that overall classification
accuracy was more important than post-classification accuracy. Other classifications
(single and two date) expressed wheat as a percentage of crop land as very low (~29%) or
10% too high. Those that were more accurate in their wheat area estimation were,
however, too low in the canola and other major crop coverages. Summer fallow was
accurately classified, but was 10% too low by crop area. This may be due to the increased
variance within this crop class. Fields classed as summer fallow were barren, weedy, or
showed traces of the previous years’ crop (such as canola or wheat with which it was
often misclassified).

5.0 Summary and Conclusions

In summary, SPOT 4 20 m data sets are expensive, but have a high enough spectral,
spatial, and temporal resolution to be able to classify crop areas with an overall accuracy
of 90% for a single August image using supervised classification. Hybrid classification
for two and three stacks is a viable way to reduce data redundancy and increase
classification accuracy for the short growing season in Scott, Saskatchewan. The best
two-way stack (July-August) was more accurate than the three-image stack indicating
that 3 images may not be required for accurate delineation of all crops. However, due to
the delayed growing season in 2004, future years may show that two July images may
work best for classification purposes. Future research should focus on the use of standard
iterative stack classification with object based techniques and testing these methods
across soil boundaries to determine the value of the research completed here.

In order for large area crop classification to be feasible one must be able to replicate
results in different areas across eco-regional or soil boundaries. The results from this
research indicate that these classification techniques should be tested in other soil and
eco-regions of Saskatchewan to determine if they work equally well there. In addition,
future research should include using multi-date iterative stacking techniques, i.e. classify
crops using the best image for that crop (as indicated in Figure 2) and compile together
the separately classified layers using processes indicated by Van Niel, et al (2004).
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