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Abstract

In Canada, access to magnetic resonance imaging (MRI) examination is limited with an outcome of long

patient waiting time. It is reported that the current median waiting time for MRI examination in Saskatoon

is almost double the target for waiting time, which may aggravate the disease.

This research is towards reducing the waiting time of patients for MRI examination in Canada by applying

an improved management. As a first step of this effort, a comprehensive model of MRI booking and serving

system is needed. The city of Saskatoon was taken as an example and the MRI booking and serving system in

the city was studied. The common tools (queuing theory, system dynamics (SD) and discrete event dynamics

simulation (DES)) were compared and it is found that DES is more suitable, in particular Petri nets (PNs),

deemed to be the best choice for the purpose of this thesis.

The model in this research was constructed on the basis of Hierarchical Coloured Petri nets (HCPNs), a

combination of two extended PNs: Coloured PNs (CPNs) and Hierarchical PNs (HPNs). The model is able

to simulate and predict patients’ waiting times. Given that the structure of the model developed by HCPNs

is still too complex, two extensions to CPNs, Ordered CPNs (OCPNs) and Prioritized HCPNs (PHCPNs),

were proposed in this study to reduce the complexity of the model. Validation of the model was performed

using the data of Saskatoon Health Region - Royal University Hospital. The results have shown that the

proposed model can effectively describe the real system.

The model has potential applications in decision-making for the selection of an optimal booking strategy

to shorten waiting time and in the prediction of possible waiting time of the system in the future, which may

assist MRI administrators in the management of medical resources and may greatly improve the quality of

MRI service.
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Chapter 1

Introduction

1.1 Background

Magnetic resonance imaging (MRI) is a medical imaging technique to produce images of body tissues via the

use of a powerful static magnetic field, radio frequency (RF) signals and particular computer software. In

comparison with other X-ray based traditional medical imaging techniques (CT, X-ray), MRI does not use

ionizing radiation. As the human body is predominantly made up of water, hydrogen protons are common. As

the proton rotates on an axis, it produces a tiny magnetic field. Normally, the orientation of these magnetic

fields are randomly distributed. However, when a patient is placed within a strong magnetic field, protons

in human body may align with or against the direction of the external magnetic field. Because the number

of protons aligning with the direction of the external field is greater than those aligning against it, the net

result is an alignment with the external magnetic field. An RF pulse is further added, and the energy of RF

is absorbed to alter the alignment of the protons. When the RF pulse is turned off, the absorbed energy

is released and the direction of the protons returns to the original state. This returning process emits RF

signals, which are then detected by a device and computed to render an image. Abnormal organs or tissues

generate different signal, which is the basis for analysis and diagnosis of any abnormality.

MRI examination is now a non-invasive imaging modality for diagnosis allowing safely capture of high-

resolution images of the body tissues and organs. It is able to scan any part of the body in any plane and

orientation.

In Canada, if general practitioners or specialists need the assistance of MRI to make a diagnosis, they need

to at first transmit their request for MRI examination to a booking center, providing the basic information

of the patient (e.g. name, gender and medical history) and the referral. After the request is received, the

attending radiologist may consult with the physician to determine the priority level and confirm some other

information. After that, booking staff will schedule the patient and notify the patient of the date and time

of MRI examination with pertinent information about the examination.

There are four MRI units in Saskatoon, and they are currently located in three hospitals: two in Royal

University Hospital (RUH), one in Saskatoon City Hospital (SCH) and one in St. Paul’s Hospital (SPH). All

bookings are however accepted and scheduled at RUH only. That is to say, there is only one point of contact

for booking for MRI examination in Saskatoon.
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Confirm	  medical	  
informa/on	  (e.g.	  
safety	  for	  MRI,	  

priority	  level,	  with/
without	  contrast)	  

Fax	  a	  
requisi/on	  of	  

MRI	  
examina/on	  	  

Arrange	  
pa/ents	  on	  
the	  schedule	


Register	


Prepare	  	

(e.g.	  fill	  a	  

screening	  form,	  
change	  clothes)	


MRI	  
examina/on	
Departure	


Booking	  Process	


Serving	  Process	


Fig.	  1.1	  Figure 1.1: The whole process for outpatients to experience in MRI exam

On the day of examination, the patient is asked to arrive early at the MRI department typically 45

minutes prior to the examination and to register at the reception desk first. When the patient reports to the

MRI department, he/she is asked to complete a screening form which is intended to further confirm whether

he/she is ready and able to safely proceed with the examination. The subsequent procedures that he/she

may experience are explained as well. Then, the patient is guided to change into a patient gown, leaving

anything that may affect the work of MRI (e.g. keys, watches, cell phones, credit cards, etc.) in the changing

room. After this, the patient waits in the waiting room. In this period, additional preparations are made as

needed (e.g. intravenous injection). When the scanning starts, the patient needs to lie on the scan table and

be covered with a coil to transmit/receive the RF signals, and then he/she is moved into the cylinder. The

scan procedure lasts 20 minutes or longer, during which the patient has to keep still as any movement may

lead to a restart of imaging. Some ancillary resources are offered to help the patient calm down and relax

(e.g. movies, music, etc.). For those who cannot stop moving, sedation or anesthetic is usually used. In some

cases, a contrast agent is required to highlight specific tissues. After the examination, the patient leaves the

scan room, changes back into street clothes and is free to go home. If a patient is anesthetized, he/she is

transferred to another area for recovery. The exam results are analyzed and reported by a radiologist and

transmitted to the general practitioner or specialist who made the referral to the radiologist for the patient.

The scheduling and examination process for outpatients (the patients who visit a hospital for diagnosis or

treatment without staying overnight) undergoing MRI are shown in Figure 1.1. For inpatients who are

admitted to live in hospital during treatment, they do not need to book the MRI scan; instead, the doctor

calls the department for the service. A period of time is reserved for inpatients each day.
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1.2 Motivation

As an important diagnostic technique, MRI is increasingly used for diagnosis in clinical medicine today. In

Canada, the number of MRI scanners in 2010 was 281, almost doubling from the number (149) in 2003, and

the number of patients scanned by MRI (in Canada) keeps increasing as well in recent years from 768,302 in

April 2003 to almost 1,434,500 in October 2009 1.

Despite the annual growth in the number of scanners and tests, access to MRI examination in Canada

is far lower than many other developed countries. The report of OECD Health Data 2010 shows that in

Canada, the rate of MRI scanners per million population in 2010 was 8.24, far lower than the rate of 31.52 in

the US, 22.55 in Greece and 22.02 in Italy. Besides, the data indicate that the number of MRI users per 1,000

populations in 2010 in Canada is around 46.3, which means that one scanner is shared by 5,624 patients per

year, the figure being much higher than 737 in South Korea, 3,097 in the US and 3,099 in Poland 2. Owing

to the high requirement of MRI examination and reduced availability of machines in Canada, Canadians

experience a longer waiting time for the MRI examination service.

There are several definitions for MRI waiting time and they need to be clarified prior to developing a

model. One standard definition is the time between the date of ordering the MRI examination and the

date of receiving the examination [51]. This thesis has taken this standard definition of waiting time. It

should be noted that patients waiting for MRI examination may be subdivided into four groups based on

the classification of Saskatoon Health Region: emergency (level 1), urgent (level 2), semi-urgent (level 3) and

non-urgent (level 4). The MRI waiting times for patients in the latter three groups (as level 1 cases need to

be done within 24 hours) in Saskatoon in 2011 are statistically measured 3, and the result is as follows: the

median waiting times (within which 50% cases are completed) for level 2, 3 and 4 patients are 14, 77 and

95 days, respectively; while the target waiting times of the three groups of patients are 7, 30 and 90 days,

respectively 3. Though the current delay of access to MRI in Saskatoon for level 4 patients is slightly longer

than the target, the delay for other patients is double the expected standard.

1.3 Problem Statement

The general problem of the present study is how to develop an accurate model for MRI examination, capturing

as many real situations and features as possible, and demonstrate its potential to be used in improving MRI

booking and serving management to reduce waiting time. The city of Saskatoon was taken as an example

to assist in this study. Further, management here refers to planning and scheduling. The goal of planning

and scheduling is to achieve a minimal idle time of the MRI scanner and a healthy workload of both medical

personnel and patients. It is noted that the entire system is a kind of human-machine system. That is to say

1http://www.hc-sc.gc.ca/hcs-sss/pubs/system-regime/2010-fed-comp-indicat/index-eng.php
2http://stats.oecd.org/index.aspx?DataSetCode=HEALTH STAT
3http://www.health.gov.sk.ca/diagnostic-imaging-mri-wait-times
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in particular, the MRI scanner can be considered to be a part of the “team”, along with all the staff (e.g.

operators, nurses and patients). The two parts should be considered together.

The challenge to have a better plan and schedule includes: (1) different machines at different locations,

(2) uncertainty in terms of the length of examination (due to individualized difference between patients,

between nurses and between operators), (3) changes in booking, and (4) uncertainty in machine condition.

It should be noted that different patients may need different lengths of times for MRI examination.

1.4 Research Objectives and Scope

To solve the foregoing problem, an effective way is to build a model of the system and analyze the system

based on the model. The system in this case is the MRI booking and serving system (MRI system for

short), which includes patients, medical staff, scanners, and their interactions. However, this particular work

is restricted to patients and patient flow only. The whole process of patient flow was considered, which is

divided into two successive processes: booking process and serving process (Figure 1.1). In the booking

process, a patient is scheduled with a date, a start time and an anticipated end time. In the serving process,

the examination is performed, which may end earlier or later than anticipated. Any case that the patient

ends beyond the scheduled time may cause some rescheduling of the remaining patients in that day.

The overall objective of this study is towards a solution to the problem of long waiting time in Saskatchewan

through an improved scheduling. The thesis focused to develop a model for the MRI booking and serving

system, which is able to examine the existing planning and scheduling principles and procedure and to assist

in developing a potentially better plan and schedule in the future.

The specific objectives of this work are as follows:

Objective (1): Construct a model to describe the whole process of MRI examination and to quantify the

waiting time of patients.

Objective (2): Investigate the effectiveness of the model and its potential applicability in the context of

planning and scheduling of MRI examination in terms of simulation and predication of the waiting time of

patients.

1.5 Research Methodology

The whole process of MRI system was learned through a period of observation in RUH in Saskatoon. Based

on the characteristics of MRI system, a discrete event based graphical simulation and formulization tool, Petri

nets (PNs), was selected as the modeling tool to capture the dynamic behavior of the system. To the best of

the author’s knowledge, this is the first attempt to use PNs to model the flow of patients with MRI. There are

many extensions to PNs. Taking account of the scale and data organization of the process of MRI system,

one extension called Hierarchical Coloured Petri nets (HCPNs) that combine Coloured PNs (CPNs) and

Hierarchical PNs (HPNs) was taken to build the present model. Given that the structure of model developed
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by the existing extensions of PNs is still too complex, two extensions to CPNs, Ordered CPNs (OCPNs) and

Prioritized HCPNs (PHCPNs), were proposed in this study to reduce the complexity of the CPN model.

With these extensions, some functions of the model can now be achieved straightforwardly rather than by

complicated transformations, so the size of model can be reduced. As a validation of the proposed model,

simulated results were compared with the real data acquired from the database of Saskatoon Health Region

- Royal University Hospital.

1.6 Organization of This Thesis

This thesis is composed of six chapters. The remaining five chapters are laid out as follows:

Chapter 2: This chapter provides a literature review of the existing research methods of managing the

patient flow in health systems. Their characteristics are described, and their applicable scopes and limitations

are discussed. Through the comparisons of different methods, the reason for the selection of PNs as the

modeling tool in this research is further given.

Chapter 3: This chapter introduces the background of PNs and their extensions and justifies why the

extended PNs, namely HCPNs are used to develop the model for patients and the patient flow. To further

reduce the complexity of the model, two new extensions to CPNs, OCPNs and PHCPNs, are defined, and

they are employed in the model development.

Chapter 4: In this chapter, six pieces of semantics are described, which need to be modeled. The

corresponding PN models for Semantics 1 to 4 are developed. As a foundation of other models, the model

for Semantics 1 is validated using the real data acquired from the database of Saskatoon Health Region -

Royal University Hospital. The models for the other three pieces of semantics are not validated due to the

unavailability of data.

Chapter 5: This chapter demonstrates the potential applications of the proposed PN model with examples.

Chapter 6: The last chapter draws a conclusion from the above work and discusses the contributions and

future work of this research. In particular, modeling of the remaining two pieces of semantics is outlined.
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Chapter 2

Literature Review

To model and analyze the behavior of a health care system and especially patient flow, various approaches

have been proposed in the literature, amongst which the most popular are queuing theory and process simu-

lation. This chapter gives an overview of these approaches. In Section 2.1, queuing theory is introduced with

its characteristics, applications and limitations. Section 2.2 focuses on the description of process simulation,

which is divided into two subsections: system dynamics (SD) and discrete event dynamics simulation (DES).

Further, a specific DES, Petri nets (PNs), is presented, and the reasons for choosing DES, especially PN, for

the present study are described, with a conclusion in the last section.

2.1 Queuing Theory

The basic ideas of queuing theory are: (1) the customer arrives at a system; (2) the customer waits in queue;

(3) the customer is served according to a pre-defined rule (e.g. first-come-first-serve, random). A classical

queuing model isM/M/s. InM/M/s, the firstM represents the inter-arrival time of the customer that follows

an exponential distribution, the second M represents the service time that follows exponential distribution,

and s is the number of servers. With this model, one can determine the probability of n customers in the

queuing system (n is from 0 to the upper limit of the queue size), expected number of customers in queue

or in the whole system (including those who have been served) and expected waiting time in queue or in the

whole system for an individual customer. The model assumes that the queuing system is in a steady state

depending neither on the initial state nor elapsed time [28].

Queuing theory has been employed in health care systems for decades with two most popular applications

for resource scheduling and patient scheduling. Resource here primarily refers to beds [16, 45, 39, 22] and staff

[64, 57, 24, 23]. The allocation of beds should be well determined, as otherwise the scarcity of beds may cause

a block for patients to receive cares. For example, De Bruin et al. [16] used a queuing model to optimize the

bed allocation in different levels of a cardiac care chain with an upper limit of refused admissions and found

that the refused admissions at the First Cardiac Aid mainly resulted from a lack of available beds downstream

in the care chain. McManus et al. [45] modeled the patient flow in an intensive care unit (ICU) and measured

the turn-away rates. By the comparison of the simulated and observed data, they concluded that queuing

theory is effective in modeling ICU bed utilization and providing an indication of an appropriate bed supply in
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a large system which operates close to its capacity. Besides beds, the shortage of nurses is another important

reason for overcrowding in the health care system. Yankovic and Green [64] proposed a finite source queuing

model with two servers (beds and nurses) to guide the nurse-staffing decision. The result has shown that

the nurse-staffing level is affected by unit size, nursing intensity, bed occupancy and unit length-of-stay.

Another finding is that the common criterion used for staffing, minimization of nurse-to-patient ratio, is

unreliable, leading to either understaffing or overstaffing. A similar result has been discovered in the work of

De Vericourt and Jennings [57], who presented a closed queuing system to investigate the optimal number

of nurses and found that a fixed nurse-to-patient staffing ratio is ineffective for nurse staffing and the total

number of patients should be taken into consideration.

Patient scheduling concentrates on management of patient flows in an appointment system, in which

patient waiting time is chiefly impacted by appointment rules and methods. To control the waiting time for

patients to stay at home before the appointed time or to stay at a clinic before the treatment, models based

on queuing theory were developed in previous research [6, 1, 10, 17, 56, 13, 43]. For instance, Vasanawala

and Desser [56] applied queuing theory to predict an appropriate number of time slots reserved for urgent

requests in computed tomography (CT) and ultrasonography (US) with a premise that the rescheduling rate

of routine cases was below a certain level. Creemers and Lambrecht [13] constructed a queue model with

combination of a vacation queuing system and an appointment system to evaluate the performance of a health

care system, including the size of a waiting list, waiting time at the service facility and server overtime. An

application system was used to verify the model. Mardiah and Basri [43] studied the factors leading to the

delay for patients to be treated in an outpatient clinic with a queue model. The results indicate that the

current appointment strategy, “doctor on call”, is not valid, which decreased doctor’s idle time at the cost

of long patient waiting time.

Queuing theory has some important limitations. First, the assumptions of queuing theory are too rigorous,

narrowing down the scope of its applications. Kolker [40] summarized that the following situations are

inappropriate for current queuing theory: (1) a queuing system with an unlimited queuing size (i.e. the

length of a queue keeps increasing) does not have a steady state (e.g. the mean arrival rate of patients is

larger than the mean service rate of all the servers); (2) patients leave the queue after waiting some time or

patients jump the queue for emergent requesting for a care; (3) patients’ mean arrival rates are a series of

variables; (4) two situations cannot be distinguished when their service time follows different distributions

with yet the same average; (5) the patients with the random and scheduled arrival time are combined into

one system. It is noted that in the MRI system, it is possible that a patient cancels the appointment, and

thus the available scheduled time may be occupied by another patient. Queuing models may have difficulty

to capture such real life situations.

Second, the method is not easy to be used in cases where several service facilities are involved in sequence.

The typical queuing models usually consider one service facility with one or more servers. However, in health

care systems, patients often join more than one queue of different units to wait for various tests or treatments.
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The service rate in each unit is probably different and affects the arrival rate of the subsequent units. The

complexity of such system makes such a problem intractable by queuing theory. Finally, queuing theory

fails to make an intuitionistic description of the original system or a description that has a clear distinction

between the structure and behavior of a system. It is noted that a clear distinction of the notions such as

structure, behavior and so on is a necessary condition to make an intelligent system according to [65], while

queuing theory seems to operate at the behavioral level.

2.2 Process Simulation

Process simulation is the imitation of a real-world event or process with the assistance of computer software.

The purpose of simulation is to describe a system dynamically and answer “what-if” questions based on

the system. In comparison with queuing theory, process simulation is more flexible and tractable since no

distribution assumption is needed for the inter-arrival and service time, and more details of the system can

be considered in simulation with less worry about the tremendous increase of the complexity of the problem.

There are two streams of process simulations: system dynamics (SD) and discrete event dynamics simulation

(DES).

2.2.1 System Dynamics (SD)

System dynamics is a tool to explore how the state of a system changes over time. The core components

of SD are feedback loops, levels and rates. A feedback loop exists when information runs through a system

and finally returns to the initial point, which takes a potential effect on the future action. Levels are the

amount of stored resources or information, and rates are the speed of accumulation of the stock. The former

are sources of the dynamic behavior of a system, whereas the latter are operating policies. The resource or

information moving through the system is modeled as a crowd with no consideration of individuals in a flow.

A model with all the components is usually illustrated in a causal-loop diagram. In SD, the change of state

is continuous, and can be discretized into difference equations by partitioning a whole period of time into

small time intervals.

In process simulation with SD, the structure of a model is composed of essential process stages and other

factors that have impact on the process stages (positive or negative). The linkages among the entities are

set to show the interactive relationships, making some feedback loops to influence the performance of the

system iteratively until a steady state is attained or the iteration is ended by some conditions (e.g. one

resource is used up). For the same system of interest, SD models may differ from one to another, as there are

factors contributing to dynamics which are selected subjectively by modellers. A SD model is more suitable

to produce a qualitative analysis of system performance, the result of which can be treated as a guideline for

the decision makers to evaluate a strategic policy.

According to Vanderby [55], there are several utilizations of SD in health care system, including:
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- Wait list [60, 62],

- Demand for social services [18],

- Safety and quality issues [12, 54],

- The impact of new technology on health care [8, 3],

- Human resource concerns [37],

- Disease progression and prevalence [11, 15], and

- Disaster planning [2, 29].

Furthermore, the patient flow can be modeled in some situations with consideration of capacity and delay

[55]. Wolstenholme et al. [61] developed a SD model to show that the actual utilization of health care in

UK exceeded the designed capacity, which would lead to severe consequences. In their model, the admitted

patient flow was traced from primary care to hospital, and the length of service was taken into account.

Vanderby [55] developed a whole hospital model to show that the SD model is suitable to model the patient

flow in the emergency department (ED) (before, during and after ED treatment). The patients were grouped

with age cohort and Canadian Triage Acuity Scale (CTAS) level. By analysis of the model, the length of

stay (LOS) at each stage of a care chain was obtained, and then the total LOS was measured.

Although SD has had some successful applications in the patient flow modeling, it is not suitable to

model the patient flow in a system for the event-driven and discrete-time dynamic characteristics (e.g., the

patient appointment system). In a patient appointment system, the profile of the patient is an important

piece of information that may affect the behavior of the appointment system. The SD model has difficulty

in capturing that individual information. Another reason that SD is unsuitable for modeling of a patient

appointment system is that patients will show up to the health care system in a pre-arranged manner from an

individual patient’s point of view. Because a SD model takes a point of view of flow of a “group” of patients,

which is a random variable perceived by a particular hospital, a stochastic model for the admission rate of

patients needs to be assumed. That is to say, the nature of the original problem is altered to a problem with

“artifacts” due to the use of SD, a flow view in particular, which is prone to errors or inaccuracies with a SD

model. In short, SD is a tool for modeling of a continuous time flow, and it thus has an inherent difficulty

in modeling any discrete event dynamics where individuals in a flow may significantly affect the dynamics of

the entire flow.

2.2.2 Discrete Event Dynamics Simulation (DES)

Discrete event dynamics simulation (DES) is a tool to model the behavior of a system where a series of

events may occur at random time points. There are two essential notions in defining a DES: a discrete

state space and a discrete event set. The event set logs all the events that a system experiences, while the

state space tracks state variations in each node of the network. In a DES model, the state updates when a

new event happens (e.g. a patient comes) or an operation is carried out (e.g. a treatment is finished). The

objects moving through a DES system are individuals distinguishable from each other, that is, an individual’s
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behaviors are captured, so the DES model more suits systems such as the appointment system.

The modeling of health care systems with DES has a long history and is still in evolution. A survey of DES

[38] shows its application to health care systems, including management of patient flow [25, 52, 50, 48] and

optimization of the resource allocation [44, 59, 20, 4]. Patient flow can be evaluated by patient throughout,

patient waiting times, length of stay, clinic overtime, staff utilization rates and physician idle times. An

adequate resource allocation is the foundation of improving the quality of health care under limited resources.

Comparatively, DES is more appropriate to modeling the MRI system with three reasons. First, DES

can facilitate the visualization of the process dynamics especially at the individual patient level. Second,

health care systems are in essence event-driven and time-discrete, to which DES is a natural fit. Third, the

individual differences in patients can be distinguished and explicitly represented, so as to make the dynamic

model more accurate.

Petri Nets (PNs)

A DES model can be constructed with a variety of formalisms, one of which is Petri nets (PNs). PNs, a

graphical tool with a powerful mathematical foundation to simulate discrete event dynamic systems, are

widely employed in many areas, such as queuing, communication, traffic and manufacturing systems. The

basic elements in PNs are “place”, “transition”, “arc” and “token”, which represent a condition, an event,

linkage of the condition and event, and resource distribution, respectively. To meet the practical requirements,

various extensions of PNs have been proposed. A great number of commercial software packages are now

available to build up and run PN models (e.g. CPN Tools, STPN Play, Snoopy). They are developed under

different operating systems and may support part of these extensions.

PNs can be regarded as an improvement of the ordinary DES in the following aspects. First, PNs have

a precise defined set of tools or entities (e.g. places, transitions, arcs, tokens). The functions of these tools

have been realized as function modules in the most existing PN software, which makes the modeling of any

event-driven and discrete-time dynamic system formal and easy. Second, PNs have a solid foundation of

mathematics, which is not included in most DES models. The ordinary DES just composes a model based

on the original system. The problems in the system can only be diagnosed when they appear in simulation.

But for PNs, the problems may be exposed as early as the model is completed since the properties of the

model can be analyzed. PNs are actually an excellent combination of mathematics and computer science. In

PNs, all components, states and behaviors have formal definitions and can be stated with a mathematical

language. Some properties of the PN model are deduced and formed as theorems to guide analysis of the

system. The properties can be applied to detect and prevent the abnormal situations (e.g. deadlock) prior to

the computer simulation. Finally, PNs have numerous extensions, which allow realization of various functions.

For example, Coloured PNs extend the function of objects moving through a system and allow them to load

more information. Stochastic PNs extend the function of PNs by involving probabilistically specified delays.

Even though the DES has a prevalent utilization in health care, the usages of the PN and its extensions in
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this field are still not common. The original version, basic PN, is usually used to model the control of systems

with small scale and less complexity. Xiong et al. [63] built ordinary and temporal PNs for an emergency

medical services system to analyze the performance and improve the efficiency of the system, in which two

cases were discussed: patients with and without priority. It is an early attempt to model a health care system

with PNs. A similar study appears in [14]. To ease the ambulance divert, Criswell et al. modeled patient

flow in ED with a two-part PN (one for Fast track and the other for “normal” ED). However, the model is

too large with many details, which makes its structure complex and difficult to be reused.

Given that basic PNs can hardly meet the growing requirements in practice, extended PNs have been

proposed and come into use. A Timed PN model was developed by Efstratia et al. [19] to seek solutions

to the reduction of delays during the final inpatient charge in a payment’s office. After simulation, it is

discovered that the system performance is improved when the time period of charge for both medication

and MSES (Medical and Surgical Equipment and Supply), or for surgeries, is shortened. The model can be

embedded in larger and more complex nets. Bahi-Jaber and Pontier [5] addressed that PNs can be used in the

illustration and analysis of epidemic models. They explored the elements affecting the extinction of directly

transmitted infectious diseases via Coloured Stochastic PNs. The result has shown that, though an epidemic

is doomed to vanish eventually, the time to extinction of the disease may be tremendous, extending with the

population volume, the contact rate and the probability of disease transmission during a hazardous contact.

In the research of Leite et al. [42], Stochastic PNs were applied to simulate the medical care in the Intensive

Care Unit (ICU). Four scenarios were discussed through the comparison of the number of tokens in distinct

places. Their paper [42] concluded that the process performance is influenced by the admission and discharge

rate and efficiency of the doctor and the nurses, rather than the number of people waiting to occupy a bed

in the ICU. Whittaker et al. [58] introduced a choice-point net of a long-term care facility for elderly people

to analyze outbreak management protocols, in which the firing time of transitions is deterministic and the

outcomes of firing transitions are attached with probability. This model is helpful to answer some questions

about protocols. Jansen-Vullers and Reijers [34] paid attention to the reengineering of the intake process for

new patients seeking non-urgent cure at a mental health care institute. The initial and redesigned systems

are modeled by two Coloured PNs (CPNs) with the addition of a monitor to analyze the models. Comparing

with the original system, the new one is advanced with the reduction of both flow time and service time.

They declared that CPNs are suitable to modeling business process redesign.

The existing applications of PNs in medical imaging are very limited. Guglielmino et al. [26] applied a set

of visual diagrammatic language (VDL) techniques to model a radiology department service, in which PNs

were selected as the simulation tool. The patient flow of radiology department was modeled and the flow

time of daily exams was measured. Based on the PN model, the performance of two scenarios with different

resource allocations was compared and the better scenario was determined. Tavares et al. [53] developed

a Stochastic PN model to describe a CT service. The execution times of the imaging acquisition and the

medical report were measured. This model was also used to evaluate different scenarios and help picking
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out the best one. In these two studies, PNs are successfully applied to model the process of medical imaging

systems and guide to select a best scenario from alternative ones based on some criteria. A main problem of

both models is that they fail to capture specific patient information.

For each example above, the model scope is strictly limited since it is impossible and impractical to

assemble all stages and resources into a model. Too many details can easily increase the complexity of a

PN model, resulting in more difficulty in framework construction, data collection and model operation. To

mitigate the complexities, it is not surprising that PN models are usually built for a specific department (e.g.

ED, ICU, CT) or a particular disease (e.g. an epidemic). However, excessive simplifications are not allowed

as well in that the nature of a system may be distorted and the validity of the model cannot be guaranteed.

Thus, a trade-off between the complexity and validity of a model has to be made. The model in this research

focuses on the process of the MRI department and some key booking rules are considered in scheduling of

patients to make sure that the process modeling is valid.

A big problem in PN modeling is that the complexity of a model grows along with the increasing scale

of the system, that is, the dimension of net modeling a large system may become intolerably huge. To

lighten the severity of this problem and broaden the applications of PNs, various extended PNs are proposed

by combining or extending functions in different degrees, two of which are selected here to model the MRI

system. Two new extensions are proposed to reduce the complexity of the structure of the net, which are

introduced in further detail in Chapter 3.

2.3 A Special Note to the Application of Simulation Techniques

to Radiology Department

There have been few works on using the discrete event simulation technique to the department of radiol-

ogy. Ramakrishnan et al. [48] used a general purpose software tool called Arena to model the process of

radiology department. Arena is based on discrete event dynamics. They demonstrated the promise to use

this simulation technique to identify the changes that may be needed in a particular radiology department,

e.g., increasing the number of reading radiologists, etc. However, Arena seems to be based on queue theory,

which therefore limits its use for more complex discrete event dynamics. In a similar vein, the tool called

Tecnomatix Plant Simulation software was used by Johnston et al. [36]. This tool is also based primarily

on queue theory. A comprehensive simulation study was performed by Guglielmino et al. [26] by employing

a suite of tools including flow charts, IDEF0 diagrams and Petri Nets. These tools correspond to different

activities in the entire business process of radiology department. Their work led to a finding of reorganizing

nurses in the department.
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2.4 Conclusion

This chapter reviews the literature to discuss the common modeling methods employed for managing health

care systems. Both characteristics and application areas of the methods are discussed. It can be concluded

that queuing theory is not an ideal choice for this study. In process simulation, SD specializes in modeling

of time-continuous dynamic systems and is unsuitable to modeling an appointment system, while DES is

illustrated to show its promise in modeling an appointment system; in particular, PNs are deemed to be the

best choice for modeling the problem of interest in the present study. The complexity of a PN model needs

to be taken into account. It is going to be shown in later discussions that the present study also found two

extensions to PNs to reduce the complexity of the model in order to easily capture some pieces of semantics

arising from the MRI booking and serving system.
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Chapter 3

Petri Net Tool and Its Extensions

Utilizing the motivation established in the last chapter, Petri nets will be used to model and simulate the

MRI booking and serving system (MRI system for short). This chapter will present details of Petri Nets. In

particular this includes the state of the art of Petri nets described in Section 3.1, along with two extensions

proposed by the author of this study to existing Petri nets theory with their justification to the MRI system

detailed in Section 3.2. Section 3.3 is a conclusion.

3.1 Petri Nets

3.1.1 Basic Petri Nets

A Petri net (PN) is in its nature a type of directed graph that captures the states and behaviors of discrete

event-driven dynamic systems. The PN was first proposed by Carl Adam Petri [47]. It can model various

types of discrete event dynamics (e.g. concurrent, asynchronous and non-deterministic).

A PN is composed of two types of nodes: place and transition (see Figure 3.1).

• Place: a circle, denoted by p, representing a condition with respect to the occurring of events.

• Transition: a rectangular or a bar, denoted by t, representing an event or a transformation process.

The connection between a place and a transition is by means of a directed arrow called arc. An arc links two

different kinds of nodes, i.e. either from a place to a transition or from a transition to a place (see Figure

3.1). A positive integer k labeled on an arc is called weight, which is interpreted as k numbers of arcs with an

identical direction. For a unit weight (i.e. k = 1), the label is usually omitted. The dots located at a place

are called tokens (see Figure 3.1), showing the presence of material or information resources. The number

of tokens in a place indicates the amount of resources. The distribution of tokens over all places in a net is

called a marking, which is a vector denoted by M . The dimension of a marking is equal to the total number

of places in the net.

The formal definition of a basic PN is as follows:

Definition 3.1 ([46]) A Petri Net is a five-tuple, PN = (P, T, F,W,M0), where:

1. P = {p1, . . . , pm} is a finite set of places.
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Figure 3.1: An example of a basic PN
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Figure 3.2: The Petri net after the firing of t1

2. T = {t1, . . . , tn} is a finite set of transitions.

3. F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation).

4. W : F → {1, 2, . . .} is a weight function.

5. M0 : P → {0, 1, 2, . . .} is the initial marking.

6. P ∩ T = φ and P ∪ T 6= φ.

A Petri net structure N = (P, T, F,W ) without any specific initial marking is denoted by N . A Petri net

with the given initial marking is denoted by (N,M0).

A Petri net can be used to simulate a dynamic system via the movement of tokens from place(s) to

place(s), which is fulfilled by the firing of transitions. A transition is going to fire when it is enabled, i.e., the

preconditions for an event to occur are satisfied. The condition for a transition t to be enabled is that the

number of tokens in every input place p of t is not less than the weight of the arc directing from p to t. The

firing of a transition removes token(s) from input places and adds token(s) to output places. The number

of removed or added tokens is equal to the weights of the corresponding incoming or outgoing arcs of the

transition. For instance, in Figure 3.1, the transition t1 is enabled in that the number of tokens in the input

place p1 is 1, which is equal to the weight marked on the incoming arc of t1, while the transition t2 is not

enabled. The initial marking M0 is [1, 0]. Because the weights of arcs from p1 to t1 and from t1 to p2 are 1

and 2, respectively, when t1 fires, one token is removed from p1 and two tokens are added to p2 (as shown in

Figure 3.2. The new marking M1 becomes [0, 2]. In this situation, t1 is not enabled, but t2 is enabled.

There are several behavioral properties of a basic PN, such as reachability, boundedness and liveness.

Reachability refers to a marking that is reachable from the initial marking [46]. Boundedness emphasizes the

upper limit of the number of tokens in each place in a net for any reachable marking from the initial marking

[46]. Liveness detects if a PN is deadlock-free [46].
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Although basic PNs have been successfully used in many areas, they have some drawbacks, such as

• Lack of an ability to distinguish tokens;

• Lack of compactness in the structure;

• Lack of time control over the firing of transitions.

To overcome these shortcomings, many extensions have been proposed on the basic PNs, boosting the inno-

vation of this tool in the structure and function. He and Murata [27] summarized the evolutions of PNs into

four generations.

• Low-level PNs: describing system control;

• High-level PNs: describing both system data and control;

• Hierarchical PNs: abstracting system structures;

• Object-oriented PNs: supporting modern system development approaches.

The first generation, low-level PNs, refer to the basic PNs. High-level PNs are developed to consider the

differences in data in one condition. The most important representative of this generation of the PN model is

Coloured PNs. In Coloured PNs, the concept of types of tokens is introduced; different types refer to different

colors. In hierarchical PNs, the model structures are constructed with a nested pattern. To overcome the

weakness of inadequate support of compositionality in the previous generations [41], the idea of object-

oriented PNs (OOPNs) come into being with a combination of object-oriented technology and Petri nets. In

OOPNs, the concepts such as inheritance, polymorphism and encapsulation are integrated into Petri nets.

The details of each object are hidden, and communication to the details of each object is through interfaces,

which makes the model reusable and easy to be maintained.

The categories of PN models above are not exhaustive and there are some additional extensions. For

example, Timed PNs (TPNs) integrate time delays into net transitions and places to preserve tokens for a

period of time before removal. They are a type of deterministic timed nets as the delays are deterministically

given. As for the function, they are able to measure the time consuming from one state to another in a net and

are suitable to deal with time related problems. Stochastic PNs (SPNs) are another type of PNs with time

delays. They have a similar definition and function with TPNs except that the delays are probabilistically

specified rather than deterministic [46].

All the extended PNs are designed for specific requirements in practice. For the purpose of the present

work, only two extensions (Coloured PNs and Hierarchical PNs) are employed in this thesis, which are

sufficient for developing a model to simulate MRI system.
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3.1.2 Extended Petri Nets

Coloured Petri Nets

This extension aims to distinguish tokens in a place with different values, as the tokens are painted with

various colours. Merging distinguishable tokens into one place, the number of places can be effectively

reduced. The formal definition of a Coloured Petri net is as follows.

Definition 3.2 ([35]) A non-hierarchical Coloured Petri Net (CPN) is a nine-tuple, CPN = (P, T,A,Σ,

V, C,G,E, I), where:

1. P is a finite set of places.

2. T is a finite set of transitions T such that P ∩ T = φ.

3. A ⊆ P × T ∪ T × P is a set of directed arcs. An arc can be denoted by two elements: the first one is

the starting node and the second one is the ending node, i.e., (p, t) or (t, p), p ∈ P and t ∈ T .

4. Σ is a finite set of non-empty colour sets.

5. V a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈ V .

6. C : P → Σ is a colour set function that assigns a colour set to each place.

7. G : T → EXPRV is a guard function that assigns a guard to each transition t such that Type[G(t)] =

Bool.

8. E : A→ EXPRV is an arc expression function that assigns an arc expression to each arc a such that

Type[E(a)] = C(p)MS, where p is the place connected to the arc a.

9. I : P → EXPRφ is an initialization function that assigns an initialization expression to each place p

such that Type[I(p)] = C(p)MS.

In definition, EXPR is the set of expressions described with an inscription language (e.g. CPN ML in

CPN Tools) and EXPRV ′ is defined as the set of expressions e ∈ EXPR satisfying V ar[e] ⊆ V ′ , where

V ′ ⊆ V and V ar[e] is the variables in expression e . Therefore, EXPRV refers to the set of expressions with

variables, and EXPRφ is the set of all initialization expressions without free variables. Type refers to the

type of colour set of an object, i.e., Type[e] is the type of an expression e ∈ EXPR and Type[v] is the type

of a variable v ∈ V .

An example of CPNs is displayed in Figure 3.3, which shows how a specific patient moves from one place

to another. The data in place p1 load the information such as the number and name of each patient, and

the data in place p2 are a set of numbers. It can be seen that the colour set of p1 is recorded with two fields,

the first field is integer and the second is text string, while the colour set of p2 is integer. The expression
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Figure 3.3: An example of CPNs
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Figure 3.4: The net after the firing of t with i = 1

[i ≤ 2] on the top of t is a guard stipulating the precondition for t to fire. When a number in p2 matches

to a patient’s number in p1, the patient is allowed to move with the firing of transition t. After firing, the

patient’s information is removed from p1 and added to p3, along with the elimination of the patient’s number

in p2. Figures 3.4 and 3.5 exhibit two situations after firing t once. If “i” is substituted by “1”, the tokens

“(1, Lee)” and “1” are removed from p1 and p2 respectively when t fires, then a token “(1, Lee)” is added to

p3 (Figure 3.4). If the substitution is {2|i,Ray|n}, the token deposited in p3 is “(2, Ray)” (Figure 3.5).

When the number of colours is finite, CPNs are actually “folded” nets of the basic PNs in structure and

are easily transformed into the corresponding basic PNs. The “unfolded” net of the CPN in Figure 3.3 is

illustrated in Figure 3.6. The function of the new net is consistent with the original one, but the number of

places and transitions dramatically increases and the net structure becomes complicated.

CPNs concentrate on the integration of diverse resources and provide a concise representation for the

intricate nets. However, this improvement is not enough for the description of highly complex systems in

that CPNs describe all the details of a system in a single layer, ignoring the hierarchical structure which may

present in the target dynamic sysrems. This limitation can be modified by a multi-layer pattern and thus

motivates the development of the notion of hierarchy to PNs.
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Figure 3.5: The net after the firing of t with i = 2
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Figure 3.6: The basic PN unfolded from the CPN in Figure 3.3

Hierarchical Coloured Petri Nets

Hierarchical Petri nets encapsulate some system information to the net in a lower layer with the substitution

of special transitions. This extension can be added to any type of PNs. In this study, this notion is combined

with CPNs, leading to Hierarchical Coloured Petri nets (HCPNs).

Definitions 3.3 to 3.5 are about the definition for HCPNs proposed by Jensen and Kristensen [35]. Def-

inition 3.3 introduces a concept of module, which is a key concept for HCPNs. Definition 3.4 is the formal

definition for HCPNs with an extra concept of module hierarchy in Definition 3.5.

Definition 3.3 ([35]) A Coloured Petri Net Module is a four-tuple, CPNM = (CPN, Tsub, Pport, PT ),

where:

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a non-hierarchical Coloured Petri Net.

2. Tsub ⊆ T is a set of substitution transitions.

3. Pport ⊆ P is a set of port places.

4. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a port type to each port place.
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Substitution transitions are a type of special transitions in a module representing the corresponding sub-

modules. The places linking to substitution transitions of a module are called sockets, which also exist in

its sub-modules and are called ports. There are three types of ports with respect to their functions: input,

output and both of them. For two related socket and port places, they share the same colour set and token

allocation.

Definition 3.4 ([35]) A Hierarchical Coloured Petri Net is a four-tuple, CPNH = (S, SM,PS, FS) ,

where:

1. S is a finite set of modules. Each module is a Coloured Petri Net Module

s =
(
(P s, T s, As,Σs, V s, Cs, Gs, Es, Is), T ssub, P

s
port, PT

s
)
.

It is required that (P s1 ∪ T s1) ∩ (P s2 ∪ T s2) = φ for all s1, s2 ∈ S such that s1 6= s2.

2. SM : Tsub → S is a sub-module function that assigns a sub-module to each substitution transition. It

is required that the module hierarchy (see definition 3.5) be acyclic.

3. PS is a port-socket relation function that assigns a port-socket relation PS(t) ⊆ Psock(t) × PSM(t)
port to

each substitution transition t. It is required that ST (p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉

for all (p, p′) ∈ PS(t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty fusion sets such that C(p) = C(p′) and I(p)〈〉 = I(p′)〈〉 for all p, p′ ∈ fs

and all fs ∈ FS.

In the definition, ST (p) is the type of socket place p and PT (p′) is the type of port place p′. C(p) is the

colour set of place p and I(p)〈〉 is the initial marking expression in place p, i.e., I(p)〈〉 = M0(p). 2P denotes

the set of all subsets of places in a net. A fusion set fs is a set of places in the same or different modules,

which are glued together into one compound place. All places in a fusion set have identical colour sets and

markings. The set of fusion sets is denoted by FS.

Definition 3.5 ([35]) The module hierarchy for a Hierarchical Coloured Petri Net CPNH = (S, SM,PS, FS)

is a directed graph MH = (NMH , AMH), where:

1. NMH = S is the set of nodes.

2. AMH = {(s1, t, s2) ∈ NMH × Tsub ×NMH |t ∈ T s1sub ∧ s2 = SM(t)} is the set of arcs.

For a substitution transition, it does not make sense to discuss its enabling and firing as it is not a real

transition; instead, it is a symbol indicating the behavior of a sub-module. More specifically, when the socket

places of a substitution transition are equipped with some tokens, the related port places in a sub-module

obtain these tokens as well, which may enable the transitions in the sub-module. Hence, a substitution

transition can be treated as a gateway from a module to its sub-module.
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Figure 3.7: An example of HCPNs
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Figure 3.8: The sub-module represented by transition “Booking” in Figure 3.7

The characteristics of HCPNs are demonstrated with an example displayed in Figures 3.7 and 3.8. Fig-

ure 3.7 is a module describing a process for patients from access to leave. The transition “Booking” is a

substitution transition representing the sub-module in Figure 3.8. The places “Patients before booking”

and “Patients after booking” are sockets in Figure 3.7 and are ports in Figure 3.8. If a token with patient

information is allocated in the socket place “Patients before booking”, it is also sited in the related port

place. Based on the particular information, the patient is classified into one type, and then books the service

through the booking procedure for a specific type of patients. The transitions “Booking 1”, “Booking 2” and

“Booking 3” are substitution transitions implying three more sub-modules.

HCPNs are selected to model this system with two concerns. For one thing, the data of medical informa-

tion are exclusive for patients and thus should be distinguishable in the model. For another, the hierarchical

pattern is an optimal choice to logically describe the system from up to bottom by compacting the whole

model.

The computer software used in this study to build and run the model is CPN Tools (Version 3.4.0), a free

tool to edit, simulate and analyze CPNs. A user-friendly graphical editor is designed for the creation and

revision of a net and the checking of syntax is automatically fulfilled. After editing, the simulation of model

is carried out rapidly and the performance of model can be analyzed.

3.2 New Extensions to PNs

Though a few defects of the basic PNs have been made up by the foregoing extensions, great efforts are

still taken to further improve the approach in other aspects that have not been considered. In this section,
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two new extensions are proposed, which are useful in further simplification of the model or reduction of the

complexity of the model.

3.2.1 Ordered CPNs

An Ordered CPN (OCPN) is an extension based on CPNs, aiming to arrange the tokens of places in a specific

order. As a type of CPNs, the tokens in OCPNs are distinguishable as well. The marking of a net is a set of

ordered tokens. When a transition fires, tokens in input places are removed with a specified sequence (e.g.

FIFO or LIFO) rather than randomly. The definition of OCPNs is stated in Definition 3.6.

Definition 3.6 An Ordered Coloured Petri Net is a two-tuple OCPN = (CPN,O), where:

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a Coloured Petri Net.

2. O : P → Ψ is an order function that assigns an order to each place p ∈ P , where Ψ = {FIFO,LIFO}

is an order set, FIFO is “first-in-first-out”, and LIFO is “last-in-first-out”.

In OCPNs, tokens are positioned in places as ordered multi-sets, which are defined as follows.

Definition 3.7 Let σ1, σ2, . . . , σk be a group of data with the same type. An ordered multi-set (OMS) is

a combination of the data in sequence. The number of σi is denoted by n(σi), n(σi) ∈ {1, 2, . . .}, i = 1, . . . , k.

We have

OMS = n(σ1)′σ1 B n(σ2)′σ2 B · · ·B n(σk)′σk,

where B is an operator of ordered connection, ′ is a separator and n(σi)
′σi is the i’th element of the OMS,

i = 1, . . . , k.

For ordered multi-sets, there are some basic operations, such as addition, comparison and subtraction.

Let σi be a group of ordered data of an OMS, i = 1, . . . , k, (σ1 is the first one and σk is the last), and σk+1

be another one of the same type with σi, we have

Addition:

OMS ⊕ n(σk+1)′σk+1 = n(σ1)′σ1 B n(σ2)′σ2 B · · ·B n(σk)′σk B n(σk+1)′σk+1.

Comparison:

n(σk+1)′σk+1 ≺ n(σi)
′σi ⇔ σk+1 = σi and n(σk+1) ≤ n(σi), i = 1, . . . , k.

Subtraction:

If n(σk+1)′σk+1 ≺ n(σi)
′σi, i = 1, . . . , k

OMS 	 n(σk+1)′σk+1

= n(σ1)′σ1 B n(σ2)′σ2 B · · ·B n(σi−1)′σi−1 B (n(σi)− n(σk+1))′σi B n(σi+1)′σi+1 · · ·B n(σk)′σk.

The concepts of OCPNs are addressed in Definition 3.8-3.10.
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Definition 3.8 A marking in OCPNs is a function M that maps all p ∈ P to a typed ordered multi-set of

tokens,

M(p) = M(1)(p) BM(2)(p) B · · ·BM(n)(p),

where M(1)(p), . . . ,M(n)(p) are the 1th,. . ., nth tokens in p. We define Mhd(p) and Mtl(p) as the first and

last tokens in p, and Mhd(p) and Mtl(p) as the remaining tokens, respectively, i.e.,

Mhd(p) = M(1)(p), Mtl(p) = M(n)(p),

Mhd(p) = M(2)(p) BM(3)(p) B · · ·BM(n)(p),

Mtl(p) = M(1)(p) BM(2)(p) B · · ·BM(n−1)(p).

For each M(i)(p), i = 1, , . . . , n, it consists of two parts: the value of a token and the number of its appearance.

If there is no token in p, M(p) = φOMS. The colour sets of tokens in p are identical, i.e., Type[M(p)] =

C(p)OMS, where C(p)OMS is the colour set of p, p ∈ P .

Definition 3.9 The variables of an arc (p, t) are the variables in the expressions of the arc from p to t.

The set of all variables for an arc (p, t) is denoted by V ar(p, t) ⊆ V . The variables of a transition t are

the variables marked on the expressions of the input arcs and the guard of t. The set of all variables for a

transition t is denoted by V ar(t) ⊆ V . Let p1, . . . , pm ∈ P be the input places of transition t, we have

V ar(t) = V ar(p1, t) ∪ V ar(p2, t) ∪ · · · ∪ V ar(pm, t),

V ar(pi, t) ∩ V ar(pj , t) = φ, i, j = 1, . . . ,m, i 6= j.

Definition 3.10 A binding of a transition t is a function b that maps each variable v ∈ V ar(t) to a value

b(v). The set of all bindings for a transition t is denoted by B(t). Let p1, . . . , pm ∈ P be the input places of

transition t, we have

b(V ar(t)) = 〈V ar(p1, t) = val(p1), V ar(p2, t) = val(p2), . . . , V ar(pm, t) = val(pm)〉 ,

where val(pk) is the value of tokens in place pk matching the variables in arc (pk, t), k = 1, . . . ,m. val(pk)

is closely related to the order of place pk, e.g., if O(pk) = FIFO, val(pk) is the token value of Mhd(pk), and

if O(pk) = LIFO, val(pk) is the token value of Mtl(pk).

Definition 3.11 Let p1, . . . , pm ∈ P be input places of a transition t. The transition t is enabled with a

binding b in a marking M if and only if the following two properties are satisfied:

1. G(t)〈b〉 = true.

2. For pk ∈ P , k = 1, . . . ,m,

if O(pk) = FIFO,E(pk, t)〈b〉 ≺Mhd(pk),

if O(pk) = LIFO,E(pk, t)〈b〉 ≺Mtl(pk).
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Figure 3.9: An example of OCPNs

where G is a function mapping a transition to the expression of its guard and G(t)〈b〉 is a guard function with

a binding b, the type of which is Boolean. E is a function mapping an arc to its expression and E(pk, t)〈b〉

is an arc expression function with a binding b.

If an enabled transition t fires, a new marking M ′ is obtained on the basis of the following rules. For a

place p connected to t, p ∈ P ,

If O(p) = FIFO, M ′(p) = ((Mhd(p)	 E(p, t)〈b〉) BMhd(p))⊕ E(t, p)〈b〉;

If O(p) = LIFO, M ′(p) = (Mtl(p) B (Mtl(p)	 E(p, t)〈b〉))⊕ E(t, p)〈b〉.

The firing rules above are illustrated with an instance in Figure 3.9. In this net, the colour set of p1 is

integer, the same with p2, p3 and p4. The current marking of the net is

M = [M(p1),M(p2),M(p3),M(p4)]

= [6′1 B 3′4 B 4′3 B 3′4, 4′2 B 2′3 B 1′4 B 2′3, φOMS , φOMS ] .

For transition t, the input places are p1 and p2, and the output places are p1, p2, p3 and p4.

If O(pi) = FIFO, i = 1, . . . , 4 the binding of t is b = 〈x = 1, y = 2〉 and we have

Mhd(p1) = 6′1, Mhd(p2) = 4′2,

E(p1, t)〈b〉 = 3′1, E(p2, t)〈b〉 = 2′2, E(p3, t)〈b〉 = φOMS , E(p4, t)〈b〉 = φOMS ,

E(t, p1)〈b〉 = 1′2, E(t, p2)〈b〉 = 2′1, E(t, p3)〈b〉 = 1′3, E(t, p4)〈b〉 = 1′(−1).

There is no guard marked on t, which means no restriction is added to the firing of t, i.e., G(t)〈b〉 = true.

Since E(p1, t)〈b〉 ≺ Mhd(p1) and E(p2, t)〈b〉 ≺ Mhd(p2), t is enabled. When t fires, a new marking M ′ is

generated and we have

M ′(p1) = ((Mhd(p1)	 E(p1, t)〈b〉) BMhd(p1))⊕ E(t, p1)〈b〉

= 3′1 B 3′4 B 4′3 B 3′4 B 1′2,

M ′(p2) = ((Mhd(p2)	 E(p2, t)〈b〉) BMhd(p2))⊕ E(t, p2)〈b〉

= 2′2 B 2′3 B 1′4 B 2′3 B 2′1,
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M ′(p3) = ((Mhd(p3)	 E(p3, t)〈b〉) BMhd(p3))⊕ E(t, p3)〈b〉

= 1′3,

M ′(p4) = ((Mhd(p4)	 E(p4, t)〈b〉) BMhd(p4))⊕ E(t, p4)〈b〉

= 1′(−1).

Thus,

M ′ = [M ′(p1),M ′(p2),M ′(p3),M ′(p4)]

= [3′1 B 3′4 B 4′3 B 3′4 B 1′2, 2′2 B 2′3 B 1′4 B 2′3 B 2′1, 1′3, 1′(−1)] .

If O(pi) = LIFO, i = 1, . . . , 4, the binding of t is b = 〈x = 4, y = 3〉 and we have

Mtl(p1) = 3′4, Mtl(p2) = 2′3,

E(p1, t)〈b〉 = 3′4, E(p2, t)〈b〉 = 2′3, E(p3, t)〈b〉 = φOMS , E(p4, t)〈b〉 = φOMS ,

E(t, p1)〈b〉 = 1′3, E(t, p2)〈b〉 = 2′4, E(t, p3)〈b〉 = 1′7, E(t, p4)〈b〉 = 1′1.

Since E(p1, t)〈b〉 ≺Mtl(p1) and E(p2, t)〈b〉 ≺Mtl(p2), t is enabled. When t fires,

M ′(p1) = (Mtl(p1) B (Mtl(p1)	 E(p1, t)〈b〉))⊕ E(t, p1)〈b〉

= 6′1 B 3′4 B 4′3 B 1′3,

M ′(p2) = (Mtl(p2) B (Mtl(p2)	 E(p2, t)〈b〉))⊕ E(t, p2)〈b〉

= 4′2 B 2′3 B 1′4 B 2′4,

M ′(p3) = (Mtl(p3) B (Mtl(p3)	 E(p3, t)〈b〉))⊕ E(t, p3)〈b〉

= 1′7,

M ′(p4) = (Mtl(p4) B (Mtl(p4)	 E(p4, t)〈b〉))⊕ E(t, p4)〈b〉

= 1′1.

Thus,

M ′ = [6′1 B 3′4 B 4′3 B 1′3, 4′2 B 2′3 B 1′4 B 2′4, 1′7, 1′1] .

This extension is quite useful in the system concerned by the present study. In the booking stage of MRI

service, the cases are categorized and put in a waiting list with an order, and then they are scheduled with

the first-come-first-serve principle for each type, i.e., for the cases with similar medical records, the early

one requesting for MRI is probably assigned an earlier time slot. The queuing of patients is straightforward

using OCPNs as shown in Figure 3.10, which describes the process that patients move from “PBB (Patients

before booking)” to “PAB (Patients after booking)” via the occurrence of an event “Booking”. In the net,

IN is a function that assigns a set of medical information to each patient pai, i = 1, . . . , n, and da is an arc

expression. Let O(PBB) = O(PAB) = FIFO, then patients can be booked in sequence.
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Figure 3.11: A CPN model describing the process in Figure 3.10 with a control place

The process in Figure 3.10 can be modeled with CPNs as well, which are displayed in Figure 3.11 and

3.12. In Figure 3.11, tokens are disorderly in the place “PBB”. To make sure that early cases are dealt with

first, cases in that place are numbered. The sequence for patients to be booked is controlled by another

place “Num” (a control place) with the token of an increasing number to transfer patients orderly. However,

this way brings two problems: (1) a control place is always attached when the first-come-first-serve principle

is obeyed for a place, (2) the cases should be renumbered each time when they are needed to queue up.

Accordingly, more nodes are required in the modeling. Figure 3.12 shows another CPN model to describe

the process in Figure 3.10. In this example, a concept “list” is involved. A list is an array containing data

of varying types and sizes. The token in “PBB” is a list with the components recording the information

of patients. The token in “PAB” is an empty list. “p”, “ps” and “ps0” are all variables with the type of

list. “p :: ps” is a function setting component “p” as the head of the list “ps”. “ins ps0 p” is a function

inserting component “p” at the end of the list “ps0”. When the transition “Booking” fires, the components

in “PBB” are moved to “PAB” in sequence. That is, patients can be transferred orderly. However, more

arcs are required in this model. In summary, using CPNs to model the process results in an increase of the

number of nodes or arcs, which are redundant and increase the complexity of the model structure.

3.2.2 Prioritized HCPNs

A Prioritized HCPN (PHCPN) is an extension of HCPNs with a modification on the substitution transitions

by introduction of the notion of global priorities. The priority of a substitution transition can be passed

to its related sub-module, which means that a transition cannot fire until all other transitions with higher

priorities are un-enabled. This extension is defined as follows.

Definition 3.12 A Prioritized Coloured Petri Net Module is a five-tuple, PCPNM = (CPN, Tsub, Tpri,

Pport, PT ), where:
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Fig.	  3.10	  

Booking	  

IN(pa1)[ ],!, IN(pan )[ ]!" #$
p :: ps ps0 [ ]

ps ins ps0 p

PAB	  PBB	  

Figure 3.12: A CPN model describing the process in Figure 3.10 with a list

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a non-hierarchical Coloured Petri Net.

2. Tsub ⊆ T is a set of substitution transitions.

3. Tpri ⊆ Tsub is a set of prioritized substitution transitions.

4. Pport ⊆ P is a set of port places.

5. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a port type to each port place.

Definition 3.13 A Prioritized Hierarchical Coloured Petri Net is a five-tuple, PHCPN = (MO,SM,

PS, FS, PR), where:

1. MO is a finite set of modules. Each module is a Prioritized Coloured Petri Net Module mo =(
(Pmo, Tmo, Amo,Σmo, V mo, Cmo, Gmo, Emo, Imo), Tmosub , T

mo
pri , P

mo
port, PT

mo
)
. It is required that (Pmo1 ∪

Tmo1) ∩ (Pmo2 ∪ Tmo2) = φ for all mo1,mo2 ∈MO such that mo1 6= mo2.

2. SM : Tsub → MO is a sub-module function that assigns a sub-module to each substitution transition.

It is required that the module hierarchy is acyclic. In contrast, SM−1 : MO → Tsub is the inverse

function of SM mapping a sub-module to the corresponding substitution transition.

3. PS is a port-socket relation function that assigns a port-socket relation PS(t) ⊆ Psock(t) × PSM(t)
port to

each substitution transition t. It is required that ST (p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉

for all (p, p′) ∈ PS(t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty fusion sets such that C(p) = C(p′) and I(p)〈〉 = I(p′)〈〉 for all p, p′ ∈ fs

and all fs ∈ FS.

5. PR : T → {1, 2, . . .} is a priority function that assigns a priority to each transition t. It is required that

PR(t) = 1 for all t ∈ Tmo\Tmopri and all mo ∈MO such that SM−1(mo) /∈ Tpri. If SM−1(mo) ∈ Tpri,

PR(t) = PR(SM−1(mo)) for all t ∈ Tmo\Tmopri and mo ∈ MO. In addition, PR(t′) = PR(t) + 1 for

all t ∈ Tmo\Tmopri , t′ ∈ Tmopri and mo ∈MO.

Similar to substitution transitions, it is also meaningless to discuss the enabling and firing of prioritized

substitution transitions. For a transition t ∈ T\Tsub, it is enabled when the conditions on its guard and

input arc expressions are satisfied. If a transition t ∈ T\Tsub is enabled, it fires when PR(t′) ≤ PR(t) for

any enabled transition t′ ∈ T\Tsub such that t′ 6= t.
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Figure 3.13: An example of PHCPNs
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Fig.	  3.11	  (b)	  

Figure 3.14: The sub-module represented by transition “t1” in Figure 3.13

Figures 3.13 and 3.14 show an example of PHCPNs containing a module and a sub-module. In Figure

3.13, t1 is a prioritized substitution transition with a value of priority labeled on the left. For a unit priority,

the label is usually omitted. The sub-module related to t1 is exhibited in Figure 3.14. Since t1 is a prioritized

substitution transition, the priorities of all transitions in the sub-module are equal to the priority of t1.

According to the firing rule, transition t0, t2 and t3 can fire only if they are enabled and all transitions in

Figure 3.14 are not enabled. For the transitions with the same priority, they fire randomly.

This extension can effectively avoid some conflicts in the modeling of this work, which is demonstrated

with the following instance. Figures 3.15 and 3.16 describe a simple process for patients to be assigned time

slots. As it is displayed in Figure 3.15, time slots are divided into two parts assigning to two groups of patients

separately. The cases acquiring time slots are moved to the place “Patients with TS”. If both parts of time

slots (“TS1” and “TS2”) are free of tokens, the remaining cases in place “Patients without TS” are moved

to place “Patients in waiting list” and continue to wait. The dashed line from place “TS1” to transition

“Quitting” ending with a small circle is an inhibitor arc with a function to enable the transition when the
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Fig.	  3.12	  (a)	  
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Figure 3.15: An application instance of PHCPNs

Fig.	  3.12	  (b)	  

All	  6me	  
slots	   TS2	  

Available	  
6me	  slots	  

Sor6ng	  1	  

Sor6ng	  2	  

TS1	  

2	  

2	  

2	  
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TransmiRng	  

Absorbing	  

Figure 3.16: The sub-module represented by transition “Sorting” in Figure 3.13

input place has no token. The transition “Sorting” is a prioritized substitution transition representing a

sub-module of time slot sifting and sorting in Figure 3.16. With the priority setting to transition “Sorting”,

time slots can be sorted thoroughly before being dispensed, and patients cannot be assigned only if no more

time slots are available in the system, so that the purpose of time slot assignment is well achieved.

However, if no priority is considered in the modeling, i.e., using HCPNs, the system may be in stuck in

some situation. Without priority, all enabled transitions in the net can fire randomly, which means that the

sorted time slots in “TS1” and “TS2” can be assigned to patients as the sorting process is in progress. Thus,

it is possible that both “TS1” and “TS2” are vacant when their tokens are dispensed and new tokens are not

obtained. Then, the backlog of demands is moved to place “Patients in waiting list”. Though new tokens are

added to “TS1” and “TS2” when the sorting of time slots is completed, they cannot be consumed any more.

To solve the problem, more nodes and arcs are required to control the behavior of system. For example, a

transition “Detecting” can be added in the sub-module of “Sorting” to make sure that sorted time slots are

not moved to “TS1” and “TS2” until there are no tokens in both place “All time slots” and “Available time

slots” (see Figure 3.17). Then, the sorted time slots can be assigned to patients successfully. However, with

the employment of additional nodes and arcs, the size of model is enlarged.
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Fig.	  3.13	  
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Figure 3.17: The sub-module constructed by HCPNs

3.3 Conclusion

This chapter introduced Petri nets (PNs) and their extensions, focusing on the Coloured Petri nets (CPNs)

and Hierarchical Coloured Petri nets (HCPNs). On the basis of these two extensions, two new extensions

(OCPNs and PHCPNs) were proposed to improve the expressing power of the PNs and the effectiveness

of the operations. OCPNs were designed to describe the ordered data in a direct way cutting a few trivial

components. PHCPNs impose restrictions on the firing sequence of transitions via priorities to avoid possible

conflicts in event transitions. Both extensions seem to effectively refine the structure of a PN model. However,

as they are not supported by the current software of PNs, the implementation of them was made in this

research still with HCPNs yet by defining additional nodes and arcs in the HCPN.
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Chapter 4

Model Development and Model Validation

This chapter focuses on the modeling of patient flow in the whole process of MRI examination with

HCPNs and is organized as follows. Section 4.1 revisits the process of MRI system and summarizes the

semantics of the target system. The PN models capturing a part of the semantics are developed in Section

4.2. Section 4.3 validates the model based on real data. A summary is given in Section 4.4.

4.1 MRI Booking and Serving Process: Revisit

MRI booking process is a period from patient request for MRI examination to patient being scheduled. If a

general practitioner or specialist thinks a patient should undergo an MRI examination, he transmits a request

to a booking center with the patient’s basic information and the referral. Then, a radiologist may confirm

the information of the patient and determine a priority level. After that, the patient may be assigned a time

slot to do the scan (including scan date, start time and anticipated end time) by booking staff.

MRI serving process is a period from patient arrival for the examination to patient departure. When a

patient arrives at the scan site on the appointed day, he needs to register first and do some preparations (e.g.

fill a screening form, change clothes, intravenous injection, etc.). Then, the patient is asked to stay in the

waiting room until the machine is available. The service time (the time period that a patient stays in the

scan room) may be shorter or longer than anticipated. After the examination, the patient is free to go home.

The above procedures are experienced by an outpatient. For the inpatients, they do not need to book

the service and make all the preparations as outpatients do. They can receive the service directly after their

doctor calls for it. A segment of time is always reserved for them each day.

Based on the whole process of MRI examination, several pieces of semantics are summarized as follows,

which are expected to be captured by the model.

Semantics 1: Both booking and serving processes of outpatients are modeled. In the booking process,

an order for MRI should be confirmed before being passed to the booking staff for scheduling an appointment.

This confirmation step can be ignored in the model, as it is in practice very short and not a crucial step

for the system. As such, an order is directly put into the waiting list for booking as soon as a request has

been received. In the booking stage, patients are booked by category (future cases and level 3, level 4 and

level 2 routine cases) and assigned a time slot of either 30 or 60 minutes within the department hours. After
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booking, it is possible for some patients to cancel the examination and leave the system earlier than the

appointed time.

In the serving process, it is assumed that patients are just ready for scan at the appointed start time and

the scan lasts as long as anticipated. That is, at the moment that a patient finishes the scan, the next patient

is just ready. Thus, there is no room empty time/machine idle time (i.e. the time slot from the end time of a

patient to the start time of the next patient) and service overtime (i.e. the time slot from the anticipated end

time to the real end time of a patient). Each patient only scans once. The machines always work well without

sudden breakdown or regular maintenance and enough medical staff, including nurses, doctors, technicians

and radiologists, are equipped in MRI department to guarantee that no delay is caused by the scarcity of

human resources.

Semantics 2: Based on the assumptions of Semantics 1, it is further assumed that patients are allowed

to choose their preferred scan site when more than one scan site is available.

Semantics 3: Based on the assumptions of Semantics 1, it is further assumed that patients are allowed

to choose their preferred time slot.

Semantics 4: In Semantics 1, it is assumed that for each patient, the scan lasts as long as anticipated.

This assumption is changed to be that the scan may last shorter or longer than anticipated. If the scan ends

earlier than anticipated, there is a period of room empty time. If the scan ends later than anticipated, there

is no room empty time; instead, there is a period of overtime in this case. Given that the department office

hours in a day are limited, accumulated overtimes from several patients may eventually impede the scan of

the following patients and lead to a re-ordering of the services for them.

Semantics 5: In Semantics 1, only outpatients are considered. The inpatient is a factor to influence the

process of MRI system. Though inpatients do not need to book the service, they are in the serving process

and may influence the service of outpatients. Furthermore, it is possible to arrange inpatients to the room

empty time collected in Semantics 4 as they have been in the hospital and can be provided the service at any

time. Therefore, the room empty time may be reused and more patients may be scanned.

Semantics 6: The body part to be scanned is a factor to influence booking process. Patients with

different scan parts may require different service times and can be assigned different time slots. To make the

assignment of the time slots more flexible and precise, the concept of time slot unit can be introduced, which

is a small fraction of time (e.g. 5 minutes). A patient is assigned a specific number of continuous time slot

units according to his unique feature of medical information. The subdivision of time slots may effectively

compact the schedule and diminish room empty time.

The models for Semantics 1 to Semantics 4 are constructed in the next section. Semantics 5 and Semantics

6 are not modeled in the present study and are considered as future work.
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Table 4.1: Assumptions of the model for Semantics 1

Assumptions

1 Only outpatients are considered

2 Two MRI machines with the same efficiency are modeled

3 There is a limit of department hours

4 Patients in the same category are assigned the same service time

5 There are no room empty time and service overtime

6 Each Patient only scans once

7 MRI machines always work well

8 Enough medical staff are provided

Fig.	  4.1	  
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Figure 4.1: The PN model of the overall process

4.2 PN models

This section introduces the corresponding PN models. It is noted that the models exhibited in this section are

all conceptual nets to explain the ideas of modeling. The real models built and simulated with the computer

software are put out in Appendix A.

4.2.1 Model for Semantics 1

A PN model is developed to describe the whole process of MRI examination. The main assumptions of this

model are listed in Table 4.1. To make the system logically clear, the nets of the model are organized in

a hierarchical structure. Figure 4.1 shows the net of the overall process. In the model, two MRI machines

(MRI1 and MRI2) are involved and they are assumed to have the same efficiency. The outpatients to be

arranged to either of the machines are initially in the same waiting list, i.e., in the place “PBB” (patients

before booking). Once they are booked, they are separated into two teams, i.e., “PAB1” (patients after
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booking to MRI1) and “PAB2” (patients after booking to MRI2), and wait for the serving process of a

specific machine. For MRI1, the place “PBS1” represents patients before serving and the transition “Serving

1” represents the serving process. After serving, the patients served by MRI1 are moved to “PAS1” (patients

after serving) and the waiting times of patients are output in “WT2 1”, “WT3 1” and “WT4 1” based on

the priority levels. Some patients may cancel the service and leave the system after booking, which make the

transition “Leaving 1” fire. For MRI2, the process after booking is similar to that of MRI1.

The model in Figure 4.1 is a module with the highest hierarchy. Three substitution transitions (“Booking”,

“Serving 1”, “Serving 2”) can be found in the figure indicating that the module contains three sub-modules,

which represent two processes: booking process and serving process. They are introduced in the following in

details.

Booking Process

To model the booking process, the patients in the waiting list are divided into two types: future cases and

routine cases. Future cases refer to the patients who are suggested to be served no earlier than a specified

date for various reasons. The waiting list of future cases is organized according to the desired earliest date.

To meet the special demands, future cases are booked with a priority, i.e. ahead of those cases without any

specific date restriction.

Routine cases are further categorized in priority levels assigned by a radiologist, which ranks patients

from level 1 to level 4 based on the urgency of examination. It is noted that the classification of four priority

levels is particularly used in Saskatoon Health Region. Patients belonging to level 1 have the highest priority

since they suffer from life-threatening diseases and should be examined within 24 hours. For patients in

category 2, immediate treatments are not necessary, but prompt diagnoses are still required (with a target of

7 days) to provide additional information for surgical or medical management. In level 3, patients manifest

symptoms of potentially life-threatening diseases and can bear a period of waiting (with a target of 30 days)

with no or less negative effect on the treatment outcomes. Level 4 includes patients who undergo slight or

chronic disease with a slow aggravation of the condition and who just take disease prevention, and also those

for whom limited therapeutic options are available. The target delay for patients in this category to have a

booking is less than 90 days 1. Given that level 1 cases are rare and always handled in time in reality, it is

not necessary to model them and discuss their waiting times. Thus, only level 2, 3 and 4 cases are considered

in this model. All the cases are booked as early as possible.

Figure 4.2 shows a conceptual model for the booking process, which expands from the transition “Booking”

in Figure 4.1. It can be seen from Figure 4.2 that patients in “PBB” are classified into future cases (FC)

and routine cases (RC), and the routine case category is further divided into level 3 (L3), level 4 (L4)

and level 2 (L2). The tokens in “PBB” are a collection of records that identify patients with the pattern

(f, (c, e), p, dg, df ). The f takes a 0-1 number denoting whether a patient is a future case (f = 1) or a

1http://www.health.gov.sk.ca/diagnostic-imaging-mri-prioritization
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Fig.	  4.2	  Figure 4.2: The PN model of booking process

routine case (f = 0). The (c, e) is a record with two elements, where c and e take both 0-1 numbers denoting

whether the contrast is required (c = 1 if the contrast is required and c = 0 if not) and whether the patient’s

examination needs to be reviewed by radiologists (e = 1 if the review is needed and e = 0 if not), respectively.

The (c, e) are another two factors to classify patients, and they will be further discussed later. The p is the

priority level represented by an integer between 2 and 4. The dg is the day when a case is generated and df

is the earliest day that a future case is suggested to be examined. For the routine cases, df = 0.

Two machines considered in the model are scheduled separately. As shown in Figure 4.2, the part in

the left rectangle is the scheduling of MRI1 and that in the right rectangle is about MRI2. The patients

are arranged to the machine with earlier available time slots ensuring that both machines are equally busy.

Since the scheduling of MRI1 and scheduling of MRI2 are similar, only one machine (MRI1) is illustrated in

the following. For MRI1, the booking processes of the different categories of cases are performed with an

order. The group being booked first is future cases (the patients who desire to be served no earlier than a

specified date), followed by level 3 and 4 cases, and finally is level 2. Future cases are booked first because

their desired earliest scan dates should be met. For level 3 and level 4 routine cases, there are usually backlog

requests, which can be arranged to the schedule directly. As level 2 cases are urgent and should receive

services quickly, several time slots are reserved daily to satisfy the potential requirements. Thus, level 2 cases

are booked at last to the available time slots reserved for them. The completed cases of a group are considered

in the booking process of the next group, so that the booking results of each group can be combined in a

chronological order in place “PAB1” to wait for serving.

Let us take booking for the patients in the future case category as an example. Upon receiving the

cases, they are categorized based on (1) whether the patient needs contrast and (2) whether the patient’s
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Table 4.2: The number of time slots for each situation on weekdays and weekends

Weekdays Weekends

Situation 1 5 0

Situation 2 3 3

Situation 3 5 4

examination needs to be reviewed by radiologists. This will lead to four categories: (1) with contrast and

with review (WcWr), (2) without contrast and with review (WOcWr), (3) with contrast and without review

(WcWOr), and (4) without contrast and without review (WOcWOr). It is noted that the serving hours of

MRI department are from 8 a.m. to 11:30 p.m. on weekdays and from 8 a.m. to 5 p.m. on weekends.

However, the time period with the provision of contrast is limited, and further the radiologists are not

available during all these periods. Thus, the patients with different conditions are arranged to specific time

periods. For patients requiring contrast, they are booked between 8 a.m. and 8 p.m. on weekdays and

between 8 a.m. and 11 a.m. on weekends, while those without this need are usually booked in the remaining

time slots. The patients who need to be reviewed are booked between 8 a.m. and 5 p.m. on weekdays, and

those without this need can be booked in the other time. The time period from 11 a.m. to 3 p.m., which

is usually reserved for inpatients, should be noted, as this period is not open to outpatients. The PN model

does not include this period of time, as this study does not consider inpatients.

Based on the aforementioned discussion, daily hours are split into three segments on weekdays: 8 a.m.

to 11 a.m. and 3 p.m. to 5 p.m. for patients in both WcWr and WOcWr (situation 1), 5 p.m. to 8 p.m.

for patients in WcWOr (situation 2) and 8 p.m. to 11:30 p.m. for patients in WOcWOr (situation 3), and

two segments on weekends: 8 a.m. to 11 a.m. for situation 2, and 3 p.m. to 5 p.m. for situation 3. The

patients belonging to situation 1 are not scheduled to weekends as no radiologist is on duty at that time. As

a preparation of booking, the hours on weekdays are evenly divided into several time slots in advance: 60

minutes per slot from 8 a.m. to 8:15 p.m. with a 15 minutes break and 30 minutes per slot from 8:45 p.m.

to 11:30 p.m. with a 15 minutes break. It is noted that the foregoing time slot division refers to the MRI

booking center in Saskatoon. On weekends, the division changes to be 60 minutes per slot from 8 a.m. to 3

p.m. and 30 minutes per slot from 3 p.m. to 5 p.m. The number of available time slots for outpatients in

each situation is distributed as shown in Table 4.2.

The PN model of the booking of future cases (represented by the transition “Booking1 FC” in Figure

4.2) is displayed in Figure 4.3. In the net, a time slot is represented by a record (d, n) with two elements:

d is the day and n is the time slot number in that day. Available time slots are sorted in “TS1 FC” with

the destinations of places “ts1” (time slots for situation 1), “ts2” (time slots for situation 2) and “ts3” (time

slots for situation 3). The future cases in “FC” are classified into three situations and assigned with the

corresponding time slots. For each future case, there is a comparison between the desired earliest date and

the dates of available time slots. An available time slot can be assigned to a future case only if the date of
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Figure 4.3: The PN model of the booking of future cases

the time slot is equal to or later than the desired earliest date. After booking, the patients are moved to

“PAB1 FC” and the occupied time slots are removed from the time slot containers (“ts1”, “ts2” and “ts3”).

With the additional information of an assigned time slot for a particular patient, the pattern of tokens in

“PAB1 FC” becomes (f, (c, e), p, dg, df , d, n).

The booking process of level 3 cases is shown in Figure 4.4. The model structure is similar to that of future

cases with the exception of an involvement of preceding booked cases. The cases in “PAB1 FC” participate

in the sifting and sorting of time slots and then transfer entirely to “PAB1 FC′”, which are combined with

the booked level 3 cases in “PAB1 3” before being sent to “PAB1 L3”. For level 3 cases, the rule of time slot

assignment is slightly different from that of future cases. A comparison is made between the request date

and the dates of available time slots. The premise of time slot assignment is that the date of an available

time slot is equal to or later than the request date. For each situation (situation 1, 2 and 3), cases are booked

with the principle of first-come-first-serve. The booking of level 4 and level 2 cases are similar to that of level

3 and thus not repeated here.

The sub-modules of time slot sorting represented by “TS1 FC” in Figure 4.3 and “TS1 3” in Figure 4.4 are

exhibited in Figure 4.5 and 4.6, respectively. The sorting process in Figure 4.5 is simply from the available

time slots to the sorted ones for each situation. As future cases have the highest priority in booking, all time

slots are optional for them. Comparatively, the process in Figure 4.6 is more complex with an additional step

of time slot sifting. The time slots are filtered first to remove those occupied by future cases. For example,

if a time slot has been assigned to a future case, the transition “Sifting N” is enabled and fires to delete the

time slot in “All TS” and concurrently move the case to “PAB1 FC′”, while if a time slot is unoccupied,

transition “Sifting Y” can fire with the consequence to send the time slot to “Available TS” and return the

case to “PAB1 FC” for the next sifting. The filtered time slots in “Available TS” can proceed with sorting

as that of Figure 4.5.
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Figure 4.4: The PN model of the booking of level 3 cases
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Serving Process

Figure 4.7 is a model of the serving process of MRI1. As mentioned in Section 4.1, when patients come,

many preparations are required to be done ahead of the examination (e.g. registration, filling screening

forms, changing clothes, etc.), which are integrated into a transition “Preparing” in the PN model (Figure

4.7). After the preparation is done, patients wait in “Waiting room” and are ready to enable the transition

“Scanning” when there is a token in “MRI” (i.e. the machine is available). After scanning, patients are moved

to “Finished cases” with the release of machine. Then, the finished routine cases are moved to “PAS1” and

leave the system with an output of their waiting times in “WT2 1”, “WT3 1” and “WT4 1” based on their

priority levels. For future cases, they are also moved to “PAS1” and leave the system after serving, but their

waiting times are not calculated in that the delay for them is mainly caused by personal reasons (e.g. the

preference of a patient, the suggestion of a specialist) rather than the problem of the system, and thus it is

meaningless to test the performance of system with their waiting times.
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Figure 4.7: The PN model of serving process for MRI1

4.2.2 Model for Semantics 2

In the model for Semantics 1, the location of two machines is not considered. If two machines are located

in different sites (i.e. one machine in one site), it is necessary to allow patients to choose a preferred scan

site. To realize this function, the available scan sites can be numbered in advance. The numbers are stored

in an additional place “PSS” in the overall process (see Figure 4.8). The coming patients are originally put

in “POS” and are allowed to choose the number of preferred scan site from available ones in “PSS”, which is

added to the patients’ information. Hence, the tokens in “PBB” are in the pattern of (f, (c, e), p, dg, df , s), (s

is the scan site number). Meanwhile, the number of chosen machines is returned to “PSS” for the selection

of the next patient. For example, if two sites are modeled, three options are provided as s = 0, 1, 2, where

“1” refers to site 1 and “2” is about site 2, while “0” means no choice (i.e. with the preference of the first

available site).

4.2.3 Model for Semantics 3

In this model, the patients’ preference for time slot is considered. Taking the booking process of level 3 cases

for MRI1 for example (Figure 4.9), patients can choose a time slot among available ones in “ts1”, “ts2” and
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“ts3”. The selected time slot is then stored in the place “PTS” with the pattern (d, n) (d is the date and

n is the number of time slots) and assigned to the patient who requires it. Meanwhile, the occupied time

slot is removed from the container of available time slots. For those patients who do not have any preference

for scan time, they can input (0, 0) in “PTS”, which means that they would like to be booked to the first

available time slot.

4.2.4 Model for Semantics 4

With the assumption that a scan may last shorter or longer than anticipated (i.e. the service time is

unpredictable), the start time and end time of the service should be recorded. Figure 4.10 exhibits the model

of the serving process for MRI1. In the figure, the start time of a case is stored in “Start time”. Patients in

“Waiting room” enable the transition “Scanning” if there are tokens in both “MRI” and “Start time”. When
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the transition “Scanning” fires, the service time of the case is generated. After scanning, patients are moved

to “Finished cases” with the release of machine and an output of “End time” that is equal to the summation

of start time and service time. A threshold is set (according to the department hours) as an upper limit

of end time. If the end time does not exceed the threshold, there are two possibilities: (1) the end time is

earlier than the start time of the next patient, (2) the end time is later than or equal to the start time of

the next patient. For the first possibility, there is a period of room empty time recorded in the place “Room

empty time”. As for the second possibility, there is no room empty time and the value is recorded as 0 in

“Room empty time”, but there is a period of overtime. Then, the service of the next patient is delayed. If the

end time exceeds the threshold, the following patients in “Waiting room” have to be transferred to “TBR1”

to re-order the service. The tokens in “TBR1” restore the initial pattern (f, (c, e), p, dg, df ) removing the

obtained time slot. As an outgoing place of transition “Serving 1”, the place “TBR1” also appears in the net

of overall process shown in Figure 4.11 to move the impeded patients to waiting list for re-ordering. These

patients are put in the head of waiting list, so that they are given a priority to be booked in an early date.

4.3 Model Validation

This section focuses on the validation of the model for Semantics 1. The models for Semantics 2 to 4 are

not validated due to lack of data. However, the validation of the model for Semantics 1 can well support

the effectiveness of the models for Semantics 2 to 4, as the model for Semantics 1 is the foundation of the

entire model. In the following, the collected data for validation are introduced and deficiencies of the data are

analyzed. Then, the model-simulated waiting times are compared with the real data. A statistical analysis

of the comparison results has shown that the two are sufficiently close.
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Table 4.3: Overview of collected real data

PL RD ESD ED ST WT MA

1 . . . . . . . . . . . . . . . . . . . . .

2 . . . . . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

...

2720 . . . . . . . . . . . . . . . . . . . . .

4.3.1 Data Collection

The data used in the model are the data of outpatient requests for MRI examination from January 1, 2012

to September 30, 2012 stored in the database of Saskatoon Health Region - Royal University Hospital. The

data are related to 2,720 outpatients served by two MRI machines (MRI1 and MRI2) in RUH, and the data

contain the information of (1) priority level (PL), (2) date of request for MRI (RD), (3) the earliest scan date

of future case (ESD), (4) date of the examination (ED), (5) start time of the examination (ST), (6) waiting

time (WT) and (7) service machine (MA) (see Table 4.3). Unfortunately, another two groups of data: with

contrast or not and with review or not, which are required in the model, are not recorded in the database.

They were then produced by the experience. In practice, these two sets of data are also possibly obtained

from the patients’ medical documents.

Apart from the problem of missing data, there are also some other deficiencies in the obtained data. First,

the start times of some cases are out of department hours. They may be sudden or special cases that seldom

occur, so they were treated as outliers and eliminated from the data set. Second, several cases are repeatedly
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Table 4.4: Summary of the deficiencies of collected data

Deficiency of Data Number of Cases

Cases with start times out of department hours 8

Cases with repeated records 14

Cases recorded with different earliest scan dates 37

Cases with negative waiting times 5

Table 4.5: The number of patients in each category with respect to each machine

MRI1 MRI2

Future Case 245 295

Routine Case Level 2 379 478

Level 3 374 400

Level 4 234 251

recorded. Only one record was kept. Third, some cases are recorded more than once with different earliest

scan dates. For this situation, only the record with the latest update was taken. Finally, a few abnormal

records are found in which the date a case is served is earlier than the date the case is generated and the

waiting times for them are reported as negative numbers. These cases are impossible to happen in reality;

their presence may result from some input error. Thus, they were removed from the data as well. The number

of data with deficiencies is summarized in Table 4.4.

After the aforementioned treatment, the data relating to 2,656 patients remain, which are further shown

in Table 4.5. As mentioned in Section 4.2, three situations are considered to classify the patients. The

percentages of patients in situation 1, 2 and 3 are 37.7%, 29.1% and 33.2%, respectively. After booking,

4.5% of the patients leave the system without being served. They may have in fact cancelled the service in

advance or just not show at the appointed time.

4.3.2 Results

In this section, the information of patients that receive MRI services in a specific period is collected from the

real data and taken as input to our model. The model simulates the real booking and serving processes, from

which the scheduled time of each patient can be obtained and the simulated waiting time of each patient can

be computed. To show the effectiveness of the proposed model, the simulated waiting times are compared

with the actual ones. Since the waiting time as exhibited in reality as well as in simulated system involves

much noise, a statistical approach is employed to compare the simulated data and real data.

In the real data, scheduled times of patients are recorded from June to September in 2012. The patients

whose waiting times simulated in the model are level 2 patients who have received services in June and all
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Table 4.6: The comparisons of waiting times in each category

Simulation Mean (days) Real Mean (days) t df p-value

MRI1 Level 2 12.83416 17.67781 3.5677 690.275 0.000385

Level 3 66.07538 67.12991 0.4262 718.233 0.6701

Level 4 82.47464 89.93464 1.9529 300.259 0.05176

MRI2 Level 2 12.43846 17.37799 3.5192 800.164 0.0004573

Level 3 61.1455 64.51064 1.687 416.693 0.09235

Level 4 84.77512 87.83673 0.92 178.504 0.3588

patients who have received services from July to September. In practice, those patients of level 3, level 4 and

future cases that received services in June may be scheduled before June and thus are not simulated in the

model. Instead, their scheduled times in the real data are used directly in the model as the internal states of

the system, i.e., the schedule times for those patients in the model taking exactly the same as that in the real

data. Since in practice, level 2 cases are urgent and usually receive services quickly, their scheduled times

in June are also simulated by the model. In this way, the model has a similar initial internal state with the

real data such that the comparison of the simulated waiting times and corresponding real ones can reflect

the effectiveness of the model.

Since the simulation should start in a state that some future cases and level 3 and 4 routine cases have

been scheduled, and several available time slots are reserved for the coming of potential level 2 patients, the

real booking situations in June 2012 (except for those of level 2 routine cases) are set up in the model as initial

internal states and level 2 cases are booked first when the simulation start. The simulated waiting times

for level 3 and 4 routine cases booked between July and September are compared with the real situations

collected in this time period. As for level 2 cases, the waiting times to be compared span over four months

from June to September in that the results in June are produced by simulation as well.

The simulated waiting times and real ones are compared on the basis of student t-test at the significant

level of 0.05. The hypotheses are H0: On average, the waiting times of these two sets are the same, and H1:

On average, the waiting times of these two sets are different. If a p-value is less than 0.05, H0 is rejected.

The simulation on the two machines was run more than 30 times and their results are quite similar

(according to [30], 30 times of run are quite sufficient). This result may be explained by the following fact:

both being with the same inputs in each run and there are very small variations in the scheduling process

for the two machines. In fact, the only uncertainty occurs when the two machines have the same number of

available time slots and in this case, the next patient is randomly assigned to either one of the two machines.

Nevertheless, this situation seldom occurs and thus this uncertainty has slight effects on simulated waiting

times. The results of one run are shown in Table 4.6 and Table 4.7, respectively.

From Table 4.6, it can be seen that the mean values of simulated waiting times of each level are all smaller

than the real ones, which may be caused by some uncontrolled events that could occur in reality but are
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Table 4.7: Statistical summary of simulation and real waiting times in each category

Sample Size Standard Deviation

Simulation MRI1 Level 2 404 17.90434

Level 3 398 34.58759

Level 4 276 36.61787

MRI2 Level 2 390 18.38562

Level 3 378 13.42639

Level 4 209 15.17279

Real MRI1 Level 2 329 18.58368

Level 3 331 32.11039

Level 4 153 38.59006

MRI2 Level 2 418 21.47534

Level 3 329 33.94356

Level 4 147 38.28874

not considered in the model (e.g. maintenance of machine, careless management of the process, etc.). These

neglected events may delay the process and increase patient waiting times. However, the differences for most

types of cases are not significant. The p-values of t-test for level 3 and level 4 cases in MRI1 and those in

MRI2 are all larger than 0.05, so there is no significant difference between the simulation and real results for

level 3 and level 4 cases. Unfortunately, for level 2 cases in both machines, the simulation and real waiting

times are significantly different. This may result from the interference of a few overly long waiting times in

the real situations. The largest waiting times for level 2 cases booked to MRI1 and MRI2 are 117 and 188

days, respectively, longer than three months, which are unreasonable and unacceptable since patients in level

2 are urgent and usually cannot bear a long waiting time. Thus, the overly long waiting times in the data

are considered as outliers and ignored during the testing. By removing these outliers, the remaining data

are compared with the simulation data again, which are shown in Table 4.8 and Table 4.9. It can be seen

from Table 4.8 that p-values for level 2 cases in both machines are larger than 0.05, implying that without

the effects of outliers, there is no significant difference between the simulation and real results. It is also

indicated that, for both machines, the average waiting times obtained from simulation are shorter than those

from real system.

In summary, the above discussions have shown that on average the difference between simulated waiting

times and real waiting times is not significant, which demonstrates the effectiveness of the proposed model.

The model is able to capture the main processes and factors of the real system and its performances can ap-

proach to the reality to some degree. Therefore, it should be a good model based on which many applications

can be done and various characteristics of the real system can be explored.
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Table 4.8: The comparisons of waiting times in level 2 cases

Simulation Mean (days) Real Mean (days) t df p-value

MRI1 12.83416 14.08013 1.2035 634.227 0.2292

MRI2 12.43846 13.95262 1.4492 579.171 0.1478

Table 4.9: Statistical summary of simulation and real waiting times in level 2 cases

Sample Size Standard Deviation

Simulation MRI1 404 17.90434

MRI2 390 18.38562

Real MRI1 312 9.319791

MRI2 401 9.497381

4.4 Conclusion

This chapter developed models to describe the whole process of MRI system from booking to serving. Six

pieces of semantics were identified to be captured in the model, in which the first semantics is a foundation

of the other five. The PN models for the first four pieces of semantics were constructed. This chapter

omitted many details including arc expression, guard of transition and other nodes aiding to realize some

functions, which are all contained in the real model (see Appendix A). Though the models for Semantics 5

and Semantics 6 were not developed in this study, it is not difficult for them to be constructed based on the

model for Semantics 1 in future. In the model validation, the model for Semantics 1 was validated through

the comparison of the waiting times obtained from the model simulation and real record. To validate the

models for Semantics 2 to 4, more real data are required. However, the validation of the model for Semantics

1 can well support the effectiveness of the models for Semantics 2 to 4, as the model for Semantics 1 is the

foundation of the entire model.
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Chapter 5

Model Applications

The application of this model is explored mainly in two aspects: decision making and prediction. Each

application is explained with an example. Section 5.1 demonstrates how the model can be used to guide

the decision makers to select an optimal plan. Section 5.2 shows that the model can be used to forecast the

future waiting time when the current distribution of regional patient comings changes. The conclusion of

this chapter is given in Section 5.3.

5.1 Decision Making

As an example of decision-making, the model was used to guide the selection of a scheduling strategy to

determine the proportion of MRI time slots assigned to each category of patients. Since the capacity of MRI

machine is limited, only a couple of time slots are available daily for patients. If patients in one category

occupy too many time slots, those in other categories own less access and have to wait longer. Hence, short

waiting times of a part of patients are at the expense of long waiting times of others. To balance the waiting

times of patients in different categories, an ideal scheduling strategy of time slot allocation is important for

the MRI decision makers. However, it is impractical to try for all possible strategies in MRI department to

find out the best one. With the developed PN model, the problem can be solved.

The data of patients’ arrivals used in this application are generated from the distribution of real data.

Though the real data can be applied directly, there are some advantages to employ the generated data. First,

comparing to the limited number of real data, the computer program can generate as many data as possible

to satisfy the requirement of simulation. Second, the real data are too specific for one region within a fixed

time period and may be disturbed by some outliers, while the generated data focus on the distribution to

catch the main features of data. Finally, it is easier for decision makers to master the generated data through

an alteration of parameters of the distribution when the pattern of patients’ arrivals changes.

The probability mass function of the number of patients’ requests for MRI is fitted with a mixed Poisson

distribution. A Poisson distribution describes the probability of a given number of events happening in a

fixed interval of time. The histogram of frequency of the number of daily requests for MRI is plotted in Figure

5.1. It can be seen from the figure that the frequency of a small number of requests is in a largest value up

to 0.2. With the increase of requests, the frequency plunges into the bottom, close to 0 for 10 requests, and
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Figure 5.1: The distribution of the number of daily requests for MRI and the fitted probability mass
function

bounces back to a peak at 0.04 where 20 requests come, and then declines to 0 for around 35 requests before

leveling off. From the figure, it is found that the data do not belong to the population of a single Poisson

distribution; instead, they can be considered coming from two Poisson distributions with different parameter

values. Therefore, to combine these two distributions, a mixed Poisson distribution is proposed to fit the

data.

Let x1, . . . , xn be the observed number of patients coming each day. We assume that they can be divided

into two groups. For each observation xi, a random variable zi is defined to indicate the group that xi belongs

to, i.e.,

xi ∈ group 1 if zi = 1 and xi ∈ group 2 if zi = 0

We assume that zi follows a Bernoulli distribution with the parameter of probability of success, γ, i.e.

zi ∼ Bernoulli(γ). Conditioning on different values of zi, xi has a mixed Poisson distribution, i.e.,

xi|zi = 1 ∼ Poisson(λ1) and xi|zi = 0 ∼ Poisson(λ2)

In order to generate data from the distribution of xi, the parameters θ = {γ, λ1, λ2} need to be estimated.

As the observations of the latent variables zi are unknown, the famous Expectation Maximization (EM)

algorithm is used here. EM algorithm is a technique used in point estimation and very suitable for the case

containing latent variables or missing values. It consists of two major steps: the E-step and M-step. E-step

computes the expectation of log likelihood of completed data with respect to the latent variables conditioning

on the observations and current estimate of the parameters. M-step updates the estimate by maximizing

the expectation function obtained in the E-step. Given initial values of those parameters, EM algorithm

iterates these two steps to update the parameters such that the log likelihood function keeps increasing until
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it converges (see Appendix B for more details).

Using the EM algorithm, parameters of the mixed Poisson distribution are estimated as γ = 0.5184,

λ1 = 2.2198 and λ2 = 20.4564. The fitted line is plotted in Figure 5.1. It can be seen that the mixed Poisson

distribution is a good fit for the real data and hence suitable to generate our simulation data. The parameter

λ in Poisson distribution represents the mean value of the number of events occurring in a specific time

interval, which is the average number of patients requesting MRI each day. The estimated results indicate

that the average numbers for the first group is quite small, only around 2. In contrast, the average number

for group 2 is very large, around 20. Interestingly, the possibility of the number of patients requesting MRI

each day falling into either group is almost equal, as 0.5184 for group 1. This phenomenon reveals that the

requests in each day are extremely unstable or uneven, which may be either pretty rare or pretty abundant.

In the received requests, the ratio between future cases and routine cases is determined on the basis of

real data. For future cases, the probability mass function of time interval between the request date and

the earliest scan date is fitted with a geometric distribution expressing the probability of the first success

of Bernoulli trials after a series of failure. Bernoulli trials refer to the independent repeated trials of an

experiment with only two outcomes: success and failure. In this problem, whether a future case is available

to be served at one day after the request date can be regarded as the outcomes of Bernoulli trials, with “yes”

and “no” mapping to success and failure, respectively. The outcome of the daily trial is always failure until

the earliest scan date comes when the first success occurs. The histogram in Figure 5.2 shows the frequency

of the number of days between the request date and the earliest scan date. With the increase of days, the

frequency decreases dramatically from near 0.09 to 0.01 at 20, and then continues dropping gradually and

keeps in a low level with slight fluctuations, complying with the pattern of geometric distribution.

The only parameter p in the distribution is estimated as p = 0.0907 and the fitted curve is plotted in

Figure 5.2. The parameter p in the geometric distribution is the probability of success for each trial, i.e. the

probability for a future case to be available for booking each day. A small estimated value of p (p = 0.0907)

indicates that there is little chance for the earliest scan date of a future case to be fixed at a day. The result

implies that though most future cases require for a short time interval between the request date and the

earliest scan date, some cases prefer to receive the service after a long time (e.g. two months).

Except for the earliest scan date, a factor that is unique for future cases, the other factors involving in

the model (e.g. priority level, with/without contrast) exist in both future cases and routine cases and are

evaluated here on the basis of their proportions in real data.

With the complete information for all the requests, the booking and serving process can be simulated with

the model. In the booking stage, the number of all available time slots each day is fixed as mentioned in the

model section (13 on weekdays and 7 on weekends) and it is further assumed that the proportion of time slots

reserved for each category of cases every day is fixed. Six strategies are considered as the alternatives of time

slot allocation as shown in Table 5.1. For each strategy, the allocations on weekdays (WD) and Weekends

(WE) are different. For instance, in Strategy 1, the proportion of time slots assigned to future cases and level
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Figure 5.2: The distribution of the number of days between the request date and the earliest scan
date and the fitted probability mass function

Table 5.1: The proportion of time slots assigned to each category of cases by strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6

WD WE WD WE WD WE WD WE WD WE WD WE

Future Case 5 2 5 2 5 2 5 2 5 2 5 2

Routine Case Level 2 3 2 3 2 2 2 4 2 1 0 6 4

Level 3 3 2 4 2 4 2 3 2 6 4 1 0

Level 4 2 1 1 1 2 1 1 1 1 1 1 1

2, 3 and 4 routine cases on WD is 5:3:3:2, while on WE, it changes to be 2:2:2:1. In all strategies, the number

of time slots reserved for future cases is the same, either on WD or on WE, since we are not interested in the

change of waiting time for future cases, which is not even measured in the model; instead, the variation of

waiting time for routine cases in different priority levels is focused on when the allocation of time slots alters.

Furthermore, the first four strategies are similar with slight adjustments to the proportion on WD but not

on WE. Though it does make sense to do some alterations on WE, the partial adjustments are enough to

manifest how time slot allocation impacts on waiting times. The Strategy 5 and 6 are two extreme situations

with most available time slots assigned to one category of cases (to level 3 patients in Strategy 5 and to level

2 patients in Strategy 6). Apparently, they are not good strategies for booking. To investigate if they are as

unreasonable as expected, their performances are compared in this example.

After simulation, the average waiting times of level 2, 3 and 4 cases under each strategy is measured

and plotted in histograms in Figure 5.3, 5.4 and 5.5, respectively. The red line in each figure is the error
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Figure 5.3: The average waiting time (days) of level 2 cases versus strategy

bar (i.e., the interval is 95% confidence interval). In Figure 5.3, the strategy produces shortest waiting time

is Strategy 6, around 5 days, followed by Strategy 4, 2 and 1, all between 6 and 15 days. Strategy 3 and

Strategy 5 force level 2 cases to wait over 20 days, in which Strategy 5 is worse with a longest delay close

to 22 days. According to the resource allocation in Table 5.1, the number of time slots assigned to level 2

cases in Strategy 6 is the largest (6 on WD and 4 on WE), which decreases gradually in Strategy 4, 2, 1 and

3, and gets to the smallest in Strategy 5 (1 on WD and 0 on WE). It indicates that the length of waiting

time is negative correlated with the number of time slots. On the basis of shortest waiting time, Strategy 6

is the best choice and Strategy 5 is the worst for level 2 cases. Figure 5.4 shows the results of level 3 cases.

As expected, Strategy 5, with an assignment of most time slots (6 on WD and 4 on WE), generates the

shortest waiting time, near 40 days, while the longest waiting time appears in Strategy 6 with only one time

slot reserved on WD and none on WE, up to around 118 days. Strategy 1 and 4, with the same time slot

allocation (3 on WD and 2 on WE), produce similar waiting times, so do Strategy 2 and 3, but shorter in

that one more time slot is added on WD. Undoubtedly, for level 3 cases, Strategy 5 is the first choice and

Strategy 6 is the last. As for level 4 cases, given that Strategy 1 and 3 lead to almost the same short waiting

times (see Figure 5.5), either one can be selected. The values of average waiting time for all levels of cases

by strategy are exhibited in Table 5.2. The data in parentheses are the standard deviations.

As no best choice can be made to minimize the average waiting times of all levels of cases, it is thought

to combine the waiting times and pick up a strategy with a minimal average of the combination. However,

the waiting times of different levels of cases cannot be combined directly. Though they are all measured in

the unit of day, the severity of one day’s delay for level 2 cases is higher than for level 4 cases. A waiting of

a couple of weeks or months is acceptable for level 4 cases, while for level 2 cases, a few days’ delay may be

life-threatening. To eliminate the distinction in the severity of delay, the waiting time of urgent cases should
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Figure 5.4: The average waiting time (days) of level 3 cases versus strategy

Table 5.2: Means and standard deviations of waiting times (days) for all levels of cases by strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6

Level 2 13.02 11.4 20.46 8.96 21.59 4.42

(0.42) (0.41) (0.72) (0.29) (0.77) (0.19)

Level 3 70.2 54.68 54.79 70.23 42.41 116.06

(0.43) (0.71) (0.71) (0.43) (0.83) (1.05)

Level 4 47.08 77.86 46.85 78.34 74.07 77.6

(1.12) (0.50) (1.13) (0.50) (0.61) (0.48)

be equipped with a larger weight. The weights can be understood as coefficients for the conversion of waiting

times between two levels of cases. For instance, if the weights of level 2 and 4 are 10 and 1, respectively, then

one day’s delay for level 2 cases is equivalent to ten days’ delay for level 4 cases. The weighted waiting times

are measured in the same standard and can be combined, so that the weighted average waiting time can be

calculated.

Let a, b and c be the weights of waiting times of level 2, 3 and 4 cases, the weighted average waiting time

(WAWT) is

WAWT =
a×AWT2 × n2 + b×AWT3 × n3 + c×AWT4 × n4

n2 + n3 + n4
,

where AWTi is the average waiting time of level i cases and ni is the number of cases in level i, i = 2, 3, 4.

The weights a, b and c can be determined by experts based on their experience. In this example, we suppose

the weights are a = 16, b = 4 and c = 1. The WAWT of each strategy is measured and plotted in Figure 5.6

and the value is summarized in Table 5.3. It can be seen that Strategy 3 gives the longest WAWT, followed
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Figure 5.5: The average waiting time (days) of level 4 cases versus strategy

Table 5.3: Means and standard deviations of weighted waiting times (days) by strategy

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6

WAWT 194.36 176.84 203.08 191.28 200.57 185.31

(2.79) (2.63) (4.00) (2.36) (4.46) (4.35)

by Strategy 5, a little bit shorter, and then Strategy 1, 4 and 6, which reduce slightly in order. The shortest

waiting time is generated via Strategy 2, far lower than others. Though Strategy 2 is not an ideal choice

in the discussion of any single level, its general performance is the best and can be selected to balance the

waiting times. What makes us surprised is that the performances of the two extreme situations, Strategy 5

and 6, are not so bad. Especially for Strategy 6, it provides a second shortest average waiting time. Thus,

an intuitive judgment may mislead the decision, and comparatively, the result obtained by modeling is more

reliable.

5.2 Prediction

Another example is to explain how the model is used to predict the future waiting time when the number

of patients’ requests for MRI changes. In this example, we assume that the average number of requests is

doubled. To compare the results, two groups of data on patients’ requests are involved. The first group is the

data of current patients’ requests generated in the preceding section by the mixed Poisson distribution with

the parameters estimated as γ = 0.5184, λ1 = 2.2198 and λ2 = 20.4564. The second group is the data of

increased patients’ requests generated with two parameters, λ1 and λ2, doubled, i.e. γ = 0.5184, λ1 = 4.4396
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Figure 5.6: The weighted average waiting time (days) versus strategy

and λ2 = 40.9128, and the factors of patients’ information are evaluated with the same proportions as the

first group does. For the allocation of time slots, we use Strategy 2, which provides the shortest WAWT

under the given weights.
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Figure 5.7: The average waiting time (days) of level 2 cases on current and increased requests

The simulated average waiting times of level 2, 3 and 4 cases are plotted in Figure 5.7, 5.8 and 5.9,

respectively, and the values are summarized in Table 5.4. It can be seen that the average waiting times of

the situation with increased requests in each level are far larger than those of the current situation. More

specifically, for both level 2 and level 3 cases, the ratios of the values of increased requests to those of current

requests are over 2:1, while for level 4 cases, the ratio is a little bit lower than 2:1. The result reveals

that a sudden increase in patients’ requests leads to a heavy attack on patients’ access to MRI service, and

comparatively, the impact on the level 2 and 3 cases is greater than on level 4 cases.

Combining the waiting times with the weights set in the preceding section, the WAWTs are calculated as
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Figure 5.8: The average waiting time (days) of level 3 cases on current and increased requests
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Figure 5.9: The average waiting time (days) of level 4 cases on current and increased requests

shown in Table 5.4 and plotted in Figure 5.10. Based on the data, it is found that the WAWT of increased

requests are up to 2.5 times of that of current situation.

With the above simulation, the direction and magnitude of variation of average waiting times can be

predicted. The simulation results provide some evidences to warn the impending high waiting times and

leave time for administrators to take some effective precautions, e.g. purchasing more machines or referring

a part of patients to other sites.

Besides the change of the number of patients’ requests for MRI, the composition of other factors may

vary (e.g. the proportion of level 2 cases rises, the proportion of cases with contrast goes down), and its

effects on waiting times is predictable as well, so that the related settlements can be determined and carried

out before it is too late.
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Figure 5.10: The weighted average waiting time (days) on current and increased requests

Table 5.4: Means and standard deviations of waiting times (days) for each level and their weighted
waiting times (days) on current and increased requests

Current Increased

Level 2 11.4 29.8

(0.41) (1.08)

Level 3 54.68 129.6

(0.71) (0.58)

Level 4 77.86 137.17

(0.50) (1.80)

WAWT 176.84 440.75

(2.63) (6.64)

5.3 Conclusion

In this chapter, two main applications of the proposed model were introduced. In the first case, it can be used

to analyze the performance of different strategies and help the administrators to make an informed decision.

In the second case, it can forecast the waiting time in the condition that the number or composition of patients’

requests for MRI changes and make it possible for administrators to take some necessary precautions. In

general, the model is useful to bring benefits to the management of the MRI booking and serving system.
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Chapter 6

Conclusion

6.1 Overview

This thesis presented a study on the modeling of MRI booking and serving system (MRI system for short)

with Petri nets, based on which the processes in MRI system can be simulated and waiting times of the

system can be measured. The model has potential applications in decision-making and prediction and is

useful for improvements of the management of MRI systems.

This research put an emphasis on the booking process of the MRI system, which has not been considered

in the existing literature to the author’s best knowledge. This booking process is crucial for an appointment-

oriented system and worth being studied, as it is a key process responsible for waiting times. In the condition

that medical resources are limited, booking strategies are sensitive to waiting times. A proper booking

strategy is able to optimize the scheduling of patients and reduce their waiting times.

As the research scope of MRI system was determined, the research methodology was selected through

comparisons among several popular methods. Related literature was reviewed to analyze the pros and cons of

each method, and it was found that Petri nets (PNs), a graphic tool with powerful mathematical foundations

to simulate discrete event dynamic systems, should be a sound choice to model the MRI system.

The overall objective of this study was to provide a solution to the problem of long waiting time in

Saskatchewan through a better scheduler and the specific objectives are restated as follows.

Objective (1): Construct a model to describe the whole process of MRI examination and to quantify the

waiting time of patients.

Objective (2): Investigate the effectiveness of the model and its potential applicability in the context of

planning and scheduling of MRI examination in terms of simulation and predication of the waiting time of

patients.

The above objectives have been achieved. For objective (1), a PN model was constructed to describe

the booking and serving systems with an output of patients’ waiting times. To achieve objective (2), the

simulated waiting times were compared with real ones by student t-test, the results of which demonstrate

the effectiveness of the model. The applications of the model were presented with examples in two aspects:

decision making and prediction.

With an effective model, our goal may be achieved. For one thing, the performances of different man-
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agement rules (or strategies) can be compared, which guides the MRI administrators to select an optimal

strategy to shorten waiting times. For another, when the number or composition of patients’ requests for

MRI changes, the waiting times of the system can be predicted, which can caution the MRI administrators

to make a quick and informed decision on if more resources (e.g. machines) are required.

6.2 Contributions

There are four main contributions out of this research.

First, the whole process of MRI system, including booking and serving processes, is considered. Some

former studies are found to model and analyze the serving process in radiology department only [9, 36, 33].

However, combining booking and serving processes in one model is necessary in that there is a tight interaction

between them. In the booking process, patients’ waiting times are almost determined, while in the serving

process, some accidents may occur (e.g. if a patient cannot be served at the appointed date, his/her service

has to be postponed and the waiting time is prolonged), which may further affect the booking process.

Modeling the whole process can establish the connections for these two processes and make the model more

effective.

Second, a complete PN model is designed to model the MRI system. To select a method to describe the

MRI system, the common modeling methods are compared and analyzed. It is found that queuing theory is

unsuitable for this study owing to the limitations in the description of real systems and the lack of a clear

distinction between the structure and behavior of a system. SD is not an ideal choice as well in that it is

not good at modeling a patient appointment system and cannot capture an individual patient’s information,

while DES, in particular PNs, deems to be the best choice for modeling the problem of interest in the present

study.

Third, two new extensions to the PN formalism are proposed to refine the structure of model constructed

by the existing extended PNs. One extension, OCPN, is defined to arrange the resources in order, and

the other, PHCPN, is to control the occurrence of events with priorities to avoid some conflicts. The two

extensions can simplify the model structure by using fewer nodes to realize the same functions.

Fourth, on the basis of the model for Semantics 1, the models for Semantics 2 to 4 are developed. In this

study, several pieces of semantics are proposed before modeling to guide the development of model. Semantics

1 guides the modeling of the basic booking and serving process of MRI system. Based on Semantics 1,

Semantics 2, 3 and 4 are described and the corresponding models are constructed to enhance the performance

of the system in some degree. Semantics 2 and 3 may improve the way of booking to make the system more

flexible and patient friendly. Semantics 4 discusses a situation that commonly happens in reality to make

the model more accurate to the real situation.

Besides, the model for Semantics 1 is verified to be effective to describe the real system. The model has

important applications in the decision-making of the selection of booking strategies and the prediction of
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possible waiting times of the system in the future, which will assist MRI administrators in the management

of medical resources and improve the quality of MRI service.

6.3 A Special Note to the Need of PN Model

The purpose of this research was to develop a more accurate model for describing the MRI examination

process to capture as many real situations as possible and demonstrate its potential application to reduce

the MRI waiting time. The MRI system is composed of the entities (patients, medical staff, MRI machine)

and events (e.g. service re-ordering). Based on this model, the various possible approaches to schedule MRI

examination can be simulated to find the best one in terms of the shortest waiting time with respect to

individual patients.

To find an appropriate modeling method for the problem, several popular methods were analyzed and

compared. Besides the queuing theory and system dynamics discussed in Chapter 2, another method, queuing

network, is commonly used in complex system modeling as well. Queuing network [31, 32, 21, 7, 49] studies

a system of a finite number of queues which are organized with specific relations. Customers in the system

travel through the network to be served at service facilities. In open networks, customers can join and leave

the system; whereas in closed networks, the number of customers in the system is fixed. Queuing network is

an important application of queuing theory as many assumptions and conclusions in queuing theory are used

in queuing network. Compared with queuing theory, queuing network is more powerful in system modeling

since more than one service facility can be considered.

However, queuing network is not a good choice for modeling MRI examination scheduling systems for

the purpose of this study as well as the future extended study due to the following reasons. First, queuing

network cannot model the booking process, in which time slots are assigned to patients by rules. Second,

queuing network cannot describe some particular dynamic events (e.g. leaving the queue after waiting some

time, jumping the queue for emergent requesting for a care). Third, as queuing network assumes a service

rule for each queue (e.g. FIFO, LIFO), it cannot model the flow of future cases, who are scheduled and

served based on the desired earliest scan date rather than a regular order such as FIFO. Finally, in queuing

network, if two patients leave their respective queues and join the same next queue, no order between them

is considered. That is, for these two patients, it cannot identify which person should be served earlier. As

mentioned in Semitics 4, the last patient in a day may need to re-order the service, who cannot be identified

in a queueing network. Given that the booking process is a key process considered in Semantics 1 to 6 and

future cases are involved in all the semantics, so here with queue network theory, Semantics 1 to 6 cannot be

captured.

Comparatively, PNs are more suitable to model the process of MRI system. First, PNs do not have the

above limitations and are able to capture various real situations of the system. In this thesis, six pieces

of semantics were drawn from the real system and the first four are captured by PN models. Though the
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models for Semantics 5 and 6 are not modeled, they will be considered in the future work. Second, PNs have

a solid mathematics foundation providing theoretical support to many properties. The analysis of properties

can effectively detect the malfunction and redundancy of the model. For example, boundedness analyzes the

upper and lower bounds of tokens appearing in all places. According to the results of this analysis, the place

without tokens (i.e. the upper bound of tokens is 0) can be treated as a redundant place and can be deleted.

Liveness detects the deadlock of a model, which should be fixed. The model properties will be analyzed in

the future work.

However, with respect to the problem as considered in this thesis as well as in the near future, PNs still

have some drawbacks. First, a large amount of data are required in simulation. Since various aspects of the

real system are considered in PN models, a large amount information needs to be loaded into the model. One

way to alleviate this problem is to further study the real system and pick up essential features or processes

of the system and remove those redundant parts of the model such that only effective information in the

data are collected. Second, the model structure is prone to be complex, i.e., the size of our model (the

number of nodes and arcs) is very large. To reduce this complexity, the extensions to CPNs proposed in this

research may be applied. Despite the above shortcomings, PNs are still the best choice in the modeling of

MRI booking and serving system and they will be used to achieve the future work as well.

6.4 Future Work

This research has the following future work.

First, related real data can be obtained to validate the models for Semantics 2 to 4. The difficulty of this

work is that some of the required data (e.g. service time) are not regularly collected and thus do not exist in

the database. To collect these data, a long-term observation is needed.

Second, the model for Semantics 5 can be developed. This model will include the inpatients’ information.

The source of inpatients is complex relating to multiple departments. To investigate the arrivals of inpatients,

all the related departments need to be observed and the inter-departmental relations should be learned, which

is complicated but possible to be done.

Third, the model for Semantics 6 can be developed. For this semantics, the body part of scan is considered.

This factor has effects on the anticipated service time and further affects the assignment of time slots.

However, the anticipation of service time for each body part is an empirical value based on radiologists’

experience and is hard to be obtained. To get the information, more efforts should be taken to consult the

radiologists.

Finally, the properties of developed models, such as boundedness, liveness and reachability, can be ana-

lyzed using the existing theories in PNs to give some idea of the system without performing simulation.
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Appendix A

The PN Model in CPN Tools

CPN Tools is created and maintained by the CPN Group at Aarhus University from 2000 to 2010 and then
transferred to the AIS group, Eindhoven University of Technology, The Netherlands (http://cpntools.org/).
It is free software and can be downloaded from the website.

 

Transition represents the sub‐module 

Same place 

Figure A.1: The screen of CPN Tools

Figure A.1 is the screenshot of CPN Tools. The left part is the ML codes and the right part shows two
nets. There are two special nodes in the nets, which are explained as follows.

• Substitution transitions: represented by double-layered rectangles and act as substitutions of the cor-
responding sub-modules. For example, in the upper right net of Figure A.1, the substitution transition
“Serving 1” represents the sub-module “Serving 1”.

• Fusion of places: the same places located in different position (in the same net or different nets). For
example, in the lower right net of figure A.1, the places “P1” and “P2” are the same place.

The ML codes and all the nets of the model are displayed as follows.
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ML codes for the Petri net model:

colset PROP=list INT;

colset PROPs=list PROP;

colset PR1=product INT*INT;

colset PR2=product INT*INT*INT;

colset LPR2=list PR2;

var i,i0,i1,i2,d,d0,d1,t,t0,n,x,x1:INT;

var p,ts,l:PROP;

var ps,em,ps0,ps1,ps2,lis,lis0,lis1,lis2,lis3:PROPs;

var lpr:LPR2;

val v1=10;

val v2=45;

fun jd1 p=

if (List.nth(p,6)=0

orelse

List.nth(p,6)=1)

then true

else false;

fun jd2 p=

if (List.nth(p,6)=0

orelse

List.nth(p,6)=2)

then true

else false;

fun jd3 (p,[],[],[])=false

| jd3 (p,lis1,lis2,lis3)=

if (List.nth(p,1)=1

andalso

lis1=nil)

then true

else

if (List.nth(p,1)=0

andalso

List.nth(p,2)=1

andalso

lis2=nil)

then true

else

if (List.nth(p,1)=0

66



andalso

List.nth(p,2)=0

andalso

lis3=nil)

then true

else false;

fun jd4 (ps,lis1,lis2,lis3)=

if (lis1=nil andalso

lis2=nil andalso

lis3=nil)

then true

else

if ps=nil

then true

else false;

fun jd5 (ps,d,t,i)=

if (i<>0

andalso d<>0

andalso t<>0)

then

if ps=nil

then true

else

if (List.nth(hd ps,7)>d

orelse

List.nth(hd ps,8)>t)

then true

else false

else false;

fun jd6 (p,ps)=

if ps=nil

then false

else

if List.nth(p,4)>List.nth(hd ps,4)

then true

else jd6 (p,tl ps);

fun jd7 (lis1,lis2,lis3)=

if (lis1=nil andalso lis2=nil andalso lis3=nil)

then false

else true;

fun jd8 (l,n)=

if List.nth(l,n) mod 7=6

then false

else

if List.nth(l,n) mod 7=0

then false

else true;

fun jd9 d=
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if d mod 7=6

then false

else

if d mod 7=0

then false

else true;

fun jd10 (d1,x)=

if jd9 d1

then

if x>630

then true

else false

else

if x>300

then true

else false;

fun jd11 (d1,x)=

if jd9 d1

then

if x<=630

then true

else false

else

if x<=300

then true

else false;

fun jdmin (d1,x1,minweekday,minweekend)=

if jd9 d1

then

if x1=minweekday

then true

else false

else

if x1=minweekend

then true

else false;

fun jdmore (d1,x1,minweekday,minweekend)=

if jd9 d1

then

if x1>minweekday

then true

else false

else

if x1>minweekend

then true

else false;

fun pmc11 (l,n)=

if jd8 (l,n)

then
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if mem [1,2,3,4,5] (List.nth(l,1))

then true

else false

else

false;

fun pmc01 (l,n)=

if jd8 (l,n)

then

if mem [6,7,8] (List.nth(l,1))

then true

else false

else

if mem [1,2,3] (List.nth(l,1))

then true

else false;

fun pmc00 (l,n)=

if jd8 (l,n)

then

if mem [9,10,11,12,13] (List.nth(l,1))

then true

else false

else

if mem [4,5,6,7] (List.nth(l,1))

then true

else false;

fun sort (p,ps,i)=

if i=0

then

if List.nth(p,4)>List.nth(hd ps,4)

then [hd ps]^^[p]^^tl ps

else sort (p,ps,i+1)

else

if List.nth(p,4)>List.nth(List.nth(ps,i),4)

then [List.nth(ps,i)]^^[p]^^List.take(ps,i)^^List.drop(ps,i+1)

else sort (p,ps,i+1);

fun dn (d,1)=1‘(d,0)

| dn (d,m)=1‘(d,0)++dn (d+1,m-1);

fun dnx (d,1)=1‘(d,0,0)

| dnx (d,m)=1‘(d,0,0)++dnx (d+1,m-1);

fun take x=

let

val g=length x

in

List.take(x,g)

end;

fun remall (l::lis,d)=

if d=hd l
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then remall (lis,d)

else l::remall (lis,d)

| remall ([],d)=[];

fun elef (x,i)=

let

val g=hd x

in

List.nth(g,i)

end;

fun dt (d,t)=

if t<13

then (d,t+1)

else (d+1,1);

fun dti (d,t,i)=

if jd9 d

then

if t<13

then (d,t+1,i)

else (d+1,1,i)

else

if t<7

then (d,t+1,i)

else (d+1,1,i);

fun com (x0::x,y0::y,i,j)=

if List.nth(x0,i)=List.nth(y0,i)

then

if List.nth(x0,j)>List.nth(y0,j)

then com ([y0]^^[x0]^^x,y,i,j)

else x0::com (x,y0::y,i,j)

else

if List.nth(x0,i)<List.nth(y0,i)

then x0::(com (x,y0::y,i,j))

else com (([y0]^^[x0]^^x),y,i,j)

| com (x,[],i,j)=x

| com ([],y,i,j)=y;

fun sertim p=

if jd8 (p,7)

then

if mem [1,2,3,4,5,6,7,8] (List.nth(p,8))

then discrete(50,70)

else discrete(20,40)

else

if mem [1,2,3] (List.nth(p,8))

then discrete(50,70)

else discrete(20,40);

fun cut []=[]

| cut ps=

[List.take(hd(ps),6)]^^(cut (tl ps));
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Figure A.2: The PN model of the whole process in CPN Tools
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Figure A.7: The PN model of the time slot sorting of level 3 cases for MRI1 in CPN Tools
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Figure A.8: The PN model of the booking of level 4 cases for MRI1 in CPN Tools
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Figure A.9: The PN model of the time slot sorting of level 4 cases for MRI1 in CPN Tools
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Figure A.10: The PN model of the booking of level 2 cases for MRI1 in CPN Tools
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Figure A.11: The PN model of the time slot sorting of level 2 cases for MRI1 in CPN Tools
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Figure A.13: The PN model of the booking of future cases for MRI2 in CPN Tools
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Figure A.16: The PN model of the time slot sorting of level 3 cases for MRI2 in CPN Tools
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Appendix B

EM Algorithm

Let x1, . . . , xn be the observed number of patients coming each day. We assume that they can be divided
into two groups or situations. For each observation xi, a random variable zi is defined to indicate the group
that xi belongs to, i.e.,

xi ∈ group 1 if zi = 1 and xi ∈ group 2 if zi = 0.

We assume that zi follows a Bernoulli distribution with the parameter of probability of success, γ, i.e.
zi ∼ Bernoulli (γ) and conditioning on different values of zi, xi has a mixed Poisson distribution

xi|zi = 1 ∼ Poission (λ1) and xi|zi = 0 ∼ Poission (λ2) .

In order to generate data from the distribution of xi, the parameters θ = {γ, λ1, λ2} need to be estimated.
As the observations of the latent variables zi are unknown, the famous Expectation Maximization (EM)
algorithm is used here.

EM algorithm is a technique used in point estimation and very suitable for the case containing latent
variables or missing values. It consists of two major steps: the E-step and M-step. E-step computes the
expectation of log likelihood of completed data with respect to the latent variables conditioning on the obser-
vations and current estimate of the parameters. M-step updates the estimate by maximizing the expectation
function obtained in the E-step. Given initial values of those parameters, EM algorithm iterates these two
steps to update the parameters such that the log likelihood function keeps increasing until it converges. In
the following, details of the EM algorithm for our mixed Poisson distribution are derived.

Denote by X = (x1, . . . , xn)
T

and Z = (z1, . . . , zn)
T

the observed values and latent values, respectively.
Based on the distribution assumptions, the log likelihood of the complete data is

l (X,Z|θ) = log

n∏
i=1

p (xi|zi) p (zi|θ) (B.1)

=

n∑
i=1

log {zi [γp (xi|λ1)] + (1− zi) [(1− γ) p (xi|λ2)]} (B.2)

=

n∑
i=1

zi [log γ − λ1 + xi log λ1 − log x!] + (1− zi) [log (1− γ)− λ2 + xi log λ2 − log x!] (B.3)

The third equality is because zi can only take the value of 1 or 0. Suppose the current estimate of the

parameters is θ(k) =
{
γ(k), λ

(k)
1 , λ

(k)
2

}
. For the E-step, we need to take the expectation of l (X,Z|θ) with

respect to Z|X, θ(k). Note that l (X,Z|θ) is a linear combination of zi and the computation of E
(
zi|X, θ(k)

)
suffices.

E
(
zi|X, θ(k)

)
= p

(
zi = 1|xi, θ(k)

)
(B.4)

=
p (xi|zi = 1) p

(
zi = 1|θ(k)

)
p (xi|zi = 1) p

(
zi = 1|θ(k)

)
+ p (xi|zi = 0) p

(
zi = 0|θ(k)

) (B.5)

=
γ(k)e−λ

(k)
1 λ

(k)
1

xi

γ(k)e−λ
(k)
1 λ

(k)
1

xi

+
(
1− γ(k)

)
e−λ

(k)
2 λ

(k)
2

xi
(B.6)

For ease of notations, let w
(k)
1i = p

(
zi = 1|xi, θ(k)

)
and w

(k)
2i = 1− w(k)

1 . Therefore, the E-step is
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Q
(
θ|θ(k)

)
= EZ|X,θ(k) (l (X,Z|θ)) (B.7)

=

n∑
i=1

w
(k)
1i [log γ − λ1 + xi log λ1 − log xi!] + w

(k)
2i [log (1− γ)− λ2 + xi log λ2 − log xi!] (B.8)

For the M-step, taking derivatives of Q
(
θ|θ(k)

)
with respect to each parameter and setting them equal 0

yields

∂Q
(
θ|θ(k)

)
∂γ

= 0 ⇒ γ(k+1) =

n∑
i=1

w
(k)
1i

n∑
i=1

(
w

(k)
1i + w

(k)
2i

) ,

∂Q
(
θ|θ(k)

)
∂λ1

= 0 ⇒ λ
(k+1)
1 =

n∑
i=1

w
(k)
1i xi

n∑
i=1

w
(k)
1i

,

and

∂Q
(
θ|θ(k)

)
∂λ2

= 0 ⇒ λ
(k+1)
2 =

n∑
i=1

w
(k)
2i xi

n∑
i=1

w
(k)
2i

.

The procedures of the algorithm are described in the following.

• Step 1. Assign initial values to the parameters, θ(0) =
{
γ(0), λ

(0)
1 , λ

(0)
2

}
and set k = 0.

• Step 2. Compute w
(k)
1i and w

(k)
2i , i = 1, . . . , n, as follows,

w
(k)
1i =

γ(k)e−λ
(k)
1 λ

(k)
1

xi

γ(k)e−λ
(k)
1 λ

(k)
1

xi

+
(
1− γ(k)

)
e−λ

(k)
2 λ

(k)
2

xi
and w

(k)
2i = 1− w(k)

1i

• Step 3. Update the parameters to θ(k+1) =
{
γ(k+1), λ

(k+1)
1 , λ

(k+1)
2

}
, where

γ(k=1) =

n∑
i=1

w
(k)
1i

n∑
i=1

(
w

(k)
1i + w

(k)
2i

) , λ
(k+1)
1 =

n∑
i=1

w
(k)
1i xi

n∑
i=1

w
(k)
1i

and λ
(k+1)
2 =

n∑
i=1

w
(k)
2i xi

n∑
i=1

w
(k)
2i

.

• Step 4. If
∣∣γ(k+1) − γ(k)

∣∣+
∣∣∣λ(k+1)

1 − λ(k)1

∣∣∣+
∣∣∣λ(k+1)

2 − λ(k)2

∣∣∣ < ε, it converges and output θ(k+1), where

ε is a predefined threshold. Otherwise, set k := k + 1 and goes to Step 2.
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