4. The Effect of Deep Ripping on Soil Physical Properties and Crop Production: 1991 Results

M.C.J. Grevers

(This project was supported by a grant from the Agriculture Development Fund)

INTRODUCTION

The feasibility of deep tillage under Saskatchewan conditions has been studied since 1986 in a number of field experiments (Grevers 1989). The purpose of this project is to determine the longevity of these improvements and to determine the economic feasibility of deep tillage of Solonetzic soils. This report involves the monitoring of soil conditions and crop production in the 4th and the 5th year following deep ripping at 3 locations in Saskatchewan .

MATERIALS AND METHODS

A total of 5 farm sites are included in the study. The Dale Eliason site is located NE of Glenside, the soil is classified as Tuxford Association and is under irrigation. The Chabot and Cragg sites are located near Arborfield and the soils are classified as Arborfield Assn. The Norrish and Warner sites are located east of Carrot River; the Norrish soil is classified as Tisdale Assn., and the Warner soil as Arborfield Assn. Further details of the sites and of the deep ripping and of the plot design are described in the 1989 Field Report (Grevers 1989).

Soil physical parameters that were measured include soil moisture content and soil bulk density; details of these measurements are shown in the 1989 Field Report (Grevers 1989). Soil water content measurements were taken monthly during the growing season. Soil density readings were taken prior to seeding (1 to 2 weeks).

Soil NO₃-nitrogen levels were determined from soil samples (0-15, 15-30, and 30-60 cm depth increments) taken in the spring of 1991 and having these analyzed by the

Saskatchewan Soil Testing Laboratory. A total of four replicates were taken in each tillage strip, these were bulked into one large sample which was used for the chemical analysis.

Crop yield was determined by taking square meter samples in a series of paired row samples, 8 pairs in each tillage strip. The crop samples were transported to the University of Saskatchewan, where the samples were dried, weighed, threshed and grain weights were taken. Crop water use (mm) was determined from the difference between the soil moisture content at seeding and at harvest, plus the growing season precipitation (using rain gauges installed in the field plots). Crop water-use efficiency was determined by dividing the grain yield by the total crop water use (kg/ha/cm).

RESULTS AND DISCUSSION

Soil Bulk Density

The soil bulk density in the deep tillage plots measured in the spring of 1991 is shown in Table 4.1. There were no significant differences (P < 0.05) in soil density, but there were some trends in the data. The density of the 10-30 and 30-50 cm depths in the deep ripped Solonetzic soils (Chabot, Cragg and Warner sites) appears to be lower than that in the control plots. Similar differences were not found at the Norrish site. This trend in density data suggest that some soil loosening of the B horizon was apparent 4 and 5 years after the initial deep ripping of the Solonetzic soils.

Soil-Water Depletion During The Growing Season

The disruption of the Bnt horizon in Solonetzic soils was expected to result in increased root proliferation and in better soil-water extraction with depth. Soil-water depletion by depth during the growing season in deep ripped and in the non-ripped Solonetzic and Chernozemic soils is shown in Table 4.2. There were only small differences in soil water depletion amongst the treatments. A trend was apparent for the Chabot and

Site	Depth	Deep Ripped		Control		
	cm			m/cm ³		
Chabot	10-30	1.18	(0.16)	1.25	(0.13)	
	30-50	1.27	(0.07)	1.35	(0.09)	
	50-70	1.38	(0.10)	1.37	(0.06)	
	70-90	1.36	(0.10)	1.37	(0.07)	
	90-110	1.40	(0.09)	1.32	(0.05)	
Cragg	10-30	ND		ND		
	30-50	1.26	(0.11)	1.32	(0.15)	
	50-70	1.38	(0.06)	1.37	(0.08)	
	70-90	1.36	(0.10)	1.31	(0.16)	
	90-110	1.35	(0.08)	1.25	(0.06)	
Norrish	10-30	1.41	(0.13)	1.34	(0.20)	
	30-50	1.57	(0.05)	1.47	(0.09)	
	50-70	1.50	(0.04)	1.48	(0.04)	
	70-90	1.48	(0.03)	1.49	(0.05)	
	90-110	1.51	(0.04)	1.48	(0.09)	
Warner	10-30	ND		ND		
	30-50	1.47	(0.12)	1.58	(0.12)	
	50-70	1.39	(0.17)	1.58	(0.09)	
	70-90	1.43	(0.13)	1.53	(0.03)	
	90-110	1.41	(0.12)	1.48	(0.07)	

Table 4.1	Soil bulk density values in the spring of 1991.
-----------	---

.

x

Values in brackets are standard deviations None of the above data represent significant differences (P < 0.0-5) between the treatments No data was available for the Dale Eliason site

0

Depth M		May 30		July 9		August 1		May-August		
	Cntl	Rip	Cntl	Rip	Cntl	Rip	C	Cntl	Rij	р [,]
		• • • • • • • • • • • • • • • • • • •			cm H ₂ O	******		- 10 48 49 49 49 48 43 49 4	,	-
				C	habot S	ite				
			P=	8.2	P= 3	5.6		P= 1	1.8	
0-10 10-30 30-50 50-70 70-90	3.2 9.2 9.5 8.8 · 8.5	3.2 9.5 9.1 8.9 8.5	4.3 8.6 8.9 8.6 8.5	4.0 8.8 8.7 8.7 8.4	3.4 6.3 6.5 6.3 7.0	3.4 5.4 5.9 6.1 6.9	-0.1 2.9 3.0 2.5 1.5	(0.1) (0.4) (0.2) (0.4) (0.4)	-0.2 3.8 3.2 2.8 1.5	(0.2) (0.3) (0.2) (0.1) (0.1)
				(Cragg Si	te				
			P=	9.3	P= 6	.9		P= 1	6.2	
0-10 10-30 30-50 50-70 70-90	3.0 9.6 9.2 9.3	3.4 9.2 9.7 9.4 9.5	4.0 9.3 9.0 9.0 9.1	4.0 8.9 9.1 9.2 9.2	3.1 8.6 8.8 8.9 9.1	3.6 7.7 8.4 8.8 9.3	-0.2 1.0 0.9 0.3 0.3	(0.2) (0.4) (0.3) (0.1) (0.1)	-0.2 1.6 1.3 0.6 0.3	(0.2) (0.5) (0.2) (0.1) (0.1)
				N	orrish S	ite				
			P= 9.2 P= 2.2		.2	P= 11.4				
0-10 10-30 30-50 50-70 70-90	2.3 8.1 8.1 7.6 6.9	2.4 7.7 7.8 7.5 7.2	4.3 7.6 7.5 7.1 6.7	4.6 7.5 7.1 6.8 7.1	2.4 6.0 6.3 5.7 6.0	2.7 5.6 5.6 5.5 6.5	0.0 2.2 1.9 1.9 0.9	(0.2) (0.1) (0.2) (0.2) (0.3)	0.2 2.1 2.2 2.0 0.7	(0.6) (0.2 (0.1) (0.2) (0.1)
				W	arner S	ite				
			P=	P= 9.8		P= 2.4		P= 12.2		
0-10 10-30 30-50 50-70 70-90	1.9 8.6 8.8 9.3 9.5	2.0 6.1 7.0 7.7 7.9	4.7 8.6 8.5 8.7 9.0	5.8 7.3 8.1 8.4 8.6	2.4 7.7 8.4 8.9 9.2	2.1 5.3 6.5 7.5 8.0	-0.5 0.9 0.3 0.4 0.2	(0.1) (0.0) (0.0) (0.4) (0.5)	0.0 0.8 0.5 0.3 -0.1	(0.0) (0.1) (1.0) (0.1) (0.3)

 Table 4.2 Changes in soil-water content during the 1991 growing season.

P = precipitation from the previous date to the date indicated in cm H₂O

Cragg sites, indicating slighter greater water depletion from the B horizon (10-30 cm depth) in the deep ripped plots.

Crop Production Following Deep Ripping.

Deep ripping increased crop yields at the Cragg, D. Eliason, Norrish and Warner sites, but there was no effect of deep ripping on crop yields at the Chabot site (Table 4.3). Deep ripping increased total dry matter production by values ranging from 9% to 40%, and grain production by values ranging from 9% to 32%. These yield increases due to deep ripping represent the 4th and 5th year crop yields after the initial deep ripping, indicating the longevity of the effect of deep ripping.

There were no significant (P < 0.0-5) differences due to deep ripping on the spring soil NO₃-N levels, nor on the crop water-use efficiency.

CONCLUSIONS

A total of five sites were included in the study; including four Solonetzic soils and one compacted Chernozemic soil. Deep ripping increased crop production on four of the soils. Deep ripping had no effect on crop production one of the Solonetzic soils. There were trends in soil bulk density, suggesting more porous B horizons in the deep ripped soils. It is possible that more porous B horizons facilitated greater soil-water depletion, which would explain the increased crop growth found in these soils.

REFERENCES

Grevers, M.C.J. 1989. The effect of Subsoiling on Crop Production in Saskatchewan. Pages 79-102. In (M.C.J. Grevers and J.L. Henry, Eds.) 1989 Field Research Report. Saskatchewan Institute of Pedology Report No. M95. University of Saskatchewan, Saskatoon, Sask.

Farm	Year/crop	Tillage	Spring	Spring seeding		Yield	
· .	. •		SMC [†]	NO ₃ -N	Total	Grain	
			(cm)	(kg/ha)	(kg/ha)	(Bu/A)	(kg/ha/cm)
Chabot	1987 Peas	Control Ripped	46 46	47 61	5979 6977	31.2 28.6	64 52
	1988 Flax	Control Ripped	51 48	85 102	1910 1964	9.8 9.8	28 28
	1989 Smf	Control Ripped	40 38	140 162		Fallow Fallow	
	1990 Canola	Control Ripped	58 60	136 135	7392 6581	45.2 40.5	120 96
	1991 Wheat	Control Ripped	58 57	78 57	10340 10402	60.5 61.6	164 165
Cragg	1987 Wheat	Control Ripped	53 52	52 27	6249 5968	41.8 34.9*	68 54
	1988 Barley	Control Ripped	53 53	18 16	4319 5183	23.8 35.4*	73 102
	1989 Smf	Control Ripped	39 39	27 32	Fa Fa		
	1990 Durum	Control Ripped	53 55	81 101	9634 10269	60.7 64.3	ND ND
	1991 Canola	Control Ripped	50 51	64 69	2520 3517*	13.3 17.5*	40 50
D. Eliason	1988 Lentils	Control Ripped	37 39	26 26	1564 2089	11.2 17.0	ND ND
	1989 Durum	Control Ripped	33 39	30 32	748 <u>3</u> 10868*	54.1 75.4*	117 169*
	1990 Durum	Control Ripped	33 34	83 88	8110 9573	58.2 65.6*	111 131*

Table 4.3 Spring soil moisture and nitrate-nitrogen, crop yield and water-use efficiency.

SMC = soil moisture content, WUE = water use efficiency, ND = no data available *, and **: means are significantly different at P < 0.05, and P < 0.01, respectively. † cm H₂O to a depth of 130 cm

, ·

Farm	Year/crop	Tillage	Spring seeding		Yield		WUE
· •			SMC [†]	NO ₃ -N	Total	Grain	
	na dell'i d'acconsecto d'addella referencia d'Addilla Martine a adde attaliante anti	<u>A. AN E. A JOSEP CO. AN </u>	(cm)	(kg/ha)	(kg/ha)	(Bu/A)	(kg/ha/cm)
D. Eliason	1991 Durum	Control Ripped	ND ND	ND ND	9891 10739	65.3 72.9*	ND ND
Norrish	1988 Canola	Control Ripped	49 52	52 48	5055 4616	30.4 25.9	65 56
	1989 Canola	Control Ripped	34 35	81 147	5118 5192	25.7 24.8	87 95
	1990 Barley	Control Ripped	43 42	29 25	8878 9396	80.4 79.1	ND ND
	1991 Barley	Control Ripped	48 47	29 26	4272 5135*	42.1 50.3*	108 128
Warner	1988 Canola	Control Ripped	65 65	8 30*	2683 4228*	12.8 20.2*	88 132
	1989 Barley	Control Ripped	42 41	9 19	3014 7713*	25.8 61.1**	ND ND
	1990 Canola	Control Ripped	50 54	15 18	2785 3138	10.9 15.0*	26 36
	1991 Barley	Control Ripped	56 53	48 68	6339 7283*	56.8 61.8*	ND ND

Table 4.3 Continued.

a .

SMC = soil moisture content, WUE = water use efficiency, ND = no data available *, and **: means are significantly different at P < 0.05, and P < 0.01, respectively † cm H₂O to a depth of 130 cm

7