
1

A particle swarm optimization for the no-wait flow shop problem with due

date constraints

Hamed Samarghandi

Department of Finance and Management Science, Edwards School of Business,

University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5A7

samarghandi@edwards.usask.ca

Abstract
This paper considers the no-wait flow shop scheduling problem with due date constraints. In the

no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover,

a due date is associated with the completion of each job. The considered objective function is makespan.

This problem is proved to be strongly NP-Hard. In this paper a particle swarm optimization (PSO) is

developed to deal with the problem. Moreover, the effect of some dispatching rules for generating initial

solutions are studied. A Taguchi-based design of experience approach has been followed to determine the

effect of the different values of the parameters on the performance of the algorithm. To evaluate the

performance of the proposed PSO, a large number of benchmark problems are selected from the literature

and solved with different due date and penalty settings. Computational results confirm that the proposed

PSO is efficient and competitive; the developed framework is able to improve many of the best-known

solutions of the test problems available in the literature.

Keywords: Flow Shop Scheduling; No-wait; Due Date Constraints; Makespan; Particle Swarm

Optimization

1 Introduction
The no-wait flow shop problem is a special case of the classical flow shop problem, in which there

should be no waiting time between successive operations of jobs. In other words, once processing is started,

no interruption is permitted between operations of the same job. Moreover, in this paper, completion of

each job is associated with a due date. In other words, jobs must be completed before their due dates. Due

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226159940?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

date constraints are among the most applicable constraints in scheduling and sequencing literature because

real-world jobs are usually accompanied by a deadline for completion (Hunsucker and Shah 1992). In this

paper it is assumed that all the jobs are ready at time zero (all release dates are zero) and the considered

performance measure is makespan.

Following the three-field notation of the scheduling problems, the problem can be designated as

max| , |iF no wait d C . It can be noted that the objective function of the considered problem is makespan

and since the objective function does not provide any hints about the due date constraints, these constraints

should be explicitly mentioned in the field. No-wait scheduling problem was first studied by Piehler (1960).

King and Spachis (1980) proved that the no-wait flow shop problem with makespan performance measure

(
max| |F no wait C) can be transformed to the Asymmetric Travelling Salesperson Problem (ATSP).

Röck (1984) proved that (
max| |F no wait C) is NP-Hard. Since

max| , |iF no wait d C is a

generalization of
max| |F no wait C , it can be inferred that

max| , |iF no wait d C is also strongly NP-

Hard.

Industrial applications mentioned in the literature for
max| , |iF no wait d C include chemical

industries (Rajendran 1994), food industries (Hall and Sriskandarajah 1996), steel production (Wismer

1972), pharmaceutical industries (Raaymakers and Hoogeveen 2000), and production of concrete products

(Grabowski and Pempera 2000). Hall and Sriskandarajah (1996) provide a comprehensive review of the

applications of the problem.

If a job is finished after its completion deadline, the company will face considerable penalties for

compensation. Companies always look for methods to reduce waste and improve efficiency; therefore,

reducing the number of late days or the number of tardy jobs is important when a company tries to avoid

penalties (Pinedo 2002). Furthermore, a contractor will tremendously damage its reputation as a reliable

firm if it frequently delivers jobs after their due dates are passed (even if the number of late days is relatively

3

small). Trust between companies will be also damaged if late jobs are not frequent, but a few jobs are

delivered considerably past their due dates. Note that on-time delivery of the jobs can be only one of the

goals of a company. Companies can be interested in optimizing other criteria such as makespan, while

reducing the number of late days or tardy jobs. Hence,
max| , |iF no wait d C is not only an applicable

problem with many real-world applications, but it is proved to be NP-Hard.

Hunsucker and Shah (1992) studied the problem of scheduling a constrained flow shop with

multiple processors and due dates. The main purpose of their study was to evaluate the performance of six

priority rules under different congestion levels with mean tardiness and number of tardy jobs as the

performance measure. The performance of 10 different priority dispatching rules in a multi-processor flow

shop for mean and maximum tardiness was studied in Brah (1996). Sarper (1995) studied the problem of

minimization of the sum of absolute deviations of job completion times from a common due date for the

two-machine flow shop problem. Gupta et al. (2000) studied a two-machine flow shop problem in which

all the jobs have a common due date and developed an enumerative algorithm with branch and bound

components to minimize either the sum or the maximum earliness and tardiness. Gowrishankar et al. (2001)

considered the problem of minimizing the variance of completion of jobs and minimizing the sum of squares

of deviations of job completion times from a common due date. Błażewicz et al. (2005) studied a two-

machine flow shop problem with a common due date and developed a dynamic programming approach to

minimize the total weighted late work criterion.

More recently, Błażewicz et al. (2008) developed a number of metaheuristic algorithms for the

two-machine flow shop problem with a common due date and the weighted late work performance measure.

Panwalkar and Koulamas (2012) considered the problem of minimizing a common due date and the number

of tardy jobs in a two-machine flow shop syntax in which the first operation of each job is smaller than the

second operation and developed an
2()O n algorithm for this problem. Tang et al. (2011) considered a flow

shop environment with due date constraints and developed a hybrid of particle swarm optimization and

4

knowledge evolution algorithm. Ebrahimi et al. (2014) studied a hybrid flow shop environment with

sequence dependent setup times and uncertain due dates with minimization of makespan and total tardiness

as the objective functions and developed two metaheuristic algorithms to deal with this problem. Tari and

Olfat (2014) considered the tardiness flow shop problem with intermediate due dates. They developed a

number of heuristic priority dispatching rules for this problem and compared their performance using

computational results. Dhingra and Chandna (2010) developed a number of metaheuristic methods to deal

with the flow shop problem with sequence dependent setup times and due date constraints.

It can be noted that although the flow shop problem and its variants in the presence of due date

constraints have received a lot of attention in the literature, the problem of
max| , |iF no wait d C has not

yet been studied. Table 1 summarizes the most relevant research efforts in the area of no-wait flow shop

scheduling.

In this paper, a Particle Swarm Optimization (PSO) is developed to deal with

max| , |iF no wait d C . Moreover, an algorithm is developed to efficiently create a timetable from a given

sequence. The timetabling algorithm is further coupled with the developed PSO to explore the feasible

region of the problem. Although
max| , |iF no wait d C has numerous practical applications, it has

received little attention in the literature. In this paper, different due date settings are considered, and

computational results are compared with the results of the most competitive methods in the literature for

max| |F no wait C .

The contribution of this paper is threefold. First,
max| , |iF no wait d C is studied in this paper for

the first time; a mathematical model is developed for this problem and a number of small-instance test

problems are solved to optimality. A penalty method is employed to deal with the general case. Second, the

effect of considering different due date tightness scenarios on the makespan of
max| , |iF no wait d C is

studied by applying the developed PSO to a large number of test problems; the effect of two of the most

5

widely used dispatching rules on the final solutions is studied and the best dispatching rule is selected to

generate initial solutions for the developed PSO algorithm. Finally, although the PSO algorithm is

developed to deal with the no-wait flow shop problem with due date constraints, it outperforms competitive

methods specifically designed for
max| |F no wait C . Computational results show that the proposed PSO

method is able to find good-quality solutions for the test problems in a reasonable time.

Table 1 – Review of the No-Wait Flow Shop Scheduling Literature

Research Problem Considered Proposed Method

Araujoa and Naganoa (2011) max| , |sdF no wait S C

Heuristic

Samarghandi and ElMekkawy

(2011) max2, 1| , |F S no wait setup C

Hybrid variable neighborhood

search

(Samarghandi and ElMekkawy

2012a) max| , |F no wait setup C

PSO and genetic algorithm

Nagano et al. (2012) | , | iF no wait setup C 
Evolutionary clustering search

Jolai et al. (2012)

No-wait flexible flow shop scheduling

problem with sequence dependent setup

times

Several metaheuristics

Rabiee et al. (2012)

No-wait two-machine flow shop

problem with sequence dependent setup

times and probable rework

Several metaheuristics

Ying et al. (2012)

No-wait flow shop manufacturing cell

scheduling problem (FMCSP) with

sequence dependent family setup times

Several metaheuristics

Samarghandi and ElMekkawy

(2013) max2, 1| , |J S no wait setup C Genetic algorithm

Nagano et al. (2014) max| , |sdF no wait S C Evolutionary clustering search

Samarghandi and ElMekkawy

(2014) max| , |sdF no wait S C PSO

Samarghandi (Article in Press) max, | , |Q sdF S no wait S C Genetic algorithm

Nagano and Araújo (2014)
No-wait flow shop problem with

sequence-dependent setup times
Heuristics

Nagano et al. (Article in Press) | , |sd iF no wait S C  Heuristics

The rest of the paper is outlined as follows. Section 2 will be devoted to the problem description;

also, a mathematical model for the problem will be developed in section 2. Section 3 will explain the

proposed PSO algorithm. Furthermore, the employed penalty method will be discussed in section 3. Section

6

4 will study a number of dispatching rules. Also, computational results are summarized in this section.

Section 5 will discuss the concluding remarks and future research directions.

2 Problem Description

2.1 Notation and the Mathematical Model
The following notation is used throughout this paper:

M Set of machines

| |m M

Number of machines

N Set of jobs

| |n N Number of jobs

iJ Job i

ijo j th operation of iJ

ijp

Processing time of the j th operation of iJ on its respective machine

iS

Starting time of iJ

ijoS
 Starting time of ijo

id Due date of iJ

l Sequence l

maxC Makespan of l

Brackets are used to indicate consecutive jobs, i.e., []iS refers to the starting time of the job planned

to be processed after i th job in a given sequence. Based on the above notations, a mixed integer linear

programming model for
max| , |iF no wait d C is as follows:

maxMin C (1)

max ; 1,2,...,
imo imC S p i n   (2)

1 1 1(1) ; 1,2,..., ; 1,2,...,
k io ik o iS M x S p i n k n      (3)

[]
; 1,2,..., ; 1,2,..., 1

i j ijo o ijS S p i n j m     (4)

; 1,2,...,
imo im iS p d i n   (5)

7

1

1; 1,2,...,
n

ij

i

x j n


  (6)

1

1; 1,2,...,
n

ij

j

x i n


  (7)

1; 1,2,..., ; 1,2,...,ij jix x i n j n    (8)

1 1

1
n n

ij

i j

x n
 

  (9)

0; 1,2,..., ; 1,2,...,
ijoS i n j m   (10)

{0,1}; 1,2,..., ; 1,2,...,ijx i n j n   (11)

In this model, the objective function is to minimize the makespan. ijx is a binary variable that is

defined as follows:

1 if job isimmediatelyafter in thesequence

0 Otherwise
ij

j i
x


 


 (12)

Also, M is a sufficiently large number. (2) defines that makespan equals the finish time of the last

operation of the last job. (3) assures that the operations do not overlap; this constraint is binding if
kJ is

scheduled immediately after iJ in the sequence. (4) imposes the no-wait constraints. (5) is the due date

constraint. According to (5), the last operation of each job should finish before its associated due date.

Constraints (6), (7), (8) and (9) guarantee that all the jobs will appear exactly once in the sequence. The

correctness of this set of constraints can be verified by extracting the values of ijx from any given sequence.

Once a sequence of the jobs is available, an algorithm is required to create the actual timetable and compute

the makespan of this sequence.

2.2 Timetabling Algorithm
According to the mathematical model of section 2.1, a sequence that violates due date constraints

is an infeasible sequence. Consequently, it is assumed that none of the sequences that will be discussed in

the rest of this subsection violate the due date constraints.

8

Algorithm 1: If maxc is the makespan of the partial sequence (1,2,...,)i  , and maxc is the

makespan of (1,2,..., ,)i j  , then [] max maxj icont cont c c   is called the contribution of job

[]i j ; and []icont can be calculated as follows:

Step 1: Define a counter for the operations of job i and a counter for operations of job []i ; call the

former counter t and the latter w .

Step 2: Set 2; 1t w  .

Step 3: If []it i wp p , set 1t t  and 1w w  . If 1t m  , proceed to step 8; otherwise go

back to the beginning of step 3. If []it i wp p , proceed to step 4.

Step 4: Set
[]min | 0

k

il i w

l t

z k p p


  
    

  
 and proceed to step 5. If the value of z cannot be

determined, go to step 7.

Step 5: Modify the value of izo as []

z

iz il i w

l t

p p p


 
  
 
 . Proceed to the next step.

Step 6: Set 1w w  and t z . If 1t m  , go to step 8; otherwise, go back to step 3.

Step 7: Set [] []

m m

i i l il

l w l t

cont p p
 

   
    
   
  . Stop.

Step 8: Set [] []i i mcont p . Stop.

Figure 1 illustrates the above algorithm. Proof of Algorithm 1 can be easily verified using examples

and Gantt charts, and therefore is eliminated from this paper. ■

9

Figure 1 – Illustration of Algorithm 1

Proposition 1: Makespan of permutation (1,2,...,)n  can be calculated as

max 1 1

2 1 2

n m n

i j i

i j i

c cont cont p cont
  

      .

10

Proof: Suppose permutation (0,1,2,...,)n  is such that 0 0; 1,...,jp j m  . If algorithm 1 is

applied to   to compute 1cont , since 0 0; 1,...,jp j m  , the algorithm proceeds to step 4 when it reaches

the smallest w such that 1 0wp  . Moreover, 0

1

0
m

l

l w

p
 

 
 

 
 , in other words, the index k of step 4 of

Algorithm 1 does not exist; therefore, the algorithm proceeds to step 7 and calculates 1cont by (13):

1

1

1

0

[0] 1 1 0 1 1 1

1 1

0

w

j

j

pm m m m

l l l j

l w l w l w j

cont cont p p p cont p







    

       
             

       
    (13)

The algorithm then will be applied to jobs 2,3,...,n to calculate each job’s contribution. ■

Corollary 1: If makespan of (1,2,..., 1, , 1,..., 1, , 1,...,)i i i j j j n      is maxc , makespan of

(1,2,..., 1, , 1,..., 1, , 1,...,)i j i j i j n      generated by exchanging jobs i and j is:

max max 1 1 1 1() ()i i j j i i j jc c cont cont cont cont cont cont cont cont          

   
          (14)

Proof: According to Algorithm 1, the contribution of each job is computed based on processing

times of the job in comparison with the processing times of its previous job. As a result, when sequence

  is formed by exchanging jobs i and j , the only jobs with a different predecessor compared to sequence

 are:

Job Previous job in  Previous job in  

i 1i  1j 

1i  i j

j 1j  1i 

1j  j i

Which proves (14). ■

11

The proposed algorithm of section 3 employs equation (14) to calculate the objective function of a

perturbed sequence once an exchange is applied to a certain sequence. The proposed PSO will be explained

in the next section.

3 The Proposed Algorithm
The PSO algorithm has been widely used by researchers to solve combinatorial optimization

problems since its introduction in Eberhart and Kennedy (1995) and Kennedy and Eberhart (1997). The

PSO algorithm works by systematically moving a number of particles through the search space. At time t ,

each particle i has a position, ()ix t , and a velocity, ()iv t . A memory stores the current position of the

particles as well as their best position. In each step, velocity of the particles is modified according to

historical and random information. Velocities, once updated, are used to update the current position of the

particles. Then, the PSO evaluates the objective function of the particles at their new position. Since

historical data is used in updating the particle velocity, particles tend to return to their historical best position

which results in early convergence. To overcome this unwanted phenomenon, different velocity update

techniques have been developed. The proposed PSO uses one of the most successful functions available to

update the particle velocity.

3.1 Solution Representation
The PSO was originally developed for continuous feasible regions. However, the feasible region

of max| , |iF no wait d C is not continuous and consists of the set of permutations of n jobs that do not

violate due date constraints. Therefore, the feasible region of max| , |iF no wait d C should be mapped to

a continuous region suitable for PSO operations. Numerous coding systems have been developed in the

literature that convert discrete feasible regions to a continuous space. This paper uses the SPV coding

system that was developed in Tasgetiren et al. (2007) and proved to be very efficient for the flow shop

problem.

12

Suppose that particle i at iteration t is given as 1 2[, ,...,]t t t t

i i i inX x x x in which n is the number of

jobs in the max| , |iF no wait d C instance. Although
t

iX is defined in a continuous space, the SPV rule

can be applied to this particle to transform it to its corresponding permutation. If

; 1,2,..., ;t t

ik ijx x j n j k   , k th location of permutation  will be assigned to job 1. Similarly, if the

l th smallest number in
t

iX is seen at location z of
t

iX , job l will be assigned to position z of the

permutation  .

Table 2 illustrates the SPV rule when 5n  . In this table, 5

t

ix is the smallest number between
t

ijx

values. Since the smallest number occurs in position 5, job 1 in permutation  will be assigned to this

position. The second smallest number in
t

iX occurs in position 1; therefore job 2 will be placed in this

position, and the algorithm continues until all the jobs are assigned to their locations in  . If there are ties,

i.e.,
t t

ik ijx x , the algorithm randomly selects one of them as the smaller number between the two values

to break the tie.

Table 2 – SPV Rule
t

ijx -0.96 +1.8 +0.43 -0.21 -2.31

Positions 1 2 3 4 5

 2 5 4 3 1

The above procedure explains the method by which a particle is converted to its corresponding

permutation. When it is required to convert a permutation to its corresponding particle, n random numbers

will be generated according to (15).

min max min 1()t

ijx x x x r    (15)

13

In (15), min 0x  and max 4x  and 1 ~ (0,1)r U . Afterward, the smallest generated number will

be assigned to the position of job 1. The second smallest generated number will be assigned to the position

of job 2, and so on. Once again, ties will be dealt with using a random procedure.

3.2 Generating Initial Solutions
The proposed PSO requires a number of initial solutions to begin its exploration in the feasible

region. Once the initial solutions are generated and their makespans are calculated as described in section

2.2, the method of section 3.1 will be employed to convert the permutations into particles. No particle is

born or destroyed during the search. Note that based on the one-to-one SPV mapping described in section

3.1, a particle is identical to a complete permutation. Therefore, these two words can be used

interchangeably during the rest of the paper. The number of initial solutions, represented by I hereafter, is

a parameter of the algorithm and will be set by the user. Once initial solutions are generated, they will be

converted to particles (
0; 1,2,...,iX i I) and the PSO algorithm starts the search.

It should be noted that different methods exist for generating the initial solutions. Several papers in

the literature have studied the performance of the priority dispatching rules under different assumptions and

with different performance measures. In section 4.2, two methods of generating initial solutions and their

effects on the results of the proposed algorithm will be studied. These methods include random

permutations and permutations created according to the earliest due date dispatching rule.

3.3 Infeasible Solutions and Penalties
As the developed mathematical model of section 2.1 indicates, due date requirements are

considered as hard constraints in the model. In other words, schedules that violate these constraints will be

marked as infeasible by the model. However, the proposed PSO allows the violation of the due date

constraints with the hope that the violations will be removed during the search if a penalty is imposed to

the objective function. Consequently, the proposed PSO modifies the objective function of the mathematical

model to (16) and removes the due date constraints from the model.

14

 max

1
im

n

i o im i

i

Min C U S p d


    (16)

In which:

1 if

0 Otherwise

imo im i

i

S p d
U

 
 


 (17)

Section 4.1 introduces a design of experiments method based on Taguchi approach to optimize the

value of  and its effect on the makespan of the final solutions of the proposed PSO.

3.4 The Proposed PSO Algorithm
Once the initial particles are generated, the algorithm requires an initial velocity vector for each

particle to update the position of the particles and continue the search in the feasible region of the problem.

Initial velocities are generated by (18).

0

min max min 2()ijv v v v r    (18)

In (18), min 4v   , max 4v   , and 2 ~ (0,1)r U . Values of ; 1,2,...,t

ijv j n are bounded by (19)

during all of the iterations of the algorithm.

[4, 4]t

ijv    (19)

If 4t

ijv  , then the algorithm modifies this velocity to +4; and if 4t

ijv   , then the velocity will

be modified to -4. Once
0; 1,2,...,iV i I are generated, the position of the particles is updated using (20).

1 0 0 0 0 0 0

1 1 2 2[, ,...,]

1,2,...,

i i i i i in inX x v x v x v

i I

   


 (20)

In general, if 1 2[, ,...,]t t t t

i i i inV v v v is the velocity vector that accompanies
t

iX , then
1t

iX 
, the

position of the i th particle in iteration 1t  , is found by equation (21).

1

1 1 2 2[, ,...,]t t t t t t t

i i i i i in inX x v x v x v     (21)

15

The algorithm stores the personal best or the best position of particle ; 1,2,...,i i I during the

search in ; 1,2,...,iP i I , and the global best or the best position of all the particles during the search in G

. The algorithm evaluates the objective function of all the particles in each iteration and updates the values

of iP and G if required. The equation that updates the velocity vectors in each iteration is as follows:

 1 ()t t t

i i i iV wV cr P X    (22)

In which w and  , inertia weight and constriction coefficient, are calculated as follows:

max min
max

2

2
; 4

2 4

w w
w w t

Iter

c
c c c




  

 
  

 (23)

maxw and minw are two parameters set by the user, Iter is the total number of iterations, and t is

the number of the current iteration. If objective function value of
1t

iX 
 is greater than the objective function

value of
t

iX for 1,2,...,i I , the proposed PSO algorithm applies the local search sub-algorithm to

1t

iX 
. This sub-algorithm is described in the next section. The PSO algorithm stops when t Iter , and

returns G as the final solution.

3.5 Local Search

The local search sub-procedure first converts the particle in its corresponding permutation
1t 
,

once the particle
1t

iX 
 is sent to this sub-algorithm, and computes the objective function value of this

permutation. Suppose that
1 (1,2,...,)t n   ; the following steps describe the local search algorithm:

1. Select i such that ; 1,2,..., ;i jcont cont j n j i   ; if more than one job can be selected with

this condition, randomly select one of them. Then define the lateness of each job as

; 1,2,...,
jmj j o jmL d S p j n    .

16

2. If 0iL  , set 1l  and proceed to step 3. Otherwise, go to step 5.

3. In sequence
1t 
, form  | ison therightof , 0jA j j i L  . Select job k A with the

greatest contribution. If A  , select the job that has the greatest contribution after iJ .

Suppose that job k is selected. If l R go to step 4.

4. Exchange the places of jobs i and k in the permutation. If the exchange results in a reduction

in the value of the objective function, accept this exchange and proceed to step 7; otherwise,

set 1l l  , reverse the exchange, remove job k from the comparisons, and return to step

3.

5. In sequence
1t 
, form  | ison theleftof , 0jA j j i L  . Select job k A with the

greatest contribution. If A  , select the job that has the greatest contribution after iJ .

Suppose that job k is selected. If l R go to step 6.

6. Exchange the places of jobs i and k in the permutation. If the exchange results in a reduction

in the value of the objective function, accept this exchange and proceed to step 7; otherwise,

set 1l l  , reverse the exchange, remove job k from the comparisons, and return to step

5.

7. Use the SPV ruling of section 3.1 to code the resulted permutation. Submit this code to the PSO

algorithm.

R is a parameter of the algorithm and will be determined by the user. As mentioned earlier, this

algorithm uses the results of Corollary 1 in order to evaluate the objective function of the new permutation

once an exchange is executed. Performance of the proposed PSO will be examined in the next section.

4 Computational Results
Microsoft Visual C++ 2008 was chosen to code the PSO algorithm. All the test problem instances

are solved on a PC equipped with a 3GHz Intel Pentium IV CPU and 2 GB of RAM. To perform the

17

computational analysis, a number of test problems were selected from the literature available for

max| |F no wait C . Car problems were introduced by Carlier (1978) and Rec problems were generated

by Reeves (1995). These test problems are available from the OR-Library1. From the set of selected

problems, Car problems have optimal solutions, while Rec problems do not have optimal solutions. To

generate the due dates, a formula similar to Tari and Olfat (2014) was adopted:

 
1 1

~ , 6
m m

i ij ij

j j

d U p TF p
 

 
  

 
  (24)

In which TF is the tightness factor of the due dates. For each test problem, 4 different tightness

factor settings were considered according to (25) which results in a total of 60 test problems for

max| , |iF no wait d C ; eight Car problems and seven Rec problems with four different tightness factors

for each of these problems. Once the due dates are generated, the resulting problems are called Car+DD

and Rec+DD.

1

2

3

4

1

2

3

4

TF

TF

TF

TF









 (25)

4.1 Tuning the Algorithm Parameters
As seen in section 3, the developed PSO has 7 control parameters;  , the penalty coefficient in

(16) is also considered a parameter of the algorithm. These parameters must be tuned to obtain the best

performance of the developed algorithms. A Taguchi-based design of experience approach has been

followed to determine the effect of the different values of the parameters on the performance of the

algorithm. Accordingly, 3 different test problems with 4 different tightness factors were chosen; the

considered test problems were Car01+DD, Rec13+DD and Rec31+DD. In addition 3 different values for

each parameter were selected. This leads to a Taguchi design with 7 factors and 3 levels for each factor.

1 Beasley, J.E. OR-Library: distributing test problems by electronic mail. July 2009 [cited 2014 March]; Available

from: http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

18

Considered values for the parameters can be found in Table 3. The parameter values were selected in a

trade-off between the required solution time of the algorithm and the capability of the algorithm for

diversification of the solutions and intensification around the promising results.

Table 3 – Parameter Combinations

Parameter Value 1 Value 2 Value 3

I
2

n
 n 2n

minw 0.4 0.5 0.6

maxw 0.9 1.0 1.1

c 4.25 4.5 4.75

R 40 60 80

Iter 10n 15n 20n

 1 3 5

The interaction between the parameters were assumed to be negligible. Accordingly, the Taguchi

design requires 27 different combinations of the levels of the considered factors to generate reliable results.

To supply the Taguchi analysis with replications and improve the robustness of the design, each test

problem and tightness factor combination was solved 5 times by the PSO algorithm. According to (26), this

leads to 1620 independent runs of the algorithm.

1620 3Problems 4TightnessFactor 5Replications 27Factor/LevelCombinations   

 (26)

Once the objective function values of the mentioned 1620 runs of the algorithm were obtained, (27)

was used to calculate the relative deviation (RD) of each objective function value from the best objective

function value in each considered combination of the test problem and due date tightness factor.

Prob Best
Prob

Best

OFV OFV
RD

OFV


 (27)

19

In which
ProbRD is the relative deviation of the considered test problem,

ProbOFV is the objective

function value of the considered test problem, and
BestOFV is the minimum objective function value

among the 5 replications of the considered test problem. Afterward, the results were analyzed with the

Taguchi design of experiments approach. Figure 2 presents the main effects plot for the means, and Figure

3 depicts the main effects plot for the signal-to-noise ratios. Accordingly, it can be noticed that ties exist in

selecting the best combination for the parameter values (minimum values for signal-to-noise and mean do

not occur at the same parameter values). However, analysis of variance shows that the parameters I and

maxW are not statistically significant. Therefore, it is possible to predict the response variable (
ProbRD) by

the remaining parameters and using the Taguchi method. Once the prediction is performed, extra runs of

the algorithm verify that the following combination for the parameters is more desirable; this is due to the

fact that according to (27), smaller values for
ProbRD are more desirable. Interested reader is referred to

Montgomery (2008) for more information about Taguchi method.

min

max

2

0.4

1.1

4.5

40

20

3

n
I

W

W

c

R

Iter n

















 (28)

20

M
e

a
n

 o
f

M
e

a
n

s

2nnn/2

0.040

0.035

0.030

0.60.50.4 1.11.00.9

4.754.504.25

0.040

0.035

0.030

806040 20n15n10n

531

0.040

0.035

0.030

I Wmin Wmax

c R Iter

Lambda

Figure 2 – Main Effects Plot for the Means

M
e

a
n

 o
f

S
N

 r
a

ti
o

s 2nnn/2

27

26

25

0.60.50.4 1.11.00.9

4.754.504.25

27

26

25

806040 20n15n10n

531

27

26

25

I Wmin Wmax

c R Iter

Lambda

Signal-to-noise: Smaller is better

Figure 3 – Main Effects Plot for the Signal-to-Noise Ratio

21

4.2 Dispatching Rules
As mentioned in section 1, Hunsucker and Shah (1992), Brah (1996) and Tari and Olfat (2014)

study the efficiency of a number of dispatching rules for flow shop problem with different settings in the

presence of due date constraints. Hunsucker and Shah (1992) show that when scheduling a constrained flow

shop with multiple processors and due dates, the first-in-first-out priority rule is superior when the objective

function is to minimize the mean tardiness. However, when minimizing the number of tardy jobs, a superior

priority rule cannot be established. Tari and Olfat (2014) conclude that for tardiness flow shop models with

intermediate due dates, simpler priority rules such as shortest processing time usually lead to better

solutions; however, such cannot be concluded for the case of traditional tardiness flow shop with

intermediate due dates.

Two different priority dispatching rules were considered in this paper, namely, Earliest Due Date

(EDD) and Random Dispatching (RD). Five test problems were selected from the set of the considered test

problems of this paper, and were solved using the proposed algorithm (3 ). Initial solutions of these

problems were generated based on the EDD and RD rules. Table 4 summarizes the objective function values

of the initial solutions of these test problems under EDD and RD. Figure 4 illustrates the progress of the

proposed PSO when different dispatching rules are applied to Rec01+DD.

Table 4 and Figure 4 demonstrate that the quality of the initial solutions as well as the quality of

the final answer of the EDD rule were both significantly superior to the RD rule. In other words, the

algorithm generally produces dominant final solutions when the search commences from a more promising

area of the feasible region. Therefore, in sections 4.3 and 4.4, EDD was selected as the superior method to

generate the initial solutions of the proposed PSO and to initialize the search.

22

Table 4 – Quality of Solutions with Different Dispatching Rules
 EDD RD EDD RD

Problem TF
Initial

OFV
Makespan Penalty

Initial

OFV
Makespan Penalty

Final

OFV
Makespan Penalty

Final

OFV
Makespan Penalty

Car01

+DD

1 9,487 9,487 0 29,653 12,106 17,547 8,298 8,298 0 8,343 8,343 0

2 10,430 10,430 0 29,057 11,186 17,871 8,168 8,168 0 8,338 8,338 0

3 26,912 10,757 16,155 50,500 9,724 40,776 11,356 9,316 2,040 12,826 9,526 3,300

4 75,332 10,499 64,833 125,714 12,542 113,172 48,940 8,830 40,110 51,658 9,172 42,486

Car05

+DD

1 11,547 11,547 0 14,296 14,296 0 9,159 9,159 0 9,188 9,188 0

2 11,078 11,078 0 24,873 11,793 13,080 9,454 9,454 0 9,454 9,454 0

3 12,997 11,950 1,047 58,714 12,364 46,350 11,443 11,347 96 11,517 11,127 390

4 52,021 11,179 40,842 135,265 13,063 122,202 44,182 10,612 33,570 39,223 10,282 28,941

Rec01

+DD

1 1,837 1,837 0 10,582 2,152 8,430 1,672 1,672 0 1,706 1,706 0

2 7,446 1,954 5,492 24,322 2,083 22,239 3,119 1,718 1,401 3,430 1,732 1,698

3 20,574 1,950 18,624 29,856 2,118 27,738 15,627 1,683 13,944 14,452 1,672 12,780

4 33,987 2,064 31,923 39,358 2,038 37,320 23,704 1,603 22,101 23,978 1,646 22,332

Rec19

+DD

1 4,448 3,866 582 27,989 4,106 23,883 3,224 3,224 0 3,193 3,193 0

2 24,427 3,811 20,616 83,731 4,396 79,335 5,449 3,229 2,220 6,307 3,334 2,973

3 67,840 3,883 63,957 83,353 4,228 79,125 40,139 3,155 36,984 43,124 3,206 39,918

4 119,819 4,286 115,533 140,435 4,433 136,002 66,052 3,211 62,841 68,314 3,031 65,283

Rec37

+DD

1 449,348 11,987 437,361 609,434 12,662 596,772 173,978 8,996 164,982 155,496 9,012 146,484

2 601,202 11,789 589,413 834,140 13,289 820,851 297,457 8,917 288,540 312,406 8,944 303,462

3 952,484 12,860 939,624 868,507 12,148 856,359 477,639 8,907 468,732 480,874 8,881 471,993

4 1,067,133 12,339 1,054,794 1,150,176 13,047 1,137,129 621,869 9,065 612,804 631,522 8,818 622,704

23

Figure 4 – Progress of the Developed PSO When Different Dispatching Rules Applied to Rec01+DD

24

Table 5 – Computational Results of the Problems with Optimal Solution

Prob.
Size

m*n

No-

Wait

OFV1,2

TF3
Optimum

Solution4
Best

OFV

Best

maxC

Average

OFV

Average

maxC

Car1

+DD
11*5 8,142

1 8,152 8,152 8,152 8,178 8,178

2 8,164 8,164 8,164 8,194 8,194

3 NFS5 11,356 9,316 12,479 9,476

4 NFS 48,986 8,948 49,527 8,843

Car2

+DD
13*4 8,242

1 8,646 8,471 8,471 8,523 8,523

2 9,921 9,002 9,002 9,213 9,213

3 NFS 17,066 9,449 18,699 9,482

4 NFS 39,145 9,037 40,370 9,110

Car3

+DD
12*5 8,866

1 9,264 9,084 9,084 9,084 9,084

2 9,120 9,220 9,220 9,319 9,319

3 NFS 11,409 9,696 12,460 9,995

4 NFS 67,267 9,667 69,188 9,876

Car4

+DD
14*4 9,195

1 10,305 9,746 9,746 10,228 10,167

2 NFS 16,286 10,979 16,310 10,992

3 NFS 23,136 11,241 24,500 11,025

4 NFS 74,245 10,630 76,132 10,359

Car5

+DD
10*6 9,159

1 9,159 9,159 9,159 9,196 9,196

2 9,454 9,558 9,558 9,695 9,695

3 11,537 11,537 11,537 11,537 11,537

4 NFS 39,223 10,282 40,181 10,305

Car6

+DD
8*9 9,690

1 9,690 9,690 9,690 9,758 9,758

2 9,690 9,690 9,690 9,690 9,690

3 9,690 9,690 9,690 9,837 9,837

4 NFS 11,429 11,090 11,429 11,090

Car7

+DD
7*7 7,705

1 7,705 7,705 7,705 7,803 7,803

2 7,705 7,705 7,705 7,705 7,705

3 7,705 7,705 7,705 7,705 7,705

4 NFS 18,014 8,816 18,014 8,816

Car8

+DD
8*8 9,372

1 9,372 9,372 9,372 9,387 9,387

2 9,372 9,372 9,372 9,372 9,372

3 9,573 9,573 9,573 9,573 9,573

4 NFS 14,213 11,552 14,213 11,552
1 OFV: Objective Function Value

2 All the OFVs in this column belong to the optimum solution of max| |F no wait C
3 TF: Tightness Factor

4 Optimum solution of max| , |iF no wait d C ; bold numbers are proven optimum solutions.
5 No Feasible Solutions Found

4.3 Problems with Optimal Solutions
Table 5 presents the computational results of Car01+DD through Car08+DD. These problems

generally have fewer jobs compared to the set of Rec+DD problems. As a result, it is possible to solve many

of them to optimality by means of the mathematical model of section 2.1. These problems were solved

25

using IBM ILOG CPLEX. It should be noted that the solver was not able to find the optimal solution of

some of the test problems in less than 2 hours. Therefore, the reported solutions of the model are the best

solutions that were obtained after 2 hours of execution. As a result, the solutions of the proposed PSO may

be better than the solutions of the mathematical model. The proven optimum solutions appear in boldface.

One can verify that the proposed algorithm is very competitive and is able to produce the optimal solutions

in most cases. Average CPU time to solve the mathematical model was 3,354 seconds, and the algorithm’s

average CPU time was 2.4 seconds.

4.4 Problems without Optimal Solutions
The set of 21 Rec problems were solved with the developed algorithm and without considering the

due date constraints; the results will be compared to the competitive methods in the literature developed for

max| |F no wait C . Table 6 summarize the computational results of the proposed PSO for the problems

without optimal solutions in max| |F no wait C environment. In this table the first two columns present

the test problem and the size of the problem. The third column belongs to the makespans of Rajendran

(1994), which have been traditionally used for comparison purposes. Next two columns present the

objective function of the proposed algorithm and the relative deviation between the reported objective

function and the makespan of Rajendran (1994). Each test problem was solved five times but only the best

solution is reported. This approach keeps the results comparable to the competitive methods from the

literature. The reported makespans were obtained by assigning 0  when solving the test problems,

which is analogous to removing the penalty term of equation (16). The next two columns belong to the

solution found for the test problem in max| |F no wait C environment by the TS+PSO of Samarghandi

and ElMekkawy (2012b) (a hybrid of the tabu search and PSO). Next columns present the relative deviation

between the proposed solutions of the competitive methods from the literature and the makespan of

Rajendran (1994). It can be verified that although the proposed algorithm is specifically designed to deal

26

with the due date constraints, its computational results are very competitive. Relative deviation is calculated

by:

*

max max

*
1,...,5

max

Relative Deviation max 100
i

i

c c

c

  
  

  
 (29)

In which
max

ic is the proposed makespan of the algorithm and
*

maxc is the proposed makespan of

Rajendran (1994).

To verify the effectiveness of the proposed PSO for the problems with due date constraints, seven

test problems from the set of Rec problems with different sizes were selected. According to (24), four

different tightness factors were employed to generate four random due dates for each test problem. Table 7

summarizes the computational results of the proposed PSO for the problems without optimal solutions when

due date constraints are added to the test problems. This table also presents the proposed solution of

Samarghandi and ElMekkawy (2012b) for Rec+DD test problems when TS+PSO of Samarghandi and

ElMekkawy (2012b) is modified to accommodate due date constraints. The reason for selecting TS+PSO

of Samarghandi and ElMekkawy (2012b) for comparison with the proposed algorithm of this paper is that

according to Table 6 TS+PSO generates the best solutions for max| |F no wait C for most of the

considered test problems. Each test problem is solved five times. For the proposed algorithm the best,

average and worst objective functions and makespans as well as the CPU times are reported; for the

TS+PSO, only the best solutions are reported. The proposed PSO takes about 20 seconds of CPU time to

generate solutions for problems with 75 jobs and 20 machines; average CPU time for the same problem

when solved with TS+PSO was 48 seconds. Deviation between the best objective function value of the

proposed PSO and the best objective function value of the TS+PSO is calculated as follows:

Deviation 100
PSO TS PSO

Best Best

PSO

Best

OFV OFV

OFV


  (30)

27

Accordingly, negative values mean that the objective function of the proposed PSO is superior to

the objective function of the TS+PSO, and vice versa. The average deviation indicates that the proposed

PSO generates superior objective functions compared to TS+PSO. It is expected that as the value of 

increases, total lateness values decrease and makespans slightly increase. This is a natural outcome of

imposing the objective function with more penalty when lateness occurs; when penalties associated with

the lateness increase, the algorithm will sacrifice the makespan in order to decrease the lateness and improve

the objective function value.

28

Table 6 - Comparison of the Proposed Algorithm with Competitors for max| |F no wait C

 Rajendran

(1994)
Proposed Algorithm

Samarghandi and

ElMekkawy (2012b)

Liu et

al.

(2007)

Schuster and

Framinan

(2003)

Grabowski and Pempera (2005)

Prob.
Size

m*n
OFV OFV

Relative

Deviation1
OFV

Relative

Deviation
HPSO VNS GASA DS DS+M TS TS+M TS+MP

Rec01 20,5 1,590 1,528 3.90 1,528 3.90 3.77 2.77 3.96 3.71 3.58 4.03 3.96 3.96

Rec03 20,5 1,457 1,361 7.05 1,361 7.05 6.59 4.32 4.46 3.43 4.43 6.59 6.59 6.59

Rec05 20,5 1,637 1,511 8.34 1,511 8.34 7.39 7.03 6.90 5.62 5.62 7.39 7.64 7.70

Rec07 20,10 2,119 2,043 3.72 2,042 3.77 3.63 2.31 3.45 1.09 1.08 3.63 3.63 3.63

Rec09 20,10 2,141 2,043 4.80 2,027 5.62 4.58 2.38 4.48 3.60 3.60 4.62 4.58 4.58

Rec11 20,10 1,946 1,888 3.07 1,881 3.46 3.34 1.54 3.34 1.44 1.44 3.34 3.34 3.34

Rec13 20,15 2,709 2,545 6.44 2,545 6.44 6.05 5.76 5.65 3.43 4.43 6.05 6.05 6.05

Rec15 20,15 2,691 2,529 6.41 2,529 6.41 6.02 5.91 6.02 4.83 4.83 5.91 6.02 5.91

Rec17 20,15 2,740 2,587 5.91 2,587 5.91 5.58 5.15 5.47 5.51 5.51 5.58 5.58 5.58

Rec19 30,10 3,157 2,864 10.23 2,861 10.35 9.15 7.57 5.45 7.70 7.44 9.72 9.25 9.38

Rec21 30,10 3,015 2,843 6.05 2,822 6.84 5.70 4.21 2.22 3.68 4.68 6.37 6.30 6.17

Rec23 30,10 3,030 2,707 11.93 2,700 12.22 10.80 10.70 6.70 7.29 7.29 10.76 10.73 10.89

Rec25 30,15 3,835 3,596 6.65 3,593 6.74 5.71 5.45 2.69 3.08 3.08 5.97 6.31 6.21

Rec27 30,15 3,655 3,434 6.44 3,431 6.53 6.13 5.83 2.60 3.64 3.64 5.64 6.10 5.83

Rec29 30,15 3,583 3,291 8.87 3,291 8.87 7.81 7.23 3.99 7.23 7.36 7.94 8.28 7.94

Rec31 50,10 4,631 4,336 6.80 4,336 6.80 5.92 4.71 -2.72 3.76 3.78 5.90 6.13 6.22

Rec33 50,10 4,770 4,496 6.09 4,466 6.81 5.51 5.35 -4.78 1.97 2.01 5.51 6.31 6.37

Rec35 50,10 4,718 4,441 6.24 4,417 6.81 6.02 5.51 -3.67 4.94 4.94 6.08 6.17 5.91

Rec37 75,20 8,979 8,170 9.90 8,081 11.11 8.89 10.00 -5.89 7.80 7.92 9.41 9.49 9.36

Rec39 75,20 9,158 8,593 6.58 8,517 7.53 6.79 5.32 -8.80 4.97 5.12 7.00 6.99 6.91

Rec41 75,20 9,344 8,627 8.31 8,520 9.67 7.94 7.41 -6.79 6.08 6.08 8.78 8.57 8.82

Average N/A N/A 6.84 N/A 7.36 6.35 5.55 1.65 4.51 4.66 6.49 6.57 6.54
1 Larger numbers are more desirable

29

Table 7 – Computational Results of the Large-Instance Problems

 The Proposed Algorithm
TS+PSO Samarghandi and

ElMekkawy (2012b)

Deviation

Between

OFV of

the

Proposed

PSO and

TS+PSO

Pro

b.

Size

m*n
TF

Best

OFV

Best

Makespan

Total

Lateness

Worst

OFV

Worst

Makespan

Total

Lateness

Average

OFV

Average

Makespan

Average

Lateness

Average

CPU

Time

Best

OFV

Best

Makespan

Total

Lateness

Rec

01+

DD

20*

5

1 1,668 1,668 0 1,697 1,697 0 1,684 1,684 0 3.03 1,682 1,682 0 -0.84

2 3,119 1,718 467 4,685 1,763 974 3,782 1,737 681 3.59 3,442 1,747 1,695 -10.36

3 14,809 1,597 4,404 15,683 1,682 4,667 15,237 1,665 4,524 3.37 15,132 1,671 13,461 -2.18

4 23,688 1,605 7,361 24,214 1,624 7,530 23,994 1,646 7,449 3.18 23,806 1,612 22,194 -0.50

Rec

07+

DD

20*

10

1 2,127 2,127 0 2,141 2,141 0 2,134 2,134 0 4.27 2,142 2,142 0 -0.71

2 2,138 2,138 0 2,228 2,228 0 2,191 2,191 0 4.46 2,241 2,241 0 -4.82

3 2,869 2,299 190 2,869 2,299 190 2,869 2,299 190 4.10 2,461 2,260 201 14.22

4 18,308 2,171 5,379 19,379 2,174 5,735 18,898 2,199 5,566 4.78 17,725 2,248 15,477 3.18

Rec

13+

DD

20*

15

1 2,553 2,553 0 2,670 2,670 0 2,595 2,595 0 5.19 2,711 2,711 0 -6.19

2 2,651 2,651 0 2,655 2,655 0 2,652 2,652 0 5.71 2,607 2,607 0 1.66

3 2,648 2,648 0 2,773 2,773 0 2,711 2,711 0 6.78 2,681 2,681 0 -1.25

4 13,456 2,785 3,557 15,079 2,764 4,105 14,417 2,787 3,876 5.80 12,154 2,743 9,411 9.68

Rec

19+

DD

30*

10

1 3,087 3,087 0 3,165 3,165 0 3,117 3,117 0 8.25 3,203 3,203 0 -3.76

2 4,799 3,233 522 5,436 3,252 728 5,143 3,220 641 8.58 5,046 3,228 1,818 -5.15

3 35,067 3,075 10,664 36,905 3,119 11,262 36,037 3,101 10,979 6.86 35,529 3,075 32,454 -1.32

4 69,262 3,178 22,028 72,850 3,166 23,228 71,156 3,160 22,665 5.82 70,971 3,147 67,824 -2.47

Rec

25+

DD

30*

15

1 3,710 3,710 0 3,733 3,733 0 3,722 3,722 0 8.39 3,747 3,747 0 -1.00

2 3,878 3,878 0 3,986 3,983 1 3,926 3,925 0 10.23 4,049 4,049 0 -4.41

3 14,927 3,917 3,670 17,740 4,027 4,571 16,418 3,940 4,159 7.60 17,498 3,965 13,533 -17.22

4 63,080 3,893 19,729 66,136 3,946 20,730 64,413 3,922 20,163 6.75 65,551 3,934 61,617 -3.92

Rec

31+

DD

50*

10

1 46,174 4,678 13,832 52,501 4,837 15,888 48,348 4,747 14,534 10.45 53,696 4,868 48,828 -16.29

2 97,712 4,676 31,012 101,946 4,809 32,379 99,773 4,708 31,688 12.36 97,466 4,637 92,829 0.25

3 143,265 4,629 46,212 149,169 4,734 48,145 146,695 4,696 47,333 8.96 140,540 4,697 135,843 1.90

4 215,235 4,677 70,186 218,231 4,778 71,151 216,660 4,710 70,650 9.81 209,627 4,589 205,038 2.61

Rec

37+

DD

75*

20

1 155,357 8,786 48,857 160,774 8,806 50,656 158,361 8,797 49,855 25.28 160,274 8,804 151,470 -3.16

2 292,245 8,787 94,486 298,350 8,592 96,586 295,868 8,725 95,714 25.40 314,104 8,842 305,262 -7.48

3 459,561 8,904 150,219 464,090 8,813 151,759 462,341 8,866 151,158 24.14 478,000 8,986 469,014 -4.01

4 616,521 8,676 202,615 636,607 8,797 209,270 625,643 8,743 205,633 23.72 631,471 8,791 622,680 -2.42

Average N/A N/A N/A N/A N/A N/A N/A N/A N/A 9.17 N/A N/A N/A -2.36

30

5 Conclusions

This paper considered the scheduling problem of max| , |iF no wait d C . The problem is strongly

NP-Hard. A mathematical model of the problem was developed, and the problem was reduced to a

permutation problem. An efficient algorithm was developed to generate timetables for max| |F no wait C

when a permutation of jobs is given. A particle swarm algorithm was developed to deal with the general

cases of the max| , |iF no wait d C problem. A new local search approach was introduced to further

improve the computational results of the proposed PSO. A design of experiments approach using Taguchi

method was employed to tune the parameters of the developed algorithm. Two dispatching rules were

investigated; accordingly, the earliest due date dispatching rule was selected to generate the initial solutions

necessary for initializing the proposed PSO.

A thorough computational analysis was performed on the small- and large-instance test problems

available in the literature. Computational analysis consisted of different penalty coefficients and due date

tightness factors. Optimal solution of several small-instance test problems were found by means of the

developed mathematical model. The developed PSO proved to be very efficient for problems with and

without optimal solutions. The algorithm was able to generate good-quality solutions for the test problems

in a reasonable time.

A possibility for future research is finding lower and upper bounds for

max| , |iF no wait d C . In contrast, finding feasible solutions for problems with tight due dates can be a

challenge. Therefore, developing an approach that is able to efficiently generate feasible solutions is very

promising. Moreover, a thorough study of the different dispatching rules and their effects on the quality of

the final solutions would be useful.

31

6 Acknowledgements
The authors would like to thank the anonymous referees for their precious comments that helped

with improving the quality of this paper.

7 References
Araujoa, D. C. and M. S. Naganoa (2011). "A new effective heuristic method for the no-wait

flowshop with sequence-dependent setup times problem." International Journal of Industrial Engineering

Computations 2: 155 - 166.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2005). "The two-machine flow-shop problem

with weighted late work criterion and common due date." European Journal of Operational Research

165(2): 408-415.

Błażewicz, J., E. Pesch, M. Sterna and F. Werner (2008). "Metaheuristic approaches for the two-

machine flow-shop problem with weighted late work criterion and common due date." Computers &

Operations Research 35(2): 574-599.

Brah, S. (1996). "A comparative analysis of due date based job sequencing rules in a flow shop

with multiple processors." Production Planning & Control 7(4): 362-373.

Carlier, J. (1978). "Ordonnancements a contraintes disjonctives." RAIRO Recherche

Operationnelle 12: 333-351.

Dhingra, A. and P. Chandna (2010). "Hybrid genetic algorithm for SDST flow shop scheduling

with due dates: a case study." International Journal of Advanced Operations Management 2(3): 141-161.

Eberhart, R. C. and J. Kennedy (1995). A new optimizer using particle swarm theory.

Proceedings of the sixth international symposium on micro machine and human science, New York, NY.

Ebrahimi, M., S. Fatemi Ghomi and B. Karimi (2014). "Hybrid flow shop scheduling with

sequence dependent family setup time and uncertain due dates." Applied Mathematical Modelling 38(9-

10): 2490-2504.

Gowrishankar, K., C. Rajendran and G. Srinivasan (2001). "Flow shop scheduling algorithms for

minimizing the completion time variance and the sum of squares of completion time deviations from a

common due date." European Journal of Operational Research 132(3): 643-665.

Grabowski, J. and J. Pempera (2000). "Sequencing of jobs in some production system." European

Journal of Operational Research 125: 535-550.

Grabowski, J. and J. Pempera (2005). "Some local search algorithms for no-wait flow-shop

problem with makespan criterion." Computers & Operations Research 32: 2197–2212.

Gupta, J. N., V. Lauff and F. Werner (2000). On the solution of 2-machine flow shop problems

with a common due date. Operations Research Proceedings 1999, Springer.

Hall, N. and C. Sriskandarajah (1996). "A survey of machine scheduling problems with blocking

and no-wait in process." Operations Research 44: 510-525.

Hunsucker, J. and J. Shah (1992). "Performance of Priority Rules in a Due Date Flow Shop."

Omega 20(1): 73-89.

Jolai, F., M. Rabiee and H. Asefi (2012). "A novel hybrid meta-heuristic algorithm for a no-wait

flexible flow shop scheduling problem with sequence dependent setup times." International Journal of

Production Research 50(24): 7447 - 7466.

32

Kennedy, J. and R. C. Eberhart (1997). A discrete binary version of the particle swarm algorithm.

Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE

International Conference on, Orlando, FL, IEEE.

King, J. and A. Spachis (1980). "Heuristics for flowshop scheduling." International Journal of

Production Research 18: 343-357.

Liu, B., L. Wang and Y.-H. Jin (2007). "An effective hybrid particle swarm optimization for no-

wait flow shop scheduling." International Journal of Advanced Manufacturing Technology 31: 1001-

1011.

Montgomery, D. C. (2008). Design and Analysis of Experiments, John Wiley & Sons.

Nagano, M. S. and D. C. Araújo (2014). "New heuristics for the no-wait flowshop with sequence-

dependent setup times problem." Journal of the Brazilian Society of Mechanical Sciences and

Engineering 36(1): 139-151.

Nagano, M. S., A. A. Da Silva and L. A. Nogueira Lorena (2014). "An evolutionary clustering

search for the no-wait flow shop problem with sequence dependent setup times." Expert Systems with

Applications 41(8): 3628-3633.

Nagano, M. S., H. H. Miyata and D. C. Araújo (Article in Press). "A constructive heuristic for

total flowtime minimization in a no-wait flowshop with sequence-dependent setup times." Journal of

Manufacturing Systems.

Nagano, M. S., A. A. d. Silva and L. A. N. Lorena (2012). "A new evolutionary clustering search

for a no-wait flowshop problem with set-up times." Engineering Applications of Artificial Intelligence

25(6): 1114 - 1120.

Panwalkar, S. and C. Koulamas (2012). "An O(n^2) algorithm for the variable common due date,

minimal tardy jobs bicriteria two-machine flow shop problem with ordered machines." European Journal

of Operational Research 221(1): 7-13.

Piehler, J. (1960). "Ein beitrag zum reihenfolgeproblem." Unternehmensforschung 4(3): 138-142.

Pinedo, M. (2002). Scheduling, Theory, Algorithms, and Systems. London, Sydney, Toronto,

Mexico, New Delhi, Tokyo, Singapore, Rio de Janeiro, Prentice Hall Inc.

Raaymakers, W. and J. Hoogeveen (2000). "Scheduling multipurpose batch process industries

with no-wait restrictions by simulated annealing." European Journal of Operational Research 126: 131-

151.

Rabiee, M., M. Zandieh and A. Jafarian (2012). "Scheduling of a no-wait two-machine flow shop

with sequence-dependent setup times and probable rework using robust meta-heuristics." International

Journal of Production Research 50(24): 7428 - 7446.

Rajendran, C. (1994). "A no-wait flowshop scheduling heuristic to minimize makespan." Journal

of the Operational Research Society 45: 472-478.

Reeves, C. (1995). "A genetic algorithm for flowshop sequencing." Computers and Operations

Research 22: 5-13.

Röck, H. (1984). "Some new results in flow shop scheduling." Zeitschrift für Operations

Research 28: 1-16.

Samarghandi, H. (Article in Press). "Studying the effect of server side-constraints on the

makespan of the no-wait flow-shop problem with sequence-dependent set-up times." International Journal

of Production Research(ahead-of-print): 1-22.

33

Samarghandi, H. and T. Y. ElMekkawy (2011). "An effective hybrid algorithm for the two-

machine no-wait flow shop problem with separable setup times and single server." European Journal of

Industrial Engineering 5(2): 111-131.

Samarghandi, H. and T. Y. ElMekkawy (2012a). "A genetic algorithm and particle swarm

optimization for no-wait flow shop problem with separable setup times and makespan criterion." The

International Journal of Advanced Manufacturing Technology 61(9-12): 1101-1114.

Samarghandi, H. and T. Y. ElMekkawy (2012b). "A meta-heuristic approach for solving the no-

wait flow-shop problem." International Journal of Production Research 50(24): 7313-7326.

Samarghandi, H. and T. Y. ElMekkawy (2013). "Two-machine, no-wait job shop problem with

separable setup times and single-server constraints." The International Journal of Advanced

Manufacturing Technology 65(1-4): 295-308.

Samarghandi, H. and T. Y. ElMekkawy (2014). "Solving the no-wait flow-shop problem with

sequence-dependent set-up times." International Journal of Computer Integrated Manufacturing 27(3):

213-228.

Sarper, H. (1995). "Minimizing the sum of absolute deviations about a common due date for the

two-machine flow shop problem." Applied mathematical modelling 19(3): 153-161.

Schuster, C. and J. Framinan (2003). "Approximative procedures for no-wait job shop

scheduling." Operations Research Letters 31: 308-318.

Tang, H. B., C. M. Ye and L. F. Jiang (2011). "A New Hybrid Particle Swarm Optimization for

Solving Flow Shop Scheduling Problem with Fuzzy Due Date." Advanced Materials Research 189: 2746-

2753.

Tari, F. G. and L. Olfat (2014). "Heuristic rules for tardiness problem in flow shop with

intermediate due dates." The International Journal of Advanced Manufacturing Technology 71(1-4): 381-

393.

Tasgetiren, M. F., Y.-C. Liang, M. Sevkli and G. Gencyilmaz (2007). "A particle swarm

optimization algorithm for makespan and total flowtime minimization in the permutation flowshop

sequencing problem." European Journal of Operational Research 177(3): 1930-1947.

Wismer, D. (1972). "Solution of the flowshop-scheduling with no intermediate queues."

Operations Research 20: 689-697.

Ying, K.-C., Z.-J. Lee, C.-C. Lu and S.-W. Lin (2012). "Metaheuristics for scheduling a no-wait

flowshop manufacturing cell with sequence-dependent family setups " The International Journal of

Advanced Manufacturing Technology 58(5 - 8): 671 - 682.

