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Abstract 
This paper considers the no-wait flow shop scheduling problem with due date constraints. In the 

no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, 

a due date is associated with the completion of each job. The considered objective function is makespan. 

This problem is proved to be strongly NP-Hard. In this paper a particle swarm optimization (PSO) is 

developed to deal with the problem. Moreover, the effect of some dispatching rules for generating initial 

solutions are studied. A Taguchi-based design of experience approach has been followed to determine the 

effect of the different values of the parameters on the performance of the algorithm. To evaluate the 

performance of the proposed PSO, a large number of benchmark problems are selected from the literature 

and solved with different due date and penalty settings. Computational results confirm that the proposed 

PSO is efficient and competitive; the developed framework is able to improve many of the best-known 

solutions of the test problems available in the literature.  

Keywords: Flow Shop Scheduling; No-wait; Due Date Constraints; Makespan; Particle Swarm 

Optimization 

1 Introduction 
The no-wait flow shop problem is a special case of the classical flow shop problem, in which there 

should be no waiting time between successive operations of jobs. In other words, once processing is started, 

no interruption is permitted between operations of the same job. Moreover, in this paper, completion of 

each job is associated with a due date. In other words, jobs must be completed before their due dates. Due 
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date constraints are among the most applicable constraints in scheduling and sequencing literature because 

real-world jobs are usually accompanied by a deadline for completion (Hunsucker and Shah 1992). In this 

paper it is assumed that all the jobs are ready at time zero (all release dates are zero) and the considered 

performance measure is makespan.  

Following the three-field notation of the scheduling problems, the problem can be designated as 

max| , |iF no wait d C . It can be noted that the objective function of the considered problem is makespan 

and since the objective function does not provide any hints about the due date constraints, these constraints 

should be explicitly mentioned in the field. No-wait scheduling problem was first studied by Piehler (1960). 

King and Spachis (1980) proved that the no-wait flow shop problem with makespan performance measure 

(
max| |F no wait C ) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP). 

Röck (1984) proved that (
max| |F no wait C ) is NP-Hard. Since 

max| , |iF no wait d C  is a 

generalization of 
max| |F no wait C , it can be inferred that 

max| , |iF no wait d C  is also strongly NP-

Hard.  

Industrial applications mentioned in the literature for 
max| , |iF no wait d C  include chemical 

industries (Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production (Wismer 

1972), pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of concrete products 

(Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a comprehensive review of the 

applications of the problem. 

If a job is finished after its completion deadline, the company will face considerable penalties for 

compensation. Companies always look for methods to reduce waste and improve efficiency; therefore, 

reducing the number of late days or the number of tardy jobs is important when a company tries to avoid 

penalties (Pinedo 2002). Furthermore, a contractor will tremendously damage its reputation as a reliable 

firm if it frequently delivers jobs after their due dates are passed (even if the number of late days is relatively 



3 

 

small). Trust between companies will be also damaged if late jobs are not frequent, but a few jobs are 

delivered considerably past their due dates. Note that on-time delivery of the jobs can be only one of the 

goals of a company. Companies can be interested in optimizing other criteria such as makespan, while 

reducing the number of late days or tardy jobs. Hence, 
max| , |iF no wait d C  is not only an applicable 

problem with many real-world applications, but it is proved to be NP-Hard.  

Hunsucker and Shah (1992) studied the problem of scheduling a constrained flow shop with 

multiple processors and due dates. The main purpose of their study was to evaluate the performance of six 

priority rules under different congestion levels with mean tardiness and number of tardy jobs as the 

performance measure. The performance of 10 different priority dispatching rules in a multi-processor flow 

shop for mean and maximum tardiness was studied in Brah (1996). Sarper (1995) studied the problem of 

minimization of the sum of absolute deviations of job completion times from a common due date for the 

two-machine flow shop problem. Gupta et al. (2000) studied a two-machine flow shop problem in which 

all the jobs have a common due date and developed an enumerative algorithm with branch and bound 

components to minimize either the sum or the maximum earliness and tardiness. Gowrishankar et al. (2001) 

considered the problem of minimizing the variance of completion of jobs and minimizing the sum of squares 

of deviations of job completion times from a common due date. Błażewicz et al. (2005) studied a two-

machine flow shop problem with a common due date and developed a dynamic programming approach to 

minimize the total weighted late work criterion. 

More recently, Błażewicz et al. (2008) developed a number of metaheuristic algorithms for the 

two-machine flow shop problem with a common due date and the weighted late work performance measure. 

Panwalkar and Koulamas (2012) considered the problem of minimizing a common due date and the number 

of tardy jobs in a two-machine flow shop syntax in which the first operation of each job is smaller than the 

second operation and developed an 
2( )O n  algorithm for this problem. Tang et al. (2011) considered a flow 

shop environment with due date constraints and developed a hybrid of particle swarm optimization and 
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knowledge evolution algorithm. Ebrahimi et al. (2014) studied a hybrid flow shop environment with 

sequence dependent setup times and uncertain due dates with minimization of makespan and total tardiness 

as the objective functions and developed two metaheuristic algorithms to deal with this problem. Tari and 

Olfat (2014) considered the tardiness flow shop problem with intermediate due dates. They developed a 

number of heuristic priority dispatching rules for this problem and compared their performance using 

computational results. Dhingra and Chandna (2010) developed a number of metaheuristic methods to deal 

with the flow shop problem with sequence dependent setup times and due date constraints.  

It can be noted that although the flow shop problem and its variants in the presence of due date 

constraints have received a lot of attention in the literature, the problem of 
max| , |iF no wait d C  has not 

yet been studied. Table 1 summarizes the most relevant research efforts in the area of no-wait flow shop 

scheduling. 

In this paper, a Particle Swarm Optimization (PSO) is developed to deal with 

max| , |iF no wait d C . Moreover, an algorithm is developed to efficiently create a timetable from a given 

sequence. The timetabling algorithm is further coupled with the developed PSO to explore the feasible 

region of the problem. Although 
max| , |iF no wait d C  has numerous practical applications, it has 

received little attention in the literature. In this paper, different due date settings are considered, and 

computational results are compared with the results of the most competitive methods in the literature for 

max| |F no wait C .  

The contribution of this paper is threefold. First, 
max| , |iF no wait d C  is studied in this paper for 

the first time; a mathematical model is developed for this problem and a number of small-instance test 

problems are solved to optimality. A penalty method is employed to deal with the general case. Second, the 

effect of considering different due date tightness scenarios on the makespan of 
max| , |iF no wait d C  is 

studied by applying the developed PSO to a large number of test problems; the effect of two of the most 
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widely used dispatching rules on the final solutions is studied and the best dispatching rule is selected to 

generate initial solutions for the developed PSO algorithm. Finally, although the PSO algorithm is 

developed to deal with the no-wait flow shop problem with due date constraints, it outperforms competitive 

methods specifically designed for 
max| |F no wait C . Computational results show that the proposed PSO 

method is able to find good-quality solutions for the test problems in a reasonable time. 

Table 1 – Review of the No-Wait Flow Shop Scheduling Literature 

Research Problem Considered Proposed Method 

Araujoa and Naganoa (2011) max| , |sdF no wait S C
 

Heuristic 

Samarghandi and ElMekkawy 

(2011) max2, 1| , |F S no wait setup C
 

Hybrid variable neighborhood 

search 

(Samarghandi and ElMekkawy 

2012a) max| , |F no wait setup C
 

PSO and genetic algorithm 

Nagano et al. (2012) | , | iF no wait setup C   
Evolutionary clustering search 

Jolai et al. (2012) 

No-wait flexible flow shop scheduling 

problem with sequence dependent setup 

times 

Several metaheuristics 

Rabiee et al. (2012) 

No-wait two-machine flow shop 

problem with sequence dependent setup 

times and probable rework 

Several metaheuristics 

Ying et al. (2012) 

No-wait flow shop manufacturing cell 

scheduling problem (FMCSP) with 

sequence dependent family setup times 

Several metaheuristics 

Samarghandi and ElMekkawy 

(2013) max2, 1| , |J S no wait setup C  Genetic algorithm 

Nagano et al. (2014) max| , |sdF no wait S C  Evolutionary clustering search 

Samarghandi and ElMekkawy 

(2014) max| , |sdF no wait S C  PSO 

Samarghandi (Article in Press) max, | , |Q sdF S no wait S C  Genetic algorithm 

Nagano and Araújo (2014) 
No-wait flow shop problem with 

sequence-dependent setup times 
Heuristics 

Nagano et al. (Article in Press) | , |sd iF no wait S C   Heuristics 

 

The rest of the paper is outlined as follows. Section 2 will be devoted to the problem description;  

also, a mathematical model for the problem will be developed in section 2. Section 3 will explain the 

proposed PSO algorithm. Furthermore, the employed penalty method will be discussed in section 3. Section 
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4 will study a number of dispatching rules. Also, computational results are summarized in this section. 

Section 5 will discuss the concluding remarks and future research directions.  

 

2 Problem Description 

2.1 Notation and the Mathematical Model 
The following notation is used throughout this paper: 

M   Set of machines 

| |m M
 

Number of machines 

N   Set of jobs 

| |n N  Number of jobs 

iJ  Job i  

ijo  j th operation of iJ  

ijp
 

Processing time of the j th operation of iJ  on its respective machine 

iS
 

Starting time of iJ  

ijoS
 Starting time of ijo  

id   Due date of iJ  

l  Sequence l  

maxC  Makespan of l  

Brackets are used to indicate consecutive jobs, i.e., [ ]iS  refers to the starting time of the job planned 

to be processed after i th job in a given sequence. Based on the above notations, a mixed integer linear 

programming model for 
max| , |iF no wait d C  is as follows: 

maxMin C   (1) 

max ; 1,2,...,
imo imC S p i n     (2) 

1 1 1(1 ) ; 1,2,..., ; 1,2,...,
k io ik o iS M x S p i n k n        (3) 

[ ]
; 1,2,..., ; 1,2,..., 1

i j ijo o ijS S p i n j m      (4) 

; 1,2,...,
imo im iS p d i n      (5) 
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1

1; 1,2,...,
n

ij

i

x j n


     (6) 

1

1; 1,2,...,
n

ij

j

x i n


     (7) 

1; 1,2,..., ; 1,2,...,ij jix x i n j n       (8) 

1 1

1
n n

ij

i j

x n
 

     (9) 

0; 1,2,..., ; 1,2,...,
ijoS i n j m     (10) 

{0,1}; 1,2,..., ; 1,2,...,ijx i n j n      (11) 

In this model, the objective function is to minimize the makespan. ijx  is a binary variable that is 

defined as follows: 

1 if job isimmediatelyafter in thesequence

0 Otherwise
ij

j i
x


 


  (12) 

Also, M  is a sufficiently large number. (2) defines that makespan equals the finish time of the last 

operation of the last job. (3) assures that the operations do not overlap; this constraint is binding if 
kJ  is 

scheduled immediately after iJ  in the sequence. (4) imposes the no-wait constraints. (5) is the due date 

constraint. According to (5), the last operation of each job should finish before its associated due date. 

Constraints (6), (7), (8) and (9) guarantee that all the jobs will appear exactly once in the sequence. The 

correctness of this set of constraints can be verified by extracting the values of ijx  from any given sequence. 

Once a sequence of the jobs is available, an algorithm is required to create the actual timetable and compute 

the makespan of this sequence.  

2.2 Timetabling Algorithm  
According to the mathematical model of section 2.1, a sequence that violates due date constraints 

is an infeasible sequence. Consequently, it is assumed that none of the sequences that will be discussed in 

the rest of this subsection violate the due date constraints. 



8 

 

Algorithm 1: If maxc  is the makespan of the partial sequence (1,2,..., )i  , and maxc  is the 

makespan of (1,2,..., , )i j  , then [ ] max maxj icont cont c c    is called the contribution of job  

[ ]i j ; and [ ]icont  can be calculated as follows: 

Step 1: Define a counter for the operations of job i  and a counter for operations of job [ ]i ; call the 

former counter t  and the latter w .  

Step 2: Set 2; 1t w  . 

Step 3: If [ ]it i wp p , set 1t t   and 1w w  . If 1t m  , proceed to step 8; otherwise go 

back to the beginning of step 3. If [ ]it i wp p , proceed to step 4. 

Step 4: Set 
[ ]min | 0

k

il i w

l t

z k p p


  
    

  
  and proceed to step 5. If the value of z  cannot be 

determined, go to step 7. 

Step 5: Modify the value of izo  as [ ]

z

iz il i w

l t

p p p


 
  
 
 . Proceed to the next step. 

Step 6: Set 1w w   and t z . If 1t m  , go to step 8; otherwise, go back to step 3. 

Step 7: Set [ ] [ ]

m m

i i l il

l w l t

cont p p
 

   
    
   
  . Stop. 

Step 8: Set [ ] [ ]i i mcont p . Stop. 

Figure 1 illustrates the above algorithm. Proof of Algorithm 1 can be easily verified using examples 

and Gantt charts, and therefore is eliminated from this paper. ■ 
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Figure 1 – Illustration of Algorithm 1 

 

Proposition 1: Makespan of permutation (1,2,..., )n   can be calculated as 

max 1 1

2 1 2

n m n

i j i

i j i

c cont cont p cont
  

      . 
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Proof: Suppose permutation (0,1,2,..., )n   is such that 0 0; 1,...,jp j m  . If algorithm 1 is 

applied to    to compute 1cont , since 0 0; 1,...,jp j m  , the algorithm proceeds to step 4 when it reaches 

the smallest w  such that 1 0wp  . Moreover, 0

1

0
m

l

l w

p
 

 
 

 
 , in other words, the index k  of step 4 of 

Algorithm 1 does not exist; therefore, the algorithm proceeds to step 7 and calculates 1cont  by (13): 

1

1

1

0

[0] 1 1 0 1 1 1

1 1

0

w

j

j

pm m m m

l l l j

l w l w l w j

cont cont p p p cont p







    

       
             

       
      (13) 

The algorithm then will be applied to jobs 2,3,...,n  to calculate each job’s contribution. ■ 

Corollary 1: If makespan of (1,2,..., 1, , 1,..., 1, , 1,..., )i i i j j j n       is maxc , makespan of 

(1,2,..., 1, , 1,..., 1, , 1,..., )i j i j i j n       generated by exchanging jobs i  and j  is:  

max max 1 1 1 1( ) ( )i i j j i i j jc c cont cont cont cont cont cont cont cont          

   
            (14) 

Proof: According to Algorithm 1, the contribution of each job is computed based on processing 

times of the job in comparison with the processing times of its previous job. As a result, when sequence 

   is formed by exchanging jobs i  and j , the only jobs with a different predecessor compared to sequence 

  are:  

Job Previous job in   Previous job in    

i  1i   1j   

1i   i  j  

j  1j   1i   

1j   j  i  

 

Which proves (14). ■  
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The proposed algorithm of section 3 employs equation (14) to calculate the objective function of a 

perturbed sequence once an exchange is applied to a certain sequence. The proposed PSO will be explained 

in the next section. 

3 The Proposed Algorithm 
The PSO algorithm has been widely used by researchers to solve combinatorial optimization 

problems since its introduction in Eberhart and Kennedy (1995) and Kennedy and Eberhart (1997). The 

PSO algorithm works by systematically moving a number of particles through the search space. At time t , 

each particle i  has a position, ( )ix t , and a velocity, ( )iv t . A memory stores the current position of the 

particles as well as their best position. In each step, velocity of the particles is modified according to 

historical and random information. Velocities, once updated, are used to update the current position of the 

particles. Then, the PSO evaluates the objective function of the particles at their new position. Since 

historical data is used in updating the particle velocity, particles tend to return to their historical best position 

which results in early convergence. To overcome this unwanted phenomenon, different velocity update 

techniques have been developed. The proposed PSO uses one of the most successful functions available to 

update the particle velocity.  

3.1 Solution Representation 
The PSO was originally developed for continuous feasible regions. However, the feasible region 

of max| , |iF no wait d C  is not continuous and consists of the set of permutations of n  jobs that do not 

violate due date constraints. Therefore, the feasible region of max| , |iF no wait d C  should be mapped to 

a continuous region suitable for PSO operations. Numerous coding systems have been developed in the 

literature that convert discrete feasible regions to a continuous space. This paper uses the SPV coding 

system that was developed in Tasgetiren et al. (2007) and proved to be very efficient for the flow shop 

problem.  
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Suppose that particle i  at iteration t  is given as 1 2[ , ,..., ]t t t t

i i i inX x x x  in which n  is the number of 

jobs in the max| , |iF no wait d C  instance. Although 
t

iX  is defined in a continuous space, the SPV rule 

can be applied to this particle to transform it to its corresponding permutation. If 

; 1,2,..., ;t t

ik ijx x j n j k   , k th location of permutation   will be assigned to job 1. Similarly, if the  

l th smallest number in 
t

iX  is seen at location z  of 
t

iX , job l  will be assigned to position z  of the 

permutation  .  

Table 2 illustrates the SPV rule when 5n  . In this table, 5

t

ix  is the smallest number between 
t

ijx  

values. Since the smallest number occurs in position 5, job 1 in permutation   will be assigned to this 

position. The second smallest number in 
t

iX  occurs in position 1; therefore job 2 will be placed in this 

position, and the algorithm continues until all the jobs are assigned to their locations in  . If there are ties, 

i.e., 
t t

ik ijx x , the algorithm randomly selects one of them as the smaller number between the two values 

to break the tie. 

Table 2 – SPV Rule 
t

ijx  -0.96 +1.8 +0.43 -0.21 -2.31 

Positions 1 2 3 4 5 

  2 5 4 3 1 

 

The above procedure explains the method by which a particle is converted to its corresponding 

permutation. When it is required to convert a permutation to its corresponding particle, n  random numbers 

will be generated according to (15). 

min max min 1( )t

ijx x x x r       (15) 
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In (15), min 0x   and max 4x   and 1 ~ (0,1)r U . Afterward, the smallest generated number will 

be assigned to the position of job 1. The second smallest generated number will be assigned to the position 

of job 2, and so on. Once again, ties will be dealt with using a random procedure.  

3.2 Generating Initial Solutions 
The proposed PSO requires a number of initial solutions to begin its exploration in the feasible 

region. Once the initial solutions are generated and their makespans are calculated as described in section 

2.2, the method of section 3.1 will be employed to convert the permutations into particles. No particle is 

born or destroyed during the search. Note that based on the one-to-one SPV mapping described in section 

3.1, a particle is identical to a complete permutation. Therefore, these two words can be used 

interchangeably during the rest of the paper. The number of initial solutions, represented by I  hereafter, is 

a parameter of the algorithm and will be set by the user. Once initial solutions are generated, they will be 

converted to particles (
0; 1,2,...,iX i I ) and the PSO algorithm starts the search. 

It should be noted that different methods exist for generating the initial solutions. Several papers in 

the literature have studied the performance of the priority dispatching rules under different assumptions and 

with different performance measures. In section 4.2, two methods of generating initial solutions and their 

effects on the results of the proposed algorithm will be studied. These methods include random 

permutations and permutations created according to the earliest due date dispatching rule. 

3.3 Infeasible Solutions and Penalties 
As the developed mathematical model of section 2.1 indicates, due date requirements are 

considered as hard constraints in the model. In other words, schedules that violate these constraints will be 

marked as infeasible by the model. However, the proposed PSO allows the violation of the due date 

constraints with the hope that the violations will be removed during the search if a penalty is imposed to 

the objective function. Consequently, the proposed PSO modifies the objective function of the mathematical 

model to (16) and removes the due date constraints from the model. 
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 max

1
im

n

i o im i

i

Min C U S p d


       (16) 

In which: 

1 if

0 Otherwise

imo im i

i

S p d
U

 
 


   (17) 

Section 4.1 introduces a design of experiments method based on Taguchi approach to optimize the 

value of   and its effect on the makespan of the final solutions of the proposed PSO. 

3.4 The Proposed PSO Algorithm 
Once the initial particles are generated, the algorithm requires an initial velocity vector for each 

particle to update the position of the particles and continue the search in the feasible region of the problem. 

Initial velocities are generated by (18). 

0

min max min 2( )ijv v v v r       (18) 

In (18), min 4v   , max 4v   , and 2 ~ (0,1)r U . Values of ; 1,2,...,t

ijv j n  are bounded by (19) 

during all of the iterations of the algorithm. 

[ 4, 4]t

ijv       (19) 

If 4t

ijv  , then the algorithm modifies this velocity to +4; and if 4t

ijv   , then the velocity will 

be modified to -4. Once 
0; 1,2,...,iV i I  are generated, the position of the particles is updated using (20). 

1 0 0 0 0 0 0

1 1 2 2[ , ,..., ]

1,2,...,

i i i i i in inX x v x v x v

i I

   


   (20) 

In general, if 1 2[ , ,..., ]t t t t

i i i inV v v v  is the velocity vector that accompanies 
t

iX , then 
1t

iX 
, the 

position of the i th particle in iteration 1t  , is found by equation (21). 

1

1 1 2 2[ , ,..., ]t t t t t t t

i i i i i in inX x v x v x v        (21) 
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The algorithm stores the personal best or the best position of particle ; 1,2,...,i i I  during the 

search in ; 1,2,...,iP i I , and the global best or the best position of all the particles during the search in G

. The algorithm evaluates the objective function of all the particles in each iteration and updates the values 

of iP  and G  if required. The equation that updates the velocity vectors in each iteration is as follows: 

 1 ( )t t t

i i i iV wV cr P X                                             (22) 

In which w  and  , inertia weight and constriction coefficient, are calculated as follows: 

max min
max

2

2
; 4

2 4

w w
w w t

Iter

c
c c c




  

 
  

                                                (23) 

maxw  and minw  are two parameters set by the user, Iter  is the total number of iterations, and t  is 

the number of the current iteration. If objective function value of 
1t

iX 
 is greater than the objective function 

value of 
t

iX  for 1,2,...,i I , the proposed PSO algorithm applies the local search sub-algorithm to  

1t

iX 
. This sub-algorithm is described in the next section. The PSO algorithm stops when t Iter , and 

returns G  as the final solution. 

3.5 Local Search 

The local search sub-procedure first converts the particle in its corresponding permutation 
1t 
, 

once the particle 
1t

iX 
 is sent to this sub-algorithm, and computes the objective function value of this 

permutation. Suppose that 
1 (1,2,..., )t n   ; the following steps describe the local search algorithm: 

1. Select i  such that ; 1,2,..., ;i jcont cont j n j i   ; if more than one job can be selected with 

this condition, randomly select one of them. Then define the lateness of each job as 

; 1,2,...,
jmj j o jmL d S p j n    .  
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2. If 0iL  , set 1l   and proceed to step 3. Otherwise, go to step 5.  

3. In sequence 
1t 
, form  | ison therightof , 0jA j j i L  . Select job k A  with the 

greatest contribution. If A  , select the job that has the greatest contribution after iJ . 

Suppose that job k  is selected. If l R  go to step 4.  

4. Exchange the places of jobs i  and k  in the permutation. If the exchange results in a reduction 

in the value of the objective function, accept this exchange and proceed to step 7; otherwise, 

set 1l l  , reverse the exchange, remove job k  from the comparisons, and return to step 

3.  

5. In sequence 
1t 
, form  | ison theleftof , 0jA j j i L  . Select job k A  with the 

greatest contribution. If A  , select the job that has the greatest contribution after iJ . 

Suppose that job k  is selected. If l R  go to step 6.  

6. Exchange the places of jobs i  and k  in the permutation. If the exchange results in a reduction 

in the value of the objective function, accept this exchange and proceed to step 7; otherwise, 

set 1l l  , reverse the exchange, remove job k  from the comparisons, and return to step 

5.  

7. Use the SPV ruling of section 3.1 to code the resulted permutation. Submit this code to the PSO 

algorithm. 

R  is a parameter of the algorithm and will be determined by the user. As mentioned earlier, this 

algorithm uses the results of Corollary 1 in order to evaluate the objective function of the new permutation 

once an exchange is executed. Performance of the proposed PSO will be examined in the next section. 

4 Computational Results 
Microsoft Visual C++ 2008 was chosen to code the PSO algorithm. All the test problem instances 

are solved on a PC equipped with a 3GHz Intel Pentium IV CPU and 2 GB of RAM. To perform the 
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computational analysis, a number of test problems were selected from the literature available for  

max| |F no wait C . Car problems were introduced by Carlier (1978) and Rec problems were generated 

by Reeves (1995). These test problems are available from the OR-Library1. From the set of selected 

problems, Car problems have optimal solutions, while Rec problems do not have optimal solutions. To 

generate the due dates, a formula similar to Tari and Olfat (2014) was adopted: 

 
1 1

~ , 6
m m

i ij ij

j j

d U p TF p
 

 
  

 
     (24) 

In which TF  is the tightness factor of the due dates. For each test problem, 4 different tightness 

factor settings were considered according to (25) which results in a total of 60 test problems for 

max| , |iF no wait d C ; eight Car problems and seven Rec problems with four different tightness factors 

for each of these problems. Once the due dates are generated, the resulting problems are called Car+DD 

and Rec+DD. 

1

2

3

4

1

2

3

4

TF

TF

TF

TF









   (25) 

4.1 Tuning the Algorithm Parameters 
As seen in section 3, the developed PSO has 7 control parameters;  , the penalty coefficient in 

(16) is also considered a parameter of the algorithm. These parameters must be tuned to obtain the best 

performance of the developed algorithms. A Taguchi-based design of experience approach has been 

followed to determine the effect of the different values of the parameters on the performance of the 

algorithm. Accordingly, 3 different test problems with 4 different tightness factors were chosen; the 

considered test problems were Car01+DD, Rec13+DD and Rec31+DD. In addition 3 different values for 

each parameter were selected. This leads to a Taguchi design with 7 factors and 3 levels for each factor. 

                                                           
1 Beasley, J.E. OR-Library: distributing test problems by electronic mail. July 2009 [cited 2014 March]; Available 

from: http://people.brunel.ac.uk/~mastjjb/jeb/info.html. 
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Considered values for the parameters can be found in Table 3. The parameter values were selected in a 

trade-off between the required solution time of the algorithm and the capability of the algorithm for 

diversification of the solutions and intensification around the promising results. 

Table 3 – Parameter Combinations 

Parameter Value 1 Value 2 Value 3 

I  
2

n
 n  2n   

minw   0.4 0.5 0.6 

maxw   0.9 1.0 1.1 

c   4.25 4.5 4.75 

R   40 60 80 

Iter   10n  15n  20n   

   1 3 5 

 

The interaction between the parameters were assumed to be negligible. Accordingly, the Taguchi 

design requires 27 different combinations of the levels of the considered factors to generate reliable results. 

To supply the Taguchi analysis with replications and improve the robustness of the design, each test 

problem and tightness factor combination was solved 5 times by the PSO algorithm. According to (26), this 

leads to 1620 independent runs of the algorithm. 

1620 3Problems 4TightnessFactor 5Replications 27Factor/LevelCombinations     

 (26) 

Once the objective function values of the mentioned 1620 runs of the algorithm were obtained, (27) 

was used to calculate the relative deviation (RD) of each objective function value from the best objective 

function value in each considered combination of the test problem and due date tightness factor. 

Prob Best
Prob

Best

OFV OFV
RD

OFV


    (27) 
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In which 
ProbRD  is the relative deviation of the considered test problem, 

ProbOFV  is the objective 

function value of the considered test problem, and 
BestOFV  is the minimum objective function value 

among the 5 replications of the considered test problem. Afterward, the results were analyzed with the 

Taguchi design of experiments approach. Figure 2 presents the main effects plot for the means, and Figure 

3 depicts the main effects plot for the signal-to-noise ratios. Accordingly, it can be noticed that ties exist in 

selecting the best combination for the parameter values (minimum values for signal-to-noise and mean do 

not occur at the same parameter values). However, analysis of variance shows that the parameters I  and 

maxW  are not statistically significant. Therefore, it is possible to predict the response variable (
ProbRD ) by 

the remaining parameters and using the Taguchi method. Once the prediction is performed, extra runs of 

the algorithm verify that the following combination for the parameters is more desirable; this is due to the 

fact that according to (27), smaller values for 
ProbRD  are more desirable. Interested reader is referred to 

Montgomery (2008) for more information about Taguchi method. 

min

max

2

0.4

1.1

4.5

40

20

3

n
I

W

W

c

R

Iter n

















   (28) 
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Figure 2 – Main Effects Plot for the Means 
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Figure 3 – Main Effects Plot for the Signal-to-Noise Ratio 
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4.2 Dispatching Rules 
As mentioned in section 1, Hunsucker and Shah (1992), Brah (1996) and Tari and Olfat (2014) 

study the efficiency of a number of dispatching rules for flow shop problem with different settings in the 

presence of due date constraints. Hunsucker and Shah (1992) show that when scheduling a constrained flow 

shop with multiple processors and due dates, the first-in-first-out priority rule is superior when the objective 

function is to minimize the mean tardiness. However, when minimizing the number of tardy jobs, a superior 

priority rule cannot be established. Tari and Olfat (2014) conclude that for tardiness flow shop models with 

intermediate due dates, simpler priority rules such as shortest processing time usually lead to better 

solutions; however, such cannot be concluded for the case of traditional tardiness flow shop with 

intermediate due dates.  

Two different priority dispatching rules were considered in this paper, namely, Earliest Due Date 

(EDD) and Random Dispatching (RD). Five test problems were selected from the set of the considered test 

problems of this paper, and were solved using the proposed algorithm ( 3  ). Initial solutions of these 

problems were generated based on the EDD and RD rules. Table 4 summarizes the objective function values 

of the initial solutions of these test problems under EDD and RD. Figure 4 illustrates the progress of the 

proposed PSO when different dispatching rules are applied to Rec01+DD.  

Table 4 and Figure 4 demonstrate that the quality of the initial solutions as well as the quality of 

the final answer of the EDD rule were both significantly superior to the RD rule. In other words, the 

algorithm generally produces dominant final solutions when the search commences from a more promising 

area of the feasible region. Therefore, in sections 4.3 and 4.4, EDD was selected as the superior method to 

generate the initial solutions of the proposed PSO and to initialize the search.  
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Table 4 – Quality of Solutions with Different Dispatching Rules 
  EDD RD EDD RD 

Problem TF 
Initial 

OFV 
Makespan Penalty 

Initial 

OFV 
Makespan Penalty 

Final 

OFV 
Makespan Penalty 

Final 

OFV 
Makespan Penalty 

Car01 

+DD 

1 9,487 9,487 0 29,653 12,106 17,547 8,298 8,298 0 8,343 8,343 0 

2 10,430 10,430 0 29,057 11,186 17,871 8,168 8,168 0 8,338 8,338 0 

3 26,912 10,757 16,155 50,500 9,724 40,776 11,356 9,316 2,040 12,826 9,526 3,300 

4 75,332 10,499 64,833 125,714 12,542 113,172 48,940 8,830 40,110 51,658 9,172 42,486 

Car05 

+DD 

1 11,547 11,547 0 14,296 14,296 0 9,159 9,159 0 9,188 9,188 0 

2 11,078 11,078 0 24,873 11,793 13,080 9,454 9,454 0 9,454 9,454 0 

3 12,997 11,950 1,047 58,714 12,364 46,350 11,443 11,347 96 11,517 11,127 390 

4 52,021 11,179 40,842 135,265 13,063 122,202 44,182 10,612 33,570 39,223 10,282 28,941 

Rec01 

+DD 

1 1,837 1,837 0 10,582 2,152 8,430 1,672 1,672 0 1,706 1,706 0 

2 7,446 1,954 5,492 24,322 2,083 22,239 3,119 1,718 1,401 3,430 1,732 1,698 

3 20,574 1,950 18,624 29,856 2,118 27,738 15,627 1,683 13,944 14,452 1,672 12,780 

4 33,987 2,064 31,923 39,358 2,038 37,320 23,704 1,603 22,101 23,978 1,646 22,332 

Rec19 

+DD 

1 4,448 3,866 582 27,989 4,106 23,883 3,224 3,224 0 3,193 3,193 0 

2 24,427 3,811 20,616 83,731 4,396 79,335 5,449 3,229 2,220 6,307 3,334 2,973 

3 67,840 3,883 63,957 83,353 4,228 79,125 40,139 3,155 36,984 43,124 3,206 39,918 

4 119,819 4,286 115,533 140,435 4,433 136,002 66,052 3,211 62,841 68,314 3,031 65,283 

Rec37 

+DD 

1 449,348 11,987 437,361 609,434 12,662 596,772 173,978 8,996 164,982 155,496 9,012 146,484 

2 601,202 11,789 589,413 834,140 13,289 820,851 297,457 8,917 288,540 312,406 8,944 303,462 

3 952,484 12,860 939,624 868,507 12,148 856,359 477,639 8,907 468,732 480,874 8,881 471,993 

4 1,067,133 12,339 1,054,794 1,150,176 13,047 1,137,129 621,869 9,065 612,804 631,522 8,818 622,704 
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Figure 4 – Progress of the Developed PSO When Different Dispatching Rules Applied to Rec01+DD 
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Table 5 – Computational Results of the Problems with Optimal Solution 

Prob. 
Size 

m*n 

No-

Wait 

OFV1,2 

TF3 
Optimum 

Solution4 
Best 

OFV 

Best 

maxC  

Average 

OFV 

Average 

maxC  

Car1

+DD 
11*5 8,142 

1 8,152 8,152 8,152 8,178 8,178 

2 8,164 8,164 8,164 8,194 8,194 

3 NFS5 11,356 9,316 12,479 9,476 

4 NFS 48,986 8,948 49,527 8,843 

Car2

+DD 
13*4 8,242 

1 8,646 8,471 8,471 8,523 8,523 

2 9,921 9,002 9,002 9,213 9,213 

3 NFS 17,066 9,449 18,699 9,482 

4 NFS 39,145 9,037 40,370 9,110 

Car3

+DD 
12*5 8,866 

1 9,264 9,084 9,084 9,084 9,084 

2 9,120 9,220 9,220 9,319 9,319 

3 NFS 11,409 9,696 12,460 9,995 

4 NFS 67,267 9,667 69,188 9,876 

Car4

+DD 
14*4 9,195 

1 10,305 9,746 9,746 10,228 10,167 

2 NFS 16,286 10,979 16,310 10,992 

3 NFS 23,136 11,241 24,500 11,025 

4 NFS 74,245 10,630 76,132 10,359 

Car5

+DD 
10*6 9,159 

1 9,159 9,159 9,159 9,196 9,196 

2 9,454 9,558 9,558 9,695 9,695 

3 11,537 11,537 11,537 11,537 11,537 

4 NFS 39,223 10,282 40,181 10,305 

Car6

+DD 
8*9 9,690 

1 9,690 9,690 9,690 9,758 9,758 

2 9,690 9,690 9,690 9,690 9,690 

3 9,690 9,690 9,690 9,837 9,837 

4 NFS 11,429 11,090 11,429 11,090 

Car7

+DD 
7*7 7,705 

1 7,705 7,705 7,705 7,803 7,803 

2 7,705 7,705 7,705 7,705 7,705 

3 7,705 7,705 7,705 7,705 7,705 

4 NFS 18,014 8,816 18,014 8,816 

Car8

+DD 
8*8 9,372 

1 9,372 9,372 9,372 9,387 9,387 

2 9,372 9,372 9,372 9,372 9,372 

3 9,573 9,573 9,573 9,573 9,573 

4 NFS 14,213 11,552 14,213 11,552 
1 OFV: Objective Function Value 

2 All the OFVs in this column belong to the optimum solution of max| |F no wait C  
3 TF: Tightness Factor 

4 Optimum solution of max| , |iF no wait d C ; bold numbers are proven optimum solutions. 
5 No Feasible Solutions Found 

 

4.3 Problems with Optimal Solutions 
Table 5 presents the computational results of Car01+DD through Car08+DD. These problems 

generally have fewer jobs compared to the set of Rec+DD problems. As a result, it is possible to solve many 

of them to optimality by means of the mathematical model of section 2.1. These problems were solved 
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using IBM ILOG CPLEX. It should be noted that the solver was not able to find the optimal solution of 

some of the test problems in less than 2 hours. Therefore, the reported solutions of the model are the best 

solutions that were obtained after 2 hours of execution. As a result, the solutions of the proposed PSO may 

be better than the solutions of the mathematical model. The proven optimum solutions appear in boldface. 

One can verify that the proposed algorithm is very competitive and is able to produce the optimal solutions 

in most cases. Average CPU time to solve the mathematical model was 3,354 seconds, and the algorithm’s 

average CPU time was 2.4 seconds. 

4.4 Problems without Optimal Solutions 
The set of 21 Rec problems were solved with the developed algorithm and without considering the 

due date constraints; the results will be compared to the competitive methods in the literature developed for 

max| |F no wait C . Table 6 summarize the computational results of the proposed PSO for the problems 

without optimal solutions in max| |F no wait C  environment. In this table the first two columns present 

the test problem and the size of the problem. The third column belongs to the makespans of Rajendran 

(1994), which have been traditionally used for comparison purposes. Next two columns present the 

objective function of the proposed algorithm and the relative deviation between the reported objective 

function and the makespan of Rajendran (1994). Each test problem was solved five times but only the best 

solution is reported. This approach keeps the results comparable to the competitive methods from the 

literature. The reported makespans were obtained by assigning 0   when solving the test problems, 

which is analogous to removing the penalty term of equation (16). The next two columns belong to the 

solution found for the test problem in max| |F no wait C  environment by the TS+PSO of Samarghandi 

and ElMekkawy (2012b) (a hybrid of the tabu search and PSO). Next columns present the relative deviation 

between the proposed solutions of the competitive methods from the literature and the makespan of 

Rajendran (1994). It can be verified that although the proposed algorithm is specifically designed to deal 
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with the due date constraints, its computational results are very competitive. Relative deviation is calculated 

by: 

*

max max

*
1,...,5

max

Relative Deviation max 100
i

i

c c

c

  
  

  
  (29) 

In which 
max

ic  is the proposed makespan of the algorithm and 
*

maxc  is the proposed makespan of 

Rajendran (1994). 

To verify the effectiveness of the proposed PSO for the problems with due date constraints, seven 

test problems from the set of Rec problems with different sizes were selected. According to (24), four 

different tightness factors were employed to generate four random due dates for each test problem. Table 7 

summarizes the computational results of the proposed PSO for the problems without optimal solutions when 

due date constraints are added to the test problems. This table also presents the proposed solution of 

Samarghandi and ElMekkawy (2012b) for Rec+DD test problems when TS+PSO of Samarghandi and 

ElMekkawy (2012b) is modified to accommodate due date constraints. The reason for selecting TS+PSO 

of Samarghandi and ElMekkawy (2012b) for comparison with the proposed algorithm of this paper is that 

according to Table 6 TS+PSO generates the best solutions for max| |F no wait C  for most of the 

considered test problems. Each test problem is solved five times. For the proposed algorithm the best, 

average and worst objective functions and makespans as well as the CPU times are reported; for the 

TS+PSO, only the best solutions are reported. The proposed PSO takes about 20 seconds of CPU time to 

generate solutions for problems with 75 jobs and 20 machines; average CPU time for the same problem 

when solved with TS+PSO was 48 seconds. Deviation between the best objective function value of the 

proposed PSO and the best objective function value of the TS+PSO is calculated as follows: 

Deviation 100
PSO TS PSO

Best Best

PSO

Best

OFV OFV

OFV


    (30) 
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Accordingly, negative values mean that the objective function of the proposed PSO is superior to 

the objective function of the TS+PSO, and vice versa. The average deviation indicates that the proposed 

PSO generates superior objective functions compared to TS+PSO. It is expected that as the value of   

increases, total lateness values decrease and makespans slightly increase. This is a natural outcome of 

imposing the objective function with more penalty when lateness occurs; when penalties associated with 

the lateness increase, the algorithm will sacrifice the makespan in order to decrease the lateness and improve 

the objective function value.  
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Table 6 - Comparison of the Proposed Algorithm with Competitors for max| |F no wait C  

  Rajendran 

(1994) 
Proposed Algorithm 

Samarghandi and 

ElMekkawy (2012b) 

Liu et 

al. 

(2007) 

Schuster and 

Framinan 

(2003) 

Grabowski and Pempera (2005) 

Prob. 
Size 

m*n 
OFV OFV 

Relative 

Deviation1 
OFV 

Relative 

Deviation 
HPSO VNS GASA DS DS+M TS TS+M TS+MP 

Rec01 20,5 1,590 1,528 3.90 1,528 3.90 3.77 2.77 3.96 3.71 3.58 4.03 3.96 3.96 

Rec03 20,5 1,457 1,361 7.05 1,361 7.05 6.59 4.32 4.46 3.43 4.43 6.59 6.59 6.59 

Rec05 20,5 1,637 1,511 8.34 1,511 8.34 7.39 7.03 6.90 5.62 5.62 7.39 7.64 7.70 

Rec07 20,10 2,119 2,043 3.72 2,042 3.77 3.63 2.31 3.45 1.09 1.08 3.63 3.63 3.63 

Rec09 20,10 2,141 2,043 4.80 2,027 5.62 4.58 2.38 4.48 3.60 3.60 4.62 4.58 4.58 

Rec11 20,10 1,946 1,888 3.07 1,881 3.46 3.34 1.54 3.34 1.44 1.44 3.34 3.34 3.34 

Rec13 20,15 2,709 2,545 6.44 2,545 6.44 6.05 5.76 5.65 3.43 4.43 6.05 6.05 6.05 

Rec15 20,15 2,691 2,529 6.41 2,529 6.41 6.02 5.91 6.02 4.83 4.83 5.91 6.02 5.91 

Rec17 20,15 2,740 2,587 5.91 2,587 5.91 5.58 5.15 5.47 5.51 5.51 5.58 5.58 5.58 

Rec19 30,10 3,157 2,864 10.23 2,861 10.35 9.15 7.57 5.45 7.70 7.44 9.72 9.25 9.38 

Rec21 30,10 3,015 2,843 6.05 2,822 6.84 5.70 4.21 2.22 3.68 4.68 6.37 6.30 6.17 

Rec23 30,10 3,030 2,707 11.93 2,700 12.22 10.80 10.70 6.70 7.29 7.29 10.76 10.73 10.89 

Rec25 30,15 3,835 3,596 6.65 3,593 6.74 5.71 5.45 2.69 3.08 3.08 5.97 6.31 6.21 

Rec27 30,15 3,655 3,434 6.44 3,431 6.53 6.13 5.83 2.60 3.64 3.64 5.64 6.10 5.83 

Rec29 30,15 3,583 3,291 8.87 3,291 8.87 7.81 7.23 3.99 7.23 7.36 7.94 8.28 7.94 

Rec31 50,10 4,631 4,336 6.80 4,336 6.80 5.92 4.71 -2.72 3.76 3.78 5.90 6.13 6.22 

Rec33 50,10 4,770 4,496 6.09 4,466 6.81 5.51 5.35 -4.78 1.97 2.01 5.51 6.31 6.37 

Rec35 50,10 4,718 4,441 6.24 4,417 6.81 6.02 5.51 -3.67 4.94 4.94 6.08 6.17 5.91 

Rec37 75,20 8,979 8,170 9.90 8,081 11.11 8.89 10.00 -5.89 7.80 7.92 9.41 9.49 9.36 

Rec39 75,20 9,158 8,593 6.58 8,517 7.53 6.79 5.32 -8.80 4.97 5.12 7.00 6.99 6.91 

Rec41 75,20 9,344 8,627 8.31 8,520 9.67 7.94 7.41 -6.79 6.08 6.08 8.78 8.57 8.82 

Average N/A N/A 6.84 N/A 7.36 6.35 5.55 1.65 4.51 4.66 6.49 6.57 6.54 
1 Larger numbers are more desirable 
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Table 7 – Computational Results of the Large-Instance Problems 

   The Proposed Algorithm 
TS+PSO Samarghandi and 

ElMekkawy (2012b) 

Deviation 

Between 

OFV of 

the 

Proposed 

PSO and 

TS+PSO 

Pro

b. 

Size 

m*n 
TF 

Best 

OFV 

Best 

Makespan 

Total 

Lateness 

Worst 

OFV 

Worst 

Makespan 

Total 

Lateness 

Average 

OFV 

Average 

Makespan 

Average 

Lateness 

Average 

CPU 

Time 

Best 

OFV 

Best 

Makespan 

Total 

Lateness 

Rec

01+

DD 

20*

5 

1 1,668 1,668 0 1,697 1,697 0 1,684 1,684 0 3.03 1,682 1,682 0 -0.84 

2 3,119 1,718 467 4,685 1,763 974 3,782 1,737 681 3.59 3,442 1,747 1,695 -10.36 

3 14,809 1,597 4,404 15,683 1,682 4,667 15,237 1,665 4,524 3.37 15,132 1,671 13,461 -2.18 

4 23,688 1,605 7,361 24,214 1,624 7,530 23,994 1,646 7,449 3.18 23,806 1,612 22,194 -0.50 

Rec

07+

DD 

20*

10 

1 2,127 2,127 0 2,141 2,141 0 2,134 2,134 0 4.27 2,142 2,142 0 -0.71 

2 2,138 2,138 0 2,228 2,228 0 2,191 2,191 0 4.46 2,241 2,241 0 -4.82 

3 2,869 2,299 190 2,869 2,299 190 2,869 2,299 190 4.10 2,461 2,260 201 14.22 

4 18,308 2,171 5,379 19,379 2,174 5,735 18,898 2,199 5,566 4.78 17,725 2,248 15,477 3.18 

Rec

13+

DD 

20*

15 

1 2,553 2,553 0 2,670 2,670 0 2,595 2,595 0 5.19 2,711 2,711 0 -6.19 

2 2,651 2,651 0 2,655 2,655 0 2,652 2,652 0 5.71 2,607 2,607 0 1.66 

3 2,648 2,648 0 2,773 2,773 0 2,711 2,711 0 6.78 2,681 2,681 0 -1.25 

4 13,456 2,785 3,557 15,079 2,764 4,105 14,417 2,787 3,876 5.80 12,154 2,743 9,411 9.68 

Rec

19+

DD 

30*

10 

1 3,087 3,087 0 3,165 3,165 0 3,117 3,117 0 8.25 3,203 3,203 0 -3.76 

2 4,799 3,233 522 5,436 3,252 728 5,143 3,220 641 8.58 5,046 3,228 1,818 -5.15 

3 35,067 3,075 10,664 36,905 3,119 11,262 36,037 3,101 10,979 6.86 35,529 3,075 32,454 -1.32 

4 69,262 3,178 22,028 72,850 3,166 23,228 71,156 3,160 22,665 5.82 70,971 3,147 67,824 -2.47 

Rec

25+

DD 

30*

15 

1 3,710 3,710 0 3,733 3,733 0 3,722 3,722 0 8.39 3,747 3,747 0 -1.00 

2 3,878 3,878 0 3,986 3,983 1 3,926 3,925 0 10.23 4,049 4,049 0 -4.41 

3 14,927 3,917 3,670 17,740 4,027 4,571 16,418 3,940 4,159 7.60 17,498 3,965 13,533 -17.22 

4 63,080 3,893 19,729 66,136 3,946 20,730 64,413 3,922 20,163 6.75 65,551 3,934 61,617 -3.92 

Rec

31+

DD 

50*

10 

1 46,174 4,678 13,832 52,501 4,837 15,888 48,348 4,747 14,534 10.45 53,696 4,868 48,828 -16.29 

2 97,712 4,676 31,012 101,946 4,809 32,379 99,773 4,708 31,688 12.36 97,466 4,637 92,829 0.25 

3 143,265 4,629 46,212 149,169 4,734 48,145 146,695 4,696 47,333 8.96 140,540 4,697 135,843 1.90 

4 215,235 4,677 70,186 218,231 4,778 71,151 216,660 4,710 70,650 9.81 209,627 4,589 205,038 2.61 

Rec

37+

DD 

75*

20 

1 155,357 8,786 48,857 160,774 8,806 50,656 158,361 8,797 49,855 25.28 160,274 8,804 151,470 -3.16 

2 292,245 8,787 94,486 298,350 8,592 96,586 295,868 8,725 95,714 25.40 314,104 8,842 305,262 -7.48 

3 459,561 8,904 150,219 464,090 8,813 151,759 462,341 8,866 151,158 24.14 478,000 8,986 469,014 -4.01 

4 616,521 8,676 202,615 636,607 8,797 209,270 625,643 8,743 205,633 23.72 631,471 8,791 622,680 -2.42 

Average N/A N/A N/A N/A N/A N/A N/A N/A N/A 9.17 N/A N/A N/A -2.36 
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5 Conclusions 

This paper considered the scheduling problem of max| , |iF no wait d C . The problem is strongly 

NP-Hard. A mathematical model of the problem was developed, and the problem was reduced to a 

permutation problem. An efficient algorithm was developed to generate timetables for max| |F no wait C  

when a permutation of jobs is given. A particle swarm algorithm was developed to deal with the general 

cases of the max| , |iF no wait d C  problem. A new local search approach was introduced to further 

improve the computational results of the proposed PSO. A design of experiments approach using Taguchi 

method was employed to tune the parameters of the developed algorithm. Two dispatching rules were 

investigated; accordingly, the earliest due date dispatching rule was selected to generate the initial solutions 

necessary for initializing the proposed PSO. 

A thorough computational analysis was performed on the small- and large-instance test problems 

available in the literature. Computational analysis consisted of different penalty coefficients and due date 

tightness factors. Optimal solution of several small-instance test problems were found by means of the 

developed mathematical model. The developed PSO proved to be very efficient for problems with and 

without optimal solutions. The algorithm was able to generate good-quality solutions for the test problems 

in a reasonable time.  

A possibility for future research is finding lower and upper bounds for  

max| , |iF no wait d C . In contrast, finding feasible solutions for problems with tight due dates can be a 

challenge. Therefore, developing an approach that is able to efficiently generate feasible solutions is very 

promising. Moreover, a thorough study of the different dispatching rules and their effects on the quality of 

the final solutions would be useful.  
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