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Abstract

The notion of social capital (SC) is increasingly used as a framework for describing 

social issues in terrestrial communities.  For more than a decade, researchers use the term 

to mean the set of trust, institutions, social norms, social networks, and organizations that 

shape the interactions of actors within a society and that are considered to be useful and 

assets for communities to prosper both economically and socially. Despite growing 

popularity of social capital especially, among researchers in the social sciences and the 

humanities, the concept remains ill-defined and its operation and benefits limited to 

terrestrial communities. In addition, proponents of social capital often use different 

approaches to analyze it and each approach has its own limitations.

This thesis examines social capital within the context of technology-mediated 

communities (also known as virtual communities). It presents a computational model of 

social capital, which serves as a first step in the direction of understanding, formalizing, 

computing and discussing social capital. The thesis employs an eclectic set of approaches 

and procedures to explore, analyze, understand and model social capital in two types of 

virtual communities: virtual learning communities (VLCs) and distributed communities 

of practice (DCoP). 

There is an intentional flow to the analysis and the combination of methods described in 

the thesis. The analysis includes understanding what constitutes social capital in the 

literature, identifying and isolating variables that are relevant to the context of virtual 
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communities, conducting a series of empirical studies to further examine various 

components of social capital and building a computational model. 

A sensitivity analysis aimed at examining the statistical variability of the individual 

variables in the model and their effects on the overall level of social capital are conducted,

and a series of evidence-based scenarios are developed to test and update the model. The 

result of the model predictions are then used as input to construct a final empirical study 

aimed at verifying the model.

Key findings from the various studies in the thesis indicated that SC is a multi-layered, 

multivariate, multidimensional, imprecise and ill-defined construct that has emerged from 

a rather murky swamp of terminology but it is still useful for exploring and understanding 

social networking issues that can possibly influence our understanding of collaboration 

and learning in virtual communities. Further, the model predictions and sensitivity 

analysis suggest variables such as trust, different forms of awareness, social protocols and 

the type of the virtual community are all important in discussion of SC in virtual 

communities but each variable has different level of sensitivity to social capital. 

The major contributions of the thesis are the detailed exploration of social capital in 

virtual communities and the use of an integrated set of approaches in studying and 

modelling it. Further, the Bayesian Belief Network approach applied in the thesis can be

extended to model similar complex online social systems.
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Chapter 1

1.0 Setting the Research Scene

1.1 Overview

Chapter 1 introduces the research area, the problem statement, and justification for doing 

the research. The chapter also outlines the thesis research goals and associated questions. 

Methods employed in addressing each research question are also presented in this chapter. 

In addition, the scope of the thesis, contributions, its organization as well as an exposition 

of presentation style is all described in this chapter. 

1.2 Introduction

The term social capital (SC) has increasingly become a concept with promise for 

addressing numerous social issues in communities. The basic tenet of SC rests 

fundamentally on the assumption that social relations are important sources of resources 

and support for individuals and groups. Though the notion of SC dates back to 1916

[Hannifin, 1916], its popularity only began in the late 90s as a basic policy proxy for 

examining civic engagement [Putnam, 1993]. 

Subsequently, the years that followed witnessed an increasing interest by public policy 

researchers, especially at the World Bank, who have been keenly interested in the idea of 

SC because of its promise to provide better ways to identify and understand how
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community resources or groups can be invested on to enhance development and to

provide ways to benefit all people in communities in the underdeveloped and developing 

world.

The popularity of social capital in the fields of computer science and educational 

technology in particular can be linked to two recent developments: (a) the emergence of 

new socially oriented computing approaches aimed at better understanding the social 

dimension of users/learners in order to effectively build technologies that can promote 

collaboration, knowledge sharing and learning; and (b) increasing interest in the notion of 

online communities as hubs for knowledge sharing and learning. With increasing 

discourse about SC within these new disciplines, traditional definitions of the term have 

become less useful to new and emerging contexts and so alternative definitions need to be 

developed.

1.3 Problem background

Despite progress in research into SC in all the fields where it has been traditionally 

applied, little has been done to extend this understanding to technology-mediated learning 

communities (virtual learning communities (VLCs) and distributed communities of 

practice (DCoP)). In addition, there is a lack of concrete metrics for measuring SC within 

emergent technology-mediated contexts and as well in other contexts. Fukuyama [1999] 

for instance, earlier noted that a fundamental problem of social capital is the absence of 

consensus on how to measure it. Current research on SC in virtual learning communities 

suggests there are various reasons why a standard yardstick for measuring social capital 
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has not been developed [Daniel, McCalla &, Schwier 2002; Daniel, 2003; Daniel, 

Schwier & McCalla, 2003]: 

 SC is a multivariate and multidimensional construct and not a single entity with 

single measurement parameters.

 Different types of SC are useful for different purposes and a single measurement 

for one will not necessarily cover others. 

 There are limited numbers of empirical studies that attempt to measure social 

capital in virtual communities.

 SC can be treated as both an output of one system and an input of another system, 

making the concept difficult to understand and use theoretically.

 SC is not necessarily associated with positive outcomes since it can be used to 

prevent others from entering into certain communities making it a liability to a 

holistic system.

 Theoretical approaches for measuring social capital in virtual communities are 

not comprehensive and still underdeveloped. 

Table 1-1. The main thesis research questions and methods 

Research Goals Main Research Questions Methods

[1] Explore what constitutes 
social capital 

 What is the concept of social 
capital?

 What are the fundamental 
variables of social capital? 

 Which characteristics of 
social capital are relevant to 
virtual communities?

 Literature review
 Content analysis of 

online interactions
 Social network 

analysis
 Content analysis of 

online interactions

[2] Build a computational model 
of social capital in virtual 
communities

 How to build a model of 
social capital?

 How can the model be 
updated and verified?

 Bayesian Belief 
networks 

 Sensitivity analysis
 Survey
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Table 1-1 overviews the main thesis goals and research methodologies.  The thesis 

research began by addressing the first goal in Table 1-1, which is exploring what 

constitutes social capital through analysis of various definitions of social capital as they 

appear in current research. Common variables mentioned in various definitions of the 

term in the literature have been identified and new variables relevant to the context of 

virtual communities have been proposed. 

In order to attain the first goal, methods employed in the analysis include literature 

review, content analysis and social network analysis. The outcomes of the analysis are 

identification of the fundamental variables constituting social capital and various ways in 

which social capital can be defined and analyzed. Further, three fundamental studies have 

been conducted to further explore the fundamental variables of social capital in three 

different environments: a virtual learning community, an informal virtual community and 

a distributed community of practice. Building on the first goal, the second goal of the 

thesis was to build a computational model of social capital, which has involved reducing 

the variables identified in the literature to those that are considered relevant to the context 

of virtual communities.
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1.4 Why build a computational model of social capital?

Computational models are important components of scientific theories. Modelling is a 

procedure for knowledge representation and for understanding complex problems in 

many domains. Modelling involves a systematic and logical representation of a 

theoretical construct, with a set of variables and a set of logical and quantitative 

relationships between them.

The main purpose of computational modelling is to facilitate reasoning about certain 

properties and processes of an object or a phenomenon within an idealized confined 

logical framework. Model construction is often based upon explicit assumptions that may 

be justified. In many of the computational sciences, conceptual and theoretical modelling 

constructs are common and the constructs are often expressed as sets of algorithms and 

implemented as software packages. 

Computational models are also built to simulate a set of processes observed in a natural 

or a social environment in order to gain deeper understanding of social or natural 

phenomenon. For example, changes in consumers’ patterns can be modelled as seen in 

the domain of economics or the dynamics of atmospheric conditions e.g. weather 

predictions as used by meteorologists. Computational models are popular in economics 

and meteorology domains because of their ability to make consistent and accurate 

predictions of natural or social behavior of a system, given a specific set of input 

parameters. 
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A computational model of social capital provides researchers with a set of powerful tools 

and processes for handling imprecise and noisy data. More specifically, a model of social 

capital will allow a group of stakeholders (instructional designers, systems analysts and 

developers, instructors, and decision-makers) to understand the dynamics of social issues 

in virtual communities. In addition, researchers interested in studying virtual 

communities can use the model’s predictions to help them build hypotheses about social 

phenomena in virtual communities and use alternative methods to further examine them.

Further, a model of social capital will have both theoretical and practical appeal to our 

understanding social issues that can affect learning and knowledge sharing in virtual 

communities.  From a theoretical point of view, the model provides a detailed modelling 

process in which researchers can use to examine similar complex constructs in a 

systematic and consistent manner. Since there was no work done on social capital in 

virtual communities prior to this research, this research makes a strong theoretical 

contribution to the field.  From a practical point of view, the model provides insights for 

instructional designers to enable them design learning environments that enable learners 

to build a strong sense of community and belonging. 
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1.5 Methods employed 

A variety of methods were employed to analyze social capital. The integrated nature of 

these methods offers the following benefits:

 A multidisciplinary integrated methodology measured SC using several 

approaches other than narrowly addressing SC with only one method.

 The integrated methodology clearly identifies variables constituting social capital 

and isolating the most relevant ones in the context of virtual communities.

 The Bayesian Belief Network (BBN) modelling approach uses both qualitative 

and quantitative techniques for analysis and understanding of SC.

 Overall, the Bayesian Belief Network approach can also be extended to model 

similar complex issues in the social sciences and humanities.

1.6 Thesis scope and contribution 

This research extends the notion of social capital to virtual communities using 

computational approaches. The thesis does not measure the effectiveness of social capital 

in these communities, but rather it examines the fundamental variables that can be used 

by others to measure the growth of social capital in these communities. The approach 

taken in the thesis, which starts with identification, analysis, modeling and predictions, 

can help domain experts make sense of complex data sets using the Bayesian techniques 

as interactive simulation tools. The thesis is also a starting point for formal discourse on 

social capital in virtual communities and ways of studying it. 
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1.7 Organization of the thesis

This thesis is divided into seven chapters. Chapter 2 presents a review of the literature 

and motivates the study of social capital in virtual communities. Chapter 3 presents three 

empirical studies exploring social capital in virtual learning communities, informal virtual 

communities and distributed communities of practice. Chapter 4 presents a Bayesian 

Belief Network model of social capital in virtual communities. The process involved in 

building and updating the model is provided in Chapter 5. Scenarios used to validate the 

model and the results of the model predictions and they are used to construct a further 

study to verify the model is described in Chapter 6. Chapter 7 concludes the thesis, 

outlining its major contributions and limitations as well as future research issues.

1.8 Exposition

There are many places in the thesis where the methods used and the model presented can 

possibly raise further questions.  This is the strength of the thesis since this thesis marks 

the beginning of formally studying the notion of social capital in virtual communities.

The methods and model presented in the thesis can raise questions that set us to think 

about alternatives. This will hopefully opens up important debates which can lead to the 

development of even more solid methods and procedures for extensively studying social 

capital in virtual communities. 

There are sections where references are made to virtual communities implying both 

virtual learning communities and distributed communities of practice. The distinction 
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between the two is discussed in detail in Chapter 2. In addition, the term “virtual 

communities” also implies online communities. In several places in the thesis, norms are 

referred to as “social protocols” and mutual understanding as “shared understanding”. 

And in places when references are made to the term “awareness”, this means all types of 

awareness unless, of course, references are made to a particular type, such as 

“competence awareness” or “demographic awareness”. The notion of awareness is 

proposed in the thesis as an important variable of social capital in virtual communities.  
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Chapter 2

2.0 Literature Review

2.1 Overview

The goal of this chapter is to present a review of current research on social capital (SC). 

This review motivates the study of social capital in virtual communities. In this review, 

various definitions of social capital are examined and key variables associated with social 

capital are identified.  In addition, the chapter presents various dimensions and types of 

social capital. Benefits and shortcomings of SC, including measurement issues 

surrounding the concept are described here. 

2.2 Research on social capital

Social capital has been used extensively to address social problems in terrestrial

communities. For example, social capital has been used as a framework to address 

problems of lack of civic engagement [Putnam, 1993], the role of social capital and civic 

virtue [Putnam, 2000; Sirianni & Friedland, 1995], and as a gateway to economic gains 

[Sobel, 2002]. Social capital has also provided a theoretical framework for studying 

community development [Gittell & Vidal, 1998], organizational development [Cohen & 

Prusak, 2001), grief intervention [Preece, 2002], the economic performance of firms 

(Baker, 1990), the creation of intellectual capital [Nahapiet & Ghoshal, 1998], learning in 

response to change and sustainability in communities [Falk & Harrison, 2000], 
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community and school achievement [World Bank, 1999], community development issues 

[Gittell & Vidal, 1998], and patterns of social disparity created by lack of technological 

skills in society and the benefits to those who possess such skills [Resnick, 2002].

2.3 Defining social capital

As suggested in earlier research, SC is an imprecise construct that has emerged from a 

rather murky swamp of terminology, but it is still useful for exploring culture, society and 

social networks [Daniel, Schwier & McCalla, 2003]. Although the notion of SC 

originated from studies of conventional or temporal communities, from an historical 

perspective, SC is often used to describe federated but interrelated research interests in 

the social sciences and the humanities.

Irrespective of disciplinary focus, building a consistent theory of social capital continues 

to be obstructed by the existence of at least two different, yet equally useful conceptual 

approaches. The first approach tends to define social capital primarily as an attribute of 

an individual i.e., a person's potential to activate and effectively mobilize a network of 

social connections based on mutual recognition of proximity (in a social space) and 

maintained by symbolic and material exchanges [Bourdieu, 1996]. In this context, social 

capital has the properties of private good, which individuals accumulate and use to 

achieve their own goals and personal advancement. 

The second approach treats social capital as an attribute of a community, as a quality of 

networks and relationships enabling individuals to cooperate and act collectively 
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[Fukuyama, 1999; Putnam, 2000]. Within this approach, social capital is based on the 

degree of interpersonal trust, as well as on the trustworthiness of public and political 

institutions that establish and uphold the rule of law, making exchanges transparent and 

safe. For these reasons, social capital has the properties of the public good facilitating 

achievement of higher levels of efficiency and productivity; hence this form of social 

capital is often associated with economic growth. Table 2-1 presents a summary of 

different definitions used in the study of SC by contemporary authors.
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Table 2-1. Common definitions of social capital and key variables

Researcher (s) Definition Key variables
Hannifin [1916] Tangible substances [that] count for most 

in the daily lives of people - namely good 
will, fellowship, sympathy and social 
intercourse among the individuals and 
families who make up a social unit.

resources, good will, fellowship, 
sympathy, social interactions

Putnam [2000] The connections among individuals –
social networks and the norms of 
reciprocity and trustworthiness that arise 
from them.

connections, networks, 
norms/social protocols, reciprocity, 
trust

Coleman [1988] Supportive relationships among adults and 
children that promote the sharing of norms 
and values.

relationships, norms, shared values

World Bank [1999] The institutions, relationships, and norms 
that shape the quality and quantity of a 
society's social interactions.

relationships, norms/social 
protocols, social interactions

Cohen and Prusak 
[2001]

The stock of active connections among 
people: the trust, mutual understanding, 
and shared values and behaviors that bind 
the members of human networks and 
communities and make cooperative action 
possible.

connections, trust, mutual 
understanding/shared 
understanding, shared value/goals, 
networks

Bourdieu [1996] The aggregate of the actual or potential 
resources which are linked to possession of 
a durable network of more or less 
institutionalized relationships of mutual 
acquaintance and recognition.

relationships, resources, networks

Fukuyama [1999] The existence of a certain set of informal 
values or norms shared among members of 
a group that permits cooperation among 
them.

informal values, norms/social 
protocols, cooperation

OECD [2001] The network, together with shared norms, 
values and understandings that facilitates 
cooperation within and among groups. 

network, norms, shared 
understanding, cooperation

Loury [1977] Natural occurring social relationships 
among persons which promote or assist the 
acquisition of skills and traits valued in the 
market place.

social relationships, skills, traits

Woolcock [1998] Information, trust and norms of reciprocity 
inhering in one’s social networks.

information, trust, norms/social 
protocols, social networks

Resnick [2004] Productive resources that inhere in social 
relations

resources, social relationships

Rafaeli, Ravid and 
Soroka [2004]

A collection of features of the social 
network created as a result of virtual 
community activities that lead to 
development of common social norms and 
rules that assist cooperation for mutual 
benefit.

social network, norms/social 
protocols, co-operation, mutual 
benefit
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2.4 Dimensions of social capital

Clearly there is no single definition of SC, but existing definitions do share key variables 

that can be categorized as either content or structural in nature. In order to investigate the 

complex concept of social capital more thoroughly, it is possible to consider structural 

and content dimensions as broad approaches in which social capital is being explored in 

the literature. Figure 2-1 shows examples of different dimensions of social capital and 

individual variables associated with each dimension.

2.4.1 Structural dimensions of social capital

The structural dimension is found in the work of numerous researchers [e.g., Bourdieu, 

1983; Coleman, 1988; Nahapiet & Ghoshal, 1998; Woolcock, 1998; World Bank, 1999]. 

The structural dimension of social capital refers to the fundamental elements of the social 

network of a group or community such as types of ties and connections and the social

organization of the community. The structural dimension of social capital is not 

concerned with understanding social capital at an isolated individual level nor at the 

group level (community), but it is interested in the relationships between individuals and 

groups [Phillipson et al., 2004]. Analysis of structural dimensions requires understanding 

the social network configuration of the community by using social network analysis. 

A social network analysis approach to the study of social capital covers common 

indicators used to provide an idea of the quantity and quality of social capital based on 

identifying structural elements of social networks [Nahapiet & Ghoshal, 1998]. Social 
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networks can be differentiated on the basis of their size, density, and the extent to which 

they are open and closed.

Franke [2005] has pointed out that employing social network analysis to examine social 

capital suggests that at the level of the individual, we can explore interpersonal 

relationships, that is, ties between individuals, or social participation, and the ties 

between individuals and groups or organizations. The structural dimension of social 

capital in this sense can be regarded as an individual’s ability to make weak and strong 

ties to others within a community. 

The value of weak and strong ties is explored by Granovetter [1973]. At the level of 

collective social capital, we can explore the associative dynamic by focusing on the intra-

organizational ties as well as ties that exist among groups and organizations, within a 

community and beyond a community. The potential of social network analysis as a 

measure of the structural dimension of social capital relates to its ability to investigate 

both the presence and the functioning of social capital.

2.4.2 Content dimensions of social capital

The content dimension of SC includes the types of norms, trust, shared understanding and 

social protocols that regulate community members’ behaviours [Cohen & Prusak, 2001; 

Fukuyama, 1999; Hanifan, 1916; 1920; Putnam, 2000]. Trust is one of the most 

frequently cited elements of the content dimension of social capital [e.g. Putnam, 2000; 

Fukuyama, 1999; Grootaert and Bastelaer, 2002]. Trust, in relation to the content
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dimension of SC, regards SC as a measure of the ability of people to work together for 

common purposes in groups and organizations [Widén-Wulff & Ginman, 2004]. Trust is 

considered to be pivotal for developing relationships that lead to social capital [Lewicki 

et al., 1998; Cowles, 1997]. In current research, two types of trust are particularly 

important to social capital: benevolence-based trust and cognitive-based trust [Chua, 

2002; Levin et al., 2002]. A summary of the structural and content dimensions of SC and 

their associated variables is presented in Figure 2-1. 

Figure 2- 1. Dimensions of social capital and its individual variables
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2.5 Types of social capital

There are different types of SC identified in the literature. These can be broadly classified 

as bonding, bridging and linking. Bonding social capital refers to horizontal, tightly-knit 

ties between individuals or groups with similar demographic characteristics. Putnam 

[2000] refers to bonding SC as “social glue” that is found in homogenous groups such as 

close friends, family, ethnic, and religious groups. Bonding SC may be exclusionary and 

may not act to produce society wide benefits. Further, bonding SC is closely associated 

with both structural and content aspects of social capital.

Bridging SC on the other hand refers to relationships with distant friends, associates, and 

colleagues. Bridging SC is characterized by weaker, less dense but more cross-cutting 

ties, and it can be found in business associations, knowledge networks, acquaintances, 

friends from other religious or professional groups etc. These ties tend to be weaker and 

more diverse but are very important to "getting ahead" in groups, according to Putnam 

[2000]. 

Bridging SC is also similar to Granovetter’s [1973] notion of the strength of weak ties, 

suggesting that weak ties are an important resource in making possible mobility of 

resources, persons, tools, and ideas, and can facilitate incoming information from outside 

sources and provide economic opportunities such as acquiring jobs or marketing products 

to a larger market sector. Bridging social capital can be regarded as an example of a 

structural dimension of social capital. 
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Linking social capital is a third type of social capital [Woolcock, 2001]. This kind of SC 

refers to the relationships between individuals and groups across different social strata of 

a hierarchy where power, social status and wealth are accessed [Cote & Healy, 2001; 

Woolcock, 2001]. Examples of linking SC include for example social relationships 

manifested between students and professors. Linking SC can also refer to the capacity to 

leverage resources, ideas and information from formal institutions beyond the community 

[Woolcock, 2001].

Despite, the conceptual utility of these distinctions, types and dimensions of SC, it can be 

debated whether these distinctions hold empirically for all kinds of communities [Szreter, 

2002]. The position taken in this thesis is that social capital is relative to the context in 

which it is investigated. Further, the influence of variables differs according to the kind of 

community under investigation, although it is possible to provide a general framework of 

social capital with common variables that apply to all kinds of communities, whether 

terrestrial or virtual. 

2.6 Benefits of social capital

Researchers and writers in the social sciences and humanities have consistently pointed 

out the value of the notion of SC in terrestrial communities. Putnam [2000] has suggested 

that SC allows people to resolve problems more easily, especially when they collaborate 

and work together on common problems. Mechanisms such as social sanctions are used 

for coping with breaches in social protocols (e.g., individuals shirk their responsibilities, 

hoping others will do their work for them). He has also observed that when people are 
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trusting and trustworthy, and maintain continuous interaction, everyday business becomes 

easier and more enjoyable.

Putnam [2000] has added that networks also serve as a conduit for the dissemination of 

helpful information that contributes to the achievement of personal and community goals. 

For example, people who are well connected usually receive valuable news first. Further, 

people who are well connected in a community and have active trusting connections with 

others are likely to behave in the accepted social manner of that community [World Bank, 

1999].

The community benefits of SC appear to extend to formal educational institutions. The 

World Bank [1999] has found that schools were more effective when parents and local 

communities were actively involved in community and school programs. Teachers were 

more committed and students had higher tests scores. Coleman [1988] also suggests that 

the mentoring, networking and mutual support associated with high levels of SC 

contributes to success in education. Fukuyama [1999] further observed that firms benefit 

from SC because it facilitates cooperation and coordination, which minimizes transaction 

costs, such as negotiation and enforcement, imperfect information and layers of 

unnecessary bureaucracy. 

SC can also bridge cultural differences by building a common identity and shared 

understanding [Daniel, Schwier & McCalla, 2003]. Furthermore, from the perspective of 

organizational management, Prusak and Cohen [2001] note that SC can promote better 
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knowledge sharing due to established trust relationships, common frames of reference 

and shared goals.

Social capital generates different benefits in different communities. For instance 

Woolcock [2001] note that closed communities allow generalized reciprocity and trust 

can emerge within the dense networks of members characterized by frequent, multiple 

interaction and structural closure. In addition, Narayan and Pritchett [1997] have 

suggested that communities with high SC have frequent interaction among their members, 

which in turn cultivates norms of reciprocity through which members become more 

willing to help one another, and which improves coordination and dissemination of 

information and knowledge sharing. 

2.7 Shortcomings of social capital

Despite benefits of SC in communities, including outcomes that lead to a better quality of 

health, education, cooperation, collaboration and trust, there are also a number of 

potential drawbacks. One important disagreement in both the theoretical and empirical 

literatures on social capital relates to the differences between those who view social 

capital as an individual attribute versus those who view it as a property of collectives (for 

example, communities or entire societies) [Ichiro, Kim, Coutts & Subramanian, 2004].

Other drawbacks challenge suggestions that SC is universally a societal benefit. Halpern 

[2001] has pointed out that organised crime or gangs involve a social network, whose 

members share norms, but they do not constitute a societal good. Portes [1998] lists the 
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downside of SC as the exclusion of outsiders, restriction on individual freedom and a 

downward leveling of social protocols and collective norms. This refers to situations in 

which group solidarity is cemented by a common experience of adversity and opposition 

to mainstream society, for instance, in racial or religious hate groups. The resulting 

downward leveling of norms operates to keep members of a downtrodden group in place. 

Highly cohesive communities that exhibit bonding forms of SC are not necessarily 

beneficial to a society and may engender internal trust among their members while 

spreading hate and terror to the larger society (examples include various kinds of terrorist 

gangs, racial hate groups and criminal organizations). Therefore, bonding forms of SC 

manifested in cohesive communities are therefore not necessarily beneficial to overall 

society. 

In some circumstances, SC can also function as “a double-edged sword” as such close-

knit communities become more and more isolated from their larger environments, and the 

benefits that its members derive from the network may begin to fall behind the costs. For 

example, exchange can go smoothly but there is insufficient diversity; knowledge is 

shared, but ideas begin to sound the same. In other words, a strongly bounded community 

if not linked to others might not access new ideas, innovation and the like. Groups with 

strong ties, clear boundaries and high levels of trust and generalized reciprocity can be 

said to rate high on exclusive, "bonding" SC. This type of inclusive "bridging" SC 

emerges in an exclusive type of network structure [Woolcock, 2001].
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Further, most research on SC does not acknowledge the multivariate nature of SC [Daniel, 

Schwier & McCalla, 2003]. For instance, Putnam [2000] suggests that a decline in 

associational life leads directly to a lack of civic engagement. He also treats a decrease in 

trusting behavior in a community as direct evidence of a decrease in SC. While these 

relationships may exist, the underlying relationships between these variables and how 

they are correlated are probably much more complex than mere cause and effect.

2.8 Measurement issues 

There is no widely held agreement on how to measure social capital, which is one of its 

weaknesses. It is possible to intuitively discern the level/amount of social capital in a 

group (any kind of relationship in a group regardless of type or scale used), but 

measuring it quantitatively has proven somewhat complicated. This has resulted in the 

development of different metrics for different functions of SC. Fukuyama [1999] points 

out that one of the greatest weaknesses of the notion of social capital is the absence of 

consensus on how to measure it. 

Exacerbating the failure to reach consensus on a standard definition and measurement 

metrics for SC, almost everyone who writes about it appears compelled to provide a fresh 

definition rather than adopt an existing definition (see Table 2-1). Previous studies have 

shown that the measurement of SC is considerably complicated by the fact that most of 

the metrics in the literature have relied upon measures of outcomes and the benefits of SC 

in general rather than direct indicators of SC [Daniel, Schwier & McCalla, 2003; Daniel, 

McCalla & Schwier, 2005]. 
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Compared to other forms of capital (financial or human), SC is difficult to measure SC

because it is less tangible. In addition, since SC can assume a variety of forms (e.g., 

levels of trust, social protocols, shared understanding, density of civic associations), the 

measurement of this construct calls for the use of a variety of indicators. 

Further, the validity of current SC measurements is often questionable, since much of the 

research is based on secondary data, drawn from statistical records that might not be 

accurate [e.g. Putnam, 1999]. In addition, SC is generally understood to be the property 

of the group rather than the property of the individual, yet studies that employ survey data 

often aim to discern individuals’ social relationships to the group. Putnam [2000] for 

example has employed survey methods aimed at examining participation in groups (e.g., 

membership in voluntary organizations, churches or political parties) [Schuller, 2001]. 

Cote and Healy [2001] have suggested that measures of SC should be as comprehensive 

as possible in their coverage of key dimensions (networks, values, norms) and should be 

balanced between attitudinal/subjective data and behavioural data. Others argue that 

measures of SC should be culturally contextualized [Robinson, 1997].

Some studies have focused on measuring only one or few of the characteristics of SC, 

such as trust, rather than all of its components [cf. Fukuyama, 1999; Putnam, 2000].  The 

use of trust as a proxy for measuring SC is not appropriate in certain communities since 

trust is a nebulous concept in itself and it subsumes many variables [Daniel, Schwier & 

McCalla, 2005]. 
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2.9 Studying social capital in virtual communities

The rapid growth of social software which increasingly supports the formation of virtual 

communities and an accompanying surge of interest among researchers in many 

disciplines raises many interesting questions. These questions include how to study social 

relationships that can lead to productive knowledge generation and sharing. These

research questions suggest a need for the development of a comprehensive conceptual 

and theoretical framework for addressing social issues critical to collaborative learning 

and knowledge sharing. 

The concept of social capital covers most of the social issues critical to design, 

development and sustainability of virtual communities, but since social capital is ill-

defined and limited to terrestrial communities, this thesis explores the fundamental 

components of social capital and how it can be modelled. The thesis also opens up 

discourse on the construct of SC within virtual communities.
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2.9.1 Virtual learning communities

Virtual learning communities are learning communities and they are one context for 

studying social capital in this research. Kowch and Schwier [1997] have described 

learning communities as collections of individuals who are bound together by social will 

and a set of shared ideas and ideals. Learning communities are also considered to be 

cohesive communities embodying a culture of learning, in which all members are 

involved in a collective effort of understanding [Bielaczyc & Collins, 1999]. Virtual 

learning communities describe a group of people using technology who gather to study 

some areas of interest, and who learn from each other throughout the process. Schwier 

[2007] has proposed a model of VLCs; describing thirteen fundamental elements of 

virtual learning communities (see Figure 2-2). The model is grounded on research and 

practice into virtual learning communities in the context of higher education.

Figure 2-2. A model of virtual learning community [Schwier, 2007]
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Schwier [2007] presents these elements of virtual learning communities for educators as a 

framework to think about and do things purposefully to foster community growth in 

online learning environments. By considering each of the elements of community, he 

suggests that it enables educators to derive instructional strategies that are consistent with 

the elements [Schwier, 2007]. He further adds that these elements help researchers 

examine whether communities form online and the various ways in which they can be 

supported. 

2.9.2 Distributed communities of practice

Another context for studying social capital in this thesis is distributed communities of 

practice. A DCoP describes a group of geographically dispersed professionals in different 

fields who share common practices and interests in a particular area of concern, and 

whose activities can be enriched and mediated by information and communication 

technologies [Daniel, Sarkar & O’Brien, 2004]. A distributed community of practice 

(DCoP) can be regarded as a formalized knowledge network, serving as a vehicle for 

exchange of data, information and creation of knowledge [Daniel, Sarkar & O’Brien, 

2004; Lave & Wenger, 1991]. What holds members together in a DCoP is a common 

sense of purpose and an authentic need to know what each other knows and to share that 

information. 
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Figure 2-3. Main features of a distributed community of practice

In a DCoP individuals are characterized by diverse relationships, drawing membership 

from several domains and from various human and organizational cultures (see Figure 2-

3). A successful DCoP is organized around the needs of its members and as such, DCoPs 

exhibit a wide range of sizes, structures, and means of communication. 

Fundamentally, a DCoP connects professionals with similar interests who are often 

drawn from different training and professional backgrounds, and who are distributed in 

terms of time and space. For a DCoP to evolve, it requires individuals who are 

geographically and organizationally and culturally distributed to become aware of each 

other and build connections among members. Such individuals normally share common 

interests and are interested in connecting to others through the use of information and 

communication technologies. 
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Table 2-2. Virtual learning communities and distributed communities of practice

Virtual learning communities (VLCs) Distributed communities of practice (DCoPs) 
 Membership is explicit and 

identities are generally known
 Membership may or may not be explicit 

 Presences of an instructor  Facilitator, coordinator or a system 

 Participation is often required  Participation is mainly voluntary

 Explicit set of social protocols for 
interaction

 Implicit and implied set of social protocols for 
interactions

 Formal learning goals  Informal learning goals

 Possibly diverse backgrounds  Common subject-matter

 Low shared understanding of 
domain

 High shared understanding of domain

 Loose sense of professionalism  Strong sense of professional identity 

 Strict distribution of responsibilities  No formal distribution of responsibilities 

 Easily disbanded once established  Less easily disbanded once established

 Low level of trust  Reasonable level of trust

 Life span determined by extent in 
which goals are achieved 

 Life span determined by the 
instrumental/expressive value the community 
provides to its members

 Pre-planned activities and fixed 
goals

 A joint enterprise as understood and continually 
renegotiated by its members

Table 2-2 compares VLCs to DCoPs.  The question of what is a theoretically appropriate 

level for analyzing the effects of social capital on either kind of virtual community, 

whether a VLC or a DCoP, ought not to be couched in terms of a dichotomy (between the 

individual level and the collective level)—rather, it should be analyzed and understood 

through a multi-level, multi-dimensional and multivariate analytical framework. Further, 

there are benefits to conceptualizing social capital as a contextual construct within a 

clearly defined virtual community, while maintaining its general variables at the global 

level.
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2.10 Chapter Summary

Current literature on social capital shows no consensus on the definition of social capital. 

However, the various definitions of the construct can be categorized into structural and 

content dimensions. Structural dimensions of social capital can be studied using social 

network approaches aimed at understanding social and structural features of a community. 

The content dimension can be understood through content analysis by identifying and 

categorizing variables such as trust, shared understanding, etc., as proxies for 

understanding community interaction.  Chapter 3 presents an empirical investigation of 

social capital within the context of virtual learning communities, informal virtual 

communities and distributed communities of practice using social network and content 

analysis. 
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Chapter 3

3.0  Empirical analysis of social capital in 

virtual communities

3.1 Overview

This chapter summarizes results of three empirical studies conducted within three kinds 

of virtual communities, to further explore key variables of social capital identified in 

Chapter 2. The chapter also sets the foundation for identifying fundamental variables of 

social capital in virtual communities which constitute a model of social capital.

3.2 Introduction

This chapter presents a summary of three studies that built upon a significant on-going 

program of research into the nature of social capital in virtual communities. This on-

going research looked into a diverse set of issues, including exploring the fundamental 

elements of virtual learning communities [Schwier & Daniel, 2006], extracting a 

synthesis of patterns of interactions in video-mediated virtual communities [Daniel & 

Poon, 2006], understanding the process of learning in virtual learning communities 

[Daniel, Schwier & Ross, 2006; Daniel & Schwier, 2006], exploring social capital in 

virtual learning communities [Daniel, McCalla & Zapata-Revera, 2003; Daniel, McCalla 

& Zapata-Revera, 2004], and isolating issues critical to the formation and sustainability 
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of distributed communities of practice (DCoPs) [Daniel, Sarkar & O’Brien, 2004; Daniel, 

O’Brien & Sarkar, 2006].

The three studies that are the focus of this chapter were conducted in three contexts: a 

formal virtual learning community, a distributed community of practice, and an informal 

virtual community. The goals and purposes of the studies are summarized and illustrated 

in Figure 3-1. 

Figure 3-1. Investigation of social capital in virtual communities
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3.3 Study 1: Social capital variables in a virtual learning community

3.3.1 Purpose and goals of the study 

Study 1 was aimed at visualizing interactions in a virtual learning community using social 

network analysis and identifying variables of social capital that would be of interest to the 

modelling process based on content analysis approach. The social network approach and 

content analysis approaches employed are described in details in section 3.3.2.1 and 

3.3.2.2 of this Chapter. The data analyzed for study 1 were drawn from virtual learning 

communities that emerged out of interactions in five graduate courses in Educational 

Communications and Technology at a western Canadian university.  The courses were 

blended online and face-to-face seminars on the theoretical and philosophical foundations 

of educational technology and the principles and practices of instructional design. Each 

course spanned an entire semester or academic year.  

3.3.2 Research procedures and methodology

3.3.2.1 Social network analysis

Social network analysis (SNA) techniques were used to visualize the patterns of 

interactions among participants in data on the virtual learning community. SNA is the 

study of mathematical models for interactions among people, organizations and groups. 

According to SNA theory, social relationships are viewed in terms of nodes and ties. 

Nodes are individual actors within the network, and ties represent the flow of 
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relationships between the actors. The relationships defined by linkages among 

units/nodes are a fundamental component of SNA [Wasserman & Faust, 1994].

The SNA approach has become a popular means of investigating social networks [Burt, 

1980; Freeman, 2000; Wellman & Haythornthwaite, 2002]. The SNA approach also 

provides the possibility of both a visual and a mathematical analysis of human 

relationships. In SNA social networks are described using a graph [Robinson & Foulds, 

1980]. The graph is a directed graph with arrows indicating interaction and engagement 

between nodes (individuals) in the community. 

3.3.2.2 Content analysis approach

The analysis of the presence of social capital variables in virtual learning communities 

involved analysis of online interaction transcripts using content analysis. . Content 

analysis is employed regularly in many domains to determine the presence of words, 

concepts, and patterns within a large body of texts or sets of texts [Rourke, Andersen & 

Archer, 2001; Soller, 2001; Soller & Lesgold, 2003; Stemler, 2001]. For this research, 

For the content analysis of the transcripts were done using Atlas ti™1 software. A pre-

determined coding scheme was used to guide the analysis (see figure 3-2). 

The codes for study study 1 were primarily based on the variables of social capital 

discussed in Chapter 2. Grounded theory was also used throughout the coding processes 

to look for emergent variables, especially those that did not necessarily relate to instances 

                                                
1ATLAS.ti [http://www.atlasti.com/] is a workbench for qualitative analysis of large bodies of textual, graphical, audio and video data. 
It offers a variety of tools for accomplishing the tasks associated with any systematic approach to "soft" data—material which cannot 
be analyzed by formal, statistical approaches in meaningful ways. 
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of social capital. According to Strauss and Corbin [1990] grounded theory is relevant and 

useful for the analysis of complex phenomena where little is known, as is the case in the 

study of SC.

Further, grounded theory is relevant to the study of SC in virtual communities, because 

of the methodology’s flexibility which is required to cope with complex data and the 

need for continual cross referencing. In this research, manually coding of the data was 

done by reading and re-reading the chosen sample of the transcripts and noting 

occurrences of social capital or emergent variables. In grounded theory, codes are not 

necessarily independent or separately describable. They may overlap and contain many 

analysis units. However, physical limits are set on the meaning of data based on the 

context (Figure 3-2 shows the coding scheme and the unit of analysis).

Figure 3-2. The coding scheme and unit of analysis
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3.4 Results 

3.4.1 Community visualization of interactions

In order to examine, understand and visualize the patterns of interaction among 

participants in study 1, interactions were codified into a two dimensional matrix. A 

matrix of a network of size n is a square matrix (n x n) whose elements represent ties 

(links) among individuals or agents in a given network. UCINET 6 software [Borgatti, & 

Freeman, 2002] was used to construct the network graph, which consisted of 15 

actors/nodes (N=15) with connections indicating the flow of interactions or information 

flow [see Figure 3-3].  

Figure 3-3. Community visualization
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In figure 3-3 arrows in the graph indicate engagement between nodes (individuals) in the 

community. A single-edge link suggests one-way communication (when A sends mail or 

message to B but B does not respond to A) while a double-edge link suggests two-way 

communications. In order to determine individuals’ centrality in the network, Freemen’s 

indegree and outdegree measures were used. In this analysis, indegree reveals the number 

of individuals who have read messages in the community. Outdegree measures the 

number of messages an individual has sent to all other individuals in the community. 

Table 3-1 summarizes the results of the in-degree and out-degree measures.

Table 3-1. Degrees of connectivity among individuals in the network

Actor Outdegree Proportions Indegree Proportions
Rk 109 0.9 18 0.03
Dm 24 0.04 12 0.02

Bn 67 0.11 79 0.13
Dna 25 0.04 39 0.06

De 54 0.09 56 0.09
Di 24 0.04 35 0.05

Dk 54 0.09 51 0.08
Dn 11 0.01 29 0.04

Hr 57 0.09 43 0.07
Jf 41 0.07 38 0.06

Jn 59 0.1 74 0.12
La 13 0.02 31 0.05

Rg 16 0.02 26 0.04
Ra 21 0.03 29 0.04

Rn 7 0.01 33 0.06

The degree of centrality in a social network theory is the most intuitive network centrality 

measure. The centrality of an individual is simply the number of people to whom that 

person is directly tied or connected. For example a node with a high degree of centrality 
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in a social network has a high proportion of connectivity with other nodes in the network, 

suggesting that person is more central to the network. 

The total number of messages a person has sent to members of the community shows 

their outdegree of centrality. For example, in Table 3-1 Rn has the lowest outdegree of 

centrality, meaning that s/he sent out only 7 messages compared to Rk who has a high 

outdegree centrality (109), with a bigger node in the graph colored red.

Indegree, on the other hand, shows the number of messages a person has received from 

other members of the community. In Table 3-1, Bn has the highest indegree of centrality 

(79), with a node colored green in the network, followed by Jn (74), (see node in the 

graph colored yellow) compared to DM who has only 12 (which shows that s/he has only 

received a total of 12 messages from others in the community). Figure 3-4 shows the 

proportions of the distribution of indegree and outdegree measures among all the 

members of the network. 
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Figure 3-4. Distribution of indegree and outdegree of engagement

In Figure 3-4, Rk displays a high outdegree of centrality. A high outdegree of centrality 

in the network can also imply that an actor can gain access to more information or 

knowledge than those who have a low outdegree. It can also suggest power and control 

and ability to gain prestige through exposure of oneself. It can mean that an actor has the 

possibility of influencing other actors in the network through multiple channels of 

communication.  In other words, Rk’s position is regarded as the most influential in the 

network. 

In contrast, peripheral actors maintain few or no connections with others and thus are 

located at the margins of the network. For instance, Rn who has a relatively low 

proportion of outdegree centrality can be considered a spectator or “lurker”. However, 

lurkers in social network terms are not necessarily unimportant. An individual who is a 
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recipient of many messages, but sends out very few, may still have “prestige” by the very 

fact that many people want to send him/her messages.

3.4.2 Social capital and emergent variables

Several variables of social capital and other emergent variables were identified in the 

online interaction transcripts. The results of the analysis are summarized and shown in 

Figure 3-5. 
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Figure 3-5. Frequency of the observed indicators of social capital in the transcripts

Figure 3-5 shows frequencies of the occurrences of the variables of social capital such as 

shared understanding, demographic awareness, trust, competence awareness, and social 

protocols. These results might reflect some of the variables identified in Chapter 2 but 

interpretation might be limited to the nature of this community, which was highly 
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formalized, with clear goals and established social protocols. The variations among the 

variables do not generally describe the amount of social capital in the community, but 

they indicate a gross measure of some the variables of social capital in this community. 

Selected examples of the variables in Figure 3-5 are illustrated qualitatively in Table 3-2. 

Table 3-2. Example of qualitative quotations from the transcripts

Instances of Variable Example from Transcripts
Professional awareness “I am a full time teacher at…..High School in…..where 

I teach Physics, coach volleyball, organize and….”

“I belong to my school’s technology/computer 
committee.  In this community there are seven 
individuals working together to enhance the technology 
program at the school, coordinate the purchase of 
hard/soft ware, provide training for staff on various 
software, set report card deadlines, organize the 
printing of report cards, place heat calls, take care of 
password changes, trouble-shooting, and just about 
anything at all dealing with computers at……”  

Demographic awareness “My name is …... I am a dad and husband, I teach 
computer technology courses and various other things 
(biology and science, mostly) at the high school in… I 
have also worked as a technology coordinator for the 
…School Division during the introduction of a large-
scale thin client computer platform.” 

Capability awareness “I have been a technology coordinator for our school 
for 12 years and have represented our school and 
school division on various committees during that 
time.”

Technology “I'd love to have a spell check in WebCT ... and I'm 
sure people who read my posts wish for the same thing. 
Plus, I'd like to be able to save a message and not post 
it immediately.  This way if I'm unsure of my thought, I 
can step back for awhile and not have to start again 
from scratch.”

“Well, I have been vocal about the problems I have 
with my G4 Power book.  After talking with Marlene 
today at the conference, she has the same problems 
with her G4 Power book.  Funny, she said Mac users 
usually aren't vocal about any problems.”

Hospitality “Thank you everyone for your warm welcome.  I am 
going to work on sending a video back!  Such a nice 
touch... it is great to out faces to the postings.” 

“Apologies for the extremely late posting.  I'm not sure 
why I had the brain lapse, but thanks to Marlene for 
reminding me I'm in the class).Hope you're having a 
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great face-to-face meeting today.  See you online!”
Competence awareness “I too think your English is fine.  Yes, I can tell you are 

from… but so what?  I will tell you a story I already 
told … about my experience with accents.  When I was 
little, my parents spoke to me in Dutch (Flemish).  
Before I started school they taught me English but I 
spoke with a Dutch accent……”

Shared understanding “I agree with both of you about the dangers of 
misconceptions and inaccuracies in any field......”

“You are absolutely right about what you said in terms 
of ….reminding us to note cultural differences. I think 
that it is important for us to try to remember the more 
subtle differences that come with the "mosaic" that is 
this class.”

Information exchange “Virtual learning communities are very new to me and 
have been a huge shift in the way that I work and think 
as a student, and as an instructor.  There are many 
losses, I think, that are hard to compensate for in a 
virtual learning community (all the ones you 
mentioned).”

“I found the listings for my great grandmother and her 
mother and sister when they came through Ellis Island 
in the late 1800s. At the same time I also discovered 
that the U.S. government posts the social security 
numbers of people who have been dead at least a 
year…”  

Social protocols “Describe the learning community of practice to which 
you belong. What’s special about your community? 
What do you think makes it a community of practice? 
What have you learned about the other members? What 
have you learned from them...?”

“Post one commentary of approximately 200 words 
based on the questions below in the bulletin board 
discussion, Motivation, by Thursday. Post one response 
of approximately 100 words to the issues addressed by 
another student in the bulletin board discussion, 
Motivation, by Sunday”.

Trust “I have already mentioned that I believe that trust is 
the key element I am trying to establish with students.  
They need to trust that I care, that I understand, and 
that I will attempt to work to create a fun and 
interesting learning environment.”

“Trust and acceptance (irrespective of the level of 
French an individual has); reassurance that what's 
important is that you improve your French speaking 
abilities (irrespective of where you're starting from) 
not that you get 98% on a test.”
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3.4.3 Sharing experiences

Among the variables presented in Figure 3-6, sharing experiences has the highest 

frequency of occurrence. The sharing of experiences in virtual learning communities 

results in effective interactions that are likely to influence the process of teaching [Daniel 

& Schwier, 2007]. Sharing experiences can occur through sharing resources and 

information or telling others in the community about one’s experiences or problems. It 

can be argued that sharing experiences is a key feature of developing SC in virtual 

communities. For instance, when people share their experiences with others, they express 

a sense of belonging to a community, and feel they are contributing useful knowledge 

that can benefit others. 

Furthermore, sharing experiences in VLCs can be regarded as members’ active 

involvement and personal commitments to others in their community; it involves 

exposing one’s hidden (tacit) knowledge. Sharing experiences can also help people 

establish a level of shared understanding since it requires continuous interactions where 

individuals can get to know each other and possibly identify personal interests or build 

trusting relationships [Daniel, McCalla, & Schwier, 2002].

3.4.4 Shared understanding

Shared understanding enables people in a community to develop common goals, beliefs, 

values, and principles that will in turn allow them to work together as a community and 

build strong social capital.  In a community where individuals have little awareness of 

each other, however, shared understanding is difficult to develop, as it needs to evolve 



- 43 -

over time as individuals spend time together and learn about each other. In a virtual 

learning community where individuals are required to engage in free and honest 

discourse throughout the learning process, having shared understanding can provide a 

basic structure within which a community can smoothly operate and can help members to 

productively engage in free and fair discourse based on mutual respect.

Overall, it can be argued that shared understanding nurtures SC when individuals share 

common goals and are willing to work together toward the attainment of common goals. 

It also allows people to understand each other, and use the same frame of reference in 

discourse. Further, shared understanding can strengthen SC when individuals agree on 

common terms, activities and goals in a community. 

3.4.5 Trust

Although trust is a key variable and vital for developing SC as discussed in Chapter 

2, in this study it was observed comparatively few times in the transcripts. This is 

attributed to the fact that indicators of trust may not be directly observed in data of 

this kind; references to trust are only mentioned obliquely in conversations. 

3.4.6 Awareness

Results from the analysis of the data further suggested a strong link between awareness 

and trust. Participants mentioned that they trust people they know (awareness). However, 

in a formal virtual learning community, awareness can be situated in different contexts 

and it evolves over time. As one respondent pointed out in the transcripts:
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“I find that the social capital in the online course that I am teaching is in the early phases, 

where we are trying to build it.  Most of the students do not know each other, but in just one 

week of the course, have figured out how to get in touch with each other and help each other 

out.  They email each other for questions and arrange to meet in the chat room.  They are just 

now building these relationships that will form a community”.

While the level of individuals’ awareness and its relation to trusting relationships in 

terrestrial communities can be easily observable, little is known about how the level of 

awareness in virtual communities and how it can affect the level of trust. Building trust in 

virtual learning communities that can nurture SC requires more research.

3.5 Conclusion and summary of study 1

Study 1 has explored the nature of social capital in a formal virtual learning community 

through examination of members’ social interaction and the content of the messages 

exchanged. Results from study 1 helped to further the exploration of the structural and the 

content dimensions of social capital. In addition, the content analysis revealed messages 

exchanged by individuals that can labelled as indicators of social capital. Congruent with 

other previous research [Daniel, McCalla & Schwier, 2005], social capital can have 

various indicators. As the results show some of these indicators include sharing 

experiences, shared understanding, various forms of awareness and trust. 
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3.6 Study 2: Analysis of online interaction in informal virtual 
communities 

3.6.1 Purpose and goals of the study 

Informal virtual or “open virtual communities” are widespread in the Internet. Unlike 

formal virtual communities, which are mainly developed around formal courses  in 

educational institutions or corporate settings, informal virtual communities are those 

online communities where membership is voluntary and the communities are focused 

specifically on information exchange and implicit learning. The purpose of study 2 is to 

examine indicators of social capital in an informal virtual community. The goal is to 

understand the thematic exchange of messages as well as the density of interactions. 

3.6.2 Research procedures and methodology

The data reported in this study were drawn from a video-mediated virtual community 

called “Café Americano,” a community that is primarily social rather than learning 

oriented part of [http://www.cuworld.com/]. Community members interacted regularly—

sometimes on a 24 hour basis—with members checking in and out according to their 

needs.  Social network analysis as described earlier in this Chapter was used to map out

interactions among individuals in the community. Content analysis was employed to 

categorize themes of interaction and indicators of social capital. The same scheme of 

content analysis presented Figure 3-2 was employed. 



- 46 -

3.6.3 Results

3.6.3.1 Community visualization of interactions

UCINET 6 (Borgatti, & Freeman, 2002) software was used to generate the network (see 

Figure 3-7). There were 23 actors/nodes (N=23) with connections indicating the flow of 

interactions, which subsequently determined community structure as well as patterns of 

discourse. Red links indicate reciprocal relationships while blue links indicate one-way 

flow of information.

Figure 3-6. Flow of engagement in a video-mediated virtual community
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To determine whether a community formed out of the interactions, a measure of group 

density was calculated. Density is a measure of how connected individuals are to others 

in a group. A higher degree of connection reveals possible existence of a community. 

Fahy [2001] suggests that a group’s density is “the ratio of the actual number of 

connections observed, to the total potential number of possible connections."  It is 

calculated by using the following formula:  Density = 2a/N (N-1), where "a" is the 

number of observed interactions between participants, and "N" is the total number of 

participants. 

Fahy [2001] cautions however, that the measure of density is sensitive to the size of the 

network, so larger groups will likely exhibit lower density ratios than smaller groups. In 

order to identify the alignment of sub-groups (cliques) within the network, a

fragmentation index was calculated. Fragmentation in social network measures the extent 

to which a whole network is segmented into smaller and more cohesive subgroups within 

which interaction is particularly intense. The degree of fragmentation is quantified by 

measuring the number of components within a network.

The calculations revealed a density ratio of .67, suggesting that 67% of all possible 

connections were made, i.e. Density = 2(35)/23(22) = 0.67 with fragmentation of 0.3242.

Although there is no baseline data to make judgments about the existence of community

at this point, the density level suggests a reasonably strong connection between 

community members, regardless of the number of reciprocal relationships. 
                                                
2 Indicates the proportion of participants who cannot reach each other in the community
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A reciprocity measure aimed at understanding the rate of mutual interdependency 

between two or more nodes in the network was employed. The overall reciprocity value 

is the same as in a dyad-based model, i.e., Num (Xij>0 and Xji>0)/Num (Xij>0 or Xji>0) 

reciprocity is 0.4545, indicating a fair number of ties (expressed through communication 

among individuals in the community) in the community. Though the number of ties in a 

network does not automatically suggest the existence of a community, it indicates a fairly 

active pattern of connections among members during discourse.

Also, present were prominent individuals with higher levels of reciprocal relationships 

within this community. For instance, Badboy had the highest level of reciprocal 

relationships in the community followed by Terresita (5) and Hi (5) respectively. It 

follows that Badboy has one of the most strategic positions in the community, connecting 

with others such as Limpbizkit, Alan and Gring06. On the other hand, Hi and Segetal are 

both connected to two important individuals in the community, namely Nikopol and 

Tomnjerry. Though Nikopol and Tomnjerry have few connections, they occupy critical 

positions in the social network in that they are hubs by which new information can flow 

to and from other communities and also help translate that new information to the 

community members. In other words they act as “diplomats” in the community [McCalla, 

2000]. 

Some individuals are outliers. Such individuals are members of the community but are 

not directly connected to others. In virtual communities they are sometimes referred to as 

“lurkers”. These include participants such as Treo, Mugga, Guago and Charly, though it 
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is also possible that they are lurking because they were absent during most of the 

interactions, calling into question whether they were participants in any real sense. 

3.6.3.2 Social capital and emergent variables

Analysis of the content of interaction in study 2 suggests that people gather in virtual 

communities for a variety of reasons and they often engage in a variety of themes, 

ranging from social issues to economic discourse. 

Though it is difficult to speculate about what motivates people to join open virtual 

communities and engage them in discourse of specific themes, it is possible to conclude 

that most of the reasons are social. For instance, individuals often join open virtual 

communities to socialize or look for information or knowledge in relation to some 

particular task. In such a case, open virtual communities serve as spaces for 

supplementing terrestrial communities by providing a social interaction milieu. A 

summary of the content analysis of the interactions is presented in figure 3-7.
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Figure 3-7. Frequency of observed discourse themes in the transcripts

The results enable us to understand gross occurrences of discourse themes and understand 

the nature of issues that are emergent in these communities and to develop theoretical 

models of interactions to understand how social interactions affect knowledge and 

information flow in different virtual communities. 

3.7 Conclusion and summary of study 2

The Social Network Analysis approach provides various ways to identify key individuals 

and their roles in transmitting information in informal virtual communities. However, it is 

not enough to study network properties of social network; one should also be able to 

analyze the content of engagement in which a network is formed. 
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Content analysis of social interactions within the framework of social resources suggests 

a structural dimension of social capital described in Chapter 2. A social network view of 

social capital in the study considers the density of social networks that people are 

involved in; the extent to which they are engaged with others in informal, social 

activities; and their membership in groups and associations. Further, the social capital 

examined in this study took into consideration the context of a social network as well as 

the content exchanged during interaction.

3.8 Study 3: User study for building a distributed community of 

practice

3.8.1 Purpose and goals of the study 

The purpose of study 3 was to examine the motivations a diverse group of people might 

have for creating a distributed community of practice (DCoP) and to build a strong social 

capital useful for information sharing across Canada. A group of people were surveyed to 

find out what they felt was important to include in the development of a DCoP on the 

topic of governance and international development.  Some of the results of the study were 

used to inform the model of social capital presented in Chapter 4.

This study was one part of a larger program of research looking into building distributed 

communities of practice (DCoPs). The DCoP program of research was aimed at 

improving awareness, research and sharing data and knowledge in the field of governance 
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and international development in Canada [see for example, Daniel, Sarkar & O’Brien, 

2006; Daniel, Sarkar & O’Brien, 2005; Daniel, Sarkar & O’Brien, 2004]. 

The research employed a sociotechnical approach to elicit initial information from 

participants to inform the building of the community. The sociotechnical approach offers 

useful insights into various ways of blending social and technical factors that helped in 

the design and development of tools for building community. Further, a sociotechnical 

approach takes into account participatory design and user-centred dimensions for 

building software applications and interaction processes. The research protocol involved 

the participation of potential users throughout the analysis, design, and implementation 

process. 

3.8.2 Research procedures and methodology

The research procedure involved identifying potential technologies for supporting online 

communities. In addition, a profile list of potential participants mainly stakeholders from 

academia, government and the non- and for-profit sector was created. A survey was then

administered to 200 individuals, randomly drawn from organizations identified as 

working in the field of international development and governance, including government, 

non-governmental organizations, private consulting and academic research centres. The 

survey instrument was divided into three sections: 

 an assessment of existing communication/networking mechanisms among 

participants;
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 an assessment of the level of awareness of work undertaken by participants and 

their affiliated organizations and,

 participants’ perceived value of a DCoP and what services would contribute to its 

potential value.

Following the analysis of the preliminary analysis of the data, design features for the 

community together with proposal for relevant tools were identified. The results were 

then use to inform questions administered to self-selected groups via telephone interview. 

The goal of the interview was to elicit further information regarding individuals’ 

preferences for content of the community and the suggested tools and interaction 

processes. 

3.8.3 Results

Overall response rate to the online survey was 25%. Of those who responded, 38% were 

university-based, 23% from provincial and federal government institutions, 30% from

non-governmental and research organizations and 9% from private consulting firms. The 

respondents were distributed across Canada:  45% from western Canada, 53% from 

central Canada and 2% from the eastern part of Canada. 

The results revealed that 90% of the respondents were interested in influencing, 

contributing to, or participating in the policy-making process.  In addition, over 80% of 

respondents indicated that it was important for them to keep current on new 

developments in research and practice. Depending on their organizational affiliation, 50% 
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to 80% of the respondents were interested in building collaborative partnerships for 

research and technical assistance. 

Participants identified the potential benefits of a Canadian-based distributed community 

of practice that can cat as a framework for supporting their interest in keeping abreast of 

current research and practice in governance and international development. In terms of 

collaboration, a large number of the respondents viewed the DCoP as a potential 

mechanism to facilitate information exchange and knowledge sharing among members

and source of social capital, manifesting in both content as well as the structural 

dimensions. 

3.8.3.1 Social capital and awareness issues

Congruent with recent research, findings from the study supported the idea that a DCoP 

develops when individuals realize the potential benefit of building social capital through

sharing knowledge, insights and experiences with each other and how sharing can 

enhance their practices and performances [Resnick, 2004]. Further, the results of the 

study showed low levels of individuals’ awareness of contemporary research and practice 

in the field of governance and international development. At the same time participants 

discussed about the specialized nature of their work and the limited number of 

organizations active in the field, they also reported that they were largely unaware of 

contributions that their counterparts have made. These results highlight the importance of 

awareness in building social relations in promoting social capital.
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Although establishing a benchmark standard for awareness is problematic, the results 

indicated a considerable lack of awareness among researchers and practitioners working 

on governance and international development in Canada.  As the majority of the 

participants described current knowledge on governance and development as fragmented 

and that there was a serious lack of awareness among people working on similar issues 

across provinces and between organizations.  

3.8.4 Conclusion and summary of study 3

The notion of a DCoP is an important framework for describing a diverse and distributed 

group of people who are interested in a shared area of activity. The study has identified 

many variables that are critical to building a distributed community of practice. Some of 

these include various forms of awareness that can enhance information sharing and

building social capital of this group. 

3.9 Chapter summary 

Chapter 3 has described and discussed three studies aimed broadly at understanding 

social capital and related issues in virtual communities, using a variety of methods, and 

across three different contexts. The first study explored social capital through 

visualization of online interactions in a formal online learning environment. The second 

study explored social structure of an informal virtual community and examined the 

different kinds of themes found in a typical informal virtual community. The third study 

was situated within a broader study aimed at examining fundamental issues critical to 
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building a distributed community of practice and fundamental social capital that can 

enhance information and knowledge sharing. 

The results of the three studies reported in this Chapter helps extending understanding of 

the fundamental variables critical to social capital in virtual communities. These results 

also confirmed the existence of indicators of social capital in three different online 

communities, and thus motivate the need for building a computational model of social 

capital in these communities. Chapter 4 will describe Bayesian Belief Network 

techniques that will be used for building a model of social capital.
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Chapter 4

4.0 Bayesian Belief Network Modelling

4.1 Overview

The multivariate, multidimensional and imprecise nature of social capital requires 

understanding the relationships inherent among its key variables and how they interact 

within a particular virtual community’s context.  This chapter describes methodologies, in 

particular Bayesian belief network techniques, for modeling social capital in three kinds 

of virtual communities. 

4.2 Introduction

In artificial intelligence in education (AIED) models are used to capture characteristics of 

learners and these models can be used by tools to support learning [McCalla, 2000].  

Baker [2000] has summarized three major uses of models within AIED: models as 

scientific tools for understanding learning problems; models as components of 

educational systems; and models as educational artifacts. He has further observed that the 

future of artificial intelligence in education (AIED) would involve building models to 

support learners in learning communities and to help educators manage learning under 

distributed circumstances. 
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4.3 Process of building computational models

The process of building a computational model is an iterative one, involving organizing 

data, establishing logical relationships among the data, and coming up with a knowledge 

representation scheme that captures these relationships (see Figure 4-1). 

Figure 4-1. Modeling process

A fundamental assumption underlying most of the model building process is that data are 

available which a researcher can use to infer logical relationships and draw logical and 

concrete conclusions from the model. There are modelling approaches that do not allow 

the introduction of prior knowledge during the modeling process. These approaches 

normally prevent the introduction of extraneous data to avoid skewing the experimental 

results. However, there are times when prior knowledge would make a useful 

contribution to the modeling and evaluation processes and the overall observation of the 

behaviour of a model.

Data

Emergent Model

Phenomena

Representation
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A Bayesian belief network (BBN) provides an opportunity for building simple but robust 

tools for analyzing and understanding complex systems using prior knowledge. A BBN 

defines various events, the dependencies between them, and the conditional probabilities 

involved in those dependencies. A BBN can use this information to calculate the 

probabilities of various possible causes being the actual cause of an event.

4.4 Bayesian belief networks

Bayesian belief networks (BBNs) are graphs composed of nodes and directional arrows 

[Pearl, 1988]. Nodes in BBNs represent variables and directed edges (arrows) between 

pairs of nodes indicate relationships or dependencies between variables. BBNs offer a 

mathematically rigorous way to model a complex environment. Bayesian models are 

flexible, able to mature as knowledge about the system grows, and are computationally 

efficient [Druzdzel & Gaag, 2000; Russell & Norvig, 1995]. 

Research shows that BBN techniques have significant power to support the use of 

probabilistic inference and to update and revise belief values [Pearl, 1988]. In addition, 

BBNs can permit qualitative inferences without the computational inefficiencies of 

traditional joint probability determinations [Niedermayer, 1998].  Furthermore, the causal 

information encoded among variables in BBNs facilitates the analysis of actions, 

sequences of events, observations, consequences, and expected utility [Pearl, 1988]. 

Due to their robustness in modelling and describing uncertainty, BBN techniques are now 

being used in a variety of domains. For instance they are used for diagnostic systems 
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[Pradhan, Provan, Middleton, & Henrion, 1994; Niedermayer, 1998], student modeling 

[Conati, Gertner, & VanLehn, 2002; Reye, 2004; VanLehn et al. 1998; Vomlel, 2004; 

Zapata-Rivera, 2002; Zapata-Rivera & Greer, 2004], troubleshooting of malfunctioning 

systems [Jensen, and Liang, 1994], and as intelligent help assistants in Microsoft Office 

products [Heckerman and Horvitz, 1998]. 

The modeling process in BBNs requires capturing domain concepts, variables and their 

associated prior probability values, as well as building a graphical representation of the 

variables of the domain being modelled. The role of graphs in probabilistic modelling in 

BBNs provides a convenient means of expressing substantial assumptions, and graphs

also facilitate economical representation of a joint probability function to enhance making 

efficient inferences from observations. 

In choosing a probabilistic approach to modelling, BBNs offer a number of advantages 

over other methods for the following reasons:

 BBN models are powerful tools both for graphically representing the relationships 

among variables and for dealing with uncertainties in expert systems. 

 The graphical structure of BBNs provides a visual method of relating 

relationships among variables in a simple way.

 In BBNs, a network can be easily refined (i.e. additional variables can be easily 

added and mapping from the mathematics to common understanding or reference 

points could be quickly done).
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 The BBN approach allows for evidence to be entered into the network, and 

updating the network to propagate the probabilities to each node; the resulting 

probabilities tend to reflect common sense notions including effects such as 

“explaining away” and “pooling evidence.”

 BBNs offer an interactive graphical modelling mechanism that researchers can 

use to understand the behaviour of a system or situation, (e.g., it is possible to add 

evidence/observe variables and propagate this information throughout the whole 

graphical model to see/inspect the effects on particular variables of interest).

 The fact that BBN has qualitative and quantitative elements gives it many 

advantages over other methods. 

4.5 Building Bayesian belief networks

The construction of a BBN consists of several phases which can generally be reduced to 

three fundamental steps. The first step involves identifying and defining the problem 

domain, followed by the identification of the relevant variables constituting the problem 

being modelled. The second step is to determine the relationships among the variables 

and establish the graphical structure of the model. The third step is to compute 

conditional probability values for each variable in the model. 

The phases and associated procedures for building Bayesian belief models are graphically 

described in Figure 4-2. It is quite common that the first two steps concentrate mainly on 

defining the problem domain with a goal of expressing the problem in its simplest form. 

This is often done to reduce the number of probability values in the conditional 
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probability table, which is done in the last phase. The last phase is the most difficult one, 

requiring sophisticated knowledge engineering techniques. 

Figure 4-2. Phases and procedures in building BBN models
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In the traditional Bayesian network approach, the process of capturing knowledge within 

a domain normally involves asking the experts to identify the most likely variables 

constituting the domain to be modelled. In the case of this research, expert and literature 

were interrogated to identify variables, and original studies were also conducted to 

identify key variables (see Chapter 3).

In a BBN model, there are different types of variables, For instance, query or objective 

variables are those variables that are to be the output of the network, the variables the 

end-user wants to know about. Evidence variables or observation variables (sometimes 

referred to as controlling variables) are the inputs to the network, the observables in the 

environment being modelled. There are also contexts or intermediary variables that link 

the query variables and the evidence variables. The last group of variables is called 

controllable or intervention variables. This set of variables could potentially be used as an 

intervention to insert information into the modelling process when needed. Once the 

various variables of interest are identified, they are connected via causal relationships. 

This leads to the second step, which is to establish a graphical representation of variables 

identified.  In constructing the graphical representation, it is necessary to specify the 

parameters of the model and keep the causal relationship between variables tractable. 

There are four main kinds of relationships in a Bayesian Network: independent, 

dependent, conditionally independent and marginally independent. The different kinds of 

relationships are described [Pearl, 1988]
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There are many ways one can determine the causal relationships among the variables. 

These include asking experts questions such as: what can cause variable x to take on state

t? For instance, what can cause the grass in the lawn to be wet? Others involved using 

one’s expert knowledge to analyze a particular domain and identify variables of interest, 

doing a review of existing knowledge and identifying relevant variables on domain of 

interest (similar to the literature review described in Chapter2), and running confirmatory 

studies (see Chapter 3). The third step of the modeling process involves assigning prior 

probabilities to each of the variables in a model and conditional probabilities for each. 

Variables in a Bayesian model are expected to be mutually exclusive and exhaustive

[Pearl, 1988]. 

In the case of discrete variables that can assume binary values, the number of prior 

probability values needed to determine the joint probability distribution (JPD) in a model 

is 2n, assuming binary values for each variable or node, as is the case in the model 

presented in this thesis.  For example, if there are 10 variables in a model, then their joint 

probability distribution has 210 =1024 probability values. In discrete variables 

probabilities can often be presented in a conditional probability table (CPT). CPT (see 

tables in Figure 4-4 lists the probability that the child node takes on each of its different 

values for each combination of values of its parents. 

Developing a conditional probability table is the most difficult part of the modelling 

process. It involves specifying initial probability values for each node in the network 

given the values of its parents based on Bayesian reasoning, and for each possible 
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instantiation 3 of the parents’ probability values there is a probability distribution. This 

implies that the probability elicitation process is exponential in the number of parent 

variables. However, the simpler a graph is, the easier is the elicitation process.

4.5.1 Generating variables and their values 

Initial probability values for a Bayesian model come from many sources to consider, 

depending on the problem being modeled and the availability of data. The common three 

possible sources for obtaining domain variables and their initial probability values 

discussed in literature are domain experts, experimental data, and literature in the domain 

being modeled [Druzdzel & Van der Gaag, 2001; Haddaway, 1999].

Eliciting variables and prior probability values from experts is the most common practice. 

This often involves asking domain experts about the most fundamental variables within 

the system being modeled and finding out from them the causal relationships among the 

variables. For instance, determining the probability that variable ‘A’ takes a certain state 

given its parent’s variable values can be done using frequency assessment. In other 

situations, qualitative assessments are done instead, using terms such as the probability of 

‘A’ happening given the state of a parent B is unlikely, probable, high etc. Computational 

tools such as Verbal Elicitor (VE) which allows entry of probability values in ordinary 

English. For example, a domain expert selects a verbal cue such as “unlikely” or “almost 

certain.” The probabilities are then set manually or optimised to minimise probabilistic 

incoherency. VE can also be used to help map verbal terms to sets of probabilities. 
                                                
3 Instantiation in Bayesian belief is the process of assigning probability values to a variable’s particular 
state.



- 66 -

There are a number of problems in eliciting domain variables and their initial 

probabilities using systems such as VE. In some domains, sometimes domain experts do 

not have the time to go through the elicitation process, but even though they are willing to 

work with knowledge engineers, there can still be possible biases and inaccuracies in the 

probability values. One way to eliminate human errors in obtaining accurate probabilities 

is to use experimental data.

One of the goals for using experimental data in a Bayesian model is to train the model; 

the whole process can be automated using any of the Bayesian tools (Netica, Hugin etc. 

see appendix L). But experimental data sources have their own limitations, including 

noise in the data collected; missing values and sometimes a mismatch of the values in the 

model leading to wrong predictions. 

4.5.2 An example of a simple scenario

To fully illustrate how variables causally relate to each other in a model and their initial 

probabilities, a simple scenario on how to build a model is provided. Imagine a scenario 

in which we are interested in understanding how different variables can affect the level of 

trust in a virtual learning community. Suppose we know through empirical evidence, 

intuition, literature, observation or experiences that interaction in all of its forms is 

necessary for building trust in any environment. Suppose we also know that people do not 

just develop trust with strangers, they have to know different aspects of the people they 

are interacting with (for example they have to know where they are located, what they 
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look like, what they are interested in, what they know and can do, where they work, their 

good and bad habits etc.), in short people have to be aware of others in order to trust them. 

There are situations whereby people form cliques with only few individuals within their 

community. Those cliques are often made up of individuals who have strong ties with 

each other, sharing common interests, goals, professions, etc (e.g. in an academic 

community, people with similar research interests are more likely to be drawn closely 

together because they can understand each other).   Strong ties between individuals are 

maintained by shared understanding and shared understanding can nurture trust. Based on 

this scenario the possible variables for the domain are interactions, awareness, shared 

understanding and trust. These are defined and given probable states in Table 4-1.

Table 4-1. Example of few variables of social capital 

Variable Definition States
Interaction A mutual or reciprocal action between two or more agents 

determined by the number of messages sent and received
High/Low

Awareness The ability to acquire and retain knowledge about situations, 
people and environment

High/Low

Shared 
Understanding

A mutual agreement/consensus between two or more agents 
about the meaning of an object

Trust A particular level of certainty or confidence with which an agent 
use to assess the action of another agent

High/Low

The variables in the table are discrete and each variable is given two states: high and low. 

In a BBN model each variable is deliberately associated with those variables that lie 

under its influence. For example, interaction influences awareness and shared 

understanding. In turn, the two variables have direct influence on the variable trust. In 

addition, each variable in a BBN is described by a probability distribution conditional on 

its direct predecessors (parents). 
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The relationship between a parent and a child is determined by the direction of an arrow, 

linking parent to child in the BBN graphical representation. From our example, if there is 

an arrow (directed edge) from interaction to awareness, then interaction is said to be a 

parent of awareness. In other words, interaction has a direct influence on awareness. 

Nodes with no predecessors are described by prior probability distributions and are either 

independent or conditionally independent.

Figure 4-3 (a). Graphical model

Figure 4-3(b). Initial probabilities for example in Figure 4-3

P(I=Low) P(I=High)
0.5 0.5

I P(S=Low) P(S=High)
Low 0.8 0.2
High 0.2 0.8

I P(A=Low) P(A=High)
Low 0.5 0.5
High 0.9 0.1

A S P(T=Low) P(T=High)

Low Low 1.0 0.0
High Low 0.1 0.9
Low High 0.1 0.9
High High 0.01 0.099

S

I

T

A

Interaction

Awareness Shared Understanding

Trust
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In the Figure 4-3(b) the event "trust is high" (T=High) has two possible causes: either 

awareness is high (A=High) or there is high level of shared understanding (S=High), 

since in the graph there are direct dependencies between trust and awareness as well as 

shared understanding. The strength of this relationship is quantitatively shown in Figure 

4-4 and the dependencies (causal relationships) in the variables are extracted based on the 

description of the scenario. Imagine a situation where individuals might be aware of each 

others’ skills and knowledge in a typical virtual learning community, but they might not 

necessarily have shared understanding. For example, we see that P (Trust=High | 

Awareness=High, Shared understanding=low) = 0.9 (second row), and hence, P 

(Trust=Low | Awareness=High, Shared understanding=Low) = 1 - 0.9 = 0.1, and each 

row in the table must sum to 1. Since the root variable (interaction) has no parents, its 

CPT specifies the prior probability that it is high or low (in this case, 0.5), i.e. all states 

are equally probable.

4.5.3 Querying the model

The mechanism for drawing conclusions in BBNs is based on propagation of 

probabilities through the network. As evidence is entered into the model through the 

observable variables, the effects of this evidence can be propagated using the rules of 

Bayesian probability through to the output variables. This is termed “querying the BBN”.  

It is sometimes the case that a BBN contains many variables each of which can be 

relevant for some kind of reasoning but rarely are all variables relevant for all kinds of 

reasoning at once. Therefore, it is often necessary to identify a subset of the model that is 
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relevant for reasoning in a particular situation. Such a decision can be made based on 

some qualitative inferences from real world data using scenarios to query the relevant 

part of the network [Daniel, Zapata-Rivera & McCalla, 2005; Zapata-Rivera, 2002]. 

One way of using a BBN is to develop detailed scenarios that can be used to query the 

model. A scenario refers to a written synopsis of inferences drawn from observed 

phenomena or empirical data. Druzdzell and Suemondt [1994] suggest that one way of 

querying a network is to instantiate variables to their observed values. Some evidence 

suggests the presence of other evidence (e.g., when a computer boots it implies it is on, 

which will also indicate there is electricity or the battery is filled up). Lin and Druzdzel 

[1998] use a reduction method through variables instantiation rendering some variables as 

d-separated and hence, can reduce computational complexity.

Drawing from the scenario described above it can be concluded that interaction can 

increase the ability of people to become aware of each other. In addition, awareness can 

lead to trusting relationships and trust can also be built among close friends who have 

developed shared understanding. In other words, there is a strong correlation between 

awareness and shared understanding i.e., if awareness increases, shared understanding is 

likely to increase (case of positive outcomes). However, if it is not known whether 

awareness can lead to shared understanding (given interaction), then awareness becomes 

conditionally independent (see Figure 4-3 (a)) of shared understanding (given interaction).
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Since it is necessary to construct accurate models, it is also important that the data used 

for training the network are reliable and that the model is stable and capable of predicting 

and reflecting real world situations. Further, since any measurement often has an element 

of imprecision associated with it, it is expected that probabilities of events obtained 

through measurement cannot always be precise.  In such cases reliance on approximation 

of probabilities is important. 

Even in circumstances where prior probability values are accurate, the number of prior 

probability values can grow exponentially, as new variables are added to the network. In 

general, the challenges that have prevented the wider use of BBN approach in many 

domains can be summarized as follows:

 Building BBN models requires a considerable knowledge engineering effort, in 

which the most difficult part is to obtain numerical parameters for the model and 

apply them in complex and ill-defined situations, which are the kinds of problems 

social scientists are attempting to address.

 Constructing a realistic and consistent graph often requires collaboration between 

knowledge engineers and subject matter experts, which in most cases is hard to 

establish. 

 Combining knowledge from various sources such as textbooks, reports, and 

statistical data to build models can be susceptible to gross statistical errors.  

 The process of eliciting conditional probability values for all possible nodes in a 

BBN is cumbersome. 
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 The structure of a BBN for a domain is the result of domain specifications. 

However, in situations where domain knowledge is not available or insufficient or 

inaccurate, the model’s outcomes are bound to be in error. 

 Data used for eliciting prior probabilities might have been drawn from 

subpopulations and might contain statistical errors which can render the BBN 

model invalid.

 Acquiring knowledge from subject matter experts can be subjective.

 Further, where an expert’s knowledge is used, a challenge lies in translating 

qualitative knowledge into quantitative values. 

4.6 Qualitative Bayesian network

The qualitative Bayesian network approach was introduced to address some of the 

difficulties in building models that mainly depend on quantitative data. Building BBN 

models from quantitative data presupposes that relationships among variables or concepts 

of interests are known and can be correlated, causally related or they can relate to each 

other independently. 

Wellman [1999b] introduced the qualitative abstraction of BBNs known as qualitative 

Bayesian networks (QBN) to help overcome some of the problems of building a 

quantitative BBN. Instead of numerical probability distributions, a QBN uses the concept 

of positive and negative influences between variables. It assumes an ordering relationship 

between the variables. For example, X has a positive (+) influence on Z, if choosing a 

high probability value of X produces higher probability values of Z. In a similar way a 
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negative influence between two variables is defined. Further, Druzdzell and Henrion 

[1993] proposed qualitative belief propagation as an efficient algorithm for reasoning in 

QBN. The algorithm builds on research into the studies of verbal protocols of human 

subjects solving problems involving uncertainty. In qualitative propagation each variable 

in a network is provided a sign either positive (+) or negative (-). The effect of an 

observation e on the n variables in a network propagates the sign throughout the network. 

The qualitative propagation algorithm is handy in situations where hard data are not 

available or are difficult to obtained [Druzdzell, 1996]. In other words, QBN can 

supplement or replace quantitative approaches for obtaining hard data.

Eliciting probabilities from experts has its own drawbacks, even in QBN approaches. It 

has been found that experts can exhibit problems such as overconfidence; probability 

estimates can be adjusted up and down based on an initial estimate (anchoring problem); 

there can be disagreement among experts;  high probability values are often assigned to 

easy to remember events (availability problem) [Morgan & Henrion, 1990]. All these 

issues can affect the quality of the probabilities elicited.  To help overcome these 

problems, in QBN researchers use simple probability distributions to initialize models. 

e.g., NOISY-OR and NOISY-AND distributions [Conati et at. 2002], and use numerical 

and verbal anchors [Renooij & Witteman, 1999; Van der Gaal, L. Renooij, S., Witteman, 

Alema & Taal, 1999;], and can deploy visualization tools available in many BBN 

authoring tools.
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The methodology described in this thesis uses both a qualitative and quantitative 

approach to eliciting knowledge from experts (i.e., structure and initial prior and 

conditional probabilities) based on the descriptions of the strength of the relationship 

among variables in a network [Daniel, Zapata-Rivera & McCalla, 2003].  This approach 

takes into account the number of states of a variable,  the number of immediate parents a 

child variable relates to, the degree of strength (e.g., strong, medium, weak) and the kind 

of relationship/influence (e.g., positive or negative) to produce initial prior and 

conditional probability values. Once an initial model is developed, scenarios grounded on 

empirical analysis are used to refine and document the network. 

In contrast to QBN methodology, which makes use of its own qualitative propagation 

algorithms, the methodology in the thesis uses standard Bayesian propagation algorithms, 

albeit on data that is more qualitative than it is quantitative. The methodology is 

described in detail in Chapter 5 with the help of an example of a model of social capital 

in virtual communities. Further, through inductive reasoning, the methodology enables us 

to refute, refine, or consolidate hypotheses and prior knowledge about a given situation 

under study, potentially filling in any missing information. In addition, the initial 

probabilities can be refined as data becomes available. 

4.7 Updating Bayesian models using scenarios

Constructing and updating a model of social capital in virtual learning communities is a 

complex task since there are numerous underlying variables that are not necessarily 

obvious. One way to facilitate model construction and updating is to develop scenarios 



- 75 -

illustrating various events, based on either directly obtained evidence or an expert’s 

knowledge. A scenario can generally be described as a set of written stories or synopsis 

of acts in stories built around carefully constructed events. 

In a scientific and technical sense a scenario describes a vision of the future state of a 

system. Such a description can be based on current assessment of the system, of the 

variables and assumptions, and the likely interaction between system variables in the 

progression from current conditions to a future state [Collion, 1989]. Scenarios provide 

simple, intuitive, examples based upon descriptions of the patterns of interactions 

between two or more variables of interest. They can be developed based on observation 

of interactions among people in a virtual community.

4.7.1 A scenario-based modeling approach

In this thesis, scenario-based modeling is essentially a set of procedures for describing 

specific sequences of behaviours within a model that illustrate actual interactions within a 

learning community. The goal is to understand and explain the interactions of variables or 

a set of events within a model and how these might possibly influence the direction of 

interaction patterns, and subsequently their influence on the level of social capital 

measured independently within that community. This means that a single scenario might 

describe a possible set of interactions as they occurred within a community, and when it 

is used for querying the model, possible alternative explanations are provided to describe 

the current and future behaviours of a model.
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When several scenarios are used together to describe possible outcomes of events within 

a model, they can exceed the power of predictions based on a single hypothesis or a set of 

propositions drawn from a single data set. While a hypothesis normally refers to a set of 

unproven ideas, beliefs, and arguments, a scenario can describe proven states of events, 

which can be used to understand future changes within a model. 

Further, the outcomes of the events might be used to generate a set of hypotheses. These 

hypotheses can then be used to understand a specific situation within the model. 

Moreover, the results of a scenario and hypothesis can be combined to further refine the 

consistency and accuracy of a model. However, for a scenario-based approach to be 

useful the scenarios created within any particular evidence or data sets must be plausible 

and internally consistent. Scenarios in Bayesian modeling of social capital provide 

alternative explanations to the effects of particular changes in variables and their effects 

on a particular community. 

The use of a scenario-based approach to query a model also offers a common vocabulary 

and an effective basis for communicating complex and sometimes paradoxical conditions. 

In the context of this research, this scenario-based querying provides an opportunity for 

incorporating strategies from qualitative perspectives and to avoid potential for sharp 

discontinuities that most quantitative approaches encounter. In addition, a scenario-based 

approach is also likely to be useful in this research because of the three studies you 

mentioned in Chapter 3, which gave insights into actual interactions in real virtual 

communities.  
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4.8 Chapter summary

This chapter presented and discussed Bayesian belief networks as an approach for 

building computational models. Bayesian networks are models for representing 

uncertainty in our knowledge.  Uncertainty arises in a variety of situations such as 

uncertainty inherent in the domain being modelled, uncertainty in the experts concerning 

their own knowledge, uncertainty in the knowledge engineer trying to translate the 

knowledge, and just plain uncertainty as to the accuracy and actual availability of 

knowledge within a domain. 

A Bayesian belief network uses probability theory to manage uncertainty by explicitly 

representing the conditional dependencies between the different knowledge components. 

This provides an intuitive graphical visualization of the knowledge including the 

interactions among the various sources of uncertainty. A Bayesian model uses Bayesian 

statistical rules to calculate conditional dependencies among the variables in the network. 

This allows probabilistically sound propagation of evidence through the network that can 

be used for making inferences of various sorts about the implications and effects of 

various actions and events on the model.



- 78 -

Chapter 5

5.0 A Bayesian Belief Network Model of 
Social Capital in Virtual Communities 

5.1 Overview

This chapter presents a Bayesian belief network computational model of social capital 

(SC). The construction of the model was informed by a synthesis of the literature on 

social capital as described in Chapter 2, and results of the empirical exploration of social 

capital variables and issues presented in Chapter 3. The computational model presented 

here is a reasoning tool, meant to help researchers and practitioners concerned with social 

issues in virtual communities to understand fundamental variables that constitute SC and 

how they influence one another. The model also is intended to provide them with a basis

from which they have the opportunity to explore how to support productive social 

interactions critical to knowledge sharing and learning in online learning environments. 

5.2 Modelling social capital in virtual communities

Current research on social capital suggests that there is no single variable constituting 

social capital, but rather, social capital is a composite of different variables, each of 

which can be interpreted independently [Daniel, McCalla & Schwier, 2005]. In this thesis, 

social capital in virtual communities is defined as a common social resource that 
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facilitates information exchange, knowledge sharing, and knowledge construction 

through continuous interaction, built on trust, shared understanding and various forms of 

awareness. Table 5-1 describes and defines various variables of social capital and their 

associated Bayesian states. The variables were extracted from the three experiments 

described in Chapter 3 and are extension of the table 4-1 presented in Chapter 4. These 

variables are considered relevant within the context of virtual communities

As described earlier, the second step in building a model of SC is to map the identified 

variables in the first step into a graphical structure that captures the influences of the 

variables on one another. The basis for developing the logical relationships of the 

variables and their relevent influences can be extracted from current research into social 

capital and our work on social capital in virtual communities as discussed in Chapter 3.  

For instance, in virtual learning communities people’s attitudes can strongly influence the 

level of their awareness of various issues, which in turn can influence trust. Further, since 

awareness can contribute to both trust and distrust, the strength of the relationships can be 

medium positive, medium weak, etc. depending on the kind of awareness. Further, from a 

domain’s expert’s point of view and synthesis of the literature described in Chapter 2,  

demographic awareness has a positive and medium effect on trust meaning that it is more 

likely that people will trust others regardless of their demographic backgrounds. 
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Table 5-1.  Social capital variables and their definitions

Variable Name Variable Definition Variable States

Interaction A mutual or reciprocal action between two or more agents 
determined by the number of messages sent and received 

Positive/Negative

Attitudes Individuals' general perception about each other and others' 
actions within a particular community

Positive/Negative 

Shared 
Understanding

A mutual agreement/consensus between two or more agents 
about the meaning of an object or idea 

High/Low

Awareness Knowledge of people, tasks, or environment and or all of the 
above 

Present/Absent

Demographic 
Awareness

Knowledge of an individual: country of origin, language, gender, 
age, and location 

Present/Absent

Professional 
Awareness

Knowledge of people’s background training, affiliation etc. Present/Absent

Competence 
Awareness

Knowledge about an individual’s capabilities, competencies, and 
skills within their domain of training

Present/Absent

Capability 
Awareness

Knowledge of people’s competences and skills in regards to 
performing a particular task 

Present/Absent

Social protocols The mutually agreed upon, acceptable and unacceptable ways of 
behaviour in a community

Present/Absent

Trust The level of certainty or confidence with which an agent 
assesses the action of another agent.

High/Low

This type of qualitative reasoning results in the BBN model shown in Figure 5-1. In the 

model, those nodes that contribute to higher nodes align themselves in "child-to-parent" 

relationships. For example, trust is the child of shared understanding and four forms of 

awareness and social protocols, which are in turn children of community type, interaction 

and attitudes.
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Figure 5-1. A complete model of social capital in virtual communities

The Bayesian belief network graph shown in Figure 5-1 applies to all forms of virtual 

communities (VLCs and DCoPs) described in the thesis. The graph topology is limited to 

the definitions of the various variables of social capital and the reasoning involved in 

conceptualising social capital within the contexts described. As suggested before, the 

third stage of modelling with a BBN is to obtain initial probability values to populate the 

network. Initial probabilities can be obtained from various sources including the author’s 

expert knowledge of virtual communities (drawn in part from the three studies in Chapter 

3) and current research on social capital (see Chapter 2). 
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5.2.1 Conditional probability tables

In a Bayesian model every node has a conditional probability table (CPT) associated with 

it. Conditional probabilities represent likelihoods based on prior information or past 

experience. In other words, for each parent variable and each possible state of that parent 

variable, there is a row in the CPT that describes the likelihood that the child node will be 

in some state. In a Bayesian network, every stage of situation assessment requires 

assigning initial probabilities to the hypotheses. These initial probabilities are normally 

obtained from knowledge of the prevailing situation. However, converting a state of 

knowledge to probability assignment is a problem that lies at the heart of Bayesian 

probability theory.

In addition, the number of probability distributions required to populate a CPT in any 

given Bayesian network grows exponentially with the number of parent-nodes associated 

with that table. For instance, if a table is to be populated through knowledge elicited from 

a domain expert then the magnitude of the task forms a considerable cognitive barrier and 

can be a computationally hard problem. One way to simplify this complexity is to assign 

binary states to the variables in the model (see Table 5-1), although it is also possible that 

the variables in the model can have more than two states. Each probability value 

describes strength of relationships and the letters S (strong), M (medium), and W (weak) 

represent different degrees of influence among the variables in the model are [Daniel, 

Zapata-Rivera & McCalla, 2003]. The signs + and - represent positive and negative 

relationships among the variables. 
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For the SC model presented in the thesis, the conditional probability values were obtained 

by adding weights to the values of the variables depending on the number of parents and 

the strength of the relationship between particular parents and children. For example, 

Attitudes and Interaction have positive and strong (S+) relationships with Knowledge 

Awareness. In numerical terms, evidence of positive interactions and positive attitudes 

will produce a conditional probability value for Knowledge Awareness of 0.98 (where the 

threshold value for strong = 0.98). The weights were obtained by subtracting a base value 

(1 / number of states, 0.5 in this case) from the threshold value associated to the degree of 

influence and dividing the result by the number of parents (i.e. (0.98 - 0.5) / 2 = 0.48 / 2 = 

0.24), which follows from the fact that in the graph Knowledge Awareness is a child of 

both Interaction and Attitudes.

Table 5-2 shows the threshold values and weights used in this example. Using this 

approach, it is possible to generate conditional probability tables (CPTs) for each node 

(variable) regardless of the number of parents. These threshold values can later be 

adjusted based on expert opinion.   

Table 5-2. Threshold values and weights with two parents

Degree of influence Thresholds Weights

Strong 0.98 (0.98-0.5) / 2 = 0.48 / 2 = 0.24

Medium 0.8 (0.8-0.5) / 2 =0.3 / 2 = 0.15

Weak 0.6 (0.6-0.5) / 2 =0.1 / 2 = 0.05

This process often depends on how initial knowledge is elicited and what decisions are 

made to process the knowledge into initial probabilities. For instance, subject matter 

experts could be consulted to obtain the initial probabilities in this example, and then this 
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knowledge would be translated into the threshold weighted values as described in Table 

5-2 depending on the degree of influence among the variables (i.e. evidence coming from 

one of the parent’s states).  A decision about this degree of influence can also be obtained 

from the subject matter experts in a particular domain.  However, when experts define the 

degrees of influence for more than one of the parents’ states, adding weights could result 

in ties, which could generate an inconsistent CPT. In such cases, one could ask the expert 

which parent should be used, or has the highest degree of influence depending on the case 

under investigation. 

5.2.2 Example of computation of conditional probability values

As discussed earlier in this Chapter, various forms of awareness are critical to interaction 

that can stimulate positive SC in virtual communities. According to the structure of the 

BBN (see Figure 5-1), Task Knowledge Awareness is influenced by two parents: 

Interaction and Attitudes. 

Table 5-3. Conditional probability table for Task Knowledge Awareness given two parents

Attitudes Positive Negative
Interaction Positive Negative Positive Negative

TaskKnowledge
Awareness

High 0.98 0.74 0.74 0.5 

Low 0.02 0.26 0.26 0.5 

Combining the Bayesian laws of computation described in Chapter 4, the initial 

probabilities for task knowledge awareness given different states of interactions and 

attitudes can be calculated as follows: 
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 P (TaskKnowledgeAwareness= high | Attitudes= positive & Interaction= positive) 

= 0.5 + 0.24 + 0.24 = 0.98

 P(TaskKnowledgeAwareness= low| Attitudes= positive & Interaction= positive) = 

1 - 0.98 = 0.02

 P (TaskKnowledgeAwareness= high| Attitudes= positive & Interaction= negative) 

= 0.5 + 0.24 = 0.74 

 P (TaskKnowledgeAwareness= low | Attitudes=positive & Interaction= negative) 

= 1 - 0.74 = 0.26

 P (TaskKnowledgeAwareness= high | Attitudes= negative & Interaction= 

positive) = 0.5 + 0.24 = 0.74 

 P (TaskKnowledgeAwareness= low | Attitudes= negative & Interaction= positive) 

= 1 - 0.74 =0.26

 P (TaskKnowledgeAwareness= high | Attitudes= negative & Interaction= 

negative) = 0.5

 P (TaskKnowledgeAwareness= low |Attitudes= negative & Interaction= 

negative)=1-0.5=0.5

Experts could be asked for a threshold value or one could provide experts several 

possibilities and let them decide for a relevant threshold. Since the expert has not 

provided any information about what to do when there is evidence of Attitudes = negative 

and Interaction = negative, a value of 0.5 has been arbitrarily assigned. This is largely 

hypothetical in any event, especially in virtual communities, in that interaction is 

prerequisite for the existence of a community. 
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However, one expects to get a high conditional probability value of 

TaskKnowledgeAwareness = negative when Attitudes = negative and Interaction = 

negative, so a possible alternative for the last column would be to use P 

(TaskKnowledgeAwareness = positive | Attitudes = negative & Interaction = negative) = 

0.02 and P (TaskKnowledgeAwareness = negative | Attitudes = negative & Interaction = 

negative) = 0.98 assuming that a positive strong relationship also occurs when Attitudes = 

negative and Interaction = negative.  Table 5-4 shows this possible conditional 

probability table.

Table 5-4. Conditional probability table of a variable with two parents with positive strong 
relationships

Attitudes Positive Negative

Interaction Positive Negative Positive Negative

TaskKnowledge
Awareness

High 0.98 0.74 0.74 0.02

Low 0.02 0.26 0.26 0.98

5.2.3 Case scenarios and model updating

In this section, a number of scenarios are described based on an expert’s opinion and 

knowledge of the operations of virtual communities. The case scenarios described in the 

next sections were taken from real communities which were similar to those described in 

Chapter 3, in which the author was a participant observer for a period of two years. 

However, the description of the communities is not based on formal experimental study, 

but rather the scenarios are shown here to illustrate the process of updating an initial 
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Bayesian model using various kinds of evidence. It is likely that the results of the model 

predictions could change in the face of further empirical evidence. Although, the 

scenarios presented in this chapter are not empirically documented, the scenarios 

themselves demonstrate real social phenomena in virtual communities and were actual 

situations observed within each case study.

5.2.3.1 Case 1: A formal learning community

Community A was a formal virtual learning community of graduate students learning 

fundamental concepts and philosophies of E-Learning. The members of this community 

were drawn from diverse cultural backgrounds and different professional training. In 

particular, participants were practising teachers teaching in different domains at 

secondary and primary school levels. Some individuals in the community had extensive 

experiences with educational technologies, while others were novices but had extensive 

experience in classroom pedagogy. These individuals were not exposed to each other 

before and thus were not aware of each other's talents and experiences. 

Since the community was a formal one, there was a formalized discourse structure and 

the social protocols for interactions were explained to participants in advance. The special 

protocols required various forms of interaction including posting messages, critiquing 

others, providing feedback to others’ postings, asking for clarifications etc. As the 

interactions progressed in this community, intense disagreements were observed in the 

community. Individuals began to disagree more on the issues under discussion and there 

was little shared understanding among the participants in most of the discourse.
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5.2.3.2 Case 2: A Distributed community of practice

Community B was a distributed community of practice for software engineers who 

gathered to discuss issues around software development. The main goals of the 

community were to facilitate exchange of information, and to provide knowledge and 

peer-support to the members of the community. Members of this community shared 

common concerns. Skill level varied widely: some members were highly experienced 

software developers and others were novices. Participants were drawn from all over the 

world (Europe, North America, and Africa) and were affiliated with different 

organisations, including researchers at universities and software organisations and 

various support groups. 

After a three-month period of interaction, individuals were exposed to each other long 

enough to start exchanging personal information among themselves. It was also observed 

that individuals offered a lot of help to each other throughout their interactions. Though 

no formal social protocols were explained to the participants, members interacted as if 

there were social protocols guiding their interactions. Further, there were no visible roles 

of community leaders. 

5.2.3.3 Case 3: An informal virtual community

Community C consisted of a group of individuals learning fundamentals of programming 

in Java. It was an open community whose members were geographically distributed and 

had diverse demographic backgrounds and professional cultures. They did not personally 

know each other; they used different aliases from time to time while interacting in the 
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community. Diverse programming experiences, skills and knowledge were also observed 

among the participants. It was interesting to observe that though these individuals did not 

know each other in advance, they were willing to offer help and to support each other in 

learning Java. Though there were no formal social protocols of interaction, individuals 

interacted as if there were clear set social protocols to be followed in the community. 

5.2.4 Procedures for model updating

In order to test and update the initial Bayesian model of SC, each of the above case 

scenarios was analysed looking for evidence regarding the impact of individual variables 

in the model. Once a piece of evidence was added to the model, typically through 

tweaking a state of a variable (i.e. observing a particular state of a variable) or a process 

commonly known as variable initialisation, the model was updated and the results 

propagated to the rest of the variables in the Bayesian model. This process generates a set 

of new marginal probabilities for the variables in the model. In the three case scenarios, 

the goal was to observe changes in probability values for trust and social capital. 

This phase of a model development helps experts to further examine the model and refine 

it based on their knowledge of the domain and the accuracy of predictions made by the 

model when compared to what actually seems to have occurred in the scenario. The 

Bayesian model therefore serves as an interactive tool that enables experts to create a 

probabilistic model, simulate scenarios and reflect on the results of the predictions.
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5.2.4.1 Community A: Scenario one

Community A is a virtual learning community (Community Type = VLC.) Based on the 

case description Shared Understanding is set to low = (0.09) and Professional Knowledge

Awareness is set to does not exist = (0.09). Individuals in this community are familiar 

with their geographical diversity and so Demographic Cultural Awareness is set to exists 

(= 0.8). There are well-established formal social protocols set previously by the 

instructor, Social Protocols were therefore set to known = (0.7). Figure 5-2 shows the 

Bayesian model after the evidence from community A has been added (shaded nodes) 

and the results of the posterior probabilities.

Figure 5-2. A Bayesian model of SC updated with evidence from community A

The highest level of trust (P (Trust=high) =0.737) and a corresponding probability level 

of SC (P (SC=high) =0.637) are predicted. These values are relatively low. Several 

explanations can be provided for the drop in the levels of SC and trust. First, there was a 
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negative interaction in the community and lack of shared understanding in the 

community. The lack of shared understanding possibly affected the level of trust and 

subsequently social capital. It is also possible that negative interactions and attitudes 

further affected the levels of task knowledge awareness and individual capability 

awareness. It could also be inferred that experiences of more knowledgeable individuals 

in the community were more likely to have been ignored, making individuals less co-

operative, since there competence and skills were not observed. 

5.2.4.2 Community B: Scenario two

The variables observed in this case include: Community Type, which has been set to 

community of practice (DCoP) (P=1.00); and Professional Awareness, which was set to 

the state exists(P=1.00), since after interaction, it was observed that individuals in that 

community became aware of their individual talents and skills. Individual Capability 

Awareness and Task Knowledge Awareness were set to exists states (P=1.00) and 

(P=1.00) respectively. Individuals in this community shared common concerns and frame 

of reference, and so Shared Understanding was set to high(P=1.00). Figure 5-3 shows the 

Bayesian model after the evidence from community B has been added (shaded nodes) and 

propagated through the model. 
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Figure 5-3. A Bayesian model of SC updated with evidence from community B

Propagating this set of evidence, high levels of trust and SC (P (Trust=high) =0.93 and P 

(SC=high) =0.64) were observed. Given the evidence, it was also observed that 

Interaction and Attitudes in the model were positive which have positively influenced 

Demographic Cultural Awareness and Social Protocols. Along with the presence of 

Shared Understanding the high degrees of different kinds of awareness and knowledge of 

social protocols in this community have resulted in high levels of trust and SC.

In spite of the evidence, Demographic Cultural Awareness has little influence on the level 

of trust in this kind of a community and subsequently, it has not significantly affected SC. 

This can be explained by the fact that professionals in most cases are likely to cherish 

their professional identity more than their demographic backgrounds. This is in line with 

a previous study, which suggested most people in distributed communities of practice 
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mainly build and maintain social relations based on common concerns other than 

geographical distribution [Daniel, O’Brien & Sarkar, 2003]. 

5.2.5 Community C: Scenario three

The variables extracted from this case scenario include Community Type (VLC), Shared 

Understanding, Professional Cultural Awareness, Demographic Cultural Awareness, 

individual Capability Awareness and Task Awareness,  all set to exists and each with 

probability values of  (P=1.00). Figure 5-4 shows the Bayesian model after the evidence 

from community C has been added (shaded nodes) and propagated through the model. 

Figure 5-4. A Bayesian model of SC with added evidence from community C
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In community C, high levels of trust and SC (P (Trust=high) =0.921 and P (SC=high) 

=0.766) were observed after the propagation of the evidence. These high levels of trust 

and SC can be attributed to the fact that the community was based on an explicit and 

focused domain. Though members might conceal their identities, they were willing to 

positively interact and participate in order to learn the domain. Further, increase in the 

levels of trust and social capital can also be attributed to the presence of shared 

understanding. In other words, people in that community got along well and understood 

each other well enough. They used the same frame of reference and the common goals of 

learning in a domain (Java programming language). 

5.3 Chapter summary

Bayesian belief network modeling can model a situation involving uncertainty. In the 

social sciences and humanities and in many other fields, uncertainty may arise due to 

complexity, imprecision, domain knowledge gaps, or volatility of knowledge. 

Overall model predictions suggest that different forms of awareness and shared 

understanding and trust can have significant influence on the level of social capital in a 

virtual community. Although the scenarios presented in this Chapter are inadequate to

draw comprehensive final conclusions about causal links between these variables, and an 

overall level of social capital in a virtual community, the predictions provide a starting 

point for understanding social capital in virtual communities. These variables are verified 

in empirical work presented in Chapter 6. 
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Chapter 6

6.0 Empirical Verification of the Model

6.1 Overview

The last step of model development is to conduct model validation. Validation is often 

carried out to determine whether the model is theoretically and practically useful. 

Validation is done through sensitivity analysis. In this Chapter an empirical study is 

described conducted to validate the model and further explore some of the issues raised 

by the model predictions. 

6.2 Introduction

Model validation involves the evaluation of the accuracy of a computational prediction 

with respect to experimental data [Hemez & Doebling 2003]. Building a computational 

model is always an iterative process. The process of validation is intended to remove 

barriers and objections to the usefulness of model. Validation is meant to establish an 

argument that the model produces sound insights and sound data based on a wide range 

of tests and criteria that “stands in” for comparing model results to data from empirical 

work. Unlike other mathematical models, for which there are well-established procedures 

for model validation, no such guidelines exist for modeling social systems.

In building computational models of social systems using Bayesian belief networks, two 

approaches can be used: data-driven model building, normally involving building models 
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grounded in empirical data; and knowledge-driven modeling, involving building models 

from knowledge often elicited from experts. In the latter case, validation requires 

empirical data that are used to validate the expert’s claims embedded in the initial 

computational model and then to make necessary model revisions. 

Knowledge-driven Bayesian computational models are descriptive and exploratory in 

nature. They are intended to describe a social phenomenon and to explore issues or 

hypotheses that can be used to further investigate the model and tune it over time to 

practical scenarios. What is presented in this research is a knowledge-driven model meant 

to uncover the most critical variables of social capital and the underlying issues that can

be further investigated. 

One major task of the validation process is to establish conceptual validity through 

sensitivity analysis. Conceptual model validation is established by determining that the 

assumptions underlying the conceptual model are appropriate. Such validation assures 

that model’s representation of the problem and the model’s structure, logic, and 

mathematical and causal relationships are “reasonable” for the intended purpose of the 

model. 

6.3 Sensitivity analysis (SA)

Sensitivity analysis is a mathematical technique for investigating the effects of 

inaccuracies in the parameters of a mathematical model. It analyses how variation in the 

output of a model (numerical or otherwise) can be apportioned qualitatively or 
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quantitatively to different sources of data [Morgan & Henrion, 1990]. The process of 

conducting sensitivity analysis includes: 

 defining the model with all its input and output variables;

  assigning probability density functions to each input parameter;

 generating an input matrix through an appropriate random sampling method 

and evaluating the output; and,

 assessing the influences or relative importance of each input parameters on 

the output variable.

In a Bayesian network, sensitivity analysis helps to determine the spread of probability 

distribution of a particular variable and how it influences other variables. In other words, 

sensitivity analysis is conducted to know how sensitive a variable’s value is to the other 

variables in the model. If it is very sensitive, we may want to know the state of that 

variable, and then invest more effort in determining the values of all the variables that 

substantially influences it. 

There are many ways of conducting sensitivity analysis; the ones commonly used in 

Bayesian models are variance and entropy reduction. This thesis employs entropy 

reduction, since entropy reduction will help in determining those variables that are highly 

sensitive to social capital. 
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6.3.1 The notion of entropy 

Entropy is a mathematical concept used to measure changes in density of a natural or 

social phenomenon. It is a term widely applied in thermodynamics, physics, chemistry etc. 

From a statistical perspective, entropy is a measure of uncertainty of a particular event 

associated with a probability distribution of a possible event (see information theory 

entropy or Shannon Entropy for further discussion of entropy as describe in 

[http://mtm.ufsc.br/~taneja/book/node1.html]). 

The notion of entropy and how it works is best illustrated with a simple scenario from 

probability theory. Consider a box containing many colored balls from which we are 

considering drawing balls. If no single color predominates in the box, then our 

uncertainty about the color of the ball to be drawn is maximal and the entropy is high. On 

the other hand, if the box contains black colored balls more than other colors, then there 

is more certainty about the color of a drawn ball, and the entropy is lower. Intuitively, the 

second case would be preferable, because it is possible to place bets on black and win. In 

fact, in the extreme in which every ball is black, the entropy would be zero, and we 

would win every time.

In this scenario, entropy measures the average amount of information associated with a 

drawing a ball from the box of balls. Essentially, in the third case, the color of the ball is 

a certainty, and there is no information conveyed by knowing the color of a drawn ball. In 

the first case, knowing the color of previously drawn balls tells a gambler a lot about how 

to place a bet. 
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In mathematics, entropy can be expressed as a discrete random variable X which consists 

of several events x, which occur with probability P (x) the entropy of an event X is given 

by H(X). There are two basic ways in which entropy can change:

 If the total number of events in X increases, the entropy of X will increase. This is 

because entropy is defined as a summation of the values given by a function based 

on the probabilities of X.  

 If the distribution of X becomes more uniform, entropy will also increase, since 

any change toward equalization of the probabilities increases H.

6.3.2 Conditional entropy

A more complex idea is the concept of conditional entropy. The conditional entropy 

H (Y|X) measures how much entropy of a random variable Y is remaining if we have 

already learned the value of a second random variable say X. An easier way to explain 

conditional entropy is to first understand joint entropy. Joint entropy determines how 

much entropy is contained in a joint system of two random variables (X, Y). Conditional 

entropy can be expressed as: H (X|Y) =H (X)-H(Y) i.e. given a random variable X, the 

entropy H(X) describes an uncertainty about the value of X. If X consists of several 

events x….xn, in which each variable occurs with probability px, then the entropy of X is 

given by:
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Moreover, given two discrete random variables X with support and Y with support , 

the conditional entropy of Y given X is defined as:

From this definition and Bayes' theorem, a chain rule for conditional entropy is given by:

.

This also implies that:

Intuitively, this suggest that if we learn the value of X, we have gained H(X) bits of 

information, and the system has H(Y | X) bits remaining. H(Y | X) = 0 if and only if the 
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value of Y is completely determined by the value of X. Conversely, H(Y | X) = H(Y) if 

and only if Y and X are independent random variables.

A sensitivity analysis of each variable to social capital and social capital to itself was

conducted using Netica software [http://www.norsy.com]. The goal was to measure the 

degree to which findings at the Social Capital node can influence findings at another node, 

given a set of evidence (scenarios). The results of the sensitivity analysis are presented in 

the form of mutual information (entropy reduction) and the expected reduction of real 

variance (Figure 6-1 provides a summary of the probability distribution of the variables 

measured). A full report of this analysis is provided in appendix A.
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Figure 6-1. Summary of sensitivity analysis of individual variables

The results of the sensitivity analysis reveal that the variables with a weak degree of 

influence on social capital showed low entropy reduction values. Meanwhile, those with 
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relatively strong and medium degrees of influence show high entropy reduction values 

(see figure 6-1). For instance, Interaction, Attitude, Trust, Capability Awareness and Task 

Awareness are relatively sensitive to social capital compared to Professional Awareness, 

Demographic Awareness, Social Protocols and Shared Understanding. 

In general terms, however, the sensitivity analysis of the model suggests that social 

capital is sensitive to a number of variables and even more so to variables that are in 

strong paths (strong positive paths in the model—see Figure 5-1). The results of the 

sensitivity analysis show at least three relatively high levels of entropy reduction for three 

of five variables: Interaction and Attitudes with the same entropy reduction of (0.1533), 

Capability Awareness with entropy reduction of (0.1494), Shared Understanding at 

(0.1112) and Trust at (0.1175). 

Thus, higher values of entropy reduction tend to correspond to variables in strong paths 

which generally suggests that the qualitative reasoning used for deriving the initial 

probabilities presented in the model are reasonable. The results of the sensitivity analysis 

also seem to suggest that different variables can affect social capital at different levels; 

however, at this point it is not possible to speculate further on the results since more 

studies are required to determine more about the actual effects of individual variables on 

social capital.

Nonetheless, the results of the sensitivity analysis can be used to improve the model by 

changing the threshold probabilities in Table 5-2. Further, drawing from the results it is 
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possible that the individual variations in probability values could be caused by the partial 

knowledge of domain experts initially used for building the model as well as assumptions 

made during the development of the model, both of which are common problems inherent 

in the development of any Bayesian model. 

6.4 Survey Research

As shown in Chapter 5, variables such as Trust, Capability Awareness and Task 

Awareness were observed to be relatively sensitive to social capital compared to 

Professional Awareness, Demographic Awareness, Social Protocols and Shared 

Understanding. The results of the model predictions and the sensitivity analysis let into a 

design of a follow up survey study.

In addition to the model predictions and the results of the sensitivity analysis, other issues 

independent of the fundamental variables of social capital were also explored in the 

survey study; these include participants’ sense of community in an online environment 

which seemed to play a critical role to further our understanding of the operation of social 

capital in virtual communities. The main questions pursued in the study were:

1. What are participants’ experiences and perceptions about sense of community in 

an online learning environment?

2. Are the model’s predictions similar to participants’ experiences in virtual 

communities?
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6.4.1 Experimental set-up and procedures

A survey instrument with 30 items (see appendix D) was administered to nine graduate 

students (n=9), who have participated in a six credit graduate course on theory and 

philosophy of educational technology. The sample was randomly chosen from the 

population of 15 students who had taken the class. All participants were enrolled in a six 

credit graduate theory course during the year 2004-2005. 

The survey questionnaire was divided into three parts.  Part 1 sought to find out the 

backgrounds of the participants; the goal was to understand their demographic 

information.  Part 2 explored participants’ interaction patterns and whether or not they 

formed any kind of social networking or sense of community. The indicators meant to 

solicit the sense of a community within the group were based on the original instrument 

developed by Chavis [1986]. The third part of the instrument was to explore further the 

prevalence of the social capital predicted by the model discussed in Chapter 5.

6.4.2 Sense of community index

A sense of a community emerges when people interact in a cohesive manner, continually 

reflecting upon the work of the group while respecting the differences individual 

members bring to the group [Graves, 1992]. It is a result of interaction and deliberation 

among members of a community brought together by similar interests and common goals 

[Westheimer and Kahne, 1993]. Rovai [2002] has extended the notion of the sense of 
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community to online learning environments. He suggests that a virtual classroom has the 

potential of building and sustaining the sense of a community. 

The literature suggests that a consensus definition of the concept of “sense of 

community” is lacking, and this is attributed to the fact that a sense of a community can 

be context dependent and unique to each community [Sarason, 1986]. McMillan and 

Chavis [1986], however, define sense of community as a feeling that members have of 

belonging, a feeling that members matter to one another and to the group, and a shared 

understanding among the members and that their needs will be met through their 

commitment to be together. 

McMillan and Chavis [1986] have developed the sense of a community index around an 

individual’s feelings of membership, identity, belonging, and attachment with a group.  

Their descriptive framework of sense of a community has been widely accepted because 

of its theoretical base and its qualitative empirical support. This framework has four 

dimensions: 

 Feelings of membership:  feelings of belonging to, and identifying with, the 

community.

 Feelings of influence:  feelings of having influence on, and being influenced 

by, the community.

 Integration and fulfillment of needs:  feelings of being supported by others 

in the community while also supporting them.
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 Shared emotional connection:  feelings of relationships, shared history, and 

a “spirit” of community and togetherness. 

The modified version of the sense of community index [in McMillan and Chavis [1986] 

is based on 11 dimensions to sense of community in an online environment, some 

expressed in terms of some of the variables of social capital presented in Chapter 5: 

 presence of a community-sense of community

 common identity-professional background 

 awareness-prior knowledge of people before joining the community

 participation-frequency of contribution to discourse

 sharing resources-frequency of sharing personal experiences and class 

related resources

 social network with individuals-establishing contacts outside class 

activities

 social protocols-presences of rules guiding interaction in the community

 help seeking behavior-sources of help

 shared values and goals-collective values and goals

 help-frequency of peer-support

 trust-trusting others based on several aspects, such as task, competence and 

abilities
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6.5 Results

6.5.1 Background of Participants
There was a 100% response rate to the survey. Of those who responded, 56% were 

female and 44% male. The majority of the participants [about 90%] mentioned English as 

their first language and 10 % indicated other languages. Although the majority of the 

participants identified themselves as teachers, with degrees in education, others have 

other degrees in different domains in the social sciences and humanities as well as natural 

sciences including Anthropology, Liberal Arts, Philosophy, Computer Science, and 

Genetic Biology. It was one of the program requirements that in order to enroll into the 

graduate program in educational and communications technology, one had to be either a 

trained teacher or to have had at least a degree in education. 

Diversity in training was observed in the wide range of participants’ occupations, 

including schoolteachers 56%, instructional designers 11% and others such as 

technology-co-coordinators, administrators, and private consultants 11%. Though a 

considerable diversity of professional affiliations was observed, most of the participants 

in the study shared common background training and there was no discernable difference 

between men and women in the sample.

6.5.2 Social networking

As discussed in chapter two, virtual communities are often comprised of people with 

shared identity or interests coming together for a shared purpose. This shared interest or 

intent offers a strong forum for members of the community to build relationships and 
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affiliations out of which they can socially network with each other, learn from one 

another and make an impact on their work or practice.

The nature of networking within a particular community is of fundamental importance 

when making judgments about the community and the extent to which people can engage 

in productive interaction and flourish within it. In virtual learning environments, when we 

think of individuals and their information seeking behaviours, it is quite natural that we 

think of physical media such as books, documents, web sites, databases, knowledge 

repositories and formal course content. However, in virtual learning environments, it is 

reasonable to suggest that a significant component of learners’ information and 

knowledge needs consist of the relationships they can tap for various kinds of information 

and knowledge from peers. 

Due to the complexity of information today, people have insufficient time to go through 

vast amounts of information to find a solution for solving a specific problem, and even 

when some are willing, they are often not well equipped or lack the time to conduct 

comprehensive searches. So people commonly turn to their peers for information and 

knowledge needs, with the hope they are given digested information to address their own 

information needs.

Improving the ways people can connect to each other to acquire useful information and 

knowledge is central to the notion of social capital in virtual communities. Social capital 

can help determine the advantage created by a person's location in a structure of 
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relationships. It explains how some people gain more success in a particular setting 

through their superior connections to other people.

The existence of social capital in virtual communities, as it is described in most studies of 

temporal communities, depends on the development of social relationships that are built 

on social connections (a social network) when those social connections are useful for 

acquiring information and knowledge. Connections are also potential sources of peer-

support in a community. Putnam [1993] defines “civic engagement” as participation in 

organized community activities such as bowling leagues and choirs. When looking at 

virtual communities, such groups can be equated to community activities organized 

around specific themes or topics which typically define social groups in cyberspace.

This thesis also has examined the extent to which participations were connected to each 

other through participation in the community, and the issues they engaged in discourse 

with others. When asked about their engagement in discourse, 56% regularly participated 

in discourse related to class materials and 44% were engaged in discourse not related to 

class material. 

In addition, when asked whether they participated in other social activities outside class, 

results show that individuals seldom engaged each other socially outside of class 

activities during the course and after its completion. Figure 6-2 summarizes participants’ 

extent and frequencies of personal connections with peers outside class activities.
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Figure 6-2. Extent of personal connection with peers outside class

Perhaps one of the reasons why individuals did not see the need to develop a strong social 

network outside class or after the completion of the course is due to the fact that most of 

them considered their community to be more of a professional one, as indicated by one of 

the participants:

"I would think it was an academic community and the reason I say that, and 

this ……it is because it developed within the parameters of ……. very much 

so…..When the class ended, there were a couple of us that attempted to 

continue the social aspect of it and it didn't happen. So I wouldn't call it a 

social community, certainly not. Professional in that I know that I can call on 

any one of those people again, but it would be sporadic and it would be only 

in times of need. So is that a social community? I don't think so. They would 

be people I could network with if I needed them professionally".
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"I felt it was an academic learning community. It functioned that way. I felt 

that it worked well and I had a chance to see it that way. So I saw it that way. 

I also saw it as a professional community but somewhat differently because I 

am new at it [SIC]. I also felt like I was professionally developing my 

understanding of what a virtual learning community is. So I was constantly 

sort of trying to figure out what is happening in this virtual ... what are we 

experiencing. And so, I know that there was a moment when communicating, 

where I remember you posted something about will this last a long time. And 

my response was "I don't think so." Not that I was saying that I don't care 

about people it's just that I don't ... I didn't come into this and I don't actually 

want it to feel that I have to stay in contact with all of these people because I 

didn't join the program to be friends with everyone for the rest of my life. 

There's a few that might last".

It was interesting to observe that most individuals mentioned that they did not often 

maintain any social connection outside of class, yet they felt a strong sense of a 

community among themselves built around professional purpose.

6.5.3 Sense of Community among the participants

Findings suggest that there was evidence of a strong sense of community among the 

participants indicated by the feeling of togetherness. The feeling of togetherness denotes 

recognition of membership in a community and the feeling of friendship among peers, 
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cohesion and bonding among participants as they work, collaborate and learn together as 

a community, and regularly participate in community social rituals (such as lunch 

together).

Figure 6-3. Participants feeling of togetherness in the community

The feeling of togetherness in the community enables participants to personally connect 

to each other, and to openly and respectfully challenge each other’s ideas without fear of 

negative sanctions and exclusion from the community. The feeling of togetherness in the 

group is an important indicator of community, and it is also an important element of a 

community identity.
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6.5.4 Common identity 

In virtual learning communities, community boundary is normally defined along common 

goals and social protocols. A shared interest, which can hold members of a virtual 

learning community together, can create a strong feeling of a common identity. Identity 

plays an inherent role in defining members’ participation in a community and it can affect 

how people network with each other and with whom they choose to exchange 

information and share knowledge. A community’s identity is largely formed by the 

community’s history or heritage including members’ shared goals and shared values 

[Barab & Duff, 2000].

A group identity can influence the way individuals contribute to their community. For 

example, effective communication can be enhanced, if one knows the identity of those 

with whom one is communicating. This can also foster trust and social capital of the 

community [Daniel, McCalla & Schwier, 2005]. 

A recent study has revealed that a stronger group identity can lead to a greater attribution 

of similarity when members are physically at a distance [Blanchard & Horan, 2000]. 

Consistent with this finding, results of the study presented here seem to suggest that 

shared group identity played a key role in shaping and fostering a sense of a community. 

Results revealed that 64% of the individuals mentioned that they felt strongly as a 

community, and 36% reported neutral feelings. They also revealed that group identity 

was primarily socially constructed around shared professional and learning goals rather 

than social aspects. As one participant indicated:
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“I think we have a common identity. I think we all had a focus in educational 

technology. We had common interests I suppose. We were all just working 

towards that. For me, I was just looking at interdependence here and 

mutuality stood out as well.

Identifying with a group whether virtual or not, implies interdependence, attachments, 

and to a greater extent, a feeling of togetherness. Such feelings can also be influenced by 

what people have in common. It is not uncommon to realize that as people interact or 

grow up with certain groups of people—they experience a feeling of togetherness and 

they are often more likely to identify with the group. In professional life, however, people 

are more inclined to identify with those with whom they share the same experiences or 

who are trained in the same profession. In other words, professionals often seem to 

associate more with those with whom they easily identify. It is also within those groups 

they can easily build trust and feel as if they are part of a community.

6.5.5 Shared Understanding 

Drawing on the results of our study, it is possible to conclude that people join 

communities when they share goals and values with others in the community. Similarity 

in backgrounds, interests and goals among participants enable them to share common 

experiences, swap stories and learn from each other as they interact as a community. 
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Participants were asked whether they believed most people in the community shared 

common goals and values. Findings showed that most of the participants believed they 

had common goals and shared values. Figures 6-4 and figure 6-5 summarize the results of 

the responses.

Figure 6-4. Shared goals

Figure 6-5. Shared values

Although there were shared goals and values within the group, participants also exhibited 

diversity and multiple perspectives during discourse on issues critical to their community, 

but they were willing to collaborate with other members of the community to achieve 
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common goals. Participants demonstrated multiple perspectives by sharing personal 

experiences. 

“There was certainly a common goal among the group. While we were in that 

community, we did diverge from the common goal and that was nice. We did 

so, but in an academic way, whether it was philosophy or a different 

epistemology or whatever it happened to be. There would be strands in the 

discussion that would take off into another academic area. I didn't ... there 

wasn't a lot of chitchat and when it was there I have to admit that I did not 

take part in it that much. So I guess from my point of view, it's ... I was trying 

to establish ..."We're here for a reason. Let's just get this done." But at the 

same time, I did go off on the tangents as well ... the academic tangent.”

It is also likely that when people share common goals and values, they develop a sense of 

trust, which is critical to the process of learning in virtual learning communities. Further, 

shared goals and values can enhance shared understanding.  Even though sharing 

experiences is critical to generating tacit knowledge, it is informal and typically voluntary, 

as discussed in Chapter 2. Individuals typically need to be highly motivated to share their 

personal life experiences and participate socially with others in the community.  
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6.5.6 Participation and social protocols

In virtual learning communities, effective participation requires the presence of either 

explicit or implicit social control mechanisms (social protocols of interaction). Social 

protocols provide a form of informal social control that obviates the necessity for more 

formal, institutionalized legal sanctions. Social norms are generally unwritten but 

commonly understood formulae for both determining what patterns of behaviour is 

expected in a given social context, and for defining what forms of behaviour are valued 

or socially approved. 

Typically, in virtual communities, social protocols are set by the moderator/instructor of 

the class in the case of formal virtual learning communities, and over time, vibrant 

learning communities shape social engagement protocols to meet the context and 

preferences of the participants.  Participants were asked whether they were aware of 

social protocols in the community and whether or not these were linked to any 

expectations. Approximately 67% of the participants indicated that they were aware of 

the presence of social protocols while 33% reported that they were not aware of any 

social protocols.  Participants also mentioned that there were clear expectations from the 

instructor about the content of the course 78%, while 22% felt there were either no clear 

expectations connected to participation or they were not sure. 

When inquiring about the presence of social protocols in the community, we were aware 

that people can respond differently to protocols or rules of engagement in a formal 

learning environment. Such reaction could possibly influence the way in which people 
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participate and respond to the question. Social protocols and how they had affected 

interactions in the community were explored. Approximately 45% reported that social 

protocols had influenced their participation in discourse to the community to a great 

extent, while 55% mentioned social protocols had little or no influence on their 

participation in the community. 

6.5.7 Peer-support and reciprocity

One of the most important binding factors for enhancing peer-to-peer support in a virtual 

community is reciprocity. Reciprocity connotes a mutual and shared interchange of 

favours or privileges, especially the exchange of information, knowledge and experiences 

among individuals. Rheingold [1993] has noted that in virtual communities, information 

is the primary commodity that is exchanged. Participants request information or ask 

questions and other members provide answers or information either directly to the group 

or in private correspondence. This is one of the factors that encourage individuals to join 

virtual communities.

In studying the thesis, reciprocity was assessed by asking participants about the frequency 

of sharing class-related resources among their peers. Approximately 56% indicated that 

they frequently shared resources with others in the community, while 44% mentioned 

they did not frequently share resources with their peers.  The participants in a virtual 

learning community can inform our understanding of the social connection and 

engagement. Approximately 78% mentioned the instructor of the class as the main source 

of help and support. While 11% sought help from their friends in the class and 11% 
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sought help from outside sources, including people who had previously taken the course. 

These results describe the nature of information and help seeking behaviours among the 

group, which also suggest their reciprocal relationships and peer-support. 

The act of peer-support in a virtual community can be treated as a reinforcement of 

members’ sense of belonging to a community and their duty to reciprocate in 

relationships with others. Hence, a community with high rates of reciprocity among its 

members suggests a high level of social networking, which is also an element of social 

capital [Putnam, 1993]. Since participation in communities is primarily voluntarily, it is 

expected that reciprocal relationships are not obligatory, as participants in this study 

suggest:

"If <name>helps me with something, he's not doing it because he wants 

something back, but the expectation is that if he's going to need help in the 

future, me or somebody else in the community is going to provide it."

"Well, participation in a community shouldn't have to force being in contact 

with people. It should just come naturally. It shouldn't be, "Oh, you know I 

haven't written to them in a few weeks. If this community is going to make it I 

have to write to people."

The kinds of reciprocal relationships described in the community presented in this study

are similar to generalized reciprocity, which is responsible for generating social capital 
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[Putnam, 2000]. In other words, reciprocity implies that the an individual provides a 

favour to others, or acts for the benefit of others at a personal cost, but in the general 

expectation that this kindness will be returned at some undefined time in the future in 

case of need. And so, in a community where reciprocity is strong, people care for each 

others' interests. 

6.5.8 Autonomy and social resilience 

When participation in a community is voluntary and people are free to participate 

whenever they can, there is a greater sense of autonomy within the community. Schwier 

[2001] defined autonomy as the ability of individual to have the capacity and authority to 

conduct discourse freely, or withdraw from discourse without penalty. An individual’s 

autonomy is a critical value that influences participation in a community.

“My main value in this community is autonomy in learning - I am in control 

of what I choose to learn. Others, even the instructor, have little control over

that autonomy. On the other hand, it is important for me to show respect

and caring towards everyone else in the community. This means valuing

difference”.

Autonomy implies that people can engage in discourse more freely and meaningfully. But 

it is also important to note that in formal virtual learning communities, where there are 

clear sets of expectations and goals to reach, social protocols, whether explicit or not, can 



- 121 -

guide individuals toward achieving goals and provide a context for amicable discourse. In 

some situations, high autonomy can encourage lurking. 

As discussed in Chapter 4, lurking without proper social protocols presents an interesting 

but often unresolved social problem. Lurking without social protocols occurs when 

members of a virtual community read messages but seldom engage in any reciprocal 

relationships or directly participate and contribute to the community. Some members do 

not consider themselves to be lurkers even though they grossly violate the social 

protocols or expectations of reciprocity in the community. 

Results showed instances where individuals proudly labeled themselves as lurkers, and 

announced to the group that they would not participate regularly. They treated their 

reluctance to participate actively as a personality characteristic, similar to being shy in 

large groups. But reticence in a virtual community creates an even stronger opportunity 

for the individual to become isolated. If members fail to participate in a virtual group, 

they essentially disappear from the community, but they sometimes leave a residue of 

concern or resentment about their silence.

In some virtual learning communities individuals’ interests are not easily aligned with 

community interests, and it can be complicated if there is a considerable diversity among 

members of the community. An effective way to promote a sense of community in the 

face of diversity is to inculcate in the community a sense of social resilience. We define 
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social resilience in a virtual learning community as an individual’s ability to adapt and 

readily adjust to changes brought about by being a member of a diverse group. 

In this study, diversity in knowledge and skills among participants in the community was 

viewed as a positive contribution to the knowledge base of the community and a potential 

conduit for high quality discourse and social networking. Participants in the study 

mentioned that the quality of discourse was enhanced because of the diverse range of 

issues that were addressed in the community. In most cases the issues seemed to have 

covered individuals’ interests and were all attributed to the diversity in members’ views.

In addition, participants stated that everybody was knowledgeable in some specific 

knowledge domains. Others felt that some people had more technical skills than others. 

There were also personal attributes which participants indicated were important in 

fostering a greater sense of community including:

 motivation to learn course material;

 demonstration of maturity and motive;

 openness to diverse views and expression of courtesy to peers;

 mutual respect and shared understanding;

 shared experiences and new observations and insights;

 freedom of discourse; 

 deep reflection about content and views learned from others;

 expression of personal views without fear of negative feedback from peers and 

instructor;
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 intellectual curiosity and firm goal orientation;

 diversity in individuals’ backgrounds;

 willingness to collaborate with peers;

 positive work ethic;

 willingness to freely engage in intellectual discourse with peers and openness to 

diversity;

 treating negative feedback as a reflective view for personal check-and-balance 

but not as personal failures or attacks;

 establishment of relaxed community rituals (e.g. common lunch) where each 

individual is treated as equal, one and a colleague;

 frequent face-to-face community meetings so that members can establish new 

rapport and maintain old one with others in the community;

 humour, organization, attentiveness and rigor in open discourse in the 

community.

6.5.9 Level of trust and awareness 

It seems there is some form of correlation between trust and awareness. As Devis [2003] 

puts it; “to trust someone, we need to know who we are dealing with, which means 

thinking back to how they behaved before” [p.18]. In virtual communities, trust is mainly 

dependent on different forms of awareness.  For example, awareness about the presence 

of individuals in the community, awareness of individuals’ demographic backgrounds, 

awareness of individuals’ capabilities and skills in performing specific tasks and 

awareness of personal or professional affiliations can all promote trust. 
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Participants were first assessed on their levels of awareness of other group members 

before joining the course. Results indicated that they had little prior awareness (56% 

suggested they knew nobody while 44% knew a few of the people in the class). In asking 

about prior awareness, we were aware of the fact that awareness takes a long time to 

develop. 

Awareness can develop as participants get to know each other by working and learning 

together and interacting socially. Results from the focus group also confirmed this line of 

thinking as one member commented:

"I think that's natural that in any environment in the beginning—you don't 

know that you're talking to or not quite sure what they're talking about. I 

think you just feel more comfortable as the year went on. I certainly did; 

anyway, especially in a different ... you know people would try to include me. 

The welcome video that everybody shot, that was really helpful."

In virtual communities, awareness can be linked to trust. However, as indicated earlier 

there are several kinds of awareness, which can differently influence trust [Daniel, 

McCalla & Schwier, 2005]. In previous work we concentrated on different kinds of 

knowledge and demographic awareness in influencing social capital. See Daniel, 

McCalla, and Schwier [2002] Daniel, McCalla, and Schwier [2005] and Daniel, Schwier, 
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and McCalla [2003] for a comprehensive discussion of different forms of knowledge and 

demographic awareness in virtual communities. 

6.5.10 Knowledge awareness

Discourse is the means to the formation of social relationships in any environment but

discourse in a virtual community is very different from face to face, in that participants 

are separated from one another physically and temporally, and so they significantly lack 

many pieces of information that are traditionally used in developing the social knowledge 

that forms the basis for social interaction in terrestrial communities. For example, it is 

sometimes difficult to know others’ gender, socioeconomic and cultural status, even 

though such knowledge can provide clues about that person’s identity and personality. 

In addition, facial expressions and body language provide valuable information about 

another’s immediate state of mind. Moreover, in a physical face-to-face encounter, 

another’s presence is self-evident, the comments they make are unambiguously theirs, 

and the identity they can project is somewhat constrained by these factors. In stark 

contrast to this, online people are physically separated and can have multiple identities. 

They can often see others without being seen themselves, and can, to some degree, take 

on personas with characteristics very different from their own, and be a different age, 

race, gender, sexuality, and so on. This makes it possible not only to experiment and be 

free from some conditions of one’s life, but it also frees people to do things that would 

incur social sanctions otherwise.
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For a productive discourse to take place in virtual communities and for social relations to 

form among individuals, it is necessary to foster knowledge awareness among the 

participants. Knowledge awareness is information about other learners' activities and 

knowledge—what individuals know (competence awareness) and what they can do 

(capability awareness). Knowledge awareness allows a better understanding of shared 

knowledge, since it provides information about the knowledge of the community.

Knowledge awareness can also breed trust in a community. Knowledge awareness is an 

important component of social capital in virtual communities [Daniel, McCalla & Schwier, 

2005] and it plays a major part in how the learning environment creates collaborative 

opportunities naturally and efficiently [Ogata & Yano, 2000]. In one of the questions, 

participants were asked about possible context(s) in which they could trust their peers in the 

community. Results revealed that people are more likely to trust others in the community 

based on various forms of awareness about those individuals (see Figure 6-6).
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Figure 6-6. Context based trust

Most of the participants reported that they can trust their peers when it comes to 

capabilities and the quality of intellectual discourse. Others based their level of trust on 

similarity of prior training and their knowledge of a domain; this is similar to professional 

awareness mentioned earlier in the thesis. 

Trusting people based on similarity of training is in line with studies that show that when 

people meet each other for the first time they develop mental models of each other and 

the content of their discussion [Norman, 1996]. Their opinions are influenced partly by 

such things as age, gender, physical appearance and the context of the meeting. Mental 

models tend to be developed very quickly but can be remarkably powerful and resistant 

to change, even when evidence suggests they are not completely correct [Wallace & 

Boylan, 2001]. So another feature of reduced social presence, particularly in low 

bandwidth environments, is that the ways people form impressions of each other is 
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different, and this can have positive or negative effects depending on the context. 

Conversely, there are times when not being able to see the person with whom you 

converse and knowing you may never meet them can be a positive feature of these 

environments, because people are encouraged to disclose more about themselves online 

[Lea, O'Shea, Fung, & Spears, 1992]. 

Furthermore, when people discover they have similar problems, opinions or experiences 

they may feel closer, more trusting and be prepared to reveal even more. We asked how 

likely individuals were willing to trust others based on their awareness of others’ 

demographic backgrounds. Little or no difference in their levels of trust was reported by 

participants.

In an attempt to understand whether trust in others can be based on similarity in 

profession, we asked to what extent individuals’ trust in others was based on their 

professional affiliation. The majority of participants indicated that their trust level based 

upon professional affiliation of others was neither great nor small. 

6.5.11 Overall level of trust at the end of the class

In any community, trust is the confidence and expectations that people will act in a 

consistent, honest and appropriate way. More accurately, trust entails that people are 

more reliable and trustworthy. Closely linked to the norms of reciprocity and networks of 

civic engagement [Putnam, 1993; Coleman, 1990], trust allows people to collaborate and 

to work together as a community.
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Trust is a dynamic phenomenon, one that evolves, mutates and regenerates. In other 

words, it seems under favorable conditions, people can develop trusting relationships 

with others and such relationships can be maintained or destroyed. In a situation where 

individuals are strangers, it often takes a longer period of time with favourable 

interactions to develop trust. At the same time continuous and negative interactions can 

help destroy one's trust on others. 

In general, in virtual communities where individuals are often strangers and interact 

anonymously with each other, the notion of trust is even more relevant but difficult to 

achieve. Further, it can be slow to develop, due to the absence of common social cues in 

virtual environments. Since trust is a fundamental determinant of social capital, 

participants were queried regarding their overall perception of the level of trust in the

community at the end of the class, and whether or not over the course of time the level of 

trust among people in the class had gotten better, worse, or stayed about the same. 

Results revealed that the level of trust was perceived to have remained almost the same 

from beginning to end. 

Several factors might have indirectly contributed to this including the nature of this 

community and individual differences, presence of social protocols, and professional 

backgrounds of the community members, common identity and shared values, different 

forms of awareness and the level of intellectual maturity among the members. Though 
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each of these factors can differently influence the overall level of trust in a community, 

their dominant prevalence can suggest an acceptable level of trust.

6.6 Discussion 

In a traditional classroom, learning communities can easily be visible to the instructor and 

students can easily make connections with peers due to the availability of rich visible 

social cues. Instructors can also easily nurture the sense of a community among students 

with little difficulty. In virtual learning communities however, where learners are often 

isolated from each other and the instructor, developing a sense of a community, though 

critical, can be difficult.

The sense of isolation among learners in online environments can be minimized if 

forethought is given to the development of the online milieu that can foster a sense of a 

community among learners. Results in this study reveal that trust and awareness are 

fundamental variables in promoting a sense of a community. These findings are in line 

with some of the model predictions based on the scenarios described in Chapter 5. In 

other words, for a sense of a community to fully develop, individuals need to trust each 

other and work together as a community. People trust each other when they know each 

other. Another factor is the durability of a social network in enhancing trust and 

awareness. In many situations, trust evolves over a period of time and with repeated 

interactions. Through interactions people establish history of interaction and reputation. 

People become aware of others, they get to know what others know and can do and 

subsequently, they can demonstrate they are trustworthy.
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In virtual learning communities, trust and awareness are critical to knowledge sharing. 

People share knowledge with those whom they know and feel is trustworthy, and who 

will not use their knowledge inappropriately, and who are willing to share with others in 

the future. Trust can also encourage knowledge sharing when people are aware that they 

share common goals and common values. 

When people do not share common goals and values, a sense of a community is not likely 

to develop, and the self-interest of high status people is likely to predominate. In other 

words, people who feel they possess more power are likely to use it inappropriately.  

In terms of knowledge sharing, especially tacit knowledge, if the recipient of knowledge 

is not aware or convinced that the source is competent and trustworthy, it is unlikely that 

knowledge from that particular individual will be accepted [Huber, 1991]. On the other 

hand, if the owner of the knowledge is not confident or does not trust the seeker of the 

knowledge to reciprocate in the near future, they may choose to hoard their valuable 

knowledge. Even sharing explicit knowledge, in this instance, depends on the willingness 

of the individual to use the technology and participate in the community. Further, in a 

virtual learning community a sense of a community can be sustained through the 

maintenance of proper social protocols, capable of enhancing reciprocal relationships. 
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6.7 Chapter summary 

This chapter has presented a sensitivity analysis of the Bayes net model of social capital 

presented in the last chapter.  It showed that social capital is sensitive to various 

constituent variables at different levels of analysis. The variance of various variables of 

the in this analysis is also dependent on the type of the virtual community in which 

analysis is carried out.

Chapter 6 has also presented a study that sheds further light on the model of social capital.  

This study surveyed students’ experiences and their sense of community in a virtual 

learning environment and explored key issues predicted by the model. In summary the 

following can be concluded from the results:

 Diversity in professional cultural affiliation was observed, though there were 

few differences in prior educational background among the participants.

 Participants exhibited a strong sense of community among participants based 

on shared identity and shared values.

 Participants demonstrated shared interests and shared understanding in the 

community.

 Participants were engaged in productive intellectual discourse with others 

and felt they were autonomous and fairly treated by others.

 Diversity in knowledge and skills was considered a positive characteristic of 

the community and stimulated continuity of discourse among members.

 The strong spirit of reciprocity among the participants suggested the presence 

of mutual interdependency, trust and shared understanding.
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 Though there was little social networking among individuals outside the 

formal settings, the pursuit of common goals and common identity helped 

clearly defined the boundary of the community.

 Trust and shared understanding encouraged individuals to freely share 

personal experiences and insights with others in the community.

 In line with the prediction of the model, the extent to which individuals 

trusted others based on demographic and linguistic backgrounds was not 

significant in this community.

 Participants reported that they increasingly trusted those who seemed to have 

more knowledge of the domain and were capable performing certain technical 

tasks.

 In this community participants indicated that they trusted those with whom 

they shared the same profession.

 The level of trust among participants in the community remained the same 

and this was perhaps attributed to the high level of various forms of awareness 

in the group.
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Chapter Seven

7.0 Thesis summary, contributions,

limitations and future research

7.1 Summary

Social capital is an evolving concept, one that includes constructs such as social networks, 

trust, reciprocity, shared understanding, and social protocols. The fundamental principle 

behind social capital—whether in terrestrial or virtual communities—is that value can be 

derived from social relationships and the extent to which people are embedded within 

social networks and communities can help to enhance the lives of others.

The motivation to explore social capital in virtual communities in the thesis was inspired 

by the belief that the notion of social capital holds great potential for understanding social 

and learning issues in virtual communities. Among other benefits, social capital enables 

individuals to collaborate and learn together as a community. Social capital can also act 

as a pipeline and a filter for processing and transmitting information and knowledge. 

Further, it seems higher and positive social capital can manifest itself in a virtual 

community of people who engage in reciprocal relationships, through sharing data, 

personal experiences and knowledge.
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While it is too soon to conclude that using the notion of social capital is an accurate 

analytical “paradigm” for addressing social and learning issues in virtual communities, it 

is fair to suggest that with the proliferation of social software applications, there is a 

growing interest about the importance of social relationships in virtual communities, 

social capital seems to be appropriate and can occupy a central position as an analytical 

paradigm in understanding social issues in many social software support tools for virtual 

communities. However, the real usefulness of social capital will depend on understanding 

precisely what constitutes social capital and how it operates in virtual communities and 

this thesis provide the first directions to achieve these goals.

7.2 Research contributions

A contribution of the research from the last five years of studies reported in this thesis has 

been the continued development and deployment of integrated methodologies to explore 

social capital and virtual communities with the goal of developing a computational model

of social capital. 

The conceptualization of social capital in virtual communities as a common social 

resource that facilitates information exchange, knowledge sharing, and knowledge 

construction through continuous interaction, built on trust and maintained through shared 

understanding represents an important theoretical departure from what constitutes social 

capital in terrestrial communities. This fresh conceptualization is useful for the discussion 

about and inquiry into social capital in virtual communities. In general there are two 
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major contributions of the thesis: (i) modeling social capital in virtual communities and 

(ii) deployment of coherent integrated methods for studying social capital.

7.2.1 Modelling social capital in virtual communities

The first contribution of this thesis is its detailed exploration of social capital in virtual 

communities and the identification of the key variables that constitute SC in virtual 

communities. However, we are only at the beginning of understanding how to model 

social capital using the proposed sets of approaches and so there is no claim made that the 

variables presented in the thesis represent a definitive set of variables for SC outside the 

communities studied in the thesis. 

7.2.2 Use of Bayesian belief network

Another contribution is the use of a Bayesian belief network for exploring and analyzing 

social capital within the contexts of virtual communities. The Bayesian belief network

methodology has an intentional component flowing from definition to analysis to 

prediction, so that the methods separately have some intuitive and practical appeal and 

they can contribute to the coherent nature of the studies throughout the whole process. 

Further, the use of various approaches presented in the thesis has provided important 

insights into analysis of the nature of social capital in virtual communities. For example, 

the review of the literature helped to identify the most critical variables of social capital. 

The use of content analysis determined the actual interaction patterns prevalent in virtual 

communities and the trends that showed variables of social capital. The employment of 

social network techniques enabled the visualization of the interaction and discourse 
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themes. Moreover, the research led to a Bayesian belief network capturing the influences 

between identified variables of social capital.  This BBN is the first model of social 

capital in virtual communities, and as such is a major contribution of this thesis.  

Although only the first attempt, the model seems plausible at least in general terms, as 

evidenced by sensitivity analysis and a study of members of a virtual learning community.  

7.3 Thesis limitations

Modelling a nebulous notion such as social capital can be challenging and the methods 

used can impose limitations. The Bayesian belief network approach applied in the thesis, 

although providing a novel way to understand how the various variables of SC can 

interact though the variables identified, can be replete with assumptions (about variables, 

values, influences, and conditional probabilities) that may undermine the model’s 

usefulness.  

The thesis has addressed two general challenges: conceptual and analytical. The 

conceptual challenge has to do with methods used for analyzing social capital. The 

analytical challenge deals with the development and use of computational techniques to 

build models of complex social phenomenon. In addressing these challenges the thesis 

provided a starting point for discourse and illustrated that much work still needs to be 

done to develop a deeper understanding of what constitutes social capital in virtual 

communities and how key variables interact with each other. And finally, we are now 

closer to having a predictive understanding of the dynamics of social capital in virtual 
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communities and how it can be supported.  The thesis has raised methodological, 

theoretical, and practical issues that can be addressed in future research.  

7.4 Future research directions

This thesis is the first to raise concerns about social capital and its application in virtual 

communities. Critical issues that need to be pursued by future research include an 

investigation of the relationships among the constituent variables of social capital in the 

computational model discussed in the thesis and how the model reacts to new authentic 

scenarios. Further, the results of the sensitivity analysis can be used to refine and improve 

the model.

The model presented in this thesis is a first step toward discussion of social capital in 

virtual communities.  Further testing of the model will require that theory development 

and measurement should be inextricably linked. One informs the other in an iterative 

process that balances pragmatism against the need for theoretically justifiable and useful 

questions. 

The development of the Bayesian framework presented in the thesis was largely 

motivated by the need to provide a sound theoretical foundation to make social capital a 

scientifically useful construct in the context of virtual communities and one in which 

solid, meaningful and precise measurements may be taken. Results from studies carried 

out in the thesis indicated that various forms of awareness, shared understanding, and 

social protocols are critical components of social capital in virtual communities. However, 
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there is need to conduct further experiments to explore how these variables relate to each 

other. For example, future research needs to investigate the link between social capital 

taken as a whole and how its constituent variables can affect its operation. One example 

is investigating empirically how adherence to social protocols can contribute to 

productive social relationships or how various forms of awareness in virtual communities 

can affect the amount of social capital. 

In addition, since the elicitation of the causal relationships of variables of social capital 

might be subjectively influenced by the knowledge of an expert, future research needs to 

be directed at distinguishing causation and correlation among social capital variables in 

the model. In other words, it is necessary to understand the process involved in building 

social capital in virtual communities, how it works and how to differentiate productive 

from unproductive social capital in a particular virtual community and for the benefit of 

the larger learning system. 

It is also possible that a stock of social capital can vary and differ between virtual 

community types. Therefore, future studies need to be directed at understanding why 

social capital is successful in some virtual communities and not in others, and to 

investigate the particular contextual issues critical to the success of social capital in these 

communities. For instance, studies can examine whether an individual’s characteristics in 

a virtual community such as knowledge competence, level of education, history of past 

interaction with others, common identity, and shared interests can help in increasing SC 

in virtual community.
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In current research writings, there is a growing confusion between social capital as input 

leading to better outcomes and social capital as an outcome. Further, the distinction 

between the value of social capital and community is blurred. What can be attributed as 

positive outcomes of community are sometimes referred to as social capital, resulting in 

conceptual confusion, and theoretical misrepresentation of the concept itself and how it 

can be used to achieve certain positive community outcomes, such as togetherness, 

collaboration, learning, civic engagement, and participation in community activities.

Similarly, different variables of social capital such as the levels of trust within a 

community may be critical for determining outcomes of social capital in a community. 

Further, social capital can be influenced by cultural or collective social protocols in a 

community. There are currently few studies directed at understanding these important 

issues.  However, the techniques explored in this thesis, and the model of social capital 

developed, should provide a framework in which these and other issues can at least be 

more successfully investigated than they could have been before this research was carried 

out.
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Appendices
Appendix A: View of initial probability values for the social capital 
model

Appendix A shows the probability distribution of the 11 variables of social capital in 

virtual communities, with evidence that social capital is high [values generated by a 

Hugin Bayesian Belief Simulator].



- 155 -

Appendix B: Results of the Sensitivity Analysis

Appendix B shows the spread of probabilities obtained from the sensitivity analysis. Each 

variable was examined with respect to social capital, including social capital to itself. 

Overall findings are reported in percentages and each sensitivity value is measured in 

terms of its entropy reduction value. 

Probability of new finding = 100 %, of all findings = 100 %.

Sensitivity of 'SocialCapital' to findings at 'SocialCapital':

Probability ranges:
Change

Min. Current Max. RMS.

High 0 0.5423 1 0.4982
Low 0 0.4577 1 0.4982

Entropy reduction = 0.9948 (100 %)
Belief Variance    = 0.2482 (100 %)

Sensitivity of 'SocialCapital' to findings at 'Interactions':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.3168      0.5423      0.7677      0.2255
Low 0.2323      0.4577      0.6832      0.2255

Entropy reduction = 0.1534 (15.4 %)
Belief Variance    = 0.05083 (20.5 %)

Sensitivity of 'SocialCapital' to findings at 'Attitudes':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.3169      0.5423  0.7676     0.2254
Low 0.2324      0.4577  0.6831     0.2254

Entropy reduction = 0.1533 (15.4 %)
Belief Variance    = 0.05079 (20.5 %)
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Sensitivity of 'SocialCapital' to findings at 'TaskKnowledgeAwareness':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.3162             0.5423      0.764 0.2239
Low 0.236      0.4577      0.6838      0.2239

Entropy reduction = 0.1511 (15.2 %)
Belief Variance    = 0.05012 (20.2 %)

Sensitivity of 'SocialCapital' to findings at 'IndCapabAwareness':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.3174     0.5423      0.7628      0.2227
Low 0.2372 0.4577      0.6826      0.2227

Entropy reduction = 0.1494 (15 %)
Belief Variance    = 0.04959 (20 %)

Sensitivity of 'SocialCapital' to findings at 'Trust':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.3148      0.5423      0.7158    0.1987
Low 0.2842      0.4577      0.6852     0.1987

Entropy reduction = 0.1175 (11.8 %)
Belief Variance    = 0.03948 (15.9 %)

Sensitivity of 'SocialCapital' to findings at 'SharedUndertanding':
Probability ranges:

Change
Min. Current Max. RMS.

High 0.315 0.5423      0.7069       0.1934

Low 0.2931      0.4577      0.685       0.1934

Entropy reduction = 0.1112 (11.2 %)
Belief Variance    = 0.03742 (15.1 %)

Sensitivity of 'SocialCapital' to findings at 'ProfCultAwareness':

Probability ranges:
Change

Min. Current Max. RMS.

High 0.3279      0.5423      0.7076       0.1883
Low 0.2924      0.4577      0.6721       0.1883

Entropy reduction = 0.1052 (10.6 %)
Belief Variance    = 0.03544 (14.3 %)
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Sensitivity of 'SocialCapital' to findings at 'DemogCultAwareness':

Entropy reduction = 0.03937 (3.96 %)
Belief Variance    = 0.0134 (5.4 %)

Sensitivity of 'SocialCapital' to findings at 'Social Protocols':
  Probability ranges:

Change
Min. Current Max. RMS.

High 0.4487 0.5423      0.6359       0.0936

Low 0.3641      0.4577      0.5513     0.0936

Entropy reduction = 0.02562 (2.58 %)
Belief Variance    = 0.008761 (3.53 %)

Sensitivity of 'SocialCapital' to findings at 'CommType':

Probability ranges:
Change

Min. Current Max. RMS.

High 0.4873 0.5423 0.5972 0.05493
Low 0.4028 0.4577 0.5127 0.05493

Entropy reduction = 0.008786 (0.883 %)
Belief Variance    = 0.003017 (1.22 %)

Probability ranges:
Change

Min. Current Max. RMS.

High 0.4328 0.5423 0.6647 0.1157
Low 0.3353 0.4577 0.5672 0.1157
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Appendix C: Parent-child relationships analysis of variables of social capital model

This table shows the analysis of parent-child relationships, their relative weights and 
correlations within the social capital model.

Parent Child Relative weight Pearson's correlation
Interactions Attitudes 1.0000 0.6925
Interactions IndCapabAwareness 0.1939 0.6449

Interactions TaskKnowledgeAwareness 0.1939 0.6449
SProtocols SocialCapital 0.1565 0.1524
Attitudes IndCapabAwareness 0.1381 0.5700

Attitudes TaskKnowledgeAwareness 0.1381 0.5700
DemogCultAwareness SocialCapital 0.1245 0.1419

Interactions SProtocols 0.0984 0.1213

SharedUnderstanding Trust 0.0687 0.1164

ProfCultAwareness Trust 0.0679 0.1201

DemogCultAwareness Trust 0.0639 0.0979

ProfCultAwareness SocialCapital 0.0594 0.1116

Trust SocialCapital 0.0396 0.1094
CommType SharedUndertanding 0.0375 0.0821

Attitudes ProfCultAwareness 0.0337 0.1642

IndCapabAwareness Trust 0.0220 0.1298

TaskKnowledgeAwareness Trust 0.0220 0.1298

IndCapabAwareness SocialCapital 0.0216 0.1027

Attitudes DemogCultAwareness 0.0191 0.0832
CommType ProfCultAwareness 0.0179 0.0525

Attitudes SharedUndertanding 0.0150 0.1246
Interactions SharedUndertanding 0.0122 0.1284

Interactions ProfCultAwareness 0.0115 0.1562

CommType DemogCultAwareness 0.0095 0.0353

Interactions DemogCultAwareness 0.0012 0.0641

TaskKnowledgeAwareness SocialCapital 0.0000 0.0676

Shared Understanding SocialCapital 0.0000 0.0218
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Appendix D: A sample of a standard sense of community index

I am going to read some statements that people might make about this class. Each time I 
read one of these statements, please mark it as mostly true or mostly false simply by 
writing "true" or "false" next to the item.

True = 1 False =0

I. I think my class (deleted) is a good place for me to learn.

2. People in this class do not share the same values.

3. My classmates and I want the same things from this class.

4. I can recognize most of the people who participate in my class.

5. I feel at home in this class.

6. Very few of my classmates know me.

7. I care about what my classmates think of my actions.

8. I have no influence over what this class is like.

9. If there is a problem in this class people who work here can get it solved.

10. It is very important to me to learn in this particular class.

11. People in this class generally don't get along with each other.

12. I expect to know the people in this class for a long time.

Name: 
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Appendix E: Sample of the survey instrument for the model verification 

Survey Questionnaire

Thank you for agreeing to take part in this study.  The purpose of the study is to find out 

more about your experiences interacting with others in one of the online courses you have 

taken as part of your graduate degree/diploma in [program name]. The goal of this study 

is to understand the fundamental variables and characteristics of social capital in virtual 

communities, with the aim of updating a computational model of social capital built to 

simulate effective interactions in virtual communities.

In this part of the study, I would like you to fill out the following questionnaire.  The 

questionnaire is divided into three parts.  Part one asks about your background.  Part two 

is about your participation and part three is about your relationships with others in the 

class. Your answers to these questions will be anonymous. Neither your instructor nor 

your colleagues will see your responses. So please, feel free to express your true opinions 

on the questions.  For questions with pre-specified options, place an “X” next to the 

single choice or (choices) that are appropriate to your situation.  I will appreciate if you 

can answer the questions with a statement (s) that is clear and complete as much as you 

can. 

1. Gender

[   ] Male    



- 161 -

[   ] Female 

2. First Language

[   ] English 

[   ] Other, please specify--------------------------------------------------------------------

3. Degree sought/completed

[   ] M.Ed 

[   ] M.Sc. 

[   ] PhD

[   ] Others, please specify-------------------------------------------------------------------

4. What is your current practice? 

[   ] School teacher   

[   ] University lecturer       

[   ] Instructional designer 

[   ] Corporate learning specialist

[   ] Administrator

[   ] Technology coordinator

[   ] Others, please, specify------------------------------------------------------------------
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--------------------------------------------------------------------------------------------------

5. What is your background training before joining the program? ---------------------------

-------------------------------------------------------------------------------------------------------

6. How many people did you personally know before taking the class?

[   ] Few 

[   ] Almost everybody

[   ] Nobody at all

7. How often did you participate in class related discussions?

[   ] Very often   

[   ] Less often       

[   ] Never 

8. How often did you participate in discussions of issues not related to the class 

materials?

[   ] Very often   
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[   ] Less often       

[   ] Never 

9. How often did you share class related resources with others in that class?

[   ] Very often   

[   ] Less often       

[   ] Never 

10. How often do you maintain contact with classmates outside class?

[   ] Very often   

[   ] Less often       

[   ] Never 
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11. When faced with problems related to the content of the class, who did you sought for 

help?

[   ] Instructor of the course         

[   ] Friend(s) in the class with whom I maintained personal contacts

          [   ] Moderator of the course

          [   ] Nobody 

      [   ] Others, please, specify-----------------------------------------------------------

12. Were there any explicit social protocols guiding participation in that class?

[   ] Yes

[   ] No

[   ] I don’t know

13. Were there clear expectations from the instructor in regards to contribution to 

discussions in the class?

[   ] Yes

[   ] No

[   ] I don’t know
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14. To what extent do you think established social protocols by the instructor have 

influenced your participation in that class?

[   ] To a very small extent

[   ] To small extend

[   ] Neither small nor great

[   ] To a great extent

15. Was it likely or unlikely that people who did not participate in the class were either 

explicitly or implicitly sanctioned?

      [   ] Very likely

     [   ] Somewhat likely

     [   ] Very unlikely

     [   ] I don’t know  

16. Do you think that people in class shared common values?

[   ] Yes

[   ] No
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17. Do you think that people in that class shared common goals?

[   ] Yes

[   ] No

18. In your opinion how well did people in that class help each other on class related 

issues?

            [   ] Always helping

[   ] Helping most of the time

[   ] Rarely helping

[   ] Never helping

19. If an issue discussed in the class did not interest you or related to your class project 

but of interest to others. How much did you contribute to those kinds of discussion?

[   ] Often contributed to the discussions

[   ] Rarely contributed to the discussions

[   ] Never contributed to the discussions
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20. During your interactions with others in the class, how many people did you believe 

were knowledgeable about the content of the class material? ------------------------------

-----------------------------------------------------------------------------------------------------

21. Overall how many people did you think were capable of offering useful help during 

difficult problems related to the course materials?

22. In general do you agree or disagree with the following questions.

I.Most of people in that class could be trusted

[   ] Agree

[   ] Disagree

II.In that class one had to be alert or someone was more likely to take advantage of 

others

[   ] Agree

[   ] Disagree

III.Most of the people in that class were willing to offer help when needed

[   ] Agree
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[   ] Disagree

IV.In general people in that class did not trust what does say during discussions in the 

class

[   ] Agree

[   ] Disagree

23. In a scale of 1-5 where 1 means very small extent and 5 means very great extent. How 

much did you trust people in that class or similar class you might have taken in the 

past?

1-To a very small 

extent

2-To a small extent

3-Neither small nor 

great extent

4-Toa great extent

5-To a very great 

extent

a) People with whom you share professional backgrounds

b) People with whom you share demographic background 
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(e.g. language and gender)

c) The instructor of the class

d) Moderator of the class

e) People who seemed to know a lot about the content of 

the class materials

f) Nobody could be trusted in that class

24. In your opinion, overall over the course of time in the class, the level of trust among 

people in the class had gotten better, worse, or stayed about the same

[   ] Gotten better

[   ] Gotten worse

[   ] Stayed about the same

25. In your opinion how strong was the feeling of togetherness in that class?

[   ] Very distant

[   ] Somewhat distant

[   ] Neither distant nor close

[   ] Somewhat close

[   ] Very close
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26. There are often differences in background in a graduate class similar to what you 

have taken; to what extent did such differences characterized your class?

       [   ] To a very great extent 

       [   ] To a great extent

      [   ] Neither great nor small extent

       [   ] To a small extent 

        [   ] To a very small extent

27. Did any differences in training, opinion, language led to any problem?

[   ] Yes

[   ] No

If yes, what kinds of problems-------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

--------------------------------------------------------------

28. In your opinion, which of the following differences had or could have caused 

problems in that class you have taken or similar others

[   ] Differences in professional training

[   ] Differences between men and women
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[   ] Differences in ethnic background

[   ] Differences in opinions

[   ] Differences in language

[   ] Differences in educational backgrounds

[    ] Any other differences, please specify------------------------------------------------

-------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------

---------------------------------------------------------------

29. Please, list personal or group attributes which in your opinion might have contributed 

to effective participation in that class

I. -------------------------------------------------------------------------

II. --------------------------------------------------------------------------

III. --------------------------------------------------------------------------

IV. ---------------------------------------------------------------------------

V. ---------------------------------------------------------------------------

30. Any other comments

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------
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Appendix F: List of Bayesian Network Tools 

Appendix F lists available BBN tools and resources on the Web some of these are 
freeware and open source while others are commercial.

Name Authors URL/Link
AgenaRisk Agena [http://www.agenarisk.com/]
Analytica Lumina [http://www.lumina.com/]
Banjo Hartemink [http://www.cs.duke.edu/~amink/software/banjo/]
BayesiaLab Bayesia Ltd [http://www.bayesia.com/]
Bayesware Discoverer Bayesware [http://www.bayesware.com/]
B-course U. Helsinki [http://b-course.hiit.fi/]
Belief net power 
constructor

Cheng (U.Alberta) [http://www.cs.ualberta.ca/~jcheng/bnpc.htm]

BNT Murphy (U.C.Berkeley) [http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html]
BUGS MRC/Imperial College [http://www.mrc-bsu.cam.ac.uk/bugs/]
Causal discoverer Vanderbilt [http://discover1.mc.vanderbilt.edu/discover/public/]
CoCo+Xlisp Badsberg (U. Aalborg) [http://www.math.aau.dk/~jhb/CoCo/information.html]
CIspace Poole et al. (UBC) [http://www.cs.ubc.ca/labs/lci/CIspace/]
DBNbox Roberts et al [http://www.robots.ox.ac.uk/~parg/software.html]
Deal Bottcher et al [http://www.math.aau.dk/novo/deal/[
DeriveIt DeriveIt LLC [http://www.deriveit.com/]
Ergo Noetic systems [http://www.noeticsystems.com/]
GDAGsim Wilkinson (U. Newcastle) [http://www.staff.ncl.ac.uk/d.j.wilkinson/software/gdagsim/]
Genie U. Pittsburgh [http://genie.sis.pitt.edu/]
GMTk Bilmes (UW), Zweig 

(IBM) 
[http://ssli.ee.washington.edu/~bilmes/gmtk/]

gR Lauritzen et al. [http://www.ci.tuwien.ac.at/gR/]
Grappa Green (Bristol) [http://www.stats.bris.ac.uk/~peter/Grappa/]
Hugin Expert Hugin [http://www.hugin.com/]
Java Bayes Cozman (CMU) [http://www.cs.cmu.edu/~javabayes/Home/]
MIM HyperGraph Software [http://www.hypergraph.dk/]
MSBNx Microsoft [http://research.microsoft.com/adapt/MSBNx/]
Netica Norsys [http://www.norsys.com/]
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Distributed Community of Practice in Tomei, L. (Eds). Online and Distance 

Learning: Concepts, Methodologies, Tools, and Applications. Information Science 
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